WorldWideScience

Sample records for legacy waste sites

  1. Project Strategy For The Remediation And Disposition Of Legacy Transuranic Waste At The Savannah River Site, South Carolina, USA

    International Nuclear Information System (INIS)

    Rodriguez, M.

    2010-01-01

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  2. Magnox Swarf Storage Silo Liquor Effluent Management -Sellafield Site, Cumbria, UK - Legacy radioactive waste storage - 59271

    International Nuclear Information System (INIS)

    Le Clere, Stephen

    2012-01-01

    The Sellafield Magnox Swarf Storage Silo (MSSS) was constructed to provide an underwater storage facility for irradiated magnox cladding metal Swarf, as well as miscellaneous beta-gamma waste from several sources. Liquid effluent arisings from hazard reduction activities at this facility represent the toughest effluent treatment challenge within the company's Legacy Ponds and Silos portfolio. The key requirement for hazard reduction has generated many substantial challenges as the facility is readied for decommissioning. This has demanded the production of carefully thought out strategies for managing, and overcoming, the key difficulties to be encountered as hazard reduction progresses. The complexity associated with preparing for waste retrievals from the Magnox Swarf Storage Silo, has also generated the demand for a mix of creativity and perseverance to meet the challenges and make progress. Challenging the status quo and willingness to accept change is not easy and the road to overall hazard reduction for the high hazard MSSS facility will demand the skills and investment of individuals, teams, and entire facility work-forces. The first steps on this road have been taken with the successful introduction of liquor management operations, however much more is yet to be achieved. Clear communication, investing in stakeholder management, perseverance in the face of difficulty and a structured yet flexible programme delivery approach, will ensure the continued success of tackling the complex challenges of treating liquid effluent from a legacy fuel storage silo at the Sellafield Site. (authors)

  3. Measurement of tributyl phosphate (TBP) in groundwater at a legacy radioactive waste site and its possible role in contaminant mobilisation.

    Science.gov (United States)

    Rowling, Brett; Kinsela, Andrew S; Comarmond, M Josick; Hughes, Catherine E; Harrison, Jennifer J; Johansen, Mathew P; Payne, Timothy E

    2017-11-01

    At many legacy radioactive waste sites, organic compounds have been co-disposed, which may be a factor in mobilisation of radionuclides at these sites. Tri-butyl phosphate (TBP) is a component of waste streams from the nuclear fuel cycle, where it has been used in separating actinides during processing of nuclear fuels. Analyses of ground waters from the Little Forest Legacy Site (LFLS) in eastern Australia were undertaken using solid-phase extraction (SPE) followed by gas chromatographic mass spectrometry (GCMS). The results indicate the presence of TBP several decades after waste disposal, with TBP only being detected in the immediate vicinity of the main disposal area. TBP is generally considered to degrade in the environment relatively rapidly. Therefore, it is likely that its presence is due to relatively recent releases of TBP, possibly stemming from leakage due to container degradation. The ongoing presence and solubility of TBP has the potential to provide a mechanism for nuclide mobilisation, with implications for long term management of LFLS and similar legacy waste sites. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Coupling Legacy and Contemporary Deterministic Codes to Goldsim for Probabilistic Assessments of Potential Low-Level Waste Repository Sites

    Science.gov (United States)

    Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.

    2006-12-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer

  5. Legacy Risk Measure for Environmental Waste

    International Nuclear Information System (INIS)

    Eide, S. A.; Nitschke, R. L.

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating the development of a comprehensive and quantitative risk model framework for environmental management activities at the site. Included are waste management programs (high-level waste, transuranic waste, low-level waste, mixed low-level waste, spent nuclear fuel, and special nuclear materials), major environmental restoration efforts, major decontamination and decommissioning projects, and planned long-term stewardship activities. Two basic types of risk estimates are included: risks from environmental management activities, and long-term legacy risks from wastes/materials. Both types of risks are estimated using the Environment, Safety, and Health Risk Assessment Program (ESHRAP) developed at the INEEL. Given these two types of risk calculations, the following evaluations can be performed: risk evaluation of an entire program (covering waste/material as it now exists through disposal or other e nd states); risk comparisons of alternative programs or activities; comparisons of risk benefit versus risk cost for activities or entire programs; ranking of programs or activities by risk; ranking of wastes/materials by risk; evaluation of site risk changes with time as activities progress; and integrated performance measurement using indicators such as injury/death and exposure rates. This paper discusses the definition and calculation of legacy risk measures and associated issues. The legacy risk measure is needed to support three of the seven types of evaluations listed above: comparisons of risk benefit versus risk cost, ranking of wastes/materials by risk, and evaluation of site risk changes with time

  6. Solution speciation of plutonium and Americium at an Australian legacy radioactive waste disposal site.

    Science.gov (United States)

    Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E

    2014-09-02

    During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.

  7. Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.

    Science.gov (United States)

    Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.

  8. Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site

    Science.gov (United States)

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473

  9. Legacy Radioactive Waste Management Program in the Netherlands: An Overview

    International Nuclear Information System (INIS)

    Ménard, Gaël

    2016-01-01

    Petten site legacy waste: • sorted on waste streams, from the less to the more heterogeneous; • footprint reduction by sorting according to activity; • first two waste streams: limited number of material; • characterized using gamma measurements and computational nuclide vectors. •Waste acceptance criteria: modus vivendi with the storage facility and third parties (based on characterization results); • More heterogeneous waste: more complex by definition → optimization, development and adaptation of the characterization

  10. Remediation of legacy sites in Belarus

    International Nuclear Information System (INIS)

    Shiryaeva, Nina; Skurat, Vladimir; Zhemzhurov, Michail; Myshkina, Nadezhda; Chaternik, Romouald; Yacko, Svetlana

    2008-01-01

    Full text: In Belarus there are several kinds several types of radioactive waste repositories, which present the different legacy sites, namely: 1-) Decontamination wastes of the Chernobyl origin from decontaminating the territory of Belarus after the Chernobyl nuclear power plant accident. Decontamination wastes (DW) are placed in repositories of near surface type with engineered barriers and without them; 2-) Disused radioactive sources, that were found in the territories of the former military bases disbanded in Belarus after disintegration of the Soviet Union. These wastes have been stored in the concrete wells in different places of Belarus. Decontamination wastes of the Chernobyl origin are a great problem for Belarus. They result from decontaminating the territory of Belarus from radioactive fall-outs after the Chernobyl nuclear power plant (NPP) accident. Decontamination wastes were placed in more than 90 repositories near 78 settlements. Their disposal sites were mainly chosen without detail account of hydrogeological conditions. Therefore the most of them are of potential hazard because of possible secondary radioactive contamination of the ecosystems. At the moment in accordance with the State Program of Republic of Belarus to mitigate and overcome the consequences of the Chernobyl NPP accident the necessary measures on the guaranteeing of decontamination waste storage reliability have been performed, such as compacting of DW disposal sites; upper isolation of DW with the protected one or two layers clay layer of 0.5 m thickness and soil layer from near territory of 1.0 m thickness; turfing of disposal site territory by sowing grasses. At present works are being continued on decontamination of residential properties, and also dismantling and burying of contaminated industrial equipment. For these purposes and also for control and maintenance of these legacy sites Belarus allocates 1.6 million dollars annually. After disbanding the military divisions of

  11. Analyzing Patterns of Community Interest at a Legacy Mining Waste Site to Assess and Inform Environmental Health Literacy Efforts

    Science.gov (United States)

    Ramirez-Andreotta, Monica D.; Lothrop, Nathan; Wilkinson, Sarah T.; Root, Robert A.; Artiola, Janick F.; Klimecki, Walter; Loh, Miranda

    2015-01-01

    Understanding a community’s concerns and informational needs is crucial to conducting and improving environmental health research and literacy initiatives. We hypothesized that analysis of community inquiries over time at a legacy mining site would be an effective method for assessing environmental health literacy efforts and determining whether community concerns were thoroughly addressed. Through a qualitative analysis, we determined community concerns at the time of being listed as a Superfund site. We analyzed how community concerns changed from this starting point over the subsequent years, and whether: 1) communication materials produced by the USEPA and other media were aligned with community concerns; and 2) these changes demonstrated a progression of the community’s understanding resulting from community involvement and engaged research efforts. We observed that when the Superfund site was first listed, community members were most concerned with USEPA management, remediation, site-specific issues, health effects, and environmental monitoring efforts related to air/dust and water. Over the next five years, community inquiries shifted significantly to include exposure assessment and reduction methods and issues unrelated to the site, particularly the local public water supply and home water treatment systems. Such documentation of community inquiries over time at contaminated sites is a novel method to assess environmental health literacy efforts and determine whether community concerns were thoroughly addressed. PMID:27595054

  12. Requalification of Legacy Radioactive Waste in Germany

    International Nuclear Information System (INIS)

    Bandt, Gabriele; Hoffmann, Paulina; Spicher, Gottfried; Filss, Martin; Schauer, Claudia

    2016-01-01

    Conclusion: • Large stocks of legacy radioactive waste exist, which do not comply with the requirements of the Konrad repository. • Requalification campaigns with thousands of waste packages have successfully been carried out. • Quality assurance plans contain all necessary steps of specific (requalification) campaigns and optimize the procedures for each campaign in advance. • When sophisticated measurement equipment was needed an iterative procedure was adopted. Repeated evaluations of the nondestructive res. destructive measurements limited the measures to the necessary limit.

  13. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    Energy Technology Data Exchange (ETDEWEB)

    Green, Stefan [Florida State University; Prakash, Om [Florida State University; Jasrotia, Puja [Florida State University; Overholt, Will [Florida State University; Cardenas, Erick [Michigan State University, East Lansing; Hubbard, Daniela [Florida State University; Tiedje, James M. [Michigan State University, East Lansing; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, Joel [Florida State University

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  14. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site.

    Science.gov (United States)

    Green, Stefan J; Prakash, Om; Jasrotia, Puja; Overholt, Will A; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M; Watson, David B; Schadt, Christopher W; Brooks, Scott C; Kostka, Joel E

    2012-02-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  15. 327 legacy waste processing plan

    International Nuclear Information System (INIS)

    Henderson, J.F.

    1998-01-01

    The B and W Hanford Company's (BWHC) 327 Facility [Postirradiation Testing Laboratory (PTL)] houses 10 hot cells in which a variety of postirradiation examinations have been performed since its construction in the mid 1950s. Over the years, the waste that was generated in these cells has been collected in one gallon buckets. These buckets are essentially one gallon cylindrical cans made of thin wall stainless steel with welded bottoms and slip fit lids. They contain assorted compactable waste (i.e., Wipe-Alls, Q-tips, towels, etc.) as well as non-compactable waste (i.e., small tools, pieces of metal tubing, etc.). There is a FY-98 BWHC Performance Agreement (PA) milestone in place to package 200 of these buckets in drums and ship them from the 327 facility to the Central Waste Complex (CWC) by September 30, 1998

  16. Low-Level Legacy Waste Processing Experience at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Rowell, L.E.; Kurasch, D.H.; Moore, H.R.

    2006-01-01

    This paper presents detailed results and lessons learned from the very challenging and highly successful 2005 low level radioactive waste sorting, packaging, and shipping campaign that removed over 95% of the available inventory of 350,000 ft 3 of legacy low level waste at the West Valley Demonstration Project near West Valley, New York. First some programmatic perspective and site history is provided to provide pertinent context for DOE's waste disposal mandates at the site. This is followed by a detailed description of the waste types, the storage locations, the containers, and the varied sorting and packaging facilities used to accomplish the campaign. The overall sorting and packaging protocols for this inventory of wastes are defined. This is followed by detailed sorting data and results concluding with lessons learned. (authors)

  17. Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.F.; Romanov, V.V. [Federal Medical Biological Agency, Moscow (Russian Federation); Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Seregin, V.A.; Metlyaev, E.G.; Novikova, N. [Burnasyan Federal Medical Biophysical Centre, Moscow (Russian Federation); Khokhlova, E.A. [Regional Management-107 under FMBA of Russia, Krasnokamensk (Russian Federation)

    2012-07-01

    Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The current Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated

  18. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    International Nuclear Information System (INIS)

    West, L.D.

    2011-01-01

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W and FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m 3 of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% (∼8,000 m 3 ) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  19. Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia.

    Science.gov (United States)

    Hughes, C E; Cendón, D I; Harrison, J J; Hankin, S I; Johansen, M P; Payne, T E; Vine, M; Collins, R N; Hoffmann, E L; Loosz, T

    2011-10-01

    Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in ground water was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent and fill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.

  20. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  1. Sampling and Analysis Plan for Disposition of the Standing Legacy Wastes in the 105-B, -D, -H, -KE, and -KW Reactor Buildings

    International Nuclear Information System (INIS)

    McGuire, J. J.

    1999-01-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities that support disposition of legacy waste in the Hanford Site's 105-B, 105-D, 105-H,105-KE, 105-KW Reactor buildings. For the purpose of this SAP, legacy waste is identified as any item present in a facility that is not permanently attached to the facility and is easily removed without the aid of equipment larger than a standard forklift

  2. Sampling and Analysis Plan for Disposition of the Standing Legacy Wastes in the 105-B, -D, -H, -KE, and -KW Reactor Buildings

    International Nuclear Information System (INIS)

    McGuire, J.J.

    1999-01-01

    This sampling and analysis plan (SAP) presents the rationale and strategy for the sampling and analysis activities that support disposition of legacy waste in the Hanford Site's 105-B, 105-D, 105-H, 105-KE, 105-KW Reactor buildings. For the purpose of this SAP, legacy waste is identified as any item present in a facility that is not permanently attached to the facility and is easily removed without the aid of equipment larger than a standard forklift

  3. U.S. Department of Energy Office of Legacy Management Legacy Uranium Mine Site Reclamation - Lessons Learned - 12384

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, Laura E. [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado 80021 (United States); Cotter, Ed [S.M. Stoller Corporation, Grand Junction, Colorado 81503 (United States)

    2012-07-01

    The U.S. Department of Energy (DOE) Office of Legacy Management is responsible for administering the DOE Uranium Leasing Program (ULP) and its 31 uranium lease tracts located in the Uravan Mineral Belt of southwestern Colorado (see Figure 1). In addition to administering the ULP for the last six decades, DOE has also undertaken the significant task of reclaiming a large number of abandoned uranium (legacy) mine sites and associated features located throughout the Uravan Mineral Belt. In 1995, DOE initiated a 3-year reconnaissance program to locate and delineate (through extensive on-the-ground mapping) the legacy mine sites and associated features contained within the historically defined boundaries of its uranium lease tracts. During that same time frame, DOE recognized the lack of regulations pertaining to the reclamation of legacy mine sites and contacted the U.S. Bureau of Land Management (BLM) concerning the reclamation of legacy mine sites. In November 1995, The BLM Colorado State Office formally issued the United States Department of the Interior, Colorado Bureau of Land Management, Closure/Reclamation Guidelines, Abandoned Uranium Mine Sites as a supplement to its Solid Minerals Reclamation Handbook (H-3042-1). Over the next five-and-one-half years, DOE reclaimed the 161 legacy mine sites that had been identified on DOE withdrawn lands. By the late 1990's, the various BLM field offices in southwestern Colorado began to recognize DOE's experience and expertise in reclaiming legacy mine sites. During the ensuing 8 years, BLM funded DOE (through a series of task orders) to perform reclamation activities at 182 BLM mine sites. To date, DOE has reclaimed 372 separate and distinct legacy mine sites. During this process, DOE has learned many lessons and is willing to share those lessons with others in the reclamation industry because there are still many legacy mine sites not yet reclaimed. DOE currently administers 31 lease tracts (11,017 ha) that

  4. Waste Sites - Municipal Waste Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Municipal Waste Operation is a DEP primary facility type related to the Waste Management Municipal Waste Program. The sub-facility types related to Municipal Waste...

  5. Waste minimization applications at a remediation site

    International Nuclear Information System (INIS)

    Allmon, L.A.

    1995-01-01

    The Fernald Environmental Management Project (FEMP) owned by the Department of Energy was used for the processing of uranium. In 1989 Fernald suspended production of uranium metals and was placed on the National Priorities List (NPL). The site's mission has changed from one of production to environmental restoration. Many groups necessary for producing a product were deemed irrelevant for remediation work, including Waste Minimization. Waste Minimization does not readily appear to be applicable to remediation work. Environmental remediation is designed to correct adverse impacts to the environment from past operations and generates significant amounts of waste requiring management. The premise of pollution prevention is to avoid waste generation, thus remediation is in direct conflict with this premise. Although greater amounts of waste will be generated during environmental remediation, treatment capacities are not always available and disposal is becoming more difficult and costly. This creates the need for pollution prevention and waste minimization. Applying waste minimization principles at a remediation site is an enormous challenge. If the remediation site is also radiologically contaminated it is even a bigger challenge. Innovative techniques and ideas must be utilized to achieve reductions in the amount of waste that must be managed or dispositioned. At Fernald the waste minimization paradigm was shifted from focusing efforts on source reduction to focusing efforts on recycle/reuse by inverting the EPA waste management hierarchy. A fundamental difference at remediation sites is that source reduction has limited applicability to legacy wastes but can be applied successfully on secondary waste generation. The bulk of measurable waste reduction will be achieved by the recycle/reuse of primary wastes and by segregation and decontamination of secondary wastestreams. Each effort must be measured in terms of being economically and ecologically beneficial

  6. Environmental radioactivity and mitigation of radiological impact at legacy uranium sites in Portugal

    International Nuclear Information System (INIS)

    Carvalho, F.

    2014-01-01

    Uranium legacy sites in the country contain large amounts of milling tailings, mining waste, old infrastructures and acid mine drainage with high radioactivity concentrations. Radioactivity surveillance of these sites has been maintained for many years and institutional control kept beyond cessation of Portuguese uranium mining in 2001. A research programme (2003-2006) requested by the government to assess environmental contamination and public health risks in these regions advised implementing environmental remediation measures. A national programme was approved for remediation of abandoned mine sites, including radioactive and non-radioactive mines, that started in 2005 and since has completed significant remediation works in several old uranium mines. One amongst these sites, the Urgeiriça mine and milling site, was re-engineered, tailings were covered, the mine was closed, the area of mine and milling facilities cleaned, and an automated contaminated water treatment plant installed. Environmental radioactivity surveys carried out in this region showed reduced ambient radiation doses, lower radon concentrations in surface air, return to background radioactivity in surface air aerosols, and decrease of radionuclide concentrations in the river receiving water discharges from the mine site, resulting in a reduced radiation exposure to members of the public. Other legacy uranium mines without milling tailings, were mainly remediated for landscape engineering and the adopted solutions included, for example, preservation of non-contaminated ponds for public leisure. Although not completed yet in many sites, the remediation works implemented contributed already to a significant abatement of radiation exposure allowing for safer implementation of activities, such as agriculture and cattle grazing, in the surroundings of legacy sites. Environmental remediation and abatement of radiation exposure contributed to revitalize socio-economic activities of the region and

  7. Biological field stations: research legacies and sites for serendipity

    Science.gov (United States)

    William K. Michener; Keith L. Bildstein; Arthur McKee; Robert R. Parmenter; William W. Hargrove; Deedra McClearn; Mark Stromberg

    2009-01-01

    Biological field stations are distributed throughout North America, capturing much of the ecological variability present at the continental scale and encompassing many unique habitats. In addition to their role in supporting research and education, field stations offer legacies of data, specimens, and accumulated knowledge. Such legacies often provide the only...

  8. Mobility of radionuclides and trace elements in soil from legacy NORM and undisturbed naturally 232Th-rich sites.

    Science.gov (United States)

    Mrdakovic Popic, Jelena; Meland, Sondre; Salbu, Brit; Skipperud, Lindis

    2014-05-01

    Investigation of radionuclides (232Th and 238U) and trace elements (Cr, As and Pb) in soil from two legacy NORM (former mining sites) and one undisturbed naturally 232Th-rich site was conducted as a part of the ongoing environmental impact assessment in the Fen Complex area (Norway). The major objectives were to determine the radionuclide and trace element distribution and mobility in soils as well as to analyze possible differences between legacy NORM and surrounding undisturbed naturally 232Th-rich soils. Inhomogeneous soil distribution of radionuclides and trace elements was observed for each of the investigated sites. The concentration of 232Th was high (up to 1685 mg kg(-1), i.e., ∼7000 Bq kg(-1)) and exceeded the screening value for the radioactive waste material in Norway (1 Bq g(-1)). Based on the sequential extraction results, the majority of 232Th and trace elements were rather inert, irreversibly bound to soil. Uranium was found to be potentially more mobile, as it was associated with pH-sensitive soil phases, redox-sensitive amorphous soil phases and soil organic compounds. Comparison of the sequential extraction datasets from the three investigated sites revealed increased mobility of all analyzed elements at the legacy NORM sites in comparison with the undisturbed 232Th-rich site. Similarly, the distribution coefficients Kd (232Th) and Kd (238U) suggested elevated dissolution, mobility and transportation at the legacy NORM sites, especially at the decommissioned Nb-mining site (346 and 100 L kg(-1) for 232Th and 238U, respectively), while the higher sorption of radionuclides was demonstrated at the undisturbed 232Th-rich site (10,672 and 506 L kg(-1) for 232Th and 238U, respectively). In general, although the concentration ranges of radionuclides and trace elements were similarly wide both at the legacy NORM and at the undisturbed 232Th-rich sites, the results of soil sequential extractions together with Kd values supported the expected differences

  9. UP2 400 High Activity Oxide Legacy Waste Retrieval Project Scope and Progress-13048

    Energy Technology Data Exchange (ETDEWEB)

    Chabeuf, Jean-Michel; Varet, Thierry [AREVA Site Value Development Business Unit, La Hague Site (France)

    2013-07-01

    The High Activity Oxide facility (HAO) reprocessed sheared and dissolved 4500 metric tons of light water reactor fuel the fuel of the emerging light water reactor spent fuel between 1976 and 1998. Over the period, approximately 2200 tons of process waste, composed primarily of sheared hulls, was produced and stored in a vast silo in the first place, and in canisters stored in pools in subsequent years. Upon shutdown of the facility, AREVA D and D Division in La Hague launched a thorough investigation and characterization of the silos and pools content, which then served as input data for the definition of a legacy waste retrieval and reconditioning program. Basic design was conducted between 2005 and 2007, and was followed by an optimization phase which lead to the definition of a final scenario and budget, 12% under the initial estimates. The scenario planned for the construction of a retrieval and reconditioning cell to be built on top of the storage silo. The retrieved waste would then be rinsed and sorted, so that hulls could subsequently be sent to La Hague high activity compacting facility, while resins and sludge would be cemented within the retrieval cell. Detailed design was conducted successfully from 2008 until 2011, while a thorough research and development program was conducted in order to qualify each stage of the retrieval and reconditioning process, and assist in the elaboration of the final waste package specification. This R and D program was defined and conducted as a response and mitigation of the major project risks identified during the basic design process. Procurement and site preparatory works were then launched in 2011. By the end of 2012, R and D is nearly completed, the retrieval and reconditioning process have been secured, the final waste package specification is being completed, the first equipment for the retrieval cell is being delivered on site, while preparation works are allowing to free up space above and around the silo, to

  10. Management of legacy spent nuclear fuel wastes at the Chalk River Laboratories: operating experience and progress towards waste remediation

    International Nuclear Information System (INIS)

    Cox, D.S.; Bainbridge, I.B.; Greenfield, K.R.

    2006-01-01

    AECL has been managing and storing a diversity of spent nuclear fuel, arising from operations at its Chalk River Laboratories (CRL) site over more than 50 years. A subset of about 22 tonnes of research reactor fuels, primarily metallic uranium, have been identified as a high priority for remediation, based on monitoring and inspection that has determined that these fuels and their storage containers are corroding. This paper describes the Fuel Packaging and Storage (FPS) project, which AECL has launched to retrieve these fuels from current storage, and to emplace them in a new above-ground dry storage system, as a prerequisite step to decommissioning some of the early-design waste storage structures at CRL. The retrieved fuels will be packaged in a new storage container, and subjected to a cold vacuum drying process that will remove moisture, and thereby reduce the extent of future corrosion and degradation. The FPS project will enable improved interim storage to be implemented for legacy fuels at CRL, until a decision is made on the ultimate disposition of legacy fuels in Canada. (author)

  11. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  12. Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522

    International Nuclear Information System (INIS)

    Mctaggart, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has

  13. Cleanup Summary Report for the Defense Threat Reduction Agency Fiscal Year 2007, Task 6.7, U12u-Tunnel (Legacy Site), Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This letter serves as notice of completion for cleanup of the U12u-Tunnel (Legacy Site) as specified in the Defense Threat Reduction Agency (DTRA) Fiscal Year 2007 Statement of Work, Task 6.7. The U12u-Tunnel Legacy Site is located near the intersection of the U12u-Tunnel access road and the U12n-Tunnel access road in Area 12 of the Nevada Test Site (see Figure 1). The site encompasses 1.2 acres and was used to store miscellaneous mining equipment and materials that were used to support DTRA testing in Area 12. Field activities commenced February 11, 2008, and were completed February 20, 2008. Radiological surveys were performed on a drill jumbo and all material stored at the site. The drill jumbo was relocated to U12p-Tunnel portal and consolidated with other critical mining equipment for future use or storage. Ten truck loads of solid waste (53 tons) were shipped to the Nevada Test Site, Area 9 U10c Sanitary Landfill for disposal. No hazardous or radiological waste was generated at this site

  14. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  15. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  16. Monitoring human factor risk characteristics at nuclear legacy sites in northwest Russia in support of radiation safety regulation.

    Science.gov (United States)

    Scheblanov, V Y; Sneve, M K; Bobrov, A F

    2012-12-01

    This paper describes research aimed at improving regulatory supervision of radiation safety during work associated with the management of spent nuclear fuel and radioactive waste at legacy sites in northwest Russia through timely identification of employees presenting unfavourable human factor risk characteristics. The legacy sites of interest include sites of temporary storage now operated by SevRAO on behalf of Rosatom. The sites were previously operational bases for servicing nuclear powered submarines and are now subject to major remediation activities. These activities include hazardous operations for recovery of spent nuclear fuel and radioactive waste from sub-optimal storage conditions. The paper describes the results of analysis of methods, procedures, techniques and informational issues leading to the development of an expert-diagnostic information system for monitoring of workers involved in carrying out the most hazardous operations. The system serves as a tool for human factor and professional reliability risk monitoring and has been tested in practical working environments and implemented as part of regulatory supervision. The work has been carried out by the Burnasyan Federal Medical Biophysical Center, within the framework of the regulatory cooperation programme between the Federal Medical-Biological Agency of Russia and the Norwegian Radiation Protection Authority.

  17. Monitoring human factor risk characteristics at nuclear legacy sites in northwest Russia in support of radiation safety regulation

    International Nuclear Information System (INIS)

    Scheblanov, V Y; Bobrov, A F; Sneve, M K

    2012-01-01

    This paper describes research aimed at improving regulatory supervision of radiation safety during work associated with the management of spent nuclear fuel and radioactive waste at legacy sites in northwest Russia through timely identification of employees presenting unfavourable human factor risk characteristics. The legacy sites of interest include sites of temporary storage now operated by SevRAO on behalf of Rosatom. The sites were previously operational bases for servicing nuclear powered submarines and are now subject to major remediation activities. These activities include hazardous operations for recovery of spent nuclear fuel and radioactive waste from sub-optimal storage conditions. The paper describes the results of analysis of methods, procedures, techniques and informational issues leading to the development of an expert-diagnostic information system for monitoring of workers involved in carrying out the most hazardous operations. The system serves as a tool for human factor and professional reliability risk monitoring and has been tested in practical working environments and implemented as part of regulatory supervision. The work has been carried out by the Burnasyan Federal Medical Biophysical Center, within the framework of the regulatory cooperation programme between the Federal Medical–Biological Agency of Russia and the Norwegian Radiation Protection Authority. (paper)

  18. Radio-ecological characterization and radiological assessment in support of regulatory supervision of legacy sites in northwest Russia.

    Science.gov (United States)

    Sneve, M K; Kiselev, M; Shandala, N K

    2014-05-01

    The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support

  19. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  20. Independent regulatory control and monitoring of the environment at the uranium legacy sites under reclamation

    International Nuclear Information System (INIS)

    Shandala, N.K.; Titov, A.V.; Kiselev, S.M.; Isaev, D.V.; Aladova, R.A.

    2012-01-01

    Full text: Radiation safety at areas affected by the natural uranium mining and milling facilities is very important for the environment protection and human health. For this purpose the close operator-regulator contact is required during remedial operations. One of the key mechanisms of the operating regulatory supervision of radiation safety at uranium legacy sites is organization of independent radiation control and monitoring in the course of reclamation and after its completion. The main stages of this strategy include: detailed radiation survey at the area and in the vicinity of the former uranium mining sites; threat assessment in order to identify the regulatory priorities; environmental radiation control and monitoring. Tailings and shallow disposal sites of the uranium mining wastes are the most critical areas in terms of potential hazard for the environment. Tailings are the source of contamination of the near-land air due to the radionuclide dust resuspension from the tailing surface; surface and ground water due to washing out from by precipitation and surface streams of toxic and radioactive elements. Frequently, contamination of surface and ground waters results in some problems, especially when using the leaching fluids for the solution mining and draining hydraulic fluids. Radiation risk for the residents of areas near not operating uranium mining and milling facilities depends on the following factors: radon exhalation from the surface of dumps and tailing; radioactive dust transfer; using radioactive material in building; contamination of surface water streams and aquifers used for drinking water supply; contamination of open ponds used for fish breeding and catching; contamination of foodstuffs grown in the nuclear legacy areas. Radiation monitoring is necessary for the up-to-date response to changing radiation situation during reclamation and arrangement of adequate countermeasures. We mean here comprehensive dynamic surveillance including long

  1. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher [Wastren Advantage, Inc., Transuranic Waste Processing Center, 100 WIPP Road, Lenoir City, Tennessee 37771 (United States); and others

    2013-07-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct

  2. Transuranic Waste Processing Center (TWPC) Legacy Tank RH-TRU Sludge Processing and Compliance Strategy - 13255

    International Nuclear Information System (INIS)

    Rogers, Ben C.; Heacker, Fred K.; Shannon, Christopher

    2013-01-01

    The U.S. Department of Energy (DOE) needs to safely and efficiently treat its 'legacy' transuranic (TRU) waste and mixed low-level waste (LLW) from past research and defense activities at the Oak Ridge National Laboratory (ORNL) so that the waste is prepared for safe and secure disposal. The TWPC operates an Environmental Management (EM) waste processing facility on the Oak Ridge Reservation (ORR). The TWPC is classified as a Hazard Category 2, non-reactor nuclear facility. This facility receives, treats, and packages low-level waste and TRU waste stored at various facilities on the ORR for eventual off-site disposal at various DOE sites and commercial facilities. The Remote Handled TRU Waste Sludge held in the Melton Valley Storage Tanks (MVSTs) was produced as a result of the collection, treatment, and storage of liquid radioactive waste originating from the ORNL radiochemical processing and radioisotope production programs. The MVSTs contain most of the associated waste from the Gunite and Associated Tanks (GAAT) in the ORNL's Tank Farms in Bethel Valley and the sludge (SL) and associated waste from the Old Hydro-fracture Facility tanks and other Federal Facility Agreement (FFA) tanks. The SL Processing Facility Build-outs (SL-PFB) Project is integral to the EM cleanup mission at ORNL and is being accelerated by DOE to meet updated regulatory commitments in the Site Treatment Plan. To meet these commitments a Baseline (BL) Change Proposal (BCP) is being submitted to provide continued spending authority as the project re-initiation extends across fiscal year 2012 (FY2012) into fiscal year 2013. Future waste from the ORNL Building 3019 U-233 Disposition project, in the form of U-233 dissolved in nitric acid and water, down-blended with depleted uranyl nitrate solution is also expected to be transferred to the 7856 MVST Annex Facility (formally the Capacity Increase Project (CIP) Tanks) for co-processing with the SL. The SL-PFB project will construct and install

  3. Challenges in development of matrices for vitrification of old legacy waste and high-level radioactive waste generated from reprocessing of AHWR and FBR spent fuel

    International Nuclear Information System (INIS)

    Kaushik, C.P.

    2012-01-01

    Majority of radioactivity in entire nuclear fuel cycle is concentrated in HLW. A three step strategy for management of HLW has been adopted in India. This involves immobilization of waste oxides in stable and inert solid matrices, interim retrievable storage of the conditioned waste product under continuous cooling and disposal in deep geological formations. Glass has been accepted as most suitable matrix world-wide for immobilization of HLW, because of its attractive features like ability to accommodate wide range of waste constituents, modest processing temperatures, adequate chemical, thermal and radiation stability. Borosilicate glass matrix developed by BARC in collaboration with CGCRI has been adopted in India for immobilization of HLW. In view of compositional variation of HLW from site to site, tailor make changes in the glass formulations are often necessary to incorporate all the waste constituents and having the product of desirable characteristics. The vitrified waste products made with different glass formulations and simulated waste need to be characterized for chemical durability, thermal stability, homogeneity etc. before finalizing a suitable glass formulation. The present extended abstract summarises the studies carried out for development of glass formulations for vitrification of legacy waste and futuristic waste likely to be generated from AHWR and FBR having wide variations in their compositions. The presently stored HLW at Trombay is characterized by significant concentrations of uranium, sodium and sulphate in addition to fission products, corrosion products and small amount of other actinides

  4. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    International Nuclear Information System (INIS)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M and O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky

  5. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  6. Regulatory Oversight of the Legacy Gunner Uranium Mine and Mill Site in Northern Saskatchewan, Canada - 13434

    Energy Technology Data Exchange (ETDEWEB)

    Stenson, Ron; Howard, Don [Canadian Nuclear Safety Commission, P.O. Box 1046, Station B, 280 Slater Street, Ottawa ON K1P 5S9 (Canada)

    2013-07-01

    As Canada's nuclear regulator, the Canadian Nuclear Safety Commission (CNSC) is responsible for licensing all aspects of uranium mining, including remediation activities at legacy sites. Since these sites already existed when the current legislation came into force in 2000, and the previous legislation did not apply, they present a special case. The Nuclear Safety and Control Act (NSCA), was written with cradle-to- grave oversight in mind. Applying the NSCA at the end of a 'facilities' life-cycle poses some challenges to both the regulator and the proponent. When the proponent is the public sector, even more challenges can present themselves. Although the licensing process for legacy sites is no different than for any other CNSC license, assuring regulatory compliance can be more complicated. To demonstrate how the CNSC has approached the oversight of legacy sites the history of the Commission's involvement with the Gunnar uranium mine and mill site provides a good case study. The lessons learned from the CNSC's experience regulating the Gunnar site will benefit those in the future who will need to regulate legacy sites under existing or new legislation. (authors)

  7. Radiation and environmental monitoring at the nuclear legacy sites in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Shandala, N.; Kiselev, S.; Titov, A.; Seregin, V.; Akhromeev, S.; Aladova, R.; Isaev, D. [SRC Burnasyan Federal Medical Biophysical Center (Russian Federation); Sneve, M. [Norwegian Radiation Protection Authority - NRPA (Norway)

    2014-07-01

    In 1960's, in the Northwest and Far East regions of Russia the technical bases of the Navy Fleet were built to maintain nuclear submarines by performing reloading of nuclear fuel, receiving and storing radioactive waste (RW) and spent nuclear fuel (SNF). In 2000, SevRAO enterprise in the northwest of Russia and DalRAO enterprise in the Far East were set up for the purposes of environmental remediation of the nuclear legacy sites. Regulatory supervision for radiation protection and safety at the nuclear legacy sites in Russian Far east and Northwest regions is one of regulatory functions of the Federal medical biological agency (FMBA of Russia). Improvement of the normative and regulatory basis has significant impact on effectiveness and efficiency of industrial projects aimed at reduction of nuclear and radiation hazard risk at the sites for the SNF and RW temporary storage (STS).To get unbiased comprehensive information on the current radiation conditions at the STSs and provide the effective response to changing radiation situation, the environmental radiation monitoring of the SevRAO and DalRAO facilities has been carried out during 2005-2013. The nature and peculiarity of the STS area radioactive contamination on the Kola Peninsula and in the Far East are the following: 1) high levels of radioactive contamination on the industrial site; 2) non-uniformity of the contamination distribution; 3) spread of contamination in the area of health protection zone. The following environmental components are contaminated: soil, vegetation, bottom sediments and seaweeds at the offshore sea waters. The dominant radionuclides are cesium-137 and strontium-90. At the facilities under inspection for the purpose of the dynamic control of the radiation situation the radio-ecological monitoring system was arranged. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main

  8. Radio-ecological characterization and radiological assessment in support of regulatory supervision of legacy sites in northwest Russia

    International Nuclear Information System (INIS)

    Sneve, M.K.; Kiselev, M.; Shandala, N.K.

    2014-01-01

    The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support

  9. Strategies for the cost effective treatment of Oak Ridge legacy wastes

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Huxtable, W.P.; Wilson, D.F.

    1998-03-01

    Research and development treatment strategies for treatment or elimination of several Oak Ridge plant liquid, solid, and legacy wastes are detailed in this report. Treatment strategies for volumetrically contaminated nickel; enriched uranium-contaminated alkali metal fluorides; uranium-contaminated aluminum compressor blades; large, mercury-contaminated lithium isotope separations equipment; lithium process chlorine gas streams; high-concentration aluminum nitrate wastes, and high-volume, low-level nitrate wastes are discussed. Research needed to support engineering development of treatment processes is detailed

  10. Architectural Framework for Addressing Legacy Waste from the Cold War - 13611

    Energy Technology Data Exchange (ETDEWEB)

    Love, Gregory A.; Glazner, Christopher G.; Steckley, Sam [The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102 (United States)

    2013-07-01

    We present an architectural framework for the use of a hybrid simulation model of enterprise-wide operations used to develop system-level insight into the U.S. Department of Energy's (DOE) environmental cleanup of legacy nuclear waste at the Savannah River Site. We use this framework for quickly exploring policy and architectural options, analyzing plans, addressing management challenges and developing mitigation strategies for DOE Office of Environmental Management (EM). The socio-technical complexity of EM's mission compels the use of a qualitative approach to complement a more a quantitative discrete event modeling effort. We use this model-based analysis to pinpoint pressure and leverage points and develop a shared conceptual understanding of the problem space and platform for communication among stakeholders across the enterprise in a timely manner. This approach affords the opportunity to discuss problems using a unified conceptual perspective and is also general enough that it applies to a broad range of capital investment/production operations problems. (authors)

  11. Architectural Framework for Addressing Legacy Waste from the Cold War - 13611

    International Nuclear Information System (INIS)

    Love, Gregory A.; Glazner, Christopher G.; Steckley, Sam

    2013-01-01

    We present an architectural framework for the use of a hybrid simulation model of enterprise-wide operations used to develop system-level insight into the U.S. Department of Energy's (DOE) environmental cleanup of legacy nuclear waste at the Savannah River Site. We use this framework for quickly exploring policy and architectural options, analyzing plans, addressing management challenges and developing mitigation strategies for DOE Office of Environmental Management (EM). The socio-technical complexity of EM's mission compels the use of a qualitative approach to complement a more a quantitative discrete event modeling effort. We use this model-based analysis to pinpoint pressure and leverage points and develop a shared conceptual understanding of the problem space and platform for communication among stakeholders across the enterprise in a timely manner. This approach affords the opportunity to discuss problems using a unified conceptual perspective and is also general enough that it applies to a broad range of capital investment/production operations problems. (authors)

  12. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  13. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  14. Taking the Next Step: Confronting the Legacies of Slavery at Historic Sites

    Science.gov (United States)

    Grim, Linnea; Wickens, K. Allison; Jecha, Jackie; Powell, Linda; Hawkins, Callie; Flanagan, Candra

    2017-01-01

    "Slavery is the ground zero of race relations," declared James and Lois Horton in their groundbreaking book, "Slavery and Public History." Engaging the history and legacy of slavery is a crucial step in understanding current U.S. society especially race relations. Historic sites that have connections to slavery have begun to…

  15. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park

    Energy Technology Data Exchange (ETDEWEB)

    Parkes, Olga, E-mail: o.parkes@ucl.ac.uk; Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk; Bogle, I. David L.

    2015-06-15

    Highlights: • Application of LCA in planning integrated waste management systems. • Environmental valuation of 3 legacy scenarios for the Olympic Park. • Hot-spot analysis highlights the importance of energy and materials recovery. • Most environmental savings are achieved through materials recycling. • Sensitivity analysis shows importance of waste composition and recycling rates. - Abstract: This paper presents the results of the life cycle assessment (LCA) of 10 integrated waste management systems (IWMSs) for 3 potential post-event site design scenarios of the London Olympic Park. The aim of the LCA study is to evaluate direct and indirect emissions resulting from various treatment options of municipal solid waste (MSW) annually generated on site together with avoided emissions resulting from energy, materials and nutrients recovery. IWMSs are modelled using GaBi v6.0 Product Sustainability software and results are presented based on the CML (v.Nov-10) characterisation method. The results show that IWMSs with advanced thermal treatment (ATT) and incineration with energy recovery have the lowest Global Warming Potential (GWP) than IWMSs where landfill is the primary waste treatment process. This is due to higher direct emissions and lower avoided emissions from the landfill process compared to the emissions from the thermal treatment processes. LCA results demonstrate that significant environmental savings are achieved through substitution of virgin materials with recycled ones. The results of the sensitivity analysis carried out for IWMS 1 shows that increasing recycling rate by 5%, 10% and 15% compared to the baseline scenario can reduce GWP by 8%, 17% and 25% respectively. Sensitivity analysis also shows how changes in waste composition affect the overall result of the system. The outcomes of such assessments provide decision-makers with fundamental information regarding the environmental impacts of different waste treatment options necessary for

  16. Radioactive waste: the poisoned legacy of the nuclear industry

    International Nuclear Information System (INIS)

    Rousselet, Y.

    2011-01-01

    The nuclear industry produces a huge amount of radioactive waste from one end to the other of the nuclear cycle: i.e. from mining uranium to uranium enrichment through reactor operating, waste reprocessing and dismantling nuclear power plants. Nuclear power is now being 'sold' to political leaders and citizens as an effective way to deal with climate change and ensure security of energy supplies. Nonetheless, nuclear energy is not a viable solution and is thus a major obstacle to the development of clean energy for the future. In addition to safety and security issues, the nuclear industry is, above all, faced with the huge problem of how to deal with the waste it produces and for which it has no solution. This ought to put a brake on the nuclear industry, but instead, against all expectations, its development continues to gather pace. (author)

  17. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    2007-01-01

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, 'Quality Assurance Requirements', ANSI/ASQC E4-2004, 'Quality Systems for Environmental Data and Technology Programs - Requirements with Guidance for Use', and ISO 14001-2004, 'Environmental Management Systems', have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, 'Quality Assurance Program', identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, 'QA Program Implementation', identifies the TAC organizations that have responsibility for implementing the QA

  18. Soil and Groundwater Characteristics of a Legacy Spill Site AKURO ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    significant environmental consequences that occur. ... increasing production of crude oil and discovery of ... occurred in the mangrove swamps zones and near off shores areas of the Niger Delta which was shown in ... Assessment of the spill site had been carried out ... data and risks about the site, an intrusive ground.

  19. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  20. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    International Nuclear Information System (INIS)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-01-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal

  1. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  2. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  3. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  4. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U.S. Department of Energy, Nevada Operations Office, Waste Acceptance Criteria

    1999-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the Nevada Test Site

  5. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  6. Soil and Groundwater Characteristics of a Legacy Spill Site | Adoki ...

    African Journals Online (AJOL)

    The main crops grown include yams, cassava, maize, sugarcane, plantain, banana, oil palm, coconut, raffia palm. Families own the land and this ownership is by inheritance. In recent times, people can purchase land for use and others can also hire. The stratigraphy of the subsurface at the study site is closely related to the ...

  7. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  8. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste

  9. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation

  10. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste

  11. Hanford Site annual dangerous waste report: Volume 3, Part 2, Waste Management Facility report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1944-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling and containment vessel, waste number, waste designation and amount of waste.

  12. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  13. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation

  14. Hanford Site annual dangerous waste report: Volume 1, Part 2, Generator dangerous waste report, dangerous waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report contains information on hazardous materials at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  15. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  16. Main Principles of the Organization of Decommissioning Activities for Legacy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Mikheykin, S.V., E-mail: Mikheykin@rosrao.ru [Department of Techniques for Remediation, Federal State Unitary Enterprise ' RosRAO' , Moscow (Russian Federation)

    2013-08-15

    As a result of more than 60 years development of nuclear industry in the former Soviet Union and in the Russian Federation there has accumulated a number of unresolved problems associated with contamination of facilities and environment during the early stages of research and industrial activities. Prior to the year 2000 most of the problems were solved slowly; the main decisions were postponed for the future. During that time were done the local works for the rehabilitation of contaminated sites. The Federal Target Programme ''Nuclear and Radiation Safety for 2008 and for the period to 2015'' was adopted in 2008. Analysis of accumulated experience as result of previous work on decontamination to develop new project management system for the rehabilitation of the nuclear legacy is needed. This CRP contribution is aimed at solving the tasks of the rehabilitation of the nuclear legacy. (author)

  17. Characterization of legacy low level waste at the Svafo facility using gamma non-destructive assay and X-ray non-destructive examination techniques - 59289

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Mottershead, Gary; Ekenborg, Fredrik

    2012-01-01

    Document available in abstract form only. Full text of publication follows: Over 7000 drums containing legacy, low level radioactive waste are stored at four SVAFO facilities on the Studsvik site which is located near Nykoeping, Sweden. The vast majority of the waste drums (>6000) were produced between 1969 and 1979. The remainder were produced from 1980 onwards. Characterization of the waste was achieved using a combination of non-destructive techniques via mobile equipment located in the AU building at the Studsvik site. Each drum was weighed and a dose rate measurement was recorded. Gamma spectroscopy was used to measure and estimate radionuclide content. Real time xray examination was performed to identify such prohibited items as free liquids. (authors)

  18. German Spent Nuclear Fuel Legacy: Characteristics and High-Level Waste Management Issues

    Directory of Open Access Journals (Sweden)

    A. Schwenk-Ferrero

    2013-01-01

    Full Text Available Germany is phasing-out the utilization of nuclear energy until 2022. Currently, nine light water reactors of originally nineteen are still connected to the grid. All power plants generate high-level nuclear waste like spent uranium or mixed uranium-plutonium dioxide fuel which has to be properly managed. Moreover, vitrified high-level waste containing minor actinides, fission products, and traces of plutonium reprocessing loses produced by reprocessing facilities has to be disposed of. In the paper, the assessments of German spent fuel legacy (heavy metal content and the nuclide composition of this inventory have been done. The methodology used applies advanced nuclear fuel cycle simulation techniques in order to reproduce the operation of the German nuclear power plants from 1969 till 2022. NFCSim code developed by LANL was adopted for this purpose. It was estimated that ~10,300 tonnes of unreprocessed nuclear spent fuel will be generated until the shut-down of the ultimate German reactor. This inventory will contain ~131 tonnes of plutonium, ~21 tonnes of minor actinides, and 440 tonnes of fission products. Apart from this, ca.215 tonnes of vitrified HLW will be present. As fission products and transuranium elements remain radioactive from 104 to 106 years, the characteristics of spent fuel legacy over this period are estimated, and their impacts on decay storage and final repository are discussed.

  19. A Waste of a Desert: Nevada and the Cold War Chemical Legacy

    Directory of Open Access Journals (Sweden)

    Cinzia Scarpino

    2009-12-01

    Full Text Available Taking the lead from Don DeLillo’s epic novel Underworld (1997 – with its overarching theme of “waste” functioning as its unifying metaphor and its picture of the American deserts turned into hazardous waste dumps or missile depots – this essay provides a close reading of the empty spaces of the Nevada desert, spaces that bear the mark left by the nuclear exploitation and the hazardous waste which have plagued Nevada since the Fifties. By linking the history of Nevada to the Cold War, and to the chemical legacy of those years, with its notions of “containment” and “weather control”, Scarpino argues that they be read as interwoven threads of the same discourse.

  20. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  1. Nevada Test Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal

  2. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  3. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    International Nuclear Information System (INIS)

    NNSA/NSO Waste Management Project

    2008-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal

  4. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  5. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  6. Radiation legacy of nuclear tests at the Semipalatinsk test site in the light of requirements ensuring radiation safety performance

    International Nuclear Information System (INIS)

    Logachev, V.A.; Logacheva, L.A.

    2005-01-01

    Peculiarities of nuclear tests radiation legacy at the Semipalatinsk test site (STS) are shown in the light of performance of requirements ensuring radiation safety, decrease radiation contamination levels in environment and minimize exposure of radiation for population residing contaminated areas by radioactive fallout. The paper provides data on characterization of peculiarities of the STS operation legacy based on review of archival data of the former 3-d General Administration under USSR Ministry of Health. (author)

  7. Response of Microbial Community Function to Fluctuating Geochemical Conditions within a Legacy Radioactive Waste Trench Environment.

    Science.gov (United States)

    Vázquez-Campos, Xabier; Kinsela, Andrew S; Bligh, Mark W; Harrison, Jennifer J; Payne, Timothy E; Waite, T David

    2017-09-01

    During the 1960s, small quantities of radioactive materials were codisposed with chemical waste at the Little Forest Legacy Site (Sydney, Australia) in 3-meter-deep, unlined trenches. Chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess the impact of changing water levels upon the microbial ecology and contaminant mobility. Collectively, results demonstrated that oxygen-laden rainwater rapidly altered the redox balance in the trench water, strongly impacting microbial functioning as well as the radiochemistry. Two contaminants of concern, plutonium and americium, were shown to transition from solid-iron-associated species immediately after the initial rainwater pulse to progressively more soluble moieties as reducing conditions were enhanced. Functional metagenomics revealed the potentially important role that the taxonomically diverse microbial community played in this transition. In particular, aerobes dominated in the first day, followed by an increase of facultative anaerobes/denitrifiers at day 4. Toward the mid-end of the sampling period, the functional and taxonomic profiles depicted an anaerobic community distinguished by a higher representation of dissimilatory sulfate reduction and methanogenesis pathways. Our results have important implications to similar near-surface environmental systems in which redox cycling occurs. IMPORTANCE The role of chemical and microbiological factors in mediating the biogeochemistry of groundwaters from trenches used to dispose of radioactive materials during the 1960s is examined in this study. Specifically, chemical and microbial analyses, including functional and taxonomic information derived from shotgun metagenomics, were collected across a 6-week period immediately after a prolonged rainfall event to assess how changing water levels influence microbial ecology and

  8. TRASH TO TREASURE: CONVERTING COLD WAR LEGACY WASTE INTO WEAPONS AGAINST CANCER

    International Nuclear Information System (INIS)

    Nicholas, R.G.; Lacy, N.H.; Butz, T.R.; Brandon, N.E.

    2004-01-01

    As part of its commitment to clean up Cold War legacy sites, the U.S. Department of Energy (DOE) has initiated an exciting and unique project to dispose of its inventory of uranium-233 (233U) stored at Oak Ridge National Laboratory (ORNL), and extract isotopes that show great promise in the treatment of deadly cancers. In addition to increasing the supply of potentially useful medical isotopes, the project will rid DOE of a nuclear concern and cut surveillance and security costs. For more than 30 years, DOE's ORNL has stored over 1,200 containers of fissile 233U, originally produced for several defense-related projects, including a pilot study that looked at using 233U as a commercial reactor fuel. This uranium, designated as special nuclear material, requires expensive security, safety, and environmental controls. It has been stored at an ORNL facility, Building 3019A, that dates back to the Manhattan Project. Down-blending the material to a safer form, rather than continuing to store it, will eliminate a $15 million a year financial liability for the DOE and increase the supply of medical isotopes by 5,700 percent. During the down-blending process, thorium-229 (229Th) will be extracted. The thorium will then be used to extract actinium-225 (225Ac), which will ultimately supply its progeny, bismuth-213 (213Bi), for on-going cancer research. The research includes Phase II clinical trials for the treatment of acute myelogenous leukemia at Sloan-Kettering Memorial Cancer Center in New York, as well as other serious cancers of the lungs, pancreas, and kidneys using a technique known as alpha-particle radioimmunotherapy. Alpha-particle radioimmunotherapy is based on the emission of alpha particles by radionuclides. 213Bi is attached to a monoclonal antibody that targets specific cells. The bismuth then delivers a high-powered but short-range radiation dose, effectively killing the cancerous cells but sparing the surrounding tissue. Production of the actinium and

  9. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  10. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2010-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  11. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  12. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  13. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  14. Ultrasonic techniques for the in situ characterisation of 'legacy' Waste sludges and dispersions - 59111

    International Nuclear Information System (INIS)

    Hunter, Timothy; Biggs, Simon; Young, James; Fairweather, Michael; Peakall, Jeff

    2012-01-01

    Research being undertaken at the University of Leeds, as part of the DIAMOND university consortium, is exploring the effectiveness of various ultrasonic technologies as in situ probes to characterize and monitor nuclear waste slurries, such as the 'Legacy' Magnesium hydroxide sludges found in Sellafield, U.K. Through use of a commercial Acoustic Backscatter Sensor (ABS) with 1 - 5 MHz transducers, various properties of free-settling oxide simulant sludges were determined. Work was focused upon characterizing essentially 'static' sludges (to give prospective use as tools for the wastes in current deposits); although, the sensors also have potential as dispersion monitors during any future processing and storage of the Legacy wastes, as well as many other storage, clarifier or thickener systems across a wide range of industrial processing operations. ABS data of mixed glass powder dispersions was analysed and compared to scattering theory, to understand the correlations between acoustic attenuation and particulate concentration. The ABS was also calibrated to measure changes in average particulate concentration within a settling suspension over time, and showed the depth-wise segregation of the dispersion through the settling column at different particular time intervals. It was found that observed hindered settling also led to an increase in particulate concentration over the sludge zone and significant segregation occurred at moderate time intervals, due to the broad size distribution of the aggregates measured. It is hoped in future that these sensors may be able to be fitted to robotic handlers that have been installed onsite (and previously used for sampling), allowing fully automatic in situ sludge analysis. (authors)

  15. Managing soil moisture on waste burial sites

    International Nuclear Information System (INIS)

    Anderson, J.E.; Ratzlaff, T.D.

    1991-11-01

    Shallow land burial is a common method of disposing of industrial, municipal, and low-level radioactive waste. The exclusion of water from buried wastes is a primary objective in designing and managing waste disposal sites. If wastes are not adequately isolated, water from precipitation may move through the landfill cover and into the wastes. The presence of water in the waste zone may promote the growth of plant roots to that depth and result in the transport of toxic materials to above-ground foliage. Furthermore, percolation of water through the waste zone may transport contaminants into ground water. This report presents results from a field study designed to assess the the potential for using vegetation to deplete soil moisture and prevent water from reaching buried wastes at the Idaho National Engineering Laboratory (INEL). Our results show that this approach may provide an economical means of limiting the intrusion of water on waste sites

  16. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  17. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  18. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  19. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  20. The Drigg low-level waste site

    International Nuclear Information System (INIS)

    1992-01-01

    Safe disposal of waste is a vital aspect of any industrial operation whether it be production of plastics, steel or chemicals or handling of radioactive materials. Appropriate methods must be used in every case. Radioactive waste falls into three distinct categories - high, intermediate and low-level. It is the solid low-level waste making up over 90% of the total which this booklet discusses. British Nuclear Fuels plc (BNFL) operates a site for the disposal of solid low-level waste at Driggs, some six kilometres south of Sellafield in West Cumbria. The daily operations and control of the site, the responsibility of the BNFL Waste Management Unit is described. (author)

  1. Hanford Site annual waste reduction report

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1992-03-01

    The US Department of Energy (DOE), Richland Field Office (RL) has developed and implemented a Hanford Site Waste Minimization and Pollution Prevention Awareness Plan that provides overall guidance and direction on waste minimization and pollution prevention awareness to the four contractors who manage and operate the Hanford Site for the RL. Waste reduction at the RL will be accomplished by following a hierarchy of environmental protection practices. First, waste generation will be eliminated or minimized through source reduction. Second, potential waste materials that cannot be eliminated or minimized will be recycled (i.e., used, reused, or reclaimed). Third, all waste that is nevertheless generated will be treated to reduce volume, toxicity, or mobility before storage or disposal. The scope of this waste reduction program will include nonhazardous, hazardous, radioactive mixed, and radioactive wastes

  2. Solid waste management complex site development plan

    International Nuclear Information System (INIS)

    Greager, T.M.

    1994-01-01

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated

  3. Solid waste management complex site development plan

    Energy Technology Data Exchange (ETDEWEB)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30 years so that future facilities and infrastructure will be properly integrated.

  4. Legend and legacy: Fifty years of defense production at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ``flagship`` of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program.

  5. Legend and legacy: Fifty years of defense production at the Hanford Site

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ''flagship'' of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program

  6. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  7. Site identification presentation: Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-11-01

    The final step in the site identification process for the Basalt Waste Isolation Project is described. The candidate sites are identified. The site identification methodology is presented. The general objectives which must be met in selecting the final site are listed. Considerations used in the screening process are also listed. Summary tables of the guidelines used are included

  8. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  9. Waste reduction at the Savannah River Site

    International Nuclear Information System (INIS)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities

  10. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  11. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  12. Problems of developing remedial strategy for the uranium ore processing legacy site Pridneprovsky Chemical Plant site (Dneprodzerginsk, Ukraine)

    International Nuclear Information System (INIS)

    Riazantsev, V.; Bugai, D.; Skalskyy, A.; Tkachenko, E.

    2014-01-01

    In this paper we present results of works and studies carried out in the frame of ongoing national and international projects aimed at developing the remedial strategy for the Soviet era legacy uranium production site Pridneprovsky Chemical Plant, Dneprodzerginsk, Ukraine. The site includes several uranium mill tailings, contaminated buildings, ore storage grounds and other contaminated facilities. Taking into account the necessity to implement provisions of the new IAEA standards (Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, No. GSR Part 3 (Interim) and others) as well as the provisions of the ICRP 103 publication, the State Nuclear Regulatory Inspectorate Ukraine developed the draft of the new licensing requirements for activities of uranium ores processing.

  13. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  14. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  15. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Ellefson, M.D.

    1998-01-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities

  16. Environmental remediation of the Wismut legacy and utilization of the reclaimed areas, waste rock piles and tailings ponds

    International Nuclear Information System (INIS)

    Hagen, M.; Jakubick, A.T.

    2006-01-01

    Between 1945 and reunification (1989) of Germany more than 232 000 t of U 3 O 8 has been produced in Saxony and Thuringia, East Germany. This affected an area of approximately 100 km 2 and left behind an extensive legacy of contaminated operations areas, underground and open pit mines, waste rock piles and tailings ponds. Following reunification, DM 13 billion (Euro 6.6 billion) were committed (and later revised to Euro 6.2 billion) to remediation of the liabilities and the government owned corporation, Wismut GmbH entrusted with the implementation of the Environmental Remediation (ER) of the liabilities. The prime goal of the ER Project follows from the legal requirements to abate health risks, mitigate existing and prevent future environmental damages. During the investigations and assessment of risks, development of remediation concepts, adoption of suitable technologies and work procedures as well as physical implementation of the remedial measures extensive use was made of international (mostly US and Canadian) ER experience. The extent of remedial measures was based on object-specific Environmental Assessments rather than on uniformly applied health/environmental standards. The ER workflow is more an iterative process than a linear succession of tasks, such as common for civil engineering projects. The internal (technical) parts of the problems were partly resolved by using Conceptual Site Models (CSM) for selection and prioritization of remedial measures. Reclamation of the waste rock piles is by covering in situ, relocation to a central pile or backfilling into an open pit. The backfilling of the open pit at Ronneburg with acid generating waste rock has been optimized from a geochemical point of view. For tailings ponds reclamation in form of dry landforms is being followed. To increase release (and reuse) of scrap metal from demolition, a fast and reliable method of discrimination of the non-contaminated metal has been developed. The flooding of

  17. Removal of Legacy Low-Level Waste Reactor Moderator De-ionizer Resins Highly Contaminated with Carbon-14 from the 'Waste with no Path to Disposal List' Through Innovative Technical Analysis and Performance Assessment Techniques

    International Nuclear Information System (INIS)

    Goldston, W.T.; Hiergesell, R.A.; Kaplan, D.I.; Pope, H.L.

    2006-01-01

    At the Savannah River Site (SRS), nuclear production reactors used de-ionizers to control the chemistry of the reactor moderator during their operation to produce nuclear materials primarily for the weapons program. These de-ionizers were removed from the reactors and stored as a legacy waste and due to the relatively high carbon-14 (C-14) contamination (i.e., on the order of 740 giga becquerel (GBq) (20 curies) per de-ionizer) were considered a legacy 'waste with no path to disposal'. Considerable progress has been made in consideration of a disposal path for the legacy reactor de-ionizers. Presently, 48 - 50 de-ionizers being stored at SRS have 'no path to disposal' because the disposal limit for C-14 in the SRS's low-level waste disposal facility's Intermediate Level Vault (ILV) is only 160 GBq (4.2 curies) per vault. The current C-14 ILV disposal limit is based on a very conservative analysis of the air pathway. The paper will describe the alternatives that were investigated that resulted in the selection of a route to pursue. This paper will then describe SRS's efforts to reduce the conservatism in the analysis, which resulted in a significantly larger C-14 disposal limit. The work consisted of refining the gas-phase analysis to simulate the migration of C-14 from the waste to the ground surface and evaluated the efficacy of carbonate chemistry in cementitious environment of the ILV for suppressing the volatilization of C-14. During the past year, a Special Analysis was prepared for Department of Energy approval to incorporate the results of these activities that increased the C-14 disposal limits for the ILV, thus allowing for disposal of the Reactor Moderator De-ionizers. Once the Special Analysis is approved by DOE, the actual disposal would be dependent on priority and funding, but the de-ionizers will be removed from the 'waste with no path to disposal list'. (authors)

  18. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  19. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  20. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  1. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  2. Nevada Test Site Waste Acceptance Criteria, December 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal.

  3. Nevada Test Site Waste Acceptance Criteria, December 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This document establishes the US Department of Energy, Nevada Operations Office waste acceptance criteria. The waste acceptance criteria provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive waste and mixed waste for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Sites for storage or disposal

  4. Bridging the gap between tribal risk perceptions and scientific decision-making for uranium legacy sites located in Native American communities

    Science.gov (United States)

    Joseph, C.; Waugh, W.; Glenn, E.; Chief, K.

    2017-12-01

    There are approximately 15,000 abandoned uranium mines (AUM) in the western United States, of which 500 AUMs are located in the Colorado Plateau Four-Corners region. Uranium mill tailings, referred to as legacy waste, compromise the largest volume of any category of radioactive waste in the nation. Today, the Department of Energy Legacy Management is responsible for long-term stewardship and maintenance of inactive uranium processing sites that have been remediated to prevent further migration and exposure of tailings to the environment and surrounding communities. In collaboration with the DOE-LM, I am investigating the impact of climate change and community adaptation on the long-term performance of disposal cell covers for uranium mill tailings located in Native American communities, as well as how these communities have adapted to and perceive these areas. I am interested in how abiotic engineered cell covers may be candidate sites for future conversion to vegetated evapotranspirative caps for arid to semi-arid climates. The objectives are to: 1) assess above-ground tissue of plants encroaching engineered cell covers for concentrations of uranium, radium, selenium, molybdenum, thorium, arsenic, lead, and manganese and compare them to control sites; 2) determine if above-cell plant tissue is accumulating to toxic levels that may create an exposure pathway, 3) identify climate scenarios for site locations and determine how short-and long-scale climate projections will influence spatial and temporal plant distribution for specific woody species; and 4) evaluate the risk perceptions of Hopi villages located five miles downstream of one site location. To date, risk perception and stakeholder outreach to the Hopi communities has been absent. This study will help inform how land use, water use, and sustenance practices may contribute to environmental health disparities for one of the few tribes that has maintained physical continuity within their ancestral homeland.

  5. Independent technical evaluation and recommendations for contaminated groundwater at the department of energy office of legacy management Riverton processing site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, Brain B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Denham, Miles E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Eddy-Dilek, Carol A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-04-01

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) manages the legacy contamination at the Riverton, WY, Processing Site – a former uranium milling site that operated from 1958 to 1963. The tailings and associated materials were removed in 1988-1989 and contaminants are currently flushing from the groundwater. DOE-LM commissioned an independent technical team to assess the status of the contaminant flushing, identify any issues or opportunities for DOE-LM, and provide key recommendations. The team applied a range of technical frameworks – spatial, temporal, hydrological and geochemical – in performing the evaluation. In each topic area, an in depth evaluation was performed using DOE-LM site data (e.g., chemical measurements in groundwater, surface water and soil, water levels, and historical records) along with information collected during the December 2013 site visit (e.g., plant type survey, geomorphology, and minerals that were observed, collected and evaluated).

  6. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  7. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  8. GEOTECHNICAL DESIGN OF SOLID WASTE LANDFILL SITES

    Directory of Open Access Journals (Sweden)

    Suat AKBULUT

    2003-02-01

    Full Text Available Solid waste landfills are important engineering structures for protection of wastes, decrease of environmental pollution, and especially prevention of soil and water pollution. Solid wastes should conveniently be maintained in landfill areas to control environmental pollution caused by waste disposals. Until the middle of this century clay liners were used for maintenance of waste disposal, but it was observed that these liner systems were insufficient. Today thinner and less permeable liner systems are constructed by using synthetic materials. In this study, by evaluating the waste landfills, site assessment of landfills and construction of natural and synthetic liner systems were summarized respectively, and especially the design properties of these systems were examined intensively. Also, leachate collection and removal facilities, landfill gas collection unites, and final cover unites were evaluated in a detailed way.

  9. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  10. Next Generation Waste Tracking: Linking Legacy Systems with Modern Networking Technologies

    International Nuclear Information System (INIS)

    Walker, Randy M.; Resseguie, David R.; Shankar, Mallikarjun; Gorman, Bryan L.; Smith, Cyrus M.; Hill, David E.

    2010-01-01

    of existing legacy hazardous, radioactive and related informational databases and systems using emerging Web 2.0 technologies. These capabilities were used to interoperate ORNL s waste generating, packaging, transportation and disposal with other DOE ORO waste management contractors. Importantly, the DOE EM objectives were accomplished in a cost effective manner without altering existing information systems. A path forward is to demonstrate and share these technologies with DOE EM, contractors and stakeholders. This approach will not alter existing DOE assets, i.e. Automated Traffic Management Systems (ATMS), Transportation Tracking and Communications System (TRANSCOM), the Argonne National Laboratory (ANL) demonstrated package tracking system, etc.

  11. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  12. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  13. Cleanup around an old waste site

    International Nuclear Information System (INIS)

    Vandergaast, G.; Moffett, D.; Lawrence, B.E.

    1988-01-01

    42,500 m 3 of contaminated soil were removed from off-site areas around an old, low-level radioactive waste site near Port Hope, Ontario. The cleanup was done by means of conventional excavation equipment to criteria developed by Eldorado specific to the land use around the company's waste management facility. These cleanup criteria were based on exposure analyses carried out for critical receptors in two different scenarios. The excavated soils, involving eight different landowners, were placed on the original burial area of the waste management facility. Measures were also undertaken to stabilize the soils brought on-site and to ensure that there would be no subsequent recontamination of the off-site areas

  14. Hanford Site Waste Managements Units reports

    International Nuclear Information System (INIS)

    1992-01-01

    The Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC 1984). This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in this report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. The information in this report is extracted from the Waste Information Data System (WIDS). The WIDS provides additional information concerning the waste management units contained in this report and is maintained current with changes to these units. This report is updated annually if determined necessary per the Hanford Federal Facility Agreement and Consent Order Order (commonly referred to as the Tri-Party Agreement, Ecology et al. 1990). This report identifies 1,414 waste management units. Of these, 1,015 units are identified as solid waste management units (SWMU), and 342 are RCRA treatment, storage, and disposal units. The remaining 399 are comprised mainly of one-time spills to the environment, sanitary waste disposal facilities (i.e., septic tanks), and surplus facilities awaiting decontamination and decommissioning

  15. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part

  16. The legacy and future of radioactive waste management at the Millenium

    International Nuclear Information System (INIS)

    Martin, J.E.; Lee, C.

    2000-01-01

    Wastes containing radioactive materials have been produced ever since ore recovery and processing began; however, such materials did not become of public concern until the large-scale activities involving uranium and thorium ores and nuclear fission during and after World War II. Efforts to provide disposal sites for radioactive wastes, especially those associated with nuclear weapons and nuclear energy, have been largely unsuccessful for the past 40 years or so and are nearing crisis proportions as the new millenium begins - its eventual resolution is believed to require greater reliance on stewardship and a larger governmental presence. (author)

  17. Fabrication of a Sludge-Conditioning System for processing legacy wastes from the Gunite and Associated Tanks

    International Nuclear Information System (INIS)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-01-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS

  18. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Pyles, G.; Ciucci, J.; Arnold, P.

    2009-01-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Site's (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M and O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum

  19. Final vegetative cover for closed waste sites

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1993-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as an interim vegetative cover for most sites. This coverage allows for required monitoring of the closure cap for settlement and maintenance activities. The purpose of this five year study was to evaluate plant materials for use on wastes sites after the post-closure care period that are quickly and easily established and economically maintained, retard water infiltration, provide maximum year-round evapotranspiration, are ecologically acceptable and do not harm the closure cap. The results of the study suggest that two species of bamboo (Phyllostachys (P.) bissetii and P. rubromarginata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites after surveillance and maintenance requirements have ceased

  20. Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites

    International Nuclear Information System (INIS)

    2012-01-01

    This plan incorporates U.S. Department of Energy (DOE) Office of Legacy Management (LM) standard operating procedures (SOPs) into environmental monitoring activities and will be implemented at all sites managed by LM. This document provides detailed procedures for the field sampling teams so that samples are collected in a consistent and technically defensible manner. Site-specific plans (e.g., long-term surveillance and maintenance plans, environmental monitoring plans) document background information and establish the basis for sampling and monitoring activities. Information will be included in site-specific tabbed sections to this plan, which identify sample locations, sample frequencies, types of samples, field measurements, and associated analytes for each site. Additionally, within each tabbed section, program directives will be included, when developed, to establish additional site-specific requirements to modify or clarify requirements in this plan as they apply to the corresponding site. A flowchart detailing project tasks required to accomplish routine sampling is displayed in Figure 1. LM environmental procedures are contained in the Environmental Procedures Catalog (LMS/PRO/S04325), which incorporates American Society for Testing and Materials (ASTM), DOE, and U.S. Environmental Protection Agency (EPA) guidance. Specific procedures used for groundwater and surface water monitoring are included in Appendix A. If other environmental media are monitored, SOPs used for air, soil/sediment, and biota monitoring can be found in the site-specific tabbed sections in Appendix D or in site-specific documents. The procedures in the Environmental Procedures Catalog are intended as general guidance and require additional detail from planning documents in order to be complete; the following sections fulfill that function and specify additional procedural requirements to form SOPs. Routine revision of this Sampling and Analysis Plan will be conducted annually at the

  1. Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-24

    This plan incorporates U.S. Department of Energy (DOE) Office of Legacy Management (LM) standard operating procedures (SOPs) into environmental monitoring activities and will be implemented at all sites managed by LM. This document provides detailed procedures for the field sampling teams so that samples are collected in a consistent and technically defensible manner. Site-specific plans (e.g., long-term surveillance and maintenance plans, environmental monitoring plans) document background information and establish the basis for sampling and monitoring activities. Information will be included in site-specific tabbed sections to this plan, which identify sample locations, sample frequencies, types of samples, field measurements, and associated analytes for each site. Additionally, within each tabbed section, program directives will be included, when developed, to establish additional site-specific requirements to modify or clarify requirements in this plan as they apply to the corresponding site. A flowchart detailing project tasks required to accomplish routine sampling is displayed in Figure 1. LM environmental procedures are contained in the Environmental Procedures Catalog (LMS/PRO/S04325), which incorporates American Society for Testing and Materials (ASTM), DOE, and U.S. Environmental Protection Agency (EPA) guidance. Specific procedures used for groundwater and surface water monitoring are included in Appendix A. If other environmental media are monitored, SOPs used for air, soil/sediment, and biota monitoring can be found in the site-specific tabbed sections in Appendix D or in site-specific documents. The procedures in the Environmental Procedures Catalog are intended as general guidance and require additional detail from planning documents in order to be complete; the following sections fulfill that function and specify additional procedural requirements to form SOPs. Routine revision of this Sampling and Analysis Plan will be conducted annually at the

  2. Radioactive Solid Waste Management Site (RSMS), Trombay

    International Nuclear Information System (INIS)

    Kaushik, C.P.; Agarwal, K.

    2017-01-01

    Nuclear operations generate a variety of primary solid waste comprising of tissue materials, glassware, plastics, protective rubber-wears, used components like filters, piping, structural items, unserviceable equipment, etc. This type of solid waste is generally associated with low and intermediate level of beta and gamma radiation and, in some cases, by low levels of alpha contamination. Radioactive Solid Waste Management Site (RSMS), Trombay is operational with an objective of safe and efficient management of low and intermediate level solid waste generated from various nuclear fuel cycle facilities of BARC, Trombay. The RSMS also manages the spent radioactive sources, utilised in healthcare, industries and research institutes, after completion of their useful life. The radioactive solid waste is first segregated, treated for volume reduction and disposed in engineered disposal module to prevent the migration of radionuclides and isolate them from human environment

  3. Fate of nuclear waste site remains unclear

    International Nuclear Information System (INIS)

    Anderson, E.V.

    1980-01-01

    The only commercial nuclear fuel reprocessing plant in the U.S., located in West Valley, N.Y., has been shut down since 1972, and no efforts have yet been made to clean up the site. The site contains a spent-fuel pool, high level liquid waste storage tanks, and two radioactive waste burial grounds. Nuclear Fuel Services, Inc., has been leasing the site from the New York State Energy RandD Authority. Federal litigation may ensue, prompted by NRC and DOE, if the company refuses to decontaminate the area when its lease expires at the end of 1980. DOE has developed a plan to solidify the liquid wastes at the facility but needs additional legislation and funding to implement the scheme

  4. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D ampersand D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D ampersand D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS

  5. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  6. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Segall, P.

    1998-01-01

    Hanford's missions are to safely clean up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  7. Long-lived radioactive waste and nuclear plant decommissioning a legacy to future generations

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1996-01-01

    Radioactive waste is an inevitable by-product of all uses of radioactive substances. This is the case of natural radioactivity as well as for artificially produced radioactive isotopes, and it is easy to overlook the significance of the waste problem in the case of technologically enhanced natural radioactivity. Several options are available for the disposal of radioactive waste and the paper considers these in detail from the point of view of the possible future impact of radiation doses to individuals or populations. Particular consideration is given to the use of deep disposal at stable geological sites as a means of dealing with large amounts of radioactive waste. It should not be forgotten that some of what we term waste today need not necessarily always be so. Indeed, there is a good case to make for the recycling of low activity materials rather than the uneconomic expedient of burying them. The paper will consider the possible recycling of valuable materials following suitable reprocessing and dilution and mention the dose implications of examples of such re-utilisation of radioactive materials

  8. Long-lived radioactive waste and nuclear plant decommissioning a legacy to future generations

    Energy Technology Data Exchange (ETDEWEB)

    McAulay, I R [Trinity Coll., Dublin (Ireland). Physical Lab.

    1996-10-01

    Radioactive waste is an inevitable by-product of all uses of radioactive substances. This is the case of natural radioactivity as well as for artificially produced radioactive isotopes, and it is easy to overlook the significance of the waste problem in the case of technologically enhanced natural radioactivity. Several options are available for the disposal of radioactive waste and the paper considers these in detail from the point of view of the possible future impact of radiation doses to individuals or populations. Particular consideration is given to the use of deep disposal at stable geological sites as a means of dealing with large amounts of radioactive waste. It should not be forgotten that some of what we term waste today need not necessarily always be so. Indeed, there is a good case to make for the recycling of low activity materials rather than the uneconomic expedient of burying them. The paper will consider the possible recycling of valuable materials following suitable reprocessing and dilution and mention the dose implications of examples of such re-utilisation of radioactive materials.

  9. Citizen participation in nuclear waste repository siting

    International Nuclear Information System (INIS)

    Howell, R.E.; Olsen, D.

    1982-12-01

    The following study presents a proposed strategy for citizen participation during the planning stages of nuclear waste repository siting. It discusses the issue from the general perspective of citizen participation in controversial issues and in community development. Second, rural institutions and attitudes toward energy development as the context for developing a citizen participation program are examined. Third, major citizen participation techniques and the advantages and disadvantages of each approach for resolving public policy issues are evaluated. Fourth, principles of successful citizen participation are presented. Finally, a proposal for stimulating and sustaining effective responsible citizen participation in nuclear waste repository siting and management is developed

  10. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    International Nuclear Information System (INIS)

    Nelson, Jody K.

    2013-01-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several species of biocontrol

  11. Waste repository planned for Bruce Site

    International Nuclear Information System (INIS)

    King, F.

    2004-01-01

    Ontario Power Generation (OPG) and Kincardine, the municipality nearest the Bruce site, have agreed in principal to the construction of a deep geologic repository for low and medium level radioactive waste on the site. The two parties signed the 'Kincardine Hosting Agreement' on October 13, 2004 to proceed with planning, seek regulatory approval and further public consultation of the proposed project. A construction Licence is not expected before 2013. (author)

  12. Hanford Site waste management units report

    International Nuclear Information System (INIS)

    1993-04-01

    The Hanford Site Waste Management Units Report was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments of the 1984. This report provides a comprehensive inventory of all types of waste management units at the Hanford Site, including a description of the units and the waste they contain. Waste management units in the report include: (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment, storage, and disposal (TSD) units, and (6) other storage areas. Because of the comprehensive nature of the units report, the list of units is more extensive than required by Section 3004(u) of Hazardous and Solid Waste Amendments of the 1984. In Sections 3.0 through 6.0 of this report, the four aggregate areas are subdivided into their operable units. The operable units are further divided into two parts: (1) those waste management units assigned to the operable unit that will be remediated as part of the Environmental Restoration Remedial Actions (ERRA) Program, and (2) those waste management units located within the operable unit boundaries but not assigned to the ERRA program. Only some operable unit sections contain the second part.Volume two contains Sections 4.0 through 6.0 and the following appendices: Appendix A -- acronyms and definition of terms; Appendix B -- unplanned releases that are not considered to be units; and Appendix C -- operable unit maps

  13. Siting a low-level waste facility

    International Nuclear Information System (INIS)

    English, M.R.

    1988-01-01

    In processes to site disposal facilities for low-level radioactive waste, volunteerism and incentives packages hold more promise for attracting host communities than they have for attracting host states. But volunteerism and incentives packages can have disadvantages as well as advantages. This paper discusses their pros and cons and summarizes the different approaches that states are using in their relationships with local governments

  14. Cleanup Verification Package for the 600-259 Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2006-02-09

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste.

  15. Cleanup Verification Package for the 600-259 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 600-259 waste site. The site was the former site of the Special Waste Form Lysimeter, consisting of commercial reactor isotope waste forms in contact with soils within engineered caissons, and was used by Pacific Northwest National Laboratory to collect data regarding leaching behavior for target analytes. A Grout Waste Test Facility also operated at the site, designed to test leaching rates of grout-solidified low-level radioactive waste

  16. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  17. Long-lived legacy: Managing high-level and transuranic waste at the DOE Nuclear Weapons Complex. Background paper

    International Nuclear Information System (INIS)

    1991-05-01

    The document focuses on high-level and transuranic waste at the DOE nuclear weapons complex. Reviews some of the critical areas and aspects of the DOE waste problem in order to provide data and further analysis of important issues. Partial contents, High-Level Waste Management at the DOE Weapons Complex, are as follows: High-Level Waste Management: Present and Planned; Amount and Distribution; Current and Potential Problems; Vitrification; Calcination; Alternative Waste Forms for the Idaho National Engineering Laboratory; Technologies for Pretreatment of High-Level Waste; Waste Minimization; Regulatory Framework; Definition of High-Level Waste; Repository Delays and Contingency Planning; Urgency of High-Level Tank Waste Treatment; Technologies for High-Level Waste Treatment; Rethinking the Waste Form and Package; Waste Form for the Idaho National Engineering Laboratory; Releases to the Atmosphere; Future of the PUREX Plant at Hanford; Waste Minimization; Tritium Production; International Cooperation; Scenarios for Future HLW Production. Partial contents of Chapter 2, Managing Transuranic Waste at the DOE Nuclear Weapons Complex, are as follows: Transuranic Waste at Department of Energy Sites; Amount and Distribution; Waste Management: Present and Planned; Current and Potential Problems; Three Technologies for Treating Retrievably Stored Transuranic Waste; In Situ Vitrification; The Applied Research, Development, Demonstration, Testing, and Evaluation Plan (RDDT ampersand E); Actinide Conversion (Transmutation); Waste Minimization; The Regulatory Framework; Definition of, and Standards for, Disposal of Transuranic Waste; Repository Delays; Alternative Storage and Disposal Strategies; Remediation of Buried Waste; The Waste Isolation Pilot Plant; Waste Minimization; Scenarios for Future Transuranic Waste Production; Conditions of No-Migration Determination

  18. Risk management at hazardous waste sites

    International Nuclear Information System (INIS)

    Travis, C.C.; Doty, C.B.

    1990-01-01

    The Superfund Amendments and Reauthorization Act of 1986 (SARA) provided the Environmental Protection Agency (EPA) with additional resources and direction for the identification, evaluation, and remediation of hazardous waste sites in the United States. SARA established more stringent requirements for the Superfund program, both in terms of the pace of the program and the types of remedial alternatives selected. The central requirement is that remedial alternatives be ''protective of public health and the environment'' and ''significantly and permanently'' reduce the toxicity, mobility, or volume of contaminants. The mandate also requires that potential risk be considered in the decision-making process. This document discusses risk management at hazardous waste sites. Topics include selection of sites for placement on the National Priority List, risk assessment and the decision process, risk reduction and remedial alternative selection, and aquifer restoration. 10 refs., 2 figs

  19. Site suitability analysis and route optimization for solid waste ...

    African Journals Online (AJOL)

    Solid waste management system is a tedious task that is facing both developing and developed countries. Site Suitability analysis and route optimization for solid waste disposal can make waste management cheap and can be used for sustainable development. However, if the disposal site(s) is/are not sited and handle ...

  20. Physical sampling for site and waste characterization

    International Nuclear Information System (INIS)

    Bonnough, T.L.

    1994-01-01

    Physical sampling plays a basic role in site and waste characterization program effort. The term ''physical sampling'' used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ''physical sampling'' broadly to include measurements of physical conditions such as temperature, wind conditions, and pH which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measuring of physical conditions taken in association with sample collecting

  1. Nevada test site waste acceptance criteria

    International Nuclear Information System (INIS)

    1996-01-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  2. Compensation: Will it provide a waste site?

    International Nuclear Information System (INIS)

    Pulsipher, A.G.

    1993-01-01

    Offering an attractive compensation package to persuade a community to voluntarily accept an otherwise undesirable facility may work in some cases, but it's not likely to work for high-level nuclear-waste disposal. The public perception of the risks involved and the public distrust of the institutions responsible for managing those risks are just too great. Much of the controversy stems from public perceptions that the site-selection process itself is unfair. Resentment builds when this occurs, and offers of compensation come to be labeled bribes or blood money. The driving force behind current nuclear-waste policy is intergenerational equity - the moral concept that the generation that produced the waste should dispose of it, permanently. Regardless of the moral appeal, doubts have been raised about the technical feasibility of this approach. Alternatives featuring intergenerational monetary compensation may better honor the commitment hor-ellipsis and reduce pressure to try to do what may be impossible

  3. Nevada test site waste acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  4. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping is a serious problem in the urban areas because most solid wastes are not dumped in the suitable areas. Bahir Dar Town has the problem of solid waste dumping site identification. The main objective of this study was to select potential areas for suitable solid waste dumping sites for Bahir Dar Town, ...

  5. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  6. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  7. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  8. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but

  9. Water Treatment for Uranium at the U.S. Department of Energy's Legacy Management Sites

    International Nuclear Information System (INIS)

    Dayvault, J.; Bush, R.; Ribeiro, T.; Surovchak, S.; Powell, J.; Bartlett, T.; Carpenter, C.; Jacobson, C.; Miller, D.; Morrison, S.; Boylan, J.; Broberg, K.; Glassmeyer, C.; Hertel, W.

    2009-01-01

    The U.S. Department of Energy's Legacy Management (LM) Program is responsible for 82 sites as of September 30, 2008, more than 30 of which contain uranium contamination in the ground water. The compliance strategy for some of the uranium-contaminated ground-water systems is monitored natural attenuation (MNA); however, five sites have active ground-water remediation systems for uranium. Active remediation methods, goals, and scales vary widely among sites. This paper discusses and contrasts methods used to treat ground water contaminated with uranium at LM sites. At a former uranium milling site in Monticello, Utah, uranium-contaminated ground water is pumped through two reaction vessels containing a total of 7.6 cubic meters (m 3 ) of a mixture of gravel and zero-valent iron (ZVI). The flow rate is typically about 38 liters per minute (lpm), and the influent uranium concentration is about 300 micrograms per liter (μg/L). About 5.9 kilograms (kg) of uranium is removed from the aquifer per year. The system is monitored by a telemetry system and requires minimal maintenance; however, the reactive media requires replacement every 1 to 2 years. Some treated ground water is discharged back to the aquifer to enhance MNA, and some is discharged to a nearby creek. At the Rocky Flats Site near Denver, Colorado, contaminated ground water is collected in subsurface drains and pumped through a reaction vessel containing 136 m3 of a mixture of sawdust and ZVI, followed by a second reactor containing 40 m 3 of a mixture of gravel and ZVI. Microbial activity in the sawdust/ZVI reactor removes nitrate and some uranium, and the ZVI/gravel reactor removes the remainder of the uranium. The flow rate is typically about 1.9 lpm. The typical influent uranium concentration is about 40 μg/L, and the effluent concentration is less than 5 μg/L. Treated water is discharged to an infiltration gallery that feeds to a nearby creek. The system is removing approximately 0.05 kg of uranium per

  10. Mobile hot cell transition design phase study for radioactive waste treatment on the Hanford reservation site

    International Nuclear Information System (INIS)

    Pons, Y.

    2010-01-01

    Full text of publication follows: At the US Department of Energy's Hanford Reservation site, 4 caissons in under ground storage contain approximately 23 cubic meters of Transuranic (TRU) waste, in over 5,000 small packages. The retrieval of these wastes presents a number of very difficult issues, including the configuration of the vaults, approximately 50,000 curies of activity, high dose rates, and damaged/degraded waste packages. The waste will require remote retrieval and processing sufficient to produce certifiable RH-TRU waste packages. This RH-TRU will be packaged for staging on site until certification by CCP is completed to authorize shipment to the Waste Isolation Pilot Plant (WIPP). The project has introduced AREVA' s innovative Hot Mobile Cell (HMC) technology to perform size reduction, sorting, characterization, and packaging of the RH waste stream at the point of generation, the retrieval site in the field. This approach minimizes dose and hazard exposure to workers that is usually associated with this operation. The HMC can also be used to provide employee protection, weather protection, and capacity improvements similar to those realized in general burial ground. AREVA TA and his partner AFS will provide this technology based on the existing HMCs developed and operated in France: - ERFB (Bituminized Waste Drum Retrieval Facility): ERFB was built specifically for retrieving the bituminized waste drums (approximately 6,000 stored in trenches in the North zone on the Marcoule site (in operation since 2001). - ERCF (Waste Drum Recovery and Packaging Facility): The ERCF was built specifically to retrieve bituminized waste drums stored in 35 pits located in the south area on Marcoule site (in operation) - FOSSEA (Legacy Waste Removal and Trench Cleanup): The FOSSEA project consists of the retrieval of waste stored on the Basic Nuclear Facility. Waste from the 56 trenches will be inspected, characterised, and if necessary processed or repackaged, and

  11. Drought-induced legacy effects in wood growth across the Eastern and Midwestern U.S. are mediated by site climate, tree age, and drought sensitivity

    Science.gov (United States)

    Kannenberg, S.; Maxwell, J. T.; Pederson, N.; D'Orangeville, L.; Phillips, R.

    2017-12-01

    While it is widely known that drought reduces carbon (C) uptake in temperate forests, tree growth can also remain stagnant post-drought despite favorable climatic conditions. While such "legacy effects" are well established, the degree to which these effects depend on species identity or variability in site conditions is poorly quantified. We sought to uncover how site, species, climate, and tree age interact to affect the presence and magnitude of legacy effects in temperate trees following drought. To do this, we assembled dendrochronological records of 18 common species across 94 sites in Eastern and Midwestern U.S. forests and quantified drought-induced changes in wood growth in the year of the drought (hereafter "drought sensitivity") and the years after the drought (i.e., legacy effects). We predicted that species particularly prone to hydraulic damage (e.g., oaks) would have the least drought sensitivity yet experience larger legacy effects, and that this effect would be exacerbated at arid sites. Across all species and sites, wood growth was reduced by 14% in the year of the drought and by 7% post-drought. Surprisingly, legacy effects were smaller for oak species and larger across species known to be more drought sensitive (e.g. tulip poplar, maple, birch). As a result, we observed a positive relationship between a species' drought sensitivity and that species' legacy effect. These legacy effects were similar in size across a range of drought severities. Surprisingly, legacy effects were smaller in more arid sites - contrary to previous investigations in dryland ecosystems - perhaps indicating the role of adaptation in mediating a tree's recovery from drought. In addition, many species actually decreased the size of their legacy effects as they aged, despite no change in drought responses. Our results run contrary to our predictions, as species with the greatest drought sensitivity had the least ability to recover, and that younger mesic forests- not arid

  12. Performance of a radioactive waste internment site

    International Nuclear Information System (INIS)

    Bernhardt, D.E.; Owen, D.H.; Mishub, R.J.; Prewett, S.V.; Cole, L.W.

    1990-01-01

    Aerojet disposed of 30,000 cubic meters of uranium and thorium wastes in an engineered 12,000 square meter (3 acre) internment site in Tennessee. The operation, performed under a State of Tennessee source material license, is based on termination of the license with the material remaining in place, and the option of future commercial use of the site. The closure plan included a long-term monitoring program. Yearly monitoring of the site has verified performance within the design criteria. Full-time construction monitored by a licensed engineer and extensive testing of materials ensured construction of the site according to or better than the specifications. Surface subsidence of the site has averaged about 2.2 cm with a range of 0 to 4.3 cm at 11 settlement markers after 4 years. The anticipated settlement, based on design parameters, was between 15 and 25 cm. The present anticipated settlement is 8 to 15 cm, based on the as-built parameters, and the long-term monitoring results. Slope stability analysis indicates the stability has improved with time due to consolidation of materials and reduced groundwater activity as a result of site construction. There has been no need for corrective action maintenance due to erosion, sluffing of slopes, or subsidence. Groundwater monitoring indicates the materials have been isolated, and there have also been no indications of springs or leakage from the site. 9 refs., 2 figs., 3 tabs

  13. Strategy for managing mixed waste at a plant site

    International Nuclear Information System (INIS)

    Fentiman, A.

    1991-01-01

    No waste disposal site is currently accepting mixed waste, but facilities across the country continue to generate it. The waste manager at each site is faced with two problems: how to manage the mixed waste already on-site and how to minimize the amount of new waste generated. A strategy has been developed to address each problem. A key element of the strategy is a building-by-building survey of the site. The survey provides information on how and where mixed waste is generated and stored. This paper describes a method for planning and conducting a site-wide mixed-waste survey. It then outlines approaches to managing existing mixed waste and to minimizing mixed-waste generation using information from the survey

  14. Radioactive waste on-site storage alternative

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1983-01-01

    The first, most frequently evaluated approach for the large producer is the construction of a relatively expensive storage building. However, with the likely possibility that at least one disposal site will remain available and the building never used, such expenditures are difficult to justify. A low cost, but effective alternative, is the use of ''On-Site Storage Containers'' (OSSC) when and if required. Radwaste is only stored in the OSSC if a disposal site is not available. A small number of OSSC's would be purchased initially just to assure immediate access to storage. Only in the unlikely event of total disposal sites closure would additional OSSC's have to be obtained and even this is cost effective. With two or three months of storage available on site, production lead time is sufficient for the delivery of additional units at a rate faster than the waste can be produced. The recommended OSSC design would be sized and shielding optimized to meet the needs of the waste generator. Normally, this would duplicate the shipping containers (casks or vans) currently in use. The reinforced concrete design presented is suitable for outside storage, contains a leakproof polyethylene liner and has remote sampling capability. Licensing would be under 10CFR50.59 for interim storage with long-term storage under 10CFR30 not an impossibility. Cost comparisons of this approach vs. building construction show that for a typical reactor plant installation, the OSSC offers direct savings even under the worst case assumption that no disposal sites are available and the time value of money is zero

  15. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost

    International Nuclear Information System (INIS)

    Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

    2013-01-01

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the

  16. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  17. DSEM, Radioactive Waste Disposal Site Economic Model

    International Nuclear Information System (INIS)

    Smith, P.R.

    2005-01-01

    1 - Description of program or function: The Disposal Site Economic Model calculates the average generator price, or average price per cubic foot charged by a disposal facility to a waste generator, one measure of comparing the economic attractiveness of different waste disposal site and disposal technology combinations. The generator price is calculated to recover all costs necessary to develop, construct, operate, close, and care for a site through the end of the institutional care period and to provide the necessary financial returns to the site developer and lender (when used). Six alternative disposal technologies, based on either private or public financing, can be considered - shallow land disposal, intermediate depth disposal, above or below ground vaults, modular concrete canister disposal, and earth mounded concrete bunkers - based on either private or public development. 2 - Method of solution: The economic models incorporate default cost data from the Conceptual Design Report (DOE/LLW-60T, June 1987), a study by Rodgers Associates Engineering Corporation. Because all costs are in constant 1986 dollars, the figures must be modified to account for inflation. Interest during construction is either capitalized for the private developer or rolled into the loan for the public developer. All capital costs during construction are depreciated over the operation life of the site using straight-line depreciation for the private sector. 3 - Restrictions on the complexity of the problem: Maxima of - 100 years post-operating period, 30 years operating period, 15 years pre-operating period. The model should be used with caution outside the range of 1.8 to 10.5 million cubic feet of total volume. Depreciation is not recognized with public development

  18. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  19. Electronic Denitration Savannah River Site Radioactive Waste

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1995-01-01

    Electrochemical destruction of nitrate in radioactive Savannah River Site Waste has been demonstrated in a bench-scale flow cell reactor. Greater than 99% of the nitrate can be destroyed in either an undivided or a divided cell reactor. The rate of destruction and the overall power consumption is dependent on the cell configuration and electrode materials. The fastest rate was observed using an undivided cell equipped with a nickel cathode and nickel anode. The use of platinized titanium anode increased the energy requirement and costs compared to a nickel anode in both the undivided and divided cell configurations

  20. Low-level radioactive waste disposal at a humid site

    International Nuclear Information System (INIS)

    Lee, D.W.

    1987-03-01

    Waste management in humid environments poses a continuing challenge because of the potential contamination of groundwater in the long term. Short-term needs for waste disposal, regulatory uncertainty, and unique site and waste characteristics have led to the development of a site-specific waste classification and management system proposed for the Oak Ridge Reservation. The overlying principle of protection of public health and safety is used to define waste classes compatible with generated waste types, disposal sites and technologies, and treatment technologies. 1 fig., 1 tab

  1. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  2. Operational radioactive waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1980-11-01

    The Operational Radioactive Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  3. Pre-1970 transuranic solid waste at the Hanford Site

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1995-01-01

    The document is based on a search of pre-1970 Hanford Solid Waste Records. The available data indicates seven out of thirty-one solid waste burial sites used for pre-1970 waste appear to be Transuranic (TRU). A burial site defined to be TRU contains >100 nCi/gm Transuranic nuclides

  4. Biological tracer for waste site characterization

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.

    1995-01-01

    Remediating hazardous waste sites requires detailed site characterization. In groundwater remediation, characterizing the flow paths and velocity is a major objective. Various tracers have been used for measuring groundwater velocity and transport of contaminants, colloidal particles, and bacteria and nutrients. The conventional techniques use dissolved solutes, dyes. and gases to estimate subsurface transport pathways. These tracers can provide information on transport and diffusion into the matrix, but their estimates for groundwater flow through fractured regions are very conservative. Also, they do not have the same transport characteristics as bacteria and suspended colloid tracers, both of which must be characterized for effective in-place remediation. Bioremediation requires understanding bacterial transport and nutrient distribution throughout the acquifer, knowledge of contaminants s mobile colloidal particles is just essential

  5. The Savannah River Site Waste Inventory Management Program

    International Nuclear Information System (INIS)

    Griffith, J.M.; Holmes, B.R.

    1995-01-01

    Each hazardous and radioactive waste generator that delivers waste to Savannah River Site (SRS) treatment, storage and disposal (TSD) facilities is required to implement a waste certification plan. The waste certification process ensures that waste has been properly identified, characterized, segregated, packaged, and shipped according to the receiving facilities waste acceptance criteria. In order to comply with the rigid acceptance criteria, the Reactor Division developed and implemented the Waste Inventory Management Program (WIMP) to track the generation and disposal of low level radioactive waste. The WIMP system is a relational database with integrated barcode technology designed to track the inventory radioactive waste. During the development of the WIMP several waste minimization tools were incorporated into the design of the program. The inclusion of waste minimization tools as part of the WIMP has resulted in a 40% increase in the amount of waste designated as compactible and an overall volume reduction of 5,000 cu-ft

  6. Radioactive waste disposal: Recommendations for a repository site selection

    International Nuclear Information System (INIS)

    Cadelli, N.; Orlowski, S.

    1992-01-01

    This report is a guidebook on recommendations for site selection of radioactive waste repository, based on a consensus in european community. This report describes particularly selection criteria and recommendations for radioactive waste disposal in underground or ground repositories. 14 refs

  7. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  8. Blasting at a Superfund chemical waste site

    International Nuclear Information System (INIS)

    Burns, D.R.

    1991-01-01

    During the summer of 1989, Maine Drilling and Blasting of Gardiner, Maine was contracted by Cayer Corporation of Harvard, Massachusetts to drill and blast an interceptor trench at the Nyanza Chemical Superfund Site in Ashland, Massachusetts. The interceptor trench was to be 1,365 feet long and to be blasted out of granite. The trench was to be 12 feet wide at the bottom with 1/1 slopes, the deepest cut being 30 feet deep. A French drain 12 feet wide by 15 to 35 feet deep was blasted below the main trench on a 2% slope from its center to each end. A French drain is an excavation where the rock is blasted but not dug. The trench would be used as a perimeter road with any ground water flow going through the French drain flowing to both ends of the trench. Being a Superfund project turned a simple blasting project into a regulatory nightmare. The US Environmental Protection Agency performed all the chemical related functions on site. The US Army Corps of Engineers was overseeing all related excavation and construction on site, as was the Massachusetts Department of Environmental Quality Engineering, the local Hazardous Wastes Council, and the local Fire Department. All parties had some input with the blasting and all issues had to be addressed. The paper outlines the project, how it was designed and completed. Also included is an outline of the blast plan to be submitted for approval, an outline of the Safety/Hazardous Waste training and a description of all the problems which arose during the project by various regulatory agencies

  9. Testing contamination risk assessment methods for toxic elements from mine waste sites

    Science.gov (United States)

    Abdaal, A.; Jordan, G.; Szilassi, P.; Kiss, J.; Detzky, G.

    2012-04-01

    Major incidents involving mine waste facilities and poor environmental management practices have left a legacy of thousands of contaminated sites like in the historic mining areas in the Carpathian Basin. Associated environmental risks have triggered the development of new EU environmental legislation to prevent and minimize the effects of such incidents. The Mine Waste Directive requires the risk-based inventory of all mine waste sites in Europe by May 2012. In order to address the mining problems a standard risk-based Pre-selection protocol has been developed by the EU Commission. This paper discusses the heavy metal contamination in acid mine drainage (AMD) for risk assessment (RA) along the Source-Pathway-Receptor chain using decision support methods which are intended to aid national and regional organizations in the inventory and assessment of potentially contaminated mine waste sites. Several recognized methods such as the European Environmental Agency (EEA) standard PRAMS model for soil contamination, US EPA-based AIMSS and Irish HMS-IRC models for RA of abandoned sites are reviewed, compared and tested for the mining waste environment. In total 145 ore mine waste sites have been selected for scientific testing using the EU Pre-selection protocol as a case study from Hungary. The proportion of uncertain to certain responses for a site and for the total number of sites may give an insight of specific and overall uncertainty in the data we use. The Pre-selection questions are efficiently linked to a GIS system as database inquiries using digital spatial data to directly generate answers. Key parameters such as distance to the nearest surface and ground water bodies, to settlements and protected areas are calculated and statistically evaluated using STATGRAPHICS® in order to calibrate the RA models. According to our scientific research results, of the 145 sites 11 sites are the most risky having foundation slope >20o, 57 sites are within distance 66 (class VI

  10. Application to transfer radioactive waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    1992-01-01

    All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS

  11. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  12. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  13. Characterisation of imperial college reactor centre legacy waste using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Shuhaimi, Alif Imran Mohd

    2016-01-01

    Waste characterisation is a principal component in waste management strategy. The characterisation includes identification of chemical, physical and radiochemical parameters of radioactive waste. Failure to determine specific waste properties may result in sentencing waste packages which are not compliant with the regulation of long term storage or disposal. This project involved measurement of intensity and energy of gamma photons which may be emitted by radioactive waste generated during decommissioning of Imperial College Reactor Centre (ICRC). The measurement will use High Purity Germanium (HPGe) as Gamma-ray detector and ISOTOPIC-32 V4.1 as analyser. In order to ensure the measurements provide reliable results, two quality control (QC) measurements using difference matrices have been conducted. The results from QC measurements were used to determine the accuracy of the ISOTOPIC software

  14. Characterisation of imperial college reactor centre legacy waste using gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shuhaimi, Alif Imran Mohd [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia)

    2016-01-22

    Waste characterisation is a principal component in waste management strategy. The characterisation includes identification of chemical, physical and radiochemical parameters of radioactive waste. Failure to determine specific waste properties may result in sentencing waste packages which are not compliant with the regulation of long term storage or disposal. This project involved measurement of intensity and energy of gamma photons which may be emitted by radioactive waste generated during decommissioning of Imperial College Reactor Centre (ICRC). The measurement will use High Purity Germanium (HPGe) as Gamma-ray detector and ISOTOPIC-32 V4.1 as analyser. In order to ensure the measurements provide reliable results, two quality control (QC) measurements using difference matrices have been conducted. The results from QC measurements were used to determine the accuracy of the ISOTOPIC software.

  15. Hanford site implementation plan for buried, transuranic-contaminated waste

    International Nuclear Information System (INIS)

    1987-05-01

    The GAO review of DOE's Defense Waste Management Plan (DWMP) identified deficiencies and provided recommendations. This report responds to the GAO recommendations with regard to the Hanford Site. Since the issuance of the DWMP, an extensive planning base has been developed for all high-level and transuranic waste at the Hanford Site. Thirty-three buried sites have been identified as possibly containing waste that can be classified as transuranic waste. Inventory reports and process flowsheets were used to provide an estimate of the radionuclide and hazardous chemical content of these sites and approximately 370 additional sites that can be classified as low-level waste. A program undertaken to characterize select sites suspected of having TRU waste to refine the inventory estimates. Further development and evaluation are ongoing to determine the appropriate remedial actions, with the objectives of balancing long-term risks with costs and complying with regulations. 18 refs., 7 figs., 6 tabs

  16. Waste site grouping for 200 Areas soil investigations

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this document is to identify logical waste site groups for characterization based on criteria established in the 200 Areas Soil Remediation Strategy (DOE-RL 1996a). Specific objectives of the document include the following: finalize waste site groups based on the approach and preliminary groupings identified in the 200 Areas Soil Remediation Strategy; prioritize the waste site groups based on criteria developed in the 200 Areas Soil Remediation Strategy; select representative site(s) that best represents typical and worse-case conditions for each waste group; develop conceptual models for each waste group. This document will serve as a technical baseline for implementing the 200 Areas Soil Remediation Strategy. The intent of the document is to provide a framework, based on waste site groups, for organizing soil characterization efforts in the 200 Areas and to present initial conceptual models

  17. Assessment of LANL waste management site plan

    International Nuclear Information System (INIS)

    Black, R.L.; Davis, K.D.; Hoevemeyer, S.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) Waste Management Plan to determine if it meets applicable DOE requirements. DOE Order 5820.2A, Radioactive Waste Management, sets forth requirements and guidelines for the establishment of a Waste Management Plan. The primary purpose of a Waste Management Plan is to describe how waste operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming year

  18. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    2012-01-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  19. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as

  20. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  1. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  2. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-02-01

    The environmental impact of toxic metal contamination from legacy mining activities, many of which had operated and were closed prior to the enforcement of robust environmental legislation, is of growing concern to modern society. We have carried out analysis of As and potentially toxic metals (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surface soil of a legacy gold mining site in Maldon, Victoria, Australia, to reveal the status of the current metal concentration. The results revealed the median concentrations of metals from highest to lowest, in the order: Mn > Zn > As > Cr > Cu > Pb > Ni > Co > Hg > Cd. The status of site was assessed directly by comparing the metal concentrations in the study area with known Australian and Victorian average top soil levels and the health investigation levels set by the National Environmental Protection Measures (NEPM) and the Department of Environment and Conservation (DEC) of the State of Western Australia. Although, median concentrations of As, Hg, Pb, Cu and Zn exceeded the average Australian and Victorian top soil concentrations, only As and Hg exceeded the ecological investigation levels (EIL) set by DEC and thus these metals are considered as risk to the human and aquatic ecosystems health due to their increase in concentration and toxicity. In an environment of climate fluctuation with increased storm events and forest fires may mobilize these toxic metals contaminants, pose a real threat to the environment and the community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Disposal facilities for radioactive waste - legislative requirements for siting

    International Nuclear Information System (INIS)

    Markova-Mihaylova, Radosveta

    2015-01-01

    The specifics of radioactive waste, namely the content of radionuclides require the implementation of measures to protect human health and the environment against the hazards arising from ionizing radiation, including disposal of waste in appropriate facilities. The legislative requirements for siting of such facilities, and classification of radioactive waste, as well as the disposal methods, are presented in this publication

  4. Mixed waste disposal facility at the Nevada Test Site

    International Nuclear Information System (INIS)

    Dickman, P.T.; Kendall, E.W.

    1987-01-01

    In 1984, a law suit brought against DOE resulted in the requirement that DOE be subject to regulation by the state and US Environmental Protection Agency (EPA) for all hazardous wastes, including mixed wastes. Therefore, all DOE facilities generating, storing, treating, or disposing of mixed wastes will be regulated under the Resource Conservation and Recovery Act (RCTA). In FY 1985, DOE Headquarters requested DOE low-level waste (LLW) sites to apply for a RCRA Part B Permit to operate radioactive mixed waste facilities. An application for the Nevada Test Site (NTS) was prepared and submitted to the EPA, Region IX in November 1985 for review and approval. At that time, the state of Nevada had not yet received authorization for hazardous wastes nor had they applied for regulatory authority for mixed wastes. In October 1986, DOE Nevada Operations Office was informed by the Rocky Flats Plant that some past waste shipments to NTS contained trace quantities of hazardous substances. Under Colorado law, these wastes are defined as mixed. A DOE Headquarters task force was convened by the Under Secretary to investigate the situation. The task force concluded that DOE has a high priority need to develop a permitted mixed waste site and that DOE Nevada Operations Office should develop a fast track project to obtain this site and all necessary permits. The status and issues to be resolved on the permit for a mixed waste site are discussed

  5. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  6. Cleanup Verification Package for the 300-18 Waste Site

    International Nuclear Information System (INIS)

    Capron, J.M.

    2005-01-01

    This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete

  7. A facility design for repackaging ORNL CH-TRU legacy waste in Building 3525

    International Nuclear Information System (INIS)

    Huxford, T.J.; Cooper, R.H. Jr.; Davis, L.E.; Fuller, A.B.; Gabbard, W.A.; Smith, R.B.; Guay, K.P.; Smith, L.C.

    1995-07-01

    For the last 25 years, the Oak Ridge National Laboratory (ORNL) has conducted operations which have generated solid, contact-handled transuranic (CH-TRU) waste. At present the CH-TRU waste inventory at ORNL is about 3400 55-gal drums retrievably stored in RCRA-permitted, aboveground facilities. Of the 3400 drums, approximately 2600 drums will need to be repackaged. The current US Department of Energy (DOE) strategy for disposal of these drums is to transport them to the Waste Isolation Pilot Plant (WIPP) in New Mexico which only accepts TRU waste that meets a very specific set of criteria documented in the WIPP-WAC (waste acceptance criteria). This report describes activities that were performed from January 1994 to May 1995 associated with the design and preparation of an existing facility for repackaging and certifying some or all of the CH-TRU drums at ORNL to meet the WIPP-WAC. For this study, the Irradiated Fuel Examination Laboratory (IFEL) in Building 3525 was selected as the reference facility for modification. These design activities were terminated in May 1995 as more attractive options for CH-TRU waste repackaging were considered to be available. As a result, this document serves as a final report of those design activities

  8. Risky business: Assessing cleanup plans for waste sites

    International Nuclear Information System (INIS)

    Blaylock, B.

    1995-01-01

    ORNL was chosen to perform human health and ecological risk assessments for DOE because of its risk assessment expertise. The U.S. Department of Energy's many production and research sites contain radioactive and hazardous wastes. These waste sites pose potential risks to the health and safety of remediation and waste management workers and the public. The risks, however, vary from site to site. Some sites undoubtedly present larger risks than others and should be cleaned up first. However, before the cleanup begins, DOE is required by law to prepare an environmental impact statement on any actions that may significantly affect the environment-even actions that would clean it up

  9. Successful characterization of radioactive waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Hughes, M.B.; Miles, G.M.

    1995-01-01

    Characterization of the low-level radioactive waste generated by forty five independent operating facilities at The Savannah River Site (SRS) experienced a slow start. However, the site effectively accelerated waste characterization based on findings of an independent assessment that recommended several changes to the existing process. The new approach included the development of a generic waste characterization protocol and methodology and the formulation of a technical board to approve waste characterization. As a result, consistent, detailed characterization of waste streams from SRS facilities was achieved in six months

  10. Site and facility waste transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Schmid, S.; Danese, L.

    1991-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and maintenance of Site- and Facility-Specific Transportation Services Planning Documents (SPDs) and Site-Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities, with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations

  11. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  12. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  13. Area 5 Radioactive Waste Management Site Safety Assessment Document

    International Nuclear Information System (INIS)

    Horton, K.K.; Kendall, E.W.; Brown, J.J.

    1980-02-01

    The Area 5 Radioactive Waste Management Safety Assessment Document evaluates site characteristics, facilities and operating practices which contribute to the safe handling and storage/disposal of radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. Also considered, as a separate section, are facilities and operating practices such as monitoring; storage/disposal criteria; site maintenance, equipment, and support; transportation and waste handling; and others which are adequate for the safe handling and storage/disposal of radioactive wastes. In conclusion, the Area 5 Radioactive Waste Management Site is suitable for radioactive waste handling and storage/disposal for a maximum of twenty more years at the present rate of utilization

  14. Savannah River Site`s Site Specific Plan. Environmental restoration and waste management, fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  15. Technical Assessment Of Selection Of A Waste Disposal Site

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book gives overall descriptions of technical assessment of selection of a waste disposal site, which deals with standard of selection on incinerator of city waste, the method over assessment of selection of incinerator in city waste, prerequisite of technical assessment for selection of incinerator, waste incinerator and related equipment such as form, structure, quality of material, ventilation device, plumbing system and electrical installation, and total plan like plan of construction and a measure taken against environmental pollution.

  16. Storage of intermediate level waste at UKAEA sites

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1985-08-01

    This report describes the storage of wastes at UKAEA sites and accordingly contributes to the investigations conducted by the Department of the Environment into the Best Practicable Environmental Option (BPEO) for radioactive waste storage and/or disposal. This report on the storage of ILW should be read in conjunction with a similar NII funded CTS study for Licensed Sites in the UK. (author)

  17. Site-Specific Waste Management Instruction - 100-DR-1 Group 2 Sites

    International Nuclear Information System (INIS)

    Jackson, R.W.

    1998-01-01

    This site-specific waste management instruction (SSWMI) provides guidance for the management of wastes that may be generated during the excavation and remediation of the 100-DR-1 Group 2 sites. The management of waste generated as a result of these activities will be as directed in this SSWMI. This SSWMI will be revised to incorporate guidance for management of wastes encountered that are not addressed in this SSWMI

  18. Hazardous and mixed waste management at UMTRA sites

    International Nuclear Information System (INIS)

    Hampill, H.G.

    1988-01-01

    During the early stages of the Uranium Mill Tailings Remedial Action Project, there were some serious questions regarding the ownership of and consequently the responsibility for disposal of hazardous wastes at UMTRA sites. In addition to State and Indian Tribe waste disposal regulations, UMTRA must also conform to guidelines established by the NRC, OSHA, EPA, and DOT. Because of the differing regulatory thrusts of these agencies, UMTRA has to be vigilant in order to ensure that the disposal of each parcel of waste material is in compliance with all regulations. Mixed-waste disposal presents a particularly difficult problem. No single agency is willing to lay claim to the regulation of mixed-wastes, and no conventional waste disposal facility is willing to accept it. Consequently, the disposal of each lot of mixed-waste at UMTRA sites must be handled on a case by case basis. A recently published position paper which spells out UMTRA policy on waste materials indicates that wastes found at UMTRA sites are either residual radioactive wastes, or mixed-wastes, or for the disposal of hazardous waste is determined by the time the original material arrived. If it arrived prior to the termination of the AEC uranium supply contract, its disposal is the responsibility of UMTRA. If it arrived after the end of the contract, the responsibility for disposal lies with the former operator

  19. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  20. Cleanup Verification Package for the 300 VTS Waste Site

    International Nuclear Information System (INIS)

    Clark, S.W.; Mitchell, T.H.

    2006-01-01

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste

  1. Cleanup Verification Package for the 300 VTS Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Clark and T. H. Mitchell

    2006-03-13

    This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

  2. A prototype scintillating-fibre tracker for the cosmic-ray muon tomography of legacy nuclear waste containers

    Energy Technology Data Exchange (ETDEWEB)

    Al Jebali, Ramsey; Mahon, David; Clarkson, Anthony; Ireland, Dave G; Kaiser, Ralf [University of Glasgow, Kelvin Building, University Avenue, Glasgow, G12 8QQ, Scotland, (United Kingdom); Mountford, David; Ryan, Matt; Shearer, Craig; Yang, Guangliang [National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG, England, (United Kingdom)

    2015-07-01

    A prototype scintillating-fibre detector system has been developed at the University of Glasgow in collaboration with the UK National Nuclear Laboratory (NNL) for the nondestructive assay of UK legacy nuclear waste containers. This system consists of two tracking modules above, and two below, the container under interrogation. Each module consists of two orthogonal planes of 2 mm-pitch fibres yielding one space point. Per plane, 128 fibres are read out by a single Hamamatsu H8500 64-channel MAPMT with two fibres multiplexed onto each pixel. A dedicated mapping scheme has been developed to avoid space point ambiguities and retain the high spatial resolution provided by the fibres. The configuration allows the reconstruction of the incoming and scattered muon trajectories, thus enabling the container content, with respect to atomic number Z, to be determined. Results are shown from experimental data collected for high-Z objects within an air matrix and, for the first time, within a shielded, concrete-filled container. These reconstructed images show clear discrimination between the low, medium and high-Z materials present, with dimensions and positions determined with sub-centimetre precision. (authors)

  3. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  4. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  5. Waste certification review program at the Savannah River Site

    International Nuclear Information System (INIS)

    Faulk, G.W.; Kinney, J.C.; Knapp, D.C.; Burdette, T.E.

    1996-01-01

    After approving the waste certification programs for 45 generators of low-level radioactive and mixed waste, Westinghouse Savannah River Company (WSRC) moved forward to implement a performance-based approach for assuring that approved waste generators maintain their waste certification programs. WSRC implemented the Waste Certification Review Program, which is comprised of two sitewide programs, waste generator self-assessments and Facility Evaluation Board reviews, integrated with the WSRC Solid Waste Management Department Waste Verification Program Evaluations. The waste generator self-assessments ensure compliance with waste certification requirements, and Facility Evaluation Board reviews provide independent oversight of generators' waste certification programs. Waste verification evaluations by the TSD facilities serve as the foundation of the program by confirming that waste contents and generator performance continue to meet waste acceptance criteria (WSRC 1994) prior to shipment to treatment, storage, and disposal facilities. Construction of the Savannah River Site (SRS) was started by the US Government in 1950. The site covers approximately 300 square miles located along the Savannah River near Aiken, South Carolina. It is operated by the US Department of Energy (DOE). Operations are conducted by managing and operating contractors, including the Westinghouse Savannah River Company (WSRC). Historically, the primary purpose of the SRS was to produce special nuclear materials, primarily plutonium and tritium. In general, low-level radioactive and mixed waste is generated through activities in operations. Presently, 47 SRS facilities generate low-level radioactive and mixed waste. The policies, guidelines, and requirements for managing these wastes are determined by DOE and are reflected in DOE Order 5820.2A (US DOE 1988)

  6. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    MCDONALD, K.M.

    1999-01-01

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  7. Source identification of uranium-containing materials at mine legacy sites in Portugal.

    Science.gov (United States)

    Keatley, A C; Martin, P G; Hallam, K R; Payton, O D; Awbery, R; Carvalho, F P; Oliveira, J M; Silva, L; Malta, M; Scott, T B

    2018-03-01

    Whilst prior nuclear forensic studies have focused on identifying signatures to distinguish between different uranium deposit types, this paper focuses on providing a scientific basis for source identification of materials from different uranium mine sites within a single region, which can then be potentially used within nuclear forensics. A number of different tools, including gamma spectrometry, alpha spectrometry, mineralogy and major and minor elemental analysis, have been utilised to determine the provenance of uranium mineral samples collected at eight mine sites, located within three different uranium provinces, in Portugal. A radiation survey was initially conducted by foot and/or unmanned aerial vehicle at each site to assist sample collection. The results from each mine site were then compared to determine if individual mine sites could be distinguished based on characteristic elemental and isotopic signatures. Gamma and alpha spectrometry were used to differentiate between samples from different sites and also give an indication of past milling and mining activities. Ore samples from the different mine sites were found to be very similar in terms of gangue and uranium mineralogy. However, rarer minerals or specific impurity elements, such as calcium and copper, did permit some separation of the sites examined. In addition, classification rates using linear discriminant analysis were comparable to those in the literature. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  8. Legacy of a Chemical Factory Site: Contaminated Groundwater Impacts Stream Macroinvertebrates

    DEFF Research Database (Denmark)

    Rasmussen, Jes J.; McKnight, Ursula S.; Sonne, Anne Thobo

    2016-01-01

    data for many of the compounds occurring at contaminated sites. We studied the potential impact of a contaminated site, characterised by chlorinated solvents, sulfonamides, and barbiturates, on benthic macroinvertebrates in a receiving stream. Most of these compounds are characterised by low or unknown...

  9. A history of solid waste packaging at the Hanford Site

    International Nuclear Information System (INIS)

    Duncan, D.R.; Weyns-Rollosson, D.I.; Pottmeyer, J.A.; Stratton, T.J.

    1995-02-01

    Since the initiation of the defense materials product mission, a total of more than 600,000 m 3 of radioactive solid waste has been stored or disposed at the US Department of Energy's (DOE) Hanford Site, located in southeastern Washington State. As the DOE complex prepares for its increasing role in environmental restoration and waste remediation, the characterization of buried and retrievably stored waste will become increasingly important. Key to this characterization is an understanding of the standards and specifications to which waste was packaged; the regulations that mandated these standards and specifications; the practices used for handling and packaging different waste types; and the changes in these practices with time

  10. Savannah River Site Waste Management Program Plan, FY 1993

    International Nuclear Information System (INIS)

    1993-06-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes

  11. Cleaning up a toxic legacy: Environmental remediation of former uranium production sites in Central Asia

    International Nuclear Information System (INIS)

    Green, Andrew

    2016-01-01

    Nearly 60 abandoned uranium production sites dot the landscape and represent a hazard to the environment and inhabitants throughout rural Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Each site poses a challenge for local and national governments that lack technical expertise and resources for remediation. The sites were used to produce uranium until the 1990s. They were built before proper regulatory infrastructure was in place to ensure eventual decommissioning, so leftover residues with long-lived radioactive and highly toxic chemical contaminants still pose substantial risks to the health of the public and the environment.

  12. Cleaning up a toxic legacy: Environmental remediation of former uranium production sites in Central Asia

    International Nuclear Information System (INIS)

    Green, Andrew

    2016-01-01

    Nearly 60 abandoned uranium production sites dot the landscape and represent a hazard to the environment and inhabitants throughout rural Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Each site poses a challenge for local and national governments that lack technical expertise and resources for remediation. The sites were used to produce uranium until the 1990s. They were built before proper regulatory infrastructure was in place to ensure eventual decommissioning, so leftover residues with long-lived radioactive and highly toxic chemical contaminants still pose substantial risks to the health of the public and the environment

  13. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1993-03-01

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates

  14. Community Involvement as an Effective Institutional Control at the Weldon Spring Site, a U.S. Department of Energy Office of Legacy Management Site

    International Nuclear Information System (INIS)

    Deyo, Y.E.; Pauling, T.

    2006-01-01

    The U.S. Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) was conducted for the purpose of remediating a portion of a former trinitrotoluene and dinitrotoluene production plant that was operational from 1941 to 1945 and a former uranium refinery that was operational from 1957 to 1966. Surface remediation activities concluded in 2001 with the completion of a 45-acre (.18 square kilometer) on-site engineered disposal facility. Long-term surveillance and maintenance activities at the site were officially transferred to the DOE Office of Legacy Management in 2003. The Weldon Spring Site is located within the St. Louis, Missouri, metropolitan area (population 3 million). DOE's close relationship with surrounding land owners created a need for innovative solutions to long-term surveillance and maintenance issues at the site. Through a Secretarial proclamation, a plan was established for development of a comprehensive public involvement and education program. This program would act as an institutional control to communicate the historical legacy of the site and would make information available about contamination present at the site to guide people in making decisions about appropriate site activities. In August 2002, the Weldon Spring Site Interpretive Center opened to the public with exhibits about the history of the area, the remediation work that was completed, and a site information repository that is available to visitors. In addition, the Hamburg Trail for hiking and biking was constructed as a joint DOE/MDC effort. The 8-mile trail travels through both DOE and MDC property; a series of historical markers posted along its length to communicate the history of the area and the remediation work that was done as part of WSSRAP activities. A ramp and viewing platform with informational plaques were constructed on the disposal cell to provide an additional mechanism for public education. With a basic marketing program, site visitor-ship has

  15. Public reactions to nuclear waste: Citizens' views of repository siting

    International Nuclear Information System (INIS)

    Rosa, E.A.

    1993-01-01

    This book presents revised and updated papers from a panel of social scientists, at the 1989 AAAS meetings, that examined the public's reactions to nuclear waste disposal and the repository siting process. The papers report the results of original empirical research on citizens' views of nuclear waste repository siting. Topics covered include the following: content analysis of public testimony; sources of public concern about nuclear waste disposal in Texas agricultural communities; local attitudes toward high-level waste repository at Hanford; perceived risk and attitudes toward nuclear wastes; attitudes of Nevada urban residents toward a nuclear waste repository; attitudes of rural community residents toward a nuclear waste respository. An introductory chapter provides background and context, and a concluding chapter summarizes the implications of the reports. Two additional chapters cover important features of high-level waste disposal: long term trends in public attitudes toward nuclear energy and nuclear waste policy and assessment of the effects on the Los Vegas convention business if a high-level nuclear waste depository were sited in Nevada

  16. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Wickline, Alfred

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action

  17. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  18. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    S. C. Khamankar

    2000-01-01

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated waste is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW

  19. On the home front: The cold war legacy of the Hanford nuclear site

    International Nuclear Information System (INIS)

    Stenehjem Gerber, M.

    1992-01-01

    The Hanford plutonium factory in Washington State is among the oldest and largest relics of the Cold War and is also among the dirtiest. In this book, the author states that the release of radiaoactive and toxic waste without public knowledge poses fundamental questions about American democracy. No conclusive answers to the problems at Hanford are presented, although the important questions are addressed. The reviewer feels the book may be of use as a reference catalog, within its context as a piece essentially concerned with public relations

  20. Forensic microanalysis of Manhattan Project legacy radioactive wastes in St. Louis, MO.

    Science.gov (United States)

    Kaltofen, Marco; Alvarez, Robert; Hixson, Lucas W

    2018-06-01

    Radioactive particulate matter (RPM) in St Louis, MO, area surface soils, house dusts and sediments was examined by scanning electron microscopy with energy dispersive X-ray analysis. Analyses found RPM containing 238 U and decay products (up to 46 wt%), and a distinct second form of RPM containing 230 Th and decay products (up to 15.6 wt%). The SEM-EDS analyses found similar RPM in Manhattan Project-era radioactive wastes and indoor dusts in surrounding homes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Artificial Reefs in Motion: Legacy of changes and degradation at the Redbird Reef Site

    Science.gov (United States)

    Trembanis, A. C.; DuVal, C.; Peter, B.

    2016-12-01

    Artificial reefs are used for a variety of purposes at sites throughout the U.S. and around the globe, yet little, if any, long-term monitoring has been conducted with the goal of understanding inter-annual changes to the emplaced structures. Throughout the U.S. Mid-Atlantic region, several programs utilized retired subway cars as disposal structures to form artificial reefs. One such site, known as site 11, or "Redbird Reef", is located off the coast of Delaware and was at one time home to 997 former NYC subway cars. Opportunistic sonar surveys at the site have been conducted between 2008 and 2016 providing one of the most extensive and repeated mapping studies for this type of reef. Previous studies conducted by our group at the site have focused on understanding wave orbital ripple dynamics and scour patterns. In this present study, we analyze the changes apparent at the site itself, focused on the storm-response dynamics of the subway cars. Results have shown that Superstorm Sandy in 2012 produced dramatic changes to the reef structures resulting in the total or partial destruction of eight subway cars within a small (.45 x .2km) portion of the reef site. Winter Storm Jonas in 2016 resulted in the destruction of fewer cars, but rotated a previously static 47m long Navy barge nearly 60 degrees. Once destroyed or collapsed by waves the subway cars go from providing positive structural relief and thus beneficial habitat above the surrounding seabed to being reduced to scattered low relief marine debris. A once popular consideration for reef material, the event and inter-annual decay of subway cars as observed at the Redbird reef provides both a stark indication of the power of storm dynamics on the inner-shelf and a cautionary tale with regards to the selection of seabed reef material.

  2. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  3. Characteristics of transuranic waste at Department of Energy sites

    International Nuclear Information System (INIS)

    Jensen, R.T.; Wilkinson, F.J. III.

    1983-05-01

    This document reports data and information on TRU waste from all DOE generating and storage sites. The geographical location of the sites is shown graphically. There are four major sections in this document. The first three cover the TRU waste groups known as Newly Generated, Stored, and Buried Wastes. Subsections are included under Newly Generated and Stored on contact-handled and remote-handled waste. These classifications of waste are defined, and the current or expected totals of each are given. Figure 1.3 shows the total amount of Buried and Stored TRU waste. Preparation of this document began in 1981, and most of the data are as of December 31, 1980. In a few cases data were reported to December 31, 1981, and these have been noted. The projections in the Newly Generated section were made, for the most part, at the end of 1981

  4. Waste treatment at the La Hague and Marcoule sites

    International Nuclear Information System (INIS)

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema's plants

  5. Waste treatment at the La Hague and Marcoule sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

  6. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  7. Hanford Site Solid Waste Landfill permit application. Revision 1

    International Nuclear Information System (INIS)

    1993-01-01

    Both nonhazardous and nonradioactive sanitary solid waste are generated at the Hanford Site. This permit application describes the manner in which the Solid Waste Landfill will be operated. A description is provided of the landfill, including applicable locational, general facility, and landfilling standards. The characteristics and quantity of the waste disposed of are discussed. The regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill are reviewed. A plan is included of operation, closure, and postclosure. This report addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill is discussed

  8. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  9. The C.L.E.A.N. program: Regulating legacy sites

    International Nuclear Information System (INIS)

    Stenson, R.E.; Clement, C.H.

    2002-01-01

    With the coming into force of the Canadian Nuclear Safety and Control Act (NSCA) on May 31, 2000 many sites, that were not subject to licensing under the previous Atomic Energy Control Act (AECA), now required regulatory review and possibly a licence to possess nuclear substances. To ensure consistency in approach, completeness in coverage, and compliance with internal procedures, the Contaminated Lands Evaluation and Assessment Network (CLEAN) program was developed. Over 200 contaminated lands sites required evaluation. Some of the issues and the interim recommendations to the Commission are discussed. (author)

  10. Intrusion scenarios in fusion waste disposal sites

    International Nuclear Information System (INIS)

    Zucchetti, M.; Zucchetti, M.; Rocco, P.

    1998-01-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  11. Intrusion scenarios in fusion waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, M. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Zucchetti, M.; Rocco, P. [Energetics Dept., Polytechnic of Turin (Italy)

    1998-07-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  12. Status of siting studies for a near surface repository site for radioactive wastes in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Palattao, M.V.B.; Marcelo, E.A.; Caseria, E.S.; Venida, L.L.; Cruz, J.M. dela

    2002-01-01

    The Philippines, through the Philippine Nuclear Research Institute (PNRI), decided to conduct a study on siting a low level radioactive waste disposal facility. The infrastructure set up for this purpose, the radioactive waste disposal concept, the overall siting process, the methodology applied and preliminary results obtained are described in this paper. (author)

  13. Macroencapsulated and elemental lead mixed waste sites report

    International Nuclear Information System (INIS)

    Kalia, A.; Jacobson, R.

    1996-09-01

    The purpose of this study was to compile a list of the Macroencapsulated (MACRO) and Elemental Lead (EL) Mixed Wastes sites that will be treated and require disposal at the Nevada Test Site within the next five to ten years. The five sites selected were: Hanford Site, Richland, Washington; Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho; Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee; Rocky Flats Environmental Technology (RF), Golden, Colorado; and Savannah River (SRS), Charleston, South Carolina. A summary of total lead mixed waste forms at the five selected DOE sites is described in Table E-1. This table provides a summary of total waste and grand total of the current inventory and five-year projected generation of lead mixed waste for each site. This report provides conclusions and recommendations for further investigations. The major conclusions are: (1) the quantity of lead mixed current inventory waste is 500.1 m 3 located at the INEL, and (2) the five sites contain several other waste types contaminated with mercury, organics, heavy metal solids, and mixed sludges

  14. The role of economic incentives in nuclear waste facility siting

    International Nuclear Information System (INIS)

    Davis, E.M.

    1986-01-01

    There is a need to provide some public benefit and/or reward for accepting a ''locally unwanted land use'' (LULU) facility such as a nuclear waste storage or disposal facility. This paper concludes that DOE, Congress and the states should immediately quantify an economic incentive for consideration ''up front'' by society on siting decisions for nuclear waste storage and disposal facilities

  15. Regulatory Support of Treatment of Savannah River Site Purex Waste

    International Nuclear Information System (INIS)

    Reid, L.T.

    2009-01-01

    This paper describes the support given by federal and state regulatory agencies to Savannah River Site (SRS) during the treatment of an organic liquid mixed waste from the Plutonium Extraction (Purex) process. The support from these agencies allowed (SRS) to overcome several technical and regulatory barriers and treat the Purex waste such that it met LDR treatment standards. (authors)

  16. Basic principles and criteria on radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Dlouhy, Z.; Kropikova, S.

    1980-01-01

    The basic principles are stated of radiation protection of the workers at radioactive waste disposal facilities, which must be observed in the choice of radioactive waste disposal sites. The emergency programme, the operating regulations and the safety report are specified. Workplace safety regulations are cited. (author)

  17. Description of the Northwest hazardous waste site data base and preliminary analysis of site characteristics

    International Nuclear Information System (INIS)

    Woodruff, D.L.; Hartz, K.E.; Triplett, M.B.

    1988-08-01

    The Northwest Hazardous Waste RD and D Center (the Center) conducts research, development, and demonstration (RD and D) activities for hazardous and radioactive mixed-waste technologies applicable to remediating sites in the states of Idaho, Montana, Oregon, and Washington. To properly set priorities for these RD and D activities and to target development efforts it is necessary to understand the nature of the sites requiring remediation. A data base of hazardous waste site characteristics has been constructed to facilitate this analysis. The data base used data from EPA's Region X Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) and from Preliminary Assessment/Site Investigation (PA/SI) forms for sites in Montana. The Center's data base focuses on two sets of sites--those on the National Priorities List (NPL) and other sites that are denoted as ''active'' CERCLIS sites. Active CERCLIS sites are those sites that are undergoing active investigation and analysis. The data base contains information for each site covering site identification and location, type of industry associated with the site, waste categories present (e.g., heavy metals, pesticides, etc.), methods of disposal (e.g., tanks, drums, land, etc.), waste forms (e.g., liquid, solid, etc.), and hazard targets (e.g., surface water, groundwater, etc.). As part of this analysis, the Northwest region was divided into three geographic subregions to identify differences in disposal site characteristics within the Northwest. 2 refs., 18 figs., 5 tabs

  18. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    1994-05-01

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option

  19. Overview of radium legacies in Belgium - 59367

    International Nuclear Information System (INIS)

    Dehandschutter, B.; Jadoul, L.; Mannaerts, K.; Pepin, S.; Poffijn, A.; Blommaert, W.; Sonck, M.

    2012-01-01

    The Belgian metallurgical company, Union Miniere, has been a key-player in the sector of radium production between 1922 and 1969. The factory based in Olen has extracted radium from minerals and produced radium sources during that period. The radium production facilities have been dismantled in the 70's but legacies of the former production have still to be remediated. An overview of these legacies and of their radiological characteristics will be given. Next to the sites related to radium production, other radium legacies are related to NORM industries, essentially from the phosphate sector (phosphogypsum and CaF 2 stacks). The issue of radium legacies in Belgium encompasses a variety of concrete situations. Next to the issue of the legacies of the former radium production, the other radium contaminated sites are related to current or former NORM industries, especially from the phosphate sector. The methodological and regulatory approaches towards these sites have been described elsewhere in these proceedings. The outcome differs according to the specificities of the site: it will not be the same for the legacies of former radium production where the inventory of radioactivity includes materials which have to be considered and treated as radioactive waste (for example, disused radium sources) than for phosphogypsum stacks where a sufficient level of protection may be brought by relatively simple measures such as restrictions on the use of the site. For these sites, like PG stacks, where radon is the most important exposure pathway in case of intrusion scenario, regulatory measures similar to the ones applied to 'radon-prone areas' (restrictions in the construction of buildings, compulsory radon monitoring in workplaces present on the site,...) may be implemented. In all cases, the radiological risk-assessment will be crucial for the decision-making process. The examples given showed that the probability of occurrence of 'intrusion scenario' (like construction of

  20. Integrated Weed Control for Land Stewardship at Legacy Management's Rocky Flats Site in Colorado - 13086

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Jody K. [Stoller LMS Team, Contractor to the U.S. Department of Energy Office of Legacy Management, 11025 Dover Street, Suite 1000, Westminster, Colorado 80021 (United States)

    2013-07-01

    Land stewardship is one of nine sustainability programs in the U.S. Department of Energy's Environmental Management System. Land stewardship includes maintaining and improving ecosystem health. At the Rocky Flats Site near Westminster, Colorado, land stewardship is an integral component of the Office of Legacy Management's post-closure monitoring and management at the site. Nearly 263 hectares (650 acres) were disturbed and re-vegetated during site cleanup and closure operations. Proactive management of revegetation areas is critical to the successful reestablishment of native grasslands, wetlands, and riparian communities. The undisturbed native plant communities that occur at the site also require active management to maintain the high-quality wetlands and other habitats that are home to numerous species of birds and other wildlife such as elk and deer, rare plant communities, and the federally listed threatened Preble's meadow jumping mouse. Over the past several decades, an increase of Noxious weeds has impacted much of Colorado's Front Range. As a result, weed control is a key component of the land stewardship program at Rocky Flats. Thirty-three species of state-listed Noxious weeds are known to occur in the Central and Peripheral Operable Units at Rocky Flats, along with another five species that are considered invasive at the site. Early detection and rapid response to control new invasive species is crucial to the program. An integrated weed control/vegetation management approach is key to maintaining healthy, sustainable plant communities that are able to resist Noxious weed invasions. Weed mapping, field surveys, and field-staff training sessions (to learn how to identify new potential problem species) are conducted to help detect and prevent new weed problems. The integrated approach at Rocky Flats includes administrative and cultural techniques (prevention), mechanical controls, biological controls, and chemical controls. Several

  1. Safety assessment for Area 5 radioactive-waste-management site

    International Nuclear Information System (INIS)

    Hunter, P.H.; Card, D.H.; Horton, K.

    1982-09-01

    The Area 5 Radioactive Waste Management Safety Assessment Document contains evaluations of site characteristics, facilities, and operating practices that contribute to the safe handling, storage, and disposal of low-level radioactive wastes at the Nevada Test Site. Physical geography, cultural factors, climate and meteorology, geology, hydrology (with emphasis on radionuclide migration), ecology, natural phenomena, and natural resources are discussed and determined to be suitable for effective containment of radionuclides. A separate section considers facilities and operating practices such as monitoring, storage/disposal criteria, site maintenance, equipment, and support. The section also considers the transportation and waste handling requirements supporting the new Greater Confinement Disposal Facility (GCDF), GCDF demonstration project, and other requirements for the safe handling, storage, and disposal of low-level radioactive wastes. Finally, the document provides an analysis of releases and an assessment of the near-term operational impacts and dose commitments to operating personnel and the general public from normal operations and anticipated accidental occurrences. The conclusion of this report is that the Area 5 Radioactive Waste Management Site is suitable for low-level radioactive waste handling, storage, and disposal. Also, the new GCDF demonstration project will not affect the overall safety of the Area 5 Radioactive Waste Management Site

  2. A Bayesian sampling strategy for hazardous waste site characterization

    International Nuclear Information System (INIS)

    Skalski, J.R.

    1987-12-01

    Prior knowledge based on historical records or physical evidence often suggests the existence of a hazardous waste site. Initial surveys may provide additional or even conflicting evidence of site contamination. This article presents a Bayes sampling strategy that allocates sampling at a site using this prior knowledge. This sampling strategy minimizes the environmental risks of missing chemical or radionuclide hot spots at a waste site. The environmental risk is shown to be proportional to the size of the undetected hot spot or inversely proportional to the probability of hot spot detection. 12 refs., 2 figs

  3. Intruder scenarios for site-specific waste classification

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1988-01-01

    The US Department of Energy (DOE) is currently revising its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities that support defense missions. Specifically, draft DOE 5820.2A, Chapter 3, describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for DOE LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The requirements and guidelines apply to radioactive wastes but are also intended to apply to mixed hazardous and radioactive wastes as defined in draft DOE 5400.5, Hazardous and Radioactive Mixed Waste. The basic approach used by DOE is to establish overall performance objectives in terms of ground-water protection and public radiation dose limits and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site shall develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment shall also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls must be conducted. This paper describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment

  4. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of “hot” particles

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Adam, E-mail: a.l.varley@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Tyler, Andrew, E-mail: a.n.tyler@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Smith, Leslie, E-mail: l.s.smith@cs.stir.ac.uk [Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA (United Kingdom); Dale, Paul, E-mail: paul.dale@sepa.org.uk [Scottish Environmental Protection Agency, Radioactive Substances, Strathallan House, Castle Business Park, Stirling FK9 4TZ (United Kingdom); Davies, Mike, E-mail: Mike.Davies@nuvia.co.uk [Nuvia Limited, The Library, Eight Street, Harwell Oxford, Didcot, Oxfordshire OX11 0RL (United Kingdom)

    2015-07-15

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10 cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. - Highlights: • Land contaminated with radium is hazardous to human health. • Routine monitoring permits identification and removal of radioactive hot particles. • Current alarm algorithms do not provide reliable hot particle detection. • Spectral processing using Machine Learning significantly improves detection.

  5. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of “hot” particles

    International Nuclear Information System (INIS)

    Varley, Adam; Tyler, Andrew; Smith, Leslie; Dale, Paul; Davies, Mike

    2015-01-01

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10 cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. - Highlights: • Land contaminated with radium is hazardous to human health. • Routine monitoring permits identification and removal of radioactive hot particles. • Current alarm algorithms do not provide reliable hot particle detection. • Spectral processing using Machine Learning significantly improves detection

  6. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  7. Hazard ranking systems for chemical wastes and chemical waste sites

    International Nuclear Information System (INIS)

    Waters, R.D.; Parker, F.L.; Crutcher, M.R.

    1991-01-01

    Hazardous materials and substances have always existed in the environment. Mankind has evolved to live with some degree of exposure to toxic materials. Until recently the risk has been from natural toxins or natural background radiation. While rapid technological advances over the past few decades have improved the lifestyle of our society, they have also dramatically increased the availability, volume and types of synthetic and natural hazardous materials. Many of their effects are as yet uncertain. Products and manufacturing by-products that no longer serve a useful purpose are deemed wastes. For some waste products land disposal will always be their ultimate fate. Hazardous substances are often included in the waste products. One needs to classify wastes by degree of hazard (risk). Risk (degree of probability of loss) is usually defined for risk assessment as probability of an occurrence times the consequences of the occurrence. Perhaps even more important than the definition of risk is the choice of a risk management strategy. The choice of strategy will be strongly influenced by the decision criteria used. Those decision criteria could be utility (the greatest happiness of the greatest number), rights or technology based or some combination of the three. It is necessary to make such choices about the definition of risks and criteria for management. It is clear that these are social (i.e., political) and value choices and science has little to say on this matter. This is another example of what Alvin Weinberg has named Transcience where the subject matter is scientific and technical but the choices are social, political and moral. This paper shall deal only with the scientific and technical aspects of the hazardous waste problem to create a hazardous substances classification system

  8. Evaluation of Story Maps to Enhance Public Engagement and Communication at Legacy Management Sites – 17334

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Darina [U.S. Department of Energy, Office of Legacy Management; Carpenter, Cliff [U.S. Department of Energy, Office of Legacy Management; Linard, Joshua [U.S. Department of Energy, Office of Legacy Management; Picel, Mary [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-05

    Story Maps are being used in both public and private sectors to convey information to stakeholders, create enterprise platforms, and assist in decision making. Story Maps are web applications that combine maps, narrative text, images, and multimedia content to provide information. These applications provide a user-friendly platform to share the remarkable history of our sites, the complexity of their contamination and remediation, successes we achieve in our LTS&M activities, and even the challenges we face as we aim to fulfill our mission.

  9. Summary of tank waste physical properties at the Hanford Site

    International Nuclear Information System (INIS)

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed

  10. Physical sampling for site and waste characterization

    International Nuclear Information System (INIS)

    Bonnough, T.L.

    1996-01-01

    Physical sampling plays a basic role in high-level radioactive waste management program effort. The term ''physical sampling'' used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ''physical sampling'' broadly to include measurements of physical conditions such as temperature, wind conditions, and pH, which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measurements of physical conditions taken in association with sample collecting. Therefore, the when and how to take samples is needed to be known and planned

  11. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  12. Remaining Sites Verification Package for the 600-233 Waste Site, Vertical Pipe Near 100-B Electrical Laydown Area. Attachment to Waste Site Reclassification Form 2005-041

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2005-01-01

    The 600-233 waste site consisted of three small-diameter pipelines within the 600-232 waste site, including previously unknown diesel fuel supply lines discovered during site remediation. The 600-233 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  13. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  14. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  15. Low-Level Radioactive Waste siting simulation information package

    International Nuclear Information System (INIS)

    1985-12-01

    The Department of Energy's National Low-Level Radioactive Waste Management Program has developed a simulation exercise designed to facilitate the process of siting and licensing disposal facilities for low-level radioactive waste. The siting simulation can be conducted at a workshop or conference, can involve 14-70 participants (or more), and requires approximately eight hours to complete. The exercise is available for use by states, regional compacts, or other organizations for use as part of the planning process for low-level waste disposal facilities. This information package describes the development, content, and use of the Low-Level Radioactive Waste Siting Simulation. Information is provided on how to organize a workshop for conducting the simulation. 1 ref., 1 fig

  16. Identification of potential transuranic waste tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Colburn, R.P.

    1995-05-05

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

  17. Identification of potential transuranic waste tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1995-01-01

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document

  18. Modular risk analysis for assessing multiple waste sites

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Nazarali, A.

    1994-06-01

    Human-health impacts, especially to the surrounding public, are extremely difficult to assess at installations that contain multiple waste sites and a variety of mixed-waste constituents (e.g., organic, inorganic, and radioactive). These assessments must address different constituents, multiple waste sites, multiple release patterns, different transport pathways (i.e., groundwater, surface water, air, and overland soil), different receptor types and locations, various times of interest, population distributions, land-use patterns, baseline assessments, a variety of exposure scenarios, etc. Although the process is complex, two of the most important difficulties to overcome are associated with (1) establishing an approach that allows for modifying the source term, transport, or exposure component as an individual module without having to re-evaluate the entire installation-wide assessment (i.e., all modules simultaneously), and (2) displaying and communicating the results in an understandable and useable maimer to interested parties. An integrated, physics-based, compartmentalized approach, which is coupled to a Geographical Information System (GIS), captures the regional health impacts associated with multiple waste sites (e.g., hundreds to thousands of waste sites) at locations within and surrounding the installation. Utilizing a modular/GIS-based approach overcomes difficulties in (1) analyzing a wide variety of scenarios for multiple waste sites, and (2) communicating results from a complex human-health-impact analysis by capturing the essence of the assessment in a relatively elegant manner, so the meaning of the results can be quickly conveyed to all who review them

  19. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    International Nuclear Information System (INIS)

    Feo, Giovanni De; Gisi, Sabino De

    2014-01-01

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method

  20. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Feo, Giovanni De, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA (Italy); Gisi, Sabino De [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Water Resource Management Lab., via Martiri di Monte Sole 4, 40129 Bologna, BO (Italy)

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  1. An investigation of the suitability of the Chalk River site to host a geologic waste management facility for CRL's low and intermediate level wastes

    International Nuclear Information System (INIS)

    Thompson, P.; Baumgartner, P.; Chan, T.; Kitson, C.; Kozak, E.; Man, A.; Martino, J.; Stroes-Gascoyne, S.; Beaton, D.; Sharp, K.; Thivierge, R.

    2011-01-01

    Atomic Energy of Canada Limited (AECL) is investigating the suitability of the Chalk River Laboratories (CRL) site for hosting a Geologic Waste Management Facility (GWMF) as part of the Nuclear Legacy Liabilities Program (NLLP) funded through Natural Resources Canada (NRCan). The GWMF is envisioned to be an underground engineered-geological repository consisting of shafts, access tunnels and emplacement caverns located at a nominal depth of 500 to 1000 m in the bedrock at the CRL site. A 5-year-long pre-project study was started in 2006 to assess the feasibility of the bedrock at the CRL site to host a GWMF. The pre-project feasibility study began with a review of various previous geological investigations performed in the bedrock at the CRL site. The 2006-2010 pre-project feasibility study involved exploring the geoscience and engineering characteristics of the bedrock to depths of over one kilometre at the CRL site through surface investigations and the drilling and testing of seven new deep characterization boreholes into the CRL bedrock. The collected information and interpretations were used to construct three-dimensional (3D) deterministic computer models of the geology of the bedrock at the CRL site and surrounding area and of the associated groundwater-flow regime. In order to technically assess the suitability of the CRL site, the GWMF feasibility study has conservatively assumed that all of the legacy and forecast Low and Intermediate Level Waste (LILW) at CRL would report to it. The 3D deterministic models were used within a preliminary performance and safety assessment model to assess the long-term safety of a hypothetical GWMF at the CRL site on the basis of future radionuclide and toxic substance releases. Other items important to a preliminary performance and safety assessment include an inventory of CRL's radioactive wastes and other contaminants that could be placed in the GWMF, the creation of the engineered waste emplacement rooms and

  2. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION and PLANNING FOR REVRIEVAL TREATMENT and EVENTUAL DISPOSAL AT WIPP

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-01

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP)

  3. Cleanup Verification Package for the 600-47 Waste Site

    International Nuclear Information System (INIS)

    Cutlip, M.J.

    2005-01-01

    This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris

  4. In situ vitrification of buried waste sites

    International Nuclear Information System (INIS)

    Shade, J.W.; Thompson, L.E.; Kindle, C.H.

    1991-04-01

    In situ vitrification (ISV) is a remedial technology initially developed to treat soils contaminated with a variety of organics, heavy metals, and/or radioactive materials. Recent tests have indicated the feasibility of applying the process to buried wastes including containers, combustibles, and buried metals. In addition, ISV is being considered for application to the emplacement of barriers and to the vitrification of underground tanks. This report provides a review of some of the recent experiences of applying ISV in engineering-scale and pilot-scale tests to wastes containing organics, the Environmental Protection Agency (EPA) Toxic metals buried in sealed containers, and buried ferrous metals, with emphasis on the characteristics of the vitrified product and adjacent soil. 9 refs., 2 figs., 3 tabs

  5. Plutonium in wildlife and soils at the Maralinga legacy site: persistence over decadal time scales

    International Nuclear Information System (INIS)

    Johansen, M.P.; Child, D.P.; Davis, E.; Doering, C.; Harrison, J.J.; Hotchkis, M.A.C.; Payne, T.E.; Thiruvoth, S.; Twining, J.R.; Wood, M.D.

    2014-01-01

    The mobility of plutonium (Pu) in soils, and its uptake into a range of wildlife, were examined using recent and ∼25 year old data from the Taranaki area of the former Maralinga weapons test site, Australia. Since its initial deposition in the early 1960s, the dispersed Pu has been incorporated into the soil profile and food chain through natural processes, allowing for the study of Pu sequestration and dynamics in relatively undisturbed semi-arid conditions. The data indicate downward mobility of Pu in soil at rates of ∼0.2–0.3 cm per year for the most mobile fraction. As a result, while all of the Pu was initially deposited on the ground surface, approximately 93% and 62% remained in the top 0–2 cm depth after 25- and 50-years respectively. No large-scale lateral spreading of the Taranaki plume was observed. Pu activity concentrations in 0–1 cm soils with biotic crusts were not elevated when compared with nearby bare soils, although a small number of individual data suggest retention of Pu-containing particles may be occurring in some biotic crusts. Soil-to-animal transfer, as measured by concentration ratios (CR wo-soil ), was 4.1E−04 (Geometric Mean (GM)) in mammals, which aligns well with those from similar species and conditions (such as the Nevada Test Site, US), but are lower than the GM of the international mammal data reported in the Wildlife Transfer Database (WTD). These lower values are likely due to the presence of a low-soluble, particulate form of the Pu in Maralinga soils. Arthropod concentration ratios (3.1E−03 GM), were similar to those from Rocky Flats, US, while values for reptiles (2.0E−02 GM) were higher than the WTD GM value which was dominated by data from Chernobyl. Comparison of uptake data spanning approximately 30 years indicates no decrease over time for mammals, and a potential increase for reptiles. The results confirm the persistence of bioavailable Pu after more than 50 years since deposition, and also the presence

  6. Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site

    International Nuclear Information System (INIS)

    Millsap, William J.; Brush, Daniel J.

    2013-01-01

    This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using 'background makers'; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra

  7. Radiological Assessment for the Removal of Legacy BPA Power Lines that Cross the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Millsap, William J.; Brush, Daniel J.

    2013-11-13

    This paper discusses some radiological field monitoring and assessment methods used to assess the components of an old electrical power transmission line that ran across the Hanford Site between the production reactors area (100 Area) and the chemical processing area (200 Area). This task was complicated by the presence of radon daughters -- both beta and alpha emitters -- residing on the surfaces, particularly on the surfaces of weathered metals and metals that had been electrically-charged. In many cases, these activities were high compared to the DOE Surface Contamination Guidelines, which were used as guides for the assessment. These methods included the use of the Toulmin model of argument, represented using Toulmin diagrams, to represent the combined force of several strands of evidences, rather than a single measurement of activity, to demonstrate beyond a reasonable doubt that no or very little Hanford activity was present and mixed with the natural activity. A number of forms of evidence were used: the overall chance of Hanford contamination; measurements of removable activity, beta and alpha; 1-minute scaler counts of total surface activity, beta and alpha, using "background makers"; the beta activity to alpha activity ratios; measured contamination on nearby components; NaI gamma spectral measurements to compare uncontaminated and potentially-contaminated spectra, as well as measurements for the sentinel radionuclides, Am- 241 and Cs-137 on conducting wire; comparative statistical analyses; and in-situ measurements of alpha spectra on conducting wire showing that the alpha activity was natural Po-210, as well as to compare uncontaminated and potentially-contaminated spectra.

  8. Regulatory requirements for groundwater monitoring networks at hazardous waste sites

    International Nuclear Information System (INIS)

    Keller, J.F.

    1989-10-01

    In the absence of an explicit national mandate to protect groundwater quality, operators of active and inactive hazardous waste sites must use a number of statutes and regulations as guidance for detecting, correcting, and preventing groundwater contamination. The objective of this paper is to provide a framework of the technical and regulatory considerations that are important to the development of groundwater monitoring programs at hazardous waste sites. The technical site-specific needs and regulatory considerations, including existing groundwater standards and classifications, will be presented. 14 refs., 2 tabs

  9. Hanford Site Composite Analysis Technical Approach Description: Radionuclide Inventory and Waste Site Selection Process.

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Will E.; Mehta, Sunil

    2017-09-13

    The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.

  10. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD, R.A.

    2006-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met

  11. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    Science.gov (United States)

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  13. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  14. Microbial effects on radioactive wastes at SLB sites

    International Nuclear Information System (INIS)

    Colombo, P.

    1982-01-01

    The objectives of this study are to determine the significance of microbial degradation of organic wastes on radionuclide migration on shallow land burial for humid and arid sites, establish which mechanisms predominate and ascertain the conditions under which these mechanisms operate. Factors contolling gaseous eminations from low-level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide and possibly hydrogen from the site stems from the inclusion of tritium and/or 14 C into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste materials, primary emphasis of the study involved on examination of the biochemical pathways producing methane, carbon dioxide and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Although the methane and carbon dioxide production rate indicates the degradation rate of the organic substances in the waste, it does not predict the methane evolution rate from the trench site. Methane fluxes from the soil surface are equivalent to the net synthesis minus the quantity oxidized by the microbial community as the gas passes through the soil profile. Gas studies were performed at three commercial low-level radioactive waste disposal sites (West Valley, New York; Beatty, Nevada; Maxey Flats, Kentucky) during the period 1976 to 1978. The results of these studies are presented. 3 tables

  15. Mathematical model of the Savannah River Site waste tank farm

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1991-01-01

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers

  16. Land suitability maps for waste disposal siting

    International Nuclear Information System (INIS)

    Hrasna, M.

    1996-01-01

    The suitability of geoenvironment for waste disposal depends mainly on its stability and on the danger of groundwater pollution. Besides them, on the land suitability maps for the given purpose also those factors of the factors of the geoenvironment and the landscape should be taken into account, which enable another way of the land use, such as mineral resources, water resources, fertile soils, nature reserves, etc. On the base of the relevant factors influence evaluation - suitable, moderately suitable and unsuitable territorial units are delimited on the maps. The different way of various scale maps compilation is applied, taken into account their different representing feasibilities. (authors)

  17. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities

  18. Delegated Democracy. The Siting of Swedish Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Hanna Sofia (Stockholm Univ., SCORE, SE-106 91 Stockholm (Sweden))

    2009-12-15

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  19. Conflict resolution in low-level waste facility siting

    International Nuclear Information System (INIS)

    English, M.R.

    1989-01-01

    Siting a low-level waste facility is only one part of the low-level waste management process. But it is a crucial part, a prism that focuses many of the other issues in low-level waste management. And, as the 1990 and 1992 milestones approach, siting has a urgency that makes the use of alternative dispute resolution (ADR) techniques especially appropriate, to avoid protracted and expensive litigation and to reach creative and durable solutions. Drawing upon literature in the ADR field, this paper discusses ADR techniques as they apply to low-level waste management and the groundwork that must be laid before they can be applied. It also discusses questions that can arise concerning the terms under which negotiations are carried out. The paper then give suggestions for achieving win/win negotiations. Potential objections to negotiated agreements and potential answers to those objections are reviewed, and some requisites for negotiation are given

  20. Delegated Democracy. The Siting of Swedish Nuclear Waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2009-12-01

    This paper aims to characterise Swedish democracy in connection with the disposal of Swedish nuclear waste. To this end, an analysis is performed to discern which democratic ideals that can be found within the nuclear waste issue. The study analyses various actors' views on democracy and expertise as well as their definitions of the nuclear waste issue, and discusses this from the perspective of democracy theory. Which definitions that become influential has democratic implications. In addition, various actors' possible attempts to help or hinder other actors from gaining influence over the nuclear waste issue in the four municipalities are studied. In connection with the case studies the aim of the paper can be narrowed to comprise the following questions: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? Which democratic ideals were influential during the feasibility studies and in the consultation process?

  1. On-site vs off-site management of environmental restoration waste: A cost effectiveness analysis

    International Nuclear Information System (INIS)

    Morse, M.A.; Aamodt, P.L.; Cox, W.B.

    1996-01-01

    The Sandia National Laboratories Environmental Restoration Project is expected to generate relatively large volumes of hazardous waste as a result of cleanup operations. These volumes will exceed the Laboratories existing waste management capacity. This paper presents four options for managing remediation wastes, including three alternatives for on-site waste management utilizing a corrective action management unit (CAMU). Costs are estimated for each of the four options based on current volumetric estimates of hazardous waste. Cost equations are derived for each of the options with the variables being waste volumes, the major unknowns in the analysis. These equations provide a means to update cost estimates as volume estimates change. This approach may be helpful to others facing similar waste management decisions

  2. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  3. Assessment of mixed hazardous and radioactive waste sites at Hanford

    International Nuclear Information System (INIS)

    McLaughlin, T.J.; Cramer, K.H.; Lamar, D.A.; Sherwood, D.R.; Stenner, R.D.; Schulze, W.B.

    1987-10-01

    The US Department of Energy and Pacific Northwest Laboratory recently completed a preliminary assessment of 685 inactive hazardous waste sites located on the Hanford Site. The preliminary assessment involved collecting historical data and individual site information, conducting site inspections, and establishing an environmental impact priority, using the Hazard Ranking System, for each of these 685 sites. This preliminary assessment was the first step in the remediation process required by the Comprehensive Environmental Response, Compensation and Liability Act. This paper presents the results of that preliminary assessment. 10 refs., 4 figs., 1 tab

  4. Remaining Sites Verification Package for the 128-B-3 Burn Pit Site, Waste Site Reclassification Form 2006-058

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2006-11-17

    The 128-B-3 waste site is a former burn and disposal site for the 100-B/C Area, located adjacent to the Columbia River. The 128-B-3 waste site has been remediated to meet the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results of sampling at upland areas of the site also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  5. Savannah River Site waste management. Final environmental impact statement - addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economics, and the health and safety of onsite workers and the public are included in the assessment

  6. Savannah River Site Waste Management Final Environmental Impact Statement Addendum

    International Nuclear Information System (INIS)

    1995-07-01

    The purpose of this environmental impact statement is to help DOE decide how to manage over the next 30 years liquid high-level radioactive, low-level radioactive, mixed, hazardous, and transuranic wastes generated during 40 years of past operations and on-going activities (including management of wastes received from offsite) at Savannah River Site (SRS) in southwestern South Carolina. The wastes are currently stored at SRS. DOE seeks to dispose of the wastes in a cost-effective manner that protects human health and the environment. In this document, DOE assesses the cumulative environmental impacts of storing, treating, and disposing of the wastes, examines the impacts of alternatives, and identifies measures available to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socio-economic, and the health and safety of onsite workers and the public are included in the assessment

  7. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  8. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  9. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste. The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B permit application, pertinent DOE guidelines governing waste acceptance criteria and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with ALARA precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  10. Mixed waste characterization and certification at the Nevada Test Site

    International Nuclear Information System (INIS)

    Kawamura, T.A.; Dodge, R.L.; Fitzsimmons, P.K.

    1988-01-01

    The Radioactive Waste Management Project (RWMP) at the Nevada Test Site (NTS) was recently granted interim status by the state of Nevada to receive mixed waste (MW). The RCRA Part B permit application has been revised and submitted to the state. Preliminary indications are that the permit will be granted. In conjunction with revision of the Part B Permit application, pertinent DOE guidelines governing waste acceptance criteria (WAC) and waste characterization were also revised. The guidelines balance the need for full characterization of hazardous constituents with as low as reasonably achievable (ALARA) precepts. Because it is not always feasible to obtain a full chemical analysis without undue or unnecessary radiological exposure of personnel, process knowledge is considered an acceptable method of waste characterization. A balance of administrative controls and verification procedures, as well as careful documentation and high standards of quality assurance, are essential to the characterization and certification program developed for the NTS

  11. Radioactive waste will be stored at desolate Cape site

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    High, intermediate and low-level radioactive waste will be stored at the Vaalputs nuclear waste dump site near Springbok. This area is sparsely populated, there are no mineral deposits of any value, the agricultural potential is minimal. It is a typical semi-desert area. Geologically it lends itself towards the ground-storage of used nuclear fuel, because of the remote possibility of earthquakes

  12. Management of radioactive wastes at power reactor sites in India

    International Nuclear Information System (INIS)

    Amalraj, R.V.; Balu, K.

    Indian nuclear power programme, at the present stage, is based on natural uranium fuelled heavy water moderated CANDU type reactors except for the first nuclear power station consisting of two units of enriched uranium fuelled, light water moderated, BWR type of reactors. Some of the salient aspects of radioactive waste management at power reactor sites in India are discussed. Brief reviews are presented on treatment of wastes, their disposal and environmental aspects. Indian experience in power reactor waste management is also summarised identifying some of the areas needing further work. (auth.)

  13. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  14. Legacy question

    International Nuclear Information System (INIS)

    Healy, J.W.

    1977-01-01

    The legacy question discussed refers to the definition of appropriate actions in this generation to provide a world that will allow future generations to use the earth without excessive limitations caused by our use and disposal of potentially hazardous materials

  15. Detecting hot spots at hazardous-waste sites

    International Nuclear Information System (INIS)

    Zirschky, J.; Gilbert, R.O.

    1984-01-01

    Evaluating the need for remedial cleanup at a waste site involves both finding the average contaminant concentration and identifying highly contaminated areas, or hot spots. A nomographic procedure to determine the sample configuration needed to locate a hot spot is presented. The technique can be used to develop a waste-site sampling plant - to determine either the grid spacing required to detect a hot spot at a given level of confidence, or the probability of finding a hot spot of a certain size, given a particular grid spacing. The method and computer program (ELIPGRID) were developed for locating geologic deposits, but the basic procedure can also be used to detect hot spots at chemical- or nuclear-waste disposal sites. Nomographs based on the original program are presented for three sampling-grid configurations - square, rectangular and triangular

  16. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  17. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  18. Application of neural networks to waste site screening

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Garrett, M.; Kraft, T.; Hilton, J.; VanHammersveld, M.

    1993-02-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach consists primarily of drilling boreholes near contaminated sites and chemically analyzing the extracted physical samples and processing the data. This is expensive and time consuming. The feasibility of using neural network techniques to reduce the cost of waste site screening was investigated. Two neural network techniques, gradient descent back propagation and fully recurrent back propagation were utilized. The networks were trained with data received from Westinghouse Hanford Corporation. The results indicate that the network trained with the fully recurrent technique shows satisfactory generalization capability. The predicted results are close to the results obtained from a mathematical flow prediction model. It is possible to develop a new tool to predict the waste plume, thus substantially reducing the number of the bore sites and samplings. There are a variety of applications for this technique in environmental site screening and remediation. One of the obvious applications would be for optimum well siting. A neural network trained from the existing sampling data could be utilized to decide where would be the best position for the next bore site. Other applications are discussed in the report

  19. Characterization of radionuclude behavior in low-level waste sites

    International Nuclear Information System (INIS)

    Toste, A.P.; Kirby, L.J.; Robertson, D.E.; Abel, K.H.; Perkins, R.W.

    1982-10-01

    Our laboratory is investigating the subsurface migration of radionuclides in groundwater at the Maxey Flats, Kentucky, shallow land-burial site and at a low-level aqueous waste disposal facility. At Maxey Flats, radionuclide and tracer data indicate groundwater communication between a waste trench and an adjacent experimental study area. Areal distributions of radionuclides in surface soil confirm that contamination at Maxey Flats has been largely contained on site. Of the radionuclides detected in the surface soil, only 3 H and 60 Co concentrations appear to be derived from waste. Plutonium exists in the anoxic subsurface waters at Maxey Flats as a reduced, anionic complex; some of the plutonium appears to be complexed with EDTA, whereas organic acids seem to be associated with 137 Cs and 90 Sr. At the aqueous waste disposal site, 3 H and mainly anionic species of certain radionuclides, including 60 Co, 106 Ru, 99 Tc, 131 I, and traces of 238 239 240 Pu, appear to migrate from a trench through soil adjacent to the trench. Radionuclides in the particulate and cationic forms appear to be efficiently retained by the soil. In general, observations indicate that the physicochemical form of the radionuclides mediates their subsurface migration in groundwater at both waste disposal sites

  20. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was

  1. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed

  2. Site selection handbook: Workshop on site selection for low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1987-10-01

    The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) requires the Department of Energy (DOE) to provide technical assistance to ''...those compact regions, host States and nonmember States determined by the Secretary to require assistance.'' Technical assistance has been defined to include, but not be limited to, ''technical guidelines for site selection.'' This site selection workshop was developed to assist States and Compacts in developing new low-level radioactive waste (LLW) disposal sites in accordance with the requirements of the LLRWPAA. The workshop comprises a series of lectures, discussion topics, and exercises, supported by this Site Selection Workshop Handbook, designed to examine various aspects of a comprehensive site selection program. It is not an exhaustive treatment of all aspects of site selection, nor is it prescriptive. The workshop focuses on the major elements of site selection and the tools that can be used to implement the site selection program

  3. The Hanford Site Tank Waste Remediation System: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-01

    The U.S. Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m 3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have 137 Cs accumulated in 177 tanks. In addition, significant amounts of 90 Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  4. Protective barrier systems for final disposal of Hanford Waste Sites

    International Nuclear Information System (INIS)

    Phillips, S.J.; Hartley, J.N.

    1986-01-01

    A protecting barrier system is being developed for potential application in the final disposal of defense wastes at the Hanford Site. The functional requirements for the protective barrier are control of water infiltration, wind erosion, and plant and animal intrusion into the waste zone. The barrier must also be able to function without maintenance for the required time period (up to 10,000 yr). This paper summarizes the progress made and future plans in this effort to design and test protective barriers at the Hanford Site

  5. Site characterization data for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic conditions in SWSA-6 for use in further studies related to assessing compliance with 5820.2. Burial operations in SWSA-6 began in 1969 on a limited scale, and full operation was initiated in 1973. Since that time, ca. 29,100 m 3 of low-level waste containing ca. 251,000 Ci of activity has been buried in SWSA-6. No transuranic waste has been disposed of in SWSA-6; rather this waste is retrievably stored in SWSA-5. Estimates of the remaining usable space in SWSA-6 vary; however, in 1982 sufficient useful land was reported for about 10 more years of operation. Analysis of the information available on SWSA-6 indicates that more information is required to evaluate the surface water hydrology, the geology at depths below the burial trenches, and the nature and extent of soils within the site. Also, a monitoring network will be required to allow detection of potential contaminant movement in groundwater. Although these are the most obvious needs, a number of specific measurements must be made to evaluate the spatial heterogeneity of the site and to provide background information for geohydrological modeling. Some indication of the nature of these measurements is included

  6. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.; Williams, R.G.

    1985-01-01

    The siting of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publically controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Despite available technologies and physical science capabilities, the effective siting of facilitites stands more as a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have largely failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. This paper proposes that the siting of hazardous waste facilities could well take advantage of two rich but somewhat disparate research histories in the social sciences. A convergent and integrated approach would result from the successful blending of social impact assessment, which seeks to define and mitigate problems, with an approach used in hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. It is proposed in this paper that the integration of these two approaches is necessary for arriving at more readily acceptable solutions to siting hazardous waste facilities. This paper illustrates how this integration of approaches could be implemented

  7. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  8. The complex challenge of repairing the gantry steelwork on the first generation magnox storage pond at Sellafield: Legacy Waste Storage, First Generation Magnox Storage Pond - 59133

    International Nuclear Information System (INIS)

    Richardson, Ian E.

    2012-01-01

    This paper puts into context the challenges that were faced when repairing the Gantry Steelwork of the First Generation Magnox Storage Pond (FGMSP). The First Generation Magnox Fuel Storage Pond (FGMSP) provided fuel storage and de-canning capability from the early 1960's until 1986. A significant programme of work has been underway since the completion of operational activities to support the programmes strategic intent of retrieving and storing all legacy wastes, and remediating the structure of the plant to support decommissioning activities. A key enabler to the retrievals programme is the Pond Skip Handler Machine (SHM), removed from service in 2002 following the discovery of significant signs of corrosion and distress, an inevitable consequence of being located in a coastal, salt laden environment. The SHM provides sole capability to access and retrieve the inventory of over 1000 fuel skips. It is also fundamental to future operations and the deployment of de-sludging equipment to recover significant bulk sludge's from the pond floor. Failure of the SHM steelwork gantry at worst case could potentially result in the Skip Handler Machine being derailed. This has some potential to damage to the pond structure and at worst case may result in local radiological and environmental consequences. This paper will examine the challenges faced by the team as they successfully defined, planned and executed remedial work to a specific aspect of the civil structure, the SHM gantry rail system, using a purpose built refurbishment platform; the Gantry Refurbishment System. The paper will examine how an 'innovative' approach was adopted to resolve the related issues of: - Refurbishing an aged structure to meet extended future operational demands. - The application of pragmatic engineering solutions against current codes and standards including seismic performance; - Provision of safe access for the workforce to undertake the refurbishment work against significant radiological

  9. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  10. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs

  11. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure

  12. Ranking system for mixed radioactive and hazardous waste sites

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1985-01-01

    The Environmental Protection Agency's Hazard Ranking System (HRS) is a simplified management decision tool that provides a common basis for evaluating a multitude of hazardous waste sites. A deficiency in the HRS for application to Department of Energy mixed radioactive and hazardous waste sites is its inability to explicitly handle radioactive material. A modification to the basic HRS to add the capability to consider radioactivity is described. The HRS considers the exposure routes of direct contact, fire/explosion, atmospheric release, surface-water release, and ground-water release. Each exposure route is further divided into release, route, containment, waste, and target characteristics. To maintain the basic HRS structure, only the waste characteristics section of each exposure route was modified. A ranking system was developed, using radiation dose pathway analysis, to group radionuclides by dose factors. For mixed waste sites, the ranking factor derived for radionuclides is compared with the ranking factor obtained for hazardous chemicals and the most restrictive is used in the overall ranking. The modified HRS has the advantages of being compatible with the original HRS, has reasonable information requirements, and provides scientifically defensible conclusions. 17 references, 2 figures, 6 tables

  13. Technology needs and trends for hazardous waste site remediation

    International Nuclear Information System (INIS)

    Kovalick, W.W. Jr.

    1995-01-01

    Over the next few decades, federal, state, and local governments and private industry will commit billions of dollars annually to clean up sites contaminated with hazardous waste and petroleum products. While these needs represent an obligation for society, they also represent an important business opportunity for vendors of remediation services. This presentation assesses the remediation market by characterizing sites that comprise the demand for cleanup services, observing remedy selection trends in the Superfund program, and discussing gaps in the supply of technologies

  14. Geoelectrical Evaluation of Waste Dump Sites at Warri and its ...

    African Journals Online (AJOL)

    The existing waste dump sites in Delta State were investigated without soil disturbance by using the vertical electrical sounding (VES).The soil overlying the aquifer at Ovwian-Aladja dump site has resistively values, 11.84-85.50 Ohm-m, thicknesses,21.10-31.83m and at depths less than 1m, while at Warri it has resistively ...

  15. Application of neural networks to waste site screening

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.; Kraft, T.; Hilton, J.M. [Science Applications International Corp., San Diego, CA (United States)

    1993-03-01

    Waste site screening requires knowledge of the actual concentrations of hazardous materials and rates of flow around and below the site with time. The present approach to site screening consists primarily of drilling, boreholes near contaminated site and chemically analyzing the extracted physical samples and processing the data. In addition, hydraulic and geochemical soil properties are obtained so that numerical simulation models can be used to interpret and extrapolate the field data. The objective of this work is to investigate the feasibility of using neural network techniques to reduce the cost of waste site screening. A successful technique may lead to an ability to reduce the number of boreholes and the number of samples analyzed from each borehole to properly screen the waste site. The analytic tool development described here is inexpensive because it makes use of neural network techniques that can interpolate rapidly and which can learn how to analyze data rather than having to be explicitly programmed. In the following sections, data collection and data analyses will be described, followed by a section on different neural network techniques used. The results will be presented and compared with mathematical model. Finally, the last section will summarize the research work performed and make several recommendations for future work.

  16. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    Energy Technology Data Exchange (ETDEWEB)

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  17. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    International Nuclear Information System (INIS)

    WINTERHALDER, J.A.

    1999-01-01

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  18. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    International Nuclear Information System (INIS)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-01-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico

  19. Characteristics and suitability of waste dump sites in Owerri, Nigeria ...

    African Journals Online (AJOL)

    A five point criteria screening of the three major waste dumpsites in Owerri Municipality was identified, and a ranking procedure adopted to determine the suitability or otherwise of the dumpsites. The sites were screened and ranked hydro-geologically and geo-technically in order of suitable, moderately suitable, and not ...

  20. Site suitability criteria for solidified high level waste repositories

    International Nuclear Information System (INIS)

    Heckman, R.A.; Holdsworth, T.; Towse, D.F.

    1979-01-01

    Activities devoted to development of regulations, criteria, and standards for storage of solidified high-level radioactive wastes are reported. The work is summarized in sections on site suitability regulations, risk calculations, geological models, aquifer models, human usage model, climatology model, and repository characteristics. Proposed additional analytical work is also summarized

  1. Solid waste dumping site suitability analysis using geographic ...

    African Journals Online (AJOL)

    Solid waste dumping site suitability analysis using geographic information system (GIS) and remote sensing for Bahir Dar Town, North Western Ethiopia. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

  2. High-level radioactive waste repositories site selection plan

    International Nuclear Information System (INIS)

    Castanon, A.; Recreo, F.

    1985-01-01

    A general vision of the high level nuclear waste (HLNW) and/or nuclear spent fuel facilities site selection processes is given, according to the main international nuclear safety regulatory organisms quidelines and the experience from those countries which have reached a larger development of their national nuclear programs. (author)

  3. Final storage site for radioactive waste. Gorleben mine

    International Nuclear Information System (INIS)

    1995-02-01

    Out of more than 20 salt stocks, the Gorleben salt stock was chosen. In addition to the preliminary information available on its size and depth, detailed exploratory investigations were carried out in order to test its suitability as a site for ultimate storage of all types of radioactive waste. (orig.) [de

  4. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  5. Method of draining water through a solid waste site without leaching

    Science.gov (United States)

    Treat, Russell L.; Gee, Glendon W.; Whyatt, Greg A.

    1993-01-01

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  6. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  7. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles (mi)) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan

  8. Environmental Planning Strategies for Optimum Solid Waste Landfill Siting

    International Nuclear Information System (INIS)

    Sumiani, Y.; Onn, C.C.; Mohd, M.A.D.; Wan, W.Z.J.

    2009-01-01

    The use of environmental planning tools for optimum solid waste landfill siting taking into account all environmental implications was carried out by applying Life Cycle Analysis (LCA) to enhance the research information obtained from initial analysis using Geographical Information Systems (GIS). The objective of this study is to identify the most eco-friendly landfill site by conducting a LCA analysis upon 5 potential GIS generated sites which incorporated eleven important criteria related to the social, environmental, and economical factors. The LCA analysis utilized the daily distance covered by collection trucks among the 5 selected landfill sites to generate inventory data on total energy usage for each landfill sites. The planning and selection of the potential sites were facilitated after conducting environmental impact analysis upon the inventory data which showed the least environmental impact. (author)

  9. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Costs - 13422

    International Nuclear Information System (INIS)

    Eddy-Dilek, Carol A; Looney, Brian B.; Gaughan, Thomas; Kmetz, Thomas; Seaman, John

    2013-01-01

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the

  10. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  11. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  12. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  13. Incentives and the siting of radioactive waste facilities

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process.

  14. Incentives and the siting of radioactive waste facilities

    International Nuclear Information System (INIS)

    Carnes, S.A.; Copenhaver, E.D.; Reed, J.H.; Soderstrom, E.J.; Sorensen, J.H.; Peelle, E.; Bjornstad, D.J.

    1982-08-01

    The importance of social and institutional issues in the siting of nuclear waste facilities has been recognized in recent years. Limited evidence from a survey of rural Wisconsin residents in 1980 indicates that incentives may help achieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward) and the conditions which may be prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives in nuclear waste repository siting are developed. Incentive packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. Without careful attention to prerequisites in the siting process it is not likely that incentives will facilitate the siting process

  15. Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit No.2 Waste Site. Attchment to Waste Site Reclassification Form 2005-038

    International Nuclear Information System (INIS)

    Carlson, R.A.

    2005-01-01

    The 128-B-2 waste site was a burn pit historically used for the disposal of combustible and noncombustible wastes, including paint and solvents, office waste, concrete debris, and metallic debris. This site has been remediated by removing approximately 5,627 bank cubic meters of debris, ash, and contaminated soil to the Environmental Restoration Disposal Facility. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River

  16. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  17. Financing a new low-level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dressen, A.L.; Serie, P.J.; McGarvey, R.S.; Lemmon, R.A.

    1982-01-01

    No new commercial low-level radioactive waste disposal site has been licensed in the past decade. During the time, inflation has wreaked havoc on the costs for the labor, equipment, and buildings that will be necessary to develop and operate new sites. The regulatory environment has become much more complex with enactment of the National Environmental Policy Act (NEPA) and the recent issuance by the Nuclear Regulatory Commission (NRC) of a draft set of comprehensive regulations for land disposal of low-level waste (10 CFR Part 61). Finally, the licensing process itself has become much lengthier as both the site developers and regulators respond to the public's desire to be more involved in decisions that may affect their lives

  18. High-level wastes: DOE names three sites for characterization

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    DOE announced in May 1986 that there will be there site characterization studies made to determine suitability for a high-level radioactive waste repository. The studies will include several test drillings to the proposed disposal depths. Yucca Mountain, Nevada; Deaf Smith Country, Texas, and Hanford, Washington were identified as the study sites, and further studies for a second repository site in the East were postponed. The affected states all filed suits in federal circuit courts because they were given no advance warning of the announcement of their selection or the decision to suspend work on a second repository. Criticisms of the selection process include the narrowing or DOE options

  19. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  20. Projecting future solid waste management requirements on the Hanford Site

    International Nuclear Information System (INIS)

    Shaver, S.R.; Stiles, D.L.; Holter, G.M.; Anderson, B.C.

    1990-09-01

    The problem of treating and disposing of hazardous transuranic (TRU), low-level radioactive, and mixed waste has become a major concern of the public and the government. At the US Department of Energy's Hanford Site in Washington state, the problem is compounded by the need to characterize, retrieve, and treat the solid waste that was generated and stored for retrieval during the past 20 years. This paper discusses the development and application of a Solid Waste Projection Model that uses forecast volumes and characteristics of existing and future solid waste to address the treatment, storage, and disposal requirements at Hanford. The model uses a data-driven, object-oriented approach to assess the storage and treatment throughout requirements for each operation for each of the distinct waste classes and the accompanying cost of the storage and treatment operations. By defining the elements of each alternative for the total waste management system, the same database can be used for numerous analyses performed at different levels of detail. This approach also helps a variety of users with widely varying information requirements to use the model and helps achieve the high degree of flexibility needed to cope with changing regulations and evolving treatment and disposal technologies. 2 figs

  1. Techniques for site investigations for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1985-01-01

    The report provides a more detailed description of the capabilities and applications of the various earth science investigation techniques outlined in the IAEA Technical Reports Series Nos. 177, 215 and 216. These methods are generally appropriate during at least one of the stages of the assessment or selection of a site for any type of waste disposal facility, in shallow ground or in deep geological formations. This report is addressed to technical authorities responsible for or involved in planning, approving, executing and reviewing national waste disposal programmes. It may also help administrative authorities in this field to select appropriate techniques for obtaining the majority of the required information at minimum cost

  2. Negotiating the voluntary siting of nuclear waste facilities

    International Nuclear Information System (INIS)

    Mussler, R.M.

    1992-01-01

    This paper discusses the Office of the Nuclear Waste Negotiator which was created by Congress with the purpose of seeking a voluntary host State or Indian tribe for a high level nuclear waste repository or monitored retrievable storage facility. Given the history of the Federal government's efforts at siting such facilities, this would appear to be an impossible mission. Since commencing operations in August 1990, the Office has accomplished perhaps more than had been expected. Some of the approaches it has taken to implementing this mission may be applicable to other endeavors

  3. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  4. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  5. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  6. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta's K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports

  7. Final Hanford Site Transuranic (TRU) Waste Characterization Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP

  8. Designing chemical soil characterization programs for mixed waste sites

    International Nuclear Information System (INIS)

    Meyers, K.A. Jr.

    1989-01-01

    The Weldon Spring Site Remedial Action Project is a remedial action effort funded by the U.S. Department of Energy. The Weldon Spring Site, a former uranium processing facility, is located in east-central Missouri on a portion of a former ordnance works facility which produced trinitrotoluene during World War II. As a result of both uranium and ordnance production, the soils have become both radiologically and chemically contaminated. As a part of site characterization efforts in support of the environmental documentation process, a chemical soil characterization program was developed. This program consisted of biased and unbiased sampling program which maximized areal coverage, provided a statistically sound data base and maintained cost effectiveness. This paper discusses how the general rationale and processes used at the Weldon Spring Site can be applied to other mixed and hazardous waste sites

  9. Soil characterization methods for unsaturated low-level waste sites

    International Nuclear Information System (INIS)

    Wierenga, P.J.; Young, M.H.; Hills, R.G.

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies

  10. Characterization of the atmospheric pathway at hazardous waste sites

    International Nuclear Information System (INIS)

    Droppo, J.G. Jr.; Buck, J.W.

    1988-10-01

    Evaluation of potential health effects for populations surrounding hazardous waste sites requires consideration of all potential contaminant transport pathways through groundwater, surface water, and the atmosphere. A comprehensive pathway model that includes emission, dispersion, and deposition computations has been developed as a component of the Remedial Action Priority System (RAPS). RAPS is designed to assess the relative potential risks associated with hazardous and radioactive mixed-waste disposal sites. The atmospheric component includes optional volatilization and suspension emission routines. Atmospheric transport, dispersion, and deposition are computed using relatively standard modeling techniques expanded to incorporate topographical influences. This sector-averaged Gaussian model accounts for local channeling, terrain heights, and terrain roughness effects. Long-term total deposition is computed for the terrain surrounding the hazardous waste site. An example is given of applications at a US Department of Energy site, where atmospheric emissions are potentially important. The multiple applications of RAPS have provided information on the relative importance of different constitutent transport pathways from a potential population risk basis. Our results show that the atmospheric pathway is often equally as important as other pathways such as groundwater and direct soil ingestion. 6 refs., 3 figs., 4 tabs

  11. Expeditious Methods for Site Characterization and Risk Assessment at Department of Defense Hazardous Waste Sites in the Republic of Korea

    National Research Council Canada - National Science Library

    Hartman, Dean

    1999-01-01

    ...) with preferred innovative site characterization technologies and risk assessment methods to meet their needs in obtaining hazardous waste site data and then prioritizing those sites for remediation based upon risk...

  12. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  13. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination

  14. Chemodynamics of EDTA in a simulated mixed waste: the Hanford Site's complex concentrate waste

    International Nuclear Information System (INIS)

    Toste, A.P.; Ohnuki, Toshihiko

    1999-01-01

    Enormous stockpiles of mixed wastes at the USDOE's Hanford Site, the original US plutonium production facility, await permanent disposal. One mixed waste derived from reprocessing spent fuel was found to contain numerous nuclear related organics including chelating agents like EDTA and complexing agents, which have been used as decontamination agents, etc. Their presence in actual mixed wastes indicates that the organic content of nuclear wastes is dynamic and complicate waste management efforts. The subjects of this report is the chemo-degradation of EDTA degradation in a simulant Hanford's complex concentrate waste. The simulant was prepared by adding EDTA to an inorganic matrix, which was formulated based on past analyses of the actual waste. Aliquots of the EDTA simulant were withdrawn at different time points, derivatized via methylation and analyzed by gas chromatography and Gc/MS to monitor the disappearance of EDTA and the appearance of its' degradation products. This report also compares the results of EDTA's chemo-degradation to the g-radiolysis of EDTA in the simulant, the subject of a recently published article. Finally based on the results of these two studies, an assesment of the potential impact of EDTA degradation on the management of mixed wastes is offered. (J.P.N.)

  15. Nuclear waste and social peace - Strategies of site selection for radioactive waste disposal. Proceeding

    International Nuclear Information System (INIS)

    Dally, A.

    2003-01-01

    In February 1999, BMU appointed a working party to establish site selection procedures for repositories (AkEnd) which was to develop a transparent procedure of finding and selecting sites for the final storage of all kinds of radioactive waste in Germany. The procedure finally proposed by AkEnd implies considerable uncertainty, inter alia, about its legal implementability, the time required, and funding. The discussion papers of the meeting ''atomic waste and social peace'' show a tightrope walk between society, clerical aspects and scientists taking into account also a right of say for critical citizens. (GL)

  16. Nevada Test Site waste acceptance criteria [Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-08-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document.

  17. Nevada Test Site waste acceptance criteria [Revision 1

    International Nuclear Information System (INIS)

    None

    1997-01-01

    Revision one updates the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive and mixed waste for disposal; and transuranic and transuranic mixed waste for interim storage at the NTS. Review each section of this document. This document is not intended to include all of the requirements; rather, it is meant as a guide toward meeting the regulations. All references in this document should be observed to avoid omission of requirements on which acceptance or rejection of waste will be based. The Department of Energy/Nevada Operations Office (DOE/NV) and support contractors are available to assist you in understanding or interpreting this document

  18. Sociological perspective on the siting of hazardous waste facilities

    International Nuclear Information System (INIS)

    Mileti, D.S.

    1985-01-01

    The site of hazardous waste facilities has been, and will likely continue to be, both an important societal need and a publicity controversial topic. Sites have been denounced, shamed, banned, and moved at the same time that the national need for their installation and use has grown. Based on the available technologies, the effective siting of facilities is more of a major contemporary social issue than it is a technological problem. Traditional social impact assessment approaches to the siting process have generally failed to meaningfully contribute to successful project implementation; these efforts have largely ignored the public perception aspects of risk and hazard on the success or failure of facility siting. It is proposed in this paper that more readily acceptable solutions to siting hazardous waste facilities might result from the integration of two social science approaches: (1) social impact assessment, which seeks to define and mitigate problems, and (2) hazards policy studies, which has sought to understand and incorporate public risk perceptions into effective public decision-making. This paper illustrates how this integration of approaches could be implemented

  19. Gorleben. Waste management site based on an appropriate selection procedure

    International Nuclear Information System (INIS)

    Tiggemann, Anselm

    2010-01-01

    On February 22, 1977, the Lower Saxony state government decided in favor of Gorleben as a ''preliminary'' site of a ''potential'' facility for managing the back end of the fuel cycle of the nuclear power plants in the Federal Republic of Germany. The Lower Saxony files, closed until recently, now allow both the factual basis and the political background to be reconstructed comprehensively. The first selection procedure, financed by the federal government, for the site of a ''nuclear waste management center,'' which had been conducted by Kernbrennstoff-Wiederaufarbeitungsgesellschaft (KEWA) in 1974, had not considered Gorleben in any detail. As early as in the winter of 1975/76, Gorleben and a number of other potential sites were indicated to KEWA by the Lower Saxony State Ministry of Economics. The new finding is KEWA's conclusion of 1976 that Gorleben surpassed all potential sites examined so far in terms of suitability. As a consequence, Gorleben was regarded as an alternative alongside the 3 sites favored before, i.e. Wahn, Lutterloh, and Lichtenhorst, when the 3 Federal Ministers, Hans Matthoefer (SPD), Werner Maihofer (F.D.P.), and Hans Friderichs (F.D.P.), discussed the nuclear waste management project with Minister President Albrecht (CDU) in November 1976. The Lower Saxony State Cabinet commissioned an interministerial working party (IMAK) to find other potential sites besides Wahn, Lutterloh, Lichtenhorst, and Gorleben. IMAK proposed Gorleben, Lichtenhorst, Mariaglueck, and Wahn for further examination. IMAK recommended to the State Cabinet in another proposal to earmark either Gorleben or Lichtenhorst. (orig.)

  20. SRS: Site ranking system for hazardous chemical and radioactive waste

    International Nuclear Information System (INIS)

    Rechard, R.P.; Chu, M.S.Y.; Brown, S.L.

    1988-05-01

    This report describes the rationale and presents instructions for a site ranking system (SRS). SRS ranks hazardous chemical and radioactive waste sites by scoring important and readily available factors that influence risk to human health. Using SRS, sites can be ranked for purposes of detailed site investigations. SRS evaluates the relative risk as a combination of potentially exposed population, chemical toxicity, and potential exposure of release from a waste site; hence, SRS uses the same concepts found in a detailed assessment of health risk. Basing SRS on the concepts of risk assessment tends to reduce the distortion of results found in other ranking schemes. More importantly, a clear logic helps ensure the successful application of the ranking procedure and increases its versatility when modifications are necessary for unique situations. Although one can rank sites using a detailed risk assessment, it is potentially costly because of data and resources required. SRS is an efficient approach to provide an order-of-magnitude ranking, requiring only readily available data (often only descriptive) and hand calculations. Worksheets are included to make the system easier to understand and use. 88 refs., 19 figs., 58 tabs

  1. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  2. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  3. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  4. Pyramiding tumuli waste disposal site and method of construction thereof

    Science.gov (United States)

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  5. Risk communication on the siting of radioactive waste management facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru; Torii, Hiroyuki; Fujii, Yasuhiko

    2007-01-01

    Siting of radioactive waste management facilities frequently raise arguments among stakeholders such as a municipal government and the residents. Risk communication is one of the useful methods of promoting mutual understanding on related risks among stakeholders. In Finland and Sweden, siting selection procedures of repositories for spent nuclear fuels have been carried out successfully with risk communication. The success reasons are analyzed based on the interviews with those who belong to the regulatory authorities and nuclear industries in both countries. Also, in this paper, risk communication among the Japan Radioisotope Association (JRIA), a local government and the general public, which was carried out during the establishment process of additional radioactive waste treatment facilities in Takizawa Village, Iwate Prefecture, is analyzed based on articles in newspapers and interviews with persons concerned. The analysis results showed that good risk communication was not carried out because of the lack of confidence on the JRIA, decision making rules, enough communication chances and economic benefits. In order to make good use of these experiences for the future establishment of radioactive waste management facilities, the lessons learned from these cases are summarized and proposals for good risk communication (establishment of exploratory committee and technical support system for decision making, and measurements to increase familiarity of radioactive waste) are discussed. (author)

  6. Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996

    Data.gov (United States)

    National Aeronautics and Space Administration — The Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data, 1996 consists of 2042 polygons for selected hazardous waste sites...

  7. Incentives and nuclear waste siting: Prospects and constraints

    International Nuclear Information System (INIS)

    Carnes, S.A.; Copenhaver, E.D.; Sorensen, J.H.; Soderstrom, E.J.; Reed, J.H.; Bjornstad, D.J.; Peelle, E.

    1983-01-01

    Limited anecdotal evidence from existing incentive-based facility sitings, and from a survey of rural Wisconsin residents in 1980 regarding the acceptability of a nuclear waste repository, indicates that incentives may help ahcieve the twin goals of increasing local support and decreasing local opposition to hosting nuclear waste facilities. Incentives are classified according to functional categories (i.e., mitigation, compensation, and reward), and prerequisites to the use of incentives are outlined (i.e., guarantee of public health and safety, some measure of local control, and a legitimation of negotiations during siting). Criteria for evaluating the utility of incentives packages may be more useful than single incentives, and nonmonetary incentives, such as independent monitoring and access to credible information, may be as important in eliciting support as monetary incentives. 54 references, 1 figure, 4 tables

  8. Ozone destruction of Hanford Site tank waste organics

    International Nuclear Information System (INIS)

    Colby, S.A.

    1993-04-01

    Ozone processing is one of several technologies being developed to meet the intent of the Secretary of the US Department of Energy, Decision on the Programmatic Approach and Near-Term Actions for Management and Disposal of Hanford Tank Waste Decision Statement, dated December 20, 1991, which emphasizes the need to resolve tank safety issues by destroying or modifying the constituents (e.g., organics) that cause safety concerns. As a result, the major tank treatment objectives on the Hanford Site are to resolve the tank safety issues regarding organic compounds (and accompanying flammable gas generation), which all potentially can react to evolve heat and gases. This report contains scoping test results of an alkaline ozone oxidation process to destroy organic compounds found in the Hanford Site's radioactive waste storage tanks

  9. Risk analysis and solving the nuclear waste siting problem

    International Nuclear Information System (INIS)

    Inhaber, H.

    1994-01-01

    In spite of millions of dollars and countless human resources being expended on finding nuclear wastes sites, the search has proved extremely difficult for the nuclear industry. This may be due to the approach followed, rather than inadequacies in research or funding. A new approach to the problem, the reverse Dutch auction, is suggested. It retains some of the useful elements of the present system, but it also adds new ones. It allows natural market forces to set the level of compensation, rather than relying on close-door negotiations or theoretical calculations. Two flow charts show the pre-bid and post-bid steps of the reverse Duch auction system of Inhaber. It is assumed that a state wishes to site a waste facility somewhere in its boundaries. 22 refs., 3 figs

  10. Power from waste. [Power plant at landfill site

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1991-01-01

    Base Load Systems Ltd, a company in the United Kingdom, has just commissioned a power plant in Leicestershire which uses waste gases from a landfill site. The gases power two specially modified turbo charged engine and generator packages. The plant will use approximately 100 cu meters of landfill gas per hour and is expected to feed 1.5MW of electrical power into the supply network of East Midlands Electricity. Once the landfill site has been completely filled and capped with clay, it is estimated that the electrical power output will be 4 MW. At present, since their are no customers for heat in the vicinity, 100 KW of the electricity produced are used to run fans to dissipate the 2.5 MW of waste heat. Base load is also involved elsewhere in combined heat and power projects. (UK).

  11. Biological toxicity evaluation of Hanford Site waste grouts

    International Nuclear Information System (INIS)

    Rebagay, T.V. Dodd, D.A.; Voogd, J.A.

    1992-10-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 50 years of operation of the Hanford Site of the US Department of Energy near Richland, Washington. These wastes are currently stored onsite in single- and double-shell carbon steel tanks. To effectively handle and treat these wastes, their degree of toxicity must be determined. The disposal of the low-level radioactive liquid portion of the wastes involves mixing the wastes with pozzolanic blends to form grout. Potential environmental hazards posed by grouts are largely unknown. Biological evaluation of grout toxicity is needed to provide information on the potential risks of animal and plant exposure to the grouts. The fish, rat, and Microtox toxicity tests described herein indicate that the grouts formed from Formulations I and 2 are nonhazardous and nondangerous. Using the Microtox solid-phase protocol, both soluble and insoluble organic and inorganic toxicants in the grouts can be detected. This protocol may be used for rapid screening of environmental pollutants and toxicants

  12. Mass spectrometry analysis of tank wastes at the Hanford Site

    International Nuclear Information System (INIS)

    Campbell, J.A.; Mong, G.M.; Clauss, S.A.

    1995-01-01

    Twenty-five of the 177 high-level waste storage tanks at the Hanford Site in southeastern Washington are being watched closely because of the possibility that flammable gas mixtures may be produced from the mixed wastes contained in the storage tanks. One tank in particular, Tank 241-SY-101 (Tank 101-SY), has exhibited episodic releases of flammable gas mixtures since its final filling in the early 1980s. It has been postulated that the organic compounds present in the waste may be precursors to the production of hydrogen. Mass spectrometry has proven to be an invaluable tool for the identification of organic components in wastes from Tank 101-SY and C-103. A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unresolved Safety Question concerning the potential for a floating organic layer in Hanford Waste Tank 241-C-103 to sustain a pool fire. The aqueous layer underlying the floating organic material was also analyzed for organic components

  13. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-03-01

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  14. Risk analysis and solving the nuclear waste siting problem

    International Nuclear Information System (INIS)

    Inhaber, H.

    1993-01-01

    In spite of millions of dollars and countless human resources being expended on finding nuclear wastes sites, the search has proved extremely difficult for the nuclear industry. This may be due to the approach followed, rather than inadequacies in research or funding. A new approach to the problem, the reverse Dutch auction, is suggested. It retains some of the useful elements of the present system, but it also adds new ones

  15. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-01-01

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  16. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no

  17. Risk analysis and solving the nuclear waste siting problem

    Energy Technology Data Exchange (ETDEWEB)

    Inhaber, H.

    1993-12-01

    In spite of millions of dollars and countless human resources being expended on finding nuclear wastes sites, the search has proved extremely difficult for the nuclear industry. This may be due to the approach followed, rather than inadequacies in research or funding. A new approach to the problem, the reverse Dutch auction, is suggested. It retains some of the useful elements of the present system, but it also adds new ones.

  18. Study of a waste disposal site and it's groundwater contamination ...

    African Journals Online (AJOL)

    The choice of an old borrow pit at Avu village in the outskirts of Owerri Urban as the permanent dump for wastes from Owerri Urban is evaluated in terms of the hydrogeology of the site. The depth to the groundwater table or the vadose zone is 9 – 9.5m; the texture of the soils shows fine attenuative materials that can inhibit ...

  19. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Costs - 13422

    Energy Technology Data Exchange (ETDEWEB)

    Eddy-Dilek, Carol A; Looney, Brian B. [Savannah River National Laboratory (United States); Gaughan, Thomas; Kmetz, Thomas [Savannah River Nuclear Solutions, LLC (United States); Seaman, John [Savannah River Ecology Laboratory (United States)

    2013-07-01

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the

  20. Report on the workshop to review waste inventory, waste characteristics and reference site candidates

    International Nuclear Information System (INIS)

    1997-07-01

    There is a need of co-operation among Regional Co-operative Agreement (RCA) Member States in the field of low and intermediate level waste (LILW) disposal. An integrated approach is essential for successful establishment of LILW disposal facilities in RCA Member States. This would include: a) identification of waste inventory and characteristics; b) guidelines for implementation of LILW disposal; c) regulatory guidelines; d) safety assessment; e) quality assurance; and f) public acceptance. This project will focus on technical issues. The overall objective of the project, established in the project formulation meeting, is to assist RCA Member States in establishing national disposal activities for radioactive waste from nuclear applications by providing expert advice and training on techniques and methodology associated with planning and establishment of disposal facilities and to obtain improved knowledge of key staff members for the implementation of LILW disposal. The purpose of this workshop was to identify waste inventories, waste characteristics, site characteristics (generic or site specific) for disposal of LILW in RCA Member States of the project and identify conceptual reference site conditions and consider reference repository concepts preliminarily. Also the workshop was to establish an action plan of the next step. The workshop was held in Shanghai, China from 7 to 9 July 1997 and attended by 7 countries, i.e. Australia, China, Indonesia, Japan, Republic of Korea, Sri Lanka and Thailand. Refs, figs, tabs

  1. Social impact mitigation and nuclear waste repository siting

    International Nuclear Information System (INIS)

    Peelle, E.

    1980-01-01

    Some aspects of the socioeconomic impacts of siting, constructing, and operating radioactive waste repositories in rural areas are discussed. These include public perceptions of high risk and uncertainty; limited benefits and no incentives; dissociations of costs and benefits; remoteness and inaccessibility of the decision making process for large energy facilities; no institutions to provide protection and accountability for those who may be affected by the siting; the fact that not all risks or impacts are fully mitigable; and constraints on DOE's present ability or authority to mitigate impacts

  2. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  3. Health and Safety Procedures Manual for hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  4. Environmental monitoring considerations for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Sedlet, J.

    1982-01-01

    All waste disposal sites are required to monitor the environment. The proposed NRC licensing rule, 10 CFR Part 61, requires that such monitoring be conducted before, during, and after a site is operated. An adequate monitoring program consists of measuring concentrations of radionuclides, chemically-toxic substances, and leachate indicators in environmental media and of evaluating specific physical properties of the site. In addition, the composition of the buried waste must be known. Methods for obtaining this information are discussed and monitoring programs are presented for the preoperational, operational, and postclosure phases of a disposal site. Environmental monitoring is considered in a broad context, since it includes monitoring burial trenches onsite, as well as surveillance in the offsite environment. Postclosure monitoring programs will be strongly influenced by the operational monitoring results. In some respects, this phase will be easier since the migration pathways should be well known and the number of radionuclides of concern reduced by radioactive decay. The results of the environmental monitoring program will be vital to successful site operation. These results should be used to determine if operational changes are needed and to predict future environmental impacts

  5. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  6. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Y. E.Townsend

    2001-02-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  7. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

  8. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    International Nuclear Information System (INIS)

    Y. E.Townsend

    2001-01-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure

  9. Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report

  10. Review on waste inventory, waste characteristics and candidate site for LLW disposal in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Punnachaiya, M.; Danladkaew, K.

    1997-01-01

    It is a worldwide practice that radioactive waste has to be kept under control to be ensured of low potential impact on man and his environment. In Thailand, the OAEP is responsible for all radioactive waste management activities, both operation and the competent authority. The radioactive waste in Thailand consists of low level wastes from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. A plan for central disposal site has been set up. The near surface disposal method is chosen for this aspect because of its simple, inexpensive and adequate safe and very well know process. 8 refs., 6 tabs

  11. Towards a regional siting approach for canadian nuclear fuel waste

    International Nuclear Information System (INIS)

    Kuhn, R.G.

    1999-01-01

    The proposal to construct a nuclear fuel waste (NFW) disposal facility in Canada is fraught with difficulties, particularly with respect to gaining public acceptance and consent. Public perceptions of risk associated with a disposal facility are generally negative. Indeed, it was found that over 60% of residents in northern Ontario communities are opposed to the possibility of a disposal facility being constructed within 120 km of their community. Even after being offered the possibility of compensation and incentives, the majority of residents are strongly opposed. Canadian decision makers have generally endorsed a siting framework known as the open siting approach. The major characteristic of this approach is that it allows for substantial public participation in any siting process. It is premised on the notion that only communities where a majority of citizens favour the siting of a facility will be considered as potential hosts. However, given that the majority of residents on the Ontario portion of the Canadian Shield are strongly opposed to a NFW facility, the open approach will not be a panacea for a successful siting process. The major limitation of this approach is the fact that a single community cannot be isolated from its surrounding region and communities. The purpose of this paper is to work towards the development of a regional siting strategy for Canadian nuclear fuel waste management. There are no clear precedents of a regional siting approach to facility location in Canada. However, some analogous planning regimes and initiatives have been attempted. Common to these initiatives is the consideration of a large geographical region and attempts to integrate, at least formally, social, cultural, political and environmental concerns in a coherent and comprehensive manner. Under this type of 'siting strategy' NFW management would be considered within a broad array of resource management initiatives, social and cultural priorities, and institutional

  12. 36 CFR 6.4 - Solid waste disposal sites not in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites... PARK SERVICE, DEPARTMENT OF THE INTERIOR SOLID WASTE DISPOSAL SITES IN UNITS OF THE NATIONAL PARK SYSTEM § 6.4 Solid waste disposal sites not in operation on September 1, 1984. (a) No person may operate...

  13. The use of chemical and radionuclide risk estimates in site performance evaluation of mixed waste sites

    International Nuclear Information System (INIS)

    Till, J.E.; Meyer, K.R.

    1988-01-01

    Many radioactive waste sites contain not only radioactive material but also varying amounts of chemical waste. The use of such procedures implies some risk at any exposure level, and thus requires that an exposure level be determined that corresponds to an acceptable risk to an individual or a population. Although the uncertainties and limitations of these methods are of concern, the assumption has been generally adopted that the human dose response for all carcinogens is linear, with no threshold occurring at low levels of exposure. With the move toward decontamination programs and clean-up of various mixed waste sites throughout the US, there is interest in the possibility that risk estimates calculated individually for radionuclides and for chemicals may be combined to reflect the total risk for each site. The purpose of this paper is to examine the feasibility of combining risk estimates during risk/benefit analyses. For a variety of reasons, the state of radiation risk assessment is more advanced than that of chemical risk assessment. The reasons for this disparity are summarized in this paper. Quantitative radiation risk assessment is currently being performed, but involves a high degree of uncertainty. Chemical risk assessment in general does not allow quantitative results bracketed by uncertainty analysis. Therefore, it is concluded that it is currently not possible to develop a useful, quantitative combined risk assessment for a mixed waste site, but that it may be possible to develop such a capability in the future

  14. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    Energy Technology Data Exchange (ETDEWEB)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Donohoue, Tom; Martin, E. Ray; Mason, John A. [ANTECH Corporation 9050 Marshall Court, Westminster, CO, 80031 (United States); Norton, Christopher J.; Crosby, Daniel [Environmental Alternatives, Inc., 149 Emerald Street, Suite R, Keene, NH 03431 (United States); Nachtman, Thomas J. [InstaCote, Inc., 160 C. Lavoy Road, Erie, MI, 48133 (United States)

    2013-07-01

    determine the TRU content of the boxes by assessing the activity of Am-241 (59 keV) and Pu-241 (414 keV). Using the data generated it was possible for qualified subject matter experts (SME) to assess that the gloveboxes could be consigned for disposition as LLW and not as TRU. Once this determination was assessed and accepted the gloveboxes were prepared for final disposition to the Nevada National Security Site (NNSS) - formerly the Nevada Test Site (NTS). This preparation involved fixing any remaining radioactive contamination within the gloveboxes by filling them with a foam compound, prior to transportation. Once the remaining contamination was fixed the gloveboxes were removed from the laboratory and prepared for transported by road to NNSS. This successful glovebox decontamination and decommissioning process illustrates the means by which TRU waste generation has been minimized, LLW generation has been maximized, and risk has been effectively managed. The process minimizes the volume of TRU waste and reduced the decommissioning time with significant cost savings as the result. (authors)

  15. A Novel and Cost Effective Approach to the Decommissioning and Decontamination of Legacy Glove Boxes - Minimizing TRU Waste and Maximizing LLW Waste - 13634

    International Nuclear Information System (INIS)

    Pancake, Daniel; Rock, Cynthia M.; Creed, Richard; Donohoue, Tom; Martin, E. Ray; Mason, John A.; Norton, Christopher J.; Crosby, Daniel; Nachtman, Thomas J.

    2013-01-01

    determine the TRU content of the boxes by assessing the activity of Am-241 (59 keV) and Pu-241 (414 keV). Using the data generated it was possible for qualified subject matter experts (SME) to assess that the gloveboxes could be consigned for disposition as LLW and not as TRU. Once this determination was assessed and accepted the gloveboxes were prepared for final disposition to the Nevada National Security Site (NNSS) - formerly the Nevada Test Site (NTS). This preparation involved fixing any remaining radioactive contamination within the gloveboxes by filling them with a foam compound, prior to transportation. Once the remaining contamination was fixed the gloveboxes were removed from the laboratory and prepared for transported by road to NNSS. This successful glovebox decontamination and decommissioning process illustrates the means by which TRU waste generation has been minimized, LLW generation has been maximized, and risk has been effectively managed. The process minimizes the volume of TRU waste and reduced the decommissioning time with significant cost savings as the result. (authors)

  16. Used nuclear materials at Savannah River Site: asset or waste?

    International Nuclear Information System (INIS)

    Magoulas, Virginia

    2013-01-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ''assets'' to worthless ''wastes''. In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as ''waste'' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

  17. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  18. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    International Nuclear Information System (INIS)

    2009-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  19. The Blue Ribbon Commission and siting radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Pescatore, C.

    2010-01-01

    On 21 September 2010, the NEA Secretariat was invited to address the Blue Ribbon Commission on America's Nuclear Future. This paper is a summary of the remarks made. The successful siting of radioactive waste disposal facilities implies creating the conditions for continued ownership of the facility over time. Acceptance of the facility at a single point in time is not good enough. Continued ownership implies the creation of conscious, constructive and durable relationships between the (most affected) communities and the waste management facility. Being comfortable about the technical safety of the facility requires a degree of familiarity and control . Having peace of mind about the safety of the facility requires trust in the waste management system and its actors as well as some control over the decision making. Regulators are especially important players who need to be visible in the community. The ideal site selection process should be step- wise, combining procedures for excluding sites that do not meet pre-identified criteria with those for identifying sites where nearby and more distant residents are willing to discuss acceptance of the facility. The regional authorities are just as important as the local authorities. Before approaching a potential siting region or community, there should be clear results of national (and state) debates establishing the role of nuclear power in the energy mix, as well as information on the magnitude of the ensuing waste commitment and its management end-points, and the allocation of the financial and legal responsibilities until the closure of the project. Once the waste inventories and type of facilities have been decided upon, there should be agreement that all significant changes will require a new decision-making process. Any proposed project has a much better chance to move forward positively if the affected populations can participate in its definition, including, at the appropriate time, its technical details. A

  20. Waste Isolation Pilot Plant 2001 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, Inc.

    2002-01-01

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment

  1. Waste Isolation Pilot Plant 2001 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  2. Delegated democracy. Siting selection for the Swedish nuclear waste

    International Nuclear Information System (INIS)

    Johansson, Hanna Sofia

    2008-11-01

    The present study concerns the siting of the Swedish nuclear waste repository. Four cases are examined: the feasibility studies in Nykoeping and Tierp (cases 1 and 2), as well as three public consultation meetings with conservationist and environmental organisations, and two study visits to nuclear facilities in Oskarshamn and Oesthammar, which were held during what is called the site-investigation phase (cases 3 and 4). The Swedish Nuclear Fuel and Waste Management Co (SKB) began the search for a nuclear waste site in the 1970s. Since 1992 SKB has conducted feasibility studies in eight municipalities, including in the four municipalities mentioned above. At the present time more comprehensive site investigations are underway in Oskarshamn and Oesthammar, two municipalities that already host nuclear power plants as well as storages for nuclear waste. In addition to SKB and the municipalities involved in the site-selection process, politicians, opinion groups, concerned members of the public, and oversight bodies are important actors. The analysis of the cases employs the concepts of 'sub-politics', 'boundary work', and 'expertise', together with the four models of democracy 'representative democracy', participatory democracy', 'deliberative democracy', and 'technocracy'. The aim of the study is to describe the characteristics of Swedish democracy in relation to the disposal of Swedish nuclear waste. The main questions of the study are: Which democratic ideals can be found within SKB's siting process during the feasibility studies and in the consultation process during the site investigations? and Which democratic ideals were influential during the feasibility studies and in the consultation process? The study is based on qualitative methods, and the source materials consist of documents, interviews, and participant observations. In summary, the form of democracy that emerges in the four case studies can be described as delegated democracy. This means that a large

  3. Analyses of soils at commercial radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1983-01-01

    Brookhaven National Laboratory, in order to provide technical assistance to the NRC, has measured a number of physical and chemical characteristics of soils from three commercial low-level radioactive waste disposal sites. Samples were collected from an area adjacent to the disposal site at Sheffield, IL, and from two operating sites: one at Barnwell, SC, and the other near Richland, WA. The soil samples, which were analyzed from each site, were believed to include soil which was representative of that in contact with buried waste forms. Results of field measurements of earth resistivity and of soil pH will be presented. Additionally, the results of laboratory measurements of resistivity, moisture content, pH, exchange acidity and the soluble ion content of the soils will be discussed. The soluble ion content of the soils was determined by analysis of aqueous extracts of saturated soil pastes. The concentrations of the following ions were determined: Ca 2+ , Mg 2+ , K + , Na + , HCO 3 - , CO 3 2- , SO 4 2- , Cl - , S 2-

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Alfred Wickline

    2008-01-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 190, Contaminated Waste Sites, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (1996, as amended January 2007). Corrective Action Unit 190 is comprised of the following four corrective action sites (CASs): (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; (4) 14-23-01, LTU-6 Test Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 190 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from March 21 through June 26, 2007. All CAI activities were conducted as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites, Nevada Test Site, Nevada (NNSA/NSO, 2006). The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 190 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs

  5. Laboratory testing of ozone oxidation of Hanford site waste

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.; Colby, S.A.

    1994-01-01

    Organic constituents in radioactive waste stored in underground tanks at the U.S. Department of Energy's Hanford Site provoke safety concerns arising from their low-temperature reactions with nitrate and nitrite oxidants. Destruction of the organics would eliminate both safety problems. Oxone oxidation was investigated to destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101. Bench-scale tests showed high-shear mixing apparatus achieved efficient gas-to-solution mass transfer and utilization of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics formed carbonate and oxalate as well as nitrate and nitrogen gas from organic nitrogen. Formate, acetate and oxalate were present both in source waste and as reaction intermediates. Metal species oxidations also were observed directly or inferred by solubilities. Chemical precipitations of metal ions such as strontium and americium occurred as the organic species were destroyed by ozone. Reaction stoichiometries were consistent with the reduction of one oxygen atom per ozone molecule

  6. Geologic mapping as a prerequisite to hazardous waste facility siting

    International Nuclear Information System (INIS)

    LaMoreaux, P.E.

    1993-01-01

    The nation's welfare is based on its capability to develop the mineral, water, and energy resources of the land. In addition, these resources must be developed with adequate consideration of environmental impact and the future welfare of the country. Geologic maps are an absolute necessity in the discovery and development of natural resources; for managing radioactive, toxic, and hazardous wastes; and for the assessment of hazards and risks such as those associated with volcanic action, earthquakes, landslides, and subsidence. Geologic maps are the basis for depicting rocks and rock materials, minerals, coal, oil, and water at or near the earth's surface. Hazardous waste facility projects require the preparation of detailed geologic maps. Throughout most of the USA, this type of mapping detail is not available. If these maps were available, it is estimated that the duration of an individual project could be reduced by at least one-fourth (1/4). Therefore, adequate site-specific mapping is required if one is to eliminate environmental problems associated with hazardous, toxic, radioactive, and municipal waste sites

  7. The disposal of Canada's nuclear fuel waste: site screening and site evaluation technology

    International Nuclear Information System (INIS)

    Davison, C.C.; Brown, A.; Everitt, R.A.; Gascoyne, M.; Kozak, E.T.; Lodha, G.S.; Martin, C.D.; Soonawala, N.M.; Stevenson, D.R.; Thorne, G.A.; Whitaker, S.H.

    1994-06-01

    The concept for the disposal of Canada's nuclear fuel waste is to dispose of the waste in an underground vault, nominally at 500 m to 1000 m depth, at a suitable site in plutonic rock of the Canadian Shield. The feasibility of this concept and assessments of its impact on the environment and human health, will be documented by AECL in an Environmental Impact Statement (EIS). This report is one of nine primary references for the EIS. It describes the approach and methods that would be used during the siting stage of the disposal project to identify a preferred candidate disposal site and to confirm its suitability for constructing a disposal facility. The siting stage is divided into two distinct but closely related substages, site screening and site evaluation. Site screening would mainly involve reconnaissance investigations of siting regions of the Shield to identify potential candidate areas where suitable vault locations are likely to exist. Site screening would identify a small number of candidate areas where further detailed investigations were warranted. Site evaluation would involve progressively more detailed surface and subsurface investigations of the candidate areas to first identify potentially suitable vault locations within the candidate areas, and then characterize these potential disposal sites to identify the preferred candidate location for constructing the disposal vault. Site evaluation would conclude with the construction of exploratory shafts and tunnels at the preferred vault location, and underground characterization would be done to confirm the suitability of the preferred candidate site. An integrated program of geological, geophysical, hydrogeological, geochemical and geomechanical investigations would be implemented to obtain the geoscience information needed to assess the suitability of the candidate siting areas and candidate sites for locating a disposal vault. The candidate siting areas and candidate disposal vault sites would be

  8. Characterisation of Radioactive Waste located at Shelter Industrial Site

    International Nuclear Information System (INIS)

    Brown, T.D.; Billon, F.; Rudko, V.M.; Batiy, V.G.; Panasyuk, N.I.

    2001-04-01

    As a result of the accident at the unit 4 reactor at the Chernobyl Nuclear Power Plant on the 26 April 1986 there was widespread radioactive contamination of the surrounding area. The area immediately surrounding Unit 4, referred to as the Industrial Site, was very heavily contaminated with fuel and core debris ejected from the reactor. Immediate action was undertaken to reduce the local radiation hazard and mitigate the potential of secondary contamination of the environment. This action involved (a) the removal and collection of fuel fragments (b) removal of the top layer of soil around unit 4 and (c) preparation of a new surface over the Industrial Site. This new surface is referred to colloquially as the Techno-genic Layer. This report provides an overview of a project undertaken for DG-Environment of European Commission by a Consortium consisting of SGN (France) and AEA Technology (UK) working in collaboration with the Organisation, National Academy of Sciences of Ukraine; the Interdisciplinary Scientific and Technical Centre Shelter''. The project consisted of 3 Phases and a total of 14 Tasks. The main purpose of Phase 1 was to review previous work and available information and data on the contamination of the Industrial Site, construction of the Techno-genic Layer, Buttress and Pioneer Walls. Phase 2 was directed at additional measurements being carried out on existing boreholes and core samples to improve and/or substantiate existing information and data. Estimation of likely radioactive waste arisings, recovery procedures and a generalised strategy with indicative costs for the management of the waste was also covered by Phase 2. In Phase 3 new boreholes (3 off) were drilled and subsequently investigated. The justification behind Phase 3 was the desire/need to obtain more reliable information on the so-called high-active waste buried in the Industrial Site. (author)

  9. Selection of radioactive waste disposal site considering natural processes

    International Nuclear Information System (INIS)

    Nakamura, H.

    1991-01-01

    To dispose the radioactive waste, it is necessary to consider the transfer of material in natural environment. The points of consideration are 1) Long residence time of water 2) Independence of biosphere from the compartment containing the disposal site in the natural hydrologic cycle 3) Dilution with the natural inactive isotope or the same group of elements. Isotope dilution for 129 I and 14 C can be expected by proper selection of the site. 241 Am and 239 Pu will be homogenized into soil or sediment with insoluble elements such as iron and aluminium. For 237 Np and 99 Tc anionic condition is important for the selection. From the point of view of hydrologic cycle, anoxic dead water zone avoiding beneath mountain area is preferable for the disposal site. (author)

  10. Siting process for disposal site of low level radiactive waste in Thailand

    International Nuclear Information System (INIS)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.; Sriyotha, K.

    1992-01-01

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The site selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand

  11. Symposium on the development of nuclear waste policy: Siting the high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    The Nuclear Waste Policy Act of 1982 (NWPA) attempted to formulate a viable national policy for managing the disposal of high-level nuclear wastes. The NWPA authorized the selection of two repository sites: the first to be constructed in the West and a second site developed in the eastern United States. A detailed process for site selection was outlined in the NWPA. In addition, the NWPA authorized open-quotes the development of a waste transportation system; required the Department of Energy (DOE) to submit a proposal to construct a facility for monitored retrievable storage (MRS) after conducting a study of the need for, and feasibility of such a facility; and required the President to evaluate the use of the repositories ... for the disposal of high-level waste resulting from defense activitiesclose quotes (DOE, 1988, p. 1). A series of provisions granting oversight participation to states and Indian tribes, as well as a compensation package for the ultimate host state were also included. Responsibility for implementing the NWPA was assigned to DOE

  12. Planning for the recreational end use of a future LLR waste mound in Canada - Leaving an honourable legacy

    International Nuclear Information System (INIS)

    Kleb, H.R.; Zelmer, R.L.

    2007-01-01

    The Low-Level Radioactive Waste Management Office was established in 1982 to carry out the federal government's responsibilities for low-level radioactive (LLR) waste management in Canada. In this capacity, the Office operates programs to characterize, delineate, decontaminate and consolidate historic LLR waste for interim and long-term storage. The Office is currently the proponent of the Port Hope Area Initiative; a program directed at the development and implementation of a safe, local long-term management solution for historic LLR waste in the Port Hope area. A legal agreement between the Government of Canada and the host community provides the framework for the implementation of the Port Hope Project. Specifically, the agreement requires that the surface of the long-term LLR waste management facility be 'conducive to passive and active recreational uses such as soccer fields and baseball diamonds'. However, there are currently no examples of licensed LLR waste management facilities in Canada that permit recreational use. Such an end use presents challenges with respect to engineering and design, health and safety and landscape planning. This paper presents the cover system design, the environmental effects assessment and the landscape planning processes that were undertaken in support of the recreational end use of the Port Hope long-term LLR waste management facility. (authors)

  13. Waste immobilization demonstration program for the Hanford Site's Mixed Waste Facility

    International Nuclear Information System (INIS)

    Burbank, D.A.; Weingardt, K.M.

    1994-05-01

    This paper presents an overview of the Waste Receiving and Processing facility, Module 2A> waste immobilization demonstration program, focusing on the cooperation between Hanford Site, commercial, and international participants. Important highlights of the development and demonstration activities is discussed from the standpoint of findings that have had significant from the standpoint of findings that have had significant impact on the evolution of the facility design. A brief description of the future direction of the program is presented, with emphasis on the key aspects of the technologies that call for further detailed investigation

  14. Savannah River Site Operating Experience with Transuranic (TRU) Waste Retrieval

    International Nuclear Information System (INIS)

    Stone, K.A.; Milner, T.N.

    2006-01-01

    Drums of TRU Waste have been stored at the Savannah River Site (SRS) on concrete pads from the 1970's through the 1980's. These drums were subsequently covered with tarpaulins and then mounded over with dirt. Between 1996 and 2000 SRS ran a successful retrieval campaign and removed some 8,800 drums, which were then available for venting and characterization for WIPP disposal. Additionally, a number of TRU Waste drums, which were higher in activity, were stored in concrete culverts, as required by the Safety Analysis for the Facility. Retrieval of drums from these culverts has been ongoing since 2002. This paper will describe the operating experience and lessons learned from the SRS retrieval activities. (authors)

  15. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jones, Susan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  16. Case history update: RCRA waste site remediation by telerobotic methods

    International Nuclear Information System (INIS)

    Yemington, C.R.; Stone, J.

    1992-01-01

    This paper presents a summary of the first 18 months of closure work at the Kerr Hollow Quarry site on the DOE reservation at Oak Ridge, Tennessee. Closure work includes recovery and processing of explosive, toxic and radioactive waste. As of January 1992, more than 10,000 items had been processed and removed from the quarry, exclusively by remotely operated equipment. Drums, buckets, tubing assemblies and other containers are being shredded to react any explosive contents. Concussion and projectiles are controlled by operating the shredder under 30 feet of water. The performance of the shredder, the effectiveness of the approach, production rates and maintenance requirements are addressed in the paper. To avoid exposing personnel to hazards, all work in the restricted area is done remotely. Two remotely operated vehicles were used to clear a pad, set a stand and install the 200-hp shredder. Some materials exposed by shredding are stable in water but react when exposed to air. In addition, radioactive items are mixed in with the other wastes. Safety considerations have therefore led to use of remote techniques for handling and examining materials after recovery. Deteriorated gas cylinders, which may contain pressurized toxic materials, are recovered and handled exclusively by remotely operated equipment. Waste retrieval work at the Kerr Hollow Quarry has proven the capability and cost-effectiveness of remotely operated equipment to deal with a wide variety of hazardous materials in an unstructured waste site environment. A mixture of radioactive materials, toxic chemicals, explosives and asbestos has been found and processed. Remotely operated vehicles have retrieved, sorted and processed more than 10,000 items including drums, buckets, pipe manifolds, gas cylinders and other containers

  17. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Arnold, P.

    2012-01-01

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams

  18. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  19. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K.R. (ed.)

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites. (DLC)

  20. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites

  1. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    International Nuclear Information System (INIS)

    Washington Regulatory and Environmental Services

    2003-01-01

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED)

  2. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  3. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grant Evenson

    2006-01-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139

  4. Geochemical investigations at Maxey Flats radioactive waste disposal site

    International Nuclear Information System (INIS)

    Dayal, R.; Pietrzak, R.F.; Clinton, J.

    1984-09-01

    As part of the NRC efforts to develop a data base on source term characteristics for low level wastes, Brookhaven National Laboratory (BNL) has produced and analyzed a large amount of data on trench leachate chemistry at existing shallow land burial sites. In this report, we present the results of our investigations at the Maxey Flats, Kentucky disposal site. In particular, data on trench leachate chemistry are reviewed and discussed in terms of mechanisms and processes controlling the composition of trench solutes. Particular emphasis is placed on identifying both intra- and extra-trench factors and processes contributing to source term characteristics, modifications, and uncertainties. BNL research on the Maxey Flats disposal site has provided important information not only on the source term characteristics and the factors contributing to uncertainties in the source term but also some generic insights into such geochemical processes and controls as the mechanics of leachate formation, microbial degradation and development of anoxia, organic complexation and radionuclide mobility, redox inversion and modification of the source term, solubility constraints on solute chemistry, mineral authigenesis, corrosion products and radionuclide scavenging, and the role of organic complexants in geochemical partitioning of radionuclides. A knowledge of such processes and controls affecting the geochemical cycling of radionuclides as well as an understanding of the important factors that contribute to variability and uncertainties in the source term is essential for evaluating the performance of waste package and the site, making valid predictions of release for dose calculations, and for planning site performance monitoring as well as remedial actions. 43 references, 47 figures, 30 tables

  5. A survey of citizen's attitude to disposal sites of industrial waste and radioactive waste

    International Nuclear Information System (INIS)

    Ishizaka, Kaoru; Tanaka, Masaru; Tokizawa, Takayuki; Sato, Kazuhiko; Koga, Osamu

    2008-01-01

    This study aimed to investigate a risk perception about landfill sits for industrial waste or radioactive waste through the questionnaire survey. As a result, it was shown that most of people worried about health and environmental impact of radioactive waste; and moreover, high ratios of the peoples felt dangerous and scary sensuously. Public trust to the central government was very low. Over 60 percent of people do not trust that countermeasures will be taken at the times of accident' and nearly 70 percent of people do not trust that 'the information about the accident is disclosed'. Answers to questions concerning about public trust regarding countermeasures at the accident, information disclosure at the accident, environmental standard, and environmental technology show significant correlation with risk perception of landfill sites. (author)

  6. HANFORD SITE SOLID WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT TECHNICAL INFORMATION DOCUMENT [SEC 1 THRU 4

    International Nuclear Information System (INIS)

    FRITZ, L.L.

    2004-01-01

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement''. Assumptions and waste volumes used to calculate engineering data are also provided in this document. This chapter provides a brief description of: the Solid Waste Management Program (including a description of waste types and known characteristics of waste covered under the program), the Hanford Site (including a general discussion of the operating areas), and the alternatives analyzed. The Hanford Site Solid Waste Management Program and DOE/EIS-0286 address solid radioactive waste types generated by various activities from both onsite and offsite generators. The Environmental Restoration (ER) waste management activities are not within the scope of DOE/EIS-0286 or this TID. Activities for processing and disposal of immobilized low-activity waste (ILAW) are not within the scope of the Solid Waste Management Program and this TID

  7. Basalt Waste Isolation Project exploratory shaft site: Final reclamation report

    International Nuclear Information System (INIS)

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs

  8. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    Energy Technology Data Exchange (ETDEWEB)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  9. Darwin's legacy

    Science.gov (United States)

    Susskind, Leonard

    2009-07-01

    Charles Darwin was no theoretical physicist, and I am no biologist. Yet, as a theoretical physicist, I have found much to think about in Darwin's legacy - and in that of his fellow naturalist Alfred Russell Wallace. Darwin's style of science is not usually thought of as theoretical and certainly not mathematical: he was a careful observer of nature, kept copious notes, contributed to zoological collections; and eventually from his vast repertoire of observation deduced the idea of natural selection as the origin of species. The value of theorizing is often dismissed in the biological sciences as less important than observation; and Darwin was the master observer.

  10. 1993 Annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Kirkendall, J.R.; Engel, J.A.

    1994-01-01

    More important than waste generation numbers, the pollution prevention and waste minimization successes achieved at Hanford in 1993 have reduced waste and improved operations at the Site. Just a few of these projects are: A small research nuclear reactor, unused and destined for disposal as low level radioactive waste, was provided to a Texas University for their nuclear research program, avoiding 25 cubic meters of waste and saving $116,000. By changing the slope on a asphalt lot in front of a waste storage pad, run-off rainwater was prevented from becoming mixed low level waste water, preventing 40 cubic meters of waste and saving $750,000. Through more efficient electrostatic paint spraying equipment and a solvent recovery system, a paint shop reduced hazardous waste by 3,500 kilograms, saving $90,800. During the demolition of a large decommissioned building, more than 90% of the building's material was recycled by crushing the concrete for use on-Site and selling the steel to an off-Site recycler, avoiding a total of 12,600 metric tons of waste and saving $450,000. Additionally, several site-wide programs have avoided large quantities of waste, including the following: Through expansion of the paper and office waste recycling program which includes paper, cardboard, newspaper, and phone books, 516 metric tons of sanitary waste was reduced, saving $68,000. With the continued success of the excess chemicals program, which finds on-Site and off-Site customers for excess chemical materials, hazardous waste was reduced by 765,000 liters of liquid chemicals and 50 metric tons of solid chemicals, saving over $700,000 in disposal costs

  11. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  12. Site Specific Waste Management Instructions for loading and shipment of category 3 investigation derived waste to ERDF

    International Nuclear Information System (INIS)

    Corriveau, C.E.; Wolf, D.M.

    1996-08-01

    This Site Specific Waste Management Instruction (SSWMI) provides guidance for management of containerized investigation-derived waste being loaded and transported to the Environmental Restoration Disposal Facility. The SSWMI outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements. Additional guidance for waste packaging, marking, labeling and shipping is provided (US DOT rules in 49 CFR have precedence)

  13. Success in siting low-level radioactive waste management facilities

    International Nuclear Information System (INIS)

    Brown, P.; McCauley, D.

    2001-01-01

    Full text: The Government of Canada is about to conclude a legal agreement with three municipalities that will result in a $260-million 10-year multi-phase project to cleanup low-level radioactive wastes and contaminated soils and establish long-term low-level radioactive waste management facilities. Over the last two decades, numerous efforts were undertaken to resolve this long-standing environmental issue. Finally, the communities where the wastes are located came forward with resolutions that they were willing to develop local solutions to the problem. All three municipalities, facilitated by Government funding and assistance, put forward their own local solution to their own waste problem. Government accepted the municipalities' proposals as the basis of a comprehensive approach for dealing with the local problem. Negotiations ensued on Principles of Understanding under which the cleanup would proceed and new long-term waste management facilities would be established. Government's acceptance of the negotiated Principles led to the preparation of a legal agreement that was subsequently signed by each of the municipalities and is now about to be ratified by the Government of Canada. Resolution of the issue will be a major milestone in the Government's environmental agenda. The project will result in an environmentally-responsible, safe, and publicly-accepted approach to the long-term management of the wastes and remove one of the largest contaminated sites issues from the Government's agenda. It also advances the Government's nuclear waste policy and indicates to waste producers that the Government is developing and implementing solutions for wastes for which it is responsible. A key lesson for the Government of Canada in this process has been the advantages of a locally-generated solution. Through the process, the Government empowered the local municipalities to develop their own solution to the local waste problem. It facilitated and supported that effort

  14. 36 CFR 6.5 - Solid waste disposal sites in operation on September 1, 1984.

    Science.gov (United States)

    2010-07-01

    ... Insecticide, Fungicide and Rodenticide Act (7 U.S.C. 136 et seq.); (vi) Sludge from a waste treatment plant... leased by the operator; and (iii) the solid waste disposal site lacks road, rail, or adequate water... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Solid waste disposal sites in...

  15. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  16. Remediation of hazardous waste sites by heap leaching

    International Nuclear Information System (INIS)

    Samani, Z.; Hanson, A.; Dwyer, B.

    1994-01-01

    Efforts are being made to devise technologies and treatment systems to remediate contaminated soil-on site without generating significant wastes for off-site disposal. Heap leaching, a technique used extensively in the mining industry, has been investigated as a method for remediation of hazardous chemical contamination of the vadose zone. In the mining industry, metal-bearing ore is excavated and mounded on a pad. The metals are removed by passing a special leaching solution through the ore. In this study, the removal of chromium(VI) from the New Mexico soils (sand, sandy loam, and clay) using heap leaching was evaluated at a column scale. The heap leaching study demonstrated greater than 99% removal of Cr(VI) from all three soils using tap water as the leaching agent. (author) 13 figs., 5 tabs., 21 refs

  17. Progress in forming bottom barriers under waste sites

    International Nuclear Information System (INIS)

    Carter, E.E.

    1997-01-01

    The paper describes an new method for the construction, verification, and maintenance of underground vaults to isolate and contain radioactive burial sites without excavation or drilling in contaminated areas. The paper begins with a discussion of previous full-scale field tests of horizontal barrier tools which utilized high pressure jetting technology. This is followed by a discussion of the TECT process, which cuts with an abrasive cable instead of high pressure jets. The new method is potentially applicable to more soil types than previous methods and can form very thick barriers. Both processes are performed from the perimeter of a site and require no penetration or disturbance of the active waste area. The paper also describes long-term verification methods to monitor barrier integrity passively

  18. Shield evaluation and validation for design and operation of facility for treatment of legacy Intermediate Level Radioactive Liquid Waste (ILW)

    International Nuclear Information System (INIS)

    Deepa, A.; Jakhete, A.P.; Rathish, K.R.; Saroj, S.K.; Patel, H.S.; Gopalakrishnan, R.K.; Gangadharan, Anand; Singh, Neelima

    2014-01-01

    An ion exchange treatment facility has been commissioned at PRIX facility, for the treatment of legacy ILW generated at reprocessing plant, Trombay. The treatment system is based on the deployment of selective sorbents for removal of cesium and strontium from ILW. Activity concentration due to beta emitters likely to be processed is of the order of 111-1850 MBq/l. Dose rates in different areas of the facility were evaluated using shielding code and design input. Present work give details of the comparison of dose rates estimated and dose rates measured at various stages of the processing of ILW. At PRIX, the ILW treatment system comprises of shielded IX columns (two cesium and one strontium) housed in a MS cubicle the process lines inlet and outlet of IX treatment system and effluent storage tanks. The MS cubicle, prefilter and piping are housed in a process cell of 500 mm concrete shielding. Effluent storage tanks are outside processing building. Theoretical assessment of expected dose rates were carried out prior to installation of various systems in different areas of PRIX. Dose rate on IX column and MS cubicle for a maximum inventory of 3.7x10 7 MBq of 137 Cs and its contribution in operating gallery was estimated

  19. Radioactive waste: the poisoned legacy of the nuclear industry; Dechets radioactifs: l'heritage empoisonne du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Rousselet, Y. [Campagne Climat/Energie - Greenpeace (France)

    2011-02-15

    The nuclear industry produces a huge amount of radioactive waste from one end to the other of the nuclear cycle: i.e. from mining uranium to uranium enrichment through reactor operating, waste reprocessing and dismantling nuclear power plants. Nuclear power is now being 'sold' to political leaders and citizens as an effective way to deal with climate change and ensure security of energy supplies. Nonetheless, nuclear energy is not a viable solution and is thus a major obstacle to the development of clean energy for the future. In addition to safety and security issues, the nuclear industry is, above all, faced with the huge problem of how to deal with the waste it produces and for which it has no solution. This ought to put a brake on the nuclear industry, but instead, against all expectations, its development continues to gather pace. (author)

  20. Remaining Sites Verification Package for the 100-D-2 Lead Sheeting Waste Site. Attachment to Waste Site Reclassification Form 2007-030

    International Nuclear Information System (INIS)

    Dittmer, L.M.

    2008-01-01

    The 100-D-2 Lead Sheeting waste site was located approximately 50 m southwest of the 185-D Building and approximately 16 m north of the east/west oriented road. The site consisted of a lead sheet covering a concrete pad. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  1. Waste migration in shallow burial sites under unsaturated flow conditions

    International Nuclear Information System (INIS)

    Eicholz, G.G.; Whang, J.

    1987-01-01

    Unsaturated conditions prevail in many shallow-land burial sites, both in arid and humid regions. Unless a burial site is allowed to flood and possibly overflow, a realistic assessment of any migration scenario must take into account the conditions of unsaturated flow. These are more difficult to observe and to model, but introduce significant changes into projected rates of waste leaching and waste migration. Column tests have been performed using soils from the Southeastern coastal plain to observe the effects of varying degrees of ''unsaturation'' on the movement of radioactive tracers. The moisture content in the columns was controlled by maintaining various levels of hydrostatic suction on soil columns whose hydrodynamic characteristics had been determined carefully. Tracer tests, employing Cs-137, I-131 and Ba-133 were used to determine migration profiles and to follow their movement down the column for different suction values. A calculational model has been developed for unsaturated flow and seems to match the observations fairly well. It is evident that a full description of migration processes must take into account the reduced migration rates under unsaturated conditions and the hysteresis effects associated with wetting-drying cycles

  2. Maxey Flats low-level waste disposal site closure activities

    International Nuclear Information System (INIS)

    Haight, C.P.; Mills, D.; Razor, J.E.

    1987-01-01

    The Maxey Flats Radioactive Waste Disposal Facility in Fleming County, Kentucky is in the process of being closed. The facility opened for commercial business in the spring of 1963 and received approximately 4.75 million cubic feet of radioactive waste by the time it was closed in December of 1977. During fourteen years of operation approximately 2.5 million curies of by-product material, 240,000 kilograms of source material, and 430 kilograms of special nuclear material were disposed. The Commonwealth purchased the lease hold estate and rights in May 1978 from the operating company. This action was taken to stabilize the facility and prepare it for closure consisting of passive care and monitoring. To prepare the site for closure, a number of remedial activities had to be performed. The remediation activities implemented have included erosion control, surface drainage modifications, installation of a temporary plastic surface cover, leachate removal, analysis, treatment and evaporation, US DOE funded evaporator concentrates solidification project and their on-site disposal in an improved disposal trench with enhanced cover for use in a humid environment situated in a fractured geology, performance evaluation of a grout injection demonstration, USGS subsurface geologic investigation, development of conceptual closure designs, and finally being added to the US EPA National Priority List for remediation and closure under Superfund. 13 references, 3 figures

  3. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-01-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioecconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts, resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  4. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  5. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  6. Perceived risk impacts from siting hazardous waste facilities

    International Nuclear Information System (INIS)

    Hemphill, R.C.; Edwards, B.K.; Bassett, G.W. Jr.

    1992-01-01

    This paper describes methods for evaluating perception-based economic impacts resulting from siting hazardous waste facilities. Socioeconomic impact analysis has devoted increasing attention to the potential implications of changed public perceptions of risk due to an activity or situation. This contrasts with traditional socioeconomic impact analysis, which has been limited to measuring direct and indirect consequences of activities, e.g., the employment effects of placing a military base in a specified location. Approaches to estimating economic impacts due to changes in public perceptions are ex ante or ex post. The former predict impacts prior to the construction and operation of a facility, while the later is based on impacts that become evident only when the facility is up and running. The theoretical foundations and practical requirements for demonstrating impacts resulting from the siting of a hazardous facility are described. The theoretical rationale supporting the study of perceived risk research is presented along with discussion of problems that arise in demonstrating the existence and measuring the quantitative importance of economic impacts due to changes in perceived risk. The high-level nuclear waste facility being considered in Nevada is presented as an example in which there is potential for impacts, but where the link between perceived risk and economic conditions has not yet been developed

  7. Three multimedia models used at hazardous and radioactive waste sites

    International Nuclear Information System (INIS)

    Moskowitz, P.D.; Pardi, R.; Fthenakis, V.M.; Holtzman, S.; Sun, L.C.; Rambaugh, J.O.; Potter, S.

    1996-02-01

    Multimedia models are used commonly in the initial phases of the remediation process where technical interest is focused on determining the relative importance of various exposure pathways. This report provides an approach for evaluating and critically reviewing the capabilities of multimedia models. This study focused on three specific models MEPAS Version 3.0, MMSOILS Version 2.2, and PRESTO-EPA-CPG Version 2.0. These models evaluate the transport and fate of contaminants from source to receptor through more than a single pathway. The presence of radioactive and mixed wastes at a site poses special problems. Hence, in this report, restrictions associated with the selection and application of multimedia models for sites contaminated with radioactive and mixed wastes are highlighted. This report begins with a brief introduction to the concept of multimedia modeling, followed by an overview of the three models. The remaining chapters present more technical discussions of the issues associated with each compartment and their direct application to the specific models. In these analyses, the following components are discussed: source term; air transport; ground water transport; overland flow, runoff, and surface water transport; food chain modeling; exposure assessment; dosimetry/risk assessment; uncertainty; default parameters. The report concludes with a description of evolving updates to the model; these descriptions were provided by the model developers

  8. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-01-01

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites

  9. Technologies for in situ immobilization and isolation of radioactive wastes at disposal and contaminated sites

    International Nuclear Information System (INIS)

    1997-11-01

    This report describes technologies that have been developed worldwide and the experiences applied to both waste disposal and contaminated sites. The term immobilization covers both solidification and embedding of wastes

  10. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    David B. Hudson, Cathy A. Wills

    2006-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  11. Small mammal populations at hazardous waste disposal sites near Houston, Texas, USA

    Science.gov (United States)

    Robbins, C.S.

    1990-01-01

    Small mammals were trapped, tagged and recaptured in 0?45 ha plots at six hazardous industrial waste disposal sites to determine if populations, body mass and age structures were different from paired control site plots. Low numbers of six species of small mammals were captured on industrial waste sites or control sites. Only populations of hispid cotton rats at industrial waste sites and control sites were large enough for comparisons. Overall population numbers, age structure, and body mass of adult male and female cotton rats were similar at industrial waste sites and control sites. Populations of small mammals (particularly hispid cotton rats) may not suffice as indicators of environments with hazardous industrial waste contamination.

  12. Enhanced On-Site Waste Management of Plasterboard in Construction Works: A Case Study in Spain

    Directory of Open Access Journals (Sweden)

    Ana Jiménez-Rivero

    2017-03-01

    Full Text Available On-site management of construction waste commonly determines its destination. In the case of plasterboard (PB, on-site segregation becomes crucial for closed-loop recycling. However, PB is commonly mixed with other wastes in Spain. In this context, the involvement of stakeholders that can contribute to reversing this current situation is needed. This paper analyzes on-site waste management of PB in Spain through a pilot study of a construction site, with the main objective of identifying best practices to increase waste prevention, waste minimization, and the recyclability of the waste. On-site visits and structured interviews were conducted. The results show five management stages: PB distribution (I; PB installation (II; Construction waste storage at the installation area (III; PB waste segregation at the installation area (IV and PB waste transfer to the PB container and storage (V. The proposed practices refer to each stage and include the merging of Stages III and IV. This measure would avoid the mixing of waste fractions in Stage III, maximizing the recyclability of PB. In addition, two requisites for achieving enhanced management are analyzed: ‘Training and commitment’ and ‘fulfilling the requirements established by the current regulation’. The results show that foremen adopted a more pessimistic attitude than installers towards a joint commitment for waste management. Moreover, not all supervisors valued the importance of a site waste management plan, regulated by the Royal Decree 105/2008 in Spain.

  13. Lessons Learned and Present Day Challenges of Addressing 20th Century Radiation Legacies of Russia and the United States

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The decommissioning of nuclear submarines, disposal of highly-enriched uranium and weapons-grade plutonium, and processing of high-level radioactive wastes represent the most challenging issues facing the cleanup of 20th century radiation legacy wastes and facilities. The US and Russia are the two primary countries dealing with these challenges, because most of the world's fissile inventory is being processed and stored at multiple industrial sites and nuclear weapons production facilities in these countries

  14. Effects of prescribed fire and post-fire rainfall on mercury mobilization and subsequent contamination assessment in a legacy mine site in Victoria, Australia.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-01-01

    Prescribed fire conducted in fire-prone areas is a cost-effective choice for forest management, but it also affects many of the physicochemical and bio-geological properties of the forest soil, in a similar manner to wild fires. The aim of this study is to investigate the nature of the mercury mobilization after a prescribed fire and the subsequent temporal changes in concentration. A prescribed fire was conducted in a legacy mine site in Central Victoria, Australia, in late August 2015 and soil sample collection and analyses were carried out two days before and two days after the fire, followed by collection at the end of each season and after an intense rainfall event in September 2016. Results revealed the occurrence of mercury volatilization (8.3-97%) during the fire, and the mercury concentration displayed a significant difference (p fire. Integrated assessment with number of pollution indices has shown that the study site is extremely contaminated with mercury during all the sampling events, and this poses a serious ecological risk due to the health impacts of mercury on human and ecosystems. In times of climate fluctuation with concomitant increase in forest fire (including prescribed fire), and subsequent precipitation and runoff, the potential for an increased amount of mercury being mobilized is of heighted significance. Therefore, it is recommended that prescribed fire should be cautiously considered as a forest management strategy in any mercury affected landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Prototype Scintillating Fibre Tracker for the Cosmic-Ray Muon Tomography of Legacy Nuclear Waste Containers

    OpenAIRE

    Kaiser, R.; Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D.G.; Johnstone, J.R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Staines, C.; Yang, G.

    2014-01-01

    Cosmic-ray muons are highly-penetrative charged particles observed at sea level with a flux of approximately 1 cm−2 min−1. They interact with matter primarily through Coulomb scattering which can be exploited in muon tomography to image objects within industrial nuclear waste containers. This paper presents the prototype scintillating-fibre detector developed for this application at the University of Glasgow. Experimental results taken with test objects are shown in comparison to results from...

  16. Evaluation of Absorbents for Compatibility with Site Generated Hazardous and Mixed Liquid Wastes

    International Nuclear Information System (INIS)

    Oji, L.N.

    2002-01-01

    SRS Solid Waste requested SRTC to perform a literature-based evaluation of sorbents, which are compatible with hazardous mixed waste being generated on site. Polypropylene-based materials and ground corn cob (Toxi-dry), because of their compatibility with the Consolidated Incinerator Facility (CIF) process, are the only two spill stabilization agents which are recommended for use on site (IS manual, Waste Acceptance Criteria 3.18). While ensuring minimal potential for undesired reactions between spills and spill control agents, Solid Waste wants to increase the number of site approved absorbents to give waste generators more flexibility in choosing liquid spill immobilization agents

  17. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by

  18. High level radioactive waste siting processes: critical lessons from Canadian siting successes

    International Nuclear Information System (INIS)

    Hardy, D.R.

    1996-01-01

    While not without controversy, Canada's Crown Corporations, municipalities, agencies and private companies have had success in siting and achieving approval for operating: toxic and hazardous waste facilities; dry radioactive materials storage facilities; the Federal low-level radioactive waste disposal facility; and, several large and small domestic landfills. The cumulative experience gained from these siting and approval processes provides valuable advice in support of the siting and approval of high-level radioactive disposal facilities. Among the critical elements for the success of these siting efforts are: 1) the tinting, scope and character of the siting process reflects the cultural and social values of affected people; 2) the siting and approval processes has integrity -- characterized as rational processes in pursuit of the public interest; 3) sufficient time and resources are dedicated to listening carefully and examining issues seen to be important by the public; 4) all information is shared -- even if the information is potentially detrimental to the approval of the facility; 5) proponent has a prioritized multiple focus on 'health, safety and environment issues', on 'insuring that the environmental assessment process is socially acceptable' as well as on the 'approval considerations'; 6) the implementing agency seeks cooperation and win-win solutions with the local community; 7) the community has the option of opting-out of the process and the do-nothing and/or the not here option continues to be considered by the proponent; 8) local emergency response people are well-trained and accepting of the facility; 9) the community has a strong role in determining the terms, conditions and compensation related to the future facility. (author)

  19. Uncertainty management in radioactive waste repository site assessment

    International Nuclear Information System (INIS)

    Baldwin, J.f.; Martin, T.P.; Tocatlidou

    1994-01-01

    The problem of performance assessment of a site to serve as a repository for the final disposal of radioactive waste involves different types of uncertainties. Their main sources include the large temporal and spatial considerations over which safety of the system has to be ensured, our inability to completely understand and describe a very complex structure such as the repository system, lack of precision in the measured information etc. These issues underlie most of the problems faced when rigid probabilistic approaches are used. Nevertheless a framework is needed, that would allow for an optimal aggregation of the available knowledge and an efficient management of the various types of uncertainty involved. In this work a knowledge-based modelling of the repository selection process is proposed that through a consequence analysis, evaluates the potential impact that hypothetical scenarios will have on a candidate site. The model is organised around a hierarchical structure, relating the scenarios with the possible events and processes that characterise them, and the site parameters. The scheme provides for both crisp and fuzzy parameter values and uses fuzzy semantic unification and evidential support logic reference mechanisms. It is implemented using the artificial intelligence language FRIL and the interaction with the user is performed through a windows interface

  20. Quantifying and Predicting Reactive Transport of Uranium in Waste Plumes: Are Colloids and Nanoparticles Important?

    International Nuclear Information System (INIS)

    Jiamin Wan; Tetsu Tokunaga; Carl Steefel; Peter Burns

    2006-01-01

    The Hanford Site is the DOE's largest legacy waste site, with uranium (U) from plutonium processing being a major contaminant in its subsurface. Accidental release of highly concentrated high-level wastes left large quantities of U in the vadose zone under tank farms. The U contamination has been found in groundwater beneath the tank farms, indicating U is mobile

  1. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  2. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed

  3. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  4. Low level radioactive waste disposal/treatment technology overview: Savannah River site

    International Nuclear Information System (INIS)

    Sturm, H.F. Jr.

    1987-01-01

    The Savannah River Site will begin operation of several low-level waste disposal/treatment facilities during the next five years, including a new low-level solid waste disposal facility, a low-level liquid effluent treatment facility, and a low-level liquid waste solidification process. Closure of a radioactive hazardous waste burial ground will also be completed. Technical efforts directed toward waste volume reduction include compaction, incineration, waste avoidance, and clean waste segregation. This paper summarizes new technology being developed and implemented. 11 refs., 1 fig

  5. Applying Lean Concepts to Waste Site Closure - 13137

    International Nuclear Information System (INIS)

    Proctor, M.L.

    2013-01-01

    Washington Closure Hanford (WCH) was selected by the U.S. Department of Energy, Richland Operations Office to manage the River Corridor Closure Project, a 10-year contract in which WCH will clean up 220 mi 2 of contaminated land at the Hanford Site in Richland, Washington. In the summer of 2011, with Tri-Party (DOE-RL, Environmental Protection Agency and Washington State Department of Ecology) Agreement Milestones due at the end of the calendar year, standard work practices were challenged in regards to closure documentation development. The Lean process, a concept that maximizes customer value while minimizing waste, was introduced to WCH's Sample Design and Cleanup Verification organization with the intention of eliminating waste and maximizing efficiencies. The outcome of implementing Lean processes and concepts was impressive. It was determined that the number of non-value added steps far outnumbered the value added steps. Internal processing time, document size, and review times were all reduced significantly; relationships with the customer and the regulators were also improved; and collaborative working relationships with the Tri Parties have been strengthened by working together on Lean initiatives. (authors)

  6. Applying Lean Concepts to Waste Site Closure - 13137

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, M.L. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

    2013-07-01

    Washington Closure Hanford (WCH) was selected by the U.S. Department of Energy, Richland Operations Office to manage the River Corridor Closure Project, a 10-year contract in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. In the summer of 2011, with Tri-Party (DOE-RL, Environmental Protection Agency and Washington State Department of Ecology) Agreement Milestones due at the end of the calendar year, standard work practices were challenged in regards to closure documentation development. The Lean process, a concept that maximizes customer value while minimizing waste, was introduced to WCH's Sample Design and Cleanup Verification organization with the intention of eliminating waste and maximizing efficiencies. The outcome of implementing Lean processes and concepts was impressive. It was determined that the number of non-value added steps far outnumbered the value added steps. Internal processing time, document size, and review times were all reduced significantly; relationships with the customer and the regulators were also improved; and collaborative working relationships with the Tri Parties have been strengthened by working together on Lean initiatives. (authors)

  7. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2001-01-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste

  8. Waste Isolation Pilot Plant Annual Site Environmental Report for 2016

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson [Carlsbad Field Office (CBFO), NM (United States); Basabilvazo, George T. [Carlsbad Field Office (CBFO), NM (United States)

    2017-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2016 (ASER) is to provide the information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC) maintain and preserve the environmental resources at the WIPP facility. DOE Order 231.1B; DOE Order 436.1, Departmental Sustainability; and DOE Order 458.1, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1B, which requires DOE facilities to submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer.

  9. Ethical considerations surrounding nuclear waste repository siting and mitigation

    International Nuclear Information System (INIS)

    Peters, T.F.

    1983-01-01

    The potential long-term health and safety effects of the nuclear materials stored in repositories, the extremely long periods of time over which such materials may be dangerous, and the equity implications of the siting of a repository in any given area are unlike the issues involved in other large-scale projects. They involve major philosophical issues basic to human perspectives on social relationships and on insuring the future of mankind. Safety and permanence are the two basic criteria for determining whether a waste proposal is satisfactory. This chapter takes the approach of public (or micro) ethics, whose task is to 1) articulate and clarify public values relevant to a problem, 2) identify and evaluate public options, and 3) rank alternatives in some order of ethical preferability. It addresses the four major repository-related issues: uncertainty and risks, geographic equity, intergenerational ethics, and implementation ethics

  10. General guidelines for recommendation of sites for nuclear waste repositories

    International Nuclear Information System (INIS)

    1983-01-01

    These guidelines were developed in accordance with the requirements of Section 112(a) of the Nuclear Waste Policy Act of 1982 for use by the Secretary of Energy in evaluating the suitability of sites for the development of repositories. The guidelines will be used for suitability evaluations and determinations made pursuant to Section 112(b) and any preliminary suitability determinations required by Section 114(f). The guidelines set forth in this Part are intended to complement the requirements set forth in the Act, 10 CFR Part 60, and 40 CFR Part 191. In applying these guidelines, the DOE will resolve any inconsistencies between these guidelines and the above documents in a manner determined by the DOE to most closely agree with the intent of the Act

  11. Identifying suitable piercement salt domes for nuclear waste storage sites

    International Nuclear Information System (INIS)

    Kehle, R.; e.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes

  12. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  13. Remaining Sites Verification Package for the 128-F-2, 100-F Burning Pit Waste Site. Attachment to Waste Site Reclassification Form 2008-031

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    The 128-F-2 waste site consisted of multiple burn and debris filled pits located directly east of the 107-F Retention Basin and approximately 30.5 m east of the northeast corner of the 100-F Area perimeter road that runs along the riverbank. The burn pits were used for incinerating nonradioactive, combustible materials from 1945 to 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River

  14. Remaining Sites Verification Package for the 128-F-2, 100-F Burning Pit Waste Site, Waste Site Reclassification Form 2008-031

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-12-01

    The 128-F-2 waste site consisted of multiple burn and debris filled pits located directly east of the 107-F Retention Basin and approximately 30.5 m east of the northeast corner of the 100-F Area perimeter road that runs along the riverbank. The burn pits were used for incinerating nonradioactive, combustible materials from 1945 to 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.