WorldWideScience

Sample records for leg-press balance training

  1. Physical Exercise in Aging: Nine Weeks of Leg Press or Electrical Stimulation Training in 70 Years Old Sedentary Elderly People

    Science.gov (United States)

    Mosole, Simone; Löfler, Stefan; Fruhmann, Hannah; Burggraf, Samantha; Cvečka, Ján; Hamar, Dušan; Sedliak, Milan; Tirptakova, Veronica; Šarabon, Nejc; Mayr, Winfried; Kern, Helmut

    2015-01-01

    Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type) which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling). Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients’ quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP) exercise or electrical stimulation (ES). Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (pimprove the functional performances of aging muscles. Here ES is demonstrated to be a safe home-based method to counteract fast type fiber atrophy, typically associated with aging skeletal muscle. PMID:26913162

  2. Physical Exercise in Aging: Nine Weeks of Leg Press or Electrical Stimulation Training in 70 Years Old Sedentary Elderly People.

    Science.gov (United States)

    Zampieri, Sandra; Mosole, Simone; Löfler, Stefan; Fruhmann, Hannah; Burggraf, Samantha; Cvečka, Ján; Hamar, Dušan; Sedliak, Milan; Tirptakova, Veronica; Šarabon, Nejc; Mayr, Winfried; Kern, Helmut

    2015-08-24

    Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type) which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling). Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients' quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP) exercise or electrical stimulation (ES). Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (p<0.001), together with a significant increase in the number of Pax7 and NCAM positive satellite cells (p<0.005). A significant decrease of slow type fiber diameter was observed in both ES and LP trained subjects (p<0.001). Altogether these results demonstrate the effectiveness of physical exercise either voluntary (LP) or passive (ES) to improve the functional performances of aging muscles. Here ES is

  3. Physical exercise in Aging: Nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people

    Directory of Open Access Journals (Sweden)

    Sandra Zampieri

    2015-08-01

    Full Text Available Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling. Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients' quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP exercise or electrical stimulation (ES. Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (p<0.001, together with a significant increase in the number of Pax7 and NCAM positive satellite cells (p<0.005. A significant decrease of slow type fiber diameter was observed in both ES and LP trained subjects (p<0.001. Altogether these results demonstrate the effectiveness of physical exercise either voluntary (LP or passive (ES to improve the functional performances of aging muscles. Here ES

  4. Energy metabolism during repeated sets of leg press exercise leading to failure or not

    DEFF Research Database (Denmark)

    Gorostiaga, Esteban M; Navarro-Amézqueta, Ion; Calbet, José A L

    2012-01-01

    This investigation examined the influence of the number of repetitions per set on power output and muscle metabolism during leg press exercise. Six trained men (age 34 ± 6 yr) randomly performed either 5 sets of 10 repetitions (10REP), or 10 sets of 5 repetitions (5REP) of bilateral leg press...... exercise, with the same initial load and rest intervals between sets. Muscle biopsies (vastus lateralis) were taken before the first set, and after the first and the final sets. Compared with 5REP, 10REP resulted in a markedly greater decrease (P...

  5. Similar acute physiological responses from effort and duration matched leg press and recumbent cycling tasks

    Directory of Open Access Journals (Sweden)

    James Steele

    2018-02-01

    Full Text Available The present study examined the effects of exercise utilising traditional resistance training (leg press or ‘cardio’ exercise (recumbent cycle ergometry modalities upon acute physiological responses. Nine healthy males underwent a within session randomised crossover design where they completed both the leg press and recumbent cycle ergometer conditions. Conditions were approximately matched for effort and duration (leg press: 4 × 12RM using a 2 s concentric and 3 s eccentric repetition duration controlled with a metronome, thus each set lasted  60 s; recumbent cycle ergometer: 4 × 60 s bouts using a resistance level permitting 80–100 rpm but culminating with being unable to sustain the minimum cadence for the final 5–10 s. Measurements included VO2, respiratory exchange ratio (RER, blood lactate, energy expenditure, muscle swelling, and electromyography. Perceived effort was similar between conditions and thus both were well matched with respect to effort. There were no significant effects by ‘condition’ in any of the physiological responses examined (all p > 0.05. The present study shows that, when both effort and duration are matched, resistance training (leg press and ‘cardio’ exercise (recumbent cycle ergometry may produce largely similar responses in VO2, RER, blood lactate, energy expenditure, muscle swelling, and electromyography. It therefore seems reasonable to suggest that both may offer a similar stimulus to produce chronic physiological adaptations in outcomes such as cardiorespiratory fitness, strength, and hypertrophy. Future work should look to both replicate the study conducted here with respect to the same, and additional physiological measures, and rigorously test the comparative efficacy of effort and duration matched exercise of differing modalities with respect to chronic improvements in physiological fitness.

  6. Effects of technique variations on knee biomechanics during the squat and leg press.

    Science.gov (United States)

    Escamilla, R F; Fleisig, G S; Zheng, N; Lander, J E; Barrentine, S W; Andrews, J R; Bergemann, B W; Moorman, C T

    2001-09-01

    The specific aim of this project was to quantify knee forces and muscle activity while performing squat and leg press exercises with technique variations. Ten experienced male lifters performed the squat, a high foot placement leg press (LPH), and a low foot placement leg press (LPL) employing a wide stance (WS), narrow stance (NS), and two foot angle positions (feet straight and feet turned out 30 degrees ). No differences were found in muscle activity or knee forces between foot angle variations. The squat generated greater quadriceps and hamstrings activity than the LPH and LPL, the WS-LPH generated greater hamstrings activity than the NS-LPH, whereas the NS squat produced greater gastrocnemius activity than the WS squat. No ACL forces were produced for any exercise variation. Tibiofemoral (TF) compressive forces, PCL tensile forces, and patellofemoral (PF) compressive forces were generally greater in the squat than the LPH and LPL, and there were no differences in knee forces between the LPH and LPL. For all exercises, the WS generated greater PCL tensile forces than the NS, the NS produced greater TF and PF compressive forces than the WS during the LPH and LPL, whereas the WS generated greater TF and PF compressive forces than the NS during the squat. For all exercises, muscle activity and knee forces were generally greater in the knee extending phase than the knee flexing phase. The greater muscle activity and knee forces in the squat compared with the LPL and LPH implies the squat may be more effective in muscle development but should be used cautiously in those with PCL and PF disorders, especially at greater knee flexion angles. Because all forces increased with knee flexion, training within the functional 0-50 degrees range may be efficacious for those whose goal is to minimize knee forces. The lack of ACL forces implies that all exercises may be effective during ACL rehabilitation.

  7. Traditional balance and slackline training are associated with task-specific adaptations as assessed with sensorimotor tests.

    Science.gov (United States)

    Volery, Samuel; Singh, Navrag; de Bruin, Eling D; List, Renate; Jaeggi, Marc Morten; Mattli Baur, Brigitte; Lorenzetti, Silvio

    2017-08-01

    The purpose of this study was to measure alterations in sensorimotor skills and balance resulting from slackline training and conventional balance training. Forty-three physically fit subjects were randomized into three groups. Two groups practiced three times a week for 15 minutes, including at least once supervised session, on the slackline or perform conventional balance training for 6 weeks. The control group was not allowed to perform any balance training. Before and after the intervention, the subjects underwent sensorimotor and strength tests. The results of our intra-class correlation analysis showed that the stability parameters from the multifunctional training device (MFT, 0.7), the height during the countermovement jump (CMJ, 0.95) and the maximum force (0.88) during leg press showed excellent reliability. A post hoc comparison indicated a larger effect of conventional training (almost 11% reduction in MFT stability) compared with slackline training in group-wide comparisons of the pre- to the post-training measurements. The factor analysis showed that stability and sensorimotor assessment using MFT were correlated, as were height during CMJ and maximal force during leg press, which represented dynamic strength. Because CMJ had the highest intra-class correlation value, it was chosen over maximum force from leg press. For these reasons, only two out of nine measured parameters, namely MFT stability and CMJ, were analysed across groups. The only observed difference between the two groups was MFT stability (slackline - 1.5%, conventional - 13%), whereas the improvement of CMJ was the same (slackline + 3%, conventional + 3%). It can be concluded that slacklining is partly complementary to conventional sensorimotor training.

  8. Effects of Shoes and a Prefabricated Medial Arch Support on Medial Gastrocnemius and Tibialis Anterior Activity while doing Leg Press Exercise in Normal Feet Athletes

    Directory of Open Access Journals (Sweden)

    Maryam Sheikhi

    2017-04-01

    Full Text Available Background: Nowadays, different types of exercise machines are being used in the field of athletic training, recreation, post-injury and post-operation rehabilitation. Leg press is a commonly-used one that retrains muscles and simulates natural functional activities. In this activity, feet are in contact with a footrest to exert muscular forces. In addition, the footrest inserts reactive forces to feet and from the feet load would transfer to structures that are more proximal. Any misalignment in foot structure may interfere its function. Objective: The aim of this study was to assess the effect of shoes and using a prefabricated medial arch support on the activity of Tibialis anterior and medial gastrocnemius muscles while doing leg press exercise in normal feet subjects. Method: 14 men with normal Medial Longitudinal Arch and normal Body Mass Index aged between 18-35 years old, with at least 6 months experience of doing leg press volunteered to participate in this study.  Medial gastrocnemius and Tibialis anterior activity were measured by surface electromyography while doing leg press with 70% of subjects 1 Repetition Maximum.  To increase accuracy, motion was divided into knee flexion and knee extension phases. Peak Amplitude, Time to Peak Amplitude and Root Mean Square variables were used for analysis. Wilcoxon nonparametric test was used to compare the results. Results: No statistically significant difference was found in the electromyographic parameters of Medial gastrocnemius nor Tibialis anterior in any phases of motion, except for an increase in Tibialis anterior time to peak amplitude in shod condition compared with barefoot in knee extension phase of motion (p-value=0.008 and Tibialis anterior RMS in knee flexion phase in orthotic condition compared to shod (p-value=0.03. Conclusion: It seems that in high loads shoes or medial arch supports cannot change electromyographic parameters in Medial gastrocnemius nor Tibialis anterior in

  9. Universal linear motor driven Leg Press Dynamometer and concept of Serial Stretch Loading

    Directory of Open Access Journals (Sweden)

    Dušan Hamar

    2015-08-01

    Full Text Available Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase or acceleration (in eccentric phase. Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  10. Strength training in elderly people improves static balance: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Sarabon Nejc

    2013-07-01

    Full Text Available Aim of this study was to investigate the effects of two different types of strength training programs on static balance in elderly subjects. Subjects older than 65 years of age were enrolled and assigned to control group (CG, n =19, electrical stimulation group (ES, n = 27 or leg press group (LP, n = 28. Subjects in both the training groups were exposed to training (2-3x/week for a period of 9 weeks. In the ES group the subjects received neuromuscular electrical stimulation of the anterior thigh muscles. In the LP group the subjects performed strength training on a computer-controlled leg press machine. Before and after the training period, static balance of the subject was tested using a quiet stance task. Average velocity, amplitude and frequency of the center-of-pressure (CoP were calculated from the acquired force plate signal. The data was statistically tested with analysis of (covariance and t-tests. The three groups of subjects showed statistically significant differences (p < 0.05 regarding the pre-training vs. post-training changes in CoP velocity, amplitude and frequency. The differences were more pronounced for CoP velocity and amplitude, while they were less evident in case of mean frequency. The mean improvements were higher in the LP group than in the ES group. Our results provide supportive evidence to the existence of the strength-balance relationship. Additionally, results indicate the role of recruiting central processes and activation of functional kinetic chains for the better end effect.

  11. Myoeletric indices of fatigue adopting different rest intervals during leg press sets.

    Science.gov (United States)

    Miranda, Humberto; Maia, Marianna; de Oliveira, Carlos G; Farias, Déborah; da Silva, Jurandir B; Lima, Vicente P; Willardson, Jeffrey M; Paz, Gabriel A

    2018-01-01

    The purpose of this study was to examine the acute effect of different rest intervals between multiple sets of the 45° angled leg press exercise (LP45) on surface electromyographic (SEMG) spectral and amplitude indices of fatigue. Fifteen recreationally trained females performed three protocols in a randomized crossover design; each consisting of four sets of 10 repetitions with 1 (P1), 3 (P3), or 5 (P5) minute rest intervals between sets. Each set was performed with 70% of the LP45 ten-repetition maximum load. The SEMG data for biceps femoris (BF), vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles was then evaluated. The SEMG amplitude change in the time coefficient (CRMS) and spectral fatigue index (Cf5) indicated higher levels of fatigue for all muscles evaluated during the P3 protocol versus the P1 and P5 protocols (p ≤ 0.05), respectively. The RF and VL muscles showed greater fatigue levels by the second and third sets; whereas, greater fatigue was shown in the VM and BF muscles by the fourth set (p ≤ 0.05). A three-minute rest interval between sets might represent a neuromuscular window between a fatigue stated and fully recovered state in the context of neural activation. Moreover, a three minute rest interval between sets might allow for consistent recruitment of high threshold motor units over multiple sets, and thus promote a more effective stimulus for strength gains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Lower Limb Force, Velocity, Power Capabilities during Leg Press and Squat Movements.

    Science.gov (United States)

    Padulo, Johnny; Migliaccio, Gian Mario; Ardigò, Luca Paolo; Leban, Bruno; Cosso, Marco; Samozino, Pierre

    2017-12-01

    The aim was to compare lower-limb power, force, and velocity capabilities between squat and leg press movements. Ten healthy sportsmen performed ballistic lower-limb push-offs against 5-to-12 different loads during both the squat and leg press. Individual linear force-velocity and polynomial power-velocity relationships were determined for both movements from push-off mean force and velocity measured continuously with a pressure sensor and linear encoder. Maximal power output, theoretical maximal force and velocity, force-velocity profile and optimal velocity were computed. During the squat, maximal power output (17.7±3.59 vs. 10.9±1.39 W·kg -1 ), theoretical maximal velocity (1.66±0.29 vs. 0.88±0.18 m·s -1 ), optimal velocity (0.839±0.144 vs. 0.465±0.107 m·s -1 ), and force-velocity profile (-27.2±8.5 vs. -64.3±29.5 N·s·m -1 ·kg -1 ) values were significantly higher than during the leg press (p=0.000, effect size=1.72-3.23), whereas theoretical maximal force values (43.1±8.6 vs. 51.9±14.0 N·kg -1 , p=0.034, effect size=0.75) were significantly lower. The mechanical capabilities of the lower-limb extensors were different in the squat compared with the leg press with higher maximal power due to much higher velocity capabilities (e.g. ability to produce force at high velocities) even if moderately lower maximal force qualities. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Greater bilateral deficit in leg press than in handgrip exercise might be linked to differences in postural stability requirements.

    Science.gov (United States)

    Magnus, Charlene R A; Farthing, Jonathan P

    2008-12-01

    Bilateral deficit is defined as the difference in the summed force between contracting muscles alone and contracting contralateral homologous muscles in combination. The purpose of the study was to investigate how postural stability influences bilateral deficit by comparing an exercise requiring more postural stability (the leg press) with an exercise requiring less postural stability (the handgrip). Eight participants volunteered for the study (3 males, 5 females). Maximal strength was determined by a 1-repetition maximum for the leg press (weight machine) and handgrip (dynamometer) exercises. Electromyography was used to measure activation of the effectors (flexor carpi ulnaris for the handgrip and vastus lateralis for the leg press) and the core muscles (rectus abdominis and external obliques). Bilateral deficit was greater in the leg press (-12.08 +/- 10.22%) than the handgrip (-0.677 +/- 5.00%; p < 0.05). Muscle activation of the effectors and core muscles was not significantly different between unilateral and bilateral conditions for either exercise. However, core muscle activation was significantly greater during the leg press (48.30 +/- 19.60 microV) than during the handgrip (16.50 +/- 8.10 microV; p < 0.05) exercise. These results support the hypothesis that an exercise requiring more postural stability (e.g., the leg press) will have a larger deficit and greater activation of core muscles than an exercise requiring less postural stability (e.g., the handgrip). Since the bilateral deficit was only apparent for the leg press exercise, we conclude that postural stability requirements might influence the magnitude of bilateral deficit.

  14. Supervised Classification Using Balanced Training

    OpenAIRE

    Du, Mian; Pierce, Matthew; Pivovarova, Lidia; Yangarber, Roman

    2014-01-01

    We examine supervised learning for multi-class, multi-label text classification. We are interested in exploring classification in a real-world setting, where the distribution of labels may change dynamically over time. First, we compare the performance of an array of binary classifiers trained on the label distribution found in the original corpus against classifiers trained on balanced data, where we try to make the label distribution as nearly uniform as possible. We discuss the performance...

  15. The combination of plyometric and balance training improves sprint and shuttle run performances more often than plyometric-only training with children.

    Science.gov (United States)

    Chaouachi, Anis; Othman, Aymen Ben; Hammami, Raouf; Drinkwater, Eric J; Behm, David G

    2014-02-01

    Because balance is not fully developed in children and studies have shown functional improvements with balance only training studies, a combination of plyometric and balance activities might enhance static balance, dynamic balance, and power. The objective of this study was to compare the effectiveness of plyometric only (PLYO) with balance and plyometric (COMBINED) training on balance and power measures in children. Before and after an 8-week training period, testing assessed lower-body strength (1 repetition maximum leg press), power (horizontal and vertical jumps, triple hop for distance, reactive strength, and leg stiffness), running speed (10-m and 30-m sprint), static and dynamic balance (Standing Stork Test and Star Excursion Balance Test), and agility (shuttle run). Subjects were randomly divided into 2 training groups (PLYO [n = 14] and COMBINED [n = 14]) and a control group (n = 12). Results based on magnitude-based inferences and precision of estimation indicated that the COMBINED training group was considered likely to be superior to the PLYO group in leg stiffness (d = 0.69, 91% likely), 10-m sprint (d = 0.57, 84% likely), and shuttle run (d = 0.52, 80% likely). The difference between the groups was unclear in 8 of the 11 dependent variables. COMBINED training enhanced activities such as 10-m sprints and shuttle runs to a greater degree. COMBINED training could be an important consideration for reducing the high velocity impacts of PLYO training. This reduction in stretch-shortening cycle stress on neuromuscular system with the replacement of balance and landing exercises might help to alleviate the overtraining effects of excessive repetitive high load activities.

  16. Effects of dynamic posturographic balance training versus conventional balance training on mobility and balance in elderly

    International Nuclear Information System (INIS)

    Saddiqi, F.A.; Masood, T.

    2017-01-01

    To determine the effects of dynamic posturographic balance training versus conventional balance training in improving mobility and balance in elderly. Methodology: Forty subjects between 50 to 80 years of age were selected via non-probability convenience sampling technique, for this randomized controlled trial. Both females and males with no major co-morbid conditions and cognitive impairments were recruited and randomized via coin toss method into two equal groups: Dynamic Posturographic balance training (DPG) group and Conventional balance training (CBT) group. The DPG training was provided via Biodex Balance System (Static and Dynamic). Both groups received interventions 3 times (35 to 45min each day) a week for 8 weeks, after which terminal assessment was done. Data were collected on demographic profile, balance via berg balance score and mobility by using Timed Up and Go Test. Independent samples t test was used to check difference between CBT group and DPG Group and repeated measures Analysis of Variance (ANOVA) was used for within-group analysis. Results: Baseline analysis of Berg balance scale and timed up and go test between two groups showed no significant difference with (p 0.805 and 0.251, respectively). After 8 weeks of intervention, there was significant difference between the groups in both variables (p 0.019 and 0.001, respectively). Conclusion: Dynamic posturographic balance training was more effective in improving dynamic balance and mobility in elderly population in comparison to conventional balance training. (author)

  17. Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty

    DEFF Research Database (Denmark)

    Aalund, Peter K; Larsen, Kristian; Hansen, Torben Bæk

    2013-01-01

    : Cross-sectional, exploratory study. SETTING: Laboratory at a regional hospital. PARTICIPANTS: Thirty-nine individuals with an average age of 65.5±10.3 yrs, who all had unilateral TKA 28 days prior. INTERVENTIONS: None. MAIN OUTCOME MEASURES: The patients performed maximal isometric knee extensions......OBJECTIVE: (s): To investigate which of the two muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, is more closely associated to performance-based and self-reported measures of function shortly following total knee arthroplasty (TKA). DESIGN...... and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-m fast speed walking and 30-s chair stand tests were used to determine performance-based function, while the Western Ontario McMaster University Osteoarthritis Index (WOMAC...

  18. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic?

    NARCIS (Netherlands)

    Bobbert, M.F.

    2012-01-01

    Force-velocity relationships reported in the literature for functional tasks involving a combination of joint rotations tend to be quasilinear. The purpose of this study was to explain why they are not hyperbolic, like Hill's relationship. For this purpose, a leg press task was simulated with a

  19. Effects of strength, endurance and combined training on muscle strength, walking speed and dynamic balance in aging men.

    Science.gov (United States)

    Holviala, J; Kraemer, W J; Sillanpää, E; Karppinen, H; Avela, J; Kauhanen, A; Häkkinen, A; Häkkinen, K

    2012-04-01

    The aim of this study was to examine effects of 21-week twice weekly strength (ST), endurance (ET) and combined (ST + ET 2 + 2 times a week) (SET) training on neuromuscular, endurance and walking performances as well as balance. 108 healthy men (56.3 ± 9.9 years) were divided into three training (ST; n = 30, ET; n = 26, SET; n = 31) groups and controls (C n = 21). Dynamic 1RM and explosive leg presses (1RMleg, 50%1RMleg), peak oxygen uptake using a bicycle ergometer (VO(2peak)), 10 m loaded walking time (10WALK) and dynamic balance distance (DYND) were measured. Significant increases were observed in maximal 1RMleg of 21% in ST (p speed and balance without any interference effect in SET. Significant but moderate relationships were observed between strength and dynamic balance and walking speed, while no corresponding correlations were found in the ET group.

  20. Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly.

    Science.gov (United States)

    Pijnappels, Mirjam; Reeves, Neil D; Maganaris, Constantinos N; van Dieën, Jaap H

    2008-04-01

    To reduce the number of falls in old age, we need to understand the mechanisms underpinning a fall, who are at risk of falling, and what interventions can prevent such individuals from falling. This paper provides an overview of our recent research on tripping and muscle strength in the elderly, addressing these questions. To prevent a fall after tripping over an obstacle, high demands are posed on lower limb muscles. It was shown that the support limb plays an important role in balance recovery by generating the appropriate joint moments during push-off. Older individuals show lower rates of moment generation in all support limb joints and a lower peak ankle moment than young adults. As strength declines with age (due to muscular, tendinous and neural alterations), leg muscle strength might be the limiting factor in preventing a fall. Indeed, high-risk fallers could be identified based on maximum leg press push-off force capacity. Resistance training can reverse the ageing-related loss of strength. Therefore, the effects of 16-weeks resistance training on tripping reactions were studied in a small group of elderly. Maximum push-off force increased significantly by training. Moreover, trainers improved more than controls in moment generation after tripping, especially around the ankle. It can be concluded that transfer of resistance training effects to balance recovery is feasible.

  1. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    Science.gov (United States)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of that observed in LL, which supports the hypothesis that local ischemia stimulates the LBFR hypertrophic response. As the cuff did not compress the artery, the ischemia may have occurred

  2. Effect of an herbal/botanical supplement on strength, balance, and muscle function following 12-weeks of resistance training: a placebo controlled study.

    Science.gov (United States)

    Furlong, Jonathan; Rynders, Corey A; Sutherlin, Mark; Patrie, James; Katch, Frank I; Hertel, Jay; Weltman, Arthur

    2014-01-01

    StemSport (SS; StemTech International, Inc. San Clemente, CA) contains a proprietary blend of the botanical Aphanizomenon flos-aquae and several herbal antioxidant and anti-inflammatory substances. SS has been purported to accelerate tissue repair and restore muscle function following resistance exercise. Here, we examine the effects of SS supplementation on strength adaptations resulting from a 12-week resistance training program in healthy young adults. Twenty-four young adults (16 males, 8 females, mean age = 20.5 ± 1.9 years, mass = 70.9 ± 11.9 kg, stature = 176.6 ± 9.9 cm) completed the twelve week training program. The study design was a double-blind, placebo controlled parallel group trial. Subjects either received placebo or StemSport supplement (SS; mg/day) during the training. 1-RM bench press, 1-RM leg press, vertical jump height, balance (star excursion and center of mass excursion), isokinetic strength (elbow and knee flexion/extension) and perception of recovery were measured at baseline and following the 12-week training intervention. Resistance training increased 1-RM strength (p 0.10). These data suggest that compared to placebo, the SS herbal/botanical supplement did not enhance training induced adaptations to strength, balance, and muscle function above strength training alone.

  3. Biodex balance training versus conventional balance training for children with spastic diplegia

    Directory of Open Access Journals (Sweden)

    Tarek M. El-gohary, PhD

    2017-12-01

    Full Text Available Objective: The purpose of this study was to compare the effectiveness of balance training using the Biodex balance system and a conventional balance training programme on balance score and on gross motor skills of children with spastic diplegia. Methods: A randomized controlled study was conducted on 48 spastic diplegic children with cerebral palsy (26 boys and 22 girls in the age range of 5–8 years. The children were randomly allocated to two equal groups. The investigators performed balance and gross motor function assessments for every child using the paediatric Berg balance scale and the gross motor function measure −88 scale (dimensions D and E before and after the treatment programme. Passive repositioning sense was measured by a Biodex III isokinetic dynamometer. The study group received Biodex balance training and traditional physical therapy programme training, whereas the control group received conventional balance training in addition to the traditional physical therapy programme training, 3 times per week for 12 weeks. Results: Significant improvement was observed in all outcome measures of the two groups, comparing their pre- and post-treatment mean values. Furthermore, the results revealed a significant (P < 0.05 improvement in mean post-treatment values for the Biodex balance training group. Conclusion: Balance training using the Biodex balance system is superior to conventional balance training for improving the balance abilities and gross motor functions of children with cerebral palsy and spastic diplegia. Keywords: Berg balance, Biodex, Cerebral palsy, Conventional balance, Spastic diplegia

  4. Lateral balance control for robotic gait training

    NARCIS (Netherlands)

    Koopman, Bram; Meuleman, Jos; van Asseldonk, Edwin H.F.; van der Kooij, Herman

    2013-01-01

    For the rehabilitation of neurological patients robot-aided gait training is increasingly being used. Lack of balance training in these robotic gait trainers might contribute to the fact that they do not live up to the expectations. Therefore, in this study we developed and evaluated an algorithm to

  5. Balancing Training Techniques for Flight Controller Certification

    Science.gov (United States)

    Gosling, Christina

    2011-01-01

    Training of ground control teams has been a difficult task in space operations. There are several intangible skills that must be learned to become the steely eyed men and women of mission control who respond to spacecraft failures that can lead to loss of vehicle or crew if handled improperly. And as difficult as training is, it can also be costly. Every day, month or year an operator is in training, is a day that not only they are being trained without direct benefit to the organization, but potentially an instructor or mentor is also being paid for hours spent assisting them. Therefore, optimization of the training flow is highly desired. Recently the Expedition Division (DI) at Johnson Space Flight Center has recreated their training flows for the purpose of both moving to an operator/specialist/instructor hierarchy and to address past inefficiencies in the training flow. This paper will discuss the types of training DI is utilizing in their new flows, and the balance that has been struck between the ideal learning environments and realistic constraints. Specifically, the past training flow for the ISS Attitude Determination and Control Officer will be presented, including drawbacks that were encountered. Then the new training flow will be discussed and how a new approach utilizes more training methods and teaching techniques. We will look at how DI has integrated classes, workshops, checkouts, module reviews, scenarios, OJT, paper sims, Mini Sims, and finally Integrated Sims to balance the cost and timing of training a new flight controller.

  6. Global Sales Training's Balancing Act

    Science.gov (United States)

    Boehle, Sarah

    2010-01-01

    A one-size-fits-all global sales strategy that fails to take into account the cultural, regulatory, geographic, and economic differences that exist across borders is a blueprint for failure. For training organizations tasked with educating globally dispersed sales forces, the challenge is adapting to these differences while simultaneously…

  7. Slackline training for balance and strength promotion.

    Science.gov (United States)

    Granacher, U; Iten, N; Roth, R; Gollhofer, A

    2010-10-01

    The prevalence of sustaining a sport injury is high in adults. Deficits in postural control/muscle strength represent important injury-risk factors. Thus, the purpose of this study was to investigate the impact of a specific type of balance training, i. e. slackline training, followed by detraining on balance and strength performance. Twenty-seven adults participated in this study and were assigned to an intervention (age 22.8±3.3 yrs) or a control group (age 23.9±4.4 yrs). The intervention group participated in 4 weeks of slackline training on nylon webbings. Detraining lasted 4 weeks. Tests included the measurement of (A) total centre of pressure displacements during one-legged standing on a balance platform and during the compensation of a perturbation impulse, (B) maximal torque and rate of force development (RFD) of the plantar flexors on an isokinetic device, and (C) jumping height on a force platform. After training, no significant interaction effects were observed for variables of static/dynamic postural control, maximal torque, and jumping height. Training-induced improvements were found for RFD. After the withdrawal of the training stimulus, RFD slightly decreased. Given that the promotion of balance and strength is important for injury prevention, changes in RFD only might not be sufficient to produce an injury-preventive effect. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Functional balance training in collegiate women athletes.

    Science.gov (United States)

    Oliver, Gretchen D; Di Brezzo, Ro

    2009-10-01

    This study examined the effects of functional balance training implemented in addition to regular season practice, competition, and strength and conditioning training for collegiate women athletes. Twenty-six members of National Collegiate Athletic Association (NCAA) Division I collegiate women's volleyball and soccer teams volunteered. A pre-test, post-test group design was used for the study. Pre- and post-test measures were the following: Skindex, body mass index (BMI), single-leg squat, prone quadra-ped core test, Biodex balance test, and a 1-minute sit-up test. The intervention consisted of 10 minutes of Indo Board (a dynamic balance board) training 4 days a week throughout the entire season. The volleyball team served as the intervention group, whereas the soccer team had no intervention. A dependent t-test demonstrated a statistically significant (p soccer team (no intervention) demonstrated a statistically significant (p soccer) was also active in regular season practice, competition, and strength and conditioning training over the course of the season. Functional balance activities are cost effective and should be added to any form of strength and conditioning program in an attempt to enhance program effectiveness and to develop functional postural activation. Functional postural activation will not only assist with functional performance, but also in the prevention of injury.

  9. Balance training (proprioceptive training) for patients with rheumatoid arthritis.

    Science.gov (United States)

    Silva, Kelson Ng; Mizusaki Imoto, Aline; Almeida, Gustavo Jm; Atallah, Alvaro N; Peccin, Maria Stella; Fernandes Moça Trevisani, Virginia

    2010-05-12

    Patients with rheumatoid arthritis may have an increased risk of falls due to impairments in lower-extremity joints, which may result in either mobility, or postural stability problems. There is evidence in the literature suggesting that balance, agility and coordination training techniques can induce changes in lower-extremity muscle activity patterns that result in improvement in dynamic joint stability.The mechanoreceptors present in and around the joints are responsible for maintaining postural control and joint position sense. These receptors are integrated to compose the somatosensorial system. In combination with visual and auditory inputs, which improve our spatial perception even further, the systems are able to maintain a stable body posture.However, there is a lack of information on the efficacy of balance training alone in patients with rheumatoid arthritis. To assess the effectiveness and safety of balance training (proprioceptive training) to improve functional capacity in patients with rheumatoid arthritis. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2008, Issue 4), MEDLINE via PubMed (January 1966 to December 2008), EMBASE (January 1980 to December 2008), LILACS (January 1982 to December 2008), CINAHL (January 1982 to December 2008), PEDro and Scirus (inception to 2008). We also handsearched conference abstracts. All eligible randomised controlled trials (RCT) or controlled clinical trials (CCT) comparing balance training (proprioceptive training) with any other intervention or with no intervention. Two review authors independently assessed titles or abstracts, or both, for inclusion criteria. The electronic search identified 864 studies. From this search, 17 studies described general exercises in rheumatoid arthritis patients as the main topic. After analysing them, we observed that the main interventions were exercises to improve muscle strength, endurance, and dynamic exercises (swimming, walking

  10. Virtual reality training improves balance function.

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  11. Virtual reality training improves balance function

    Science.gov (United States)

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  12. Virtual reality balance training for elderly : Similar skiing games elicit different challenges in balance training

    NARCIS (Netherlands)

    de Vries, Aijse W.; Faber, Gert; Jonkers, Ilse; Van Dieen, Jaap H.; Verschueren, Sabine M.P.

    2018-01-01

    Background Virtual Reality (VR) balance training may have advantages over regular exercise training in older adults. However, results so far are conflicting potentially due to the lack of challenge imposed by the movements in those games. Therefore, the aim of this study was to assess to which

  13. Biofeedback-Based, Videogame Balance Training in Autism

    Science.gov (United States)

    Travers, Brittany G.; Mason, Andrea H.; Mrotek, Leigh Ann; Ellertson, Anthony; Dean, Douglas C., III; Engel, Courtney; Gomez, Andres; Dadalko, Olga I.; McLaughlin, Kristine

    2018-01-01

    The present study examined the effects of a visual-based biofeedback training on improving balance challenges in autism spectrum disorder (ASD). Twenty-nine youth with ASD (7-17 years) completed an intensive 6-week biofeedback-based videogame balance training. Participants exhibited training-related balance improvements that significantly…

  14. Effects of Moderate-Volume, High-Load Lower-Body Resistance Training on Strength and Function in Persons with Parkinson's Disease: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Brian K. Schilling

    2010-01-01

    Full Text Available Background. Resistance training research has demonstrated positive effects for persons with Parkinson's disease (PD, but the number of acute training variables that can be manipulated makes it difficult to determine the optimal resistance training program. Objective. The purpose of this investigation was to examine the effects of an 8-week resistance training intervention on strength and function in persons with PD. Methods. Eighteen men and women were randomized to training or standard care for the 8-week intervention. The training group performed 3 sets of 5–8 repetitions of the leg press, leg curl, and calf press twice weekly. Tests included leg press strength relative to body mass, timed up-and-go, six-minute walk, and Activities-specific Balance Confidence questionnaire. Results. There was a significant group-by-time effect for maximum leg press strength relative to body mass, with the training group significantly increasing their maximum relative strength (P.05. Conclusions. Moderate volume, high-load weight training is effective for increasing lower-body strength in persons with PD.

  15. Home-based virtual reality balance training and conventional balance training in Parkinson's disease: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Wen-Chieh Yang

    2016-09-01

    Conclusion: This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD.

  16. Balancing the Demands of Education and Training

    DEFF Research Database (Denmark)

    Christensen, Mette Krogh; Sørensen, Jan Kahr

    value of a good set of academic qualifications does not entirely measure up to this, the insistence from the outside world on the importance of completing one’s education is manifest and associated with significant personal concerns, lower examinations results, stress, drop-out and mental breakdown......Balancing the Demands of Education and Training – A Qualitative Study on Young Male Football Talents’ Dual Careers. M. K. Christensena and J. K. Sørensenb a Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark b Department of Public Health – Sport Science, Aarhus...... University Workshop: Negotiating Athlete Identity in Career Transitions Abstract: Today’s young semi-professional football players are expected to continue their education while honing their talents as footballers. This means they must balance the contradictory demands that come from coming from the fields...

  17. Vibration training improves balance in unstable ankles.

    Science.gov (United States)

    Cloak, R; Nevill, A M; Clarke, F; Day, S; Wyon, M A

    2010-12-01

    Functional ankle instability (FAI) is a common condition following ankle injury characterised by increased risk of injury. Ankle sprains are a common acute form of injury suffered in dancing and loss of balance can affect not only risk of injury risk but also performance aesthetics. Whole body vibration training (WBVT) is a new rehabilitation method that has been linked with improving balance and muscle function. 38 female dancers with self reported unilateral FAI were randomly assigned in 2 groups: WBVT and control. Absolute centre of mass (COM) distribution during single leg stance, SEBT normalised research distances and Peroneus longus mean power frequency (f(med)) where measured pre and post 6-week intervention. There was a significant improvement in COM distribution over the 6 weeks from 1.05 ± 0.57 to 0.33 ± 0.42 cm² (Ptraining intervention. There was no evidence of improvement in peroneus longus (f(med)) over time (P=0.915) in either group. WBVT improved static balance and SEBT scores amongst dancers exhibiting ankle instability but did not affect peroneus longus muscle fatigue. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Virtual reality balance training for elderly: Similar skiing games elicit different challenges in balance training.

    Science.gov (United States)

    de Vries, Aijse W; Faber, Gert; Jonkers, Ilse; Van Dieen, Jaap H; Verschueren, Sabine M P

    2018-01-01

    Virtual Reality (VR) balance training may have advantages over regular exercise training in older adults. However, results so far are conflicting potentially due to the lack of challenge imposed by the movements in those games. Therefore, the aim of this study was to assess to which extent two similar skiing games challenge balance, as reflected in center of mass (COM) movements relative to their Functional Limits of Stability (FLOS). Thirty young and elderly participants performed two skiing games, one on the Wii Balance board (Wiiski), which uses a force plate, and one with the Kinect sensor (Kinski), which performs motion tracking. During gameplay, kinematics were captured using seven opto-electronical cameras. FLOS were obtained for eight directions. The influence of games and trials on COM displacement in each of the eight directions, and maximal COM speed, were tested with Generalized Estimated Equations. In all directions with anterior and medio-lateral, but not with a posterior component, subjects showed significantly larger maximal %FLOS displacements during the Kinski game than during the Wiiski game. Furthermore, maximal COM displacement, and COM speed in Kinski remained similar or increased over trials, whereas for Wiiski it decreased. Our results show the importance of assessing the movement challenge in games used for balance training. Similar games impose different challenges, with the control sensors and their gain settings playing an important role. Furthermore, adaptations led to a decrease in challenge in Wiiski, which might limit the effectiveness of the game as a balance-training tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial.

    Science.gov (United States)

    Yatar, Gozde Iyigun; Yildirim, Sibel Aksu

    2015-04-01

    [Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke.

  20. Teaching Balance Training to Improve Stability and Cognition for Children

    Science.gov (United States)

    Shim, Andrew L.; Norman, Shannon P.; Kim, Young Ae

    2013-01-01

    There are many benefits to having young children train or practice on balance boards. The physical education setting allows educators to provide opportunities for youth to develop essential fitness skills that can be transferred into other life experiences. Balance-board activities and exercises can help in training the central and peripheral…

  1. Relationship between balance ability, training and sports injury risk.

    Science.gov (United States)

    Hrysomallis, Con

    2007-01-01

    Traditionally, balance training has been used as part of the rehabilitation programme for ankle injuries. More recently, balance training has been adopted to try and prevent injuries to the ankle and knee joints during sport. The purpose of this review is to synthesise current knowledge in the area of balance ability, training and injury risk, highlight the findings and identify any future research needs. A number of studies have found that poor balance ability is significantly related to an increased risk of ankle injuries in different activities. This relationship appears to be more common in males than females. Multifaceted intervention studies that have included balance training along with jumping, landing and agility exercises have resulted in a significant decrease in ankle or knee injuries in team handball, volleyball and recreational athletes. It is unknown which component of the multifaceted intervention was most effective and whether the effects are additive. As a single intervention, balance training has been shown to significantly reduce the recurrence of ankle ligament injuries in soccer, volleyball and recreational athletes; however, it has not been clearly shown to reduce ankle injuries in athletes without a prior ankle injury. Balance training on its own has also been shown to significantly reduce anterior cruciate ligament injuries in male soccer players. Surprisingly, it was also found to be significantly associated with an increased risk of major knee injuries in female soccer players and overuse knee injuries in male and female volleyball players. The studies with the contrasting findings differed in aspects of their balance training programmes. It would appear that balance training, as a single intervention, is not as effective as when it is part of a multifaceted intervention. Research is required to determine the relative contribution of balance training to a multifaceted intervention so as to generate an effective and efficient preventative

  2. Effect of Playful Balancing Training - A Pilot Randomized Controlled Trial

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Jessen, Jari Due

    2013-01-01

    We used the modular playware in the form of modular interactive tiles for playful training of community-dwelling elderly with balancing problem. During short-term play on the modular interactive tiles, the elderly were playing physical, interactive games that were challenging their dynamic balance......, agility, endurance, and sensor-motoric reaction. A population of 12 elderly (average age: 79) with balancing problems (DGI average score: 18.7) was randomly assigned to control group or tiles training group, and tested before and after intervention. The tiles training group had statistical significant...... increase in balancing performance (DGI score: 21.3) after short-term playful training with the modular interactive tiles, whereas the control group remained with a score indicating balancing problems and risk of falling (DGI score: 16.6). The small pilot randomized controlled trial suggests...

  3. Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults: A Randomized Controlled Trial

    Science.gov (United States)

    Prieske, Olaf; Krüger, Tom; Aehle, Markus; Bauer, Erik; Granacher, Urs

    2018-01-01

    Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45–60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5% for RST [90%CI: (−1.1%;10.1%), d = 1.23] and 2.6% for TPT [90%CI: (0.4%;4.8%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to −6.3% for RST [90%CI: (−11.4%;−1.1%), d = 1.45) and −2.7% for TPT [90%CI: (−4.2%;−1.2%), d = 2.36]. Finally, effects

  4. Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Olaf Prieske

    2018-03-01

    Full Text Available Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST vs. traditional power training (TPT on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years, a TPT (n = 9, 23 ± 3 years, or a passive control group (n = 16, 23 ± 2 years. RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45–60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos. TPT included ballistic strength training at 40% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions. Before and after training, sprint (20-m sprint, change-of-direction speed (T-agility test, jump (drop, countermovement jump, and balance performances (Y balance test were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00. Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82 when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5% for RST [90%CI: (−1.1%;10.1%, d = 1.23] and 2.6% for TPT [90%CI: (0.4%;4.8%, d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09 compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to −6.3% for RST [90%CI: (−11.4%;−1.1%, d = 1.45 and −2.7% for TPT [90%CI: (−4.2%;−1.2%, d = 2.36]. Finally, effects

  5. Delivering Training Strategies: The Balanced Scorecard at Work

    Science.gov (United States)

    Baraldi, Stefano; Cifalinò, Antonella

    2015-01-01

    Aligning the value of training to organizational goals is an emerging need in human resource management. This study, aiming at expanding the research on training evaluation from a strategic management perspective, examines whether the use of the Balanced Scorecard approach can enable an effective delivery of training strategies, thus strengthening…

  6. Balance Training Programs in Athletes – A Systematic Review

    Directory of Open Access Journals (Sweden)

    Brachman Anna

    2017-08-01

    Full Text Available It has become almost routine practice to incorporate balance exercises into training programs for athletes from different sports. However, the type of training that is most efficient remains unclear, as well as the frequency, intensity and duration of the exercise that would be most beneficial have not yet been determined. The following review is based on papers that were found through computerized searches of PubMed and SportDiscus from 2000 to 2016. Articles related to balance training, testing, and injury prevention in young healthy athletes were considered. Based on a Boolean search strategy the independent researchers performed a literature review. A total of 2395 articles were evaluated, yet only 50 studies met the inclusion criteria. In most of the reviewed articles, balance training has proven to be an effective tool for the improvement of postural control. It is difficult to establish one model of training that would be appropriate for each sport discipline, including its characteristics and demands. The main aim of this review was to identify a training protocol based on most commonly used interventions that led to improvements in balance. Our choice was specifically established on the assessment of the effects of balance training on postural control and injury prevention as well as balance training methods. The analyses including papers in which training protocols demonstrated positive effects on balance performance suggest that an efficient training protocol should last for 8 weeks, with a frequency of two training sessions per week, and a single training session of 45 min. This standard was established based on 36 reviewed studies.

  7. Balance Training Programs in Athletes - a Systematic Review.

    Science.gov (United States)

    Brachman, Anna; Kamieniarz, Anna; Michalska, Justyna; Pawłowski, Michał; Słomka, Kajetan J; Juras, Grzegorz

    2017-09-01

    It has become almost routine practice to incorporate balance exercises into training programs for athletes from different sports. However, the type of training that is most efficient remains unclear, as well as the frequency, intensity and duration of the exercise that would be most beneficial have not yet been determined. The following review is based on papers that were found through computerized searches of PubMed and SportDiscus from 2000 to 2016. Articles related to balance training, testing, and injury prevention in young healthy athletes were considered. Based on a Boolean search strategy the independent researchers performed a literature review. A total of 2395 articles were evaluated, yet only 50 studies met the inclusion criteria. In most of the reviewed articles, balance training has proven to be an effective tool for the improvement of postural control. It is difficult to establish one model of training that would be appropriate for each sport discipline, including its characteristics and demands. The main aim of this review was to identify a training protocol based on most commonly used interventions that led to improvements in balance. Our choice was specifically established on the assessment of the effects of balance training on postural control and injury prevention as well as balance training methods. The analyses including papers in which training protocols demonstrated positive effects on balance performance suggest that an efficient training protocol should last for 8 weeks, with a frequency of two training sessions per week, and a single training session of 45 min. This standard was established based on 36 reviewed studies.

  8. Comparison of two balance training programs on balance in community dwelling older adults

    Directory of Open Access Journals (Sweden)

    Shefali Walia

    2016-09-01

    Full Text Available Impaired balance has been associated with an increased risk for falls and a resulting increase in the mortality rate of elder people. Thus, balance-training interventions have an important place in fall prevention. This study was designed with the purpose of identifying the appropriate balance-training program for community dwelling elderly adults with an active lifestyle. A sample of 70 elderly adults were randomly allocated into two groups: group 1 (n=35 received general balance and mobility exercise; group 2 (n=35 received specific balance strategy training. The intervention consisted of 5 sessions/week for 4 weeks. The outcome measures were Timed up and go test (TUGT and Berg balance scale (BBS. An inter-group (2-way mixed model analysis of co-variance and intra-group (repeated measures analysis was done to find the change in balance scores. After the intervention, the TUGT scores in group 1 were, mean=10.38 s, standard deviation (SD=1.59 s and in group 2 were, mean=9.27 s, SD=1.13 s. Post training, BBS scores for group 1 were, mean=54.69, SD=1.13, and for group 2 were, mean=55.57, SD =0.56. There was a significant group × time effect for TUGT and BBS score. All the subjects showed significant changes in balance scores after balance training interventions. The subjects who participated in the specific balance-strategy training significantly improved their functional mobility, as shown on the TUGT, compared to the general training group.

  9. Balance and coordination training after sciatic nerve injury.

    Science.gov (United States)

    Bonetti, Leandro Viçosa; Korb, Arthiese; Da Silva, Sandro Antunes; Ilha, Jocemar; Marcuzzo, Simone; Achaval, Matilde; Faccioni-Heuser, Maria Cristina

    2011-07-01

    Numerous therapeutic interventions have been tested to enhance functional recovery after peripheral nerve injuries. After sciatic nerve crush in rats we tested balance and coordination and motor control training in sensorimotor tests and analyzed nerve and muscle histology. The balance and coordination training group and the sham group had better results than the sedentary and motor control groups in sensorimotor tests. The sham and balance and coordination groups had a significantly larger muscle area than the other groups, and the balance and coordination group showed significantly better values than the sedentary and motor control groups for average myelin sheath thickness and g-ratio of the distal portion of the nerve. The findings indicate that balance and coordination training improves sciatic nerve regeneration, suggesting that it is possible to revert and/or prevent soleus muscle atrophy and improve performance on sensorimotor tests. Copyright © 2011 Wiley Periodicals, Inc.

  10. Assessing seniors' user experience (UX) of exergames for balance training

    DEFF Research Database (Denmark)

    Nawaz, Ather; Skjæret, Nina; Ystmark, Kristine

    2014-01-01

    Exergames technologies are increasingly used to help people achieve their exercise requirements including balance training. However, little is known about seniors' user experience of exergame technology for balance training and what factors they consider most important for using the exergames....... This study aims to evaluate user experience and preferences of exergame technologies to train balance and to identify different factors that affect seniors' intention to use exergames. Fourteen healthy senior citizens played three different stepping exergames in a laboratory setting. Seniors' experience...... of the exergames and their preference to use exergames was assessed using a semi-structured interview, the system usability scale (SUS), and card ranking. The results of the study showed that in order for seniors to use exergames to train their balance, the exergames should particularly focus on challenging tasks...

  11. Specific balance training included in an endurance-resistance exercise program improves postural balance in elderly patients undergoing haemodialysis.

    Science.gov (United States)

    Frih, Bechir; Mkacher, Wajdi; Jaafar, Hamdi; Frih, Ameur; Ben Salah, Zohra; El May, Mezry; Hammami, Mohamed

    2018-04-01

    The purpose of this study was to evaluate the effects of 6 months of specific balance training included in endurance-resistance program on postural balance in haemodialysis (HD) patients. Forty-nine male patients undergoing HD were randomly assigned to an intervention group (balance training included in an endurance-resistance training, n = 26) or a control group (resistance-endurance training only, n = 23). Postural control was assessed using six clinical tests; Timed Up and Go test, Tinetti Mobility Test, Berg Balance Scale, Unipodal Stance test, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scale. All balance measures increased significantly after the period of rehabilitation training in the intervention group. Only the Timed Up and Go, Berg Balance Scale, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scores were improved in the control group. The ranges of change in these tests were greater in the balance training group. In HD patients, specific balance training included in a usual endurance-resistance training program improves static and dynamic balance better than endurance-resistance training only. Implications for rehabilitation Rehabilitation using exercise in haemodialysis patients improved global mobility and functional abilities. Specific balance training included in usual endurance resistance training program could lead to improved static and dynamic balance.

  12. EFFECT OF NEUROMUSCULAR TRAINING ON BALANCE AMONG UNIVERSITY ATHLETES

    Directory of Open Access Journals (Sweden)

    Mohansundar Sankaravel

    2016-06-01

    Full Text Available Background: Proprioceptive deficiency followed by lateral ankle sprain leads to poor balance is not uncommon. It has been linked with increased injury risk among young athletes. Introducing neuromuscular training programs for this have been believed as one of the means of injury prevention. Hence, this study was aimed to determine the effects of six weeks progressive neuromuscular training (PNM Training on static balance gains among the young athletes with a previous history of ankle sprains. Methods: This study was an experimental study design, with pre and post test method to determine the effects of PNM Training on static balance gains. All data were collected at university’s sports rehabilitation lab before and after six weeks of intervention period. There were 20 male and female volunteer young athletes (20.9 ± 0.85 years of age with a previous history of ankle sprain involving various sports were recruited from the University community. All the subjects were participated in a six week PNM Training that included stability, strength and power training. Outcome measures were collected by calculating the errors on balance error scoring system made by the athletes on static balance before and after the six weeks of intervention period. Static balance was tested in firm and foam surfaces and recorded accordingly. Results: The researchers found a significant decrease (2.40 ± 0.82 in total errors among the samples at the post test compared with their pre test (P >0.05. Conclusions: The study demonstrates that a PNM Training can improve the static balance on both the firm and foam surfaces among the young athletes with a previous history of ankle sprains.

  13. Slackline Training (Balancing Over Narrow Nylon Ribbons) and Balance Performance: A Meta-Analytical Review.

    Science.gov (United States)

    Donath, Lars; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2017-06-01

    Adequate static and dynamic balance performance is an important prerequisite during daily and sporting life. Various traditional and innovative balance training concepts have been suggested to improve postural control or neuromuscular fall risk profiles over recent years. Whether slackline training (balancing over narrow nylon ribbons) serves as an appropriate training strategy to improve static and dynamic balance performance is as yet unclear. The aim was to examine the occurrence and magnitude of effects of slackline training compared with an inactive control condition on static and dynamic balance performance parameters in children, adults and seniors. Five biomedical and psychological databases (CINAHL, EMBASE, ISI Web of Knowledge, PubMed, SPORTDiscus) were screened using the following search terms with Boolean conjunctions: (slacklin* OR slack-lin* OR tight rop* OR tightrop* OR Slackline-based OR line-based OR slackrop* OR slack-rop* OR floppy wir* OR rop* balanc* OR ropedanc* OR rope-danc*) STUDY SELECTION: Randomized and non-randomized controlled trials that applied slackline training as an exercise intervention compared with an inactive control condition focusing on static and dynamic balance performance (perturbed and non-perturbed single leg stance) in healthy children, adults and seniors were screened for eligibility. Eligibility and study quality [Physiotherapy Evidence Database (PEDro) scale] were independently assessed by two researchers. Standardized mean differences (SMDs) calculated as weighted Hedges' g served as main outcomes in order to compare slackline training versus inactive control on slackline standing as well as dynamic and static balance performance parameters. Statistical analyses were conducted using a random-effects, inverse-variance model. Eight trials (mean PEDro score 6.5 ± 0.9) with 204 healthy participants were included. Of the included subjects, 35 % were children or adolescents, 39 % were adults and 26 % were seniors

  14. Effect of Balance, Strength, and Combined Training on the Balance of the Elderly Women

    Directory of Open Access Journals (Sweden)

    Alireza Farsi

    2015-10-01

    Full Text Available Objectives: Ageing is associated with a number of physiologic and functional declines that can increase disability, frailty, and falls in the elderly. Therefore, the purpose of the present study was to study and compare the effect of balance, strength, and combined trainings on the balance (overall, anterior-posterior, medial-lateral of the elderly women. Methods & Materials: Twenty-four older female adults (without history of any injuries in their lower limbs were participated voluntarily in this study and randomly assigned into 3 groups: balance (n=8, strength (n=8 and combined (n=8. A 6-week exercise program was performed at Shahid Beheshti University. The program was performed 3 days per week. Before and after implementation of exercise program, the balance status of the subjects was measured by Biodex stability system. The data were analyzed using 2-way analysis of variance (group×time ANOVA with repeated measures on time, paired–sample t-test, 1–way ANOVA, and Bonferroni post–hoc test (P≤0.005. Results: At the end of training programs, significant improvements were observed between the balance and combined groups with regard to the indexes of overall, anterior–posterior, and medial–lateral balance. Also, the strength group showed a significant growth in the indexes of anterior-posterior and medial-lateral compared to the beginning of the study. There was a significant difference between the balance (P=0.0001 and combined groups (P=0.001 with the strength group with regard to the index of overall balance. Also, there was a significant difference between balance group (P=0.0001 and the combined group (P=0.0001 regarding the anterior-posterior balance. But there were no significant differences between groups with regard to the medial-lateral balance. Conclusion: The study showed that perturbation–based balance training and combined training had the better effects compared to the strength training.

  15. Balance training improves postural balance, gait, and functional strength in adolescents with intellectual disabilities: Single-blinded, randomized clinical trial.

    Science.gov (United States)

    Lee, Kyeongjin; Lee, Myungmo; Song, Changho

    2016-07-01

    Adolescents with intellectual disabilities often present with problems of balance and mobility. Balance training is an important component of physical activity interventions, with growing evidence that it can be beneficial for people with intellectual disabilities. The aim of this study was to investigate the effect of balance training on postural balance, gait, and functional strength in adolescents with intellectual disabilities. Thirty-two adolescents with intellectual disabilities aged 14-19 years were randomly assigned either to a balance training group (n = 15) or a control group (n = 16). Subjects in the balance training group underwent balance training for 40 min per day, two times a week, for 8 weeks. All subjects were assessed with posture sway and the one-leg stance test for postural balance; the timed up-and-go test and 10-m walk test for gait; and sit to stand test for functional strength. Postural balance and functional strength showed significant improvements in the balance training group (p functional strength significantly improved in the balance training group compared with those in the control group. Balance training for adolescents with intellectual disabilities might be beneficial for improving postural balance and functional strength. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Balance deficit enhances anxiety and balance training decreases anxiety in vestibular mutant mice.

    Science.gov (United States)

    Shefer, Shahar; Gordon, Carlos; Avraham, Karen B; Mintz, Matti

    2015-01-01

    Treatment of anxiety disorders by either pharmacological or behavioral means is applied with the intention to directly target the limbic system or high brain centers that down-regulate limbic activity. In spite of intense and long treatment, remission is not achieved in many patients, suggesting that their pathophysiology is not addressed by either of the above treatments. An alternative pathophysiology may be a disordered vestibular system, which may be studied in the context of comorbidity of balance and anxiety disorders. Here we studied whether mutant vestibular Headbanger (Hdb) mice demonstrate elevated anxiety and whether physical treatment of balance alleviates the behavioral symptoms of anxiety. Hdb and wildtype (Wt) mice were raised in either balance training or standard cages and were subjected repeatedly at 1-3 months of age to balance and anxiety-related tests. Results demonstrated progressive deterioration of balance performance and parallel elevation of anxiety in untrained Hdb as compared to untrained Wt mice. Training significantly improved balance performance of Hdb mice and in parallel, decreased the level of anxiety compared to untrained Hdb mice. These findings confirm that vestibular pathophysiology may be causally related to development of anxiety and suggest that in some clinical cases of anxiety, the appropriate treatment is physical rehabilitation of balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Web-based home rehabilitation gaming system for balance training

    Directory of Open Access Journals (Sweden)

    Oleh Kachmar

    2014-06-01

    Full Text Available Currently, most systems for virtual rehabilitation and motor training require quite complex and expensive hardware and can be used only in clinical settings. Now, a low-cost rehabilitation game training system has been developed for patients with movement disorders; it is suitable for home use under the distant supervision of a therapist. It consists of a patient-side application installed on a home computer and the virtual rehabilitation Game Server in the Internet. System can work with different input gaming devices connected through USB or Bluetooth, such as a Nintendo Wii balance board, a Nintendo Wii remote, a MS Kinect sensor, and custom made rehabilitation gaming devices based on a joystick. The same games can be used with all training devices. Assessment of the Home Rehabilitation Gaming System for balance training was performed on six patients with Cerebral Palsy, who went through daily training sessions for two weeks. Preliminary results showed balance improvement in patients with Cerebral Palsy after they had completed home training courses. Further studies are needed to establish medical requirements and evidence length.

  18. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    So, it is essential to seek an ideal physical therapy program to help in solving such a widespread problem. The present study was conducted to compare between the effect of treadmill training and suspension therapy on balance in children with DS. Subjects and methods: Thirty children born with DS from both sexes ...

  19. The effects of balance training and ankle training on the gait of elderly people who have fallen.

    Science.gov (United States)

    Choi, Jung-Hyun; Kim, Nyeon-Jun

    2015-01-01

    [Purpose] The aim of this study was to examine the effects of balance training and muscle training around the ankle joints on the gait of elderly people who have experienced a fall. [Subjects] Twenty-six elderly people with a risk of falling and a Berg Balance Scale score of 37 to 50 points who had experienced a fall in the last year were randomly and equally assigned to either a balance training group or an ankle training group. The balance training group received training on a hard floor, training while maintaining balance on a cushion ball in a standing position, and training while maintaining balance on an unstable platform in a standing position; the ankle training group received training to strengthen the muscles around the ankle joints and conducted stretch exercise for the muscles around the ankle joints. [Results] There were significant changes in gait velocity, step length, and stride length in the balance training group after the intervention; there were significant changes in gait velocity, cadence, step time, cycle time, step length, and stride length in the ankle training group after the intervention. In a between-group comparison, the gait velocity of the balance training group showed a significant improvement compared with the ankle training group. [Conclusion] Both balance training and ankle joint training are effective in enhancing the gait ability of elderly people with a risk of falling; in particular, balance training is effective in improving the gait velocity of elderly people who have experienced a fall compared with ankle joint training.

  20. Virtual Balancing for Studying and Training Postural Control

    Directory of Open Access Journals (Sweden)

    Daniela Buettner

    2017-09-01

    Full Text Available Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We

  1. [Application of the balanced scorecard for evaluating the training process].

    Science.gov (United States)

    Venturoli, Cristiana; Gamberoni, Loredana

    2009-01-01

    A training project in which nurses acted as tutors to novice nurses was introduced in the Ferrara University Hospital, with the aim of helping them to achieve the skills and professional expertise required in an operating theatre environment. Owing to the involvement of all the surgical divisions of the hospital and the continual addition of new staff, the Balanced Scorecard method (BSC) was used to assess the impact of training on the entire organization. The BSC method, a multidimensional method born in the USA in the 1990's, made it possible to assess the utility of training in the light of achieving institutional goals.

  2. Impact of sensory integration training on balance among stroke patients: sensory integration training on balance among stroke patients.

    Science.gov (United States)

    Jang, Sang Hun; Lee, Jung-Ho

    2016-01-01

    This study attempts to investigate the impact that the sensory integration training has on the recovery of balance among patients with stroke by examining the muscle activity and limit of stability (LOS). A total of 28 subjects participated. The subjects were randomly allocated by the computer program to one of two groups: control (CON) group (n=15), sensory integration training (SIT) group (n=13). The research subjects received intervention five days a week for a total of four weeks. The CON group additionally received 30-minute general balance training, while the SIT group additionally received 30-minute sensory integration training. In the muscle activity, the improvement of Erector spinae (ES) and Gluteus medius (GM) was more significant in the SIT group than in the CON group. In the LOS, the improvement of affected side and forward side was significantly higher in the SIT group compared to the CON group. Sensory integration training can improve balance ability of patients with stroke by increasing muscle activity of stance limb muscles such as GM and trunk extensor such as ES along with enhancement of the limit of stability.

  3. Impact of sensory integration training on balance among stroke patients: sensory integration training on balance among stroke patients

    Directory of Open Access Journals (Sweden)

    Jang Sang Hun

    2016-01-01

    Full Text Available This study attempts to investigate the impact that the sensory integration training has on the recovery of balance among patients with stroke by examining the muscle activity and limit of stability (LOS. A total of 28 subjects participated. The subjects were randomly allocated by the computer program to one of two groups: control (CON group (n=15, sensory integration training (SIT group (n=13. The research subjects received intervention five days a week for a total of four weeks. The CON group additionally received 30-minute general balance training, while the SIT group additionally received 30-minute sensory integration training. In the muscle activity, the improvement of Erector spinae (ES and Gluteus medius (GM was more significant in the SIT group than in the CON group. In the LOS, the improvement of affected side and forward side was significantly higher in the SIT group compared to the CON group. Sensory integration training can improve balance ability of patients with stroke by increasing muscle activity of stance limb muscles such as GM and trunk extensor such as ES along with enhancement of the limit of stability.

  4. Influence of aquatic exercise training on balance in young adults

    Directory of Open Access Journals (Sweden)

    Luana Mann

    Full Text Available Introduction Physical exercise programs have been suggested to soften or reverse balance deficits and postural deviation. Objective This study investigated the influence of a systematic aquatic exercise program on body balance. Method Healthy young adult volunteers of both genders, aged 18–30 years were assessed. The experimental group (EG, n = 20 was subjected to 24 sessions of aquatic exercises of 50 minutes long, performed three times a week, and the control group (CG, n = 25 suffered no intervention. A 3-D force platform was used to calculate the center of pressure displacement (COP in anteroposterior and mid-lateral directions with or without visual information. The individuals were assessed in pre or post-training. Results The results demonstrated a decrease in body oscillation in both visual conditions, with post-training values lower than pre-training ones. Visual information was not expressive for EG post-training. Conclusion It was concluded that the program was effective for body balance improvement.

  5. Effects of Balance Training on Balance Performance in Healthy Older Adults : A Systematic Review and Meta-analysis

    NARCIS (Netherlands)

    Lesinski, Melanie; Hortobagyi, Tibor; Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs

    2015-01-01

    Background The effects of balance training (BT) in older adults on proxies of postural control and mobility are well documented in the literature. However, evidence-based dose-response relationships in BT modalities (i.e., training period, training frequency, training volume) have not yet been

  6. Using balance training to improve the performance of youth basketball players

    OpenAIRE

    Boccolini, Gabriele; Brazzit, Alessandro; Bonfanti, Luca; Alberti, Giampietro

    2013-01-01

    The aim of this study was to evaluate the effectiveness of 12?weeks of balance training to improve the balance and vertical jump abilities of young basketball players. Twenty-three players from two teams in the Under Fifteen Basketball Excellence category participated in the study. Participants were divided into two training groups: balance training (BAL, n?=?11) and isotonic training (ISO, n?=?12). Both groups were tested for balance and vertical jumps at the beginning of the competitive sea...

  7. The effects of balance training and ankle training on the gait of elderly people who have fallen

    OpenAIRE

    Choi, Jung-Hyun; Kim, Nyeon-Jun

    2015-01-01

    [Purpose] The aim of this study was to examine the effects of balance training and muscle training around the ankle joints on the gait of elderly people who have experienced a fall. [Subjects] Twenty-six elderly people with a risk of falling and a Berg Balance Scale score of 37 to 50 points who had experienced a fall in the last year were randomly and equally assigned to either a balance training group or an ankle training group. The balance training group received training on a hard floor, t...

  8. Core stability training on lower limb balance strength.

    Science.gov (United States)

    Dello Iacono, Antonio; Padulo, Johnny; Ayalon, Moshe

    2016-01-01

    This study aimed to assess the effects of core stability training on lower limbs' muscular asymmetries and imbalances in team sport. Twenty footballers were divided into two groups, either core stability or control group. Before each daily practice, core stability group (n = 10) performed a core stability training programme, while control group (n = 10) did a standard warm-up. The effects of the core stability training programme were assessed by performing isokinetic tests and single-leg countermovement jumps. Significant improvement was found for knee extensors peak torque at 3.14 rad · s(-1) (14%; P strength asymmetries in core stability group (-71.4%; P = 0.02) while a concurrent increase was seen in the control group (33.3%; P lower limbs strength balance development in young soccer players.

  9. Home-based balance training programme using Wii Fit with balance board for Parkinsons's disease: a pilot study.

    Science.gov (United States)

    Esculier, Jean-Francois; Vaudrin, Joanie; Bériault, Patrick; Gagnon, Karine; Tremblay, Louis E

    2012-02-01

    To evaluate the effects of a home-based balance training programme using visual feedback (Nintendo Wii Fit game with balance board) on balance and functional abilities in subjects with Parkinson's disease, and to compare the effects with a group of paired healthy subjects. Ten subjects with moderate Parkinson's disease and 8 healthy elderly subjects. Subjects participated in a 6-week home-based balance training programme using Nintendo Wii Fit and balance board. Baseline measures were taken before training for the Sit-to-Stand test (STST), Timed-Up-and-Go (TUG), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test, Community Balance and Mobility assessment (CBM), Activities-specific Balance and Confidence scale (ABC), unipodal stance duration, and a force platform. All measurements were taken again after 3 and 6 weeks of training. The Parkinson's disease group significantly improved their results in TUG, STST, unipodal stance, 10-m walk test, CBM, POMA and force platform at the end of the 6-week training programme. The healthy subjects group significantly improved in TUG, STST, unipodal stance and CBM. This pilot study suggests that a home-based balance programme using Wii Fit with balance board could improve static and dynamic balance, mobility and functional abilities of people affected by Parkinson's disease.

  10. Flexible Training's Intrusion on Work/Life Balance

    Directory of Open Access Journals (Sweden)

    Zane BERGE

    2005-04-01

    Full Text Available Flexible Training's Intrusion on Work/Life Balance Seema TAKIYAJennifer ARCHBOLDZane BERGEBaltimore, USA Learning interventions should be aligned with the human learning system. To be effective, they have to support human learning, not work against it. Thalheimer, 2004 ABSTRACT With more companies allowing “flextime”, more access to elearning, and telecomuting, the line between workplace flexibility and work-life balance begins to blur. Companies “sell” to employees the flexibility of being able to complete training programs from the comfort of the participant's home, allowing them to learn at their own speed. In many ways, this solution is of great value to many employees. What also must be considered with the flexibility such training offers, is the unintentional consequences. This article explores questions such as does this flexibility create a 24-hour work day where the employee is continually accessible to work? Does it result in less family, personal and leisure time to the detriment of the worker?

  11. Task oriented training improves the balance outcome & reducing fall risk in diabetic population.

    Science.gov (United States)

    Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran

    2016-01-01

    The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome.

  12. Improving Balance in Older People: A Double-Blind Randomized Clinical Trial of Three Modes of Balance Training.

    Science.gov (United States)

    Nematollahi, Ahmadreza; Kamali, Fahimeh; Ghanbari, Ali; Etminan, Zahra; Sobhani, Sobhan

    2016-04-01

    The aim of this study was to examine and compare the effects of conventional, multisensory, and dual-task exercises on balance ability in a group of older community dwellers over a four-week period. Forty-four older people were randomly assigned to one of the three training groups. The score on the Fullerton Advanced Balance (FAB) scale, gait stability ratio, and walking speed were evaluated at baseline and after four weeks of training. All three groups showed significant (p balance of older adults, with no significant superiority of one mode of training over another.

  13. Optimized balance rehabilitation training strategy for the elderly through an evaluation of balance characteristics in response to dynamic motions

    Science.gov (United States)

    Jung, HoHyun; Chun, Keyoung Jin; Hong, Jaesoo; Lim, Dohyung

    2015-01-01

    Balance is important in daily activities and essential for maintaining an independent lifestyle in the elderly. Recent studies have shown that balance rehabilitation training can improve the balance ability of the elderly, and diverse balance rehabilitation training equipment has been developed. However, there has been little research into optimized strategies for balance rehabilitation training. To provide an optimized strategy, we analyzed the balance characteristics of participants in response to the rotation of a base plate on multiple axes. Seven male adults with no musculoskeletal or nervous system-related diseases (age: 25.5±1.7 years; height: 173.9±6.4 cm; body mass: 71.3±6.5 kg; body mass index: 23.6±2.4 kg/m2) were selected to investigate the balance rehabilitation training using customized rehabilitation equipment. Rotation of the base plate of the equipment was controlled to induce dynamic rotation of participants in the anterior–posterior, right-diagonal, medial–lateral, and left-diagonal directions. We used a three-dimensional motion capture system employing infrared cameras and the Pedar Flexible Insoles System to characterize the major lower-extremity joint angles, center of body mass, and center of pressure. We found statistically significant differences between the changes in joint angles in the lower extremities in response to dynamic rotation of the participants (P0.05). These results indicate that optimizing rotation control of the base plate of balance rehabilitation training equipment to induce anterior–posterior and medial–lateral dynamic rotation preferentially can lead to effective balance training. Additional tests with varied speeds and ranges of angles of base plate rotation are expected to be useful as well as an analysis of the balance characteristics considering a balance index that reflects the muscle activity and cooperative characteristics. PMID:26508847

  14. iBEST: intelligent Balance assessment and Stability Training system using smartphone.

    Science.gov (United States)

    Wai, Aung Aung Phyo; Duc, Pham Duy; Syin, Chan; Zhang, Haihong

    2014-01-01

    Patients with postural instability could lead to falls and injuries while walking due to balance disorders. So those patients need regular balance training and evaluation to improve and examine balance deficiencies. But many do not notice such balance issues; resulting lack of timely preventive measures. This shows the needs of affordable and accessible solution for balance training and assessment. So iBEST (intelligent Balance assessment and Stability Training) is proposed enabling to train and assess balance conveniently anywhere anytime. Moreover, therapists can remotely evaluate and manage their recovery progress. These benefits can be realized leveraging sensors from smartphone, cloud-based data analytics and web applications. iBEST employs sensorised automated balance assessment in digitizing Berg Balance Scale (BBS) clinical risk assessment tool. The initial feasibility study showed average accuracy of 90.22% using smartphone in classifying the specified BBS test items.

  15. Balance Changes in Trained and Untrained Elderly Undergoing a Five-Months Multicomponent Training Program

    Directory of Open Access Journals (Sweden)

    Ana Cordellat

    2016-10-01

    Full Text Available Balance is a main focus of elderly activity programs which can be assessed by functional tests or stabilometry platforms. Our study aims to compare balance-changes in trained (TRA and untrained (UNT elderly following a 5-month Multi-Component Training Program (MCTP, twice a week, one hour per day. 10 TRA (>2-years and 9 UNT (first year performed the Romberg´s test (Open-Eyes 30 seconds/Closed-Eyes 30 seconds ratio on a stabilometry platform (BT4, Hur Labs. COP displacement (Trace Length: TL and sway area (C90 were registered twice PRE (1&2, POST (3&4 and 3 months later (Detraining: 5&6 the EFAM-UV© program, a Cognitive MCTP based on gait training and Dual-Task neuromuscular proposals in enriched environments. Regarding Open-Eyes, Bonferroni post-hoc comparisons showed significant group-differences in TL for 1, 2, 5 & 6 sample conditions, and a slight trend toward significance in C90 1&5. TL also showed significant group-differences in Closed-Eyes 1, 5 & 6, while C90 only in 5 & 6 Closed-Eyes. Balance indicators TL and C90 show a different way regarding the training status. A 5-month MCTP reduces differences, but detraining quickly affects UNT. Although effective, short multicomponent interventions could lead to early worsening, so the ratio training-detraining might be considered in untrained elderly population.

  16. Effectiveness of Progressive Resistance Strength Training Versus Traditional Balance Exercise in Improving Balance Among the Elderly - A Randomised Controlled Trial

    OpenAIRE

    Joshua, Abraham M.; D’Souza, Vivian; Unnikrishnan, B.; Mithra, Prasanna; Kamath, Asha; Acharya, Vishak; Venugopal, Anand

    2014-01-01

    Introduction: Falls are important health issues among the elderly people. Most falls in elderly result from abnormal balance control mechanisms. Balance and muscle force generation are directly related, and are associated with age related muscular changes. Studies addressing fall prevention have focused on various group and individualised strength training. However, evidence on strengthening of key muscles necessary for maintaining balance and postural control is lacking.

  17. Alterations of Muscular Strength and Left and Right Limb Balance in Weightlifters after an 8-week Balance Training Program.

    Science.gov (United States)

    Kang, Sung Hwun; Kim, Cheol Woo; Kim, Young Il; Kim, Kwi Baek; Lee, Sung Soo; Shin, Ki Ok

    2013-07-01

    [Purpose] Balance is generally defined as the ability to maintain the body's center of gravity within its base of support and may be categorized by either static or dynamic balance. The purpose of the present study was to evaluate the effect of 8 weeks of balance training on strength, and the functional balance ability of elite weightlifters. [Subjects] Thirty-two elite weightlifters were recruited for the present study. They were divided into exercise groups (8 high school students, 8 middle school students) and control groups (8 high school students, 8 middle school students). [Methods] Body compositions were measured by the electrical impedance method, and a Helmas system was used to measure basic physical capacities. The muscular function test was conducted using a Cybex 770. [Results] There were no significant changes in body composition after the training. In contrast, significant changes were found in the number of push-ups, one-leg standing time with eyes closed, and upper body back extension. Interestingly, only the left arm external rotation value after the exercise training program showed a statistically significant difference from the baseline value. [Conclusion] The peak torque values of shoulder internal rotation and knee extension were significantly changed compared to the baseline values, which mean subjects showed balance of their muscular power. Therefore, the results of the present study suggest that an 8-week balance-training program would positively affect elite weightlifters' balance ability and flexibility. We think that well-balanced muscular functionality may enhance athletes' sport performance.

  18. EFFECT OF DYNAMIC BALANCE TRAINING ON AGILITY IN MALE BASKETBALL PLAYERS

    OpenAIRE

    Avi Saraswat; Deepak Malhotra; C. Sivaram

    2015-01-01

    Background: Athletes focus their training on two major goals, i.e., avoidance of the injury and increasing the performance. Balance training has been widely used in competitive sports to improve the balance and thus reduce the risk of injury, for example, ligamentous sprains, which are very common in Basketball. On the other hand, various drills are being used to improve the performance parameters such as agility. Our effort is to find out an exercise program which focuses on balance training...

  19. The effect of balance exercises and computerized cognitive training on psychomotor performance in elderly.

    Science.gov (United States)

    Taheri, Morteza; Irandoust, Khadijeh

    2017-12-01

    [Purpose] The purpose of this study was to investigate the effect of balance and computerized cognitive training on psychomotor performance in elderly females. [Subjects and Methods] Twentynine elderly females with the mean age of 63-71 years old were applied voluntarily and randomly allocated to four groups: balance training (3 d/wk for 12 wk), balance training with computerized cognitive training (3 d/wk for 12 wk), computerized cognitive training group and control group. Psychomotor performance of all subjects was measured by Vienna Test System which was a computerized psychological assessment tool. Determination test (DT) and Visual Pursuit Test (VPT) were used as indexes of psychomotor performance. [Results] The results suggested that DT and VPT were significantly improved in all experimental groups with greater improvement in the balance supplemented with computerized cognitive training group. [Conclusion] Balance training and computerized cognitive are highly recommended in elderly with the aim of increasing cognitive performance.

  20. Feasibility of Wii Fit training to improve clinical measures of balance in older adults.

    Science.gov (United States)

    Bieryla, Kathleen A; Dold, Neil M

    2013-01-01

    Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo's Wii Fit for training to improve clinical measures of balance in older adults and to retain the improvements after a period of time. Twelve healthy older adults (aged >70 years) were randomly divided into two groups. The experimental group completed training using Nintendo's Wii Fit game three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week after training, and 1 month after training: Berg Balance Scale (BBS), Fullerton Advanced Balance (FAB) scale, Functional Reach (FR), and Timed Up and Go (TUG). Friedman two-way analysis of variance by ranks was conducted on the control and experimental group to determine if training using the Wii Balance Board with Wii Fit had an influence on clinical measures of balance. Nine older adults completed the study (experimental group n = 4, control group n = 5). The experimental group significantly increased their BBS after training while the control group did not. There was no significant change for either group with FAB, FR, and TUG. Balance training with Nintendo's Wii Fit may be a novel way for older adults to improve balance as measured by the BBS.

  1. Effects of Resistance Training on Measures of Muscular Strength in People with Parkinson's Disease: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Luisa Roeder

    Full Text Available The aim of this systematic review and meta-analysis was to determine the overall effect of resistance training (RT on measures of muscular strength in people with Parkinson's disease (PD.Controlled trials with parallel-group-design were identified from computerized literature searching and citation tracking performed until August 2014. Two reviewers independently screened for eligibility and assessed the quality of the studies using the Cochrane risk-of-bias-tool. For each study, mean differences (MD or standardized mean differences (SMD and 95% confidence intervals (CI were calculated for continuous outcomes based on between-group comparisons using post-intervention data. Subgroup analysis was conducted based on differences in study design.Nine studies met the inclusion criteria; all had a moderate to high risk of bias. Pooled data showed that knee extension, knee flexion and leg press strength were significantly greater in PD patients who undertook RT compared to control groups with or without interventions. Subgroups were: RT vs. control-without-intervention, RT vs. control-with-intervention, RT-with-other-form-of-exercise vs. control-without-intervention, RT-with-other-form-of-exercise vs. control-with-intervention. Pooled subgroup analysis showed that RT combined with aerobic/balance/stretching exercise resulted in significantly greater knee extension, knee flexion and leg press strength compared with no-intervention. Compared to treadmill or balance exercise it resulted in greater knee flexion, but not knee extension or leg press strength. RT alone resulted in greater knee extension and flexion strength compared to stretching, but not in greater leg press strength compared to no-intervention.Overall, the current evidence suggests that exercise interventions that contain RT may be effective in improving muscular strength in people with PD compared with no exercise. However, depending on muscle group and/or training dose, RT may not be

  2. Exergaming with additional postural demands improves balance and gait in patients with multiple sclerosis as much as conventional balance training and leads to high adherence to home-based balance training.

    Science.gov (United States)

    Kramer, Andreas; Dettmers, Christian; Gruber, Markus

    2014-10-01

    To assess the effectiveness of and adherence to an exergame balance training program with additional postural demands in patients with multiple sclerosis (MS). Matched controlled trial, assessment of balance before and after different balance training programs, and adherence to home-based balance exercise in the 6 months after the training. A neurorehabilitation facility and center for MS. Patients with balance problems (N=70) matched into 1 of the training groups according to age as well as balance and gait performance in 4 tests. Nine patients dropped out of the study because of scheduling problems. The mean age of the 61 remaining participants was 47±9 years, and their Expanded Disability Status Scale score was 3±1. Three weeks of (1) conventional balance training (control), (2) exergame training (playing exergames on an unstable platform), or (3) single-task (ST) exercises on the unstable platform. Test scores in balance tests and gait analyses under ST and dual-task (DT) situations. Furthermore, in the 6 months after the rehabilitation training, the frequency and type of balance training were assessed by using questionnaires. All 3 groups showed significantly improved balance and gait scores. Only the exergame training group showed significantly higher improvements in the DT condition of the gait test than in the ST condition. Adherence to home-based balance training differed significantly between groups (highest adherence in the exergame training group). Playing exergames on an unstable surface seems to be an effective way to improve balance and gait in patients with MS, especially in DT situations. The integration of exergames seems to have a positive effect on adherence and is thus potentially beneficial for the long-term effectiveness of rehabilitation programs. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Sequencing Effects of Balance and Plyometric Training on Physical Performance in Youth Soccer Athletes.

    Science.gov (United States)

    Hammami, Raouf; Granacher, Urs; Makhlouf, Issam; Behm, David G; Chaouachi, Anis

    2016-12-01

    Hammami, R, Granacher, U, Makhlouf, I, Behm, DG, and Chaouachi, A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J Strength Cond Res 30(12): 3278-3289, 2016-Balance training may have a preconditioning effect on subsequent power training with youth. There are no studies examining whether the sequencing of balance and plyometric training has additional training benefits. The objective was to examine the effect of sequencing balance and plyometric training on the performance of 12- to 13-year-old athletes. Twenty-four young elite soccer players trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training (BPT) or 4 weeks of plyometric training proceeded by 4 weeks of balance training (PBT). Testing was conducted pre- and posttraining and included medicine ball throw; horizontal and vertical jumps; reactive strength; leg stiffness; agility; 10-, 20-, and 30-m sprints; Standing Stork balance test; and Y-Balance test. Results indicated that BPT provided significantly greater improvements with reactive strength index, absolute and relative leg stiffness, triple hop test, and a trend for the Y-Balance test (p = 0.054) compared with PBT. Although all other measures had similar changes for both groups, the average relative improvement for the BPT was 22.4% (d = 1.5) vs. 15.0% (d = 1.1) for the PBT. BPT effect sizes were greater with 8 of 13 measures. In conclusion, although either sequence of BPT or PBT improved jumping, hopping, sprint acceleration, and Standing Stork and Y-Balance, BPT initiated greater training improvements in reactive strength index, absolute and relative leg stiffness, triple hop test, and the Y-Balance test. BPT may provide either similar or superior performance enhancements compared with PBT.

  4. Visual feedback training using WII Fit improves balance in Parkinson's disease.

    Science.gov (United States)

    Zalecki, Tomasz; Gorecka-Mazur, Agnieszka; Pietraszko, Wojciech; Surowka, Artur D; Novak, Pawel; Moskala, Marek; Krygowska-Wajs, Anna

    2013-01-01

    Postural instability including imbalance is the most disabling long term problem in Parkinson's disease (PD) that does not respond to pharmacotherapy. This study aimed at investigating the effectiveness of a novel visual-feedback training method, using Wii Fit balance board in improving balance in patients with PD. Twenty four patients with moderate PD were included in the study which comprised of a 6-week home-based balance training program using Nintendo Wii Fit and balance board. The PD patients significantly improved their results in Berg Balance Scale, Tinnet's Performance-Oriented Mobility Assessment, Timed Up-and-Go, Sit-to-stand test, 10-Meter Walk test and Activities-specific Balance Confidence scale at the end of the programme. This study suggests that visual feedback training using Wii-Fit with balance board could improve dynamic and functional balance as well as motor disability in PD patients.

  5. Relevance of balance measurement tools and balance training for fall prevention in older adults

    OpenAIRE

    Noohu, Majumi M.; Dey, Aparajit B.; Hussain, Mohammed E.

    2014-01-01

    Approximately one in three older people fall each year owing to gait/balance disorder/weakness, the second leading cause of falls in older adults. This review evaluates the capability of different balance measurement tools to predict falls in the elderly, which are used routinely for assessing balance impairment. Balance measurement tools reviewed are the Timed Up and Go test, Berg Balance Scale, Tinetti Performance Oriented Mobility Assessment, Functional Reach Test, Clinical Test of Sensory...

  6. The dose-response relationship of balance training in physically active older adults.

    Science.gov (United States)

    Maughan, Kristen K; Lowry, Kristin A; Franke, Warren D; Smiley-Oyen, Ann L

    2012-10-01

    A 6-wk group balance-training program was conducted with physically active older adults (based on American College of Sports Medicine requirements) to investigate the effect of dose-related static and dynamic balance-specific training. All participants, age 60-87 yr, continued their regular exercise program while adding balance training in 1 of 3 doses: three 20-min sessions/wk (n = 20), one 20-min session/wk (n = 21), or no balance training (n = 19). Static balance (single-leg-stance, tandem), dynamic balance (alternate stepping, limits of stability), and balance confidence (ABC) were assessed pre- and posttraining. Significant interactions were observed for time in single-leg stance, excursion in limits of stability, and balance confidence, with the greatest increase observed in the group that completed 3 training sessions/wk. The results demonstrate a dose-response relationship indicating that those who are already physically active can improve balance performance with the addition of balance-specific training.

  7. Balancing the playing field: collaborative gaming for physical training.

    Science.gov (United States)

    Mace, Michael; Kinany, Nawal; Rinne, Paul; Rayner, Anthony; Bentley, Paul; Burdet, Etienne

    2017-11-20

    Multiplayer video games promoting exercise-based rehabilitation may facilitate motor learning, by increasing motivation through social interaction. However, a major design challenge is to enable meaningful inter-subject interaction, whilst allowing for significant skill differences between players. We present a novel motor-training paradigm that allows real-time collaboration and performance enhancement, across a wide range of inter-subject skill mismatches, including disabled vs. able-bodied partnerships. A virtual task consisting of a dynamic ball on a beam, is controlled at each end using independent digital force-sensing handgrips. Interaction is mediated through simulated physical coupling and locally-redundant control. Game performance was measured in 16 healthy-healthy and 16 patient-expert dyads, where patients were hemiparetic stroke survivors using their impaired arm. Dual-player was compared to single-player performance, in terms of score, target tracking, stability, effort and smoothness; and questionnaires probing user-experience and engagement. Performance of less-able subjects (as ranked from single-player ability) was enhanced by dual-player mode, by an amount proportionate to the partnership's mismatch. The more abled partners' performances decreased by a similar amount. Such zero-sum interactions were observed for both healthy-healthy and patient-expert interactions. Dual-player was preferred by the majority of players independent of baseline ability and subject group; healthy subjects also felt more challenged, and patients more skilled. This is the first demonstration of implicit skill balancing in a truly collaborative virtual training task leading to heightened engagement, across both healthy subjects and stroke patients.

  8. Assessing and training standing balance in older adults: a novel approach using the 'Nintendo Wii' Balance Board.

    Science.gov (United States)

    Young, William; Ferguson, Stuart; Brault, Sébastien; Craig, Cathy

    2011-02-01

    Older adults, deemed to be at a high risk of falling, are often unable to participate in dynamic exercises due to physical constraints and/or a fear of falling. Using the Nintendo 'Wii Balance Board' (WBB) (Nintendo, Kyoto, Japan), we have developed an interface that allows a user to accurately calculate a participant's centre of pressure (COP) and incorporate it into a virtual environment to create bespoke diagnostic or training programmes that exploit real-time visual feedback of current COP position. This platform allows researchers to design, control and validate tasks that both train and test balance function. This technology provides a safe, adaptable and low-cost balance training/testing solution for older adults, particularly those at high-risk of falling. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Changes in balance coordination and transfer to an unlearned balance task after slackline training: a self-organizing map analysis

    OpenAIRE

    Serrien, Ben; Hohenauer, Erich; Clijsen, Ron; Taube, Wolfgang; Baeyens, Jean-Pierre; Küng, Ursula

    2017-01-01

    How humans maintain balance and change postural control due to age, injury, immobility or training is one of the basic questions in motor control. One of the problems in understanding postural control is the large set of degrees of freedom in the human motor system. Therefore, a self-organizing map (SOM), a type of artificial neural network, was used in the present study to extract and visualize information about high-dimensional balance strategies before and after a 6-week slackline tra...

  10. Xbox Kinect training to improve clinical measures of balance in older adults: a pilot study.

    Science.gov (United States)

    Bieryla, Kathleen A

    2016-06-01

    Falls are a leading cause of injury and death for old adults, with one risk factor for falls being balance deficits. The low cost (balance intervention tools. To investigate the feasibility of using the Xbox Kinect for training to improve clinical measures of balance in old adults and retain improvements after a period of time. Thirteen healthy old adults (aged 70+ years) were randomly divided into two groups. The experimental group completed Kinect training three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week and 1 month after training: Berg balance scale (BBS), Fullerton advanced balance (FAB) scale, functional reach (FR), and timed up and go (TUG). The ability to implement the training program was successful. The experimental group significantly increased their BBS and FAB after training while the control group did not. There was no significant change for either groups with FR and TUG. A training program using the Kinect with commercially available games was feasible with old adults. Kinect training may be an inexpensive way for old adults to receive helpful feedback encouraging them to continue with balance training program in their home.

  11. Using balance training to improve the performance of youth basketball players.

    Science.gov (United States)

    Boccolini, Gabriele; Brazzit, Alessandro; Bonfanti, Luca; Alberti, Giampietro

    2013-08-01

    The aim of this study was to evaluate the effectiveness of 12 weeks of balance training to improve the balance and vertical jump abilities of young basketball players. Twenty-three players from two teams in the Under Fifteen Basketball Excellence category participated in the study. Participants were divided into two training groups: balance training (BAL, n  = 11) and isotonic training (ISO, n  = 12). Both groups were tested for balance and vertical jumps at the beginning of the competitive season and at the end of 12 weeks of specific training programme. All of the tests were performed in sustained bipodalic and monopodalic (both right and left) positions. The results showed that players who participated in balance training for 12 weeks, compared to players who trained with isotonic machines, exhibited a significantly increase in balance (bipodalic 28.3 %; right 41.4 %; left 45.8 %; p  training using unstable boards was an effective training method for improving balance and the vertical jump, which is a basketball-specific action that frequently occurs in this sport.

  12. Effects of Water and Land-based Sensorimotor Training Programs on Static Balance among University Students

    OpenAIRE

    Abdolhamid Daneshjoo; Ashril Yusof

    2016-01-01

    This study examined the effect of sensorimotor training on static balance in two different environments; in water and on land. Thirty non-clinical university male students (aged 22±0.85 years) were divided randomly into three groups; water, land and control groups. The experimental groups performed their respective sensorimotor training programs for 6 weeks (3 times per week). The Stork Stand Balance Test was used to examine the static balance at pre- and post-time points. Significant main ef...

  13. Feasibility of Wii Fit training to improve clinical measures of balance in older adults

    Directory of Open Access Journals (Sweden)

    Bieryla KA

    2013-06-01

    Full Text Available Kathleen A Bieryla, Neil M DoldBiomedical Engineering Department, Bucknell University, Lewisburg, PA, USABackground and purpose: Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo's Wii Fit for training to improve clinical measures of balance in older adults and to retain the improvements after a period of time.Methods: Twelve healthy older adults (aged >70 years were randomly divided into two groups. The experimental group completed training using Nintendo's Wii Fit game three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week after training, and 1 month after training: Berg Balance Scale (BBS, Fullerton Advanced Balance (FAB scale, Functional Reach (FR, and Timed Up and Go (TUG. Friedman two-way analysis of variance by ranks was conducted on the control and experimental group to determine if training using the Wii Balance Board with Wii Fit had an influence on clinical measures of balance.Results: Nine older adults completed the study (experimental group n = 4, control group n = 5. The experimental group significantly increased their BBS after training while the control group did not. There was no significant change for either group with FAB, FR, and TUG.Conclusion: Balance training with Nintendo's Wii Fit may be a novel way for older adults to improve balance as measured by the BBS.Keywords: older adults, balance, training

  14. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES - IMPLICATIONS FOR REHABILITATION STRATEGIES

    DEFF Research Database (Denmark)

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas

    2016-01-01

    BACKGROUND: A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important...... to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. PURPOSE: The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used...... balance devices (Airex®, BOSU® Ball and wobble board). DESIGN: Descriptive exploratory laboratory study. METHODS: Nineteen healthy subjects performed single-legged balance with eyes open on an Airex® mat, BOSU® Ball, wobble board, and floor (reference condition). Ankle kinematics were measured using...

  15. The Effects of Multisensory Balance Training on Postural Control in Older Adults

    Directory of Open Access Journals (Sweden)

    Farnoosh Shams

    2011-10-01

    Full Text Available Objectives: It has been found that older adults fall or sway significantly more than younger ones under sensory conflict conditions. Considering the prospects of future increases in the elderly population size of Iran and the lack of proper postural control and the high costs of its probable consequences, this study investigated the effects of multi balance training on postural control. Methods & Materials: In this semi-experimental study, 34 elderly women participated in two training and control groups with the mean ages of 72.4 and 72.9 respectively. Before and after training, to investigate the functional balance and postural control, the Berg Balance Scale and a force plate were used. The training group participated in multisensory balance training sessions of 1 hour classes held three days per week for five weeks. Data was analyzed using an independent sample and a paired t-test. Results: The analysis showed significant differences between the training group and the control after balance training in the measured parameters of postural control consisting of path length and mean velocity in the eyes open (P=0.001 and eyes closed (P=0.0001 conditions and the Berg Balance Scale (P=0.002. Conclusion: Results indicate that multisensory balance training can improve the parameters of postural control even in short term.

  16. Effects of virtual reality-based training and task-oriented training on balance performance in stroke patients.

    Science.gov (United States)

    Lee, Hyung Young; Kim, You Lim; Lee, Suk Min

    2015-06-01

    [Purpose] This study aimed to investigate the clinical effects of virtual reality-based training and task-oriented training on balance performance in stroke patients. [Subjects and Methods] The subjects were randomly allocated to 2 groups: virtual reality-based training group (n = 12) and task-oriented training group (n = 12). The patients in the virtual reality-based training group used the Nintendo Wii Fit Plus, which provided visual and auditory feedback as well as the movements that enabled shifting of weight to the right and left sides, for 30 min/day, 3 times/week for 6 weeks. The patients in the task-oriented training group practiced additional task-oriented programs for 30 min/day, 3 times/week for 6 weeks. Patients in both groups also underwent conventional physical therapy for 60 min/day, 5 times/week for 6 weeks. [Results] Balance and functional reach test outcomes were examined in both groups. The results showed that the static balance and functional reach test outcomes were significantly higher in the virtual reality-based training group than in the task-oriented training group. [Conclusion] This study suggested that virtual reality-based training might be a more feasible and suitable therapeutic intervention for dynamic balance in stroke patients compared to task-oriented training.

  17. Balance Devices Train Golfers for a Consistent Swing

    Science.gov (United States)

    2015-01-01

    As part of the effort to understand the effects of spaceflight on astronauts, NASA funded research that resulted in a commercial product to treat balance disorders. West Palm Beach, Florida-based Sports Therapy Inc. worked with the inventor to modify the technology, creating the Dynamic Balance System (DBS) for sports applications. DBS is now used by Professional Golfers' Association-owned facilities and golf academies to help players achieve an effective, balanced swing.

  18. Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients.

    Science.gov (United States)

    Cho, Ki Hun; Lee, Kyoung Jin; Song, Chang Ho

    2012-09-01

    Stroke is one of the most serious healthcare problems and a major cause of impairment of cognition and physical functions. Virtual rehabilitation approaches to postural control have been used for enhancing functional recovery that may lead to a decrease in the risk of falling. In the present study, we investigated the effects of virtual reality balance training (VRBT) with a balance board game system on balance of chronic stroke patients. Participants were randomly assigned to 2 groups: VRBT group (11 subjects including 3 women, 65.26 years old) and control group (11 subjects including 5 women, 63.13 years old). Both groups participated in a standard rehabilitation program (physical and occupational therapy) for 60 min a day, 5 times a week for 6 weeks. In addition, the VRBT group participated in VRBT for 30 min a day, 3 times a week for 6 weeks. Static balance (postural sway velocity with eyes open or closed) was evaluated with the posturography. Dynamic balance was evaluated with the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) that measures balance and mobility in dynamic balance. There was greater improvement on BBS (4.00 vs. 2.81 scores) and TUG (-1.33 vs. -0.52 sec) in the VRBT group compared with the control group (P < 0.05), but not on static balance in both groups. In conclusion, we demonstrate a significant improvement in dynamic balance in chronic stroke patients with VRBT. VRBT is feasible and suitable for chronic stroke patients with balance deficit in clinical settings.

  19. Effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability.

    Science.gov (United States)

    Nam, Seung-Min; Kim, Kyoung; Lee, Do Youn

    2018-01-01

    [Purpose] This study examined the effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability. [Subjects and Methods] Twenty eight adults with functional ankle instability, divided randomly into an experimental group, which performed visual feedback balance training for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Bio rescue was used for balance ability. It measured limit of stability at one minute. For ankle instability was measured using Cumberland ankle instability tool (CAIT). This measure was performed before and after the experiments in each group. [Results] The experimental group had significant increase in the Limit of Stability and CAIT score. The control group had significant increase in CAIT score. While the Limit of Stability increased without significance. [Conclusion] In conclusion, visual feedback balance training can be recommended as a treatment method for patients with functional ankle instability.

  20. Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy

    DEFF Research Database (Denmark)

    Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger

    2014-01-01

    -gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10weeks prior to training, immediately before training and after 10weeks of training. Training elicited an improvement of walking distance...... by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely...

  1. Resistance training with vascular occlusion in inclusion body myositis: a case study.

    Science.gov (United States)

    Gualano, Bruno; Neves, Manoel; Lima, Fernanda Rodrigues; Pinto, Ana Lúcia De Sá; Laurentino, Gilberto; Borges, Claudia; Baptista, Luciana; Artioli, Guilherme Giannini; Aoki, Marcelo Saldanha; Moriscot, Anselmo; Lancha, Antonio Herbert; Bonfá, Eloísa; Ugrinowitsch, Carlos

    2010-02-01

    Inclusion body myositis (IBM) is a rare idiopathic inflammatory myopathy that produces remarkable muscle weakness. Resistance training with vascular occlusion has been shown to improve muscle strength and cross-sectional area in other muscle wasting conditions. We evaluated the efficacy of a moderate-intensity resistance training program combined with vascular occlusion by examining functional capacity, muscle morphology, and changes in the expression of genes related to muscle protein synthesis and proteolysis in a patient with IBM. A 65-yr-old man with IBM resistant to all proposed treatments underwent resistance training with vascular occlusion for 12 wk. Leg press one-repetition maximum; thigh cross-sectional area; balance, mobility, and muscle function; quality of life; and blood markers of inflammation and muscle damage were assessed at baseline and after the 12-wk program. The messenger RNA (mRNA) expression levels of mechanogrowth factor, mammalian target of rapamycin, atrogin-1, and muscle RING finger-1 were also quantified. After the 12-wk training program, the patient's leg press one-repetition maximum, balance and mobility function, and thigh cross-sectional area increased 15.9%, 60%, and 4.7%, respectively. All Short Form-36 Health Survey Questionnaire subscales demonstrated improvements as well, varying from 18% to 600%. mRNA expression of mechanogrowth factor increased 3.97-fold, whereas that of atrogin-1 decreased 0.62-fold. Muscle RING finger-1 and mammalian target of rapamycin mRNA levels were only slightly altered, 1.18- and 1.28-fold, respectively. Importantly, the exercise did not induce disease flare. We describe a novel, and likely the first, nonpharmacological therapeutic tool that might be able to counteract the muscle atrophy and the declining strength that usually occur in IBM.

  2. The effect of balance training on cervical sensorimotor function and neck pain.

    Science.gov (United States)

    Beinert, Konstantin; Taube, Wolfgang

    2013-01-01

    The authors' aim was to evaluate the effect of balance training on cervical joint position sense in people with subclinical neck pain. Thirty-four participants were randomly assigned to balance training or to stay active. Sensorimotor function was determined before and after 5 weeks of training by assessing the ability to reproduce the neutral head position and a predefined rotated head position. After balance training, the intervention group showed improved joint repositioning accuracy and decreased pain whereas no effects were observed in the control group. A weak correlation was identified between reduced neck pain intensity and improved joint repositioning. The present data demonstrate that balance training can effectively improve cervical sensorimotor function and decrease neck pain intensity.

  3. Effectiveness of progressive resistance strength training versus traditional balance exercise in improving balance among the elderly - a randomised controlled trial.

    Science.gov (United States)

    Joshua, Abraham M; D'Souza, Vivian; Unnikrishnan, B; Mithra, Prasanna; Kamath, Asha; Acharya, Vishak; Venugopal, Anand

    2014-03-01

    Falls are important health issues among the elderly people. Most falls in elderly result from abnormal balance control mechanisms. Balance and muscle force generation are directly related, and are associated with age related muscular changes. Studies addressing fall prevention have focused on various group and individualised strength training. However, evidence on strengthening of key muscles necessary for maintaining balance and postural control is lacking. To evaluate the effectiveness of individualised progressive resistance strength training (PRT) programme in improving balance for forward limits of stability in elderly with balance impairment, compared to traditional balance exercise (TBE), and combination of both (COMBI). This randomised controlled trial included three groups; 18 subjects in each aged ≥ 65 years, from the elderly care centres of Mangalore city in Southern India (between June 2008 and December 2012). Block randomisation technique was used and allocation concealment was done using sequentially arranged sealed opaque envelopes. The TBE group received 8 component traditional balance exercise; 4 times a week for 6 months. The PRT group received resistance training for the key muscles of lower extremities, using DeLormes and Watkins protocol. The COMBI group received PRT and TBE alternately (2 days of PRT and 2 days of TBE per week). Functional reach test (FRT) was used for measurement of forward limits of stability. The data was analyzed using Statistical Package for Social Sciences (SPSS) version 15. For functional reach, PRT group had steady progression from baseline to 6 months (plower limbs is more effective than TBE in improving forward limits of stability among non-frail elderly aged ≥65 years.

  4. Low-Volume Whole-Body Vibration Training Improves Exercise Capacity in Subjects With Mild to Severe COPD.

    Science.gov (United States)

    Spielmanns, Marc; Boeselt, Tobias; Gloeckl, Rainer; Klutsch, Anja; Fischer, Henrike; Polanski, Henryk; Nell, Christoph; Storre, Jan H; Windisch, Wolfram; Koczulla, Andreas R

    2017-03-01

    The objective of this study was to investigate the benefits of a low-volume out-patient whole-body vibration training (WBVT) program on exercise capacity in comparison with a calisthenics training program in subjects with COPD. In this single-center randomized controlled trial, 29 subjects with mild to severe COPD were randomized to WBVT or to calisthenics training, including relaxation and breathing retraining in combination with calisthenics exercises. Both groups equally exercised for a duration of 3 months with 2 sessions of 30 min/week. Outcome parameters were 6-min walk distance (6MWD, primary outcome), 5-repetition sit-to-stand test, leg press peak force, Berg balance scale, St George Respiratory Questionnaire, and COPD assessment test. Twenty-seven subjects completed the study (WBVT, n = 14; calisthenics training program, n = 13). Baseline characteristics between groups were comparable. Subjects in the WBVT group significantly improved median (interquartile range) 6MWD (+105 [45.5-133.5] m, P = .001), sit-to-stand test (-2.3 [-3.1 to -1.3] s, P = .001), peak force (28.7 [16.7-33.3] kg, P = .001), and Berg balance scale (1.5 [0.0-4.0] points, P = .055). Changes in 6MWD, sit-to-stand test, and leg press peak force were also found to be significantly different between groups in favor of the WBVT group. Only the between-group difference of the COPD assessment test score was in favor of the calisthenics training group ( P = .02). A low-volume WBVT program resulted in significantly and clinically relevant larger improvements in exercise capacity compared with calisthenics exercises in subjects with mild to severe COPD. (ClinicalTrials.gov registration DRKS9706.). Copyright © 2017 by Daedalus Enterprises.

  5. Changes in balance coordination and transfer to an unlearned balance task after slackline training: a self-organizing map analysis.

    Science.gov (United States)

    Serrien, Ben; Hohenauer, Erich; Clijsen, Ron; Taube, Wolfgang; Baeyens, Jean-Pierre; Küng, Ursula

    2017-11-01

    How humans maintain balance and change postural control due to age, injury, immobility or training is one of the basic questions in motor control. One of the problems in understanding postural control is the large set of degrees of freedom in the human motor system. Therefore, a self-organizing map (SOM), a type of artificial neural network, was used in the present study to extract and visualize information about high-dimensional balance strategies before and after a 6-week slackline training intervention. Thirteen subjects performed a flamingo and slackline balance task before and after the training while full body kinematics were measured. Range of motion, velocity and frequency of the center of mass and joint angles from the pelvis, trunk and lower leg (45 variables) were calculated and subsequently analyzed with an SOM. Subjects increased their standing time significantly on the flamingo (average +2.93 s, Cohen's d = 1.04) and slackline (+9.55 s, d = 3.28) tasks, but the effect size was more than three times larger in the slackline. The SOM analysis, followed by a k-means clustering and marginal homogeneity test, showed that the balance coordination pattern was significantly different between pre- and post-test for the slackline task only (χ 2  = 82.247; p slackline could be characterized by an increase in range of motion and a decrease in velocity and frequency in nearly all degrees of freedom simultaneously. The observation of low transfer of coordination strategies to the flamingo task adds further evidence for the task-specificity principle of balance training, meaning that slackline training alone will be insufficient to increase postural control in other challenging situations.

  6. Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task.

    Science.gov (United States)

    Oliveira, Anderson Souza; Silva, Priscila Brito; Lund, Morten Enemark; Farina, Dario; Kersting, Uwe Gustav

    2017-11-01

    Study Design Controlled laboratory study. Background Balance training may improve motor coordination. However, little is known about the changes in motor coordination during unexpected perturbations to postural control following balance training. Objectives To study the effects of balance training on motor coordination and knee mechanics during perturbed sidestep cutting maneuvers in healthy adults. Methods Twenty-six healthy men were randomly assigned to a training group or a control group. Before balance training, subjects performed unperturbed, 90° sidestep cutting maneuvers and 1 unexpected perturbed cut (10-cm translation of a movable platform). Participants in the training group participated in a 6-week balance training program, while those in the control group followed their regular activity schedule. Both groups were retested after a 6-week period. Surface electromyography was recorded from 16 muscles of the supporting limb and trunk, as well as kinematics and ground reaction forces. Motor modules were extracted from electromyography by nonnegative matrix factorization. External knee abduction moments were calculated using inverse dynamics equations. Results Balance training reduced the external knee abduction moment (33% ± 25%, PBalance training also increased burst duration for the motor module related to landing early in the perturbation phase (23% ± 11%, PBalance training resulted in altered motor coordination and a reduction in knee abduction moment during an unexpected perturbation. The previously reported reduction in injury incidence following balance training may be linked to changes in dynamic postural stability and modular neuromuscular control. J Orthop Sports Phys Ther 2017;47(11):853-862. Epub 23 Sep 2017. doi:10.2519/jospt.2017.6980.

  7. Sensory integration balance training in patients with multiple sclerosis: A randomized, controlled trial.

    Science.gov (United States)

    Gandolfi, Marialuisa; Munari, Daniele; Geroin, Christian; Gajofatto, Alberto; Benedetti, Maria Donata; Midiri, Alessandro; Carla, Fontana; Picelli, Alessandro; Waldner, Andreas; Smania, Nicola

    2015-10-01

    Impaired sensory integration contributes to balance disorders in patients with multiple sclerosis (MS). The objective of this paper is to compare the effects of sensory integration balance training against conventional rehabilitation on balance disorders, the level of balance confidence perceived, quality of life, fatigue, frequency of falls, and sensory integration processing on a large sample of patients with MS. This single-blind, randomized, controlled trial involved 80 outpatients with MS (EDSS: 1.5-6.0) and subjective symptoms of balance disorders. The experimental group (n = 39) received specific training to improve central integration of afferent sensory inputs; the control group (n = 41) received conventional rehabilitation (15 treatment sessions of 50 minutes each). Before, after treatment, and at one month post-treatment, patients were evaluated by a blinded rater using the Berg Balance Scale (BBS), Activities-specific Balance Confidence Scale (ABC), Multiple Sclerosis Quality of Life-54, Fatigue Severity Scale (FSS), number of falls and the Sensory Organization Balance Test (SOT). The experimental training program produced greater improvements than the control group training on the BBS (p integration of afferent sensory inputs may ameliorate balance disorders in patients with MS. Clinical Trial Registration (NCT01040117). © The Author(s), 2015.

  8. Whole-Body-Vibration Training and Balance in Recreational Athletes With Chronic Ankle Instability.

    Science.gov (United States)

    Sierra-Guzmán, Rafael; Jiménez-Diaz, Fernando; Ramírez, Carlos; Esteban, Paula; Abián-Vicén, Javier

    2018-03-23

      Deficits in the propioceptive system of the ankle contribute to chronic ankle instability (CAI). Recently, whole-body-vibration training has been introduced as a preventive and rehabilitative tool.   To evaluate how a 6-week WBV training program on an unstable surface affected balance and body composition in recreational athletes with CAI.   Randomized controlled clinical trial.   Research laboratory.   Fifty recreational athletes with self-reported CAI were randomly assigned to a vibration (VIB), nonvibration (NVIB), or control group.   The VIB and NVIB groups performed unilateral balance training on a BOSU 3 times weekly for 6 weeks. The VIB group trained on a vibration platform, and the NVIB group trained on the floor.   We assessed balance using the Biodex Balance System and the Star Excursion Balance Test (SEBT). Body composition was measured by dual-energy x-ray absorptiometry.   After 6 weeks of training, improvements on the Biodex Balance System occurred only on the Overall Stability Index ( P = .01) and Anterior-Posterior Stability Index ( P = .03) in the VIB group. We observed better performance in the medial ( P = .008) and posterolateral ( P = .04) directions and composite score of the SEBT in the VIB group ( P = .01) and in the medial ( P Balance System, whereas the VIB and NVIB groups displayed better performance on the SEBT.

  9. High School Weight Training: A Comprehensive Program.

    Science.gov (United States)

    Viscounte, Roger; Long, Ken

    1989-01-01

    Describes a weight training program, suitable for the general student population and the student-athlete, which is designed to produce improvement in specific, measurable areas including bench press (upper body), leg press (lower body), vertical jump (explosiveness); and 40-yard dash (speed). Two detailed charts are included, with notes on their…

  10. Balance improvements in female high school basketball players after a 6-week neuromuscular-training program.

    Science.gov (United States)

    McLeod, Tamara C Valovich; Armstrong, Travis; Miller, Mathew; Sauers, Jamie L

    2009-11-01

    Poor balance has been associated with increased injury risk among athletes. Neuromuscular-training programs have been advocated as a means of injury prevention, but little is known about the benefits of these programs on balance in high school athletes. To determine whether there are balance gains after participation in a neuromuscular-training program in high school athletes. Nonrandomized controlled trial. All data were collected at each participating high school before and after a 6-wk intervention or control period. 62 female high school basketball players recruited from the local high school community and assigned to a training (n = 37) or control (n = 25) group. Training-group subjects participated in a 6-wk neuromuscular-training program that included plyometric, functional-strengthening, balance, and stability-ball exercises. Data were collected for the Balance Error Scoring System (BESS) and Star Excursion Balance Test (SEBT) before and after the 6-wk intervention or control period. The authors found a significant decrease in total BESS errors in the trained group at the posttest compared with their pretest and the control group (P = .003). Trained subjects also scored significantly fewer BESS errors on the single-foam and tandem-foam conditions at the posttest than the control group and demonstrated improvements on the single-foam compared with their pretest (P = .033). The authors found improvements in reach in the lateral, anteromedial, medial, and posterior directions in the trained group at the posttest compared with the control group (P training program can increase the balance and proprioceptive capabilities of female high school basketball players and that clinical balance measures are sensitive to detect these differences.

  11. Virtual Sensorimotor Training for Balance: Pilot Study Results for Children With Fetal Alcohol Spectrum Disorders.

    Science.gov (United States)

    Jirikowic, Tracy; Westcott McCoy, Sarah; Price, Robert; Ciol, Marcia A; Hsu, Lin-Ya; Kartin, Deborah

    2016-01-01

    To examine the effects of Sensorimotor Training to Affect Balance, Engagement, and Learning (STABEL), a virtual reality system to train sensory adaptation for balance control, for children with fetal alcohol spectrum disorders (FASDs). Twenty-three children with FASDs received STABEL training in a university laboratory, or home, or were controls. The Movement Assessment Battery for Children-2nd edition (MABC-2) and Pediatric Clinical Test of Sensory Interaction for Balance-2 (P-CTSIB-2) were analyzed by group (lab, home, and control), session (pre-STABEL, 1 week post-STABEL, and 1 month post-STABEL), and group-by-session interaction. Significant effects were group and session for MABC-2 Balance and interaction for MABC-2 Total Motor and P-CTSIB-2. Preliminary results support improved sensory adaptation, balance, and motor performance post-STABEL, which warrant further study with a larger, randomized sample.

  12. Effect of balance training on postural balance control and risk of fall in children with diplegic cerebral palsy.

    Science.gov (United States)

    El-Shamy, Shamekh Mohamed; Abd El Kafy, Ehab Mohamed

    2014-01-01

    The purpose of this study was to evaluate the effects of balance training on postural control and fall risk in children with diplegic cerebral palsy. Thirty spastic diplegic cerebral palsied children (10-12 years) were included in this study. Children were randomly assigned into two equal-sized groups: control and study groups. Participants in both groups received a traditional physical therapy exercise program. The study group additionally received balance training on the Biodex balance system. Treatment was provided 30 min/d, 3 d/week for 3 successive months. To evaluate the limit of stability and fall risk, participated children received baseline and post-treatment assessments using the Biodex balance system. Overall directional control, total time to complete the test, overall stability index of the fall risk test and total score of the pediatric balance scale were measured. Children in both groups showed significant improvements in the mean values of all measured variables post-treatment (p control group (p control in children with diplegic cerebral palsy.

  13. Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis.

    Science.gov (United States)

    Prosperini, Luca; Fortuna, Deborah; Giannì, Costanza; Leonardi, Laura; Marchetti, Maria Rita; Pozzilli, Carlo

    2013-01-01

    To evaluate the effectiveness of a home-based rehabilitation of balance using the Nintendo Wii Balance Board System (WBBS) in patients affected by multiple sclerosis (MS). In this 24-week, randomized, 2-period crossover pilot study, 36 patients having an objective balance disorder were randomly assigned in a 1:1 ratio to 2 counterbalanced arms. Group A started a 12-week period of home-based WBBS training followed by a 12-week period without any intervention; group B received the treatment in reverse order. As endpoints, we considered the mean difference (compared with baseline) in force platform measures (i.e., the displacement of body center of pressure in 30 seconds), 4-step square test (FSST), 25-foot timed walking test (25-FWT), and 29-item MS Impact Scale (MSIS-29), as evaluated after 12 weeks and at the end of the 24-week study period. The 2 groups did not differ in baseline characteristics. Repeated-measures analyses of variance showed significant time × treatment effects, indicating that WBBS was effective in ameliorating force platform measures (F = 4.608, P = .016), FSST (F = 3.745, P = .034), 25-FWT (F = 3.339, P = .048), and MSIS-29 (F = 4.282, P = .023). Five adverse events attributable to the WBSS training (knee or low back pain) were recorded, but only 1 patient had to retire from the study. A home-based WBBS training might potentially provide an effective, engaging, balance rehabilitation solution for people with MS. However, the risk of WBBS training-related injuries should be carefully balanced with benefits. Further studies, including cost-effectiveness analyses, are warranted to establish whether WBBS may be useful in the home setting.

  14. Effect of proprioception cross training on repositioning accuracy and balance among healthy individuals.

    Science.gov (United States)

    El-Gohary, Tarek Mohamed; Khaled, Osama Ahmed; Ibrahim, Sameh R; Alshenqiti, Abdullah M; Ibrahim, Mahmoud I

    2016-11-01

    [Purpose] To investigate possible cross effects of proprioception training on proprioception repositioning accuracy of the knee joint and on balance in healthy subjects. [Subjects and Methods] Sixty healthy college students and faculty members from faculty of physical therapy, Cairo University were recruited to participate. Participants were randomly assigned to training group (n=30) and control group (n=30). The training group received proprioceptive training program only for the dominant leg while the control group did not receive any kind of training. Outcome measures were twofold: (1) proprioception repositioning accuracy quantified through the active repositioning test for the non-dominant knee; and (2) balance stability indices determined through using Biodex balance system. Measurements were recorded before and after 8 weeks of proprioception training. [Results] There were significant decrease in the error of repositioning accuracy and the stability indices including anterposterior stability index, mediolateral stability index, and overall stability index of training group, measured post training, compared with control group. [Conclusion] Proprioception training has significant cross training effects on proprioception repositioning accuracy of the knee joint and on balance among healthy subjects.

  15. THE EFFECTIVENESS OF SPORTS SPECIFIC BALANCE TRAINING PROGRAM IN REDUCING RISK OF ANKLE SPRAIN IN BASKETBALL

    Directory of Open Access Journals (Sweden)

    Ai Choo LEE

    2016-12-01

    Full Text Available Background: To investigate the effectiveness of four weeks sports specific balance training program to improve balance, thus reducing the risk of ankle sprain among Sultan Idris Education University basketball players. Method: There were 20 males basketball players (aged 19-24 years volunteered in this study. After screening process, there were14 male players met the inclusion criteria. They were randomized into two groups i.e experimental group (EG: n=7 and control group (CG: n=7. The EG undergone the four weeks sports specific balance training program three times per week while the CG followed their normal standard basketball training program. Balance Error Scoring System (BESS was used to assess static balance while Star Excursion Balance Test (SEBT is utilized to examine the dynamic balance. Pretest and posttest of balance measures were recorded using BESS and SEBT for both EG and CG. The data were analyzed using independent sample t-test (p=0.05. Results: The study findings indicated that there were significant differences between EG and CG for the static balance on firm surface (t=-4.642, p=0.001 and on foam surface (t=-8.590, P=0.000 as well as dynamic balance on left leg stance (t=2.350, P=0.037 and on right leg stance (t=3.145, P=0.008. Conclusion: The study findings indicated that the four weeks sports specific balance training program could improve balance ability in male basketball players, thus may reducing the risk of ankle sprain.

  16. Exergaming: Interactive balance training in healthy community-dwelling older adults

    NARCIS (Netherlands)

    Kosse, Nienke M.; Caljouw, Simone R.; Vuijk, Pieter-Jelle; Lamoth, Claudine J.C.

    2011-01-01

    Exergaming is a term used for videogame exercise. The aim of this study was to examine the training effect of an exergame that relies on the movements of a dynamic balance board. Nine healthy elderly subjects participated in a six-week intervention in which they played balance games three times a

  17. Biofeedback for training balance and mobility tasks in older populations : a systematic review

    NARCIS (Netherlands)

    Zijlstra, Agnes; Mancini, Martina; Chiari, Lorenzo; Zijlstra, Wiebren

    2010-01-01

    Context: An effective application of biofeedback for interventions in older adults with balance and mobility disorders may be compromised due to co-morbidity. Objective: To evaluate the feasibility and the effectiveness of biofeedback-based training of balance and/or mobility in older adults. Data

  18. EFFECT OF CORE STABILITY TRAINING ON DYNAMIC BALANCE IN HEALTHY YOUNG ADULTS - A RANDOMIZED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Dhvani N Shah

    2014-10-01

    Full Text Available Background: Balance is a key component of normal daily activities. Therefore, it is necessary to find various programs to improve balance. The core functions to maintain postural alignment and balance during functional activities. The purpose was to study the effects of the core stability training on dynamic balance in healthy, young adults. Methods: It was an interventional study, in which 60 healthy young adults were selected. They were randomly divided into two groups of 30 each, one being experimental group and other control group. Measurement of their height, weight, BMI and leg length was taken. Subjects in both the groups were assessed for core stability with pressure biofeedback unit (PBU and dynamic balance using Star Excursion Balance Test (SEBT pre and post intervention. Subjects in the experimental group underwent progressive core stability training program for six weeks (3days/week and control group was refrained from any type of structured training program. Results: There was statistically significant improvement in core stability and dynamic balance of the experimental group after six weeks of intervention. Conclusion: It is concluded that core stability training of six weeks duration is effective in improving dynamic balance in healthy, young adults.

  19. Exercise training changes autonomic cardiovascular balance in mice

    OpenAIRE

    De Angelis, K.; Wichi, R. B. [UNIFESP; Jesus, WRA; Moreira, E. D.; Morris, M.; Krieger, E. M.; Irigoyen, M. C.

    2004-01-01

    Experiments were performed to investigate the influence of exercise training on cardiovascular function in mice. Heart rate, arterial pressure, baroreflex sensitivity, and autonomic control of heart rate were measured in conscious, unrestrained male C57/6J sedentary (n = 8) and trained mice (n = 8). the exercise training protocol used a treadmill (1 h/day; 5 days/wk for 4 wk). Baroreflex sensitivity was evaluated by the tachycardic and bradycardic responses induced by sodium nitroprusside and...

  20. Balance Training with Wii Fit Plus for Community-Dwelling Persons 60 Years and Older.

    Science.gov (United States)

    Roopchand-Martin, Sharmella; McLean, Roshé; Gordon, Carron; Nelson, Gail

    2015-06-01

    This study sought to determine the effect of 6 weeks of training, using activities from the Nintendo(®) (Kyoto, Japan) "Wii™ Fit Plus" disc, on balance in community-dwelling Jamaicans 60 years and older. A single group pretest/posttest design was used. Thirty-three subjects enrolled and 28 completed the study. Participants completed 30-minute training sessions on the Nintendo "Wii Fit" twice per week for 6 weeks. Activities used included "Obstacle Course," "Penguin Slide," "Soccer Heading," "River Bubble," "Snow Board," "Tilt Table," "Skate Board," and "Yoga Single Tree Pose." Balance was assessed with the Berg Balance Scale, the Multi Directional Reach Test, the Star Excursion Balance Test and the Modified Clinical Test for Sensory Integration in Balance. There was significant improvement in the mean Berg Balance Scale score (P=0.004), Star Excursion Balance Test score (SEBT) (PBalance. Balance games on the Nintendo "Wii Fit Plus" disc can be used as a tool for balance training in community-dwelling persons 60 years of age and older.

  1. Effects of balance training using a virtual-reality system in older fallers

    Directory of Open Access Journals (Sweden)

    Duque G

    2013-02-01

    Full Text Available Gustavo Duque,1,2 Derek Boersma,1 Griselda Loza-Diaz,2 Sanobar Hassan,1 Hamlet Suarez,3 Dario Geisinger,3 Pushpa Suriyaarachchi,1 Anita Sharma,1 Oddom Demontiero1,21Falls and Fractures Clinic, Department of Geriatric Medicine, Nepean Hospital, Penrith, NSW, Australia; 2Ageing Bone Research Program, Division of Geriatric Medicine, Sydney Medical School Nepean, The University of Sydney, Penrith, NSW, Australia; 3British Hospital, CLAEH School of Medicine, Montevideo, UruguayAbstract: Poor balance is considered a challenging risk factor for falls in older adults. Therefore, innovative interventions for balance improvement in this population are greatly needed. The aim of this study was to evaluate the effect of a new virtual-reality system (the Balance Rehabilitation Unit [BRU] on balance, falls, and fear of falling in a population of community-dwelling older subjects with a known history of falls. In this study, 60 community-dwelling older subjects were recruited after being diagnosed with poor balance at the Falls and Fractures Clinic, Nepean Hospital (Penrith, NSW, Australia. Subjects were randomly assigned to either the BRU-training or control groups. Both groups received the usual falls prevention care. The BRU-training group attended balance training (two sessions/week for 6 weeks using an established protocol. Change in balance parameters was assessed in the BRU-training group at the end of their 6-week training program. Both groups were assessed 9 months after their initial assessment (month 0. Adherence to the BRU-training program was 97%. Balance parameters were significantly improved in the BRU-training group (P < 0.01. This effect was also associated with a significant reduction in falls and lower levels of fear of falling (P < 0.01. Some components of balance that were improved by BRU training showed a decline after 9 months post-training. In conclusion, BRU training is an effective and well-accepted intervention to improve balance

  2. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance.

    Science.gov (United States)

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Spitz, Marissa G; Thrane, Ingjerd; McGraw, Susan M; Blatny, Janet-Martha; Castellani, John W; Rood, Jennifer C; Young, Andrew J; Montain, Scott J; Gundersen, Yngvar; Pasiakos, Stefan M

    2014-12-01

    Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D2(18)O) and intake were measured daily, and postabsorptive whole-body protein turnover ([(15)N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day(-1)) increased (P soreness increased and performance decreased progressively (P < 0.05). The physiological consequences observed during short-term winter military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits.

  3. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES - IMPLICATIONS FOR REHABILITATION STRATEGIES

    DEFF Research Database (Denmark)

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas

    2016-01-01

    to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. PURPOSE: The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used...... compared to Airex® and floor. This study can serve as guidance for clinicians who wish to implement a gradual progression of ankle rehabilitation and prevention exercises by taking the related ankle kinematics and muscle activity into account. LEVEL OF EVIDENCE: Level 3.......BACKGROUND: A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important...

  4. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly.

    Science.gov (United States)

    Wiesmeier, Isabella K; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph

    2017-01-01

    Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits.

  5. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly

    Science.gov (United States)

    Wiesmeier, Isabella K.; Dalin, Daniela; Wehrle, Anja; Granacher, Urs; Muehlbauer, Thomas; Dietterle, Joerg; Weiller, Cornelius; Gollhofer, Albert; Maurer, Christoph

    2017-01-01

    Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. PMID:28848430

  6. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly

    Directory of Open Access Journals (Sweden)

    Isabella K. Wiesmeier

    2017-08-01

    Full Text Available Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques.Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model.Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training.Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits.

  7. Changes in muscle activation following balance and technique training and a season of Australian football.

    Science.gov (United States)

    Donnelly, C J; Elliott, B C; Doyle, T L A; Finch, C F; Dempsey, A R; Lloyd, D G

    2015-05-01

    Determine if balance and technique training implemented adjunct to 1001 male Australian football players' training influenced the activation/strength of the muscles crossing the knee during pre-planned and unplanned sidestepping. Randomized Control Trial. Each Australian football player participated in either 28 weeks of balance and technique training or 'sham' training. Twenty-eight Australian football players (balance and technique training, n=12; 'sham' training, n=16) completed biomechanical testing pre-to-post training. Peak knee moments and directed co-contraction ratios in three degrees of freedom, as well as total muscle activation were calculated during pre-planned and unplanned sidestepping. No significant differences in muscle activation/strength were observed between the 'sham' training and balance and technique training groups. Following a season of Australian football, knee extensor (p=0.023) and semimembranosus (p=0.006) muscle activation increased during both pre-planned sidestepping and unplanned sidestepping. Following a season of Australian football, total muscle activation was 30% lower and peak valgus knee moments 80% greater (p=0.022) during unplanned sidestepping when compared with pre-planned sidestepping. When implemented in a community level training environment, balance and technique training was not effective in changing the activation of the muscles crossing the knee during sidestepping. Following a season of Australian football, players are better able to support both frontal and sagittal plane knee moments. When compared to pre-planned sidestepping, Australian football players may be at increased risk of anterior cruciate ligament injury during unplanned sidestepping in the latter half of an Australian football season. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Optimizing Intermodal Train Schedules with a Design Balanced Network Design Model

    DEFF Research Database (Denmark)

    Pedersen, Michael Berliner; Crainic, Teodor Gabriel

    We present a modeling approach for optimizing intermodal trains schedules based on an infrastructure divided into time-dependent train paths. The formulation can be generalized to a capacitated multi commodity network design model with additional design balance constraints. We present a Tabu Search...

  9. Improvement of Balance Stability in Older Individuals by On-Water Training.

    Science.gov (United States)

    Osti, Fabiana Rodrigues; de Souza, Caroline Ribeiro; Teixeira, Luis Augusto

    2018-03-09

    In the present investigation we evaluated the effect of stand-up paddle practice on upright postural control in older individuals. Participants were assigned to a group practicing stand-up paddle on seawater or to a walking control group. Balance stability was evaluated in the tandem Romberg and tiptoes postures, comparing the conditions of eyes open versus closed. Results showed that stand-up paddle practice led to reduced anteroposterior and mediolateral amplitudes of body sway in both visual conditions, while walking led to no effect on balance. These results suggest that the challenge of keeping body balance on an unstable board during on-water stand-up paddle practice is transferred to postural tasks performed on a stable support surface, with generalization to sensory and biomechanical conditions different from those experienced during the training. Our results suggest that on-water balance training could be considered as a potential procedure to improve balance control in older adults.

  10. A Tool for Balance Control Training Using Muscle Synergies and Multimodal Interfaces

    Directory of Open Access Journals (Sweden)

    D. Galeano

    2014-01-01

    Full Text Available Balance control plays a key role in neuromotor rehabilitation after stroke or spinal cord injuries. Computerized dynamic posturography (CDP is a classic technological tool to assess the status of balance control and to identify potential disorders. Despite the more accurate diagnosis generated by these tools, the current strategies to promote rehabilitation are still limited and do not take full advantage of the technologies available. This paper presents a novel balance training platform which combines a CDP device made from low-cost interfaces, such as the Nintendo Wii Balance Board and the Microsoft Kinect. In addition, it integrates a custom electrical stimulator that uses the concept of muscle synergies to promote natural interaction. The aim of the platform is to support the exploration of innovative multimodal therapies. Results include the technical validation of the platform using mediolateral and anteroposterior sways as basic balance training therapies.

  11. A tool for balance control training using muscle synergies and multimodal interfaces.

    Science.gov (United States)

    Galeano, D; Brunetti, F; Torricelli, D; Piazza, S; Pons, J L

    2014-01-01

    Balance control plays a key role in neuromotor rehabilitation after stroke or spinal cord injuries. Computerized dynamic posturography (CDP) is a classic technological tool to assess the status of balance control and to identify potential disorders. Despite the more accurate diagnosis generated by these tools, the current strategies to promote rehabilitation are still limited and do not take full advantage of the technologies available. This paper presents a novel balance training platform which combines a CDP device made from low-cost interfaces, such as the Nintendo Wii Balance Board and the Microsoft Kinect. In addition, it integrates a custom electrical stimulator that uses the concept of muscle synergies to promote natural interaction. The aim of the platform is to support the exploration of innovative multimodal therapies. Results include the technical validation of the platform using mediolateral and anteroposterior sways as basic balance training therapies.

  12. Training Balance: Full Spectrum Operations for 21st Century Challenges

    National Research Council Canada - National Science Library

    Hawkins, Jerome

    2008-01-01

    .... The work began by examining the National Security Strategy and supporting primary source documents to determine if the Army's training strategy was adequately preparing it for all of the potential requirements...

  13. Web-based home rehabilitation gaming system for balance training

    OpenAIRE

    Oleh Kachmar; Volodymyr Kozyavkin; Vadim Markelov; Vasyl Melnychuk; Bohdan Kachmar

    2014-01-01

    Currently, most systems for virtual rehabilitation and motor training require quite complex and expensive hardware and can be used only in clinical settings. Now, a low-cost rehabilitation game training system has been developed for patients with movement disorders; it is suitable for home use under the distant supervision of a therapist. It consists of a patient-side application installed on a home computer and the virtual rehabilitation Game Server in the Internet. System can work with diff...

  14. Training with a balance exercise assist robot is more effective than conventional training for frail older adults.

    Science.gov (United States)

    Ozaki, Kenichi; Kondo, Izumi; Hirano, Satoshi; Kagaya, Hitoshi; Saitoh, Eiichi; Osawa, Aiko; Fujinori, Yoichi

    2017-11-01

    To examine the efficacy of postural strategy training using a balance exercise assist robot (BEAR) as compared with conventional balance training for frail older adults. The present study was designed as a cross-over trial without a washout term. A total of 27 community-dwelling frail or prefrail elderly residents (7 men, 20 women; age range 65-85 years) were selected from a volunteer sample. Two exercises were prepared for interventions: robotic exercise moving the center of gravity by the balance exercise assist robot system; and conventional balance training combining muscle-strengthening exercise, postural strategy training and applied motion exercise. Each exercise was carried out twice a week for 6 weeks. Participants were allocated randomly to either the robotic exercise first group or the conventional balance exercise first group. preferred and maximal gait speeds, tandem gait speeds, timed up-and-go test, functional reach test, functional base of support, center of pressure, and muscle strength of the lower extremities were assessed before and after completion of each exercise program. Robotic exercise achieved significant improvements for tandem gait speed (P = 0.012), functional reach test (P = 0.002), timed up-and-go test (P = 0.023) and muscle strength of the lower extremities (P = 0.001-0.030) compared with conventional exercise. In frail or prefrail older adults, robotic exercise was more effective for improving dynamic balance and lower extremity muscle strength than conventional exercise. These findings suggest that postural strategy training with the balance exercise assist robot is effective to improve the gait instability and muscle weakness often seen in frail older adults. Geriatr Gerontol Int 2017; 17: 1982-1990. © 2017 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.

  15. Functional Mobility Performance and Balance Confidence in Older Adults after Sensorimotor Adaptation Training

    Science.gov (United States)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.; Weaver, G. D.

    2010-01-01

    Research indicates a main contributor of injury in older adults is from falling. The decline in sensory systems limits information needed to successfully maneuver through the environment. The objective of this study was to determine if prolonged exposure to the realignment of perceptual-motor systems increases adaptability of balance, and if balance confidence improves after training. A total of 16 older adults between ages 65-85 were randomized to a control group (walking on a treadmill while viewing a static visual scene) and an experimental group (walking on a treadmill while viewing a rotating visual scene). Prior to visual exposure, participants completed six trials of walking through a soft foamed obstacle course. Participants came in twice a week for 4 weeks to complete training of walking on a treadmill and viewing the visual scene for 20 minutes each session. Participants completed the obstacle course after training and four weeks later. Average time, penalty, and Activity Balance Confidence Scale scores were computed for both groups across testing times. The older adults who trained, significantly improved their time through the obstacle course F (2, 28) = 9.41, p train. There was no difference in balance confidence scores between groups across testing times F (2, 28) = 0.503, p > 0.05. Although the training group improved mobility through the obstacle course, there were no differences between the groups in balance confidence.

  16. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  17. Exergaming for balance training of elderly: state of the art and future developments.

    Science.gov (United States)

    van Diest, Mike; Lamoth, Claudine J C; Stegenga, Jan; Verkerke, Gijsbertus J; Postema, Klaas

    2013-09-25

    Fall injuries are responsible for physical dysfunction, significant disability, and loss of independence among elderly. Poor postural control is one of the major risk factors for falling but can be trained in fall prevention programs. These however suffer from low therapy adherence, particularly if prevention is the goal. To provide a fun and motivating training environment for elderly, exercise games, or exergames, have been studied as balance training tools in the past years. The present paper reviews the effects of exergame training programs on postural control of elderly reported so far. Additionally we aim to provide an in-depth discussion of technologies and outcome measures utilized in exergame studies. Thirteen papers were included in the analysis. Most of the reviewed studies reported positive results with respect to improvements in balance ability after a training period, yet few reached significant levels. Outcome measures for quantification of postural control are under continuous dispute and no gold standard is present. Clinical measures used in the studies reviewed are well validated yet only give a global indication of balance ability. Instrumented measures were unable to detect small changes in balance ability as they are mainly based on calculating summary statistics, thereby ignoring the time-varying structure of the signals. Both methods only allow for measuring balance after the exergame intervention program. Current developments in sensor technology allow for accurate registration of movements and rapid analysis of signals. We propose to quantify the time-varying structure of postural control during gameplay using low-cost sensor systems. Continuous monitoring of balance ability leaves the user unaware of the measurements and allows for generating user-specific exergame training programs and feedback, both during one game and in timeframes of weeks or months. This approach is unique and unlocks the as of yet untapped potential of exergames as

  18. Training for improved neuro-muscular control of balance in middle aged females.

    Science.gov (United States)

    Anderson, Gregory S; Deluigi, Fabio; Belli, Guido; Tentoni, Claudio; Gaetz, Michael B

    2016-01-01

    This study examined improvements in static balance and muscle electromyographic (EMG) activity following a four week progressive training program in 16 middle aged females (mean age = 46.9 ± 8.7 yrs; height 161.1 ± 6.0 cm; weight 65.4 ± 11.2 kg). Participants trained 3 times per week for 4 weeks, for 50 min per session, progressing base of support, stability, vision, resistance and torque in each of six basic exercises. Pre and post training measures of balance included feet together standing, a tandem stance and a one-leg stand (unsupported leg in the saggital plane) performed with the eyes closed, and a Stork Stand (unsupported leg in the frontal plane) with both eyes open and closed. In each position postural deviations were tallied for each individual while muscle recruitment was determined using root mean squared (RMS) EMG activity for the soleus, biceps femoris, erector spinae, rectus abdominis and internal oblique muscles of the dominant foot side. Balance scores were significantly improved post training in both the Balance Error Score System (p < 0.05) and stork stand positions (p < 0.01). Muscle activity was reduced post-training in all muscles in each condition except the soleus in the tandem position, although not all significantly. Reduced biceps femoris activity suggest that improved core stability allowed participants to move from a hip to an ankle postural control strategy through improved coordination of muscles involved in balance and reduced body sway. The core muscles were able to control body position with less activity post training suggesting improved muscle coordination and efficiency. These results suggest that short term progressive floor to BOSU™ balance training can improve standing balance in middle aged women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Effects of Slackline Balance Training on Postural Control in Older Adults.

    Science.gov (United States)

    Thomas, Monika; Kalicinski, Michael

    2016-07-01

    The present study investigated whether slackline training enhances postural control in older adults. Twenty-four participants were randomized into an intervention and a control group. The intervention group received 6 weeks of slackline training, two times per week. Pre-post measurement included the time of different standing positions on a balance platform with and without an external disturbance and the acceleration of the balance platform. Results showed significantly improved standing times during one-leg stance without external disturbance and a significantly reduced acceleration of the balance platform for the intervention group after the training period during tandem stance with and without an external disturbance. We conclude that slackline training in older adults has a positive impact on postural control and thus on the reduction of fall risk.

  20. BALANCED VS IMBALANCED TRAINING DATA: CLASSIFYING RAPIDEYE DATA WITH SUPPORT VECTOR MACHINES

    OpenAIRE

    M. Ustuner; F. B. Sanli; S. Abdikan

    2016-01-01

    The accuracy of supervised image classification is highly dependent upon several factors such as the design of training set (sample selection, composition, purity and size), resolution of input imagery and landscape heterogeneity. The design of training set is still a challenging issue since the sensitivity of classifier algorithm at learning stage is different for the same dataset. In this paper, the classification of RapidEye imagery with balanced and imbalanced training data for mapping th...

  1. Effect of early trunk control training on balance function of patients with acute stroke

    Directory of Open Access Journals (Sweden)

    Bao-jin LI

    2017-07-01

    Full Text Available Background Trunk is the core part of human body, and plays an important role in maintaining the body balance. Studies show that trunk control training can improve the balance function and mobility ability, and promote motor function and activities of daily living (ADL of stroke patients. This study aims to investigate the effect of early trunk control training on the recovery of balance function of acute stroke patients.  Methods A total of 120 patients with acute ischemic stroke (duration ≤ 14 d were randomly divided into 2 groups: control group [N = 60, 39 males and 21 females; age 23-85 years, mean age (63.43 ± 13.61 years; duration 1-13 d, median duration 4.12 (2.30, 6.09 d] and observation group [N = 60, 40 males and 20 females; age 20-84 years, average age (62.55 ± 13.77 years; duration 1-12 d, median duration 4.19 (2.48, 6.30 d]. Control group was given routine drug treatment plus rehabilitation education and guidance, and observation group was given routine drug treatment, rehabilitation education and guidance plus trunk control training. Fugl-Meyer Assessment Scale-Balance (FMA-Balance and Modified Rivermead Mobility Index (MRMI were used to evaluate the balance function of patients in both groups before training and after 2-week training.  Results All patients finished the rehabilitation training programme without adverse reactions. Compared with before training, the scores of FMA-Balance (P =0.000 and MRMI (P = 0.000 were significantly increased after 2-week training in both groups. Compared to control group, the scores of FMA-Balance (P = 0.002 and MRMI (P = 0.002 were significantly increased after 2-week training in observation group.  Conclusions Early trunk control training can significantly improve the balance function and motor ability of patients with acute stroke. DOI: 10.3969/j.issn.1672-6731.2017.04.005

  2. Training using a new multidirectional reach tool improves balance in individuals with stroke.

    Science.gov (United States)

    Khumsapsiri, Numpung; Siriphorn, Akkradate; Pooranawatthanakul, Kanokporn; Oungphalachai, Tanyarut

    2018-04-01

    Previous studies suggested that limits of stability (LOS) training with visual feedback using commercial equipment could be used to improve balance ability in individuals with stroke. However, this system is expensive. In this study, we created a new tool from inexpensive elements based on LOS training using visual feedback. The aim of this study was to investigate the effect of training using a new multidirectional reach tool on balance in individuals with stroke. A single-blind randomized control trial was conducted. Individuals with stroke (n = 16; age range 38-72 years) were recruited. Participants in the experimental group were trained with the multidirectional reach training for 30 min and conventional physical therapy for 30 min per day, 3 days a week for 4 weeks. Participants in the control group received conventional physical therapy for 30 min per day, 3 days a week for 4 weeks. The outcomes were LOS, weight-bearing squat, and Fullerton Advanced Balance scale. All of the outcome measures were measured at pretraining, post-training, and 1 month follow-up. At post-training and 1-month follow-up, the participants in the experimental group had an improvement of dynamic balance than the control group. Furthermore, the activity assessment by Fullerton Advanced Balance scale was more improved at 1 month follow-up in the experimental group than control group. The results of this study provide evidence that training using a new multidirectional reach tool is effective for improving balance in individuals with stroke. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players

    Directory of Open Access Journals (Sweden)

    Athos Trecroci, Luca Cavaggioni, Riccardo Caccia, Giampietro Alberti

    2015-12-01

    Full Text Available General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG, children performed JR training at the beginning of the training session. The control group (CG, executed soccer specific drills. Harre circuit test (HCT and Lower Quarter Y balance test (YBT-LQ were selected to evaluate participant’s motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2 from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14. Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children’s motor skills.

  4. Differences In Male Collegiate And Recreationally Trained Soccer Players On Balance, Agility, And Vertical Jump Performance

    Directory of Open Access Journals (Sweden)

    Nicole M. Sauls

    2017-10-01

    Full Text Available Objective: The purpose of this investigation was to determine the differences in collegiate and recreationally trained soccer players in sprint, vertical jump, and balance performance. Methods: Twenty-one soccer players, twelve Division II collegiate and nine recreationally trained volunteered to participate. Session one acted as a familiarization day, where the participants were familiarized with testing day protocols. During testing day, participants performed a dynamic warm-up, followed by balance measurements, three countermovement vertical jumps, and pro-agility shuttle test. Results: There were no significant (p>0.05 differences between groups in the all balance variables. Collegiate soccer players had a significantly (p0.05 differences in groups in all other variables. Conclusion: These results indicate that collegiate, Division II, soccer players had greater vertical jumping and sprinting velocities when compared to recreationally trained soccer players. These results may have been impacted by the lack of resistance training background in either of the two groups. With the addition of more time on a collegiate resistance training program, it is very likely the Division II athletes will see a significant increase in all balance, sprint, and vertical jump performance measures compared to recreationally trained players who receive little to no specialized resistance training.

  5. Neuromuscular and balance responses to flywheel inertial versus weight training in older persons.

    Science.gov (United States)

    Onambélé, Gladys L; Maganaris, Constantinos N; Mian, Omar S; Tam, Enrico; Rejc, Enrico; McEwan, Islay M; Narici, Marco V

    2008-11-14

    Loss of muscle strength and balance are main characteristics of physical frailty in old age. Postural sway is associated with muscle contractile capacity and to the ability of rapidly correcting ankle joint changes. Thus, resistance training would be expected to improve not only strength but also postural balance. In this study, age-matched older individuals (69.9+/-1.3 years) were randomly assigned to flywheel (n=12), or weight-lifting (n=12) groups, training the knee extensors thrice weekly for 12 weeks. The hypotheses were that owing to a larger eccentric loading of the knee extensors, flywheel training would result in (a) greater gains in quadriceps strength; (b) greater improvements in balance performance compared with weight-lifting training. Isokinetic dynamometry, B-mode ultrasonography, electromyography, percutaneous muscle stimulation and magnetic resonance imaging were employed to acquire the parameters of interest. Following training, knee extensors peak isokinetic power increased by 28% (Pweight-lifting group. Adaptations of the gastrocnemius muscle also occurred in both groups. The gastrocnemius characteristic with the highest response to training was tendon stiffness, with increases of 54% and 136% in the weight-lifting and flywheel groups, respectively (Pweight training but its physiological benefits also transfer/overspill to the plantarflexor muscle-tendon unit resulting in a significantly improved balance. These findings support our initial hypotheses.

  6. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    Directory of Open Access Journals (Sweden)

    Nadine Hummel

    Full Text Available Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction. Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  7. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    Science.gov (United States)

    Hummel, Nadine; Hüfner, Katharina; Stephan, Thomas; Linn, Jennifer; Kremmyda, Olympia; Brandt, Thomas; Flanagin, Virginia L

    2014-01-01

    Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI) to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction). Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  8. Effect of sensorimotor training on balance in elderly patients with knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Amal F. Ahmed

    2011-10-01

    Full Text Available Osteoarthritis (OA is a chronic disabling disease that generates many impairments of functional health status. Impairments of balance are recognized in patients with knee OA. This study investigated the short term effect of sensorimotor training on balance in elderly patients with knee OA, and whether these changes were associated with impairment of functional performance. In addition the possible independent predictors of impaired balance were determined. Forty female patients with knee OA were divided into two equal groups. The control group received a traditional exercise programme and the study group received sensorimotor training in addition to traditional exercises. Blind assessment was conducted at the beginning of the study and after 6 weeks of training to measure balance [in the form of overall stability index (OSI, medial/lateral stability index (MLSI, anterior/posterior stability index (APSI], perceived pain, proprioception acuity, knee extensor muscle torque, and functional disability. For the sensorimotor group, statistically significant improvements were recorded in all measured parameters, while the traditional exercise group recorded significant improvement only on measures of perceived pain, proprioception acuity, muscle torque, and functional disability, and non-significant changes on all balance measurements. Furthermore, the sensorimotor group produced significantly better improvement than the traditional group. The main predictor of balance was proprioception. The classic traditional exercise programme used in the management of knee OA is not enough for improving balance. Addition of sensorimotor training to the rehabilitation programme of these patients could produce more positive effects on balance and functional activity levels. The association between balance, proprioception and functional activity should be considered when treating knee OA.

  9. Effect of Core Stability Training on Trunk Function, Standing Balance, and Mobility in Stroke Patients.

    Science.gov (United States)

    Haruyama, Koshiro; Kawakami, Michiyuki; Otsuka, Tomoyoshi

    2017-03-01

    Trunk function is important for standing balance, mobility, and functional outcome after stroke, but few studies have evaluated the effects of exercises aimed at improving core stability in stroke patients. To investigate the effectiveness of core stability training on trunk function, standing balance, and mobility in stroke patients. An assessor-blinded, randomized controlled trial was undertaken in a stroke rehabilitation ward, with 32 participants randomly assigned to an experimental group or a control group (n = 16 each). The experimental group received 400 minutes of core stability training in place of conventional programs within total training time, while the control group received only conventional programs. Primary outcome measures were evaluated using the Trunk Impairment Scale (TIS), which reflects trunk function. Secondary outcome measures were evaluated by pelvic tilt active range of motion in the sagittal plane, the Balance Evaluation Systems Test-brief version (Brief-BESTest), Functional Reach test, Timed Up-and-Go test (TUG), and Functional Ambulation Categories (FAC). A general linear repeated-measures model was used to analyze the results. A treatment effect was found for the experimental group on the dynamic balance subscale and total score of the TIS ( P = .002 and P Core stability training has beneficial effects on trunk function, standing balance, and mobility in stroke patients. Our findings might provide support for introducing core stability training in stroke rehabilitation.

  10. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    Gehan H. El-Meniawy

    2011-11-29

    Nov 29, 2011 ... training in addition to a designed exercises therapy program and study group II received suspension therapy in addition to the same .... with sport shoes. For all children, conversation about their interests was done in addition to verbal and visual encourage- ment to motivate them. For the study group II: The ...

  11. The efficacy of treadmill training on balance dysfunction in individuals with chronic stroke: a systematic review.

    Science.gov (United States)

    Tally, Zachary; Boetefuer, Laura; Kauk, Courtney; Perez, Gabriela; Schrand, Lorraine; Hoder, Jeffrey

    2017-10-01

    Physical activity and exercise interventions are useful in facilitating the functional recovery of those with chronic stroke and, routinely, are gait-specific. While treadmill training has proven useful in gait performance recovery post-stroke, its efficacy on balance dysfunction has not been  systematically reviewed. The purpose of this systematic review was to determine the effect of treadmill training (TT) interventions on balance dysfunction in individuals with chronic stroke. A systematic literature search of PubMed, EMBASE, and CINAHL was performed. Eligible randomized controlled trials were published between 2007 and 2016. Selected trials investigated TT interventions in persons with chronic stroke and implemented at least one objective balance measure. Methodological quality was assessed using PEDro criteria. Eight studies met eligibility criteria and were included in the qualitative analysis. Studies differed in TT implementation and use of adjunctive treatments; however, all trials demonstrated improvements in balance measures that were as effective, if not more so, than conventional physical therapy treatments, including targeted balance training. This review recognized moderate evidence in favor of TT interventions in balance and stroke rehabilitation programs. With TT, intensity may be a more critical factor than specificity and may offer additional carryover to recovery parameters of postural control and balance, beyond gait performance. It is recommended that clinicians utilizing TT incorporate objective measures of balance to assess the potential for skill transference and improvements in balance. Higher quality studies and additional research are needed to denote critical parameters by which improvements in balance may be optimized.

  12. The effect of balance training intervention on postural stability in children with asthma.

    Science.gov (United States)

    Kováčiková, Zuzana; Neumannova, Katerina; Rydlova, Jana; Bizovská, Lucia; Janura, Miroslav

    2018-05-01

    Pulmonary rehabilitation is mainly focused on exercise training and breathing retraining in children with asthma. Conversely, balance training is not usually recommended for the treatment, although postural deficits were found in these patients. Therefore, this study assessed the effect of balance training intervention on postural stability in children with asthma. Nineteen children with mild intermittent asthma (age 11.1 ± 2.1 years, height 147.6 ± 13.9 cm, weight 41.8 ± 13.3 kg) were randomly assigned to an experimental group or a control group and completed a four-week physiotherapy program including breathing exercises and aerobic physical training (six times/week, 45 minutes). Both groups performed the same training, but only the experimental group underwent exercises on balance devices. The center of pressure (CoP) velocity in the anteroposterior (V y ) and mediolateral (V x ) directions, and total CoP velocity (V tot ) were recorded before and after training in the preferred and the adjusted stances under eyes open (EO) and eyes closed (EC) conditions. The addition of balance intervention led to significant improvements of V tot (p = 0.02, p = 0.04) in both types of stance, V x in the preferred stance (p = 0.03) and V y in the adjusted stance (p = 0.01) under EO conditions. Significant improvements were also found in V y in the adjusted stance (p = 0.01) under EC conditions. Results of this study support the effectiveness of balance training as a part of physiotherapy treatment for improving balance performance, predominantly under EO conditions, in children with mild asthma.

  13. Effects of combined balance and plyometric training on athletic performance in female basketball players.

    Science.gov (United States)

    Bouteraa, Ichrak; Negra, Yassine; Shephard, Roy J; Chelly, Mohamed Souhaiel

    2018-02-27

    The purpose of this study was to examine the effect of 8 weeks combined balance and plyometric training on the physical fitness of female adolescent basketball players. Twenty six healthy regional-level players were randomly assigned to either an experimental group (E; n = 16, age = 16.4 ± 0.5) or a control group (C; n = 10, age = 16.5 ± 0.5). C maintained their normal basketball training schedule, whereas for 8 weeks E replaced a part of their standard regimen by biweekly combined training sessions. Testing before and after training included the Squat Jump (SJ), Countermovement Jump (CMJ), Drop Jump (DJ), 5, 10 and 20-m sprints, Stork Balance Test (SBT), Y-Balance Test (YBT) and Modified Illinois Change of Direction Test (MICODT). Results indicated no significant inter-group differences in SJ and CMJ height; however, E increased their DJ height (ptraining to regular in-season basketball training proved a safe and feasible intervention that enhanced DJ height, balance, and agility for female adolescent basketball players relative to the standard basketball training regimen.

  14. Virtual Sensorimotor Balance Training for Children With Fetal Alcohol Spectrum Disorders: Feasibility Study.

    Science.gov (United States)

    McCoy, Sarah Westcott; Jirikowic, Tracy; Price, Robert; Ciol, Marcia A; Hsu, Lin-Ya; Dellon, Brian; Kartin, Deborah

    2015-11-01

    Diminished sensory adaptation has been associated with poor balance control for children with fetal alcohol spectrum disorders (FASD). A virtual reality system, Sensorimotor Training to Affect Balance, Engagement and Learning (STABEL), was developed to train sensory control for balance. The purpose of this study was to examine the STABEL system in children with FASD and children with typical development (TD) to (1) determine the feasibility of the STABEL system and (2) explore the immediate effects of the STABEL system on sensory attention and postural control. This is a technical report with observational study data. Eleven children with FASD and 11 children with TD, aged 8 to 16 years, completed 30 minutes of STABEL training. The children answered questions about their experience using STABEL. Sensory attention and postural control were measured pre- and post-STABEL training with the Multimodal Balance Entrainment Response system and compared using repeated-measures analysis of variance. All children engaged in game play and tolerated controlled sensory input during the STABEL protocol. Immediate effects post-STABEL training in both groups were increased postural sway velocity and some changes in entrainment gain. Children with FASD showed higher entrainment gain to vestibular stimuli. There were no significant changes in sensory attention fractions. The small sample size, dose of STABEL training, and exploratory statistical analyses are study limitations, but findings warrant larger systematic study to examine therapeutic effects. Children completed the training protocol, demonstrating the feasibility of the STABEL system. Differences in postural sway velocity post-STABEL training may have been affected by fatigue, warranting further investigation. Limited immediate effects suggest more practice is needed to affect sensory attention; however, entrainment gain changes suggest the STABEL system provoked vestibular responses during balance practice. © 2015

  15. Audio-Biofeedback training for posture and balance in Patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Zijlstra Wiebren

    2011-06-01

    Full Text Available Abstract Background Patients with Parkinson's disease (PD suffer from dysrhythmic and disturbed gait, impaired balance, and decreased postural responses. These alterations lead to falls, especially as the disease progresses. Based on the observation that postural control improved in patients with vestibular dysfunction after audio-biofeedback training, we tested the feasibility and effects of this training modality in patients with PD. Methods Seven patients with PD were included in a pilot study comprised of a six weeks intervention program. The training was individualized to each patient's needs and was delivered using an audio-biofeedback (ABF system with headphones. The training was focused on improving posture, sit-to-stand abilities, and dynamic balance in various positions. Non-parametric statistics were used to evaluate training effects. Results The ABF system was well accepted by all participants with no adverse events reported. Patients declared high satisfaction with the training. A significant improvement of balance, as assessed by the Berg Balance Scale, was observed (improvement of 3% p = 0.032, and a trend in the Timed up and go test (improvement of 11%; p = 0.07 was also seen. In addition, the training appeared to have a positive influence on psychosocial aspects of the disease as assessed by the Parkinson's disease quality of life questionnaire (PDQ-39 and the level of depression as assessed by the Geriatric Depression Scale. Conclusions This is, to our knowledge, the first report demonstrating that audio-biofeedback training for patients with PD is feasible and is associated with improvements of balance and several psychosocial aspects.

  16. Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy.

    Science.gov (United States)

    Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger; Prahm, Kira Philipsen; Vissing, John; Jensen, Bente Rona

    2014-06-01

    Recent studies in patients with muscular dystrophies suggest positive effects of aerobic and strength training. These studies focused training on using bicycle ergometers and conventional strength training, which precludes more severely affected patients from participating, because of their weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10 weeks of aerobic and strength training on an anti-gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10 weeks prior to training, immediately before training and after 10 weeks of training. Training elicited an improvement of walking distance by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely affected patients with Becker and limb-girdle muscular dystrophies. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of Strength Training on Rate of Force Development in Older Women

    Science.gov (United States)

    Gurjao, Andre Luiz Demantova; Gobbi, Lilian Teresa Bucken; Carneiro, Nelson Hilario; Goncalves, Raquel; Ferreira de Moura, Rodrigo; Cyrino, Edilson Serpeloni; Altimari, Leandro Ricardo; Gobbi, Sebastiao

    2012-01-01

    We analyzed the effect of an 8-week strength training (ST) program on the rate of force development (RFD) and electromyographic activity (EMG) in older women. Seventeen women (M age = 63.4 years, SD = 4.9) without previous ST experience were randomly assigned to either a control (n = 7) or training (n = 10) group. A leg-press isometric test was…

  18. Functional Training Program Effect on Static and Dynamic Balance in Male Able-bodied Elderly

    Directory of Open Access Journals (Sweden)

    Heidar Sadeghi

    2008-07-01

    Full Text Available Objectives: Balance is an index to determine the level of independency of elderly (65 years and older in their daily activities. The purpose of this study was to examine the effect of a functional training program on static and dynamic balance of elderly male able-bodied subjects. Methods & Materials: Thirty elderly male subjects (age:70.83±3 y, weight:70.60±2.44 kg, height:1.78±2.28 m participated in this study where they randomly divided in two control and experimental groups. The pre-test of Sharpened-Romberg (static balance with eyes open and close and Timed-get up and go (dynamic balance balance tests applied a day before starting functional training program. Experimental group participated in functional training program three days a week for six weeks. Control group asked to continue their daily activity. The post-test applied afterward. Descriptive statistics, T-test for independent samples and paired sample T-test (α≤0.05 applied for statistical analysis. Results: No significant differences seen in all three balance tests between two groups, but experimental group had better performance than control group in post-test. Paired sample T-test showed significant differences between pre and post-tests in all three tests for experimental group while no differences observed in control group. Conclusion: Due to results, static and dynamic balance among participants of this study is improved as a result of using functional training program. However, further evaluation needed to be done for long-term effects of using functional training program.

  19. The Effect of Selective Hata Yoga Training on Balance of Elderly Women

    Directory of Open Access Journals (Sweden)

    Sepideh Jannati

    2011-01-01

    Full Text Available Objectives: The aim of current study was to determine the effects of Hata yoga training on dynamic and static balances of elderly women in Mashhad. Methods and Materials: The present study enjoys the semi-experimental design. The statistical population of the study, which has been carried out in 2009, were elderly women of Mashhad who were voluntarily invited to participate in the research. 29 healthy elderly women aged 56-72 years old have been selected who haven’t had any disease history during the last one year such as: advanced osteoporosis, hip replacement, glaucoma, Parkinson’s disease, common occurrences of dizziness, or any surgery. Before and after doing the Hata yoga training program which was performed in 3- sessions of 1- hour during 8 weeks Dynamic and static balances were evaluated by fall risk test and postural stability test respectively by Biodex Balance System. Finally data were analyzed by using Variance analysis (GLM-repeated measures and Dependent T-test and the significance of results was α=0.05. Results: The effects of 24 sessions of Hata yoga training were significant on static balance: overall (P=0.001, anterior-posterior (P=0.002, medial-lateral (P=0.006 and dynamic balance of elderly women (P=0.00. Conclusion: Considering the positive influence of Hata yoga training on dynamic and static balances, it is concluded that Hata yoga training has led to the improvement muscle strength among elderly women particularly endurance and strength of muscles in lower extremity and may increase the efficiency of neuro- motor system and improve somatosensory of muscles and joints by ameliorating the existed balance and decreasing fall risk in elderly women.

  20. Jump Rope Training: Balance and Motor Coordination in Preadolescent Soccer Players.

    Science.gov (United States)

    Trecroci, Athos; Cavaggioni, Luca; Caccia, Riccardo; Alberti, Giampietro

    2015-12-01

    General physical practice and multidimensional exercises are essential elements that allow young athletes to enhance their coordinative traits, balance, and strength and power levels, which are linked to the learning soccer-specific skills. Jumping rope is a widely-used and non-specific practical method for the development of athletic conditioning, balance and coordination in several disciplines. Thus, the aim of this study was to investigate the effects of a short-term training protocol including jumping rope (JR) exercises on motor abilities and body balance in young soccer players. Twenty-four preadolescent soccer players were recruited and placed in two different groups. In the Experimental group (EG), children performed JR training at the beginning of the training session. The control group (CG), executed soccer specific drills. Harre circuit test (HCT) and Lower Quarter Y balance test (YBT-LQ) were selected to evaluate participant's motor ability (e.g. ability to perform rapidly a course with different physical tasks such as somersault and passages above/below obstacles ) and to assess unilateral dynamic lower limb balance after 8 weeks of training. Statistical analysis consisted of paired t-test and mixed analysis of variance scores to determine any significant interactions. Children who performed jumping rope exercises showed a significant decrease of 9% (p 0.05, ES = 0.05-0.2) from pre- to post-training. A training-by-group interaction was found for the composite score in both legs (p 0.14). Our findings demonstrated that JR practice within regular soccer training enhanced general motor coordination and balance in preadolescent soccer players. Therefore, the inclusion of JR practice within regular soccer training session should encouraged to improve children's motor skills. Key pointsPerforming jumping rope exercises within a regular soccer program can be an additional method to improve balance and motor coordination.The performance improvement in the

  1. Balance training and center-of-pressure location in participants with chronic ankle instability.

    Science.gov (United States)

    Mettler, Abby; Chinn, Lisa; Saliba, Susan A; McKeon, Patrick O; Hertel, Jay

    2015-04-01

    Chronic ankle instability (CAI) occurs in some people after a lateral ankle sprain and often results in residual feelings of instability and episodes of the ankle's giving way. Compared with healthy people, patients with CAI demonstrated poor postural control and used a more anteriorly and laterally positioned center of pressure (COP) during a single-limb static-balance task on a force plate. Balance training is an effective means of altering traditional COP measures; however, whether the overall location of the COP distribution under the foot also changes is unknown. To determine if the spatial locations of COP data points in participants with CAI change after a 4-week balance-training program. Randomized controlled trial. Laboratory. Thirty-one persons with self-reported CAI. Participants were randomly assigned to a 4-week balance-training program or no balance training. We collected a total of 500 COP data points while participants balanced using a single limb on a force plate during a 10-second trial. The location of each COP data point relative to the geometric center of the foot was determined, and the frequency count in 4 sections (anteromedial, anterolateral, posteromedial, posterolateral) was analyzed for differences between groups. Overall, COP position in the balance-training group shifted from being more anterior to less anterior in both eyes-open trials (before trial = 319.1 ± 165.4, after trial = 160.5 ± 149.5; P = .006) and eyes-closed trials (before trial = 387.9 ± 123.8, after trial = 189.4 ± 102.9; P balance training remained the same in the eyes-open trials (before trial = 214.1 ± 193.3, after trial = 230.0 ± 176.3; P = .54) and eyes-closed trials (before trial = 326.9 ± 134.3, after trial = 338.2 ± 126.1; P = .69). In participants with CAI, the balance-training program shifted the COP location from anterolateral to posterolateral. The program may have repaired some of the damaged sensorimotor system pathways, resulting in a more

  2. Effect of circuit class versus individual task specific training on balance in post-stroke patients

    International Nuclear Information System (INIS)

    Basri, R.; Ali, A.; Ullah, S.; Naseem, M.; Haq, Z.U.

    2017-01-01

    Objective: To compare the efficacy of circuit class versus individual, task specific training on balance, in post stroke patients. Methods: From a total of 64 participants, 32 participants were treated in circuit based workstations, while 32 participants were treated individually for 4 weeks. Importantly, both groups were treated with standard balance physiotherapy protocols. The treatment was delivered for 5 days per week with 1.5 hours daily. The patients were evaluated for three outcome measures i.e. berg balance scale, time up and go test and for motor assessment scale at baseline and after treatment. Results: Patients in both groups reported significant improvement after 4 weeks of training program compared to baseline on all outcome measures, except time up and go test that did not significantly improve in individual group. Compared to individual group, circuit group reported more improvement on berg balance scale scores (31.33 versus 37.80), time up and go test (23.13sec versus 16.67sec) and on motor assessment scale scores (18.77 versus 20.63) respectively. Conclusion: Circuit class training is more efficacious in improving balance in stroke patients as compared to individual task specific training. (author)

  3. FIXED FOOT BALANCE TRAINING INCREASES RECTUS FEMORIS ACTIVATION DURING LANDING AND JUMP HEIGHT IN RECREATIONALLY ACTIVE WOMEN

    Directory of Open Access Journals (Sweden)

    Crystal O. Kean

    2006-03-01

    Full Text Available The objective of this study was to determine the effects of fixed foot and functionally directed balance training on static balance time, muscle activation during landing, vertical jump height and sprint time. Twenty-four recreationally active females were tested pre- and post-training (fixed foot balance training, n= 11, functionally directed balance training, n = 7 and control group, n = 6. Experimental subjects completed either fixed foot or functionally directed balance exercises 4 times/week for 6 weeks. Surface electromyography (EMG was used to assess preparatory and reactive muscle activity of the rectus femoris (RF, biceps femoris (BF, and the soleus during one- and two-foot landings following a jump. Maximum vertical jump height, static balance and 20-meter sprint times were also examined. The fixed foot balance-training group showed a 33% improvement (p < 0.05 in static balance time and 9% improvement in jump height. Neither type of training improved sprint times. Further analysis revealed significant (p < 0.05 overall (data collapsed over groups and legs increases in reactive RF activity when landing. Independently, the fixed foot balance group showed a 33% increase in reactive RF activity (p < 0.01. Overall, there was also significantly less reactive co-activation following training (p < 0.05. It appears that fixed foot balance training for recreationally active women may provide greater RF activity when landing and increased countermovement jump height

  4. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.

    Science.gov (United States)

    Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama

    2017-01-01

    Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.

  5. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System

    Directory of Open Access Journals (Sweden)

    Deepesh Kumar

    2018-01-01

    Full Text Available Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM. The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels.

  6. Functional Mobility Performance and Balance Confidence in Older Adults after Sensorimotor Adaptation Training

    Science.gov (United States)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.; Weaver, G. D.

    2010-01-01

    Research indicates a main contributor of injury in older adults is from falling. The decline in sensory systems limits information needed to successfully maneuver through the environment. The objective of this study was to determine if prolonged exposure to the realignment of perceptual-motor systems increases adaptability of balance, and if balance confidence improves after training. A total of 16 older adults between ages 65-85 were randomized to a control group (walking on a treadmill while viewing a static visual scene) and an experimental group (walking on a treadmill while viewing a rotating visual scene). Prior to visual exposure, participants completed six trials of walking through a soft foamed obstacle course. Participants came in twice a week for 4 weeks to complete training of walking on a treadmill and viewing the visual scene for 20 minutes each session. Participants completed the obstacle course after training and four weeks later. Average time, penalty, and Activity Balance Confidence Scale scores were computed for both groups across testing times. The older adults who trained, significantly improved their time through the obstacle course F (2, 28) = 9.41, p confidence scores between groups across testing times F (2, 28) = 0.503, p > 0.05. Although the training group improved mobility through the obstacle course, there were no differences between the groups in balance confidence.

  7. Validity of a jump training apparatus using Wii Balance Board.

    Science.gov (United States)

    Yamamoto, Keizo; Matsuzawa, Mamoru

    2013-05-01

    The dynamic quantification of jump ability is useful for sports performance evaluation. We developed a force measurement system using the Wii Balance Board (WBB). This study was conducted to validate the system in comparison with a laboratory-grade force plate (FP). For a static validation, weights of 10-180kg were put progressively on the WBB put on the FP. The vertical component of the ground reaction force (vGRF) was measured using both devices and compared. For the dynamic validation, 10 subjects without lower limb pathology participated in the study and performed vertical jumping twice on the WBB on the FP. The range of analysis was set from the landing after the first jump to taking off of the second jump. The peak values during the landing phase and jumping phase were obtained and the force-time integral (force impulse) was measured. The relations of the values measured using each device were compared using Pearson's correlation coefficient test and Bland-Altman plots (BAP). Significant correlation (P<.01, r=.99) was found between the values of both devices in the static and the dynamic test. Examination of the BAP revealed a proportion error in the landing phase and showed no relation in the jumping phase between the difference and the mean in the dynamic test. The WBB detects the vGRF in the jumping phase with high precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Resampling method for balancing training data in video analysis

    Science.gov (United States)

    Giritharan, Balathasan; Yuan, Xiaohui

    2010-03-01

    Reviewing videos from medical procedures is a tedious work that requires concentration for extended hours and usually screens thousands of frames to find only a few positive cases that indicate probable presence of disease. Computational classification algorithms are sought to automate the reviewing process. The class imbalance problem becomes challenging when the learning process is driven by relative few minority class samples. The learning algorithms using imbalanced data sets generally result in large number of false negatives. In this article, we present an efficient rebalancing method for finding video frames that contain bleeding lesions. The majority class generally has clusters of data within them. Here we cluster the majority class and under-sample the each cluster based on its variance so that useful examples would not be lost during the under-sampling process. The balance of bleeding to non-bleeding frames is restored by the proposed cluster-based under-sampling and oversampling using Synthetic Minority Over-sampling Technique (SMOTE). Experiments were conducted using synthetic data and videos manually annotated by medical specialists for obscure bleeding detection. Our method achieved a high average sensitivity and specificity.

  9. The effect of recreational soccer training and running on postural balance in untrained men

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Krustrup, Peter

    2011-01-01

    The aim of this study was to examine the effect of intense intermittent exercise performed as soccer training or interval running in comparison with continuous endurance running exercise on postural balance in young healthy untrained males. Young sedentary men were randomized to soccer training...... (SOC, n = 10), continuous running (RUN; n = 9), high-intensity interval running (INT; n = 7) or no training (CON; n = 9). Postural balance was evaluated pre and post 12 weeks of training using a 30-s single-leg stance test on a force plate (AMTI) to yield center of pressure (CoP) sway path and 1-min...

  10. Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes

    Science.gov (United States)

    Chaouachi, Mehdi; Granacher, Urs; Makhlouf, Issam; Hammami, Raouf; Behm, David G; Chaouachi, Anis

    2017-01-01

    The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years) participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces) and plyometric (e.g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence. Key points The combination of balance and plyometric exercises can induce significant and substantial training improvements in muscle strength, power, speed, agility, and balance with adolescent youth athletes The within training session

  11. The Effect of Core Stabilization Training Program on the Balance of Mentally Retarded Educable Students

    Directory of Open Access Journals (Sweden)

    Hassan Daneshmandi

    2013-10-01

    Full Text Available Objective: The purpose of this study was to evaluate the effect of core stabilization training program on the balance of mentally retarded educable students. Materials & Methods: The research was use Application of Quasi-experimental design with pretest and posttest control group. Our subjects included 31 students boys mentally retarded in the two groups (control, 14 patients with a mean age of 11.07±3.02years, height 152±7.86cm, weight 44.07 ± 8.08kg and (17experimental group with a mean age 11.23 ± 1.95years, height 147±7.07cm, weighing 38.11±4.85kg of the sample selected. Demographic data includes: height, weight and medical records and also the IQ of them were collected. The training program of experimental group that for 6 weeks, 3 times a week in the first three weeks experimental group performed exercise the 2 sets with 5 repetitions and three the second week of 2 sets with 10 repetitions and for evaluate used the dynamic balance Y test. For analysis data used the paired T test and independent test. Results: Results showed significant differences in mean posterior-lateral and posterior-medial in the experimental group in post-test (P&le0.05. Conclusion: People with mental retardation compared with normal people have problems with delays in motor development that seems to cause deficit in the balance. Due to the lack of balance in the people with mental retarded and the importance of balance in daily activities and the effects of core stability training on the balance was showed this training improve balance in these individuals, on base of the results of this research the core stability exercises can be performed for mental retarded by coaches and teachers.

  12. [How to become a good pediatrician: a balance between theoretical and clinical training].

    Science.gov (United States)

    Carceller, A; Blanchard, A C; Barolet, J; Alloul, S; Moussa, A; Sarquella-Brugada, G

    2009-05-01

    We review a different way of teaching medicine and pediatrics which balances theory and clinical training for undergraduate, postgraduate and during continuing education. We also discuss the role of the teacher. We recommend better evaluation of students and teacher assessments. We discuss the discrepancies and the harmonization of all Institutions involved in pediatric education. We analyze the model of teaching medicine and pediatrics in the Province of Quebec, Canada. We introduce advices on the application of skills in a pediatrics training program.

  13. Feasibility of Wii Fit training to improve clinical measures of balance in older adults

    OpenAIRE

    Bieryla KA; Dold NM

    2013-01-01

    Kathleen A Bieryla, Neil M DoldBiomedical Engineering Department, Bucknell University, Lewisburg, PA, USABackground and purpose: Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo's Wii Fit for training to improve clinical measu...

  14. The effects of stair gait training using proprioceptive neuromuscular facilitation on stroke patients' dynamic balance ability.

    Science.gov (United States)

    Seo, KyoChul; Park, Seung Hwan; Park, KwangYong

    2015-05-01

    [Purpose] This study aims to examine stroke patients' changes in dynamic balance ability through stair gait training where in proprioceptive neuromuscular facilitation (PNF) was applied. [Subjects and Methods] In total 30 stroke patients participated in this experiment and were randomly and equally allocated to an experimental group and a control group. The experimental group received exercise treatment for 30 min and stair gait training where in PNF was applied for 30 min and the control group received exercise treatment for 30 min and ground gait training where in PNF was applied for 30 min. For the four weeks of the experiment, each group received training three times per week, for 30 min each time. Berg Balance Scale (BBS) values were measured and a time up and go (TUG) test and a functional reach test (FRT) were performed for a comparison before and after the experiment. [Results] According to the result of the stroke patients' balance performance through stair gait training, the BBS and FRT results significantly increased and the TUG test result significantly decreased in the experimental group. On the contrary, BBS and FRT results did not significantly increase and the TUG test result did not significantly decrease in the control group. According to the result of comparing differences between before and after training in each group, there was a significant change in the BBS result of the experimental group only. [Conclusions] In conclusion, the gait training group to which PNF was applied saw improvements in their balance ability, and a good result is expected when neurological disease patients receive stair gait training applying PNF.

  15. The effects of stair gait training using proprioceptive neuromuscular facilitation on stroke patients’ dynamic balance ability

    Science.gov (United States)

    Seo, KyoChul; Park, Seung Hwan; Park, KwangYong

    2015-01-01

    [Purpose] This study aims to examine stroke patients’ changes in dynamic balance ability through stair gait training where in proprioceptive neuromuscular facilitation (PNF) was applied. [Subjects and Methods] In total 30 stroke patients participated in this experiment and were randomly and equally allocated to an experimental group and a control group. The experimental group received exercise treatment for 30 min and stair gait training where in PNF was applied for 30 min and the control group received exercise treatment for 30 min and ground gait training where in PNF was applied for 30 min. For the four weeks of the experiment, each group received training three times per week, for 30 min each time. Berg Balance Scale (BBS) values were measured and a time up and go (TUG) test and a functional reach test (FRT) were performed for a comparison before and after the experiment. [Results] According to the result of the stroke patients’ balance performance through stair gait training, the BBS and FRT results significantly increased and the TUG test result significantly decreased in the experimental group. On the contrary, BBS and FRT results did not significantly increase and the TUG test result did not significantly decrease in the control group. According to the result of comparing differences between before and after training in each group, there was a significant change in the BBS result of the experimental group only. [Conclusions] In conclusion, the gait training group to which PNF was applied saw improvements in their balance ability, and a good result is expected when neurological disease patients receive stair gait training applying PNF. PMID:26157240

  16. The Effect of One Period Factitious and True Neurofeedback Training on the Balance Performance of Active Males

    Directory of Open Access Journals (Sweden)

    Amir Hossein Barati

    2015-12-01

    Conclusion: Due to its positive impact on the balance of active males, neurofeedback training can be used as a complementary training program to increase their efficiency of such students in competitions.

  17. EFFECT OF DYNAMIC BALANCE TRAINING ON AGILITY IN MALE BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Avi Saraswat

    2015-10-01

    Full Text Available Background: Athletes focus their training on two major goals, i.e., avoidance of the injury and increasing the performance. Balance training has been widely used in competitive sports to improve the balance and thus reduce the risk of injury, for example, ligamentous sprains, which are very common in Basketball. On the other hand, various drills are being used to improve the performance parameters such as agility. Our effort is to find out an exercise program which focuses on balance training and see whether it has any effect on agility. Methods: The study design was a Pretest-Posttest Control-Group Design. 30 healthy school level Male Basketball Players were selected from V-One Basketball Academy, Don Bosco Basketball Academy, Modern School Basketball Academy, New Delhi. They were randomly divided into two groups. Group A performed dynamic balance training 3 sessions per week for 4 weeks. Group B performed conventional exercises throughout the duration of the study. Outcome measure, i.e., T- test was measured pre and post 4 week period. Results: Data analysis was done by Independent t test and Paired t test for between group analysis and within group analysis respectively. There was a significant reduction in T-test times in the experimental group as compared to the control group (‘p’ value <0.05 while there was no significant improvement in the control group. Conclusion: Four weeks of dynamic balance training significantly improved agility as detected by T-test. Thus it can be concluded that the used protocol can be incorporated in the training regimes to reduce the risk of injury as well as improve the performance.

  18. Improvements in balance control in individuals with PCS detected following vestibular training: A case study.

    Science.gov (United States)

    Prangley, Alyssa; Aggerholm, Mathew; Cinelli, Michael

    2017-10-01

    Concussed individuals have been found to experience balance deficits in the anterior-posterior (AP) direction as indicated by greater Center of Pressure (COP) displacement and velocity. One possible reason for this change in balance control could be due to damage to the lateral vestibulospinal tract which sends signals to control posterior muscles, specifically ankle extensors leading to compensatory torques about the ankle. The purpose of the study was to quantify balance assessments in individuals experiencing persistent post-concussion symptoms (PCS) to determine balance control changes following a vestibular training intervention. Participants (N=6,>26days symptomatic), were tested during their first appointment with a registered physiotherapist (PT) and during each follow up appointment. Participants were prescribed balance, visual, and neck strengthening exercises by the PT that were to be completed daily between bi-weekly appointments. Balance assessments were quantified using a Nintendo Wii board to record ground reaction forces. Participants completed 4 balance assessments: 1) Romberg stance eyes open (REO); 2) Romberg stance eyes closed (REC); 3) single leg stance eyes open (SEO); and 4) single leg stance eyes closed (SEC). The balance assessments were conducted on both a firm and compliant surfaces. Significant improvements in balance control were noted in ML/AP displacement and velocity of COP for both SEC and Foam REC conditions, with additional improvements in AP velocity of COP for Foam REC and in ML displacement of COP during Foam SEC. Overall, findings indicate that objectively quantifying balance changes for individuals experiencing persistent PCS allows for a more sensitive measure of balance and detects changes unrecognizable to the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effectiveness of balance training programme in reducing the frequency of falling in established osteoporotic women: a randomized controlled trial.

    Science.gov (United States)

    Mikó, Ibolya; Szerb, Imre; Szerb, Anna; Poor, Gyula

    2017-02-01

    To investigate the effect of a 12-month sensomotor balance exercise programme on postural control and the frequency of falling in women with established osteoporosis. Randomized controlled trial where the intervention group was assigned the 12-month Balance Training Programme and the control group did not undertake any intervention beyond regular osteoporosis treatment. A total of 100 osteoporotic women - at least with one osteoporotic fracture - aged 65 years old and above. Balance was assessed in static and dynamic posture both with performance-based measures of balance, such as the Berg Balance Scale and the Timed Up and Go Test, and with a stabilometric computerized platform. Patients in the intervention group completed the 12-month sensomotor Balance Training Programme in an outpatient setting, guided by physical therapists, three times a week, for 30 minutes. The Berg Balance Scale and the Timed Up and Go Test showed a statistically significant improvement of balance in the intervention group ( p = 0.001 and p = 0.005, respectively). Balance tests using the stabilometer also showed a statistically significant improvement in static and dynamic postural balance for osteoporotic women after the completion of the Balance Training Programme. As a consequence, the one-year exercise programme significantly decreased the number of falls in the exercise group compared with the control group. The Balance Training Programme significantly improved the balance parameters and reduced the number of falls in postmenopausal women who have already had at least one fracture in the past.

  20. Effect of different rest intervals between sets in the growth hormone concentrations in trained older women

    Directory of Open Access Journals (Sweden)

    José Claudio Jambassi Filho

    2015-02-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n2p216   The use of shorter rest intervals (RI between sets of weight exercises has demonstrated to be a strategy to cause elevations of growth hormone concentrations (GH in young adults. However, is not yet well established whether the magnitude of these elevations is influenced by the aging process. Thus, the aim of this study was to analyze the effect of different RI between sets of weight exercises on GH concentrations. Eighteen trained older women (65.8 ± 4.4 years; 70.2 ± 11.8 kg; 158.2 ± 5.1 cm were submitted to two experimental exercise sessions in the leg press (separated by intervals between 48 and 72 hours. Both sessions consisted of three sets all performed with absolute loads of 15 maximal repetitions. Participants were instructed to perform maximum repetitions possible in each set until volitional muscle fatigue. In each experimental session, one of the different RI between sets was used: one minute (RI-1 or three minutes (RI-3. A randomized cross-over balanced design was used to determine the order of experimental sessions. Blood samples were collected to determine GH concentrations immediately before and after leg press exercise. Only the session performed with RI-1 showed significant elevations (50.7%; P 0.05. The results suggest that the use of different RI between sets does not influence the GH concentrations in trained older women.

  1. Effects of Balance Training on Postural Sway, Leg Extensor Strength, and Jumping Height in Adolescents

    Science.gov (United States)

    Granacher, Urs; Gollhofer, Albert; Kriemler, Susi

    2010-01-01

    Deficits in strength of the lower extremities and postural control have been associated with a high risk of sustaining sport-related injuries. Such injuries often occur during physical education (PE) classes and mostly affect the lower extremities. Thus, the objectives of this study were to investigate the effects of balance training on postural…

  2. Exergames for unsupervised balance training at home : A pilot study in healthy older adults

    NARCIS (Netherlands)

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J.; Verkerke, G. J.; Postema, Klaas; Lamoth, Claude

    Exercise videogames (exergames) are gaining popularity as tools for improving balance ability in older adults, yet few exergames are suitable for home-based use. The purpose of the current pilot study was to examine the effects of a 6-week unsupervised home-based exergaming training program on

  3. Exergames for unsupervised balance training at home: A pilot study in healthy older adults

    NARCIS (Netherlands)

    van Diest, M.; Stegenga, J.; Wörtche, H.J.; Verkerke, Gijsbertus Jacob; Postema, K.; Lamoth, C.J.C.

    2016-01-01

    Exercise videogames (exergames) are gaining popularity as tools for improving balance ability in older adults, yet few exergames are suitable for home-based use. The purpose of the current pilot study was to examine the effects of a 6-week unsupervised home-based exergaming training program on

  4. Effects of training using an active video game on agility and balance.

    Science.gov (United States)

    Su, H; Chang, Y-K; Lin, Y-J; Chu, I-H

    2015-09-01

    The aim of this paper was to examine the effects of training using Xbox Kinect on agility and balance in healthy young adults. Forty-three healthy adults (aged 20 to 30 years) were randomized to either an intervention or control group. The intervention group played Xbox Kinect 3 times per week, for an average of 20 minutes per session for 6 weeks. The control group did not play Xbox Kinect. All the participants completed assessments of agility and balance at baseline, 2, 4, and 6 weeks. After 6 weeks of training the intervention group showed significant improvement in agility at 2 weeks and showed continued improvement at 4 and 6 weeks (Pagility and dynamic balance in the medial and posterior directions in healthy young adults.

  5. Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Jan Ruffieux

    2018-01-01

    Full Text Available Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI and in combination with action observation (AO; i.e., AO+MI of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.

  6. Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study.

    Science.gov (United States)

    Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang

    2018-01-01

    Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.

  7. Kung-fu versus swimming training and the effects on balance abilities in young adolescents.

    Science.gov (United States)

    Baccouch, Rym; Rebai, Haithem; Sahli, Sonia

    2015-11-01

    Our purpose is to investigate the static balance control of young adolescents practicing kung-fu and swimming in order to find out which of these physical activities is the most effective in developing specific balance abilities in young adolescents. Comparative experimental study. University laboratory research. Three groups of 11-13-year-old boys (12 practicing Kung-Fu, 12 practicing swimming and 12 controls). Center of pressure (CoP) excursions were registered in upright bipedal and unipedal stances on a stabilometric force platform in eyes open (EO) and eyes closed (EC) conditions. Kung-fu practitioners control their balance (P Kung-fu training improved (P kung-fu practitioners. Both of these physical activities could be recommended for young adolescents as recreational or rehabilitation programs as they develop specific balance abilities that could be important for improving and maintaining optimal health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis.

    Science.gov (United States)

    de Rooij, Ilona J M; van de Port, Ingrid G L; Meijer, Jan-Willem G

    2016-12-01

    Virtual reality (VR) training is considered to be a promising novel therapy for balance and gait recovery in patients with stroke. The aim of this study was to conduct a systematic literature review with meta-analysis to investigate whether balance or gait training using VR is more effective than conventional balance or gait training in patients with stroke. A literature search was carried out in the databases PubMed, Embase, MEDLINE, and Cochrane Library up to December 1, 2015. Randomized controlled trials that compared the effect of balance or gait training with and without VR on balance and gait ability in patients with stroke were included. Twenty-one studies with a median PEDro score of 6.0 were included. The included studies demonstrated a significant greater effect of VR training on balance and gait recovery after stroke compared with conventional therapy as indicated with the most frequently used measures: gait speed, Berg Balance Scale, and Timed "Up & Go" Test. Virtual reality was more effective to train gait and balance than conventional training when VR interventions were added to conventional therapy and when time dose was matched. The presence of publication bias and diversity in included studies were limitations of the study. The results suggest that VR training is more effective than balance or gait training without VR for improving balance or gait ability in patients with stroke. Future studies are recommended to investigate the effect of VR on participation level with an adequate follow-up period. Overall, a positive and promising effect of VR training on balance and gait ability is expected. © 2016 American Physical Therapy Association.

  9. Relationship between maximum dynamic force of inferior members and body balance in strength training apprentices

    Directory of Open Access Journals (Sweden)

    Ariane Martins

    2010-08-01

    Full Text Available The relationship between force and balance show controversy results and has directimplications in exercise prescription practice. The objective was to investigate the relationshipbetween maximum dynamic force (MDF of inferior limbs and the static and dynamic balances.Participated in the study 60 individuals, with 18 to 24 years old, strength training apprentices.The MDF was available by mean the One Maximum Repetition (1MR in “leg press” and “kneeextension” and motor testes to available of static and dynamic balances. The correlation testsand multiple linear regression were applied. The force and balance variables showed correlationin females (p=0.038. The corporal mass and static balance showed correlation for the males(p=0.045. The explication capacity at MDF and practices time were small: 13% for staticbalance in males, 18% and 17%, respectively, for static and dynamic balance in females. Inconclusion: the MDF of inferior limbs showed low predictive capacity for performance in staticand dynamic balances, especially for males.

  10. Does robotic gait training improve balance in Parkinson's disease? A randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Gimigliano, Raffaele; Smania, Nicola

    2012-09-01

    Treadmill training (with or without robotic assistance) has been reported to improve balance skills in patients with Parkinson's disease (PD). However, its effectiveness on postural instability has been evaluated mainly in patients with mild to moderate PD (Hoehn & Yahr stage ≤3). Patients with more severe disease may benefit from robot-assisted gait training performed by the Gait-Trainer GT1, as a harness supports them with their feet placed on motor-driven footplates. The aim of this study was to determine whether robot-assisted gait training could have a positive influence on postural stability in patients with PD at Hoehn & Yahr stage 3-4. Thirty-four patients with PD at Hoehn & Yahr stage 3-4 were randomly assigned into two groups. All patients received twelve, 40-min treatment sessions, three days/week, for four consecutive weeks. The Robotic Training group (n = 17) underwent robot-assisted gait training, while the Physical Therapy group (n = 17) underwent a training program not specifically aimed at improving postural stability. Patients were evaluated before, immediately after and 1-month post-treatment. Primary outcomes were: Berg Balance scale; Nutt's rating. A significant improvement was found after treatment on the Berg Balance Scale and the Nutt's rating in favor of the Robotic Training group (Berg: 43.44 ± 2.73; Nutt: 1.38 ± 0.50) compared to the Physical Therapy group (Berg: 37.27 ± 5.68; Nutt: 2.07 ± 0.59). All improvements were maintained at the 1-month follow-up evaluation. Robot-assisted gait training may improve postural instability in patients with PD at Hoehn & Yahr stage 3-4. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Evidence of homologous and heterologous effects after unilateral leg training in youth.

    Science.gov (United States)

    Ben Othman, Aymen; Behm, David G; Chaouachi, Anis

    2018-03-01

    The positive effects of unilateral training on contralateral muscles (cross education) has been demonstrated with adults for over a century. There is limited evidence for cross education of heterologous muscles. Cross education has not been demonstrated with children. It was the objective of this study to investigate cross-education training in children examining ipsilateral and contralateral homologous and heterologous muscles. Forty-eight male children (aged 10-13 years) were assessed for unilateral, ipsilateral and contralateral lower limb strength, power and endurance (1-repetition maximum (RM) leg press, knee extensors (KE) and flexors (KF) maximum voluntary isometric contractions (MVIC), countermovement jump, muscle endurance test (leg press repetitions with 60% 1RM)), and upper body unilateral MVIC elbow flexors (EF) and handgrip strength. An 8-week training program involved 2 unilateral leg press resistance-training groups (high load/low repetitions: 4-8 sets of 5RM, and low load/high repetitions: 1-2 sets of 20RM) and control (untrained) group. All muscles exhibited improvements of 6.1% to 89.1%. The trained limb exhibited greater adaptations than the untrained limb for leg press 1RM (40.3% vs. 25.2%; p = 0.005), and 60% 1RM leg press (104.1% vs. 73.4%; p = 0.0001). The high load/low repetition training induced (p cross-education effects with children and that the effects of unilateral training involve both contralateral homologous and heterologous muscles with the greatest strength-training responses from high-load/low-repetition training.

  12. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.

    Science.gov (United States)

    Nath, Abhigyan; Subbiah, Karthikeyan

    2015-12-01

    Lipocalins are short in sequence length and perform several important biological functions. These proteins are having less than 20% sequence similarity among paralogs. Experimentally identifying them is an expensive and time consuming process. The computational methods based on the sequence similarity for allocating putative members to this family are also far elusive due to the low sequence similarity existing among the members of this family. Consequently, the machine learning methods become a viable alternative for their prediction by using the underlying sequence/structurally derived features as the input. Ideally, any machine learning based prediction method must be trained with all possible variations in the input feature vector (all the sub-class input patterns) to achieve perfect learning. A near perfect learning can be achieved by training the model with diverse types of input instances belonging to the different regions of the entire input space. Furthermore, the prediction performance can be improved through balancing the training set as the imbalanced data sets will tend to produce the prediction bias towards majority class and its sub-classes. This paper is aimed to achieve (i) the high generalization ability without any classification bias through the diversified and balanced training sets as well as (ii) enhanced the prediction accuracy by combining the results of individual classifiers with an appropriate fusion scheme. Instead of creating the training set randomly, we have first used the unsupervised Kmeans clustering algorithm to create diversified clusters of input patterns and created the diversified and balanced training set by selecting an equal number of patterns from each of these clusters. Finally, probability based classifier fusion scheme was applied on boosted random forest algorithm (which produced greater sensitivity) and K nearest neighbour algorithm (which produced greater specificity) to achieve the enhanced predictive performance

  13. Biofeedback for training balance and mobility tasks in older populations: a systematic review

    Directory of Open Access Journals (Sweden)

    Chiari Lorenzo

    2010-12-01

    Full Text Available Abstract Context An effective application of biofeedback for interventions in older adults with balance and mobility disorders may be compromised due to co-morbidity. Objective To evaluate the feasibility and the effectiveness of biofeedback-based training of balance and/or mobility in older adults. Data Sources PubMed (1950-2009, EMBASE (1988-2009, Web of Science (1945-2009, the Cochrane Controlled Trials Register (1960-2009, CINAHL (1982-2009 and PsycINFO (1840-2009. The search strategy was composed of terms referring to biofeedback, balance or mobility, and older adults. Additional studies were identified by scanning reference lists. Study Selection For evaluating effectiveness, 2 reviewers independently screened papers and included controlled studies in older adults (i.e. mean age equal to or greater than 60 years if they applied biofeedback during repeated practice sessions, and if they used at least one objective outcome measure of a balance or mobility task. Data Extraction Rating of study quality, with use of the Physiotherapy Evidence Database rating scale (PEDro scale, was performed independently by the 2 reviewers. Indications for (noneffectiveness were identified if 2 or more similar studies reported a (nonsignificant effect for the same type of outcome. Effect sizes were calculated. Results and Conclusions Although most available studies did not systematically evaluate feasibility aspects, reports of high participation rates, low drop-out rates, absence of adverse events and positive training experiences suggest that biofeedback methods can be applied in older adults. Effectiveness was evaluated based on 21 studies, mostly of moderate quality. An indication for effectiveness of visual feedback-based training of balance in (frail older adults was identified for postural sway, weight-shifting and reaction time in standing, and for the Berg Balance Scale. Indications for added effectiveness of applying biofeedback during training of

  14. Development of an interactive game-based rehabilitation tool for dynamic balance training.

    Science.gov (United States)

    Lange, BeLinda; Flynn, Sheryl; Proffitt, Rachel; Chang, Chien-Yen; Rizzo, Albert Skip

    2010-01-01

    Conventional physical therapy techniques have been shown to improve balance, mobility, and gait following neurological injury. Treatment involves training patients to transfer weight onto the impaired limb to improve weight shift while standing and walking. Visual biofeedback and force plate systems are often used for treatment of balance and mobility disorders. Researchers have also been exploring the use of video game consoles such as the Nintendo Wii Fit as rehabilitation tools. Case studies have demonstrated that the use of video games may have promise for balance rehabilitation. However, initial usability studies and anecdotal evidence suggest that the current commercial games are not compatible with controlled, specific exercise required to meet therapy goals. Based on focus group data and observations with patients, a game has been developed to specifically target weight shift training using an open source game engine and the Nintendo Wii Fit Balance Board. The prototype underwent initial usability testing with a sample of clinicians and with persons with neurological injury. Overall, feedback was positive, and areas for improvement were identified. This preliminary research provides support for the development of a game that caters specifically to the key requirements of balance rehabilitation.

  15. Efeito de diferentes intervalos de recuperação entre as séries sobre o desempenho muscular no exercício leg-press em idosas não treinadas

    Directory of Open Access Journals (Sweden)

    José Claudio Jambassi Filho

    2012-08-01

    Full Text Available OBJETIVO: Verificar a influência de dois diferentes intervalos de recuperação (IR entre as séries no exercício leg-press sobre o número e sustentabilidade das repetições e no volume total, em idosas não treinadas. MÉTODOS: Onze idosas (66,5 ± 5,0 anos; 59,2 ± 9,1kg; 146,4 ± 34,9cm foram submetidas a duas sessões experimentais de exercícios com pesos com intensidade de 15 repetições máximas. Cada sessão experimental foi composta por três séries realizadas até a fadiga muscular utilizando IR de um (IR-1 ou três minutos (IR-3. As sessões experimentais foram separadas por, no mínimo, 48 horas. Todas as participantes realizaram ambos os protocolos e um delineamento cross-over balanceado foi utilizado para determinar a ordem das sessões experimentais. RESULTADOS: Para ambos os IR entre as séries, reduções significativas (P < 0,05 no número e na sustentabilidade das repetições foram observadas da primeira para a segunda e terceira séries e da segunda para a terceira séries. Diferenças significativas (P < 0,05 entre os IR foram observadas nas duas séries finais. O volume total da sessão realizada com IR-3 foi estatisticamente superior (20,4%; P < 0,05 quando comparada a sessão IR-1. CONCLUSÃO: O número e a sustentabilidade das repetições e o volume total de treino de idosas não treinadas são influenciados pelo IR empregado entre as séries. Maiores IR devem ser utilizados quando a finalidade for otimizar o volume de treino por meio da sustentabilidade das repetições. Em contrapartida, menores IR devem ser utilizados quando a meta for obter maiores níveis de fadiga muscular.

  16. Effects of slackline training on balance, jump performance & muscle activity in young children.

    Science.gov (United States)

    Donath, L; Roth, R; Rueegge, A; Groppa, M; Zahner, L; Faude, O

    2013-12-01

    The study investigated the effects of slackline training (rope balancing) on balance, jump performance and muscle activity in children. Two primary-school classes (intervention, n=21, INT: age: 10.1 (SD 0.4) y, weight: 33.1 (4.5) kg; control, n=13, CON: age: 10.0 (SD 0.4) y, weight: 34.7 (7.4) kg) participated. Training was performed within 6 weeks, 5 times per week for 10 min each day. Balance (static and dynamic stance), countermovement jumps, reverse balancing on beams (3, 4.5 and 6 cm width), slackline standing (single- and double-limb) and electromyographic activity (soleus, gastrocnemius, tibialis anterior) were examined. INT significantly improved single- and double-limb slackline standing (double limb: 5.1 (3.4) s-17.2 (14.4) s; right leg: 8.2 (5.8) s-38.3 (36.0) s; left leg: 10.6 (5.8) s-49.0 (56.3) s; pslackline standing for the mm. soleus (-23%, p=0.10, ηp²=0.18) and tibialis anterior (-26%, p=0.15, ηp²=0.14) was observed for INT. Jump performance remained unchanged (p=0.28, ηp²=0.04). In conclusion, daily slackline training results in large slackline-specific balance improvements. Transfer effects to static and dynamic stance, reverse balancing or jumping performance seemed to be restricted. © Georg Thieme Verlag KG Stuttgart · New York.

  17. A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement

    Science.gov (United States)

    Yin, Chieh; Hsueh, Ya-Hsin; Yeh, Chun-Yu; Lo, Hsin-Chang; Lan, Yi-Ting

    2016-01-01

    Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS), which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI) between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p = 0.046) and in force plate the stand balance has also improved by 0.29 (p = 0.031); thus both methods show the significant difference. PMID:27034953

  18. A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement

    Directory of Open Access Journals (Sweden)

    Chieh Yin

    2016-01-01

    Full Text Available Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS, which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p=0.046 and in force plate the stand balance has also improved by 0.29 (p=0.031; thus both methods show the significant difference.

  19. Effectiveness of treadmill training on balance control in elderly people: a randomized controlled clinical trial.

    Science.gov (United States)

    Pirouzi, Soraya; Motealleh, Ali Reza; Fallahzadeh, Fatemeh; Fallahzadeh, Mohammad Amin

    2014-11-01

    Physical exercise would improve postural stability, which is an essential factor in preventing accidental fall among the elderly population. The aim of this study is to examine the effectiveness of treadmill walking on balance improvement among the elderly people. A total of 30 community dwelling older adults with a Berg Balance Scale score of 36-48 and the ability to walk without aid were considered and divided into control (n=15) and experimental (n=15) groups. Individuals in the experimental group participated in 30 minutes of forward and backward treadmill training based on three times a week interval for a period of four weeks. Individuals in the control group were instructed to continue with their daily routine activity. Before and after training, gait speed was measured by six-minute walk test and balance ability was evaluated by Fullerton Advanced Balance Scale (FABS) and Berg Balance Scale (BBS) tests. Postural sway items such as the Center of Pressure (COP), average displacement and velocity were evaluated by using a force platform system. Data were collected in quiet standing, tandem position and standing on foam pads before and after intervention. After intervention, balance variables in the experimental group indicated a significant improvement in quiet standing on firm and foam surfaces, but no considerable improvement was shown in tandem position. A between-group comparison showed a significant reduction in COP velocity in the sagittal plane (P=0.030) during quiet standing and in the frontal plane (P=0.001) during standing on foam, whereas no significant reduction in COP parameters during tandem position was found. It is recommended that twelve sessions of forward and backward treadmill walk are effective in balance improvement in elderly people. IRCT201209199440N2.

  20. Effectiveness of Treadmill Training on Balance Control in Elderly People: A Randomized Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Soraya Pirouzi

    2014-11-01

    Full Text Available Physical exercise would improve postural stability, which is an essential factor in preventing accidental fall among the elderly population. The aim of this study is to examine the effectiveness of treadmill walking on balance improvement among the elderly people. A total of 30 community dwelling older adults with a Berg Balance Scale score of 36-48 and the ability to walk without aid were considered and divided into control (n=15 and experimental (n=15 groups. Individuals in the experimental group participated in 30 minutes of forward and backward treadmill training based on three times a week interval for a period of four weeks. Individuals in the control group were instructed to continue with their daily routine activity. Before and after training, gait speed was measured by six-minute walk test and balance ability was evaluated by Fullerton Advanced Balance Scale (FABS and Berg Balance Scale (BBS tests. Postural sway items such as the Center of Pressure (COP, average displacement and velocity were evaluated by using a force platform system. Data were collected in quiet standing, tandem position and standing on foam pads before and after intervention. After intervention, balance variables in the experimental group indicated a significant improvement in quiet standing on firm and foam surfaces, but no considerable improvement was shown in tandem position. A between-group comparison showed a significant reduction in COP velocity in the sagittal plane (P=0.030 during quiet standing and in the frontal plane (P=0.001 during standing on foam, whereas no significant reduction in COP parameters during tandem position was found. It is recommended that twelve sessions of forward and backward treadmill walk are effective in balance improvement in elderly people. Trial Registration Number: IRCT201209199440N2

  1. Sensory-specific balance training in older adults: effect on proprioceptive reintegration and cognitive demands.

    Science.gov (United States)

    Westlake, Kelly P; Culham, Elsie G

    2007-10-01

    Age-related changes in the ability to adjust to alterations in sensory information contribute to impaired postural stability. The purpose of this randomized controlled trial was to investigate the effect of sensory-specific balance training on proprioceptive reintegration. The subjects of this study were 36 older participants who were healthy. Participants were randomly assigned to a balance exercise group (n=17) or a falls prevention education group (n=19). The primary outcome measure was the center-of-pressure (COP) velocity change score. This score represented the difference between COP velocity over 45 seconds of quiet standing and each of six 5-second intervals following proprioceptive perturbation through vibration with or without a secondary cognitive task. Clinical outcome measures included the Fullerton Advanced Balance (FAB) Scale and the Activities-specific Balance Confidence (ABC) Scale. Assessments were conducted at baseline, postintervention, and at an 8-week follow-up. Following the exercise intervention, there was less destabilization within the first 5 seconds following vibration with or without a secondary task than there was at baseline or in the falls prevention education group. These training effects were not maintained at the 8-week follow-up. Postintervention improvements also were seen on the FAB Scale and were maintained at follow-up. No changes in ABC Scale scores were identified in the balance exercise group, but ABC Scale scores indicated reduced balance confidence in the falls prevention education group postintervention. The results of this study support short-term enhanced postural responses to proprioceptive reintegration following a sensory-specific balance exercise program.

  2. Estimation of Optimum Stimulus Amplitude for Balance Training using Electrical Stimulation of the Vestibular System

    Science.gov (United States)

    Goel, R.; Rosenberg, M. J.; De Dios, Y. E.; Cohen, H. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Sensorimotor changes such as posture and gait instabilities can affect the functional performance of astronauts after gravitational transitions. Sensorimotor Adaptability (SA) training can help alleviate decrements on exposure to novel sensorimotor environments based on the concept of 'learning to learn' by exposure to varying sensory challenges during posture and locomotion tasks (Bloomberg 2015). Supra-threshold Stochastic Vestibular Stimulation (SVS) can be used to provide one of many challenges by disrupting vestibular inputs. In this scenario, the central nervous system can be trained to utilize veridical information from other sensory inputs, such as vision and somatosensory inputs, for posture and locomotion control. The minimum amplitude of SVS to simulate the effect of deterioration in vestibular inputs for preflight training or for evaluating vestibular contribution in functional tests in general, however, has not yet been identified. Few studies (MacDougall 2006; Dilda 2014) have used arbitrary but fixed maximum current amplitudes from 3 to 5 mA in the medio-lateral (ML) direction to disrupt balance function in healthy adults. Giving this high level of current amplitude to all the individuals has a risk of invoking side effects such as nausea and discomfort. The goal of this study was to determine the minimum SVS level that yields an equivalently degraded balance performance. Thirteen subjects stood on a compliant foam surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in the ML direction. Duration of time they could stand on the foam surface was also measured. The minimum SVS dosage was defined to be that level which significantly degraded balance performance such that any further increase in stimulation level did not lead to further balance degradation. The minimum SVS level was determined by performing linear fits on the performance variable

  3. The effect of 6-week combined agility-balance training on neuromuscular performance in basketball players.

    Science.gov (United States)

    Zemková, E; Hamar, D

    2010-09-01

    The study evaluates the effect of 6-week combined agility-balance training on neuromuscular performance in basketball players. Subjects divided into experimental (EG, n = 17) and control group (CG, n = 17) underwent a combined agility-balance training (in duration of 30 min) for a period of 6 weeks (4-5 sessions/week). Both groups performed reaction tasks similar to game-like situations, however EG on wobble boards and CG on stable surface. Prior to and after the training parameters of agility, balance, speed of step initiation, strength differentiation accuracy, and explosive power of lower limbs were evaluated. Postural stability was assessed under both static and dynamic conditions (wobble board) with eyes open and eyes closed, respectively. The velocity of the centre of pressure (COP) was registered at 100 Hz by means of posturography system FiTRO Sway check based on dynamometric platform. Using FiTRO Reaction check simple and multi-choice reaction times were measured. The same system was applied to evaluate the agility performance including reaction and movement task. Speed of step initiation was measured using FiTRO Dyne Premium. Jumping abilities were evaluated by means of FiTRO Jumper (10-seconds maximal jumps, Countermovement jump, Squat jump, Drop jump). Using the same system, the subject´s ability to match 50 % of their maximal height of the jump was evaluated. Results showed that a combined agility-balance training improved dynamic balance not only under visual control but also in eyes closed conditions. Training also increased run-out speed that likely contributed to better agility performance, reduced ground contact time during drop jump, and improved the ability to differentiate the force of muscle contraction during repeated jumps. However, such training has been found to be insufficient to improve both simple and multi-choice reaction time, and jumping performance. On the other hand, control group failed to show any significant improvement in

  4. Comparative Effects of Different Balance-Training-Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial.

    Science.gov (United States)

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-02-01

    Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.

  5. Internet-based home training is capable to improve balance in multiple sclerosis: a randomized controlled trial.

    Science.gov (United States)

    Frevel, D; Mäurer, M

    2015-02-01

    Balance disorders are common in multiple sclerosis. Aim of the study is to investigate the effectiveness of an Internet-based home training program (e-Training) to improve balance in patients with multiple sclerosis. A randomized, controlled study. Academic teaching hospital in cooperation with the therapeutic riding center Gut Üttingshof, Bad Mergentheim. Eighteen multiple sclerosis patients (mean EDSS 3,5) took part in the trial. Outcome of patients using e-Training (N.=9) was compared to the outcome of patients receiving hippotherapy (N.=9), which can be considered as an advanced concept for the improvement of balance and postural control in multiple sclerosis. After simple random allocation patients received hippotherapy or Internet-based home training (balance, postural control and strength training) twice a week for 12 weeks. Assessments were done before and after the intervention and included static and dynamic balance (primary outcome). Isometric muscle strength of the knee and trunk extension/flexion (dynamometer), walking capacity, fatigue and quality of life served as secondary outcome parameters. Both intervention groups showed comparable and highly significant improvement in static and dynamic balance capacity, no difference was seen between the both intervention groups. However looking at fatigue and quality of life only the group receiving hippotherapy improved significantly. Since e-Training shows even comparable effects to hippotherapy to improve balance, we believe that the established Internet-based home training program, specialized on balance and postural control training, is feasible for a balance and strength training in persons with multiple sclerosis. We demonstrated that Internet-based home training is possible in patients with multiple sclerosis.

  6. Side-alternating vibration training for balance and ankle muscle strength in untrained women.

    Science.gov (United States)

    Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia

    2013-01-01

    Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P training could enhance ankle muscle strength and reduce postural sway during static balance

  7. Comparing the Effect of Balance Training with and Without Suit Therapy on the Balance and the Gait Pattern of Patients with Parkinsin\\'s Disease

    Directory of Open Access Journals (Sweden)

    Majid Khodadadi

    2016-09-01

    Full Text Available Background & Objective: Parkinson's Disease  is a progressive neurologic disorder affecting the central nervous system. The objective of this study is to investigate the effect of balance training with and without suit therapy on the balance and the gait pattern of patients with Parkinson's Disease. Material & Methods: participants with Parkinson's Disease were divided  into three groups of control, with suit therapy, and without suit therapy. The control group received only pharmacotherapy, while the groups with and without suit therapy received eigh weeks balance training in addition to pharmacotherapy. The patient's balance  and gait  were evaluted by Berg and Tinetti scales, respectively at the pretest and posttest of this study. Result: The result of the study showed significant difference in balance between the three groups (P<0/05. The groups with and without suit therapy were significantly more effective than control group (P<0/05, but between groups with and without suit therapy no significant difference was observed (P=0/076. The result of the study also revealed significant difference in gait between the three groups (P<0/05. The groups with and without suit therapy were significantly more effective than control group (P<0/05, and the group with suit therapy was significantly more effective than the group without suit therapy (P<0/05. Conclusion: To do balance traning is better than not to do it, and balance training with suit therapy is better than without suit therapy

  8. Efficiency of a neuromuscular training on balance and functional movement in recreational runners

    OpenAIRE

    Barasaitė, Vitalija

    2017-01-01

    ABSTRACT Vilnius University Faculty of Medicine Department of Rehabilitation, Physical and Sports Medicine Bachelor Degree of Physical Therapy EFFICIENCY OF A NEUROMUSCULAR TRAINING ON BALANCE AND FUNCTIONAL MOVEMENT IN RECREATIONAL RUNNERS Physiotherapy Bachelor's Thesis The Author: Vitalija Barasaitė, a final year student in Bachelor’s of Physical Therapy of Vilnius University. Academic advisor: lecturer dr. Inga Muntianaitė, Vilnius University, Faculty of Medicine, The Department of Rehabi...

  9. Effects of whole body vibration training on balance in adolescents with and without Down syndrome.

    Science.gov (United States)

    Villarroya, M Adoración; González-Agüero, Alejandro; Moros, Teresa; Gómez-Trullén, Eva; Casajús, José A

    2013-10-01

    The present study aimed to determine whether a whole body vibration training program (WBV) is able to improve static standing balance in adolescents with and without Down syndrome (DS). Thirty adolescents with DS aged 11-20 years (DSG) and 27 adolescent, age/sex matched, without DS (CG) joined the study. Participants of each group were divided into two comparable groups, those who performed WVB (in DSG: VDSG; in CG: VCG) and those who did not perform WVB (in DSG: nVDSG; in CG: nVCG). Static-standing-balance under four conditions (C1: open-eyes/fixed-foot-support; C2: closed-eyes/fixed-foot-support; C3: open-eyes/compliant-foot-support; C4: closed-eyes/compliant-foot-support) was examine, before and after a 20-week WBV training program. For balance study, Postural-Parameters (PPs), based on center of pressure (COP) oscillations (anterior/posterior and medial/lateral COP excursion and COP mean velocity), and PPs ratios among the four conditions were calculated. After WBV training, no significant differences were found in any parameter in the VCG and nVCG and neither in the nVDSG, but there was a decrease of mean values in the analyzed PPs under C4, with significant differences in medial/lateral COP excursion and COP mean velocity, and a significant decrease in the ratio C4/C1 of the mean velocity in VDSG. Therefore, WBV training had positive effects in the balance of DS adolescents although only under specific conditions, with vision and somatosensory input altered. The positive results of this study are encouraging and open a wide field of research, looking for the most efficient program for this population. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Balance Training Enhances Vestibular Function and Reduces Overactive Proprioceptive Feedback in Elderly

    OpenAIRE

    Isabella K. Wiesmeier; Daniela Dalin; Anja Wehrle; Anja Wehrle; Urs Granacher; Thomas Muehlbauer; Joerg Dietterle; Cornelius Weiller; Albert Gollhofer; Christoph Maurer

    2017-01-01

    Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques.Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed...

  11. The Effects of Plyometric Education Trainings on Balance and Some Psychomotor Characteristics of School Handball Team

    Science.gov (United States)

    Karadenizli, Zeynep Inci

    2016-01-01

    This study aims to search the effects of plyometric education trainings which was applied for 10-week on static-dynamic balance and some psychomotor characteristics of students who were been handball team of school. The female students-players (N = 16) who are in age 14,57 ± 0,92 years. All student have got 3,66 ± 0,63 years sport experience.…

  12. Balance Training Reduces Falls Risk in Older Individuals With Type 2 Diabetes

    OpenAIRE

    Morrison, Steven; Colberg, Sheri R.; Mariano, Mira; Parson, Henri K.; Vinik, Arthur I.

    2010-01-01

    OBJECTIVE This study assessed the effects of balance/strength training on falls risk and posture in older individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS Sixteen individuals with type 2 diabetes and 21 age-matched control subjects (aged 50–75 years) participated. Postural stability and falls risk was assessed before and after a 6-week exercise program. RESULTS Diabetic individuals had significantly higher falls risk score compared with control subjects. The diabetic group also e...

  13. EFFICACY OF A SPORTS SPECIFIC BALANCE TRAINING PROGRAMME ON THE INCIDENCE OF ANKLE SPRAINS IN BASKETBALL

    Directory of Open Access Journals (Sweden)

    Elke Cumps

    2007-06-01

    Full Text Available The purpose of the study was to determine the efficacy of a 22- week prescribed sports specific balance training programme on the incidence of lateral ankle sprains in basketball players. A controlled clinical trial was set up. In total 54 subjects of six teams participated and were assigned to either an intervention (IG or a control group (CG. The IG performed a prescribed balance training programme on top of their normal training routine, using balance semi-globes. The programme consisted of 4 basketball skills each session and its difficulty was progressively thought-out. The intervention lasted 22 weeks and was performed 3 times a week for 5 to 10 minutes. Efficacy of the intervention on the incidence of lateral ankle sprains was determined by calculating Relative Risks (RR, including their 95% Confidence Intervals or CI and incidence rates expressed per 1000h. RR (95% CI showed a significantly lower incidence of lateral ankle sprains in the IG compared to the CG for the total sample (RR= 0.30 [95% CI: 0.11-0.84] and in men (RR= 0.29 [95% CI: 0.09-0.93]. The difference in RR was not confirmed when examining the incidence rates and their 95%CI's, which overlapped. The risk for new or recurrent ankle sprains was slightly lower in the IG (new: RR= 0.76 [95% CI: 0.17-3.40]; re-injury: RR= 0.21 [95% CI: 0.03-1.44]. Based on these pilot results, the use of balance training is recommended as a routine during basketball activities for the prevention of ankle sprains

  14. Efficacy of Aquatic Treadmill Training on Gait Symmetry and Balance in Subacute Stroke Patients.

    Science.gov (United States)

    Lee, Mi Eun; Jo, Geun Yeol; Do, Hwan Kwon; Choi, Hee Eun; Kim, Woo Jin

    2017-06-01

    To determine the efficacy of aquatic treadmill training (ATT) as a new modality for stroke rehabilitation, by assessing changes in gait symmetry, balance function, and subjective balance confidence for the paretic and non-paretic leg in stroke patients. Twenty-one subacute stroke patients participated in 15 intervention sessions of aquatic treadmill training. The Comfortable 10-Meter Walk Test (CWT), spatiotemporal gait parameters, Berg Balance Scale (BBS), and Activities-specific Balance Confidence scale (ABC) were assessed pre- and post-interventions. From pre- to post-intervention, statistically significant improvements were observed in the CWT (0.471±0.21 to 0.558±0.23, psymmetry (1.017±0.25 to 0.990±0.19, p=0.720) and overall temporal symmetry (1.404±0.36 to 1.314±0.34, p=0.218) showed improvement without statistical significance. ATT improves the functional aspects of gait, including CWT, BBS and ABC, and spatiotemporal gait symmetry, though without statistical significance. Further studies are required to examine and compare the potential benefits of ATT as a new modality for stroke therapy, with other modalities.

  15. EFFECTS OF VIBRATION TRAINING AND DETRAINING ON BALANCE AND MUSCLE STRENGTH IN OLDER ADULTS

    Directory of Open Access Journals (Sweden)

    Pedro J. Marín

    2011-09-01

    Full Text Available The purpose of this study was to analyze the effects of 2 days/week versus 4 days/week of Whole Body Vibration (WBV during eight weeks of WBV training on health-related quality of life (SF-36, balance and lower body strength, as well as short-term detraining (3 weeks on balance and lower body strength among older adults. Thirty-four older adults were randomly assigned to a control group (Control; n = 11 or to one of the vibration training groups: WBV 2 days/week (WBV_2d; n = 11 or WBV 4 days/week (WBV_4d; n = 12. The WBV groups exercised for 8 weeks, following 3 weeks of detraining. Lower body strength increased significantly (p < 0.05 for both groups, WBV_2d and WBV_4d, after 8-week training. A significant reduction in strength was observed following 3 weeks of detraining only in WBV_2d group (p < 0.05. All variables of the SF-36 and the balance test did not change after intervention in any group. 2 days/week and 4 days/week of WBV during 8 weeks showed the same improvements on muscle strength. 3 weeks of detraining did not reverse the gains in strength made during 32 sessions of WBV

  16. The role of balanced training and testing data sets for binary classifiers in bioinformatics.

    Science.gov (United States)

    Wei, Qiong; Dunbrack, Roland L

    2013-01-01

    Training and testing of conventional machine learning models on binary classification problems depend on the proportions of the two outcomes in the relevant data sets. This may be especially important in practical terms when real-world applications of the classifier are either highly imbalanced or occur in unknown proportions. Intuitively, it may seem sensible to train machine learning models on data similar to the target data in terms of proportions of the two binary outcomes. However, we show that this is not the case using the example of prediction of deleterious and neutral phenotypes of human missense mutations in human genome data, for which the proportion of the binary outcome is unknown. Our results indicate that using balanced training data (50% neutral and 50% deleterious) results in the highest balanced accuracy (the average of True Positive Rate and True Negative Rate), Matthews correlation coefficient, and area under ROC curves, no matter what the proportions of the two phenotypes are in the testing data. Besides balancing the data by undersampling the majority class, other techniques in machine learning include oversampling the minority class, interpolating minority-class data points and various penalties for misclassifying the minority class. However, these techniques are not commonly used in either the missense phenotype prediction problem or in the prediction of disordered residues in proteins, where the imbalance problem is substantial. The appropriate approach depends on the amount of available data and the specific problem at hand.

  17. A novel conceptual framework for balance training in Parkinson’s disease-study protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Conradsson David

    2012-09-01

    Full Text Available Abstract Background There is increasing scientific knowledge about the interaction between physiological (musculoskeletal, neuromuscular, cognitive and sensory systems and their influence on balance and walking impairments in Parkinson’s disease. We have developed a new conceptual framework for balance training, emphasising specific components of balance control related to Parkinson’s disease symptoms by using highly challenging, progressive and varying training conditions. The primary aim of this proposed randomised controlled trial will be to investigate the short-term and long-term effects of a 10-week balance training regime in elderly with Parkinson’s disease. Methods/Design Eighty participants with mild to moderate idiopathic Parkinson’s disease will be recruited and randomly allocated to an intervention group receiving balance training or a control group whose participants will continue to receive their usual care. The intervention will consist of a 10-week group training regime (1-hour training, three times per week, which will be led by two physiotherapists to ensure training progression and safety. The conceptual framework will be applied by addressing specific balance components (sensory integration, anticipatory postural adjustments, motor agility, stability limits through varying training conditions and structured progression. Assessment will be conducted through a multi-dimensional battery of outcomes, prior to and immediately after the 10-week intervention, and at 9 and 15 months’ follow-up after entering the study. Primary outcome measures will be balance performance (assessed using the Mini Balance Evaluation Systems Test, change in gait velocity (m/s between single and dual task walking, and fear of falling (evaluated using the Fall Efficacy Scale International. Discussion This study has the potential to provide new insight and knowledge of the effects of specific, varied and challenging balance training on a wide

  18. The effects of augmented visual feedback during balance training in Parkinson's disease: study design of a randomized clinical trial.

    Science.gov (United States)

    van den Heuvel, Maarten R C; van Wegen, Erwin E H; de Goede, Cees J T; Burgers-Bots, Ingrid A L; Beek, Peter J; Daffertshofer, Andreas; Kwakkel, Gert

    2013-10-04

    Patients with Parkinson's disease often suffer from reduced mobility due to impaired postural control. Balance exercises form an integral part of rehabilitative therapy but the effectiveness of existing interventions is limited. Recent technological advances allow for providing enhanced visual feedback in the context of computer games, which provide an attractive alternative to conventional therapy. The objective of this randomized clinical trial is to investigate whether a training program capitalizing on virtual-reality-based visual feedback is more effective than an equally-dosed conventional training in improving standing balance performance in patients with Parkinson's disease. Patients with idiopathic Parkinson's disease will participate in a five-week balance training program comprising ten treatment sessions of 60 minutes each. Participants will be randomly allocated to (1) an experimental group that will receive balance training using augmented visual feedback, or (2) a control group that will receive balance training in accordance with current physical therapy guidelines for Parkinson's disease patients. Training sessions consist of task-specific exercises that are organized as a series of workstations. Assessments will take place before training, at six weeks, and at twelve weeks follow-up. The functional reach test will serve as the primary outcome measure supplemented by comprehensive assessments of functional balance, posturography, and electroencephalography. We hypothesize that balance training based on visual feedback will show greater improvements on standing balance performance than conventional balance training. In addition, we expect that learning new control strategies will be visible in the co-registered posturographic recordings but also through changes in functional connectivity.

  19. Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance.

    Science.gov (United States)

    Wirth, Klaus; Keiner, Michael; Hartmann, Hagen; Sander, Andre; Mickel, Christoph

    2016-12-01

    The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg) joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development) were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p leg press, the squat might be a better strength training exercise for the development of jump performance.

  20. Perceptions of balance and falls following a supervised training intervention - a qualitative study of people with Parkinson's disease.

    Science.gov (United States)

    Leavy, Breiffni; Berntsson, Johan; Franzén, Erika; Skavberg Roaldsen, Kirsti

    2017-12-21

    To explore perceptions of balance and falls among people with mild to moderate Parkinson's disease 3 - 12 months following participation in supervised balance training. This qualitative study used in-depth individual interviews for data collection among 13 people with Parkinson's disease. Interviews were systematically analyzed using qualitative content analysis with an inductive approach. Three main themes arose: Falls - avoided and intended highlights the wide spectrum of fall perceptions, ranging from worse-case scenario to undramatized events; Balance identity incorporates how gradual deterioration in balance served as a reminder of disease progression and how identifying themselves as "aware not afraid" helped certain participants to maintain balance confidence despite everyday activity restriction; Training as treatment recounts how participants used exercise as disease self-management with the aim to maintain independence in daily life. Interpretation of the underlying patterns of these main themes resulted in the overarching theme Training as treatment when battling problems with balance and falls. Whereas certain participants expressed a fear of falling which they managed by activity restriction, others described being confident in their balance despite avoidance of balance-challenging activities. Training was used as treatment to self-manage disease-related balance impairments in order to maintain independence in daily life. Implication for Rehabilitation People with Parkinson's disease require early advice about the positive effects of physical activity as well as strategies for self-management in order to ease the psychological and physical burden of progressive balance impairment. Fear of falling should be investigated alongside activity avoidance in this group in order to provide a more accurate insight into the scope of psychological concerns regarding balance and falls in everyday life. Certain people with Parkinson's disease define their

  1. Soccer training: high-intensity interval training is mood disturbing while small sided games ensure mood balance.

    Science.gov (United States)

    Selmi, Okba; Haddad, Monoem; Majed, Lina; Ben Khalifa, Wissam; Hamza, Marzougui; Chamari, Karim

    2017-05-09

    BACKGROUNDː The aim of the study was to compare the effects of high-intensity intermittent training (HIIT) versus small-sided games (SSG) in soccer on both the physiological responses and the mood state of players. Sixteen professional soccer players took part in the study (age: 24.1±0.9 years). Testing of players was conducted on separate days in a randomized and counter-balanced order (each training session: 28-min: 4x4 minutes work with 3-min of passive recovery in-between). Effort: HIIT: intermittent 15-s runs at 110% maximal aerobic speed with 15-s of passive recovery in-between. SSG: 4 versus 4 players on a 25x35m pitch size with full-involvement play. Psychological responses before- and after- each training-session were assessed using the profile of mood-state (POMS: Tension, Depression, Anger, Vigor, Fatigue, and Confusion). The players' heart rate (HR) was continuously measured, whereas ratings of perceived exertion (RPE) and blood lactate concentration ([La]) were collected ~3-min after each training-session. HIIT and SSG showed no significant difference in HR, RPE and [La] responses. The HIIT compared with SSG resulted in: an increased total mood disturbance (pbalance. Practitioners could choose between these two exercises according to the objective of their training, keeping in mind the mood-related advantages of the SSG shown in the present study.

  2. Balance training exercises decrease lower-limb strength asymmetry in young tennis players.

    Science.gov (United States)

    Sannicandro, Italo; Cofano, Giacomo; Rosa, Rosa A; Piccinno, Andrea

    2014-05-01

    The issue of functional asymmetries in the lower-limbs has been the subject of numerous recent investigations concerning many different contact, limited-contact and non-contact sports. The presence of strength asymmetries in the lower-limbs of young athletes practicing various sporting disciplines is considered an intrinsic risk factor for injury; in such cases, compensation strategies should thus be implemented aimed at eliminating, or at least limiting, the degree of asymmetry in order to avoid the negative consequences asymmetries can have upon the health of young sportsmen and women on the long-term. The aim of the present study was to examine the presence of functional asymmetries in the lower-limbs of young tennis players in strength and speed drill performance and to test a specific balance-training programme in its capacity to effectively reduce such asymmetries. Twenty-three young tennis players were randomly assigned to the Experimental Group (EG) (n = 11: 4 females, 7 males; 13.2 ± 0.9 years; 50.8 ± 8.9 Kg; 1.63 ± 0.08 m) or Comparison Group (CG) (n = 12: 4 females, 8 males; 13.0 ± 0.9 years; 51.1 ± 9.2 Kg; 1.61 ± 0.09 m). To quantify percent asymmetries in lower-limb strength before (T0) and following (T1) training, performances were assessed in the one-leg hop test (OLH), side-hop test (SH) and side steps and forward 4.115-m test (4m-SSF). Performances in the 10 and 20m sprint tests and the Foran test were also assessed. The EG completed a total of 12 training sessions directed at balance training: two 30-minute sessions/week over a 6-week period. The CG followed an identical training schedule, but training sessions consisted of tennis-specific drills only. The results reveal significant differences between pre- and post-training tests in the EG only: the degree of lower-limb asymmetry was decreased in the EG following completion of the training programme, as assessed using the OLH test (p training was also observed in the EG: balance training

  3. Balance training using an iPhone application in people with familial dysautonomia: three case reports.

    Science.gov (United States)

    Gefen, Rosalee; Dunsky, Ayelet; Hutzler, Yeshayahu

    2015-03-01

    Familial dysautonomia (FD) is a rare genetic autosomal recessive disease that impairs vital functions and causes neural and motor deficiency. These motor deficits often are characterized by static and dynamic instability and an ataxic gait. As a result, people with FD are at risk for significant physical impairment and falls and pose unique challenges for delivering rehabilitation exercise. Consequently, there is a need for challenging ways to safely and feasibly deliver active exercise rehabilitation to these individuals. This case report describes 3 people with FD (ages 11, 12, and 22 years) with gait and stability problems who attended rehabilitation exercises augmented by the use of an iPhone application specifically developed for the program. The Berg Balance Scale and the Four Square Step Test were conducted prior to training, after training, and after 2 months of follow-up without training. Two patients showed improvements on both measures at the posttest, which were maintained throughout follow-up testing. Although greater experience is needed to more fully evaluate the efficiency of the iPhone application used in this program for people with FD, the results of these initial cases are encouraging. Systematically and prospectively tracking motor abilities and other functional outcomes during rehabilitation of individuals with FD who use the suggested application in balance training is recommended in order to provide greater evidence in this area. © 2015 American Physical Therapy Association.

  4. Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes

    Directory of Open Access Journals (Sweden)

    Mehdi Chaouachi, Urs Granacher, Issam Makhlouf, Raouf Hammami, David G Behm, Anis Chaouachi

    2017-03-01

    Full Text Available The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces and plyometric (e.g., jumps, hops, rebounds exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence.

  5. Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes.

    Science.gov (United States)

    Chaouachi, Mehdi; Granacher, Urs; Makhlouf, Issam; Hammami, Raouf; Behm, David G; Chaouachi, Anis

    2017-03-01

    The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years) participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces) and plyometric (e.g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence.

  6. Usability and Effects of an Exergame-Based Balance Training Program.

    Science.gov (United States)

    Wüest, Seline; Borghese, Nunzio Alberto; Pirovano, Michele; Mainetti, Renato; van de Langenberg, Rolf; de Bruin, Eling D

    2014-04-01

    Background: Post-stroke recovery benefits from structured, intense, challenging, and repetitive therapy. Exergames have emerged as promising to achieve sustained therapy practice and patient motivation. This study assessed the usability and effects of exergames on balance and gait. Subjects and Methods: Sixteen elderly participants were provided with the study intervention based on five newly developed exergames. The participants were required to attend 36 training sessions; lasting for 20 minutes each. Adherence, attrition and acceptance were assessed together with (1) Berg Balance Scale, (2) 7-m Timed Up and Go, (3) Short Physical Performance Battery, (4) force platform stance tests, and (5) gait analysis. Results: Thirteen participants completed the study (18.8 percent attrition), without missing a single training session (100 percent adherence). Participants showed high acceptance of the intervention. Only minor adaptations in the program were needed based on the users' feedback. No changes in center of pressure area during quiet stance on both stable and unstable surfaces and no changes of walking parameters were detected. Scores for the Berg Balance Scale ( P =0.007; r =0.51), the 7-m Timed Up and Go ( P =0.002; r =0.56), and the Short Physical Performance Battery ( P =0.013; r =0.48) increased significantly with moderate to large effect sizes. Conclusion: Participants evaluated the usability of the virtual reality training intervention positively. Results indicate that the intervention improves gait- and balance-related physical performance measures in untrained elderly. The present results warrant a clinical explorative study investigating the usability and effectiveness of the exergame-based program in stroke patients.

  7. Effect of Acute Effort on Isometric Strength and Body Balance: Trained vs. Untrained Paradigm.

    Directory of Open Access Journals (Sweden)

    Stanisław Sterkowicz

    Full Text Available Years of training in competitive sports leads to human body adaptation to a specific type of exercise. In judo bouts, maintaining hand grip on an opponent's clothes and postural balance is essential for the effective technical and tactical actions. This study compares changes after maximal anaerobic exercise among judo athletes and untrained subjects regarding 1 maximum isometric handgrip strength (HGSmax and accuracy at the perceived 50% maximum handgrip force (1/2HGSmax and 2 the balance of 13 judo athletes at national (n = 8 and international (n = 5 competitive levels and 19 untrained university students. The groups did not differ in age, body height, and weight. Body mass index (BMI and body composition (JAWON were evaluated. The Wingate Anaerobic Test (WAnT, Monark 875E measured recommended anaerobic capacity indices. Hand grip strength (Takei dynamometer and balance (biplate balance platform were measured before warm-up (T1, before the WAnT test (T2, and after (T3. Parametric or non-parametric tests were performed after verifying the variable distribution assumption. Judoists had higher BMI and fat-free mass index (FFMI than the students. The athletes also showed higher relative total work and relative peak power and lower levels of lactic acid. The difference in judoists between HGSmax at T1 and HGSmax at T3 was statistically significant. Before warm-up (T1, athletes showed higher strength (more divergent from the calculated ½HGSmax value compared to students. Substantial fatigue after the WAnT test significantly deteriorated the body stability indices, which were significantly better in judo athletes at all time points. The findings suggest specific body adaptations in judoists, especially for body composition, anaerobic energy system efficiency, and postural balance. These characteristics could be trained for specifically by judo athletes to meet the time-motion and anaerobic demands of contemporary bouts.

  8. Effect of Acute Effort on Isometric Strength and Body Balance: Trained vs. Untrained Paradigm.

    Science.gov (United States)

    Sterkowicz, Stanisław; Jaworski, Janusz; Lech, Grzegorz; Pałka, Tomasz; Sterkowicz-Przybycień, Katarzyna; Bujas, Przemysław; Pięta, Paweł; Mościński, Zenon

    2016-01-01

    Years of training in competitive sports leads to human body adaptation to a specific type of exercise. In judo bouts, maintaining hand grip on an opponent's clothes and postural balance is essential for the effective technical and tactical actions. This study compares changes after maximal anaerobic exercise among judo athletes and untrained subjects regarding 1) maximum isometric handgrip strength (HGSmax) and accuracy at the perceived 50% maximum handgrip force (1/2HGSmax) and 2) the balance of 13 judo athletes at national (n = 8) and international (n = 5) competitive levels and 19 untrained university students. The groups did not differ in age, body height, and weight. Body mass index (BMI) and body composition (JAWON) were evaluated. The Wingate Anaerobic Test (WAnT, Monark 875E) measured recommended anaerobic capacity indices. Hand grip strength (Takei dynamometer) and balance (biplate balance platform) were measured before warm-up (T1), before the WAnT test (T2), and after (T3). Parametric or non-parametric tests were performed after verifying the variable distribution assumption. Judoists had higher BMI and fat-free mass index (FFMI) than the students. The athletes also showed higher relative total work and relative peak power and lower levels of lactic acid. The difference in judoists between HGSmax at T1 and HGSmax at T3 was statistically significant. Before warm-up (T1), athletes showed higher strength (more divergent from the calculated ½HGSmax value) compared to students. Substantial fatigue after the WAnT test significantly deteriorated the body stability indices, which were significantly better in judo athletes at all time points. The findings suggest specific body adaptations in judoists, especially for body composition, anaerobic energy system efficiency, and postural balance. These characteristics could be trained for specifically by judo athletes to meet the time-motion and anaerobic demands of contemporary bouts.

  9. Resistance versus Balance Training to Improve Postural Control in Parkinson's Disease: A Randomized Rater Blinded Controlled Study.

    Science.gov (United States)

    Schlenstedt, Christian; Paschen, Steffen; Kruse, Annika; Raethjen, Jan; Weisser, Burkhard; Deuschl, Günther

    2015-01-01

    Reduced muscle strength is an independent risk factor for falls and related to postural instability in individuals with Parkinson's disease. The ability of resistance training to improve postural control still remains unclear. To compare resistance training with balance training to improve postural control in people with Parkinson's disease. 40 patients with idiopathic Parkinson's disease (Hoehn&Yahr: 2.5-3.0) were randomly assigned into resistance or balance training (2x/week for 7 weeks). Assessments were performed at baseline, 8- and 12-weeks follow-up: primary outcome: Fullerton Advanced Balance (FAB) scale; secondary outcomes: center of mass analysis during surface perturbations, Timed-up-and-go-test, Unified Parkinson's Disease Rating Scale, Clinical Global Impression, gait analysis, maximal isometric leg strength, PDQ-39, Beck Depression Inventory. Clinical tests were videotaped and analysed by a second rater, blind to group allocation and assessment time. 32 participants (resistance training: n = 17, balance training: n = 15; 8 drop-outs) were analyzed at 8-weeks follow-up. No significant difference was found in the FAB scale when comparing the effects of the two training types (p = 0.14; effect size (Cohen's d) = -0.59). Participants from the resistance training group, but not from the balance training group significantly improved on the FAB scale (resistance training: +2.4 points, Cohen's d = -0.46; balance training: +0.3 points, Cohen's d = -0.08). Within the resistance training group, improvements of the FAB scale were significantly correlated with improvements of rate of force development and stride time variability. No significant differences were found in the secondary outcome measures when comparing the training effects of both training types. The difference between resistance and balance training to improve postural control in people with Parkinson's disease was small and not significant with this sample size. There was weak evidence that freely

  10. Resistance versus Balance Training to Improve Postural Control in Parkinson's Disease: A Randomized Rater Blinded Controlled Study.

    Directory of Open Access Journals (Sweden)

    Christian Schlenstedt

    Full Text Available Reduced muscle strength is an independent risk factor for falls and related to postural instability in individuals with Parkinson's disease. The ability of resistance training to improve postural control still remains unclear.To compare resistance training with balance training to improve postural control in people with Parkinson's disease.40 patients with idiopathic Parkinson's disease (Hoehn&Yahr: 2.5-3.0 were randomly assigned into resistance or balance training (2x/week for 7 weeks. Assessments were performed at baseline, 8- and 12-weeks follow-up: primary outcome: Fullerton Advanced Balance (FAB scale; secondary outcomes: center of mass analysis during surface perturbations, Timed-up-and-go-test, Unified Parkinson's Disease Rating Scale, Clinical Global Impression, gait analysis, maximal isometric leg strength, PDQ-39, Beck Depression Inventory. Clinical tests were videotaped and analysed by a second rater, blind to group allocation and assessment time.32 participants (resistance training: n = 17, balance training: n = 15; 8 drop-outs were analyzed at 8-weeks follow-up. No significant difference was found in the FAB scale when comparing the effects of the two training types (p = 0.14; effect size (Cohen's d = -0.59. Participants from the resistance training group, but not from the balance training group significantly improved on the FAB scale (resistance training: +2.4 points, Cohen's d = -0.46; balance training: +0.3 points, Cohen's d = -0.08. Within the resistance training group, improvements of the FAB scale were significantly correlated with improvements of rate of force development and stride time variability. No significant differences were found in the secondary outcome measures when comparing the training effects of both training types.The difference between resistance and balance training to improve postural control in people with Parkinson's disease was small and not significant with this sample size. There was weak evidence that

  11. Efficacy of ankle control balance training on postural balance and gait ability in community-dwelling older adults: a single-blinded, randomized clinical trial.

    Science.gov (United States)

    Lee, Kyeongjin; Lee, Yong Woo

    2017-09-01

    [Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults.

  12. Effects of a resistance training program on balance and fatigue perception in patients with Parkinson's disease: A randomized controlled trial.

    Science.gov (United States)

    Ortiz-Rubio, Araceli; Cabrera-Martos, Irene; Torres-Sánchez, Irene; Casilda-López, Jesús; López-López, Laura; Valenza, Marie Carmen

    2017-11-22

    Fatigue and balance impairment leads to a loss of independence and are important to adequately manage. The objective of this study was to examine the effects of a resistance training program on dynamic balance and fatigue in patients with Parkinson's disease (PD). Randomized controlled trial. Forty-six patients with PD were randomly allocated to an intervention group receiving a 8-week resistance training program focused on lower limbs or to a control group. Balance was assessed using the Mini-BESTest and fatigue was assessed by the Piper Fatigue Scale. Patients in the intervention group improved significantly (p<0.05) on dynamic balance (reactive postural control and total values) and perceived fatigue. An 8-week resistance training program was found to be effective at improving dynamic balance and fatigue in patients with PD. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  13. Acute L-arginine alpha ketoglutarate supplementation fails to improve muscular performance in resistance trained and untrained men

    Directory of Open Access Journals (Sweden)

    Wax Benjamin

    2012-04-01

    Full Text Available Abstract Background Dietary supplements containing L-arginine are marketed to improve exercise performance, but the efficacy of such supplements is not clear. Therefore, this study examined the efficacy of acute ingestion of L-arginine alpha-ketoglutarate (AAKG muscular strength and endurance in resistance trained and untrained men. Methods Eight resistance trained and eight untrained healthy males ingested either 3000mg of AAKG or a placebo 45 minutes prior to a resistance exercise protocol in a randomized, double-blind crossover design. One-repetition maximum (1RM on the standard barbell bench press and leg press were obtained. Upon determination of 1RM, subjects completed repetitions to failure at 60% 1RM on both the standard barbell bench press and leg press. Heart rate was measured pre and post exercise. One week later, subjects ingested the other supplement and performed the identical resistance exercise protocol. Results Our data showed statistical significant differences (p0.05 between supplementation conditions for either resistance trained or untrained men in the bench press or leg press exercises. Heart rate was similar at the end of the upper and lower body bouts of resistance exercise with AAKG vs. placebo. Conclusion The results from our study indicate that acute AAKG supplementation provides no ergogenic benefit on 1RM or TLV as measured by the standard barbell bench press and leg press, regardless of the subjects training status.

  14. Acute L-arginine alpha ketoglutarate supplementation fails to improve muscular performance in resistance trained and untrained men.

    Science.gov (United States)

    Wax, Benjamin; Kavazis, Andreas N; Webb, Heather E; Brown, Stanley P

    2012-04-17

    Dietary supplements containing L-arginine are marketed to improve exercise performance, but the efficacy of such supplements is not clear. Therefore, this study examined the efficacy of acute ingestion of L-arginine alpha-ketoglutarate (AAKG) muscular strength and endurance in resistance trained and untrained men. Eight resistance trained and eight untrained healthy males ingested either 3000mg of AAKG or a placebo 45 minutes prior to a resistance exercise protocol in a randomized, double-blind crossover design. One-repetition maximum (1RM) on the standard barbell bench press and leg press were obtained. Upon determination of 1RM, subjects completed repetitions to failure at 60% 1RM on both the standard barbell bench press and leg press. Heart rate was measured pre and post exercise. One week later, subjects ingested the other supplement and performed the identical resistance exercise protocol. Our data showed statistical significant differences (p0.05) between supplementation conditions for either resistance trained or untrained men in the bench press or leg press exercises. Heart rate was similar at the end of the upper and lower body bouts of resistance exercise with AAKG vs. placebo. The results from our study indicate that acute AAKG supplementation provides no ergogenic benefit on 1RM or TLV as measured by the standard barbell bench press and leg press, regardless of the subjects training status.

  15. EFFECTIVENESS OF A NEW BALANCE TRAINING PROGRAM ON ROCKER BOARD IN SITTING IN STROKE SUBJECTS A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Sandesh Rayamajhi

    2014-06-01

    Full Text Available Background: Stroke has been considered to be the most common cause of neurological disability with very high prevalence rate. The recovery of independence following stroke is a complex process requiring the reacquisition of many skills. Since controlling the body’s position in space is essential part of functional skills, restoration of balance is a critical part of the recovery of ability after stroke. Most of the work done regarding balance training in stroke subjects has focused on task-oriented activities and training under varied sensory input and found them to be effective. Studies have also compared the effect of stable and unstable surfaces on balance in stroke subjects and found that balance training on unstable surfaces is more effective in improving static and dynamic balance. There has not been any study till date investigating the effectiveness of balance training program on rocker board which is specific for stroke subjects who have difficulty in standing. Since balance training on rocker board in sitting has proved to be effective in improving balance in subjects with spinal cord injury who have difficulty in standing, there is a need to find out if similar balance training program on rocker board in sitting is also effective for improving balance of stroke subjects. Method: A Pilot study was performed on 10 stroke subjects selected through purposive sampling. Subjects were divided into two groups by randomization as control (CG and experimental group (EG. EG received balance training on a rocker board along with conventional physiotherapy program. The CG received only conventional physiotherapy program. Results: Post-intervention Berg balance scale score of EG and the CG was statistically significant (p < 0.05 in both the groups as compared to pre-treatment depicted through Wilcoxon signed rank analysis within the groups. Greater improvement was observed in the EG compared to the CG post-treatment, analysed through Mann

  16. Balance Training Exercises Decrease Lower-Limb Strength Asymmetry in Young Tennis Players

    Directory of Open Access Journals (Sweden)

    Italo Sannicandro, Giacomo Cofano, Rosa A. Rosa, Andrea Piccinno

    2014-06-01

    Full Text Available The issue of functional asymmetries in the lower-limbs has been the subject of numerous recent investigations concerning many different contact, limited-contact and non-contact sports. The presence of strength asymmetries in the lower-limbs of young athletes practicing various sporting disciplines is considered an intrinsic risk factor for injury; in such cases, compensation strategies should thus be implemented aimed at eliminating, or at least limiting, the degree of asymmetry in order to avoid the negative consequences asymmetries can have upon the health of young sportsmen and women on the long-term. The aim of the present study was to examine the presence of functional asymmetries in the lower-limbs of young tennis players in strength and speed drill performance and to test a specific balance-training programme in its capacity to effectively reduce such asymmetries. Twenty-three young tennis players were randomly assigned to the Experimental Group (EG (n = 11: 4 females, 7 males; 13.2 ± 0.9 years; 50.8 ± 8.9 Kg; 1.63 ± 0.08 m or Comparison Group (CG (n = 12: 4 females, 8 males; 13.0 ± 0.9 years; 51.1 ± 9.2 Kg; 1.61 ± 0.09 m. To quantify percent asymmetries in lower-limb strength before (T0 and following (T1 training, performances were assessed in the one-leg hop test (OLH, side-hop test (SH and side steps and forward 4.115-m test (4m-SSF. Performances in the 10 and 20m sprint tests and the Foran test were also assessed. The EG completed a total of 12 training sessions directed at balance training: two 30-minute sessions/week over a 6-week period. The CG followed an identical training schedule, but training sessions consisted of tennis-specific drills only. The results reveal significant differences between pre- and post-training tests in the EG only: the degree of lower-limb asymmetry was decreased in the EG following completion of the training programme, as assessed using the OLH test (p < 0.001, SH test (p < 0.001 and 4m-SSF test (p

  17. Effectiveness of simple balancing training program in elderly patients with history of frequent falls

    Directory of Open Access Journals (Sweden)

    Kuptniratsaikul V

    2011-05-01

    balancing abilities, and decrease fall rates in the elderly with a history of previous falls. However, strategies to encourage elderly compliance may prevent falling.Keywords: balancing training, exercise, fall prevention, frequent fall, elderly

  18. Muscle adaptations to plyometric vs. resistance training in untrained young men

    DEFF Research Database (Denmark)

    Vissing, Kristian; Brink, Mads; Lønbro, Simon

    2008-01-01

    The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8......) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning...... was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p Plyometric training increased maximum CMJ height (10...

  19. The acute effects of vibration training on balance and stability amongst soccer players.

    Science.gov (United States)

    Cloak, Ross; Nevill, Alan; Wyon, Matthew

    2016-01-01

    Acute whole body vibration training (WBVT) is a tool used amongst coaches to improve performance prior to activity. Its effects on other fitness components, such as balance and stability, along with how different populations respond are less well understood. The aim of the current research is to determine the effect of acute WBVT on balance and stability amongst elite and amateur soccer players. Forty-four healthy male soccer players (22 elite and 22 amateur) were assigned to a treatment or control group. The intervention group then performed 3 × 60 seconds static squat on vibration platform at 40 Hz (±4 mm) with Y balance test (YBT) scores and dynamic postural stability index (DPSI) measured pre and post. DPSI was significantly lower in the elite players in the acute WBVT compared to amateur players (F1, 40= 6.80; P = 0.013). YBT anterior reach distance showed a significant improvement in both amateur and elite players in the acute WBVT group (F1, 40= 32.36; P difference in responses to acute high frequency vibration between elite and amateur players during a landing stability task. The results indicate that acute WBVT improves anterior YBT reach distances through a possible improvement in flexibility amongst both elite and amateur players. In conclusion, acute WBVT training appears to improve stability amongst elite soccer players in comparison to amateur players, the exact reasoning behind this difference requires further investigation.

  20. Effect of a Period of Balance Training on Center of Pressure (COP Fluctuations during Walking in Patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Hamidreza Taheri

    2017-08-01

    Methods: In this quasi-experimental research, 30 women with MS were randomly divided into two groups of experimental and control. The experimental group participated in balance training for 8 weeks (3 sessions per week. To measure the amplitude and velocity of COP fluctuations, force plate device was used (before and after of the balance trainings. Statistical analysis was performed using parametric dependent and independent t-tests. The significance level was set at pOK

  1. Muscle function and postural balance in lifelong trained male footballers compared with sedentary elderly men and youngsters

    DEFF Research Database (Denmark)

    Sundstrup, Emil; Jakobsen, Markus D.; Andersen, Lars Juel

    2010-01-01

    in UE (Ptraining, providing an enhanced ability to counteract unexpected perturbations in postural balance. The superior RFD and balance in elderly footballers were......The present study investigated whether elderly subjects exposed to lifelong football training have better rapid muscle force characteristics, body composition and postural stability in comparison with untrained elderly. Ten elderly men exposed to lifelong football training (FTE; 69.6 ± 1.4 years...

  2. The Effects of Short-Term Ski Trainings on Dynamic Balance Performance and Vertical Jump in Adolescents

    Science.gov (United States)

    Camliguney, Asiye Filiz

    2013-01-01

    Skiing is a sport where balance and strength are critical and which can be practiced actively especially from early years to old age. The purpose of this study is to examine the effect of a 5-day training of skiing skills on dynamic balance performance and development of vertical jump strength in adolescents. Sixteen adolescent volunteers who do…

  3. Dose-Response Relationships of Balance Training in Healthy Young Adults : A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    Lesinski, Melanie; Hortobagyi, Tibor; Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs

    Background Balance training (BT) has been used for the promotion of balance and sports-related skills as well as for prevention and rehabilitation of lower extremity sport injuries. However, evidence-based dose-response relationships in BT parameters have not yet been established. Objective The

  4. Balance training using an interactive game to enhance the use of the affected side after stroke.

    Science.gov (United States)

    Ciou, Shih-Hsiang; Hwang, Yuh-Shyan; Chen, Chih-Chen; Chen, Shih-Ching; Chou, Shih-Wei; Chen, Yu-Luen

    2015-12-01

    [Purpose] Stroke and other cerebrovascular diseases are major causes of adult mobility problems. Because stroke immobilizes the affected body part, balance training uses the healthy body part to complete the target movement. The muscle utilization rate on the stroke affected side is often reduced which further hinders affected side functional recovery in rehabilitation. [Subjects and Methods] This study tested a newly-developed interactive device with two force plates to measuring right and left side centers of pressure, to establish its efficacy in the improvement of the static standing ability of patients with hemiplegia. An interactive virtual reality game with different side reaction ratios was used to improve patient balance. The feasibility of the proposed approach was experimentally demonstrated. [Results] Although the non-affected-side is usually used to support the body weight in the standing position, under certain circumstances the patients could switch to using the affected side. A dramatic improvement in static standing balance control was achieved in the eyes open condition. [Conclusion] The proposed dual force plate technique used in this study separately measured the affected and non-affected-side centers of pressure. Based on this approach, different side ratio integration was achieved using an interactive game that helped stroke patients improve balance on the affected side. Only the patient who had suffered stroke relatively recently benefited significantly. The proposed technique is of little benefit for patients whose mobility has stagnated to a certain level.

  5. Effect of Sling Exercise Training on Balance in Patients with Stroke: A Meta-Analysis.

    Science.gov (United States)

    Chen, Lianghua; Chen, Junqi; Peng, Qiyuan; Chen, Jingjie; Zou, Yucong; Liu, Gang

    2016-01-01

    This study aims to evaluate the effect of sling exercise training (SET) on balance in patients with stroke. PubMed, Cochrane Library, Ovid LWW, CBM, CNKI, WanFang, and VIP databases were searched for randomized controlled trials of the effect of SET on balance in patients with stroke. The study design and participants were subjected to metrological analysis. Berg balance Scale (BBS), Barthel index score (BI), and Fugl-Meyer Assessment (FMA) were used as independent parameters for evaluating balance function, activities of daily living(ADL) and motor function after stroke respectively, and were subjected to meta-analysis by RevMan5.3 software. Nine studies with 460 participants were analyzed. Results of meta-analysis showed that the SET treatment combined with conventional rehabilitation was superior to conventional rehabilitation treatments, with increased degrees of BBS (WMD = 3.81, 95% CI [0.15, 7.48], P = 0.04), BI (WMD = 12.98, 95% CI [8.39, 17.56], P risk of bias. Therefore, more multi-center and large-sampled randomized controlled trials are needed to confirm its clinical applications.

  6. Effects of balance training on post-sprained ankle joint instability.

    Science.gov (United States)

    Faizullin, I; Faizullina, E

    2015-01-01

    Ankle sprain is a medical condition when ankle ligaments are totally or partially torn. The primary cause of ankle sprain is sharp movements like turning or rolling the foot [1]. The ankle sprain needs to be treated right after the trauma, because if not treated it could lead to decreased stability of the ankle joint and lead to chronic ankle instability, which is characterized by increased risk of the ankle sprain [2] . We suppose that rehabilitation after the ankle sprain could significantly increase the performance of sportsmen. To investigate effects of balance exercise training on instable ankle due to the previous ankle sprain injury. In addition, the secondary aim of this systematic review was to find the effectiveness of different balance training exercises on instable ankle in order to find better opportunities for rehabilitation of sportsmen. The studies were selected from PubMed and Scopus using the library of the Friedrich-Alexander University of Erlangen-Nuremberg (further-UB FAU), we used full texts, and only texts in English were included in this review. The literature search was conducted at the end of December 2014. Texts included randomised controlled trials, which were published in the last 5 years (2009-2014). The literature was included in this review only if it was published in English and if the randomised controlled trial was conducted in the study and if the full text was available from UB FAU. The articles, which were found only in PubMed search, were excluded during Scopus search.PubMed search.First MeSH term was "Balance training for the ankle sprain" and 44 articles were found in PubMed. Then 29 articles were filtered by title and excluded from the study. Remaining 15 articles were assessed reading their abstracts, 6 of them were excluded and only 4 articles were left. The second MeSH term was "Balance training for ankle injury". Four additional articles were found by initial search. Two of them were filtered by the title and 2 were

  7. Stochastic resonance whole-body vibration, musculoskeletal symptoms, and body balance: a worksite training study.

    Science.gov (United States)

    Elfering, Achim; Arnold, Sibille; Schade, Volker; Burger, Christian; Radlinger, Lorenz

    2013-09-01

    Stochastic resonance whole-body vibration training (SR-WBV) was tested to reduce work-related musculoskeletal complaints. Participants were 54 white-collar employees of a Swiss organization. The controlled crossover design comprised two groups each given 4 weeks of exercise and no training during a second 4-week period. Outcome was daily musculoskeletal well-being, musculoskeletal pain, and surefootedness. In addition, participants performed a behavioral test on body balance prior to when SR-WBV started and after 4 weeks of SR-WBV. Across the 4-week training period, musculoskeletal well-being and surefootedness were significantly increased (p pain was significantly reduced only in those who reported low back pain during the last 4 weeks prior to the study (p balance was significantly increased by SR-WBV (p < 0.05). SR-WBV seems to be an efficient option in primary prevention of musculoskeletal complaints and falls at work.

  8. The effect of strength training based on process approach intervention on balance of children with developmental coordination disorder.

    Science.gov (United States)

    Kordi, Hasan; Sohrabi, Mehdi; Saberi Kakhki, Alireza; Attarzadeh Hossini, Seyed R

    2016-12-01

    Balance is one of the main problems of children with developmental coordination disorder (DCD). According to process-oriented approach, besides strength training, neuromuscular adaptations can improve balance. To evaluate the effects of strength training on improving static and dynamic balance in DCD children. Children between 7 to 9 years old in Tehran participated in the study through randomized controlled trial design. Subjects were randomly divided into two experimental (n = 15) and control (n= 15) groups. The participants exercised for 12 weeks and 24 sessions. The experimental group received strength training using flexible Thera-band elastic exercise and control group received routine exercises in physical education class. Isometric strength of hip abductor muscles and plantar flexors were measured using hand held dynamometer, and Bruininks-Oseretsky Test of Motor Proficiency, Second Edition (BOT-2) was used for measurement of static and dynamic balance. Data were analyzed using independent and paired sample t-tests. Strength training significantly increased muscle strength in DCD children (P 0.05). The strength training leads to static balance improve in DCD children. There was not an improvement in dynamic balance through the strength training in these children. Sociedad Argentina de Pediatría

  9. An economic evaluation of resistance training and aerobic training versus balance and toning exercises in older adults with mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Jennifer C Davis

    Full Text Available BACKGROUND: Mild cognitive impairment (MCI represents a critical window to intervene against dementia. Exercise training is a promising intervention strategy, but the efficiency (i.e., relationship of costs and consequences of such types of training remains unknown. Thus, we estimated the incremental cost-effectiveness of resistance training or aerobic training compared with balance and tone exercises in terms of changes in executive cognitive function among senior women with probable MCI. METHODS: Economic evaluation conducted concurrently with a six-month three arm randomized controlled trial including eighty-six community dwelling women aged 70 to 80 years living in Vancouver, Canada. Participants received twice-weekly resistance training (n = 28, twice weekly aerobic training (n = 30 or twice-weekly balance and tone (control group classes (n = 28 for 6 months. The primary outcome measure of the Exercise for Cognition and Everyday Living (EXCEL study assessed executive cognitive function, a test of selective attention and conflict resolution (i.e., Stroop Test. We collected healthcare resource utilization costs over six months. RESULTS: Based on the bootstrapped estimates from our base case analysis, we found that both the aerobic training and resistance training interventions were less costly than twice weekly balance and tone classes. Compared with the balance and tone group, the resistance-training group had significantly improved performance on the Stroop Test (p = 0.04. CONCLUSIONS: Resistance training and aerobic training result in health care cost saving and are more effective than balance and tone classes after only 6 months of intervention. Resistance training is a promising strategy to alter the trajectory of cognitive decline in seniors with MCI. TRIAL REGISTRATION: ClinicalTrials.gov NCT00958867.

  10. A Case Study: Effect of Progressive Resistance and Balance Training on Upper Trunk Muscle Strength of Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Mehrnoush Ismailiyan

    2016-04-01

    Conclusion The results of this study showed that 8 weeks of progressive resistance and balance training (in combination has increased muscle strength in children with cerebral palsy. The present research showed that resistance and balanced trainings have significant effects on muscle strength of children with CP. It seems that these practices have been effective, especially for the wrist flexor and elbow flexor muscles. It can be said that the increase in the muscles of children with CP was due to practice principle along with increase in neuronal compatibility. One of the important points in the effectiveness of resistance training is the intensity of training. The results showed that resistance and balanced trainings increase the muscle strength of children with CP. This power could be partly due to increase in muscle volume and partly due to anabolic hormones.

  11. Twelve weeks of BodyBalance® training improved balance and functional task performance in middle-aged and older adults

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2014-11-01

    Full Text Available Vaughan P Nicholson, Mark R McKean, Brendan J Burkett School of Health and Sport Sciences, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: The purpose of the study was to evaluate the effect of BodyBalance® training on balance, functional task performance, fear of falling, and health-related quality of life in adults aged over 55 years.Participants and methods: A total of 28 healthy, active adults aged 66±5 years completed the randomized controlled trial. Balance, functional task performance, fear of falling, and self-reported quality of life were assessed at baseline and after 12 weeks. Participants either undertook two sessions of BodyBalance per week for 12 weeks (n=15 or continued with their normal activities (n=13.Results: Significant group-by-time interactions were found for the timed up and go (P=0.038, 30-second chair stand (P=0.037, and mediolateral center-of-pressure range in narrow stance with eyes closed (P=0.017. There were no significant effects on fear of falling or self-reported quality of life.Conclusion: Twelve weeks of BodyBalance training is effective at improving certain balance and functional based tasks in healthy older adults. Keywords: postural control, yoga, tai chi, center of pressure, exercise

  12. Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults

    Science.gov (United States)

    Beurskens, Rainer; Gollhofer, Albert; Muehlbauer, Thomas; Cardinale, Marco; Granacher, Urs

    2015-01-01

    The term “bilateral deficit” (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20–30 years) and old adults (age: >65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 × / week) at 80% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre- and post-tests included uni- and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni- and bilateral MIF (all p training (all p training (all p training (p training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults. PMID:25695770

  13. Effect of treadmill gait training on static and functional balance in children with cerebral palsy: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Luanda A. C. Grecco

    2013-02-01

    Full Text Available BACKGROUND: Treadmill gait training as a therapeutic resource in the rehabilitation of children with cerebral palsy has recently been the focus of many studies; however, little is still known regarding its effect on static and functional balance in children. OBJECTIVE: The aim of the present study was to compare the effects of treadmill training and over ground gait training in children with cerebral palsy. METHOD: A randomized controlled trial with blinded evaluator was conducted with children with cerebral palsy between three and 12 years of age categorized in Levels I to III of the Gross Motor Function Classification System. Assessments were performed before and after the intervention and involved the Berg balance scale as well as the determination of oscillations from the center of pressure in the anteroposterior and mediolateral directions with eyes open and closed. The experimental group was submitted to treadmill training and the control group performed gait training over the ground. The intervention consisted of two 30-minute sessions per week for seven weeks. RESULTS: Both groups exhibited better functional balance after the protocol. The experimental group had higher Berg balance scale scores and exhibited lesser mediolateral oscillation with eyes open in comparison to the control group. CONCLUSIONS: Treadmill training had a greater effect on functional balance and mediolateral oscillation in comparison to over ground gait training in children with cerebral palsy. Trial registration: RBR-5v3kg9.(Brazilian Registry of Clinical Trials.

  14. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors.

    Science.gov (United States)

    Pellegrino, Laura; Giannoni, Psiche; Marinelli, Lucio; Casadio, Maura

    2017-10-16

    Postural control deficits are common in stroke survivors and often the rehabilitation programs include balance training based on visual feedback to improve the control of body position or of the voluntary shift of body weight in space. In the present work, a group of chronic stroke survivors, while sitting on a force plate, exercised the ability to control their Center of Pressure with a training based on continuous visual feedback. The goal of this study was to test if and to what extent chronic stroke survivors were able to learn the task and transfer the learned ability to a condition without visual feedback and to directions and displacement amplitudes different from those experienced during training. Eleven chronic stroke survivors (5 Male - 6 Female, age: 59.72 ± 12.84 years) participated in this study. Subjects were seated on a stool positioned on top of a custom-built force platform. Their Center of Pressure positions were mapped to the coordinate of a cursor on a computer monitor. During training, the cursor position was always displayed and the subjects were to reach targets by shifting their Center of Pressure by moving their trunk. Pre and post-training subjects were required to reach without visual feedback of the cursor the training targets as well as other targets positioned in different directions and displacement amplitudes. During training, most stroke survivors were able to perform the required task and to improve their performance in terms of duration, smoothness, and movement extent, although not in terms of movement direction. However, when we removed the visual feedback, most of them had no improvement with respect to their pre-training performance. This study suggests that postural training based exclusively on continuous visual feedback can provide limited benefits for stroke survivors, if administered alone. However, the positive gains observed during training justify the integration of this technology-based protocol in a well

  15. Computerized Agility Training Improves Change-of-Direction and Balance Performance Independently of Footwear in Young Adults

    Science.gov (United States)

    Paquette, Max R.; Schilling, Brian K.; Bravo, Joshua D.; Peel, Shelby A.; Li, Yuhua; Townsend, Robert J.

    2017-01-01

    Understanding the effects of training in different footwear on sporting performance would be useful to coaches and athletes. Purpose: This study compared the effects of computerized agility training using 3 types of footwear on change-of-direction and balance performance in young adults. Method: Thirty recreationally active young adults…

  16. Taekwondo Training Improves Sensory Organization and Balance Control in Children with Developmental Coordination Disorder: A Randomized Controlled Trial

    Science.gov (United States)

    Fong, Shirley S. M.; Tsang, William W. N.; Ng, Gabriel Y. F.

    2012-01-01

    Children with developmental coordination disorder (DCD) have poorer postural control and are more susceptible to falls and injuries than their healthy counterparts. Sports training may improve sensory organization and balance ability in this population. This study aimed to evaluate the effects of three months of Taekwondo (TKD) training on the…

  17. Effect of Water-Based Training Frequency on the Balance and Motor Function in Sedentary Elderly Men

    Directory of Open Access Journals (Sweden)

    Rasoul Dokht Abdiyan

    2016-07-01

    Conclusion: It was concluded that the balance and movement ability factors of elderly people are highly affected by the volume of practice to training frequency. However, the increase in training frequency could improve other physical factors such as muscle strength and flexibility in the elderly.

  18. Feasibility of Rehabilitation Training With a Newly Developed, Portable, Gait Assistive Robot for Balance Function in Hemiplegic Patients

    Science.gov (United States)

    2017-01-01

    Objective To investigate the clinical feasibility of a newly developed, portable, gait assistive robot (WA-H, ‘walking assist for hemiplegia’) for improving the balance function of patients with stroke-induced hemiplegia. Methods Thirteen patients underwent 12 weeks of gait training on the treadmill while wearing WA-H for 30 minutes per day, 4 days a week. Patients' balance function was evaluated by the Berg Balance Scale (BBS), Fugl-Meyer Assessment Scale (FMAS), Timed Up and Go Test (TUGT), and Short Physical Performance Battery (SPPB) before and after 6 and 12 weeks of training. Results There were no serious complications or clinical difficulties during gait training with WA-H. In three categories of BBS, TUGT, and the balance scale of SPPB, there was a statistically significant improvement at the 6th week and 12th week of gait training with WA-H. In the subscale of balance function of FMAS, there was statistically significant improvement only at the 12th week. Conclusion Gait training using WA-H demonstrated a beneficial effect on balance function in patients with hemiplegia without a safety issue. PMID:28503449

  19. Effects of balance and proprioceptive training on total hip and knee replacement rehabilitation: A systematic review and meta-analysis.

    Science.gov (United States)

    Domínguez-Navarro, Fernando; Igual-Camacho, Celedonia; Silvestre-Muñoz, Antonio; Roig-Casasús, Sergio; Blasco, José María

    2018-03-05

    Balance and proprioceptive deficits are frequently persistent after total joint replacement, limiting functionality and involving altered movement patterns and difficulties in walking and maintaining postural control among patients. The goal of this systematic review was to evaluate the short- and mid-term effects of proprioceptive and balance training for patients undergoing total knee and hip replacement. This is a systematic review of literature. MEDLINE, Embase, Cochrane Library, PEDro, and Scopus were the databases searched. The review included randomized clinical trials in which the experimental groups underwent a training aimed at improving balance and proprioception, in addition to conventional care. The studies had to assess at least one of the following outcomes: self-reported functionality or balance (primary outcomes), knee function, pain, falls, or quality of life. Eight trials were included, involving 567 participants. The quantitative synthesis found a moderate to high significant effect of balance and proprioceptive trainings on self-reported functionality and balance after total knee replacement. The effects were maintained at mid-term in terms of balance alone. Conversely, preoperative training did not enhance outcomes after total hip arthroplasty. The synthesis showed that, in clinical terms, balance trainings are a convenient complement to conventional physiotherapy care to produce an impact on balance and functionality after knee replacement. If outcomes such as improvement in pain, knee range of movement, or patient quality of life are to be promoted, it would be advisable to explore alternative proposals specifically targeting these goals. Further research is needed to confirm or discard the current evidence ultimately, predominantly in terms of the effects on the hips and those yielded by preoperative interventions. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. HORMONE REPLACEMENT AND STRENGTH TRAINING POSITIVELY INFLUENCE BALANCE DURING GAIT IN POST-MENOPAUSAL FEMALES: A PILOT STUDY

    Directory of Open Access Journals (Sweden)

    Stephen D. Perry

    2005-12-01

    Full Text Available This study examined the effects of hormone replacement combined with strength training on improving dynamic balance control in post-menopausal women. Thirty one participating post-menopausal women were divided into three groups (hormone replacement (HR, non-hormone replacement (NR and control (CR group. HR and NR groups were tested for muscle strength and balance control during gait, prior to training and following a six week lower body strength training program. Quadriceps muscle strength was evaluated as isokinetic peak torque (60°·sec-1 using a CYBEX NORM and balance control was evaluated by center of mass - base of support relationships and ground reaction forces during gait perturbations. Only the HR group showed significantly (p < 0.05 improved balance control during the initial phase of unexpected gait termination and single stance periods while walking across uneven terrain following training. The strength gains in the HR group tended to be greater than in the NR group over the six week training program, although neither group showed statistically significant increases. The CR group showed no significant differences between testing times. HR in post-menopausal females may enhance dynamic balance control when combined with a strength training program, even if no statistically significant gains in strength are achieved

  1. Perturbation During Treadmill Training Improves Dynamic Balance and Gait in Parkinson's Disease: A Single-Blind Randomized Controlled Pilot Trial.

    Science.gov (United States)

    Steib, Simon; Klamroth, Sarah; Gaßner, Heiko; Pasluosta, Cristian; Eskofier, Björn; Winkler, Jürgen; Klucken, Jochen; Pfeifer, Klaus

    2017-08-01

    Gait and balance dysfunction are major symptoms in Parkinson's disease (PD). Treadmill training improves gait characteristics in this population but does not reflect the dynamic nature of controlling balance during ambulation in everyday life contexts. To evaluate whether postural perturbations during treadmill walking lead to superior effects on gait and balance performance compared with standard treadmill training. In this single-blind randomized controlled trial, 43 PD patients (Hoehn & Yahr stage 1-3.5) were assigned to either an 8-week perturbed treadmill intervention (n = 21) or a control group (n = 22) training on the identical treadmill without perturbations. Patients were assessed at baseline, postintervention, and at 3 months' follow-up. Primary endpoints were overground gait speed and balance (Mini-BESTest). Secondary outcomes included fast gait speed, walking capacity (2-Minute Walk Test), dynamic balance (Timed Up-and-Go), static balance (postural sway), and balance confidence (Activities-Specific Balance Confidence [ABC] scale). There were no significant between-group differences in change over time for the primary outcomes. At postintervention, both groups demonstrated similar improvements in overground gait speed ( P = .009), and no changes in the Mini-BESTest ( P = .641). A significant group-by-time interaction ( P = .048) existed for the Timed Up-and-Go, with improved performance only in the perturbation group. In addition, the perturbation but not the control group significantly increased walking capacity ( P = .038). Intervention effects were not sustained at follow-up. Our primary findings suggest no superior effect of perturbation training on gait and balance in PD patients. However, some favorable trends existed for secondary gait and dynamic balance parameters, which should be investigated in future trials.

  2. Effects of functional training on pain, leg strength, and balance in women with fibromyalgia.

    Science.gov (United States)

    Latorre Román, Pedro Ángel; Santos E Campos, María Aparecida; García-Pinillos, Felipe

    2015-01-01

    The aim of this study was to analyze the effect of 18-week functional training (FT) program consisting in two sessions a week of in-water exercise and one of on-land exercise on pain, strength, and balance in women with fibromyalgia. A sample consisting of 36 fibromyalgia patients was included in the study. The patients were allocated randomly into the experimental group (EG, n = 20), and control group (CG, n = 16). Standardized field-based fitness tests were used to assess muscle strength (30-s chair stand and handgrip strength) and agility/dynamic balance and static balance. Fibromyalgia impact and pain were analyzed by Fibromyalgia Impact Questionnaire (FIQ), tender points (TPs), visual analog scale (VAS). We observed a significant reduction in the FIQ (p = 0.042), the algometer scale of TP (p = 0.008), TP (p pain and improves functional capacity in FM patients. These results suggested that FT could play an important role in maintaining an independent lifestyle in patients with FM.

  3. Balance Performance in Irradiated Survivors of Nasopharyngeal Cancer with and without Tai Chi Qigong Training

    Directory of Open Access Journals (Sweden)

    Shirley S. M. Fong

    2014-01-01

    Full Text Available This cross-sectional exploratory study aimed to compare the one-leg-stance time and the six-minute walk distance among TC Qigong-trained NPC survivors, untrained NPC survivors, and healthy individuals. Twenty-five survivors of NPC with TC Qigong experience, 27 survivors of NPC without TC Qigong experience, and 68 healthy individuals formed the NPC-TC Qigong group, NPC-control group, and healthy-control group, respectively. The one-leg-stance (OLS timed test was conducted to assess the single-leg standing balance performance of the participants in four conditions: (1 standing on a stable surface with eyes open, (2 standing on a compliant surface with eyes open, (3 standing on a stable surface with eyes closed, and (4 standing on a compliant surface with eyes closed. The six-minute walk test (6MWT was used to determine the functional balance performance of the participants. Results showed that the NPC-control group had a shorter OLS time in all of the visual and supporting surface conditions than the healthy control group (P0.05. TC Qigong may be a rehabilitation exercise that improves somatosensory function and OLS balance performance among survivors of NPC.

  4. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    International Nuclear Information System (INIS)

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  5. Comparing the effects of balance training with and without cognitive tasks on the quality of life and balance performance in community-dwelling older adults: a single-blind randomized clinical trial

    OpenAIRE

    Ehsan Sinaei; Fahimeh Kamali; Ahmadreza Nematollahi; Zahra Etminan

    2016-01-01

    Background: Aging process can deteriorate the ability to maintain balance, specifically under dual-task conditions. Thus far, different methods of exercises therapy have been applied to improve balance performance of older adults. The present study was designed to compare the effects of two protocols of balance training on the quality of life (QoL) and balance performance in older adults with mild balance impairments. Methods: Twenty-four older adults over 60 years old were ...

  6. Plasticity of Cerebellar Purkinje Cells in Behavioral Training of Body Balance Control

    Directory of Open Access Journals (Sweden)

    Ray X. Lee

    2015-08-01

    Full Text Available Neural responses to sensory inputs caused by self-generated movements (reafference and external passive stimulation (exafference differ in various brain regions. The ability to differentiate such sensory information can lead to movement execution with better accuracy. However, how sensory responses are adjusted in regard to this distinguishability during motor learning is still poorly understood. The cerebellum has been hypothesized to analyze the functional significance of sensory information during motor learning, and is thought to be a key region of reafference computation in the vestibular system. In this study, we investigated Purkinje cell (PC spike trains as cerebellar cortical output when rats learned to balance on a suspended dowel. Rats progressively reduced the amplitude of body swing and made fewer foot slips during a 5-min balancing task. Both PC simple (SSs; 17 of 26 and complex spikes (CSs; 7 of 12 were found to code initially on the angle of the heads with respect to a fixed reference. Using periods with comparable degrees of movement, we found that such SS coding of information in most PCs (10 of 17 decreased rapidly during balance learning. In response to unexpected perturbations and under anesthesia, SS coding capability of these PCs recovered. By plotting SS and CS firing frequencies over 15-s time windows in double-logarithmic plots, a negative correlation between SS and CS was found in awake, but not anesthetized, rats. PCs with prominent SS coding attenuation during motor learning showed weaker SS-CS correlation. Hence, we demonstrate that neural plasticity for filtering out sensory reafference from active motion occurs in the cerebellar cortex in rats during balance learning. SS-CS interaction may contribute to this rapid plasticity as a form of receptive field plasticity in the cerebellar cortex between two receptive maps of sensory inputs from the external world and of efference copies from the will center for

  7. Balance and mobility training with or without concurrent cognitive training does not improve posture, but improves reaction time in healthy older adults.

    Science.gov (United States)

    Jehu, Deborah; Paquet, Nicole; Lajoie, Yves

    2017-02-01

    The purpose was to determine whether balance and mobility training (BMT) or balance and mobility plus cognitive training (BMT+C) would reduce postural sway and reaction time (RT) and maintain these improvements after a 12-week follow-up in healthy older adults. Participants were allocated to the BMT (n=15; age: 70.2±3.2), BMT+C (n=14; age:68.7±5.5), or control group (n=13; age: 66.7±4.2). The BMT group trained one-on-one, 3×/wk for 12 weeks on a balance obstacle course. The BMT+C group trained one-on-one, 3×/week for 12 weeks on a balance obstacle course while completing cognitive tasks. Participants stood on a force plate for 30s in feet-apart (FA) and semi-tandem (ST) positions while completing simple RT and choice RT tasks at baseline, at the 12-week post-training, and at the 12-week follow-up. Participants were instructed to stand as still as possible while verbally responding as fast as possible to the auditory cues. No group differences in center of pressure (COP) Area, COP Velocity, or Sample Entropy of the COP displacement were shown after the training or 12-week follow-up, but the BMT and BMT+C showed faster RT after training and maintained these improvements at the 12-week follow-up compared to the control group. No differences in postural sway or RT emerged between the BMT and BMT+C groups. Both training groups improved RT after the interventions and sustained these improvements over 12 weeks, but showed no reductions in postural sway. Multi-task balance training likely results in reduced attention demand. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. US residency training before and after the 1997 Balanced Budget Act.

    Science.gov (United States)

    Salsberg, Edward; Rockey, Paul H; Rivers, Kerri L; Brotherton, Sarah E; Jackson, Gregory R

    2008-09-10

    Graduate medical education (GME) determines the size and characteristics of the future workforce. The 1997 Balanced Budget Act (BBA) limited Medicare funding for additional trainees in GME. There has been concern that because Medicare is the primary source of GME funding, the BBA would discourage growth in GME. To examine the number of residents in training before and after the BBA, as well as more recent changes in GME by specialty, sex, and type and location of education. Descriptive study using the American Medical Association/Association of American Medical Colleges National GME Census on physicians in Accreditation Council for Graduate Medical Education (ACGME)-accredited programs to examine changes in the number and characteristics of residents before and after the BBA. Differences in the number of physicians in ACGME-accredited training programs overall, by specialty, and by location and type of education. The number of residents and fellows changed little between academic year (AY) 1997 (n = 98,143) and AY 2002 (n = 98,258) but increased to 106,012 in AY 2007, a net increase of 7869 (8.0%) over the decade. The annual number of new entrants into GME increased by 7.6%, primarily because of increasing international medical graduates (IMGs). United States medical school graduates (MDs) comprised 44.0% of the overall growth from 2002 to 2007, followed by IMGs (39.2%) and osteopathic school graduates (18.8%). United States MD growth largely resulted from selection of specialties with longer training periods. From 2002 to 2007, US MDs training in primary care specialties decreased by 2641, while IMGs increased by 3286. However, increasing subspecialization rates led to fewer physicians entering generalist careers. After the 1997 BBA, there appears to have been a temporary halt in the growth of physicians training in ACGME programs; however, the number increased from 2002 to 2007.

  9. Improvements of Shooting Performance in Adolescent Air Rifle Athletes After a 6-week Balance and Respiration Training Programs.

    Science.gov (United States)

    Park, Han-Kyu; Kim, Dong-Woo; Kim, Tae-Ho

    2018-03-27

    Several factors, such as balance and respiration training programs, have been identified as contributing to the establishment of a shooting performance. However, little is known about the benefits of these programs on the shooting record, among adolescent air rifle athletes. To determine whether there is a gain in the shooting record, among adolescent air rifle athletes, after participation in balance and respiration training programs. Case-control study. Shooting range. Twenty-one adolescent air rifle athletes were recruited from the local school community and assigned to an experimental (n=11; EG) or control (n=10; CG) group. The EG performed respiration and balance training for 30 min, three times a week for 6 weeks, and the CG performed balance training only. Data were collected on the respiratory function, muscle activity, and shooting record, before and after the 6-week intervention. The forced vital capacity (FVC), forced expired volume in one second (FEV 1 ), FEV 1 as a percentage of FVC (FEV 1 /FVC), peak expiratory flow (PEF), and maximum voluntary ventilation (MVV) were significantly increased in the EG, and FEV 1 /FVC was significantly increased in the CG (pshooting records. The experiment demonstrates that the balance and respiration training programs may help improve the respiratory function and muscle activity other than the shooting record.

  10. Functional measures show improvements after a home exercise program following supervised balance training in older adults with elevated fall risk.

    Science.gov (United States)

    Tisher, Kristen; Mann, Kimberly; VanDyke, Sarah; Johansson, Charity; Vallabhajosula, Srikant

    2018-03-05

    Supervised balance training shows immediate benefit for older adults at fall risk. The long-term effectiveness of such training can be enhanced by implementing a safe and simple home exercise program (HEP). We investigated the effects of a12-week unsupervised HEP following supervised clinic-based balance training on functional mobility, balance, fall risk, and gait. Six older adults with an elevated fall risk obtained an HEP and comprised the HEP group (HEPG) and five older adults who were not given an HEP comprised the no HEP group (NoHEPG). The HEP consisted of three static balance exercises: feet-together, single-leg stance, and tandem. Each exercise was to be performed twice for 30-60 s, once per day, 3 days per week for 12 weeks. Participants were educated on proper form, safety, and progression of exercises. Pre- and post-HEP testing included Berg Balance Scale (BBS), Timed Up and Go, Short Physical Performance Battery (SPPB) assessments, Activities-Balance Confidence, Late-Life Functional Disability Instrument and instrumented assessments of balance and gait (Limits of Stability, modified Clinical Test of Sensory Interaction on Balance, Gait). A healthy control group (HCG; n = 11) was also tested. For most of the measures, the HEPG improved to the level of HCG. Though task-specific improvements like BBS and SPPB components were seen, the results did not carry over to more dynamic assessments. Results provide proof of concept that a simple HEP can be independently implemented and effective for sustaining and/or improving balance in older adults at elevated fall-risk after they have undergone a clinic-based balance intervention.

  11. Designing a gamified, ability-appropriate diagnostics and training program for a Balance Health application

    Directory of Open Access Journals (Sweden)

    Shruti Grover

    2015-10-01

    During our tests, we found a wide range of abilities between participants. Whilst there is a correlation between age and balance (Figure 5, there were outliers, certain participants had poor balance in spite of being in the younger cohort, and some older participants tested very well for their age. Our quantitative research indicates that this difference is due to the difference in activity histories over the life time of an individual. A 25 year old participant commented “Your app has shown me how awful my balance is! Not looking forward to being older and we have osteoporosis in my family! Lots of broken bones for me! O dear!!” This lead us to think that what seems like a straightforward act (standing on one leg for a period of 15 seconds , can actually be demotivating for individuals. In order to keep the participants engaged, we needed to incorporate easier stances, which while challenging, were not a blockade to improvement. This would allow an individual to start at an ability appropriate level and build up to better balance in tiny increments. Hence we have created a training programme (Figure 6 which can computationally determine the ability of the individual during the on boarding process. Once the current postural sway id determined, the individual is assigned to one of 3 Stances ( Semi Tandem for Beginners, Tandem for Intermediate, Uni-pedal Standing for Advanced. Each stance has 4 levels of varying lengths. ( typically 15s, 30s, 45s, 60s An individual could be assigned to start training at Stance 1, Level 1 ( i.e. Semi tandem for 15 sec and gradually build up-to 60 sec over the course of 36 sessions, at the end of which the ‘wobble reduction’ would be used a measure to determine whether they were ready to pass on to the next level. We have added gamification elements in the form of giving meaningful tips, avoiding negative feedback, simplifying the interface by removing numbers and of-course, medals and celebration screens (Figure 7.

  12. EFFECTIVENESS OF TRUNK TRAINING EXERCISES VERSUS SWISS BALL EXERCISES FOR IMPROVING SITTING BALANCE AND GAIT PARAMETERS IN ACUTE STROKE SUBJECTS

    Directory of Open Access Journals (Sweden)

    Kothalanka Viswaja

    2015-12-01

    Full Text Available Background: The aim of this study is to evaluate the effectiveness of trunk training and Swiss ball exercises in acute stroke subjects. Trunk is often neglected part in the stroke rehabilitation, trunk training exercises and Swiss ball exercises result in better recruitment of trunk muscles thus improving sitting balance and gait parameters in acute stroke subjects. However literature evidences for trunk training exercises and Swiss ball exercises in improving sitting balance and gait are scarce in acute stroke population. Methods: A total of 60 subjects who met the inclusion criteria were recruited from department of physiotherapy, G.S.L general hospital and were randomly allocated into 2 groups with 30 subjects in each group. Initially all of them were screened for balance and gait using trunk impairment scale and by assessing gait parameters, after that they were given a 30min of trunk training and Swiss ball exercises for 5 days a week for 4 weeks. Both the groups received conventional physiotherapy for 4 weeks. Results: Post intervention there was no significant difference between the two groups. There was improvement post treatment in trunk training group (P0.5. Conclusion: The results had shown that both groups noted significant difference. But when comparing between these two groups there is no statistical significance noted. So this study concluded that there is no significant difference between trunk training exercises and Swiss ball exercises on sitting balance and gait parameters in subjects with stroke.

  13. "Pushing the Limits": Rethinking Motor and Cognitive Resources After a Highly Challenging Balance Training Program for Parkinson Disease.

    Science.gov (United States)

    Leavy, Breiffni; Roaldsen, Kirsti Skavberg; Nylund, Kamilla; Hagströmer, Maria; Franzén, Erika

    2017-01-01

    There is growing evidence for the positive effects of exercise training programs on balance control in Parkinson disease (PD). To be effective, balance training needs to be specific, progressive, and highly challenging. Little evidence exists, however, for how people with PD-related balance impairments perceive highly challenging and progressive balance training programs with dual-task components. The purpose of this study was to explore and describe perceptions of a highly challenging balance training program among people with mild to moderate PD. This study was qualitative in nature. In-depth interviews were conducted with 13 individuals with mild to moderate PD who had participated in a highly challenging balance training program. Interview transcripts were analyzed using qualitative content analysis, with an inductive approach. The analysis revealed 3 subthemes concerning participants' perceptions of highly challenging and progressive balance training: (1) movement to counter the disease, (2) dual-task training in contrast to everyday strategies, and (3) the struggle to maintain positive effects. The first subtheme reflects how physical activity was used as a short-term and long-term strategy for counteracting PD symptoms and their progression. The second subtheme incorporates the described experiences of being maximally challenged in a secure and supportive group environment, circumstances that stood in contrast to participants' everyday lives. The third subtheme describes participants' long-term struggle to maintain program effects on cognitive and physical function in the face of disease progression. Interpretation of the underlying patterns of these subthemes resulted in one overarching theme: training at the limits of balance capacity causes a rethinking motor and cognitive resources. The findings of this study cannot be considered to reflect the beliefs of those with weaker or negative beliefs concerning physical activity or be transferred to those at

  14. Dancing or Fitness Sport? The Effects of Two Training Programs on Hippocampal Plasticity and Balance Abilities in Healthy Seniors

    OpenAIRE

    Kathrin Rehfeld; Kathrin Rehfeld; Patrick Müller; Patrick Müller; Norman Aye; Norman Aye; Marlen Schmicker; Milos Dordevic; Milos Dordevic; Jörn Kaufmann; Anita Hökelmann; Notger G. Müller; Notger G. Müller; Notger G. Müller

    2017-01-01

    Age-related degenerations in brain structure are associated with balance disturbances and cognitive impairment. However, neuroplasticity is known to be preserved throughout lifespan and physical training studies with seniors could reveal volume increases in the hippocampus (HC), a region crucial for memory consolidation, learning and navigation in space, which were related to improvements in aerobic fitness. Moreover, a positive correlation between left HC volume and balance performance was o...

  15. Supervised Balance Training and Wii Fit-Based Exercises Lower Falls Risk in Older Adults With Type 2 Diabetes.

    Science.gov (United States)

    Morrison, Steven; Simmons, Rachel; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I

    2018-02-01

    This study examined the benefits of and differences between 12 weeks of thrice-weekly supervised balance training and an unsupervised at-home balance activity (using the Nintendo Wii Fit) for improving balance and reaction time and lowering falls risk in older individuals with type 2 diabetes mellitus (T2DM). Before-after trial. University research laboratory, home environment. Sixty-five older adults with type 2 diabetes were recruited for this study. Participants were randomly allocated to either supervised balance training (mean age 67.8 ± 5.2) or unsupervised training using the Nintendo Wii Fit balance board (mean age 66.1 ± 5.6). The training period for both groups lasted for 12 weeks. Individuals were required to complete three 40-minute sessions per week for a total of 36 sessions. The primary outcome measure was falls risk, which was as derived from the physiological profile assessment. In addition, measures of simple reaction time, lower limb proprioception, postural sway, knee flexion, and knee extension strength were also collected. Persons also self-reported any falls in the previous 6 months. Both training programs resulted in a significant lowering of falls risk (P balance ability. Interestingly, the reduced falls risk occurred without significant changes in leg strength, suggesting that interventions to reduce falls risk that target intrinsic risk factors related to balance control (over muscle strength) may have positive benefits for the older adult with T2DM at risk for falls. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  16. The Effects of Balance Training on Stability and Proprioception Scores of the Ankle in College Students

    Directory of Open Access Journals (Sweden)

    Andrew L. Shim

    2015-10-01

    Full Text Available Objective: The purpose of this study was to determine if stability and proprioception scores improved on college-aged students using a slack line device. Methods: One group of 20 participants aged 18-23 from a Midwestern university performed a pre-test/post-test on a computerized posturography plate to determine Center of Pressure (CoP and Limit of Stability (LoS scores.  Participants performed three 20-30 minute sessions per week of balance and proprioceptive training using a Balance Bow for a period of four weeks. Data were analyzed (SPSS 21.0 using a dependent t-test to determine if any changes occurred between pre- and post-test scores after four weeks.  Results: The analyses found no significance difference in Center of Pressure (CoP, normal stability eyes open (NSEO, normal stability eyes closed (NSEC, perturbed stability eyes open (PSEO, perturbed stability eyes closed (PSEC, or LoS forward (F, backward (B, or right (R scores in college-aged participants. A significant difference was found in LoS left (L and a notable trend towards significance was found in LoS R results. Conclusion: With the exception of LoS L stability scores, it was concluded that 12 sessions of 20-30 minutes, utilizing a slack line device, over a four week training period did not significantly improve stability and proprioceptive scores of the ankle in college-aged participants. Keywords: Proprioception, Limit of Stability (LoS, Center of Pressure (CoP, slack line device

  17. Manual physical balance assistance of therapists during gait training of stroke survivors: characteristics and predicting the timing.

    Science.gov (United States)

    Haarman, Juliet A M; Maartens, Erik; van der Kooij, Herman; Buurke, Jaap H; Reenalda, Jasper; Rietman, Johan S

    2017-12-02

    During gait training, physical therapists continuously supervise stroke survivors and provide physical support to their pelvis when they judge that the patient is unable to keep his balance. This paper is the first in providing quantitative data about the corrective forces that therapists use during gait training. It is assumed that changes in the acceleration of a patient's COM are a good predictor for therapeutic balance assistance during the training sessions Therefore, this paper provides a method that predicts the timing of therapeutic balance assistance, based on acceleration data of the sacrum. Eight sub-acute stroke survivors and seven therapists were included in this study. Patients were asked to perform straight line walking as well as slalom walking in a conventional training setting. Acceleration of the sacrum was captured by an Inertial Magnetic Measurement Unit. Balance-assisting corrective forces applied by the therapist were collected from two force sensors positioned on both sides of the patient's hips. Measures to characterize the therapeutic balance assistance were the amount of force, duration, impulse and the anatomical plane in which the assistance took place. Based on the acceleration data of the sacrum, an algorithm was developed to predict therapeutic balance assistance. To validate the developed algorithm, the predicted events of balance assistance by the algorithm were compared with the actual provided therapeutic assistance. The algorithm was able to predict the actual therapeutic assistance with a Positive Predictive Value of 87% and a True Positive Rate of 81%. Assistance mainly took place over the medio-lateral axis and corrective forces of about 2% of the patient's body weight (15.9 N (11), median (IQR)) were provided by therapists in this plane. Median duration of balance assistance was 1.1 s (0.6) (median (IQR)) and median impulse was 9.4Ns (8.2) (median (IQR)). Although therapists were specifically instructed to aim for the

  18. Balance scores of hospitalized middle-aged medical patients on the day of discharge: indication for balance re-training.

    Science.gov (United States)

    Adeniyi, A F; Rabiu, U M

    2009-06-01

    Falls due to inadequate balance may occur among newly discharged hospitalized patients of any age but most studies focused on recuperating older adults with neurological or orthopaedic disorders. This study assessed on-the-spot discharge day balance of middle-aged medical patients and investigated whether this related to duration of hospitalization. Eighty-seven newly discharged middle-aged patients managed for hypertension, diabetes mellitus, lung and heart diseases and cancer patients receiving only chemotherapy and 87 age and sex matched apparently healthy controls were assessed for static and dynamic balance using the One Leg Stance (OLS) and 5-meter Timed Up and Go (5mTUG) tests respectively. Mean duration of hospitalization was 15.72 +/- 9.51 days. The OLS was shorter (4.79 +/- 2.34 secs) in the patients than controls (11.64 +/- 2.59 secs); while the 5 mTUG was longer (22.26 +/- 11.67 secs) in the patients. Significant differences (P hospitalization significantly (P hospitalization period advanced. Hospitalized medical patients should be assessed for balance and treated accordingly before final discharge in order to minimize dangerous outcomes from falls.

  19. Falls in the elderly: Part II, Balance, strength, and flexibility.

    Science.gov (United States)

    Gehlsen, G M; Whaley, M H

    1990-09-01

    The purpose of this study was to determine and compare the balance, muscular strength, and flexibility of two groups of elderly adults: one with a history of falls (HF) and one with no history of falls (NHF). Subjects were 19 men and 36 women. Static and dynamic balance was determined by a one-foot stance balance test and a backwards walking test. Hip, knee, and ankle joint muscular strength were assessed on a Cybex Leg Press Dynamometer. A goniometer was used to determine hip, knee, and ankle joint range of motion (flexibility), ANOVA indicated a significant difference between the two groups for static balance (p less than .001), leg strength (p less than .01), and hip and ankle flexibility (p less than .01). The results suggest that balance, leg strength, and flexibility may be factors contributing to falls in the elderly.

  20. Water balance and ad libitum water intake in football players during a training session

    Directory of Open Access Journals (Sweden)

    Juan Diego Hernández-Camacho

    2016-01-01

    Full Text Available Introduction: It is known that hydration plays a crucial performance in sports performance. But a great number of studies assessing hydration during football practice have shown that many players have a dehydration state prior to this sport and that most players are not able to replace water loss by sweating with ad libitum water intake. Objectives: To analyze ad libitum water consumption, water balance, thirst sensation and rate of perceived exertion on a sample of young football players during a training session. Material and Methods: A total of 57 players from three teams in the youth category voluntary participated in this study. Weight was collected at the beginning and at the end of training; thirst sensation, rate of perceived exertion and quantification of ingested water were assessed. We used descriptive statistics, correlational and ratio analysis. Results: Mean global intake of players studied was 844.74±351.95mL and an average loss of body water 1274.56±385.82mL. Average rate of dehydration of the initial weight was 0.63%. Average score of 2.81±1.32 on the scale of thirst sensation was obtained. Discussion and conclusions: Rate of loss of body water similar to previous studies is obtained. The players were not able to replace water loss by drinking liquid ad libitum, so the intake of an amount previously scheduled could become helpful.

  1. Muscle Strength, Power, and Morphologic Adaptations After 6 Weeks of Compound vs. Complex Training in Healthy Men.

    Science.gov (United States)

    Stasinaki, Angeliki-Nikoletta; Gloumis, Giorgos; Spengos, Konstantinos; Blazevich, Anthony J; Zaras, Nikolaos; Georgiadis, Giorgos; Karampatsos, Giorgos; Terzis, Gerasimos

    2015-09-01

    The aim of the study was to compare the effects of compound vs. complex resistance training on strength, high-speed movement performance, and muscle composition. Eighteen young men completed compound (strength and power sessions on alternate days) or complex training (strength and power sets within a single session) 3 times per week for 6 weeks using bench press, leg press, Smith machine box squat, and jumping exercises. Pre- and posttraining, jumping and throwing performance and maximum bench press, leg press, and Smith machine box squat strength were evaluated. The architecture of vastus lateralis and gastrocnemius muscle was assessed using ultrasound imaging. Vastus lateralis morphology was assessed from muscle biopsies. Jumping (4 ± 3%) and throwing (9 ± 8%) performance increased only with compound training (p vs. 18%), leg press (17 vs. 28%), and Smith machine box squat (27 vs. 35%) strength increased after both compound and complex training. Vastus lateralis thickness and fascicle angle and gastrocnemius fascicle angle were increased with both compound and complex training. Gastrocnemius fascicle length decreased only after complex training (-11.8 ± 9.4%, p = 0.006). Muscle fiber cross-sectional areas increased only after complex training (p ≤ 0.05). Fiber type composition was not affected by either intervention. These results suggest that short-term strength and power training on alternate days is more effective for enhancing lower-limb and whole-body power, whereas training on the same day may induce greater increases in strength and fiber hypertrophy.

  2. Improved arterial flow-mediated dilation after exertion involves hydrogen peroxide in overweight and obese adults following aerobic exercise training.

    Science.gov (United States)

    Robinson, Austin T; Franklin, Nina C; Norkeviciute, Edita; Bian, Jing Tan; Babana, James C; Szczurek, Mary R; Phillips, Shane A

    2016-07-01

    Acute strenuous physical exertion impairs arterial function in sedentary adults. We investigated the effects of 8 weeks of regular aerobic exercise training on acute physical exertion-induced arterial dysfunction in sedentary, overweight, and obese adults. Twenty-five overweight and obese adults (BMI 30.5 ± 7.2 years) were assigned to 8 weeks of aerobic training or to a control group. Brachial artery flow-mediated dilation (FMD) was assessed before and after acute leg press exercise at weeks 0 and 8. Gluteal adipose biopsies were performed at rest and post acute leg press to measure microvessel FMD with and without nitric oxide synthase inhibition via L-nitroarginine methyl ester or hydrogen peroxide (H2O2) scavenging with Catalase. Microvessel nitric oxide and H2O2 production were assessed via fluorescence microscopy. Brachial artery dilation was reduced post acute leg press at week 0 in the aerobic exercise and control groups, but was preserved in the aerobic-exercise group post acute leg press at week 8 (P aerobic exercise group but impaired in the control group at week 8 (P aerobic exercise group was more sensitive to H2O2 scavenging than inhibition of nitric oxide, and post acute leg press microvessel H2O2 production was increased compared with at rest (P Aerobic exercise prevents acute exertion-induced arterial dysfunction in overweight and obese adults via a phenotypic switch from nitric oxide-mediated dilation at rest to a predominately H2O2-mediated dilation after acute physical exertion.

  3. Effectiveness of setting numerical targets in the surgical training of residents: a trial to achieve an optimal balance.

    Science.gov (United States)

    Komiya, Kiyoshi; Saito, Momoko; Sakurai, Yuika; Kojima, Hiromi; Takase, Kozo

    2014-01-17

    During the past 10 years, residency training in otorhinolaryngology-head and neck surgery (ORL-HNS) in Japan, especially at university hospitals, has emphasized subspecialization, resulting in insufficiencies in basic surgical techniques with an extreme bias toward acquiring subspecialty surgical case experience. To address this problem, we developed a target-oriented program intended to achieve a more balanced approach to surgical training and performed a 1-year trial of the program at the Jikei University School of Medicine. Fourteen residents with 1 to 4 years of ORL-HNS experience completed the trial. Each resident's competencies in six basic surgical procedures were assessed on the basis of the number of cases handled by the resident, and each resident's case selection bias after implementation of the target-oriented training was examined. The case selection bias in the trial group residents was reduced and their balance in case experience was shown to be improved in comparison with that in control group residents who were trained in the conventional way. In addition, opinion surveys of the participants and supervising otorhinolaryngologists (trainers) indicated that they felt that the new training system had been effective in improving the balance in case experience and improving motivation, and creating greater awareness of training goals and progress.

  4. Striatal functional connectivity changes following specific balance training in elderly people: MRI results of a randomized controlled pilot study.

    Science.gov (United States)

    Magon, Stefano; Donath, Lars; Gaetano, Laura; Thoeni, Alain; Radue, Ernst-Wilhelm; Faude, Oliver; Sprenger, Till

    2016-09-01

    Practice-induced effects of specific balance training on brain structure and activity in elderly people are largely unknown. In the present study, we investigated morphological and functional brain changes following slacking training (balancing over nylon ribbons) in a group of elderly people. Twenty-eight healthy volunteers were recruited and randomly assigned to the intervention (mean age: 62.3±5.4years) or control group (mean age: 61.8±5.3years). The intervention group completed six-weeks of slackline training. Brain morphological changes were investigated using voxel-based morphometry and functional connectivity changes were computed via independent component analysis and seed-based analyses. All analyses were applied to the whole sample and to a subgroup of participants who improved in slackline performance. The repeated measures analysis of variance showed a significant interaction effect between groups and sessions. Specifically, the Tukey post-hoc analysis revealed a significantly improved slackline standing performance after training for the left leg stance time (pre: 4.5±3.6s vs. 26.0±30.0s, pslackline performance showed a decrease of connectivity between the striatum and other brain areas during the training period. These preliminary results suggest that improved balance performance with slackline training goes along with an increased efficiency of the striatal network. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Strength and Power Training Effects on Lower Limb Force, Functional Capacity, and Static and Dynamic Balance in Older Female Adults.

    Science.gov (United States)

    Lopes, Paula Born; Pereira, Gleber; Lodovico, Angélica; Bento, Paulo C B; Rodacki, André L F

    2016-03-03

    It has been proposed that muscle power is more effective to prevent falls than muscle force production capacity, as rapid reactions are required to allow the postural control. This study aimed to compare the effects of strength and power training on lower limb force, functional capacity, and static and dynamic balance in older female adults. Thirty-seven volunteered healthy women had been allocated into the strength-training group (n = 14; 69 ± 7.3 years, 155 ± 5.6 cm, 72 ± 9.7 kg), the power-training group (n = 12; 67 ± 7.4 years, 153 ± 5.5 cm, 67.2 ± 7 kg), and control group (n = 11; 65 ± 3.1 years, 154 ± 5.6 cm, 70.9 ± 3 kg). After 12 weeks of training, the strength-training and power-training groups increased significantly maximum dynamic strength (29% and 27%), isometric strength (26% and 37%), and step total time (13% and 14%, dynamic balance), respectively. However, only the power-training group increased the rate of torque development (55%) and the functional capacity in 30-second chair stand (22%) and in time up and go tests (-10%). Empirically, power training may reduce the risk of injuries due to lower loads compared to strength training, and consequently, the physical effort demand during the training session is lower. Therefore, power training should be recommended as attractive training stimuli to improve lower limb force, functional capacity, and postural control of older female adults.

  6. Dancing or Fitness Sport? The Effects of Two Training Programs on Hippocampal Plasticity and Balance Abilities in Healthy Seniors.

    Science.gov (United States)

    Rehfeld, Kathrin; Müller, Patrick; Aye, Norman; Schmicker, Marlen; Dordevic, Milos; Kaufmann, Jörn; Hökelmann, Anita; Müller, Notger G

    2017-01-01

    Age-related degenerations in brain structure are associated with balance disturbances and cognitive impairment. However, neuroplasticity is known to be preserved throughout lifespan and physical training studies with seniors could reveal volume increases in the hippocampus (HC), a region crucial for memory consolidation, learning and navigation in space, which were related to improvements in aerobic fitness. Moreover, a positive correlation between left HC volume and balance performance was observed. Dancing seems a promising intervention for both improving balance and brain structure in the elderly. It combines aerobic fitness, sensorimotor skills and cognitive demands while at the same time the risk of injuries is low. Hence, the present investigation compared the effects of an 18-month dancing intervention and traditional health fitness training on volumes of hippocampal subfields and balance abilities. Before and after intervention, balance was evaluated using the Sensory Organization Test and HC volumes were derived from magnetic resonance images (3T, MP-RAGE). Fourteen members of the dance (67.21 ± 3.78 years, seven females), and 12 members of the fitness group (68.67 ± 2.57 years, five females) completed the whole study. Both groups revealed hippocampal volume increases mainly in the left HC (CA1, CA2, subiculum). The dancers showed additional increases in the left dentate gyrus and the right subiculum. Moreover, only the dancers achieved a significant increase in the balance composite score. Hence, dancing constitutes a promising candidate in counteracting the age-related decline in physical and mental abilities.

  7. Feasibility of Intensive Mobility Training to Improve Gait, Balance, and Mobility in Persons With Chronic Neurological Conditions : A Case Series

    NARCIS (Netherlands)

    Fritz, Stacy; Merlo-Rains, Angela; Rivers, Erin; Brandenburg, Barbara; Sweet, Janea; Donley, Jonathan; Mathews, Harvey; deBode, Stella; McClenaghan, Bruce A.

    Background and Purpose: Intensive mobility training (IMT) is a rehabilitative approach aimed at improving gait, balance, and mobility through the incorporation of task-specific, massed practice. The purpose of this case series was to examine the feasibility and benefits of the IMT protocol across a

  8. Effects of 8 Weeks of Balance or Weight Training for the Independently Living Elderly on the Outcomes of Induced Slips

    Science.gov (United States)

    Kim, Sukwon; Lockhart, Thurmon

    2010-01-01

    The study was conducted to evaluate whether the balance or weight training could alter gait characteristics of elderly contributing to a reduction in the likelihood of slip-induced falls. A total of 18 elderly were evaluated for the study. The results indicated decreases in heel contact velocities and the friction demand characteristics after 8…

  9. Effects of community-based virtual reality treadmill training on balance ability in patients with chronic stroke.

    Science.gov (United States)

    Kim, Nara; Park, YuHyung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] We aimed to examine the effectiveness of a community-based virtual reality treadmill training (CVRTT) program on static balance abilities in patients with stroke. [Subjects and Methods] Patients (n = 20) who suffered a stroke at least 6 months prior to the study were recruited. All subjects underwent conventional physical therapy for 60 min/day, 5 days/week, for 4 weeks. Additionally, the CVRTT group underwent community-based virtual reality scene exposure combined with treadmill training for 30 min/day, 3 days/week, for 4 weeks, whereas the control group underwent conventional physical therapy, including muscle strengthening, balance training, and indoor and outdoor gait training, for 30 min/day, 3 days/week, for 4 weeks. Outcome measurements included the anteroposterior, mediolateral, and total postural sway path lengths and speed, which were recorded using the Balancia Software on a Wii Fit(™) balance board. [Results] The postural sway speed and anteroposterior and total postural sway path lengths were significantly decreased in the CVRTT group. Overall, the CVRTT group showed significantly greater improvement than the control group. [Conclusions] The present study results can be used to support the use of CVRTT for effectively improving balance in stroke patients. Moreover, we determined that a CVRTT program for stroke patients is both feasible and suitable.

  10. The Effect of Resistance Training on Performance of Gross Motor Skills and Balance in Children with Spastic Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Ebrahim Zarrinkalam

    2016-03-01

    Full Text Available Objective: Cerebral palsy is the most common chronic motor disability in children and can have negative effect on motor functions. The purpose of this study was to investigate the effect of eight weeks resistance training on gross motor ability, balance and walking speed in a group of such children. Methods: 21 cerebral palsy boys with spastic diplegia, aged between 12 and 16 years (mean, 13.66 years, participated in this study. A pre-test, involving walking, sitting, standing and walking up stairs. They were randomly divided into an experimental and control groups. Then, the experimental group participated in 8 weeks of resistance training.  The data was attained from a 10 meter walk test, Berg Balance Test, gross motor ability Section E, D and GMFCS tests.  Kolmogorov-Smirnov test, sample t-test were used for analyzing the data. Results: The results showed a significant improvement in the performance of experimental group in gross motor abilities section  E and D, balance and walking speed after 8 weeks of resistance training (P <0.05(. However, significant differences were not observed in the control group before and after the study (P <0.05.  Conclusion: The results showed that resistance training improves gross motor ability, balance and gait in children with cerebral palsy hence, it is recommended that resistance exercise be used as a therapeutic modality for children with cerebral palsy.

  11. A Comparison of 12 Weeks of Pilates and Aquatic Training on the Dynamic Balance of Women with Mulitple Sclerosis

    Directory of Open Access Journals (Sweden)

    Sayyed Mohammad Marandi

    2013-01-01

    Results: The adjusted mean differences of Timed Up and Go Test (TUGT scores of the experimental groups are significantly different (P<0.05. Therefore, it can be said that Pilates exercise interventions and aquatic training can significantly increase the dynamic balance of the examinees in the post-experiment stage. Conclusions: Performing the Pilate exercises and aquatic training increases dynamic balance of the MS patients. Considering the role of dynamic balance on physical fitness and enabling the person in doing is daily chores and routines, and its direct effect on the quality of life, it leads the specialists in applying these exercises as a supplementary treatment along with the medicinal treatments for MS patients.

  12. A randomised controlled trial of proprioceptive and balance training after surgical reconstruction of the anterior cruciate ligament.

    Science.gov (United States)

    Cooper, R L; Taylor, N F; Feller, J A

    2005-01-01

    A randomised controlled trial (29 participants) was used to compare a 6-week proprioceptive and balance exercise program with a 6-week strengthening program in the early phases of rehabilitation after anterior cruciate ligament (ACL) reconstruction. Measurements of functional activity were taken by a blinded assessor before the intervention and at the end of the 6 weeks. Results demonstrated that there were no significant differences between groups on hop testing at 6 weeks. For several items in the Cincinnati knee rating system and the patient specific functional scale however, the strengthening group improved more than the proprioceptive and balance group (p exercises was not supported. There was either no difference between the two forms of exercise or strength training may be more beneficial than proprioceptive and balance training in the early phase of rehabilitation after ACL reconstructive surgery.

  13. Efficacy of Nintendo Wii Training on Mechanical Leg Muscle Function and Postural Balance in Community-Dwelling Older Adults

    DEFF Research Database (Denmark)

    Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten

    2013-01-01

    BACKGROUND: Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown....... METHODS: This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary...... end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. RESULTS: Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction...

  14. Tai Chi training is effective in reducing balance impairments and falls in patients with Parkinson's disease.

    Science.gov (United States)

    Tsang, William W N

    2013-03-01

    -up-and-go test, and UPDRS III score in the Tai Chi group was only significantly more than that in the stretching group, but not the resistance group. The falls incidence was also lower in the Tai Chi group than the stretching group during the 6-month training period (incidence-rate ratio: 0.33, 95% CI 0.16 to 0.71). Tai Chi training is effective in reducing balance impairments in patients with mild to moderate Parkinson's disease. Copyright © 2013 Australian Physiotherapy Association. Published by .. All rights reserved.

  15. Three months of resistance training in overweight and obese individuals improves reactive balance control under unstable conditions.

    Science.gov (United States)

    Zemková, Erika; Kyselovičová, Ol'ga; Jeleň, Michal; Kováčiková, Zuzana; Ollé, Gábor; Řtefániková, Gabriela; Vilman, Tomáš; Baláž, Miroslav; Kurdiová, Timea; Ukropec, Jozef; Ukropcová, Barbara

    2017-01-01

    Contrary to static and dynamic balance, there is a lack of scientific evidence on the training induced changes in reactive balance control in response to unexpected perturbations in overweight and obese individuals. This study evaluates the effect of 3 months of resistance and aerobic training programs on postural responses to unexpected perturbations under stable and unstable conditions in the overweight and obese. A group of 17 overweight and obese subjects, divided into two groups, underwent either resistance or aerobic training for a period of 3 months (3 sessions per week). Prior to and after completing the training, they performed the load release balance test while standing on either a stable or unstable surface, with eyes open and closed. Peak posterior center of pressure (CoP) displacement, and the time to peak posterior CoP displacement during a bipedal stance on a foam surface with eyes open (17.3%, p = 0.019 and 15.4%, p = 0.029) and eyes closed (15.0%, p = 0.027 and 13.2%, p = 0.034), decreased significantly. In addition, the total anterior to posterior CoP displacement, and the time from peak anterior to peak posterior CoP displacement, both with eyes open (18.1%, p = 0.017 and 12.2%, p = 0.040) and eyes closed (16.3%, p = 0.023 and 11.7%, p = 0.044), also significantly decreased. However, after completing the resistance training, the parameters registered while standing on a stable platform, both with eyes open and closed, did not change significantly. The group that underwent an aerobic training also failed to show any significant changes in parameters of the load release balance test. Three months of resistance training in overweight and obese subjects improves reactive balance control in response to unexpected perturbations under unstable conditions, both with and without visual cues. Due to the fact that this unstable load release balance test was found to be sensitive in revealing post-training changes, it would be suitable for implementing in

  16. Pulmonary Rehabilitation With Balance Training for Fall Reduction in Chronic Obstructive Pulmonary Disease: Protocol for a Randomized Controlled Trial.

    Science.gov (United States)

    Beauchamp, Marla K; Brooks, Dina; Ellerton, Cindy; Lee, Annemarie; Alison, Jennifer; Camp, Pat G; Dechman, Gail; Haines, Kimberley; Harrison, Samantha L; Holland, Anne E; Marques, Alda; Moineddin, Rahim; Skinner, Elizabeth H; Spencer, Lissa; Stickland, Michael K; Xie, Feng; Goldstein, Roger S

    2017-11-20

    Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. A growing body of evidence shows that individuals with COPD have important deficits in balance control that may be associated with an increased risk of falls. Pulmonary rehabilitation (PR) is a key therapeutic intervention for individuals with COPD; however, current international guidelines do not include balance training and fall prevention strategies. The primary aim of this trial is to determine the effects of PR with balance training compared to PR with no balance training on the 12-month rate of falls in individuals with COPD. Secondary aims are to determine the effects of the intervention on balance, balance confidence, and functional lower body strength, and to estimate the cost-effectiveness of the program. A total of 400 individuals from nine PR centers across Canada, Europe, and Australia will be recruited to participate in a randomized controlled trial. Individuals with COPD who have a self-reported decline in balance, a fall in the last 2 years, or recent near fall will be randomly assigned to an intervention or control group. The intervention group will undergo tailored balance training in addition to PR and will receive a personalized home-based balance program. The control group will receive usual PR and a home program that does not include balance training. All participants will receive monthly phone calls to provide support and collect health care utilization and loss of productivity data. Both groups will receive home visits at 3, 6, and 9 months to ensure proper technique and progression of home exercise programs. The primary outcome will be incidence of falls at 12-month follow-up. Falls will be measured using a standardized definition and recorded using monthly self-report fall diary calendars. Participants will be asked to record falls and time spent performing their home exercise program on the fall diary calendars. Completed calendars will

  17. Effectiveness of balance training exercise in people with mild to moderate severity Alzheimer's disease: protocol for a randomised trial

    Directory of Open Access Journals (Sweden)

    Lautenschlager Nicola T

    2009-07-01

    Full Text Available Abstract Background Balance dysfunction and falls are common problems in later stages of dementia. Exercise is a well-established intervention to reduce falls in cognitively intact older people, although there is limited randomised trial evidence of outcomes in people with dementia. The primary objective of this study is to evaluate whether a home-based balance exercise programme improves balance performance in people with mild to moderate severity Alzheimer's disease. Methods/design Two hundred and fourteen community dwelling participants with mild to moderate severity Alzheimer's disease will be recruited for the randomised controlled trial. A series of laboratory and clinical measures will be used to evaluate balance and mobility performance at baseline. Participants will then be randomized to receive either a balance training home exercise programme (intervention group from a physiotherapist, or an education, information and support programme from an occupational therapist (control group. Both groups will have six home visits in the six months following baseline assessment, as well as phone support. All participants will be re-assessed at the completion of the programme (after six months, and again in a further six months to evaluate sustainability of outcomes. The primary outcome measures will be the Limits of Stability (a force platform measure of balance and the Step Test (a clinical measure of balance. Secondary outcomes include other balance and mobility measures, number of falls and falls risk measures, cognitive and behavioural measures, and carer burden and quality of life measures. Assessors will be blind to group allocation. Longitudinal change in balance performance will be evaluated in a sub-study, in which the first 64 participants of the control group with mild to moderate severity Alzheimer's disease, and 64 age and gender matched healthy participants will be re-assessed on all measures at initial assessment, and then at 6, 12

  18. Effect of a combining cognitive and balanced training on the cognitive, postural and functional status of seniors with a mild cognitive deficit in a randomized, controlled trial.

    Science.gov (United States)

    Hagovská, Magdalena; Takáč, Peter; Dzvoník, Oliver

    2016-02-01

    An optimal frequency and duration of cognitive trainings and exercise has not yet been determined for improving balance and for positively influencing cognitive functions. To investigate whether the CogniPlus method with a dynamic balance training not only improves cognitive functions but also improves the postural control and functional status more than a balance training session alone in seniors with a mild cognitive deficit. Randomized, controlled trial. Outpatient psychiatric clinic. The research sample was composed of 80 seniors with a mild cognitive deficit (average age 67.07 years), an experimental group (N.=40) and a control group (N.=40). The experimental group was engaged in 20 cognitive training sessions twice per week, using CogniPlus together with balance training. The control group was given only the balance training programme for the same duration and frequency. Both groups performed dynamic balance training for 30 minutes daily in a domestic environment for ten weeks, in accordance with instructions given by a physiotherapist. Cognitive functions were assessed by Addenbrooke’s cognitive examination, data on daily life activities were collected by the Functional Activities Questionnaire (FAQ-CZ) and coordination abilities were evaluated by the Balance Evaluation – Systems Test (BESTest). After training, there were significant differences between these two groups recorded in the assessment of several cognitive functions by the Addenbrooke’s cognitive examination (Pbalanced training achieved significantly higher improvements not only in the evaluation of cognitive domains but also in postural control, than balance training alone in seniors with mild cognitive impairment. CogniPlus with dynamic balance training could be recommended as a therapeutic procedure for the prevention and treatment of cognitive and balance disorders.

  19. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Gordt, Katharina; Gerhardy, Thomas; Najafi, Bijan; Schwenk, Michael

    2018-01-01

    Wearable sensors (WS) can accurately measure body motion and provide interactive feedback for supporting motor learning. This review aims to summarize current evidence for the effectiveness of WS training for improving balance, gait and functional performance. A systematic literature search was performed in PubMed, Cochrane, Web of Science, and CINAHL. Randomized controlled trials (RCTs) using a WS exercise program were included. Study quality was examined by the PEDro scale. Meta-analyses were conducted to estimate the effects of WS balance training on the most frequently reported outcome parameters. Eight RCTs were included (Parkinson n = 2, stroke n = 1, Parkinson/stroke n = 1, peripheral neuropathy n = 2, frail older adults n = 1, healthy older adults n = 1). The sample size ranged from n = 20 to 40. Three types of training paradigms were used: (1) static steady-state balance training, (2) dynamic steady-state balance training, which includes gait training, and (3) proactive balance training. RCTs either used one type of training paradigm (type 2: n = 1, type 3: n = 3) or combined different types of training paradigms within their intervention (type 1 and 2: n = 2; all types: n = 2). The meta-analyses revealed significant overall effects of WS training on static steady-state balance outcomes including mediolateral (eyes open: Hedges' g = 0.82, CI: 0.43-1.21; eyes closed: g = 0.57, CI: 0.14-0.99) and anterior-posterior sway (eyes open: g = 0.55, CI: 0.01-1.10; eyes closed: g = 0.44, CI: 0.02-0.86). No effects on habitual gait speed were found in the meta-analysis (g = -0.19, CI: -0.68 to 0.29). Two RCTs reported significant improvements for selected gait variables including single support time, and fast gait speed. One study identified effects on proactive balance (Alternate Step Test), but no effects were found for the Timed Up and Go test and the Berg Balance Scale. Two studies reported positive results on feasibility and usability. Only one study was

  20. Effect of Short Term Balance Training on Postural Stability in Ice Hockey Players

    Directory of Open Access Journals (Sweden)

    Pavol Čech

    2015-08-01

    Full Text Available Postural stability is one of latent factors affecting game performance of an individual to a certain extent. The presented study deals with monitoring changes of postural stability in ice hockey players after eight week’s balance training. The screened sample consisted of junior category ice hockey players divided into experimental (n = 8 and reference groups (n = 8. Postural stability was measured using a stabilographic method on the AMTI AccuSwayPLUS force platform. The level of postural stability was assessed in three tests, namely bipedal stance with and without sight control and bipedal stance with reduced proprioception using the parameters of 95% confidence ellipse, path of CoP and mean velocity of CoP. The level of monitored stability parameters did not indicate any significant differences between the groups in any of the tests at the level of significance α = 0.05. Comparing postural stability of the experimental group between pre-test and post-test showed significant differences in the test without sight control and the test with reduced proprioception in lCoP and vCoP parameters (Z = 2.1004; α ˂ 0.05. Regarding the reference group, no significant changes of the level of postural stability between the pre-test and post-test were found in any of the parameters (Z = 0.3652 to 1.8257; α ˃ 0.05.

  1. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES - IMPLICATIONS FOR REHABILITATION STRATEGIES

    DEFF Research Database (Denmark)

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas

    2016-01-01

    BACKGROUND: A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important...... reflective markers and 3-dimensional recordings and expressed as inversion-eversion range of motion variability, peak velocity of inversion and number of inversion-eversion direction changes. Peroneus longus EMG activity was averaged and normalized to maximal activity during maximum voluntary contraction...... to the other surfaces. BOSU® Ball was the most challenging in terms of inversion-eversion variability while wobble board was associated with a higher number of inversion-eversion direction changes. No differences in average muscle activation level were found between these two surfaces, but the BOSU® Ball did...

  2. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial.

    Science.gov (United States)

    Verhagen, Evert; van der Beek, Allard; Twisk, Jos; Bouter, Lex; Bahr, Roald; van Mechelen, Willem

    2004-09-01

    Ankle sprains are the most common injuries in a variety of sports. A proprioceptive balance board program is effective for prevention of ankle sprains in volleyball players. Prospective controlled study. There were 116 male and female volleyball teams followed prospectively during the 2001-2002 season. Teams were randomized by 4 geographical regions to an intervention group (66 teams, 641 players) and control group (50 teams, 486 players). Intervention teams followed a prescribed balance board training program; control teams followed their normal training routine. The coaches recorded exposure on a weekly basis for each player. Injuries were registered by the players within 1 week after onset. Significantly fewer ankle sprains in the intervention group were found compared to the control group (risk difference = 0.4/1000 playing hours; 95% confidence interval, 0.1-0.7). A significant reduction in ankle sprain risk was found only for players with a history of ankle sprains. The incidence of overuse knee injuries for players with history of knee injury was increased in the intervention group. History of knee injury may be a contraindication for proprioceptive balance board training. Use of proprioceptive balance board program is effective for prevention of ankle sprain recurrences.

  3. The effects of Pilates exercise training on static and dynamic balance in chronic stroke patients: a randomized controlled trial

    Science.gov (United States)

    Lim, Hee Sung; Kim, You Lim; Lee, Suk Min

    2016-01-01

    [Purpose] The purpose of this study was to analyze the effects of Pilates exercise on static and dynamic balance in chronic stroke patients. [Subjects and Methods] Nineteen individuals with unilateral chronic hemiparetic stroke (age, 64.7 ± 6.9 years; height, 161.7 ± 7.9 cm; weight, 67.0 ± 11.1 kg) were randomly allocated to either a Pilates exercise group (PG, n=10) or a control group (CG, n=9). The PG attended 24 exercise sessions conducted over an 8-week period (3 sessions/week). Center of pressure (COP) sway and COP velocity were measured one week before and after the exercise program and compared to assess training effects. [Results] Pilates exercise positively affected both static and dynamic balance in patients with chronic stroke. For static balance, COP sway and velocity in the medial-lateral (M-L) and anterior-posterior (A-P) directions were significantly decreased in the PG after training while no significant differences were found in the CG. For dynamic balance, measured during treadmill walking, the PG showed significantly reduced COP sway and velocity in the M-L and A-P directions for both the paretic and non-paretic leg. [Conclusions] The findings provide initial evidence that Pilates exercise can enhance static and dynamic balance in patients with chronic stroke. PMID:27390424

  4. The effects of Pilates exercise training on static and dynamic balance in chronic stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Lim, Hee Sung; Kim, You Lim; Lee, Suk Min

    2016-06-01

    [Purpose] The purpose of this study was to analyze the effects of Pilates exercise on static and dynamic balance in chronic stroke patients. [Subjects and Methods] Nineteen individuals with unilateral chronic hemiparetic stroke (age, 64.7 ± 6.9 years; height, 161.7 ± 7.9 cm; weight, 67.0 ± 11.1 kg) were randomly allocated to either a Pilates exercise group (PG, n=10) or a control group (CG, n=9). The PG attended 24 exercise sessions conducted over an 8-week period (3 sessions/week). Center of pressure (COP) sway and COP velocity were measured one week before and after the exercise program and compared to assess training effects. [Results] Pilates exercise positively affected both static and dynamic balance in patients with chronic stroke. For static balance, COP sway and velocity in the medial-lateral (M-L) and anterior-posterior (A-P) directions were significantly decreased in the PG after training while no significant differences were found in the CG. For dynamic balance, measured during treadmill walking, the PG showed significantly reduced COP sway and velocity in the M-L and A-P directions for both the paretic and non-paretic leg. [Conclusions] The findings provide initial evidence that Pilates exercise can enhance static and dynamic balance in patients with chronic stroke.

  5. Are resistance and aerobic exercise training equally effective at improving knee muscle strength and balance in older women?

    Science.gov (United States)

    Marques, Elisa A; Figueiredo, Pedro; Harris, Tamara B; Wanderley, Flávia A; Carvalho, Joana

    This study aimed to compare the magnitude of knee muscle strength and static and dynamic balance change in response to 8 months of progressive RE and AE training in healthy community-dwelling older women. A secondary aim was to assess the relationship between muscle strength and balance changes (up and go test (UGT), one-leg stance test, and center of pressure measures). This study was a secondary analysis of longitudinal data from a randomized controlled trial, a three-arm intervention study in older women (n=71, mean age 69.0y). The results suggest that both interventions elicited likely to almost certain improvements (using magnitude-based inference) in balance performance. Leg strength was improved after RE whereas it was unclear following AE. Improvements in strength were almost certainly moderate after RE and possibly trivial after AE, with very likely greater improvements following RE compared to AE. A large and significant negative correlation (r=-0.5; CI 90%: -0.7 to -0.2) was found between ΔUGT and change in both knee extension and knee flexion strength after 8-month RE. In conclusion, our results showed that both types of training improve balance, but RE was also effective at improving leg strength. In addition, improvements in both knee extension and flexion strength after RE appear to make an important contribution to meaningful improvements in static and dynamic balance. Published by Elsevier Ireland Ltd.

  6. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Peters Amy L

    2007-05-01

    Full Text Available Abstract Background Previous research investigating exercise as a means of falls prevention in older adults has shown mixed results. Lack of specificity of the intervention may be an important factor contributing to negative results. Change-in-support (CIS balance reactions, which involve very rapid stepping or grasping movements of the limbs, play a critical role in preventing falls; hence, a training program that improves ability to execute effective CIS reactions could potentially have a profound effect in reducing risk of falling. This paper describes: 1 the development of a perturbation-based balance training program that targets specific previously-reported age-related impairments in CIS reactions, and 2 a study protocol to evaluate the efficacy of this new training program. Methods/Design The training program involves use of unpredictable, multi-directional moving-platform perturbations to evoke stepping and grasping reactions. Perturbation magnitude is gradually increased over the course of the 6-week program, and concurrent cognitive and movement tasks are included during later sessions. The program was developed in accordance with well-established principles of motor learning, such as individualisation, specificity, overload, adaptation-progression and variability. Specific goals are to reduce the frequency of multiple-step responses, reduce the frequency of collisions between the stepping foot and stance leg, and increase the speed of grasping reactions. A randomised control trial will be performed to evaluate the efficacy of the training program. A total of 30 community-dwelling older adults (age 64–80 with a recent history of instability or falling will be assigned to either the perturbation-based training or a control group (flexibility/relaxation training, using a stratified randomisation that controls for gender, age and baseline stepping/grasping performance. CIS reactions will be tested immediately before and after the six

  7. Comparing the effects of balance training with and without cognitive tasks on the quality of life and balance performance in community-dwelling older adults: a single-blind randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Ehsan Sinaei

    2016-12-01

    Full Text Available Background: Aging process can deteriorate the ability to maintain balance, specifically under dual-task conditions. Thus far, different methods of exercises therapy have been applied to improve balance performance of older adults. The present study was designed to compare the effects of two protocols of balance training on the quality of life (QoL and balance performance in older adults with mild balance impairments. Methods: Twenty-four older adults over 60 years old were allocated randomly into single-task (n=12 and dual-task (n=12 exercise groups. Single-task group received routine balance exercises, over a four-week period and dual-task group was treated by the same exercise program plus a cognitive task. QoL and balance status were assessed by the Short-Form Health Survey (SF-36 and Fullerton Advanced Balance scale (FAB questionnaires, before and after the interventions. Results: After four weeks of training, balance performance and some factors of QoL improved significantly in both groups (P<0.05. However, there were no significant differences in any of the variables between the two groups. Conclusion: Balance exercises, under both single- and dual-task conditions can improve the balance level and some aspects of QoL in older adults with mild balance impairments, with no priority of one group over another.

  8. Effect of Vertical, Horizontal, and Combined Plyometric Training on Explosive, Balance, and Endurance Performance of Young Soccer Players.

    Science.gov (United States)

    Ramírez-Campillo, Rodrigo; Gallardo, Francisco; Henriquez-Olguín, Carlos; Meylan, Cesar M P; Martínez, Cristian; Álvarez, Cristian; Caniuqueo, Alexis; Cadore, Eduardo L; Izquierdo, Mikel

    2015-07-01

    The aim of this study was to compare the effects of 6 weeks of vertical, horizontal, or combined vertical and horizontal plyometric training on muscle explosive, endurance, and balance performance. Forty young soccer players aged between 10 and 14 years were randomly divided into control (CG; n = 10), vertical plyometric group (VG; n = 10), horizontal plyometric group (HG; n = 10), and combined vertical and horizontal plyometric group (VHG; n = 10). Players performance in the vertical and horizontal countermovement jump with arms, 5 multiple bounds test (MB5), 20-cm drop jump reactive strength index (RSI20), maximal kicking velocity (MKV), sprint, change of direction speed (CODS), Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1), and balance was measured. No significant or meaningful changes in the CG, apart from small change in the Yo-Yo IR1, were observed while all training programs resulted in meaningful changes in explosive, endurance, and balance performance. However, only VHG showed a statistically significant (p ≤ 0.05) increase in all performance test and most meaningful training effect difference with the CG across tests. Although no significant differences in performance changes were observed between experimental groups, the VHG program was more effective compared with VG (i.e., jumps, MKV, sprint, CODS, and balance performance) and HG (i.e., sprint, CODS, and balance performance) to small effect. The study demonstrated that vertical, horizontal, and combined vertical and horizontal jumps induced meaningful improvement in explosive actions, balance, and intermittent endurance capacity. However, combining vertical and horizontal drills seems more advantageous to induce greater performance improvements.

  9. Interactive balance training integrating sensor-based visual feedback of movement performance: a pilot study in older adults.

    Science.gov (United States)

    Schwenk, Michael; Grewal, Gurtej S; Honarvar, Bahareh; Schwenk, Stefanie; Mohler, Jane; Khalsa, Dharma S; Najafi, Bijan

    2014-12-13

    Wearable sensor technology can accurately measure body motion and provide incentive feedback during exercising. The aim of this pilot study was to evaluate the effectiveness and user experience of a balance training program in older adults integrating data from wearable sensors into a human-computer interface designed for interactive training. Senior living community residents (mean age 84.6) with confirmed fall risk were randomized to an intervention (IG, n = 17) or control group (CG, n = 16). The IG underwent 4 weeks (twice a week) of balance training including weight shifting and virtual obstacle crossing tasks with visual/auditory real-time joint movement feedback using wearable sensors. The CG received no intervention. Outcome measures included changes in center of mass (CoM) sway, ankle and hip joint sway measured during eyes open (EO) and eyes closed (EC) balance test at baseline and post-intervention. Ankle-hip postural coordination was quantified by a reciprocal compensatory index (RCI). Physical performance was quantified by the Alternate-Step-Test (AST), Timed-up-and-go (TUG), and gait assessment. User experience was measured by a standardized questionnaire. After the intervention sway of CoM, hip, and ankle were reduced in the IG compared to the CG during both EO and EC condition (p = .007-.042). Improvement was obtained for AST (p = .037), TUG (p = .024), fast gait speed (p = . 010), but not normal gait speed (p = .264). Effect sizes were moderate for all outcomes. RCI did not change significantly. Users expressed a positive training experience including fun, safety, and helpfulness of sensor-feedback. Results of this proof-of-concept study suggest that older adults at risk of falling can benefit from the balance training program. Study findings may help to inform future exercise interventions integrating wearable sensors for guided game-based training in home- and community environments. Future studies should evaluate the

  10. A comparison of 12 weeks of pilates and aquatic training on the dynamic balance of women with mulitple sclerosis.

    Science.gov (United States)

    Marandi, Sayyed Mohammad; Nejad, Vahid Shayegan; Shanazari, Zohreh; Zolaktaf, Vahid

    2013-04-01

    Multiple Sclerosis (MS) is a disabling chronic disease of the nervous system in which the myelin system of the central nervous system is deteriorated. The objective of this study is to understand the effect of Pilates exercises and aquatic training for a 12 week period on the dynamic balance of MS patients. The research method is semi-experimental. As a result, among the female patients visiting the MS clinic of Kashani hospital in Esfahan, 57 patients with disease intensity levels between 0 and 4.5 were taken as samples. The average length of the disease was 8 ± 2 years, 20;40 years old, and they were randomly divided into three groups of Pilates exercise group, aquatic training group, and the control group. The exercise schedule for the experiment groups consisted of 12 weeks, three sessions per week, and 1 hour for each session. The dynamic balance of the patients, before and after the exercises was measured by Six Spot Step Test. The adjusted mean differences of Timed Up and Go Test (TUGT) scores of the experimental groups are significantly different (PPilates exercise interventions and aquatic training can significantly increase the dynamic balance of the examinees in the post-experiment stage. Performing the Pilate exercises and aquatic training increases dynamic balance of the MS patients. Considering the role of dynamic balance on physical fitness and enabling the person in doing is daily chores and routines, and its direct effect on the quality of life, it leads the specialists in applying these exercises as a supplementary treatment along with the medicinal treatments for MS patients.

  11. A Comparison of 12 Weeks of Pilates and Aquatic Training on the Dynamic Balance of Women with Mulitple Sclerosis

    Science.gov (United States)

    Marandi, Sayyed Mohammad; Nejad, Vahid Shayegan; Shanazari, Zohreh; Zolaktaf, Vahid

    2013-01-01

    Background: Multiple Sclerosis (MS) is a disabling chronic disease of the nervous system in which the myelin system of the central nervous system is deteriorated. The objective of this study is to understand the effect of Pilates exercises and aquatic training for a 12 week period on the dynamic balance of MS patients. Methods: The research method is semi-experimental. As a result, among the female patients visiting the MS clinic of Kashani hospital in Esfahan, 57 patients with disease intensity levels between 0 and 4.5 were taken as samples. The average length of the disease was 8 ± 2 years, 20;40 years old, and they were randomly divided into three groups of Pilates exercise group, aquatic training group, and the control group. The exercise schedule for the experiment groups consisted of 12 weeks, three sessions per week, and 1 hour for each session. The dynamic balance of the patients, before and after the exercises was measured by Six Spot Step Test. Results: The adjusted mean differences of Timed Up and Go Test (TUGT) scores of the experimental groups are significantly different (PPilates exercise interventions and aquatic training can significantly increase the dynamic balance of the examinees in the post-experiment stage. Conclusions: Performing the Pilate exercises and aquatic training increases dynamic balance of the MS patients. Considering the role of dynamic balance on physical fitness and enabling the person in doing is daily chores and routines, and its direct effect on the quality of life, it leads the specialists in applying these exercises as a supplementary treatment along with the medicinal treatments for MS patients. PMID:23717760

  12. Intensive unilateral neuromuscular training on non-dominant side of low back improves balanced muscle response and spinal stability.

    Science.gov (United States)

    Kim, Yushin; Son, Jaebum; Yoon, BumChul

    2013-04-01

    Effective stabilization is important to increase sports performance. Imbalanced spinal muscle responses between the left and right sides increase the risk of spinal buckling and microtrauma at the intervertebral joints. The purpose of this study was to confirm whether intensive unilateral neuromuscular training (IUNT) focusing on the non-dominant side of the low back improves balanced muscle responses and spinal stability. The IUNT group (n = 8) performed side bridge and quadruped exercises using their non-dominant trunk muscles for 8 weeks, while the control group (n = 8) performed their regular training. Before and after the training, motion-capture cameras measured trunk angular displacement, and electromyography recorded the activities of both multifidus muscles (L4-5) during unexpected sudden forward perturbation. After the training in the IUNT group, the difference in onset time between both sides decreased to approximately 120 % compared with that before the training. The asymmetry of muscle activities also decreased from 56 to 23 %. Moreover, the angular displacement on the sagittal plane decreased to approximately 35 % after the training. We expect that IUNT focused on the non-dominant side of the low back will be useful to improve balanced back muscle responses and spinal stability during sudden trunk perturbation.

  13. Work economy following strength training in elderly : alterations in muscle strength, muscle thickness and lean mass upon work economy in elderly men following 12 weeks of strength training

    OpenAIRE

    Salvesen, Svein

    2013-01-01

    Masteroppgave i idrettsvitenskap - Universitetet i Agder 2013 AIM: To investigate if alterations in muscle strength, muscle mass and muscle thickness were followed by changes in work economy. METHODS: Fifty elderly men (60 – 81 years) followed a 12 week undulating periodized strength training program: Lean mass (Muscle mass; Dual-energy X-ray absorptiometry), muscle strength (1RM; one repetition maximum, in leg press and leg extension), and muscle thickness (ultrasound; vastus lateralis a...

  14. A haptic floor for interaction and diagnostics with goal based tasks during virtual reality supported balance training

    Directory of Open Access Journals (Sweden)

    Andrej Krpič

    2014-03-01

    Full Text Available Background: Balance training of patients after stroke is one of the primary tasks of physiotherapy after the hospitalization. It is based on the intensive training, which consists of simple, repetitive, goal-based tasks. The tasks are carried out by physiotherapists, who follow predefined protocols. Introduction of a standing frame and a virtual reality decrease the physical load and number of required physiotherapists. The patients benefit in terms of safety and increased motivation. Additional feedback – haptic floor can enhance the virtual reality experience, add additional level of difficulty and could be also used for generating postural perturbations. The purpose of this article is to examine whether haptic information can be used to identify specific anomalies in dynamic posturography.Methods: The performance and stability of closed-loop system of the haptic floor were tested using frequency analysis. A postural response normative was set up from data assessed in four healthy individuals who were exposed to unexpected movements of the haptic floor in eight directions. Postural responses of a patient after stroke participating in virtual reality supported balance training, where collisions resulted in floor movements, were assessed and contrasted to the normative.Results: Haptic floor system was stable and controllable up to the frequency of 1.1 Hz, sufficient for the generation of postural perturbations. Responses obtained after perturbations in two major directions for a patient after stroke demonstrated noticeable deviations from the normative.Conclusions: Haptic floor design, together with a standing frame and a virtual reality used for balance training, enables an assessment of directionally specific postural responses. The system was designed to identify postural disorders during balance training and rehabilitation progress outside specialized clinics, e.g. at patient’s home.

  15. Physiological changes with periodized resistance training in women tennis players.

    Science.gov (United States)

    Kraemer, William J; Hakkinen, Keijo; Triplett-Mcbride, N Travis; Fry, Andrew C; Koziris, L Perry; Ratamess, Nicholas A; Bauer, Jeffrey E; Volek, Jeff S; McConnell, Tim; Newton, Robert U; Gordon, Scott E; Cummings, Don; Hauth, John; Pullo, Frank; Lynch, J Michael; Fleck, Steven J; Mazzetti, Scott A; Knuttgen, Howard G

    2003-01-01

    To compare the physiological and performance adaptations between periodized and nonperiodized resistance training in women collegiate tennis athletes. Thirty women (19 +/- 1 yr) were assigned to either a periodized resistance training group (P), nonperiodized training group (NV), or a control group (C). Assessments for body composition, anaerobic power, VO2(max), speed, agility, maximal strength, jump height, tennis-service velocity, and resting serum hormonal concentrations were performed before and after 4, 6, and 9 months of resistance training performed 2-3 d.wk (-1). Nine months of resistance training resulted in significant increases in fat-free mass; anaerobic power; grip strength; jump height; one-repetition maximum (1-RM) leg press, bench press, and shoulder press; serve, forehand, and backhand ball velocities; and resting serum insulin-like growth factor-1, testosterone, and cortisol concentrations. Percent body fat and VO2(max) decreased significantly in the P and NV groups after training. During the first 6 months, periodized resistance training elicited significantly greater increases in 1-RM leg press (9 +/- 2 vs 4.5 +/- 2%), bench press (22 +/- 5 vs 11 +/- 8%), and shoulder press (24 +/- 7 vs 18 +/- 6%) than the NV group. The absolute 1-RM leg press and shoulder press values in the P group were greater than the NV group after 9 months. Periodized resistance training also resulted in significantly greater improvements in jump height (50 +/- 9 vs 37 +/- 7%) and serve (29 +/- 5 vs 16 +/- 4%), forehand (22 +/- 3 vs 17 +/- 3%), and backhand ball velocities (36 +/- 4 vs 14 +/- 4%) as compared with nonperiodized training after 9 months. These data demonstrated that periodization of resistance training over 9 months was superior for enhancing strength and motor performance in collegiate women tennis players.

  16. The Effect of 2 Types of Dual-Task Training on the Balance of Older Adults: Allocated Attention Ability

    Directory of Open Access Journals (Sweden)

    Hesam Iranmanesh

    2016-04-01

    Conclusion: The superiority of training with dual-task over single one and the superiority of dual-task training with variable priority over the fixed one (under dual-task condition may be due to the “limited capacity of attention” theory, which explains the reduction in performance when performing imultaneous tasks. This difference and dominance may also be explained by other mechanisms, such as the capability of attention and focus on doing tasks simultaneously, involved in this process. Therefore, by designing balance training based on dual-task methods, especially training based on the ability to turn the focus of cognitive capabilities and their suitable allocation, the attention to these tasks improves and consequently, the risk of falling decreases in the older adults.

  17. Phosphorus balance and fecal losses in growing Standardbred horses in training fed forage-only diets.

    Science.gov (United States)

    Ögren, G; Holtenius, K; Jansson, A

    2013-06-01

    This study examined the P balance and fecal P losses in growing Standardbred horses in training fed a forage-only diet with or without P supplementation and assessed the magnitude and proportion of the soluble, inorganic P (Pi) fraction in feces. Fourteen Standardbred horses (aged 20.0 ± 0.3 mo) adapted to ad libitum intake of grass forage containing 0.25% P were used in a crossover experiment investigating 2 dietary treatments with (high-P) and without (low-P) mineral supplementation for 6 d. Daily feed intake and refusals were weighed. Spot samples of feces were collected twice daily on d 4 to 6 and analyzed for total P and Pi. Acid-insoluble ash was used as a marker for total fecal output. Spot samples of urine were collected once on d 4 to 6 and analyzed for P and creatinine. Daily P intake was greater (P urine was less than 0.2 g/d on both diets. Using simple regression analysis, fecal endogenous P losses were estimated to be less than 10 mg/kg BW. Phosphorus retention was 1.6 ± 0.6 and 0.3 ± 0.6 g/d on the high- and low-P diets, respectively, but only that for the high-P diet was greater (P Phosphorus was mainly excreted in feces and both total fecal P and Pi excretion had a strong relationship to P intake. More than 80% of total P appeared to be soluble. Fecal endogenous P losses were similar to those described previously in growing horses.

  18. THE EFFECTS OF TAI CHI CHUAN COMBINED WITH VIBRATION TRAINING ON BALANCE CONTROL AND LOWER EXTREMITY MUSCLE POWER

    Directory of Open Access Journals (Sweden)

    Pao-Hung Chung

    2013-03-01

    Full Text Available The aim of this study was to determine whether performing Tai Chi Chuan on a customized vibration platform could enhance balance control and lower extremity muscle power more efficiently than Tai Chi Chuan alone in an untrained young population. Forty-eight healthy young adults were randomly assigned to the following three groups: a Tai Chi Chuan combined with vibration training group (TCV, a Tai Chi Chuan group (TCC or a control group. The TCV group underwent 30 minutes of a reformed Tai Chi Chuan program on a customized vibration platform (32 Hz, 1 mm three times a week for eight weeks, whereas the TCC group was trained without vibration stimuli. A force platform was used to measure the moving area of a static single leg stance and the heights of two consecutive countermovement jumps. The activation of the knee extensor and flexor was also measured synchronously by surface electromyography in all tests. The results showed that the moving area in the TCV group was significantly decreased by 15.3%. The second jump height in the TCV group was significantly increased by 8.14%, and the activation of the knee extensor/flexor was significantly decreased in the first jump. In conclusion, Tai Chi Chuan combined with vibration training can more efficiently improve balance control, and the positive training effect on the lower extremity muscle power induced by vibration stimuli still remains significant because there is no cross-interaction between the two different types of training methods.

  19. High-intensity interval training on an aquatic treadmill in adults with osteoarthritis: effect on pain, balance, function, and mobility.

    Science.gov (United States)

    Bressel, Eadric; Wing, Jessica E; Miller, Andrew I; Dolny, Dennis G

    2014-08-01

    Although aquatic exercise is considered a potentially effective treatment intervention for people with osteoarthritis (OA), previous research has focused primarily on calisthenics in a shallow pool with the inherent limitations on regulating exercise intensity. The purpose of this study was to quantify the efficacy of a 6-week aquatic treadmill exercise program on measures of pain, balance, function, and mobility. Eighteen participants (age = 64.5 ± 10.2 years) with knee OA completed a non-exercise control period followed by a 6-week exercise period. Outcome measures included visual analog scales for pain, posturography for balance, sit-to-stand test for function, and a 10-m walk test for mobility. The exercise protocol included balance training and high-intensity interval training (HIT) in an aquatic treadmill using water jets to destabilize while standing and achieve high ratings of perceived exertion (14-19) while walking. In comparison with pretests, participants displayed reduced joint pain (pre = 50.3 ± 24.8 mm vs. post = 15.8 ± 10.6 mm), improved balance (equilibrium pre = 66.6 ± 11.0 vs. post = 73.5 ± 7.1), function (rising index pre = 0.49 ± 0.19% vs. post = 0.33 ± 0.11%), and mobility (walk pre = 8.6 ± 1.4 s vs. post = 7.8 ± 1.1 s) after participating in the exercise protocol (p = 0.03-0.001). The same benefits were not observed after the non-exercise control period. Adherence to the exercise protocol was exceptional and no participants reported adverse effects, suggesting that aquatic treadmill exercise that incorporates balance and HIT training was well tolerated by patients with OA and may be effective at managing symptoms of OA.

  20. Dancing or Fitness Sport? The Effects of Two Training Programs on Hippocampal Plasticity and Balance Abilities in Healthy Seniors

    Directory of Open Access Journals (Sweden)

    Kathrin Rehfeld

    2017-06-01

    Full Text Available Age-related degenerations in brain structure are associated with balance disturbances and cognitive impairment. However, neuroplasticity is known to be preserved throughout lifespan and physical training studies with seniors could reveal volume increases in the hippocampus (HC, a region crucial for memory consolidation, learning and navigation in space, which were related to improvements in aerobic fitness. Moreover, a positive correlation between left HC volume and balance performance was observed. Dancing seems a promising intervention for both improving balance and brain structure in the elderly. It combines aerobic fitness, sensorimotor skills and cognitive demands while at the same time the risk of injuries is low. Hence, the present investigation compared the effects of an 18-month dancing intervention and traditional health fitness training on volumes of hippocampal subfields and balance abilities. Before and after intervention, balance was evaluated using the Sensory Organization Test and HC volumes were derived from magnetic resonance images (3T, MP-RAGE. Fourteen members of the dance (67.21 ± 3.78 years, seven females, and 12 members of the fitness group (68.67 ± 2.57 years, five females completed the whole study. Both groups revealed hippocampal volume increases mainly in the left HC (CA1, CA2, subiculum. The dancers showed additional increases in the left dentate gyrus and the right subiculum. Moreover, only the dancers achieved a significant increase in the balance composite score. Hence, dancing constitutes a promising candidate in counteracting the age-related decline in physical and mental abilities.

  1. A Comparison of 12 Weeks of Pilates and Aquatic Training on the Dynamic Balance of Women with Mulitple Sclerosis

    OpenAIRE

    Marandi, Sayyed Mohammad; Nejad, Vahid Shayegan; Shanazari, Zohreh; Zolaktaf, Vahid

    2013-01-01

    Background: Multiple Sclerosis (MS) is a disabling chronic disease of the nervous system in which the myelin system of the central nervous system is deteriorated. The objective of this study is to understand the effect of Pilates exercises and aquatic training for a 12 week period on the dynamic balance of MS patients. Methods: The research method is semi-experimental. As a result, among the female patients visiting the MS clinic of Kashani hospital in Esfahan, 57 patients with disease in...

  2. The Effect of a Period Stretching Training on Functional Dynamic Balance Performance and Range of Motion Patients with Knee Osteoarthritis

    OpenAIRE

    Edris Bavardi Moghadam; Seyed Sadradin Shojaedin

    2017-01-01

    Objective: This study was done to investigate the effect of a period of stretch training on functional dynamic balance performance and range of motion in patients with knee osteoarthritis. Methods: the population from which the sample of the study was selected included active older men with knee osteoarthritis in West Azerbaijan. 20 active man who were paid to exercise at least twice a week, were randomly divided into two groups of 10 patients. Subjects for 8 weeks, three times a week. To ...

  3. Unipedal Postural Balance and Countermovement Jumps After a Warm-up and Plyometric Training Session: A Randomized Controlled Trial.

    Science.gov (United States)

    Romero-Franco, Natalia; Jiménez-Reyes, Pedro

    2015-11-01

    The purpose of this study was to analyze the immediate effects of a plyometric training protocol on unipedal postural balance and countermovement jumps. In addition, we analyzed the effects of a warm-up on these parameters. Thirty-two amateur male sprinters (24.9 ± 4.1 years; 72.3 ± 10.7 kg; 1.78 ± 0.05 m; 22.6 ± 3.3 kg·m) were randomly sorted into a control group (n = 16) (they did not perform any physical activity) and a plyometric training group (n = 16) (they performed a 15-minute warm-up and a high-intensity plyometric protocol consisting of 10 sets of 15 vertical jumps). Before and after the warm-up, and immediately after and 5 minutes after the plyometric protocol, all athletes indicated the perceived exertion on calf and quad regions on a scale from 0 (no exertion) to 10 (maximum exertion). They also carried out a maximum countermovement jump and a unipedal postural balance test (athletes would remain as still as possible for 15 seconds in a left leg and right leg support stance). Results showed that, in the plyometric group, length and velocity of center-of-pressure movement in right leg support stance increased compared with baseline (p = 0.001 and p = 0.004, respectively) and to the control group (p = 0.035 and p = 0.029, respectively) immediately after the plyometric protocol. In addition, the countermovement jump height decreased right after the plyometric protocol (p plyometric exercises blunt unipedal postural balance and countermovement jump performance. The deterioration lasts at least 5 minutes, which may influence future exercises in the training session. Coaches should plan the training routine according to the immediate effects of plyometry on postural balance and vertical jumps, which play a role in injury prevention and sports performance.

  4. Effects on strength, power, and flexibility in adolescents of nonperiodized vs. daily nonlinear periodized weight training.

    Science.gov (United States)

    Moraes, Eveline; Fleck, Steven J; Ricardo Dias, Marcelo; Simão, Roberto

    2013-12-01

    The aim of this study was to compare 2 models of resistance training (RT) programs, nonperiodized (NP) training and daily nonlinear periodized (DNLP) training, on strength, power, and flexibility in untrained adolescents. Thirty-eight untrained male adolescents were randomly assigned to 1 of 3 groups: a control group, NP RT program, and DNLP program. The subjects were tested pretraining and after 4, 8, and 12 weeks for 1 repetition maximum (1RM) resistances in the bench press and 45° leg press, sit and reach test, countermovement vertical jump (CMVJ), and standing long jump (SLJ). Both training groups performed the same sequence of exercises 3 times a week for a total of 36 sessions. The NP RT consisted of 3 sets of 10-12RM throughout the training period. The DNLP training consisted of 3 sets using different training intensities for each of the 3 training sessions per week. The total volume of the training programs was not significantly different. Both the NP and DNLP groups exhibited a significant increase in the 1RM for the bench press and 45° leg press posttraining compared with that pretraining, but there were no significant differences between groups (p ≤ 0.05). The DNLP group's 1RM changes showed greater percentage improvements and effect sizes. Training intensity for the bench press and 45° leg press did not significantly change during the training. In the CMVJ and SLJ tests, NP and DNLP training showed no significant change. The DNLP group showed a significant increase in the sit and reach test after 8 and 12 weeks of training compared with pretraining; this did not occur with NP training. In summary, in untrained adolescents during a 12-week training period, a DNLP program can be used to elicit similar and possible superior maximal strength and flexibility gains compared with an NP multiset training model.

  5. Resistance Training with Instability in Multiple System Atrophy: A Case Report

    Science.gov (United States)

    Silva-Batista, Carla; Kanegusuku, Hélcio; Roschel, Hamilton; Souza, Eduardo O.; Cunha, Telma F.; Laurentino, Gilberto C.; Manoel, N.; De Mello, Marco T.; Piemonte, Maria E.P.; Brum, Patrícia C.; Forjaz, Claudia L.; Tricoli, Valmor; Ugrinowitsch, Carlos

    2014-01-01

    This case report assessed quality of life, activities of daily living, motor symptoms, functional ability, neuromuscular parameters and mRNA expression of selected genes related to muscle protein synthesis and degradation in a patient with Multiple System Atrophy (MSA). The patient underwent resistance training with instability devices (i.e., bosu, dyna disk, balance disk, Swiss ball) for six months twice a week. After the six months training, the patient’s left and right quadriceps muscle cross-sectional area and leg press one-repetition maximum increased 6.4%, 6.8%, and 40%, respectively; the patient’s timed up and go, sit to stand, dynamic balance, and activities of daily living improved 33.3%, 28.6%, 42.3%, and 40.1%, respectively; the patient’s severity of motor symptoms and risk of falls decreased 32% and 128.1%, respectively. Most of the subscales of quality of life demonstrated improvements as well, varying from 13.0% to 100.0%. mRNA expression of mechanogrowth factor and mammalian target of rapamycin increased 12.7-fold and 1.5-fold, respectively. This case report describes likely the first nonpharmacological therapeutic tool that might be able to decrease the severity of motor symptoms and risk of falls, and to improve functional ability, neuromuscular parameters, and quality of the life in a patient with MSA. Key points Six months of resistance training with instability alleviate the MSA-related effects and improve the quality of life in a patient with MSA. High complexity exercise intervention (i.e., resistance training with instability) may be very beneficial to individuals with impaired motor control and function as MSA patients. Caution should be exercised when interpreting our findings as they cannot be generalized to the entire MSA population and they do not allow establishing causal conclusions on the effects of this mode of exercise on MSA. PMID:25177187

  6. Increases in muscle strength and balance using a resistance training program administered via a telecommunications system in older adults.

    Science.gov (United States)

    Sparrow, David; Gottlieb, Daniel J; Demolles, Deborah; Fielding, Roger A

    2011-11-01

    Resistance training programs have been found to improve muscle strength, physical function, and depressive symptoms in middle-aged and older adults. These programs have typically been provided in clinical facilities, health clubs, and senior centers, which may be inconvenient and/or cost prohibitive for some older adults. The purpose of this study was to investigate the effectiveness of an automated telemedicine intervention that provides real-time guidance and monitoring of resistance training in the home. A randomized clinical trial in 103 middle-aged or older participants. Participants were assigned to use of a theory-driven interactive voice response system designed to promote resistance training (Telephone-Linked Computer-based Long-term Interactive Fitness Trainer; n = 52) or to an attention control (n = 51) for a period of 12 months. Measurements of muscle strength, balance, walk distance, and mood were obtained at baseline, 3, 6, and 12 months. We observed increased strength, improved balance, and fewer depressive symptoms in the intervention group than in the control group. Using generalized estimating equations modeling, group differences were statistically significant for knee flexion strength (p = .035), single-leg stance time (p = .029), and Beck Depression Inventory (p = .030). This computer-based telecommunications exercise intervention led to improvements in participants' strength, balance, and depressive symptoms. Because of their low cost and easy accessibility, computer-based interventions may be a cost-effective way of promoting exercise in the home.

  7. Robot-assisted gait training is not superior to balance training for improving postural instability in patients with mild to moderate Parkinson's disease: a single-blind randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Neri, Roberta; Verzè, Elisa; Gandolfi, Marialuisa; Waldner, Andreas; Smania, Nicola

    2015-04-01

    The main aim was to compare robotic gait training vs. balance training for reducing postural instability in patients with Parkinson's disease. The secondary aim was to compare their effects on the level of confidence during activities of daily living requiring balance, functional mobility and severity of disease. Randomized controlled trial. University hospital. A total of 66 patients with Parkinson's disease at Hoehn and Yahr Stage 3. After balanced randomization, all patients received 12, 45-minute treatment sessions, three days a week, for four consecutive weeks. A group underwent robot-assisted gait training with progressive gait speed increasing and body-weight support decreasing. The other group underwent balance training aimed at improving postural reactions (self and externally induced destabilization, coordination, locomotor dexterity exercises). Patients were evaluated before, after and one month posttreatment. Berg Balance Scale. Activities-Specific Balance Confidence Scale; Timed Up and Go Test; Unified Parkinson's Disease Rating Scale. No significant differences were found between the groups for the Berg Balance Scale either immediately after intervention (mean score in the robotic training group 51.58 ±3.94; mean score in the balance training group 51.15 ±3.46), or one-month follow-up (mean score in the robotic training group 51.03 ±4.63; mean score in the balance training group 50.97 ±4.28). Similar results were found for all the secondary outcome measures. Our findings indicate that robotic gait training is not superior to balance training for improving postural instability in patients with mild to moderate Parkinson's disease. © The Author(s) 2014.

  8. [Improvement of Upper Limb and Hand Functions of Stroke Patients by Balancing Acupuncture Combined with Motor Relearning Training].

    Science.gov (United States)

    Pan, Jun-Xiao; Chen, Yan-Ping; Wei, Na-Na

    2018-02-25

    To observe the therapeutic effect of balance acupuncture combined with motor relearning training for upper limb and hand functions of stroke patients. Sixty-two stroke patients were randomly divided into balance acupuncture group ( n =31) and routine acupuncture group ( n =31). For patients of the balance acupuncture group, Piantan, Jiantong and Wantong points on the healthy side were used. When Jiantong point taken, the acupuncture needle was removed after the patient experienced an electric shock-like spreading needling sensation. When Wantong point employed, the needle was removed after the patient experienced a local, intensified or spreading needling sensation. When Piantan point used, the needle was retained after the patient experienced an electric shock-like needling sensation, then, the motor relearning training was conducted, and the needle was removed immediately after the training. For patients of the routine acupuncture group, Jianyu(LI 15), Jianzhen (SI 9), Quchi (LI 11), etc. were needled with the needles retained for 30 min after getting needling sensations. The motor relearning training was also carried out after removal of the needle. The treatment in both groups was performed once daily, 6 days a week, and lasted for 8 weeks. The Fugl-Meyer score and motor function scale (MAS) of the upper limb, and the fine performance score and motor function score of the hand were assessed before and after the treatment. Following treatment, the Fugl-Meyer score and MAS of the upper limbs, and the motor function score and fine performance score of the hand were significantly increased in both groups compared with pre-treatment in each group ( P motor relearning training is helpful to improve the comprehensive function of the upper limb and hand in stroke patients.

  9. Exergame and Balance Training modulate Prefrontal Brain Activity during Walking and enhance Executive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Patrick eEggenberger

    2016-04-01

    Full Text Available Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE or balance and stretching training (BALANCE. The 8-week intervention included three sessions of 30 minutes per week and was completed by 33 participants (mean age 74.9±6.9 years. Prefrontal cortex (PFC activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < .05 or trend, r = .25 to .36, while DANCE showed a larger reduction at the end of the 30-second walking task compared to BALANCE in the left PFC (F(1, 31 = 3.54, p = .035, r = .32. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < .05 or trend, r = .31 to .50. The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults.

  10. Motor intensive anti-gravity training improves performance in dynamic balance related tasks in persons with Parkinson's disease.

    Science.gov (United States)

    Malling, Anne Sofie B; Jensen, Bente R

    2016-01-01

    Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Balance and Mobility Training for Older Adults: An Undergraduate Service-Learning Experience.

    Science.gov (United States)

    Williams, Kathleen; Kovacs, Christopher

    2001-01-01

    Describes a service learning program aimed at improving balance and mobility in a group of older adults from an independent living center while giving college students (mainly exercise and sport science majors) an opportunity to interact with this population. The program has resulted in improved balance and mobility for the older adults and…

  12. The Effect of Maximal Strength Training on Strength, Walking, and Balance in People with Multiple Sclerosis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Herb I. Karpatkin

    2016-01-01

    Full Text Available There is little literature examining the use of maximal strength training (MST in people with multiple sclerosis (pwMS. This pretest-posttest study examined the effects of a MST program on strength, walking, balance, and fatigue in a sample of pwMS. Seven pwMS (median EDSS 3.0, IQR 1.5 participated in a MST program twice weekly for eight weeks. Strength was assessed with 1-repetition maximum (1RM on each leg. Walking and balance were measured with the 6-Minute Walk Test (6MWT and Berg Balance Scale (BBS, respectively. Fatigue was measured during each week of the program with the Fatigue Severity Scale (FSS. The program was well tolerated, with an attendance rate of 96.4%. Participants had significant improvements in right leg 1RM (t6=-6.032, P=0.001, left leg 1RM (t(6=-5.388, P=0.002, 6MWT distance (t(6=-2.572,P=0.042, and BBS score (Z=-2.371, P=0.018 after the MST intervention. There was no significant change in FSS scores (F(1,3.312=2.411, P=0.092. Participants in the MST program experienced improved balance and walking without an increase in fatigue. This MST program may be utilized by rehabilitation clinicians to improve lower extremity strength, balance, and mobility in pwMS.

  13. The Effects of Two Months Body Weight Supported Treadmill Training on Balance and Quality of Life of Patients With Incomplete Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Hamid Zamani

    2018-01-01

    Conclusion According to achieved results, eight weeks body weight supported treadmill training can improve the balance of the patients with spinal cord injury. It was observed that the gait training with stimulation and use of proprioceptors and increase of patient’s confidence in walking and standing positions improve the patient’s balance. The patients were also able to control the internal and external perturbations and maintain the better balance. But eight weeks gait training had no significant effect on the quality of life in patients with spinal cord injury which suggest that more extended rehabilitation is required.

  14. Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance

    Directory of Open Access Journals (Sweden)

    Wirth Klaus

    2016-12-01

    Full Text Available The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p < 0.001, while in the squat group such variables as 1-repetition-maximum, the squat jump and the countermovement jump increased significantly (p < 0.001. The maximal isometric force showed no statistically significant result for the repeated measures factor, while the rate of force development of the squat group even showed a statistically significant decrease. Differences between the 2 experimental groups were detected for the squat jump and the countermovement jump. In comparison with the leg press, the squat might be a better strength training exercise for the development of jump performance.

  15. Effects of two proprioceptive training programs on ankle range of motion, pain, functional and balance performance in individuals with ankle sprain.

    Science.gov (United States)

    Lazarou, Lazaros; Kofotolis, Nikolaos; Pafis, Georgios; Kellis, Eleftherios

    2017-09-08

    Following ankle sprain, residual symptoms are often apparent, and proprioceptive training is a treatment approach. Evidence, however, is limited and the optimal program has to be identified. To investigate the effects of two post-acute supervised proprioceptive training programs in individuals with ankle sprain. Participants were recruited from a physiotherapy center for ankle sprain rehabilitation. In a pre-post treatment, blinded-assessor design, 22 individuals were randomly allocated to a balance or a proprioceptive neuromuscular facilitation (PNF) group. Both groups received 10 rehabilitation sessions, within a six-week period. Dorsiflexion range of motion (ROM), pain, functional and balance performance were assessed at baseline, at the end of training and eight weeks after training. Follow-up data were provided for 20 individuals. Eight weeks after training, statistically significant (p< 0.017) improvements were found in dorsiflexion ROM and most functional performance measures for both balance and PNF groups. Eight weeks after training, significant (p< 0.017) improvements in the frontal plane balance test and pain were observed for the balance group. Balance and PNF programs are recommended in clinical practice for improving ankle ROM and functional performance in individuals with sprain. Balance programs are also recommended for pain relief.

  16. Narrative Balance Management in an Intelligent Biosafety Training Application for Improving User Performance

    Science.gov (United States)

    Alvarez, Nahum; Sanchez-Ruiz, Antonio; Cavazza, Marc; Shigematsu, Mika; Prendinger, Helmut

    2015-01-01

    The use of three-dimensional virtual environments in training applications supports the simulation of complex scenarios and realistic object behaviour. While these environments have the potential to provide an advanced training experience to students, it is difficult to design and manage a training session in real time due to the number of…

  17. Intermittent Hypoxia and Locomotor Training Enhances Dynamic but Not Standing Balance in Patients With Incomplete Spinal Cord Injury.

    Science.gov (United States)

    Navarrete-Opazo, Angela; Alcayaga, Julio J; Sepúlveda, Oscar; Varas, Gonzalo

    2017-03-01

    To test the effect of combined intermittent hypoxia (IH) and body weight-supported treadmill training (BWSTT) on standing and dynamic balance in persons with incomplete spinal cord injury (iSCI). Randomized, triple-blind, placebo-controlled study. Rehabilitation medical centers. Study participants (N=35) with chronic iSCI with American Spinal Injury Association grades C and D (>1y postinjury) were randomly assigned to either IH plus BWSTT (n=18) or continued normoxia (placebo) plus BWSTT protocol (n=17). Participants received either IH (alternating 1.5min 9% inspired O 2 with 1.5min 21% inspired O 2 , 15 cycles per day) or continued normoxia (21% O 2 ) combined with 45 minutes of BWSTT for 5 consecutive days, followed by 3 times per week IH or normoxia plus BWSTT, for 3 additional weeks. Standing balance (normalized jerk and root-mean-square [RMS]) and dynamic balance (turning duration, cadence in a turn, and turn-to-sit duration) were assessed before and after IH and normoxia protocol by means of instrumented sway and instrumented timed Up and Go test. There was no significant difference in standing balance between interventions for both normalized jerk and RMS instrumented sway components (both P>.05). There was a significantly faster cadence (P<.001), turning duration (P<.001), and turn-to-sit duration (P=.001) in subjects receiving IH plus BWSTT, compared with placebo. A 4-week protocol of IH combined with locomotor training improves dynamic, but not standing, balance in persons with iSCI. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. The Influence of Mindfulness and Emotion Skills Training on Teachers' Classrooms: The Effects of the Cultivating Emotional Balance Training

    Science.gov (United States)

    Jennings, Patricia A.; Foltz, Carol; Snowberg, Karin E.; Sim, Heewon; Kemeny, Margaret E.

    2011-01-01

    Cultivating Emotional Balance (CEB), an emotion skills and mindfulness intervention, improved wellbeing in a sample of teachers. Two studies examined whether such gain is associated with improvements in classrooms. Study 1 examined post-intervention differences in 20 dimensions of classroom climate (N = 21). CEB teachers were rated higher in…

  19. Game Utilization as a Media to Train the Balance of Left and Right Brain

    Directory of Open Access Journals (Sweden)

    Evan Wijaya

    2017-10-01

    Full Text Available Human have two brain hemispheres, left hemisphere and right hemisphere. Left hemisphere is used for processing language, words, numbers, equations, etc. Right hemisphere is used for processing creativity, imagination, music, color, etc. Every human should have balance between left and right hemisphere. One method that could be used for balancing brain hemispheres is to use left and right hands for using tools, writing, or typing. “Typing Rhythm” is a game for PC platform, the purpose of this game is for brain balancing exercise by typing lyric of a song while the song is played.

  20. The Effect of Additional Virtual Reality Training on Balance in Children with Cerebral Palsy after Lower Limb Surgery: A Feasibility Study.

    Science.gov (United States)

    Meyns, Pieter; Pans, Liene; Plasmans, Kaat; Heyrman, Lieve; Desloovere, Kaat; Molenaers, Guy

    2017-02-01

    Impaired balance is disabling for children with cerebral palsy (CPc), especially for CPc who recently underwent lower limb surgery. Positive results of using virtual reality (VR) in balance rehabilitation have been published in several outpatient populations. We investigated the feasibility of applying additional VR training focused on sitting balance in CP inpatients of a rehabilitation center after lower limb surgery. Additionally, we investigated the rate of enjoyment of VR training compared with conventional physiotherapy. Eleven spastic CPc (4/7 males/females) following rehabilitation after lower limb orthopedic surgery were included (5-18 years). The control group received conventional physiotherapy. The intervention group received additional VR training. Balance was measured using the Trunk Control Measurement Scale every 3 weeks of the rehabilitation period. Enjoyment was analyzed using a 10-point Visual Analog Scale. Providing additional VR training was feasible in terms of recruitment, treatment adherence, and assessment adherence. Both groups improved sitting balance after therapy. The current games were not perceived as more enjoyable than conventional physiotherapy. Including additional VR training to conventional physiotherapy is feasible and might be promising to train sitting balance in CPc after lower limb surgery. Future research should take equal patient allocation and training duration between groups into consideration.

  1. In search of work/life balance: trainee perspectives on part-time obstetrics and gynaecology specialist training

    Directory of Open Access Journals (Sweden)

    Henry Amanda

    2012-01-01

    Full Text Available Abstract Background Part-time training (PTT is accessed by approximately 10% of Australian obstetrics and gynaecology trainees, a small but increasing minority which reflects the growing demand for improved work/life balance amongst the Australian medical workforce. This survey reports the attitudes and experiences of both full-time and part-time trainees to PTT. Methods An email-based anonymous survey was sent to all Australian obstetrics and gynaecology trainees in April 2009, collecting demographic and training status data, data on personal experiences of PTT and/or trainees, and attitudes towards PTT. Results 105 responses were received (20% response rate. These indicated strong support (90% from both full-time (FT and part-time (PT trainees for the availability of PTT. PT trainees were significantly more likely than FT trainees to be female with children. Improved morale was seen as a particular advantage of PTT; decreased continuity of care as a disadvantage. Conclusions Although limited by poor response rate, both PT and FT Australian obstetric trainees were supportive of part-time training. Both groups recognised important advantages and disadvantages of this mode of training. Currently, part-time training is accessed primarily by female trainees with family responsibilities, with many more trainees considering part-time training than the number that access it.

  2. The comparison of endurance training with moderate intensity and overtraining on Th1/Th2 balance in wistar male rats

    Directory of Open Access Journals (Sweden)

    Omid Salehian

    2016-07-01

    Full Text Available Immune system has role in inflammatory and anti inflammatory function. Base of these activities is produce IL4 and IFNγ. This study is about effects of endurance training with moderate intensity and overtraining on balance these two cytokines. In this study 30 rats selected and divided to 3 groups control, moderate and overtraining exercise. Moderate training protocol was done for 12 weeks with speed 30 m/min in first week and 23m/min in last week. Overtraining protocol was done with speed 15 m/min in first week and 25 m/min in last week. All protocol of training was for 12 weeks. Speleenectomy where done after interval training protocol, and Eliza method used to, Interleukin 4 (IL4 and Interferon γ (IFNγ.The results of this study showed a increase in the amount of (IFNγ and decrease in the levels of IL4 in moderate training group that difference was significant (p=0.01. The results also showed increase in levels of IL4 and decrease IFNγ levels in overtraining group difference was significant (p=0.01.Based on the results of this research, it can be concluded that doing moderate training lead to increase IFNγ and overtraining case to increase IL4.

  3. Comparison of Endurance Training and Overtraining on the Balance of Th1 / Th2 in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    O Salehian

    2016-08-01

    Full Text Available Background & aim: The immune system is involved in numerous activities including inflammatory and anti-inflammatory activities. The activities associated with the production of Interferonγ and Interleukin-4. The present study investigated the effect of endurance training on the balance of these two cytokines pays more. Methods: In the present study, 30 rats were selected and divided into 3 groups of 10: control, endurance and overtraining exercise. Endurance training protocol and overtraining were done for 12 weeks. Endurance training was done with the speed of 10 m/min in first week and 23m/min in last week. Overtraining protocol was done with the speed of 15 m/min in first week and 25 m/min in last week. Speleenectomy was done after interval training protocol, and then Interleukin 4 (IL4 and Interferon γ (IFNγ were evaluated by the Eliza method. One-way ANOVA and Tukey post hoc test was used for data analysis. Results: The results showed a significant increase in the amount of (IFNγ and a decrease in the levels of IL4 in endurance training group (p=0.01. The results also exposed an increase in levels of IL4 and decrease IFNγ levels in overtraining group which was significant (p=0.01. Conclusion: It can be concluded that the response to endurance training the amount of IFNγ and in response to overtraining the level of IL-4 was increased.

  4. Audio-Biofeedback training for posture and balance in Patients with Parkinson's disease

    NARCIS (Netherlands)

    Mirelman, Anat; Herman, Talia; Nicolai, Simone; Zijlstra, Agnes; Zijlstra, Wiebren; Becker, Clemens; Chiari, Lorenzo; Hausdorff, Jeffrey M.

    2011-01-01

    Background: Patients with Parkinson's disease (PD) suffer from dysrhythmic and disturbed gait, impaired balance, and decreased postural responses. These alterations lead to falls, especially as the disease progresses. Based on the observation that postural control improved in patients with

  5. A controlled clinical trial investigating the effects of cycle ergometry training on exercise tolerance, balance and quality of life in patients with Parkinson's disease.

    LENUS (Irish Health Repository)

    Lauhoff, Paula

    2013-03-01

    To establish the effect of a 6-week programme of cycle ergometry training on exercise tolerance, balance, activities of daily living (ADL) and quality of life in individuals with Parkinson\\'s disease (PD).

  6. The Effects of Whole Body Vibration Training and Creatine Supplementation on Lower Extremity Performance and Balance in Elderly Males

    Directory of Open Access Journals (Sweden)

    Mostafa Rahimi

    2011-04-01

    Full Text Available Objectives: The purpose of this study was to investigate the effects of whole body vibration training (WBVT and creatine (Cr supplementation on lower extremity performance and balance in elderly males. Methods & Materials: In this semi-experimental study, twenty two eligible males from the members of an elderly daycare center with more than 60 years of age were enrolled and were divided into three groups randomly, WBVT+Cr(n=7, WBVT+Pgroup (n=7, and control group (n=8. In WBVT+Cr and WBVT+P groups exercises were performed on the whole body vibration device for 10 days with 30-35 Hz intensity and 5 mm amplitude. The WBVT+Cr group consumed 20g/day Crsupplement for the first 5 days followed by 5g/days for the next 5 days of protocol. The WBVT+P group consumed dexterous. The control group neither did any exercise nor consumed any supplement during the protocol. Static balance by standing time on one leg, dynamic balance by TUG test and lower extremity performance by 30-meter walking test, sit and stand test and tandem gait test weremeasured. Paired sample t-test and one way ANOVAwere used for data analysis (α=0.05. Results: Our results showed that dynamic balance, lower body performance in 30- meter walking and tandem gait improved in experimental groups. However, ANOVA did not show any significant increase in static balance (P=0.514, dynamic balance (P=0.153, lower body performance in 30-meter walking test (P=0.339, sit and stand test (P=0.578 and tandem gait (P=0.151. Conclusion: In conclusion, it seems that WBVT plus Cr supplementation improves some of the motor fitness factors in elderly males during a short time.

  7. A gender-based analysis of work patterns, fatigue, and work/life balance among physicians in postgraduate training.

    Science.gov (United States)

    Gander, Philippa; Briar, Celia; Garden, Alexander; Purnell, Heather; Woodward, Alistair

    2010-09-01

    To document fatigue in New Zealand junior doctors in hospital-based clinical training positions and identify work patterns associated with work/life balance difficulties. This workforce has had a duty limitation of 72 hours/week since 1985. The authors chose a gender-based analytical approach because of the increasing proportion of female medical graduates. The authors mailed a confidential questionnaire to all 2,154 eligible junior doctors in 2003. The 1,412 respondents were working > or = 40 hours/week (complete questionnaires from 1,366: response rate: 63%; 49% women). For each participant, the authors calculated a multidimensional fatigue risk score based on sleep and work patterns. Women were more likely to report never/rarely getting enough sleep (P life (odds ratio: 3.83; 95% CI: 2.79-5.28), home life (3.37; 2.43-4.67), personal relationships (2.12; 1.57-2.86), and other commitments (3.06; 2.23-4.19).Qualitative analyses indicated a common desire among men and women for better work/life balance and for part-time work, particularly in relation to parenthood. Limitation of duty hours alone is insufficient to manage fatigue risk and difficulties in maintaining work/life balance. These findings have implications for schedule design, professional training, and workforce planning.

  8. Enhanced balance associated with coordination training with stochastic resonance stimulation in subjects with functional ankle instability: an experimental trial

    Directory of Open Access Journals (Sweden)

    Brown Cathleen N

    2007-12-01

    Full Text Available Abstract Background Ankle sprains are common injuries that often lead to functional ankle instability (FAI, which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. Methods This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1 conventional coordination training group (CCT; 2 SR stimulation coordination training group (SCT; or 3 control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P and medial/lateral (M/L center-of-pressure velocity (COPvel, M/L COP standard deviation (COPsd, M/L COP maximum excursion (COPmax, and COP area (COParea. Results Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 ± 0.4 cm/s vs. 2.7 ± 0.6 cm/s, M/L COPvel (2.6 ± 0.5 cm/s vs. 2.9 ± 0.5 cm/s, M/L COPsd (0.63 ± 0.12 cm vs. 0.73 ± 0

  9. Enhanced balance associated with coordination training with stochastic resonance stimulation in subjects with functional ankle instability: an experimental trial.

    Science.gov (United States)

    Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M

    2007-12-17

    Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 +/- 0.4 cm/s vs. 2.7 +/- 0.6 cm/s), M/L COPvel (2.6 +/- 0.5 cm/s vs. 2.9 +/- 0.5 cm/s), M/L COPsd (0.63 +/- 0.12 cm vs. 0.73 +/- 0.11 cm), M/L COPmax (1.76 +/- 0

  10. Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults : A Systematic Review and Meta-Analysis

    NARCIS (Netherlands)

    Lacroix, Andre; Hortobagyi, Tibor; Beurskens, Rainer; Granacher, Urs

    2017-01-01

    Background Balance and resistance training can improve healthy older adults' balance and muscle strength. Delivering such exercise programs at home without supervision may facilitate participation for older adults because they do not have to leave their homes. To date, no systematic literature

  11. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training.

    Science.gov (United States)

    Robineau, F; Rieger, S W; Mermoud, C; Pichon, S; Koush, Y; Van De Ville, D; Vuilleumier, P; Scharnowski, F

    2014-10-15

    Recent advances in neurofeedback based on real-time functional magnetic resonance imaging (fMRI) allow for learning to control spatially localized brain activity in the range of millimeters across the entire brain. Real-time fMRI neurofeedback studies have demonstrated the feasibility of self-regulating activation in specific areas that are involved in a variety of functions, such as perception, motor control, language, and emotional processing. In most of these previous studies, participants trained to control activity within one region of interest (ROI). In the present study, we extended the neurofeedback approach by now training healthy participants to control the interhemispheric balance between their left and right visual cortices. This was accomplished by providing feedback based on the difference in activity between a target visual ROI and the corresponding homologue region in the opposite hemisphere. Eight out of 14 participants learned to control the differential feedback signal over the course of 3 neurofeedback training sessions spread over 3 days, i.e., they produced consistent increases in the visual target ROI relative to the opposite visual cortex. Those who learned to control the differential feedback signal were subsequently also able to exert that control in the absence of neurofeedback. Such learning to voluntarily control the balance between cortical areas of the two hemispheres might offer promising rehabilitation approaches for neurological or psychiatric conditions associated with pathological asymmetries in brain activity patterns, such as hemispatial neglect, dyslexia, or mood disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Altered Patterns of Reflex Excitability, Balance, and Locomotion Following Spinal Cord Injury (SCI and Locomotor Training.

    Directory of Open Access Journals (Sweden)

    Prodip K Bose

    2012-07-01

    Full Text Available Spasticity is an important problem that complicates daily living in many individuals with SCI. While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Our present studies were initiated to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, thirty animals received midthoracic SCI using the standard MASCIS protocol (10 g 2.5 cm weight drop. They were divided randomly into three equal groups: control (contused untrained, contused treadmill trained, and contused cycle trained. Velocity-dependent ankle torque was tested across a wide range of velocities (612 – 49 deg/sec to permit quantitation of tonic (low velocity and dynamic (high velocity contributions to lower limb spasticity. Treadmill and cycle training were started on post-injury day 8. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity dependent spasticity was detected at postcontusion week 8 through 12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350 - 612 deg/sec. Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and BBB and reflex rate depression, a quantitative assessment of

  13. Walking can be more effective than balance training in fall prevention among community-dwelling older adults.

    Science.gov (United States)

    Okubo, Yoshiro; Osuka, Yosuke; Jung, Songee; Rafael, Figueroa; Tsujimoto, Takehiko; Aiba, Tatsuya; Kim, Teaho; Tanaka, Kiyoji

    2016-01-01

    To examine the effects of walking on falls among community-dwelling older adults while accounting for exposures. A total of 90 older adults, ranging in age from 65 to 79 years, were allocated into either the walking (brisk walking, n = 50) or the balance (balance and strength training, n = 40) group to participate in a 3-month supervised and 13-month unsupervised fall-prevention program held from 2012 to 2014 in Japan. Falls and trips that occurred during the 16-month period were monitored with a monthly fall calendar. The risk of falls and trips was evaluated by person-year, physically active person-day and person-step. The walking group showed a significant reduction in the fall risk when evaluated by the falls per physically active person-day (rate ratio 0.38, 95% confidence interval 0.19-0.77) and falls per person-step (rate ratio 0.47, 95% confidence interval 0.26-0.85) compared with the balance group. In contrast, the number of trips significantly increased with walking, even when evaluated as trips per physically active person-day (rate ratio 1.50, 95% confidence interval 1.12-2.00). The present findings suggest that walking among community-dwelling older adults can be more effective for fall prevention than balance training. However, because walking can induce more trips, walking should not be recommended for older adults who are susceptible to falling or frailty. © 2015 Japan Geriatrics Society.

  14. Physical Performance, Balance, Mobility, and Muscle Strength Decline at Different Rates in Elderly People

    Science.gov (United States)

    Nakano, Márcia Mariko; Otonari, Thais Satie; Takara, Kelly Sayuri; Carmo, Carolina M; Tanaka, Clarice

    2014-01-01

    [Purpose] The aim of this study was to verify the decline in functionality of elderly people. [Subjects and Methods] The study subjects comprised 152 individuals (96 women; 56 men) divided into 3 groups: G1 (60 to 69 years, n=53); G2 (70 to 79 years, n=65); and G3 (80 years or older, n=34). Physical performance, balance, mobility, and muscle strength were assessed using Short Physical Performance Battery (SPPB), Berg Balance Scale (BERG), Timed Up and Go (TUG) test, and leg press test, respectively. Comparison among age-stratified groups (G1, G2 and G3) and between genders were examined using analysis of variance with Tukey’s test as a post hoc test or the Kruskal-Wallis test with Bonferroni correction. [Results] SPPB and BERG scores decreased significantly in comparison between G1 and G3, and between G2 and G3 in women. TUG and leg press scores decreased significantly in comparison between G1 and G3 and between G2 and G3. [Conclusion] People in their 60s and 70s have similar functional characteristics (physical performance, balance, mobility and muscle strength for both genders), and functionality starts to decline when people are in their 80s. PMID:24764638

  15. Influência de diferentes ângulos articulares obtidos na posição inicial do exercício pressão de pernas e final do exercício puxada frontal sobre os valores de 1RM Influencia en los diferentes ángulos articulares obtenidos en la posición inicial del ejercicio de presión de piernas y al final del ejercicio de puje frontal sobre los valores de 1RM The influence of different joint angles obtained in the starting position of leg press exercise and at the end of the frontal pull exercise on the values of 1RM

    Directory of Open Access Journals (Sweden)

    João Augusto Reis de Moura

    2004-08-01

    . De tal manera que fueron medidos en el test de 1RM los ejercicios de presión de piernas y puje frontal de 20 sujetos voluntarios del sexo masculino (con medias de edad 24,5 años, estatura 1,75 metros y masa corporal de 72,0 kg. Despues de consentimiento de participación y de adaptación al entrenamiento resistido con pesos fué aplicado al test de 1RM en el ejercício de presión de piernas en tres diferentes ángulos de testado en la posición inicial (80º, 90º y 100º de flexión de rodilla y tambien en el ejercicio de puje frontal en posición final (60º, 70º y 80º de flexión de codo, siendo que cada ángulo fué testado en días diferentes pueden, con los dos ejercicios. Los resultados indican que las medias de 1RM para el ejercicio de presión de piernas son estadísticamente diferentes (F = 30,199; p = 0,000 entre si (post hoc de Tukey. Si para el ejercicio de puje frontal, existen hoy diferencias estas no fueron estadísticamente significativas (F = 1,330; p = 0,281. Se concluye que diferentes técnicas de ejecución de los ejercicios que involucran ángulos diferentes principalmente en las posiciones iniciales de estos deben ser rigurosamente controladas pués pueden afectar el quilaje levantado.The Maximum Repetition test (1RM has been applied under various circumstances and with diverse objectives, and variables that might potentially influence this test have been constantly studied. This study sought to evaluate the influence of different angles in the initial position of the leg press exercises and in the final position of the frontal pull exercise on the results of the 1RM. Twenty male volunteers (with an average age of 24.5 years, height of 1.75 meters and weight of 72 kg were measured in the 1RM test for the leg press exercise and the frontal pull exercise. After obtaining their consent to participate in and adapting to the weight-resistance training, the 1RM test was applied in the leg press exercise in three different test angles in the

  16. Effects of Antigravity Treadmill Training on Gait, Balance, and Fall Risk in Children With Diplegic Cerebral Palsy.

    Science.gov (United States)

    El-Shamy, Shamekh Mohamed

    2017-11-01

    The aim of this study was to investigate the effects of antigravity treadmill training on gait, balance, and fall risk in children with diplegic cerebral palsy. Thirty children with diplegic cerebral palsy were selected for this randomized controlled study. They were randomly assigned to (1) an experimental group that received antigravity treadmill training (20 mins/d, 3 d/wk) together with traditional physical therapy for 3 successive mos and (2) a control group that received only traditional physical therapy program for the same period. Outcomes included selected gait parameters, postural stability, and fall risk. Outcomes were measured at baseline and after 3 mos of intervention. Children in both groups showed significant improvements in the mean values of all measured variables (P fall risk in children with diplegic cerebral palsy.

  17. Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board.

    Science.gov (United States)

    Prosperini, Luca; Fanelli, Fulvia; Petsas, Nikolaos; Sbardella, Emilia; Tona, Francesca; Raz, Eytan; Fortuna, Deborah; De Angelis, Floriana; Pozzilli, Carlo; Pantano, Patrizia

    2014-11-01

    To determine if high-intensity, task-oriented, visual feedback training with a video game balance board (Nintendo Wii) induces significant changes in diffusion-tensor imaging ( DTI diffusion-tensor imaging ) parameters of cerebellar connections and other supratentorial associative bundles and if these changes are related to clinical improvement in patients with multiple sclerosis. The protocol was approved by local ethical committee; each participant provided written informed consent. In this 24-week, randomized, two-period crossover pilot study, 27 patients underwent static posturography and brain magnetic resonance (MR) imaging at study entry, after the first 12-week period, and at study termination. Thirteen patients started a 12-week training program followed by a 12-week period without any intervention, while 14 patients received the intervention in reverse order. Fifteen healthy subjects also underwent MR imaging once and underwent static posturography. Virtual dissection of white matter tracts was performed with streamline tractography; values of DTI diffusion-tensor imaging parameters were then obtained for each dissected tract. Repeated measures analyses of variance were performed to evaluate whether DTI diffusion-tensor imaging parameters significantly changed after intervention, with false discovery rate correction for multiple hypothesis testing. There were relevant differences between patients and healthy control subjects in postural sway and DTI diffusion-tensor imaging parameters (P interaction for fractional anisotropy and radial diffusivity of the left and right superior cerebellar peduncles were found (F2,23 range, 5.555-3.450; P = .036-.088 after false discovery rate correction). These changes correlated with objective measures of balance improvement detected at static posturography (r = -0.381 to 0.401, P < .05). However, both clinical and DTI diffusion-tensor imaging changes did not persist beyond 12 weeks after training. Despite the low

  18. Exercise training alters the balance between vasoactive compounds in skeletal muscle of individuals with essential hypertension

    DEFF Research Database (Denmark)

    Hansen, Ane Håkansson; Nyberg, Michael Permin; Bangsbo, Jens

    2011-01-01

    The effects of physical training on the formation of vasodilating and vasoconstricting compounds, as well as on related proteins important for vascular function, were examined in skeletal muscle of individuals with essential hypertension (n=10). Muscle microdialysis samples were obtained from...... subjects with hypertension before and after 16 weeks of physical training. Muscle dialysates were analyzed for thromboxane A(2), prostacyclin, nucleotides, and nitrite/nitrate. Protein levels of thromboxane synthase, prostacyclin synthase, cyclooxygenase 1 and 2, endothelial nitric oxide synthase (e...

  19. Effects of short-term training on plasma acid-base balance during incremental exercise in man.

    Science.gov (United States)

    Putman, Charles T; Jones, Norman L; Heigenhauser, George J F

    2003-07-15

    The present study examined the effect of short-term submaximal training on plasma acid-base balance during exercise. The influence of water and ion exchange between plasma, active muscles and erythrocytes in the response to training were also studied. The contributions of independent physicochemical variables (i.e. strong ion difference ([SID]), total concentration of weak acids ([Atot]) and PO2) to changes in arterial (a) and femoral venous (v) plasma [H+] were examined in six subjects (age 24+/-1.5 years; maximum oxygen consumption rate (VO2,max), 3.67+/-0.24 l min(-1)) during steady-state cycling for 15 min at each of 30, 65 and 75% of VO2,max before (pre) and after (post) training for 7 days on a cycle ergometer (2 h daily at 60 % VO2,max). The rise in [H+]a during exercise was attenuated post-training by 3 and 5 nequiv l(-1) (Pwater flux (Jv) into leg muscle (Ptraining by 4.5 and 6 nequiv l(-1) (Ptraining-induced attenuation of the rise in plasma [H+]a and [H+]v during incremental exercise resulted from adaptive changes within muscles (less Lac- production and less water uptake) and erythrocytes (less uptake of Lac-, Cl- and K+), leading to greater [SID] and lower [Atot] in both arterial and femoral venous plasma.

  20. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study.

    Science.gov (United States)

    Bao, Tian; Carender, Wendy J; Kinnaird, Catherine; Barone, Vincent J; Peethambaran, Geeta; Whitney, Susan L; Kabeto, Mohammed; Seidler, Rachael D; Sienko, Kathleen H

    2018-01-18

    Sensory augmentation has been shown to improve postural stability during real-time balance applications. Limited long-term controlled studies have examined retention of balance improvements in healthy older adults after training with sensory augmentation has ceased. This pilot study aimed to assess the efficacy of long-term balance training with and without sensory augmentation among community-dwelling healthy older adults. Twelve participants (four males, eight females; 75.6 ± 4.9 yrs) were randomly assigned to the experimental group (n = 6) or control group (n = 6). Participants trained in their homes for eight weeks, completing three 45-min exercise sessions per week using smart phone balance trainers that provided written, graphic, and video guidance, and monitored trunk sway. During each session, participants performed six repetitions of six exercises selected from five categories (static standing, compliant surface standing, weight shifting, modified center of gravity, and gait). The experimental group received vibrotactile sensory augmentation for four of the six repetitions per exercise via the smart phone balance trainers, while the control group performed exercises without sensory augmentation. The smart phone balance trainers sent exercise performance data to a physical therapist, who recommended exercises on a weekly basis. Balance performance was assessed using a battery of clinical balance tests (Activity Balance Confidence Scale, Sensory Organization Test, Mini Balance Evaluation Systems Test, Five Times Sit to Stand Test, Four Square Step Test, Functional Reach Test, Gait Speed Test, Timed Up and Go, and Timed Up and Go with Cognitive Task) before training, after four weeks of training, and after eight weeks of training. Participants in the experimental group were able to use vibrotactile sensory augmentation independently in their homes. After training, the experimental group had significantly greater improvements in Sensory

  1. The effect of 8 weeks of whole body vibration training on static balance and explosive strength of lower limbs in physical education students

    OpenAIRE

    George Dallas; Alexandros Mavvidis; Paschalis Kirialanis; Sotiris Papouliakos

    2017-01-01

    Background: It has been shown that whole body vibration training has an effect on strength and balance in athletes of various sports.Objective: The purpose of the study was to examine the effect of 8 weeks of Whole Body Vibration (WBV) training on static balance and explosive strength of the lower limbs, using two different training intensities vibration protocols.Methods: Eighty-three physical education students (age 19.39 ± 2.35 years) volunteered to participate in an...

  2. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report.

    Science.gov (United States)

    Chisholm, Amanda E; Alamro, Raed A; Williams, Alison M M; Lam, Tania

    2017-04-11

    Robotic overground gait training devices, such as the Ekso, require users to actively participate in triggering steps through weight-shifting movements. It remains unknown how much the trunk muscles are activated during these movements, and if it is possible to transfer training effects to seated balance control. This study was conducted to compare the activity of postural control muscles of the trunk during overground (Ekso) vs. treadmill-based (Lokomat) robotic gait training, and evaluate changes in seated balance control in people with high-thoracic motor-complete spinal cord injury (SCI). Three individuals with motor-complete SCI from C7-T4, assumed to have no voluntary motor function below the chest, underwent robotic gait training. The participants were randomly assigned to Ekso-Lokomat-Ekso or Lokomat-Ekso-Lokomat for 10 sessions within each intervention phase for a total of 30 sessions. We evaluated static and dynamic balance control through analysis of center of pressure (COP) movements after each intervention phase. Surface electromyography was used to compare activity of the abdominal and erector spinae muscles during Ekso and Lokomat walking. We observed improved postural stability after training with Ekso compared to Lokomat during static balance tasks, indicated by reduced COP root mean square distance and ellipse area. In addition, Ekso training increased total distance of COP movements during a dynamic balance task. The trunk muscles showed increased activation during Ekso overground walking compared to Lokomat walking. Our findings suggest that the Ekso actively recruits trunk muscles through postural control mechanisms, which may lead to improved balance during sitting. Developing effective training strategies to reactivate the trunk muscles is important to facilitate independence during seated balance activity in people with SCI.

  3. Cognitive Training among Cognitively-Impaired Older Adults: A Feasibility Study Assessing the Potential Improvement in Balance

    Directory of Open Access Journals (Sweden)

    Renae L Smith-Ray

    2016-10-01

    Full Text Available Background: Emerging literature suggests that mobility and cognition are linked. Epidemiological data support a negative association between cognition and falls among cognitively intact older adults. A small number of intervention studies found that regimented cognitive training (CT improves mobility among this population, suggesting that CT may be an under-explored approach toward reducing falls. To date, no studies have examined the impact of CT on balance among those who are cognitively impaired. The purpose of this study was to assess the feasibility of implementing a CT program among cognitively impaired older adults and examine whether there are potential improvements in balance following CT.Method: A single group repeated measures design was used to identify change in balance, depressive symptoms, and global cognition. A mixed method approach was employed to evaluate the feasibility of a CT intervention among a cohort of cognitively impaired older adults. CT was delivered in a group 2 days/week over 10 weeks using an online brain exercise program, Posit Science Brain HQ (20 hours. All participants completed a one-on-one data collection interview at baseline and post-program. Results: Participants (N=20 were on average 80.5 years old and had mild to moderate cognitive impairment. Following the 10-week cognitive training intervention, mean scores on 4 of the 5 balance measures improved among CT participants. Although none of the balance improvements reached significance, these findings are promising given the small sample size. Depressive symptoms significantly improved between baseline and 10 weeks (p=0.021. Mean global cognition also improved across the study period, but neither of these improvements were statistically significant. Based on participant responses, the CT program was feasible for this population.Conclusion: This study provides support for the feasibility of implementing a CT program among cognitively-impaired older adults

  4. Effect of Yoga Training on Physical Fitness and Balance in Elderly Females

    Directory of Open Access Journals (Sweden)

    Masoumeh Koohboomi

    2015-10-01

    Full Text Available Objectives: Senility and reduction of physical activities usually cause undesirable physical and even mental effects on the adults. Since physical activities can improve physical even mental condition, and consequently bring about more independence for adults, the purpose of this paper was to find out the effects of some of yoga practices on some factors of physical preparation in the elderly. Methods & Materials: A total of 45 elderly women (age: 64±6.12 y, height: 162.50±10.21 cm, weight: 63.21±9.71 kg, all enjoying general health were selected through convenience sampling method to take part in this test. In this study, the Sharpened Romberg test (with open and closed eyes, acquiring operation test, timed up and go (TUG test, number of arm flexion for 30 seconds test, number of takeoff and landing chair, getting hands together from behind, number of sitting and rising of the chair test, were used for measuring the static balance, dynamic balance, agility, upper organ, strength of lower organ, inflection of upper organ, trunk and lower organ, respectively. These tests were performed before and after the program. Data analysis was performed by variance analysis test and t relevant (at significant level P. Results: Research findings showed that yoga exercises for 6 weeks significantly affected the static and dynamic balances with eyes open and closed, agility, upper and lower extremity muscle strength, flexibility, upper and lower extremities. Conclusion: Yoga (Hatha yoga may have positive effects on physical fitness of the elderly. These effects include improving strength in the upper and lower extremity, static and dynamic balances, and agility.

  5. Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Lacroix, André; Hortobágyi, Tibor; Beurskens, Rainer; Granacher, Urs

    2017-11-01

    Balance and resistance training can improve healthy older adults' balance and muscle strength. Delivering such exercise programs at home without supervision may facilitate participation for older adults because they do not have to leave their homes. To date, no systematic literature analysis has been conducted to determine if supervision affects the effectiveness of these programs to improve healthy older adults' balance and muscle strength/power. The objective of this systematic review and meta-analysis was to quantify the effectiveness of supervised vs. unsupervised balance and/or resistance training programs on measures of balance and muscle strength/power in healthy older adults. In addition, the impact of supervision on training-induced adaptive processes was evaluated in the form of dose-response relationships by analyzing randomized controlled trials that compared supervised with unsupervised trials. A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SportDiscus to detect articles examining the role of supervision in balance and/or resistance training in older adults. The initially identified 6041 articles were systematically screened. Studies were included if they examined balance and/or resistance training in adults aged ≥65 years with no relevant diseases and registered at least one behavioral balance (e.g., time during single leg stance) and/or muscle strength/power outcome (e.g., time for 5-Times-Chair-Rise-Test). Finally, 11 studies were eligible for inclusion in this meta-analysis. Weighted mean standardized mean differences between subjects (SMD bs ) of supervised vs. unsupervised balance/resistance training studies were calculated. The included studies were coded for the following variables: number of participants, sex, age, number and type of interventions, type of balance/strength tests, and change (%) from pre- to post-intervention values. Additionally, we coded training according

  6. Effects of a 12-Week Modified German Volume Training Program on Muscle Strength and Hypertrophy—A Pilot Study

    Directory of Open Access Journals (Sweden)

    Daniel A. Hackett

    2018-01-01

    Full Text Available This study investigated the effect of a 12-week modified German Volume Training intervention, or the 10 sets method, on muscle strength and hypertrophy. Twelve healthy males were randomly assigned to either a 5-SET or 10-SET group and performed 5 or 10 sets, respectively, of 10 repetitions at 60–80% one-repetition maximum (1RM. Muscle strength and body composition measures were taken at baseline, six weeks, and after 12 weeks of training. No significant changes in total, trunk, and arm lean mass were found within and between groups at any time point. There was no significant difference between groups for lean leg mass. However, a decrease in lean leg mass was observed within the 10-SET group between six and 12 weeks (p = 0.02. An increase in 1RM bench press was found within the 5-SET group at week 6 (p = 0.001 and 12 (p = 0.001 when compared to baseline, while no increases in 1RM leg press were observed at any time point within any group. No significant differences were found for 1RM bench press and leg press between groups. For 1RM bench press moderate effect sizes (ES favored 5-SET and for 1RM leg press small ESs favored 10-SET. Findings suggest performing >5 sets per exercise does not promote greater gains in muscle strength and hypertrophy. Future research should aim to substantiate these preliminary findings in a larger cohort.

  7. Pilates exercise training vs. physical therapy for improving walking and balance in people with multiple sclerosis: a randomized controlled trial.

    Science.gov (United States)

    Kalron, Alon; Rosenblum, Uri; Frid, Lior; Achiron, Anat

    2017-03-01

    Evaluate the effects of a Pilates exercise programme on walking and balance in people with multiple sclerosis and compare this exercise approach to conventional physical therapy sessions. Randomized controlled trial. Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel. Forty-five people with multiple sclerosis, 29 females, mean age (SD) was 43.2 (11.6) years; mean Expanded Disability Status Scale (S.D) was 4.3 (1.3). Participants received 12 weekly training sessions of either Pilates ( n=22) or standardized physical therapy ( n=23) in an outpatient basis. Spatio-temporal parameters of walking and posturography parameters during static stance. Functional tests included the Time Up and Go Test, 2 and 6-minute walk test, Functional Reach Test, Berg Balance Scale and the Four Square Step Test. In addition, the following self-report forms included the Multiple Sclerosis Walking Scale and Modified Fatigue Impact Scale. At the termination, both groups had significantly increased their walking speed ( P=0.021) and mean step length ( P=0.023). According to the 2-minute and 6-minute walking tests, both groups at the end of the intervention program had increased their walking speed. Mean (SD) increase in the Pilates and physical therapy groups were 39.1 (78.3) and 25.3 (67.2) meters, respectively. There was no effect of group X time in all instrumented and clinical balance and gait measures. Pilates is a possible treatment option for people with multiple sclerosis in order to improve their walking and balance capabilities. However, this approach does not have any significant advantage over standardized physical therapy.

  8. Fluid balance of elite Brazilian youth soccer players during consecutive days of training.

    Science.gov (United States)

    Silva, Rafael P; Mündel, Toby; Natali, Antônio J; Bara Filho, Maurício G; Lima, Jorge R P; Alfenas, Rita C G; Lopes, Priscila R N R; Belfort, Felipe G; Marins, João C B

    2011-04-01

    In this study we investigated pre-training hydration status, fluid intake, and sweat loss in 20 elite male Brazilian adolescent soccer players (mean ± s: age 17.2 ± 0.5 years; height 1.76 ± 0.05 m; body mass 69.9 ± 6.0 kg) on three consecutive days of typical training during the qualifying phase of the national soccer league. Urine specific gravity (USG) and body mass changes were evaluated before and after training sessions to estimate hydration status. Players began the days of training mildly hypohydrated (USG > 1.020) and fluid intake did not match fluid losses. It was warmer on Day 1 (33.1 ± 2.4°C and43.4 ± 3.2% relative humidity; P < 0.05) and total estimated sweat losses (2822 ± 530 mL) and fluid intake (1607 ± 460 mL) were significantly higher (P < 0.001) compared with Days 2 and 3. Data also indicate a significant correlation between the extent of sweat loss and the volume of fluid consumed (Day 1: r = 0.560, P = 0.010; Day 2: r = 0.445, P = 0.049; Day 3: r = 0.743, P = 0.0001). We conclude that young, native tropical soccer players arrive hypohydrated to training and that they exhibit voluntary dehydration; therefore, enhancing athletes' self-knowledge of sweat loss during training might help them to consume sufficient fluid to match the sweat losses.

  9. The effect of 8 weeks of whole body vibration training on static balance and explosive strength of lower limbs in physical education students

    Directory of Open Access Journals (Sweden)

    George Dallas

    2017-12-01

    Full Text Available Background: It has been shown that whole body vibration training has an effect on strength and balance in athletes of various sports.Objective: The purpose of the study was to examine the effect of 8 weeks of Whole Body Vibration (WBV training on static balance and explosive strength of the lower limbs, using two different training intensities vibration protocols.Methods: Eighty-three physical education students (age 19.39 ± 2.35 years volunteered to participate in an 8-week WBV training. They were randomly divided into two groups with 30 sec and 60 sec duration of vibration exposure per exercise, total volume of exercise was the same for both groups. The explosive strength of the lower limbs was assessed by a squat jump and static balance by Balance Error Scoring System at the baseline (pre-test and after 8 weeks of WBV training at 15 sec, 5, 10, and 15 min after the end of WBV exposure. A two-way ANOVA 2 × 5 (protocol × time with repeated measures on both factors was used. Univariate analyses with simple contrasts across time were selected as post hoc tests.Results: Results showed a time × protocol interaction effect for static balance (p < .001 but not for the squat jump (p > .05. Furthermore, a time effect was found for the static balance and squat jump test. The 60 sec protocol had a greater percentage improvement compared to the 30 sec protocol in static balance (p = .003, whereas the 30 sec protocol was superior to the 60 sec protocol in explosive strength. However, the differences between the two protocols were not significant.Conclusion: WBV training had positive effects on static balance and explosive strength in physical education students. Balance and jump performance may benefit from WBV training. Therefore, WBV may be an effective training method for the improvement of static balance and lower limb strength.

  10. The effects of supervised Slack line Training on postural balance in judoists

    DEFF Research Database (Denmark)

    Santos, L.; Fernandez-Rio, J.; Fernandez-Garcia, B.

    2014-01-01

    Aim. This study investigates the effects of Slackline on postural control and jumping performance in judoists. Methods. Fifteen judoists were randomly distributed into an experimental group (EG: N.=8, 16.0 +/- 1.73 years) and a control group (CG: N.=7, 15.43 +/- 2.23 years). While both groups...... followed the same judo training program during the 4 weeks of the study, the EG completed an additional supervised Slackline training (2 sessions per week of 60 min each one, for 4 weeks). Several key postural control parameters were assessed with a footscan baropodometric platform (sway length, ellipse...

  11. Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure.

    Science.gov (United States)

    Da Silva, V L; Messias, F R; Zanchi, N E; Gerlinger-Romero, F; Duncan, M J; Guimarães-Ferreira, L

    2015-05-01

    The aim of the present study was to evaluate the effect of oral caffeine ingestion during repeated sets of resistance. Fourteen moderately resistance-trained men (20.9 ± 0.36 years and 77.62 ± 2.07 kg of body weight) ingested a dose of caffeine (5 mg.kg-1) or placebo prior to 3 sets of bench press and 3 sets of leg press exercises, respectively. The study used a double-blind, counterbalanced, crossover design. Repetitions completed and total weight lifted were recorded in each set. Readiness to invest in both physical (RTIPE) and mental (RTIME) effort were assessed prior each set, and rating of perceived exertion (RPE) was recorded after each set. Rest and peak heart rates were determined via telemetry. Caffeine ingestion result in increased number of repetitions to failure in bench press (F[1,13]=6.16, P=0.027) and leg press (F[1,13]=9.33, P=0.009) compared to placebo. The sum of repetitions performed in the 3 sets was 11.60% higher in bench press (26.86 ± 1.74; caffeine: 30.00 ± 1.87; P=0.027) and 19.10% in leg press (placebo: 40.0 ± 4.22; caffeine: 47.64 ± 4.69; P=0.009). Also, RTIME was increased in the caffeine condition both in bench press (F[1,13]=7.02, P=0.02) and in leg press (F[1,13]=5.41, P=0.03). There were no differences in RPE, RTIPE and HR (P>0.05) across conditions. Acute caffeine ingestion can improve performance in repeated sets to failure and increase RTIME in resistance-trained men.

  12. Lower-extremity resistance training on unstable surfaces improves proxies of muscle strength, power and balance in healthy older adults: a randomised control trial

    Directory of Open Access Journals (Sweden)

    Nils Eckardt

    2016-11-01

    Full Text Available Abstract Background It is well documented that both balance and resistance training have the potential to mitigate intrinsic fall risk factors in older adults. However, knowledge about the effects of simultaneously executed balance and resistance training (i.e., resistance training conducted on unstable surfaces [URT] on lower-extremity muscle strength, power and balance in older adults is insufficient. The objective of the present study was to compare the effects of machine-based stable resistance training (M-SRT and two types of URT, i.e., machine-based (M-URT and free-weight URT (F-URT, on measures of lower-extremity muscle strength, power and balance in older adults. Methods Seventy-five healthy community-dwelling older adults aged 65–80 years, were assigned to three intervention groups: M-SRT, M-URT and F-URT. Over a period of ten weeks, all participants exercised two times per week with each session lasting ~60 min. Tests included assessment of leg muscle strength (e.g., maximal isometric leg extension strength, power (e.g., chair rise test and balance (e.g., functional reach test, carried out before and after the training period. Furthermore, maximal training load of the squat-movement was assessed during the last training week. Results Maximal training load of the squat-movement was significantly lower in F-URT in comparison to M-SRT and M-URT. However, lower-extremity resistance training conducted on even and uneven surfaces meaningfully improved proxies of strength, power and balance in all groups. M-URT produced the greatest improvements in leg extension strength and F-URT in the chair rise test and functional reach test. Conclusion Aside from two interaction effects, overall improvements in measures of lower-extremity muscle strength, power and balance were similar across training groups. Importantly, F-URT produced similar results with considerably lower training load as compared to M-SRT and M-URT. Concluding, F-URT seems an

  13. Effect of adapted karate training on quality of life and body balance in 50-year-old men

    Directory of Open Access Journals (Sweden)

    Marie-Ludivine Chateau-Degat

    2010-08-01

    Full Text Available Marie-Ludivine Chateau-Degat1, Gérard Papouin2, Philippe Saint-Val3, Antonio Lopez21Axe sante des populations et environmentale, CHUQ, Laval University, Quebec, Canada; 2Service de Cardiologie, Centre Hospitalier Territorial du Taone, 3Fédération Tahitienne de Karaté, Papeete, French PolynesiaBackground: Aging is associated with a decrease in physical skills, sometimes accompanied by a change in quality of life (QOL. Long-term martial arts practice has been proposed as an avenue to counter these deleterious effects. The general purpose of this pilot study was to identify the effects of an adapted karate training program on QOL, depression, and motor skills in 50-year-old men.Methods and design: Fifteen 50-year-old men were enrolled in a one-year prospective experiment. Participants practiced adapted karate training for 90 minutes three times a week. Testing sessions, involving completion of the MOS 36-item Short Form Health Survey (SF36 and Beck Depression Inventory, as well as motor and effort evaluation, were done at baseline, and six and 12 months.Results: Compared with baseline, participants had better Beck Depression Inventory scores after one year of karate training (P < 0.01 and better perception of their physical health (P < 0.01, but not on the mental dimension (P < 0.49. They also improved their reaction time scores for the nondominant hand and sway parameters in the eyes-closed position (P < 0.01.Conclusion: Regular long-term karate practice had favorable effects on mood, perception of physical health confirmed by better postural control, and improved performance on objective physical testing. Adapted karate training would be an interesting option for maintaining physical activity in aging.Keywords: karate, balance, training, sport, aging

  14. Effects of Ving Tsun Chinese martial art training on musculoskeletal health, balance performance, and self-efficacy in community-dwelling older adults.

    Science.gov (United States)

    Lip, Ryan W T; Fong, Shirley S M; Ng, Shamay S M; Liu, Karen P Y; Guo, X

    2015-03-01

    [Purpose] The aim of this study was to investigate the effects of Ving Tsun (VT) Chinese martial art training on radial bone strength, upper- and lower-limb muscular strength, shoulder joint mobility, balance performance, and self-efficacy in elderly participants. [Subjects and Methods] Twelve seniors voluntarily joined the VT training group, and twenty-seven seniors voluntarily joined the control group. The VT group received VT training for three months, while the control group received no training. The bone strength of the distal radius was assessed using an ultrasound bone sonometer. Muscular strength in the limbs was evaluated using a Jamar handgrip dynamometer and the five times sit-to-stand test. Shoulder joint mobility was examined using a goniometer. Balance performance and self-efficacy were evaluated using the Berg Balance Scale and the Chinese version of the Activities-specific Balance Confidence Scale, respectively. [Results] The results revealed a nonsignificant group-by-time interaction effect, group effect, and time effect for all outcome variables. However, general trends of maintenance or improvement in all outcome parameters were observed to a greater extent in the VT group than in the control group. [Conclusion] VT training might be a potential fall-prevention exercise that can be used to maintain general physique, balance, and confidence in the elderly population. A further randomized controlled trial is needed to confirm this postulation.

  15. Exergaming for balance training of elderly: state of the art and future developments

    NARCIS (Netherlands)

    van Diest, M.; Lamoth, C.J.C.; Stegenga, J.; Verkerke, Gijsbertus Jacob; Postema, K.

    2013-01-01

    Fall injuries are responsible for physical dysfunction, significant disability, and loss of independence among elderly. Poor postural control is one of the major risk factors for falling but can be trained in fall prevention programs. These however suffer from low therapy adherence, particularly if

  16. Walk in Balance: Training Crisis Intervention Team Police Officers as Compassionate Warriors

    Science.gov (United States)

    Chopko, Brian A.

    2011-01-01

    Crisis Intervention Teams (CIT) were developed to enable law enforcement officers to effectively and compassionately respond to calls involving people experiencing psychiatric distress. Mental health professionals responsible for training CIT officers are in a unique position to promote the compassionate treatment of those experiencing psychiatric…

  17. Exploring Senior Level Athletic Training Students' Perceptions on Burnout and Work-Life Balance

    Science.gov (United States)

    Barrett, Jessica L.; Mazerolle, Stephanie M.; Eason, Christianne M.

    2016-01-01

    Context: The professional socialization process enables athletic training students (ATSs) to gain insights into behaviors, values, and attitudes that characterize their chosen profession. However, the process often focuses on skill development over professional issues. ATSs may be exposed to burnout and work-life conflict, which may impact their…

  18. Exergaming for balance training of elderly : state of the art and future developments

    NARCIS (Netherlands)

    van Diest, Mike; Lamoth, Claudine J. C.; Stegenga, Jan; Verkerke, Gijsbertus J.; Postema, Klaas

    2013-01-01

    Fall injuries are responsible for physical dysfunction, significant disability, and loss of independence among elderly. Poor postural control is one of the major risk factors for falling but can be trained in fall prevention programs. These however suffer from low therapy adherence, particularly if

  19. Finding the Balance Between Schoolhouse and On-the-Job Training

    Science.gov (United States)

    2007-01-01

    military training [BMT] to 3-level award1 for mission-ready airmen). Specifically, we examined seven specialties: Airborne Crypto - logic Linguist (Air...sup- port and interfaces with other units. Performs and assists in mission planning. Maintains publications and currency items. Maintains and

  20. Fluid Balance During Training in Elite Young Athletes of Different Sports.

    Science.gov (United States)

    Arnaoutis, Giannis; Kavouras, Stavros A; Angelopoulou, Athanasia; Skoulariki, Chara; Bismpikou, Stefani; Mourtakos, Stamatis; Sidossis, Labros S

    2015-12-01

    Although there are many studies demonstrating a high percentage of adult athletes who start exercise in suboptimal hydration state, limited data concerning hydration levels in athletic youth exist. The purpose of this study was to identify the hydration status of elite young athletes of different sports, during a typical day of training. Fifty-nine young elite male athletes from different sports (basketball, gymnastics, swimming, running, and canoeing) participated in the study (age: 15.2 ± 1.3 years; years of training: 7.7 ± 2.0). Hydration status was assessed in the morning, before and immediately after practice. Data collection took place at the same time of the day, with mean environmental temperature and humidity at the time of the measurements at 27.6 ± 0.9° C and 58 ± 8%, respectively. All athletes trained for approximately 90 minutes, and they were consuming fluids ad libitum throughout their practice. Over 89% of the athletes were hypohydrated (urine specific gravity [USG] ≥1.020 mg·dl) based on their first morning urine sample. Pretraining urine samples revealed that 76.3% of the athletes were hypohydrated, whereas a significant high percent remained hypohydrated even after training according to USG values ≥1.020 mg·dl (74.5%) and urine color scale: 5-6 (76.3%). Mean body weight loss during training was -1.1 ± 0.07%. We concluded that the prevalence of hypohydration among elite young athletes is very high, as indicated by the USG and urine color values. The majority of the athletes was hypohydrated throughout the day and dehydrated even more during practice despite fluid availability.

  1. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study.

    Science.gov (United States)

    Nagano, Yasuharu; Ida, Hirofumi; Akai, Masami; Fukubayashi, Toru

    2011-07-14

    Some research studies have investigated the effects of anterior cruciate ligament (ACL) injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes. Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program. After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE): 24.4 (2.1) deg) was significantly larger than that for the Pre-training trial (19.3 (2.5) deg) (p training trial (40.2 (1.9) deg) was significantly larger than that for the Pre-training trial (34.3 (2.5) deg) (p training. A significant increase was also found in the activity of the hamstrings 50 ms before foot contact (p jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.

  2. Training the Unimpaired Arm Improves the Motion of the Impaired Arm and the Sitting Balance in Chronic Stroke Survivors.

    Science.gov (United States)

    De Luca, Alice; Giannoni, Psiche; Vernetti, Honore; Capra, Cristina; Lentino, Carmelo; Checchia, Giovanni Antonio; Casadio, Maura

    2017-07-01

    Robot-assisted rehabilitation of stroke survivors mainly focuses on the impaired side of the body while the role of the unimpaired side in the recovery after stroke is still controversial. The goal of this study is to investigate the influence on sitting balance and paretic arm functions of a training protocol based on movements of the unimpaired arm. Sixteen chronic stroke survivors underwent nineteen training sessions, in which they performed active movements with the unimpaired arm supported by a passive exoskeleton. Performance of the trunk and upper limbs was evaluated before treatment, after treatment and at six months follow up with clinical scales and an instrumented evaluation. A reaching test executed with the exoskeleton was used to assess changes in performance of both arms. The treatment based on the unimpaired arm's movements executed with a correct body posture led to benefits in control of the trunk and of both the trained and the untrained arm. The amount of impaired arm improvement in the Fugl-Meyer score was comparable to the outcome of robotic treatments focused directly on this arm. Our results highlight the importance of taking into account all body schema in the rehabilitation robotic program, instead of focusing only on the impaired side of the body.

  3. Randomized Controlled Trial to Examine the Impact of Aquatic Exercise Training on Functional Capacity, Balance, and Perceptions of Fatigue in Female Patients With Multiple Sclerosis.

    Science.gov (United States)

    Kargarfard, Mehdi; Shariat, Ardalan; Ingle, Lee; Cleland, Joshua A; Kargarfard, Mina

    2018-02-01

    To assess the effects of an 8-week aquatic exercise training program on functional capacity, balance, and perceptions of fatigue in women with multiple sclerosis (MS). Randomized controlled design. Referral center of an MS society. Women (N=32; mean age ± SD, 36.4±8.2y) with diagnosed relapsing-remitting MS. After undergoing baseline testing by a neurologist, participants were allocated to either an intervention (aquatic training program, n=17) or a control group (n=15). The intervention consisted of an 8-week aquatic training program (3 supervised training sessions per week; session duration, 45-60min; 50%-75% estimated maximum heart rate). Six-minute walk test (6-MWT), balance (Berg Balance Scale [BBS]), and perceptions of fatigue (Modified Fatigue Impact Scale; [MFIS]) at baseline and after the 8-week intervention. Differences over time between the experimental and control groups were assessed by a 2×2 (group by time) repeated-measures analysis of variance. Thirty-two women completed the 8-week aquatic training intervention (experimental group, n=17; control group, n=15). All outcome measures improved in the experimental group: 6-MWT performance (pretest mean ± SD, 451±58m; posttest mean ± SD, 503±57m; PAquatic exercise training improved functional capacity, balance, and perceptions of fatigue in women with MS. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Cho, Ki Hun; Lee, Wan Hee

    2014-01-01

    The purpose of this study was to determine the role of treadmill training based real-world video recording (TRWVR) for balance and gait ability in chronic stroke patients. Thirty chronic stroke patients were randomly assigned to either the TRWVR group (n=15) or the control group (n=15). Both groups participated in a standard rehabilitation program; in addition, the TRWVR group participated in TRWVR for 30 min per day, three times per week, for 6 weeks, and the control group participated in treadmill walking training for 30 min per day, three times per week, for 6 weeks. Balance ability was measured using the Berg Balance Scale (BBS), Timed Up and Go test (TUG) and the postural sway by force platform system. Gait performance was measured using a pressure sensitive walkway. Significant differences in the time factor for dynamic balance and gait (Pgait (Pgait in chronic stroke patients when added to treadmill walking. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Heat strain during military training activities: The dilemma of balancing force protection and operational capability

    OpenAIRE

    Hunt, Andrew P.; Billing, Daniel C.; Patterson, Mark J.; Caldwell, Joanne N.

    2016-01-01

    ABSTRACT Military activities in hot environments pose 2 competing demands: the requirement to perform realistic training to develop operational capability with the necessity to protect armed forces personnel against heat-related illness. To ascertain whether work duration limits for protection against heat-related illness restrict military activities, this study examined the heat strain and risks of heat-related illness when conducting a military activity above the prescribed work duration li...

  6. Effects of plyometric and pneumatic explosive strength training on neuromuscular function and dynamic balance control in 60-70year old males.

    Science.gov (United States)

    Piirainen, Jarmo M; Cronin, Neil J; Avela, Janne; Linnamo, Vesa

    2014-04-01

    The present study compared neuromuscular adaptations to 12weeks of plyometric (PLY) or pneumatic (PNE) power training and their effects on dynamic balance control. Twenty-two older adults aged 60-70 (PLY n=9, PNE n=11) participated in the study. Measurements were conducted at Pre, 4, 8 and 12weeks. Dynamic balance was assessed as anterior-posterior center of pressure (COP) displacement in response to sudden perturbations. Explosive isometric knee extension and plantar flexion maximal voluntary contractions (MVCs) were performed. Maximal drop jump performance from optimal dropping height was measured in a sledge ergometer. Increases in knee extensor and ankle plantar flexor torque and muscle activity were higher and occurred sooner in PNE, whereas in drop jumping, PLY showed a clearer increase in optimal drop height (24%, pmuscle activity after 12weeks of training. In spite of these training mode specific adaptations, both groups showed similar improvements in dynamic balance control after 4weeks of training (PLY 38%, p<0.001; PNE 31%, p<0.001) and no change thereafter. These results show that although power and plyometric training may involve different neural adaptation mechanisms, both training modes can produce similar improvements in dynamic balance control in older individuals. As COP displacement was negatively correlated with rapid knee extension torque in both groups (PLY r=-0.775, p<0.05; PNE r=-0.734, p<0.05) after training, the results also highlight the importance of targeting rapid force production when training older adults to improve dynamic balance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. FES Training in Aging: interim results show statistically significant improvements in mobility and muscle fiber size

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2012-03-01

    Full Text Available Aging is a multifactorial process that is characterized by decline in muscle mass and performance. Several factors, including reduced exercise, poor nutrition and modified hormonal metabolism, are responsible for changes in the rates of protein synthesis and degradation that drive skeletal muscle mass reduction with a consequent decline of force generation and mobility functional performances. Seniors with normal life style were enrolled: two groups in Vienna (n=32 and two groups in Bratislava: (n=19. All subjects were healthy and declared not to have any specific physical/disease problems. The two Vienna groups of seniors exercised for 10 weeks with two different types of training (leg press at the hospital or home-based functional electrical stimulation, h-b FES. Demografic data (age, height and weight were recorded before and after the training period and before and after the training period the patients were submitted to mobility functional analyses and muscle biopsies. The mobility functional analyses were: 1. gait speed (10m test fastest speed, in m/s; 2. time which the subject needed to rise from a chair for five times (5x Chair-Rise, in s; 3. Timed –Up-Go- Test, in s; 4. Stair-Test, in s; 5. isometric measurement of quadriceps force (Torque/kg, in Nm/kg; and 6. Dynamic Balance in mm. Preliminary analyses of muscle biopsies from quadriceps in some of the Vienna and Bratislava patients present morphometric results consistent with their functional behaviors. The statistically significant improvements in functional testings here reported demonstrates the effectiveness of h-b FES, and strongly support h-b FES, as a safe home-based method to improve contractility and performances of ageing muscles.

  8. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-01-01

    Full Text Available Background Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. Methods A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group (n = 60, one-leg standing balance exercise, 12 min/d or the intervention group (n = 60, force platform training with functional electric stimulation, 12 min/d. The training was provided 15 days a month for 3 months by physical therapists. Medial–lateral and anterior–posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. Results On comparing the two groups, the intervention group showed significantly decreased (p < 0.01 medial–lateral and anterior–posterior maximal range of sway with eyes open and closed. There was significantly higher improvement in the Berg Balance Scale (p < 0.05, the Barthel Index (p < 0.05 and the Falls Efficacy Scale-International (p < 0.05, along with significantly lesser number of injurious fallers (p < 0.05, number of fallers (p < 0.05, and fall rates (p < 0.05 during the 6-month follow-up in the intervention group. Conclusion This study showed that the visual feedback-based force platform training with functional electric stimulation improved balance and prevented falls in older adults.

  9. Evaluation and understanding of Playware Technology – trials with playful balance training

    DEFF Research Database (Denmark)

    Jessen, Jari Due

    . The thesis starts with a presentation of the results of two different pilot trials done with the MOTO tiles technology which showed remarkable development among the elderly, particularly regarding balance. It further contextualizes MOTO tiles in the research area of "games for health" by an account......This thesis is an investigation of the new technologies used to motivate elderly people in a playful manner to do physical exercises, which can improve their physical health and, thus, prevent accidents. For example, fall accidents caused by falling are widespread among older adults. The thesis...... further studies exactly how digital technology and games can create play for the elderly, with the ambition of reaching a more substantiated understanding of this process that could then lead to a better and more calculated design of new products. The technology in focus, “MOTO Tiles”, is an example...

  10. ROBOT-ASSISTED VS SENSORY INTEGRATION TRAINING IN TREATING GAIT AND BALANCE DYSFUNCTIONS IN PATIENTS WITH MULTIPLE SCLEROSIS:A RANDOMISED CONTROLLED TRIAL

    Directory of Open Access Journals (Sweden)

    Marialuisa eGandolfi

    2014-05-01

    Full Text Available Background: Extensive research on both healthy subjects and patients with central nervous damage has elucidated a crucial role of postural adjustment reactions and central sensory integration processes in generating and shaping locomotors function, respectively. Whether robotic-assisted gait devices might improve these functions in Multiple sclerosis (MS patients is not fully investigated in literature.Purpose: The aim of this study was to compare the effectiveness of robot-assisted gait training (RAGT and sensory integration balance training (SIBT in improving walking and balance performance in patients with MS. Methods: Twenty-two patients with MS (EDSS: 1.5-6.5 were randomly assigned to two groups. The RAGT group (n= 12 underwent end-effector system training. The SIBT group (n=10 underwent specific balance exercises. Each patient received twelve 50-minutes treatment sessions (2 days/week. A blinded rater evaluated patients before and after treatment as well as 1 month posttreatment. Primary outcomes were walking speed and Berg Balance Scale. Secondary outcomes were the Activities-specific Balance Confidence Scale, Sensory Organization Balance Test, Stabilometric Assessment, Fatigue Severity Scale, cadence, step length, single and double support time, Multiple Sclerosis Quality of Life-54. Results: Between groups comparisons showed no significant differences on primary and secondary outcome measures over time. Within group comparisons showed significant improvements in both groups on the Berg Balance Scale (P=.001. Changes approaching significance were found on gait speed (P=.07 only in the RAGT group. Significant changes in balance task-related domains during standing and walking conditions were found in the SIBT group.Conclusion: Balance disorders in patients with MS may be ameliorated by RAGT and by SIBT.

  11. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial.

    Science.gov (United States)

    Gandolfi, Marialuisa; Geroin, Christian; Picelli, Alessandro; Munari, Daniele; Waldner, Andreas; Tamburin, Stefano; Marchioretto, Fabio; Smania, Nicola

    2014-01-01

    Extensive research on both healthy subjects and patients with central nervous damage has elucidated a crucial role of postural adjustment reactions and central sensory integration processes in generating and "shaping" locomotor function, respectively. Whether robotic-assisted gait devices might improve these functions in Multiple sclerosis (MS) patients is not fully investigated in literature. The aim of this study was to compare the effectiveness of end-effector robot-assisted gait training (RAGT) and sensory integration balance training (SIBT) in improving walking and balance performance in patients with MS. Twenty-two patients with MS (EDSS: 1.5-6.5) were randomly assigned to two groups. The RAGT group (n = 12) underwent end-effector system training. The SIBT group (n = 10) underwent specific balance exercises. Each patient received twelve 50-min treatment sessions (2 days/week). A blinded rater evaluated patients before and after treatment as well as 1 month post treatment. Primary outcomes were walking speed and Berg Balance Scale. Secondary outcomes were the Activities-specific Balance Confidence Scale, Sensory Organization Balance Test, Stabilometric Assessment, Fatigue Severity Scale, cadence, step length, single and double support time, Multiple Sclerosis Quality of Life-54. Between groups comparisons showed no significant differences on primary and secondary outcome measures over time. Within group comparisons showed significant improvements in both groups on the Berg Balance Scale (P = 0.001). Changes approaching significance were found on gait speed (P = 0.07) only in the RAGT group. Significant changes in balance task-related domains during standing and walking conditions were found in the SIBT group. Balance disorders in patients with MS may be ameliorated by RAGT and by SIBT.

  12. The Effects of Pilates Training on Balance Control and Self-Reported Health Status in Community-Dwelling Older Adults: A Randomized Controlled Trial.

    Science.gov (United States)

    Gabizon, Hadas; Press, Yan; Volkov, Ilia; Melzer, Itshak

    2016-07-01

    To evaluate the effect of a group-based Pilates training program on balance control and health status in healthy older adults. A single-blind, randomized, controlled trial. General community. A total of 88 community-dwelling older adults (age 71.15 ± 4.30 years), without evidence of functional balance impairment, were recruited and allocated at random to a Pilates intervention group (n = 44) or a control group (n = 44). The Pilates intervention group received 36 training sessions over three months (3 sessions a week), while the control group did not receive any intervention. Standing upright postural stability, performance-based measures of balance, and self-reported health status was assessed in both groups at baseline and at the end of the intervention period. Compared with the control group, the Pilates intervention did not improve postural stability, baseline functional measures of balance, or health status. The results suggest that because Pilates training is not task specific, it does not improve balance control or balance function in independent older adults.

  13. Physical training improves body weight and energy balance but does not protect against hepatic steatosis in obese mice.

    Science.gov (United States)

    Evangelista, Fabiana S; Muller, Cynthia R; Stefano, Jose T; Torres, Mariana M; Muntanelli, Bruna R; Simon, Daniel; Alvares-da-Silva, Mario R; Pereira, Isabel V; Cogliati, Bruno; Carrilho, Flair J; Oliveira, Claudia P

    2015-01-01

    This study sought to determine the role of physical training (PT) on body weight (BW), energy balance, histological markers of nonalcoholic fatty liver disease (NAFLD) and metabolic gene expression in the liver of ob/ob mice. Adult male ob/ob mice were assigned into groups sedentary (S; n = 8) and trained (T; n = 9). PT consisted in running sessions of 60 min at 60% of maximal speed conducted five days per week for eight weeks. BW of S group was higher from the 4(th) to 8(th) week of PT compared to their own BW at the beginning of the experiment. PT decreased daily food intake and increased resting oxygen consumption and energy expenditure in T group. No difference was observed in respiratory exchange ratio, but the rates of carbohydrate and lipids oxidation, and maximal running capacity were greater in T than S group. Both groups showed liver steatosis but not inflammation. PT increased CPT1a and SREBP1c mRNA expression in T group, but did not change MTP, PPAR-α, PPAR-γ, and NFKB mRNA expression. In conclusion, PT prevented body weight gain in ob/ob mice by inducing negative energy balance and increased physical exercise tolerance. However, PT did not change inflammatory gene expression and failed to prevent liver steatosis possible due to an upregulation in the expression of SREBP1c transcription factor. These findings reveal that PT has positive effect on body weight control but not in the liver steatosis in a leptin deficiency condition.

  14. Gait training after stroke: a pilot study combining a gravity-balanced orthosis, functional electrical stimulation, and visual feedback.

    Science.gov (United States)

    Krishnamoorthy, Vijaya; Hsu, Wei-Li; Kesar, Trisha M; Benoit, Daniel L; Banala, Sai K; Perumal, Ramu; Sangwan, Vivek; Binder-Macleod, Stuart A; Agrawal, Sunil K; Scholz, John P

    2008-12-01

    This case report describes the application of a novel gait retraining approach to an individual with poststroke hemiparesis. The rehabilitation protocol combined a specially designed leg orthosis (the gravity-balanced orthosis), treadmill walking, and functional electrical stimulation to the ankle muscles with the application of motor learning principles. The participant was a 58-year-old man who had a stroke more than three years before the intervention. He underwent gait retraining over a period of five weeks for a total of 15 sessions during which the gravity compensation provided by the gravity-balanced orthosis and visual feedback about walking performance was gradually reduced. At the end of five weeks, he decreased the time required to complete the Timed Up and Go test; his gait speed increased during overground walking; gait was more symmetrical; stride length, hip and knee joint excursions on the affected side increased. Except for gait symmetry, all other improvements were maintained one month post-intervention. This case report describes possible advantages of judiciously combining different treatment techniques in improving the gait of chronic stroke survivors. Further studies are planned to evaluate the effectiveness of different components of this training in both the subacute and chronic stages of stroke recovery.

  15. The Effect of Body Weight Support Treadmill Training on Gait Recovery, Proximal Lower Limb Motor Pattern, and Balance in Patients with Subacute Stroke.

    Science.gov (United States)

    Mao, Yu-Rong; Lo, Wai Leung; Lin, Qiang; Li, Le; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng

    2015-01-01

    Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Inpatient department of rehabilitation medicine at a university-affiliated hospital. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Both groups improved on balance and lower extremity motor function measures (P training. Both methods can improve balance and motor function.

  16. Effect of a combination of whole body vibration exercise and squat training on body balance, muscle power, and walking ability in the elderly

    Directory of Open Access Journals (Sweden)

    Osugi T

    2014-02-01

    Full Text Available Tomohiro Osugi,1 Jun Iwamoto,2 Michio Yamazaki,1 Masayuki Takakuwa3 1Department of Rehabilitation, Takakuwa Orthopaedic Nagayama Clinic, Asahikawa, Hokkaido, 2Institute for Integrated Sports Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, 3Department of Orthopaedic Surgery, Takakuwa Orthopaedic Nagayama Clinic, Asahikawa, Hokkaido, Japan Abstract: A randomized controlled trial was conducted to clarify the beneficial effect of whole body vibration (WBV exercise plus squat training on body balance, muscle power, and walking ability in the elderly with knee osteoarthritis and/or spondylosis. Of 35 ambulatory patients (14 men and 21 women who were recruited at our outpatient clinic, 28 (80.0%, 12 men and 16 women participated in the trial. The subjects (mean age 72.4 years were randomly divided into two groups (n=14 in each group, ie, a WBV exercise alone group and a WBV exercise plus squat training group. A 4-minute WBV exercise (frequency 20 Hz was performed 2 days per week in both groups; squat training (20 times per minute was added during the 4-minute WBV training session in the WBV exercise plus squat training group. The duration of the trial was 6 months. The exercise and training program was safe and well tolerated. WBV exercise alone improved indices of body balance and walking velocity from baseline values. However, WBV exercise plus squat training was more effective for improving tandem gait step number and chair-rising time compared with WBV exercise alone. These results suggest the benefit and safety of WBV exercise plus squat training for improving physical function in terms of body balance and muscle power in the elderly. Keywords: whole body vibration exercise, squat training, body balance, walking velocity, muscle power

  17. No transfer between conditions in balance training regimes relying on tasks with different postural demands: Specificity effects of two different serious games.

    Science.gov (United States)

    Naumann, Tim; Kindermann, Stefan; Joch, Michael; Munzert, Jörn; Reiser, Mathias

    2015-03-01

    Despite the increasing use of video games involving whole body movements to enhance postural control in health prevention and rehabilitation, there is no consistent proof that training effects actually transfer to other balance tasks. The present study aimed to determine whether training effects on two different video-game-based training devices were task-specific or could be transferred to either postural control in quiet stance or to performance on the other device. 37 young healthy adults were split into three groups: two intervention groups that trained for 30min on either the Nintendo(®) Wii Fit Balance Board or the MFT Challenge Disc(®) three times per week for 4 weeks and a control group that received no training. All games require participants to control virtual avatars by shifting the center of mass in different directions. Both devices differ in their physical properties. The Balance Board provides a stable surface, whereas the Challenge Disc can be tilted in all directions. Dependent variables were the game scores on both devices and the center of pressure (COP) displacements measured via force plate. At posttest, both intervention groups showed significant increases in performance on the trained games compared to controls. However, there were no relevant transfer effects to performance on the untrained device and no changes in COP path length in quiet stance. These results suggest that training effects on both devices are highly specific and do not transfer to tasks with different postural demands. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of proprioceptive neuromuscular facilitation integration pattern and swiss ball training on pain and balance in elderly patients with chronic back pain.

    Science.gov (United States)

    Young, Kim Jin; Je, Choi Won; Hwa, Seo Tae

    2015-10-01

    [Purpose] The purpose of this study was to determine the effects of proprioceptive neuromuscular facilitation integration pattern (PIP) and Swiss ball training on balance and pain in elderly patients with chronic low back pain. [Subjects] Participants were randomly assigned to a PIP training (n=24) and a Swiss ball training group (n=24). [Methods] The training was performed for 30 minutes per day, three times a week for 6 weeks. Outcome measures included the mean velocity in the X and Y directions using the Good Balance System(®), functional reach test, timed up and go test, and visual analogue scale. [Results] After completion of training, mean velocity in the X and Y direction, and the functional reach test, timed up and go test, and visual analogue scale results showed statistically significant improvements in the PIP and Swiss ball training groups. However, there was no significant difference in the functional reach test, timed up and go test, and visual analogue scale results between the two groups. [Conclusion] This study indicated that PIP training improved the balance ability of elderly patients with chronic low back pain.

  19. Elite Female Basketball Players' Body-Weight Neuromuscular Training and Performance on the Y-Balance Test.

    Science.gov (United States)

    Benis, Roberto; Bonato, Matteo; La Torre, Antonio La

    2016-09-01

    Neuromuscular training enhances unconscious motor responses by stimulating both the afferent signals and central mechanisms responsible for dynamic joint control. Dynamic joint-control training is a vital component of injury-prevention programs. To investigate the effects of body-weight neuromuscular training on Y-Balance Test (YBT) performance and postural control in female basketball players. Randomized controlled clinical trial. Basketball practice sessions. A total of 28 healthy elite female basketball players were randomly assigned to an experimental (n = 14) or a control group (n = 14). Before their regular practice sessions, the experimental group warmed up with body-weight neuromuscular exercises and the control group with standard tactical-technical exercises twice weekly for 8 weeks. Anterior-, posteromedial-, and posterolateral-reach and composite YBT scores were measured before and after 8 weeks of training. Improvement over baseline scores was noted in the posteromedial (right = 86.5 ± 4.5 cm versus 89.6 ± 2.2 cm, +3.5%, P = .049; left = 85.5 ± 4.3 cm versus 90.2 ± 2.7 cm, +5.5%, P = .038)- and posterolateral (right = 90.7 ± 3.6 cm versus 94.0 ± 2.7 cm, +3.6%, P = .016; left = 90.9 ± 3.5 cm versus 94.2 ± 2.6 cm, +3.6%, P = .011)-reach directions and in the composite YBT scores (right = 88.6% ± 3.2% versus 94.0% ± 1.8%, +5.4%, P = .0004; left = 89.2% ± 3.2% versus 94.5% ± 3.0%, +5.8%, P = .001) of the experimental group. No differences in anterior reach were detected in either group. Differences were noted in postintervention scores for posteromedial reach (right = 89.6 ± 2.2 cm versus 84.3 ± 4.4 cm, +4.1%, P = .005; left = 94.2 ± 2.6 cm versus 84.8 ± 4.4 cm, +10%, P = .003) and composite scores (right = 94.0% ± 1.8% versus 87.3% ± 2.0%, +7.1%, P = .003; left = 94.8% ± 3.0% versus 87.9% ± 3.4%, +7.3%, P training improved postural control and lower limb stability in female basketball players as assessed with the YBT. Incorporating

  20. Bone Mineral Density, Balance Performance, Balance Self-Efficacy, and Falls in Breast Cancer Survivors With and Without Qigong Training: An Observational Study.

    Science.gov (United States)

    Fong, Shirley S M; Choi, Anna W M; Luk, W S; Yam, Timothy T T; Leung, Joyce C Y; Chung, Joanne W Y

    2018-03-01

    A deterioration in bone strength and balance performance after breast cancer treatment can result in injurious falls. Therefore, interventions need to be developed to improve the bone strength and balance ability of breast cancer survivors. This cross-sectional exploratory study aimed to compare the bone mineral density (BMD), balance performance, balance self-efficacy, and number of falls between breast cancer survivors who practiced qigong, breast cancer survivors who did not practice qigong, and healthy individuals. The study included 40 breast cancer survivors with more than 3 months of qigong experience, 17 breast cancer survivors with no qigong experience, and 36 healthy controls. All the participants underwent dual-energy X-ray absorptiometry scans to measure their lumbar spine, total hip, femoral neck, and total radius BMDs. The participants also underwent a timed one-leg stand test to measure their single-leg standing balance. The participants' balance self-efficacy was assessed using the activities-specific balance confidence scale, and the number of falls experienced by each participant was assessed in a face-to-face interview. The lumbar spine, total hip, femoral neck, and total radius BMDs were similar between the 3 groups ( P > .05). The breast cancer-qigong group outperformed the breast cancer-control group by 27.3% when they performed the one-leg stand test on a foam surface ( P = .025), and they also had a higher balance self-efficacy score ( P = .006). Nevertheless, the numbers of falls were comparable between the 3 groups ( P > .05). Qigong may be a suitable exercise for improving the balance performance and balance self-efficacy of breast cancer survivors.

  1. Influence of Resistance Exercise Training to Strengthen Muscles across Multiple Joints of the Lower Limbs on Dynamic Balance Functions of Stroke Patients.

    Science.gov (United States)

    Son, Sung Min; Park, Myung Kyu; Lee, Na Kyung

    2014-08-01

    [Purpose] The objective of this study was to evaluate the effects of resistance exercise training for strengthening muscles across multiple joints on the dynamic balance function of stroke patients. [Subjects and Methods] Subjects in the training group (n=14) and the control group (n=14) received conservative physical therapy for 30 minutes per day, five days per week, for a period of six weeks. The training group additionally performed three sets (eight to 10 repetitions per set) of resistance exercise at 70% of the 1-repetition maximum (1RM) to strengthen muscles across multiple joints. The control group did the same exercises for the same duration but without resistance. To assess dynamic balance function, before and after the intervention, we measured antero-posterior (A-P) and medio-lateral (M-L) sway distances, the Berg balance scale (BBS), and the timed up and go (TUG) times. [Results] Compared to pre-intervention values, the BBS score showed significant increases in both groups, and A-P and M-L sway distances and TUG times showed significant decreases in both groups. Changes in A-P and M-L sway distances, BBS scores, and TUG times were significantly different between the muscle training group and the control group. [Conclusion] Training involving muscle strength across multiple joints is an effective intervention for improvement of dynamic balance function of stroke patients.

  2. Sustained Improvements in Dynamic Balance and Landing Mechanics After a 6-Week Neuromuscular Training Program in College Women's Basketball Players.

    Science.gov (United States)

    Pfile, Kate R; Gribble, Phillip A; Buskirk, Gretchen E; Meserth, Sara M; Pietrosimone, Brian G

    2016-08-01

    Epidemiological data demonstrate the need for lower-extremity injury-prevention training. Neuromuscular-control (NMC) programs are immediately effective at minimizing lower-extremity injury risk and improving sport-related performance measures. Research investigating lasting effects after an injury-prevention program is limited. To determine whether dynamic balance, landing mechanics, and hamstring and quadriceps strength could be improved after a 6-wk NMC intervention and maintained for a season. Prospective case series. Controlled laboratory. 11 Division I women's basketball players (age 19.40 ± 1.35 y, height 178.05 ± 7.52 cm, mass 72.86 ± 10.70 kg). Subjects underwent testing 3 times, completing the Star Excursion Balance Test (SEBT), Landing Error Scoring System (LESS), and isometric strength testing for the hamstrings and quadriceps muscles. Pretest and posttest 1 occurred immediately before and after the intervention, respectively, and posttest 2 at the end of the competitive season, 9 mo after posttest 1. Subjects participated in eighteen 30-min plyometric and NMC-training sessions over a 6-wk period. The normalized SEBT composite score, normalized peak isometric hamstrings:quadriceps (H:Q) ratio, and the LESS total score. The mean composite reach significantly improved over time (F2,10 = 6.96, P = .005) where both posttest scores were significantly higher than pretest (70.41% ± 4.08%) (posttest 1 73.48% ± 4.19%, t10 = -3.11, P = .011) and posttest 2 (74.2% ± 4.77%, t10 = -3.78, P = .004). LESS scores significantly improved over time (F2,10 = 6.29, P = .009). The pretest LESS score (7.30 ± 3.40) was higher than posttest 1 (4.9 ± 1.20, t10 = 2.71, P = .024) and posttest 2 (5.44 ± 1.83, t10 = 2.58, P = .030). There were no statistically significant differences (P > .05) over time for the H:Q ratio when averaging both legs (F2,10 = 0.83, P = .45). A 6-wk NMC program improved landing mechanics and dynamic balance over a 9-mo period in women

  3. Blindfolded Balance Training in Patients with Parkinson’s Disease: A Sensory-Motor Strategy to Improve the Gait

    Directory of Open Access Journals (Sweden)

    M. Tramontano

    2016-01-01

    Full Text Available Aim. Recent evidence suggested that the use of treadmill training may improve gait parameters. Visual deprivation could engage alternative sensory strategies to control dynamic equilibrium and stabilize gait based on vestibulospinal reflexes (VSR. We aimed to investigate the efficacy of a blindfolded balance training (BBT in the improvement of stride phase percentage reliable gait parameters in patients with Parkinson’s Disease (PD compared to patients treated with standard physical therapy (PT. Methods. Thirty PD patients were randomized in two groups of 15 patients, one group treated with BBT during two weeks and another group treated with standard PT during eight weeks. We evaluated gait parameters before and after BBT and PT interventions, in terms of double stance, swing, and stance phase percentage. Results. BBT induced an improvement of double stance phase as revealed (decreased percentage of double stance phase during the gait cycle in comparison to PT. The other gait parameters swing and stance phase did not differ between the two groups. Discussion. These results support the introduction of complementary rehabilitative strategies based on sensory-motor stimulation in the traditional PD patient’s rehabilitation. Further studies are needed to investigate the neurophysiological circuits and mechanism underlying clinical and motor modifications.

  4. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: pre-post intervention study

    Directory of Open Access Journals (Sweden)

    Nagano Yasuharu

    2011-07-01

    Full Text Available Abstract Background Some research studies have investigated the effects of anterior cruciate ligament (ACL injury prevention programs on knee kinematics during landing tasks; however the results were different among the studies. Even though tibial rotation is usually observed at the time of ACL injury, the effects of training programs for knee kinematics in the horizontal plane have not yet been analyzed. The purpose of this study was to determine the effects of a jump and balance training program on knee kinematics including tibial rotation as well as on electromyography of the quadriceps and hamstrings in female athletes. Methods Eight female basketball athletes participated in the experiment. All subjects performed a single limb landing at three different times: the initial test, five weeks later, and one week after completing training. The jump and balance training program lasted for five weeks. Knee kinematics and simultaneous electromyography of the rectus femoris and Hamstrings before training were compared with those measured after completing the training program. Results After training, regarding the position of the knee at foot contact, the knee flexion angle for the Post-training trial (mean (SE: 24.4 (2.1 deg was significantly larger than that for the Pre-training trial (19.3 (2.5 deg (p Conclusions The jump and balance training program successfully increased knee flexion and hamstring activity of female athletes during landing, and has the possibility of producing partial effects to avoid the characteristic knee position observed in ACL injury, thereby preventing injury. However, the expected changes in frontal and transverse kinematics of the knee were not observed.

  5. Effects of short-term training combining strength and balance exercises on maximal strength and upright standing steadiness in elderly adults.

    Science.gov (United States)

    Penzer, Félix; Duchateau, Jacques; Baudry, Stéphane

    2015-01-01

    This study investigated the effects of two training programmes of 6 weeks combining strength and balance exercises in different proportions. One training programme [n=10; 71.4 (6.3) years] consisted mainly of strength exercises (ST) and the other programme [n=8; 71.4 (6.4) years] included a majority of balance exercises (BT). Maximal strength of lower leg muscles and centre of pressure (CoP) steadiness during upright stance in various sensory conditions were measured before and after training. The input-output relation of motor evoked potential (MEP) induced by transcranial magnetic stimulation and H reflex was also assessed in soleus during upright standing. The maximal strength of the ankle plantar flexor muscles increased after training programmes (pstrength was positively correlated with the increase in voluntary activation (ptraining programmes decreased maximal amplitude and mean fluctuations of CoP displacements recorded in the backward-forward direction when standing on a foam mat (pmuscles during upright standing decreased (ptraining but not for the tibialis anterior. Results obtained for H reflex and MEP input-output relations suggest an increased efficacy of Ia afferents to activate low-threshold motor neurones and a decrease in corticospinal excitability after training. This study indicates that short-term training combining strength and balance exercises increases maximal strength and induces change in the neural control of lower leg muscles during upright standing. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The effect of high speed strength training with heavy and low workloads on neuromuscular function and maximal concentric quadriceps strength.

    Science.gov (United States)

    Mazani, Ali A; Hamedinia, Mohamed R; Haghighi, Amir H; Hedayatpour, Nosratollah

    2018-04-01

    Dynamic strength training has been widely used to increase the ability of skeletal muscle to produce muscle force. Manipulating resistance training program variables has been commonly used as a tool to optimize maximum strength. This study examined the effects of 12 weeks of high-speed strength training with low and heavy workloads on muscle strength and neuromuscular function of quadriceps muscle. Thirty male subjects (age, mean±SD, 20.6±2.6 yr, body mass 70.4±12.9 kg, height 1.76±0.09 m) with no history of knee injury or trauma participated to the study. Subjects were randomly divided into two training groups, low workload training (40% 1RM) and heavy workload training (80% 1RM). One repetition of maximum leg-press measured before and after 12 weeks training. Moreover, surface electromyograpic signals were recorded from vastus medialis and lateralis muscle during one repetition of maximum leg-press before and after 12 weeks training. High speed training with heavy workload-low repetition resulted in a greater increase (41.8%±4.3) in maximal concentric quadriceps strength compared with high speed training with low workloads-high repetition (23.3%±2.7; F=3.8, Ptraining with heavy workload- low repetition was significantly larger than those observed after high speed training with low workload- high repetition (F=5.5, Ptraining, which in turn result in greater improvement in muscle strength.

  7. A Prospective Cohort Study on the Effect of a Balance Training Program, Including Calf Muscle Strengthening, in Community-Dwelling Older Adults.

    Science.gov (United States)

    Maritz, Carol A; Silbernagel, Karin Grävare

    2016-01-01

    Falls are the number 1 cause of injury, fractures, and death among the older population. In fact, one-third of adults older than 60 years will experience 1 or more falls annually. Factors including inactivity and decreased mobility are associated with overall declines in strength, balance, and functional mobility in older adults. The purpose of this study was to evaluate the effect of a balance training program, including calf muscle strengthening, in community-dwelling older adults and to evaluate how calf muscle strength correlates with risk factors for falls. Community-dwelling older adults from a local senior center were invited to participate in a 5-week (10 sessions), 1-on-1, balance training program, which included calf muscle strengthening. All the participants were evaluated before and after the intervention. The outcome measures were static balance, unilateral heel-rise test, Timed Up and Go test (TUG), the 30-second Chair Stand Test (30-sCST), and the Activity Balance Confidence Scale. Twenty-eight participants (6 males and 22 females) mean (standard deviation) age of 78 years were included in the study and completed the baseline evaluation. Eight participants did not complete the study. Static balance with eyes closed, heel rise, TUG, 30-sCST, and the Activity Balance Confidence Scale improved significantly (P calf muscle strengthening performed twice a week for 5 weeks resulted in significant improvements in calf muscle strength, functional performance and balance, as well as a significant improvement in balance confidence. The results from this study identify the importance unilateral calf muscle strength has to falls risk among older adults.

  8. Improvements in Orientation and Balancing Abilities in Response to One Month of Intensive Slackline-Training. A Randomized Controlled Feasibility Study.

    Science.gov (United States)

    Dordevic, Milos; Hökelmann, Anita; Müller, Patrick; Rehfeld, Kathrin; Müller, Notger G

    2017-01-01

    Background: Slackline-training has been shown to improve mainly task-specific balancing skills. Non-task specific effects were assessed for tandem stance and preferred one-leg stance on stable and perturbed force platforms with open eyes. It is unclear whether transfer effects exist for other balancing conditions and which component of the balancing ability is affected. Also, it is not known whether slackline-training can improve non-visual-dependent spatial orientation abilities, a function mainly supported by the hippocampus. Objective: To assess the effect of one-month of slackline-training on different components of balancing ability and its transfer effects on non-visual-dependent spatial orientation abilities. Materials and Methods: Fifty subjects aged 18-30 were randomly assigned to the training group (T) ( n = 25, 23.2 ± 2.5 years; 12 females) and the control group (C) ( n = 25, 24.4 ± 2.8 years; 11 females). Professional instructors taught the intervention group to slackline over four consecutive weeks with three 60-min-trainings in each week. Data acquisition was performed (within 2 days) by blinded investigators at the baseline and after the training. Main outcomes Improvement in the score of a 30-item clinical balance test (CBT) developed at our institute (max. score = 90 points) and in the average error distance (in centimeters) in an orientation test (OT), a triangle completion task with walking and wheelchair conditions for 60°, 90°, and 120°. Results: Training group performed significantly better on the closed-eyes conditions of the CBT (1.6 points, 95% CI: 0.6 to 2.6 points vs. 0.1 points, 95% CI: -1 to 1.1 points; p = 0.011, [Formula: see text] = 0.128) and in the wheelchair (vestibular) condition of the OT (21 cm, 95% CI: 8-34 cm vs. 1 cm, 95% CI: -14-16 cm; p = 0.049, [Formula: see text] = 0.013). Conclusion: Our results indicate that one month of intensive slackline training is a novel approach for enhancing clinically relevant balancing

  9. The effect of 'device-in-charge' support during robotic gait training on walking ability and balance in chronic stroke survivors: A systematic review

    NARCIS (Netherlands)

    Haarman, Juliet Albertina Maria; Reenalda, Jasper; Buurke, Jaap; van der Kooij, Herman; Rietman, Johan Swanik

    2016-01-01

    This review describes the effects of two control strategies – used in robotic gait-training devices for chronic stroke survivors – on gait speed, endurance and balance. Control strategies are classified as ‘patient-in-charge support’, where the device ‘empowers’ the patient, and ‘device-in-charge

  10. The Effect of Long-Term Training Program on Balance in Children with Cerebral Palsy: Results of a Pilot Study for Individually Based Functional Exercises

    Science.gov (United States)

    Uzun, Selda

    2013-01-01

    This study examines the effects of long-term training program on balance and center of pressure (COP) for four male children (13 years of age) with cerebral palsy (CP). These children were classified into one hemiplegic (level II), one diplegic (level II) and two quadriplegic children (levels III and II) using the Gross Motor Function…

  11. Balance maintenance as an acquired motor skill: Delayed gains and robust retention after a single session of training in a virtual environment.

    Science.gov (United States)

    Elion, Orit; Sela, Itamar; Bahat, Yotam; Siev-Ner, Itzhak; Weiss, Patrice L Tamar; Karni, Avi

    2015-06-03

    Does the learning of a balance and stability skill exhibit time-course phases and transfer limitations characteristic of the acquisition and consolidation of voluntary movement sequences? Here we followed the performance of young adults trained in maintaining balance while standing on a moving platform synchronized with a virtual reality road travel scene. The training protocol included eight 3 min long iterations of the road scene. Center of Pressure (CoP) displacements were analyzed for each task iteration within the training session, as well as during tests at 24h, 4 weeks and 12 weeks post-training to test for consolidation phase ("offline") gains and assess retention. In addition, CoP displacements in reaction to external perturbations were assessed before and after the training session and in the 3 subsequent post-training assessments (stability tests). There were significant reductions in CoP displacements as experience accumulated within session, with performance stabilizing by the end of the session. However, CoP displacements were further reduced at 24h post-training (delayed "offline" gains) and these gains were robustly retained. There was no transfer of the practice-related gains to performance in the stability tests. The time-course of learning the balance maintenance task, as well as the limitation on generalizing the gains to untrained conditions, are in line with the results of studies of manual movement skill learning. The current results support the conjecture that a similar repertoire of basic neuronal mechanisms of plasticity may underlay skill (procedural, "how to" knowledge) acquisition and skill memory consolidation in voluntary and balance maintenance tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Virtual Reality Training With Three-Dimensional Video Games Improves Postural Balance and Lower Extremity Strength in Community-Dwelling Older Adults.

    Science.gov (United States)

    Lee, Yongwoo; Choi, Wonjae; Lee, Kyeongjin; Song, Changho; Lee, Seungwon

    2017-10-01

    Avatar-based three-dimensional technology is a new approach to improve physical function in older adults. The aim of this study was to use three-dimensional video gaming technology in virtual reality training to improve postural balance and lower extremity strength in a population of community-dwelling older adults. The experimental group participated in the virtual reality training program for 60 min, twice a week, for 6 weeks. Both experimental and control groups were given three times for falls prevention education at the first, third, and fifth weeks. The experimental group showed significant improvements not only in static and dynamic postural balance but also lower extremity strength (p video gaming technology might be beneficial for improving postural balance and lower extremity strength in community-dwelling older adults.

  13. Heat strain during military training activities: The dilemma of balancing force protection and operational capability.

    Science.gov (United States)

    Hunt, Andrew P; Billing, Daniel C; Patterson, Mark J; Caldwell, Joanne N

    2016-01-01

    Military activities in hot environments pose 2 competing demands: the requirement to perform realistic training to develop operational capability with the necessity to protect armed forces personnel against heat-related illness. To ascertain whether work duration limits for protection against heat-related illness restrict military activities, this study examined the heat strain and risks of heat-related illness when conducting a military activity above the prescribed work duration limits. Thirty-seven soldiers conducted a march (10 km; ∼5.5 km h -1 ) carrying 41.8 ± 3.6 kg of equipment in 23.1 ± 1.8°C wet-bulb globe temperature. Body core temperature was recorded throughout and upon completion, or withdrawal, participants rated their severity of heat-related symptoms. Twenty-three soldiers completed the march in 107 ± 6.4 min (Completers); 9 were symptomatic for heat exhaustion, withdrawing after 71.6 ± 10.1 min (Symptomatic); and five were removed for body core temperature above 39.0°C (Hyperthermic) after 58.4 ± 4.5 min. Body core temperature was significantly higher in the Hyperthermic (39.03 ± 0.26°C), than Symptomatic (38.34 ± 0.44°C; P = 0.007 ) and Completers (37.94 ± 0.37°C; Pmilitary force. The dissociation between heat-related symptoms and body core temperature elevation suggests that the physiological mechanisms underpinning exhaustion during exertional heat stress should be re-examined to determine the most appropriate physiological criteria for prescribing work duration limits.

  14. Short-term effect of whole-body vibration training on balance, flexibility and lower limb explosive strength in elite rhythmic gymnasts.

    Science.gov (United States)

    Despina, Tsopani; George, Dallas; George, Tsiganos; Sotiris, Papouliakos; Alessandra, Di Cagno; George, Korres; Maria, Riga; Stavros, Korres

    2014-02-01

    The purpose of this study was to examine whether whole-body vibration (WBV) training results in short-term performance improvements in flexibility, strength and balance tests in comparison to an equivalent exercise program performed without vibration. Eleven elite rhythmic gymnasts completed a WBV trial, and a control, resistance training trial without vibration (NWBV). The vibration trial consisted of eccentric and concentric squatting exercises on a vibration platform that was turned on, whereas the NWBV involved the same training protocol with the platform turned off. Balance was assessed using the Rhythmic Weight Shift (RWS) based on the EquiTest Dynamic Posturography system; flexibility was measured using the sit & reach test, and lower limb explosive strength was evaluated using standard exercises (squat jump, counter movement jump, single leg squat). All measurements were performed before (pre) immediately after the training program (post 1), and 15 minutes after the end of the program (post 15). Data were analyzed using repeated measures ANOVA was used with condition (WBV-NWBV) as the primary factor and time (pre, post 1, post 15) as the nested within subjects factor, followed by post-hoc pairwise comparison with Bonferroni corrections. Results confirmed the hypothesis of the superiority of WBV training, especially in the post 15 measurement, in all flexibility and strength measures, as well as in a number of balance tests. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Assessment of postural balance in community-dwelling older adults - methodological aspects and effects of biofeedback-based Nintendo Wii training

    DEFF Research Database (Denmark)

    Jørgensen, Martin Grønbech

    (familiarization) period is necessary for the Wii Agility test to avoid a systematic learning effect between successive test sessions. Study III investigated the effect of ten weeks of biofeedback-based Nintendo Wii training on static postural balance, mechanical lower limb muscle function, and functional...... performance in 58 community-dwelling older adults. Additionally, the study investigated the participant motivation for this type of training (Exergaming). Marked improvements in maximal leg muscle strength, rapid force capacity and functional performance were observed following the period of biofeedback......The overall purpose of this thesis was to examine selected methodological aspects and novel approaches for measuring postural balance older adults, and to examine the effects of biofeedback-based Nintendo Wii training on selected physiological, psychological and functional outcome variables...

  16. The effect of adding core stability training to a standard balance exercise program on sit to stand performance in older adults: a pilot study.

    Science.gov (United States)

    Arnold, Cathy; Lanovaz, Joel; Oates, Alison; Craven, Bruce; Butcher, Scotty

    2015-01-01

    This study compared sit to stand (STS) performance between older adults in a nine-week training program focusing on core stability exercises to enhance balance and postural control (EB) versus standard balance (SB) exercises. Repetitions in 30 s (STSreps) and kinematic performance (vertical and horizontal momentum, and margin of stability) were measured pre and postintervention in 23 older adults with at least one fall risk factor. Although both groups combined improved STSreps (P = .001) and vertical momentum (.008), a significant between-group difference was observed for completers only (MANCOVA of posttest group differences, with pretest scores as covariates; P = .04). EB demonstrated a greater but nonsignificant improvement in vertical momentum (P = .095). In conclusion, core stability training added to SB did not result in STS reps improvement. Compliance may modify these results and future larger sample studies should evaluate the impact of core stability training on STS biomechanics.

  17. Effects of Zinc Magnesium Aspartate (ZMA Supplementation on Training Adaptations and Markers of Anabolism and Catabolism

    Directory of Open Access Journals (Sweden)

    Almada Anthony

    2004-12-01

    Full Text Available Abstract This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12. However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

  18. DANCE, BALANCE AND CORE MUSCLE PERFORMANCE MEASURES ARE IMPROVED FOLLOWING A 9-WEEK CORE STABILIZATION TRAINING PROGRAM AMONG COMPETITIVE COLLEGIATE Dancers.

    Science.gov (United States)

    Watson, Todd; Graning, Jessica; McPherson, Sue; Carter, Elizabeth; Edwards, Joshuah; Melcher, Isaac; Burgess, Taylor

    2017-02-01

    Dance performance requires not only lower extremity muscle strength and endurance, but also sufficient core stabilization during dynamic dance movements. While previous studies have identified a link between core muscle performance and lower extremity injury risk, what has not been determined is if an extended core stabilization training program will improve specific measures of dance performance. This study examined the impact of a nine-week core stabilization program on indices of dance performance, balance measures, and core muscle performance in competitive collegiate dancers. Within-subject repeated measures design. A convenience sample of 24 female collegiate dance team members (age = 19.7 ± 1.1 years, height = 164.3 ± 5.3 cm, weight 60.3 ± 6.2 kg, BMI = 22.5 ± 3.0) participated. The intervention consisted of a supervised and non-supervised core (trunk musculature) exercise training program designed specifically for dance team participants performed three days/week for nine weeks in addition to routine dance practice. Prior to the program implementation and following initial testing, transversus abdominis (TrA) activation training was completed using the abdominal draw-in maneuver (ADIM) including ultrasound imaging (USI) verification and instructor feedback. Paired t tests were conducted regarding the nine-week core stabilization program on dance performance and balance measures (pirouettes, single leg balance in passe' releve position, and star excursion balance test [SEBT]) and on tests of muscle performance. A repeated measures (RM) ANOVA examined four TrA instruction conditions of activation: resting baseline, self-selected activation, immediately following ADIM training and four days after completion of the core stabilization training program. Alpha was set at 0.05 for all analysis. Statistically significant improvements were seen on single leg balance in passe' releve and bilateral anterior reach for the SEBT (both p ≤ 0

  19. Influence of traditional dance training programs on dynamic balance of people with intellectual disability: a short review

    OpenAIRE

    Vasileios, K.

    2015-01-01

    Traditional dance is gaining popularity as an intervention choice for improving poor balance ability of people with intellectual disability (ID). Balance improvement for individuals with ID through dance provides opportunities for participation in sport activities and promotes independent living. This short review provides in brief research evidence of dynamic balance improvement as measured by means of a balance deck in duration of 30, 45, and 60 sec intervals, highlighting the need to incor...

  20. Assessment of postural balance in community-dwelling older adults - methodological aspects and effects of biofeedback-based Nintendo Wii training.

    Science.gov (United States)

    Jørgensen, Martin Grønbech

    2014-01-01

    The overall purpose of this thesis was to examine selected methodological aspects and novel approaches for measuring postural balance older adults, and to examine the effects of biofeedback-based Nintendo Wii training on selected physiological, psychological and functional outcome variables in community-dwelling older adults. In Study I balance control was investigated using force plate analysis of Centre of Pressure (COP) excursion during static bilateral standing in 32 community-dwelling older adults at three different time-points (09:00, 12:30, and 16:00) throughout the day. An overall significant time-of-day effect was observed for all selected COP variables. The greatest change in all COP variables was observed (on average ~15%) between midday (12:30) and the afternoon (16:00), indicating that a systematic time-of-day influence on static postural balance exists in community-dwelling older adults. Consequently, longitudinal (i.e. pre-to-post training) comparisons of postural balance in in older adults with repeated assessments should be conducted at the same time-of-day. In Study II a novel approach for measuring postural balance (using the Nintendo Wii Stillness and Agility tests) was examined for reproducibility and concurrent validity in 30 community-dwelling older adults. While the Nintendo Wii Stillness test showed a high reproducibility, a systematic learning effect between successive sessions was observed for the Agility test. Moderate-to-excellent concurrent validity was seen for the Stillness test. In contrast, the Agility test revealed a poor concurrent validity. In conclusion, the Wii Stillness test seems to represent a low-cost objective reproducible test of postural balance in community-dwelling older adults and appears feasible in various clinical settings. A habituation (familiarization) period is necessary for the Wii Agility test to avoid a systematic learning effect between successive test sessions. Study III investigated the effect of ten

  1. Erratum to: Effects of Balance Training on Balance Performance in Healthy Older Adults : A Systematic Review and Meta-analysis (vol 45, pg 1721, 2015)

    NARCIS (Netherlands)

    Lesinski, Melanie; Hortobagyi, Tibor; Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs

    Page 1724, column 2, section 2.4, paragraph 2, lines 25–31: The following sentence, which previously read: To verify the effectiveness of BT on a balance outcome measures, we computed the within-subject standardized mean difference [SMDws = ([mean pre-value − mean post-value]/SD pre-value)] and the

  2. The Effect of Body Weight Support Treadmill Training on Gait Recovery, Proximal Lower Limb Motor Pattern, and Balance in Patients with Subacute Stroke

    Directory of Open Access Journals (Sweden)

    Yu-Rong Mao

    2015-01-01

    Full Text Available Objective. Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT and conventional overground walking training (CT in patients with subacute stroke using 3D motion analysis. Setting. Inpatient department of rehabilitation medicine at a university-affiliated hospital. Participants. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n=12 and CT (n=12 groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Interventions. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Main Outcome Measures. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Results. Both groups improved on balance and lower extremity motor function measures (P<0.05, with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P<0.05 after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P<0.05 for the BWSTT group during the stance and swing phases compared to baseline. Conclusion. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function.

  3. The effect of 6 weeks of Tai chi training on cognitive status, dynamic balance and quality of life in women with stroke

    Directory of Open Access Journals (Sweden)

    Manijeh Norouzian

    2017-03-01

    Full Text Available Background and Objectives: Stroke can lead to permanent disabilities, including motor and cognitive impairments. The aim of this study was to determine the effect of Tai Chi training on cognitive status, dynamic balance, and quality of life in women with stroke. Methods: In this quasi-experimental study, 20 women with stroke (mean age, 65.8±3.5 years; weight, 68.4±14kg; and body mass index, 26.3±5.1kg/m2 in Qom city, were selected voluntarily and randomly divided into experimental (N=10 and control (N=10 groups. Cognitive status, dynamic balance, and quality of life were assessed by Mini-Mental State Examination (MMSE and SF-36 quality of life questionnaires and Timed Up and Go test. Tai Chi group trained for 6 weeks, three 60-minute sessions per week (a 10-minute warm-up period, a 40-minute simplified Tai Chi exercise, and a 10-minute cool-down period. Data were analyzed using dependent and independent t-tests and (p0.05. Conclusion: According to de results of the study, it can be said that Tai Chi training as a low-intensity and simple training improves dynamic balance and quality of life in women with stroke.

  4. Effects of regular heel-raise training aimed at the soleus muscle on dynamic balance associated with arm movement in elderly women.

    Science.gov (United States)

    Fujiwara, Katsuo; Toyama, Hiroshi; Asai, Hitoshi; Yaguchi, Chie; Irei, Mariko; Naka, Masami; Kaida, Chizuru

    2011-09-01

    The effects of low-intensity muscle training with heel-raises on dynamic balance associated with bilateral arm flexion were investigated in postmenopausal elderly women. Twenty-six elderly women were evenly grouped into training and control groups. Training group subjects performed 100 heel raises per day for 2 months. The training was aimed at hypertrophy of the soleus muscle, which has a relatively high proportion (ca. 90%) of slow-twitch muscle fibers and is one of the main postural muscles. Dynamic balance was measured while arm flexion was performed in response to a visual stimulus (simple-reaction condition) or at the subjects' own pace (own-timing condition). The following parameters were compared before and after the training period: plantar flexion strength, thicknesses of the gastrocnemius and soleus (by ultrasound), reaction time of the anterior deltoid in the simple-reaction condition, activation onset timing of postural muscles with respect to the deltoid, movement angles of ankle and hip joints, and postural fluctuation. In the training group only, the following training-related effects were demonstrated: (a) increase in plantar flexor strength and thickness of the soleus, (b) shortening of the deltoid reaction time, (c) earlier activation of the erector spinae in the simple-reaction condition and the soleus in the own-timing condition, and (d) increase in ankle movement in the own-timing condition and a decrease in postural fluctuation. This heel-raise training in the elderly can increase soleus thickness within the triceps surae and improve postural control modality and stability that are effectively contributed to by the leg muscle. This training consists of a low-intensity exercise that requires neither special machines nor a specific environment and can be performed safely for all old-aged groups.

  5. Long-term follow-up of a randomized controlled trial on additional core stability exercises training for improving dynamic sitting balance and trunk control in stroke patients.

    Science.gov (United States)

    Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard

    2017-11-01

    Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.

  6. Therapeutic effects of an anti-gravity locomotor training (AlterG) on postural balance and cerebellum structure in children with Cerebral Palsy.

    Science.gov (United States)

    Rasooli, A H; Birgani, P M; Azizi, Sh; Shahrokhi, A; Mirbagheri, M M

    2017-07-01

    We evaluated the therapeutic effects of anti-gravity locomotor treadmill (AlterG) training on postural stability in children with Cerebral Palsy (CP) and spasticity, particularly in the lower extremity. AlterG can facilitate walking by reducing the weight of CP children by up to 80%; it can also help subjects maintain an appropriate posture during the locomotor AlterG training. Thus, we hypothesized that AlterG training, for a sufficient period of time, has a potential to produce cerebellum neuroplasticity, and consequently result in an effective permanent postural stability. AlterG training was given for 45 minutes, three times a week for two months. Postural balance was evaluated using posturography. The parameters of the Romberg based posturography were extracted to quantify the Center of Balance (CoP). The neuroplasticity of Cerebellum was evaluated using a Diffusion Tensor Imaging (DTI). The evaluations were done pre- and post-training. The Fractional Anisotropy (FA) feature was used for quantifying structural changes in the cerebellum. The results showed that AlterG training resulted in an increase in average FA value of the cerebellum white matter following the training. The results of the posturography evaluations showed a consistent improvement in postural stability. These results were consistent in all subjects. Our findings indicated that the improvement in the posture was accompanied with the enhancement of the cerebellum white matter structure. The clinical implication is that AlterG training can be considered a therapeutic tool for an effective and permanent improvement of postural stability in CP children.

  7. Strength Training for Skeletal Muscle Endurance after Stroke.

    Science.gov (United States)

    Ivey, Frederick M; Prior, Steven J; Hafer-Macko, Charlene E; Katzel, Leslie I; Macko, Richard F; Ryan, Alice S

    2017-04-01

    Initial studies support the use of strength training (ST) as a safe and effective intervention after stroke. Our previous work shows that relatively aggressive, higher intensity ST translates into large effect sizes for paretic and non-paretic leg muscle volume, myostatin expression, and maximum strength post-stroke. An unanswered question pertains to how our unique ST model for stroke impacts skeletal muscle endurance (SME). Thus, we now report on ST-induced adaptation in the ability to sustain isotonic muscle contraction. Following screening and baseline testing, hemiparetic stroke participants were randomized to either ST or an attention-matched stretch control group (SC). Those in the ST group trained each leg individually to muscle failure (20 repetition sets, 3× per week for 3 months) on each of three pneumatic resistance machines (leg press, leg extension, and leg curl). Our primary outcome measure was SME, quantified as the number of submaximal weight leg press repetitions possible at a specified cadence. The secondary measures included one-repetition maximum strength, 6-minute walk distance (6MWD), 10-meter walk speeds, and peak aerobic capacity (VO 2 peak). ST participants (N = 14) had significantly greater SME gains compared with SC participants (N = 16) in both the paretic (178% versus 12%, P muscle contraction, a metric that may carry more practical significance for stroke than the often reported measures of maximum strength. Published by Elsevier Inc.

  8. Assessment of postural balance in community-dwelling older adults - methodological aspects and effects of biofeedback-based Nintendo Wii training

    DEFF Research Database (Denmark)

    Jørgensen, Martin Grønbech

    The overall purpose of this thesis was to examine selected methodological aspects and novel approaches for measuring postural balance older adults, and to examine the effects of biofeedback-based Nintendo Wii training on selected physiological, psychological and functional outcome variables...... in community-dwelling older adults. In Study I balance control was investigated using force plate analysis of Centre of Pressure (COP) excursion during static bilateral standing in 32 community-dwelling older adults at three different time-points (09:00, 12:30, and 16:00) throughout the day. An overall...... significant time-of-day effect was observed for all selected COP variables. The greatest change in all COP variables was observed (on average ~15%) between midday (12:30) and the afternoon (16:00), indicating that a systematic time-of-day influence on static postural balance exists in community-dwelling older...

  9. 'You can't be a person and a doctor': the work-life balance of doctors in training-a qualitative study.

    Science.gov (United States)

    Rich, Antonia; Viney, Rowena; Needleman, Sarah; Griffin, Ann; Woolf, Katherine

    2016-12-02

    Investigate the work-life balance of doctors in training in the UK from the perspectives of trainers and trainees. Qualitative semistructured focus groups and interviews with trainees and trainers. Postgraduate medical training in London, Yorkshire and Humber, Kent, Surrey and Sussex, and Wales during the junior doctor contract dispute at the end of 2015. Part of a larger General Medical Council study about the fairness of postgraduate medical training. 96 trainees and 41 trainers. Trainees comprised UK graduates and International Medical Graduates, across all stages of training in 6 specialties (General Practice, Medicine, Obstetrics and Gynaecology, Psychiatry, Radiology, Surgery) and Foundation. Postgraduate training was characterised by work-life imbalance. Long hours at work were typically supplemented with revision and completion of the e-portfolio. Trainees regularly moved workplaces which could disrupt their personal lives and sometimes led to separation from friends and family. This made it challenging to cope with personal pressures, the stresses of which could then impinge on learning and training, while also leaving trainees with a lack of social support outside work to buffer against the considerable stresses of training. Low morale and harm to well-being resulted in some trainees feeling dehumanised. Work-life imbalance was particularly severe for those with children and especially women who faced a lack of less-than-full-time positions and discriminatory attitudes. Female trainees frequently talked about having to choose a specialty they felt was more conducive to a work-life balance such as General Practice. The proposed junior doctor contract was felt to exacerbate existing problems. A lack of work-life balance in postgraduate medical training negatively impacted on trainees' learning and well-being. Women with children were particularly affected, suggesting this group would benefit the greatest from changes to improve the work-life balance of

  10. An impact study of the design of exergaming parameters on body intensity from objective and gameplay-based player experience perspectives, based on balance training exergame.

    Science.gov (United States)

    Sun, Tien-Lung; Lee, Chia-Hsuan

    2013-01-01

    Kinect-based exergames allow players to undertake physical exercise in an interactive manner with visual stimulation. Previous studies focused on investigating physical fitness based on calories or heart rate to ascertain the effectiveness of exergames. However, designing an exergame for specific training purposes, with intensity levels suited to the needs and skills of the players, requires the investigation of motion performance to study player experience. This study investigates how parameters of a Kinect-based exergame, combined with balance training exercises, influence the balance control ability and intensity level the player can tolerate, by analyzing both objective and gameplay-based player experience, and taking enjoyment and difficulty levels into account. The exergame tested required participants to maintain their balance standing on one leg within a posture frame (PF) while a force plate evaluated the player's balance control ability in both static and dynamic gaming modes. The number of collisions with the PF depended on the frame's travel time for static PFs, and the leg-raising rate and angle for dynamic PFs. In terms of center of pressure (COP) metrics, significant impacts were caused by the frame's travel time on MDIST-AP for static PFs, and the leg-raising rate on MDIST-ML and TOTEX for dynamic PFs. The best static PF balance control performance was observed with a larger frame offset by a travel time of 2 seconds, and the worst performance with a smaller frame and a travel time of 1 second. The best dynamic PF performance was with a leg-raising rate of 1 second at a 45-degree angle, while the worst performance was with a rate of 2 seconds at a 90-degree angle. The results demonstrated that different evaluation methods for player experience could result in different findings, making it harder to study the design of those exergames with training purposes based on player experience.

  11. Comparison between Unilateral and Bilateral Plyometric Training on Single and Double Leg Jumping Performance and Strength.

    Science.gov (United States)

    Bogdanis, Gregory C; Tsoukos, Athanasios; Kaloheri, Olga; Terzis, Gerasimos; Veligekas, Panagiotis; Brown, Lee E

    2017-04-18

    This study compared the effects of unilateral and bilateral plyometric training on single and double-leg jumping performance, maximal strength and rate of force development (RFD). Fifteen moderately trained subjects were randomly assigned to either a unilateral (U, n=7) or bilateral group (B, n=8). Both groups performed maximal effort plyometric leg exercises two times per week for 6 weeks. The B group performed all exercises with both legs, while the U group performed half the repetitions with each leg, so that total exercise volume was the same. Jumping performance was assessed by countermovement jumps (CMJ) and drop jumps (DJ), while maximal isometric leg press strength and RFD were measured before and after training for each leg separately and both legs together. CMJ improvement with both legs was not significantly different between U (12.1±7.2%) and B (11.0±5.5%) groups. However, the sum of right and left leg CMJ only improved in the U group (19.0±7.1%, pplyometric training was more effective at increasing both single and double-leg jumping performance, isometric leg press maximal force and RFD when compared to bilateral training.

  12. Balance and mobility training with or without concurrent cognitive training improves the timed up and go (TUG), TUG cognitive, and TUG manual in healthy older adults: an exploratory study.

    Science.gov (United States)

    Jehu, Deborah A; Paquet, Nicole; Lajoie, Yves

    2017-08-01

    The purpose was to explore the impact of balance and mobility training (BMT), balance and mobility plus cognitive training (BMT + C) and no training on the timed up and go (TUG), TUG cognitive (TUGcog), and TUG manual (TUGman) in older adults. A preliminary experiment examined the stability of these TUG measures over a 5-week period in older adults. Fifteen participants in the BMT group (70.2 ± 3.2 years) and 14 participants in the BMT + C group (68.7 ± 5.5 years) trained one-on-one, 3×/week for 12 weeks on a balance obstacle course. The BMT group and the BMT + C group completed two or three tasks simultaneously, respectively. Fifteen participants in the control group received no training (66.7 ± 4.2 years). The TUG, TUGcog, and TUGman were measured in seconds at baseline, after the 12-week training, and after the 12-week follow-up. During the preliminary experiment, ten participants (67.0 ± 6.9 years) completed the three TUG measures 1/week for 5 weeks. Both the BMT and BMT + C groups, but not the control group, exhibited significantly faster TUG, TUGcog, and TUGman after the intervention and maintained these improvements at the 12-week follow-up. No differences between the BMT and BMT + C groups emerged. The preliminary experiment showed that the three TUG measures were stable across five testing sessions. Both training groups improved functional mobility after the interventions and sustained these improvements over 12 weeks. This is likely not a function of repeating the TUG, TUGcog, and TUGman tests since no repeated exposure effect was shown.

  13. Effects of Virtual Reality Training (Exergaming) Compared to Alternative Exercise Training and Passive Control on Standing Balance and Functional Mobility in Healthy Community-Dwelling Seniors: A Meta-Analytical Review.

    Science.gov (United States)

    Donath, Lars; Rössler, Roland; Faude, Oliver

    2016-09-01

    Balance training is considered an important means to decrease fall rates in seniors. Whether virtual reality training (VRT) might serve as an appropriate treatment strategy to improve neuromuscular fall risk parameters in comparison to alternative balance training programs (AT) is as yet unclear. To examine and classify the effects of VRT on fall-risk relevant balance performance and functional mobility compared to AT and an inactive control condition (CON) in healthy seniors. The literature search was conducted in five databases (CINAHL, EMBASE, ISI Web of Knowledge, PubMed, SPORTDiscus). The following search terms were used with Boolean conjunction: (exergam* OR exer-gam* OR videogam* OR video-gam* OR video-based OR computer-based OR Wii OR Nintendo OR X-box OR Kinect OR play-station OR playstation OR virtua* realit* OR dance dance revolution) AND (sport* OR train* OR exercis* OR intervent* OR balanc* OR strength OR coordina* OR motor control OR postur* OR power OR physical* OR activit* OR health* OR fall* risk OR prevent*) AND (old* OR elder* OR senior*). Randomized and non-randomized controlled trials applying VRT as interventions focusing on improving standing balance performance (single and double leg stance with closed and open eyes, functional reach test) and functional mobility (Berg balance scale, Timed-up and go test, Tinetti test) in healthy community-dwelling seniors of at least 60 years of age were screened for eligibility. Eligibility and study quality (PEDro scale) were independently assessed by two researchers. Standardized mean differences (SMDs) served as main outcomes for the comparisons of VRT versus CON and VRT versus AT on balance performance and functional mobility indices. Statistical analyses were conducted using a random effects inverse-variance model. Eighteen trials (mean PEDro score: 6 ± 2) with 619 healthy community dwellers were included. The mean age of participants was 76 ± 5 years. Meaningful effects in favor of VRT

  14. The Effects of the Pilates Training Method on Balance and Falls of Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Moreno-Segura, Noemi; Igual-Camacho, Celedonia; Ballester-Gil, Yéntel; Blasco-Igual, María Clara; Blasco, Jose María

    2018-04-12

    Exercising with the Pilates method may be a beneficial treatment to improve balance and decrease the number of falls. To ascertain this, our search in 7 databases included 15 randomized controlled trials in which Pilates was the primary intervention. Participants were over 60 years of age; the outcomes were related to balance and falls. The Cochrane tool and PEDro scale were used to assess risk of bias and quality of individual studies. Current evidence supported the view that exercising with the Pilates method improves the balance of older adults with a high practical effect in terms of the dynamic (SMD = 0.75 [0.17;1.32]), static (SMD = 1.33 [0.53;2.13]), and overall balance (SMD = 0.96[0.00;1.91]). Pilates also produced greater improvements with a moderate effect in terms of the dynamic (SMD = 0.37[-0.36;1.11]) and overall balance (SMD = 0.58[0.19;0.96]) compared to other training approaches oriented to the same end. Literature evaluating the effects on falls is scarce, and results were not conclusive.

  15. Effectiveness of aquatic and non-aquatic lower limb muscle endurance training in the static and dynamic balance of elderly people.

    Science.gov (United States)

    Avelar, Núbia C P; Bastone, Alessandra C; Alcântara, Marcus A; Gomes, Wellington Fabiano

    2010-01-01

    Aging compromises the ability of the central nervous system to maintain body balance and reduces the capacity for adaptive reactions. To prevent falls, the reception conditions for sensory information need to be improved. To evaluate the impact of a structured aquatic and a non-aquatic exercise program for lower-limb muscle endurance on the static and dynamic balance of elderly people. This was a prospective randomized clinical study in which the variables were assessed before and after the training program. Thirty-six elderly people were evaluated using four tests: the Berg Balance Scale, Dynamic Gait Index, gait speed and tandem gait. The participants were randomized into three groups: aquatic exercise group, non-aquatic exercise group and control group. The exercise groups underwent a program for lower-limb muscle endurance that consisted of 40-minute sessions twice a week for six weeks. The participants were reevaluated after six weeks. The data were analyzed statistically using the univariate ANOVA test for comparisons between the groups before and after the intervention. The program for lower-limb muscle endurance significantly increased balance (pprogram. The muscle endurance program provided a significant improvement in static and dynamic balance among community-dwelling elderly people. It was also possible to infer that this improvement occurred regardless of the environment, i.e. aquatic or non-aquatic. Article registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) under the number ACTRN 12609000780257.

  16. Balance and steadiness correction of the upright posture of patients having withstood an ischemic stroke with the help of stabilographic rehabilitation training equipment with biofeedback

    Directory of Open Access Journals (Sweden)

    Bredikhina Y. P.

    2016-01-01

    Full Text Available The brain ischemic mortality rate in Russia occupies the third position. As a result, a recovery period after an ischemic stroke could undermine social and economic well-being of patients and their close relatives. One of the major consequences of a stroke includes the firm-motor defects. Their degree can be reduced with the help of rehabilitation measures intended to revive the motor function of paralyzed limbs and to train a patient to remain firm upright. A stabilographic rehabilitation training apparatus with biofeedback represents one of the variants of the posture training. This training in a playful way helps a patient to improve the balance and firmness indices of the upright position. This rehabilitation method improved considerably the patients’ clinical and stabilographic indices of the balance and firmness function in comparison with the patients whose programmes did not include this method. A patient could sense better that he/she was standing on the both lower limbs. The sensitivity in the lower limbs was intensifying or reviving. According to the additional stabilographic control tests, the total scatter of the pressure centre and the scatter in the sagittal plane, the rate of the pressure centre movement were decreasing; Romberg coefficient became normal.

  17. Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Michael Villiger

    2017-11-01

    Full Text Available Key factors positively influencing rehabilitation and functional recovery after spinal cord injury (SCI include training variety, intensive movement repetition, and motivating training tasks. Systems supporting these aspects may provide profound gains in rehabilitation, independent of the subject’s treatment location. In the present study, we test the hypotheses that virtual reality (VR-augmented training at home (i.e., unsupervised is feasible with subjects with an incomplete SCI (iSCI and that it improves motor functions such as lower limb muscle strength, balance, and functional mobility. In the study, 12 chronic iSCI subjects used a home-based, mobile version of a lower limb VR training system. The system included motivating training scenarios and combined action observation and execution. Virtual representations of the legs and feet were controlled via movement sensors. The subjects performed home-based training over 4 weeks, with 16–20 sessions of 30–45 min each. The outcome measures assessed were the Lower Extremity Motor Score (LEMS, Berg Balance Scale (BBS, Timed Up and Go (TUG, Spinal Cord Independence Measure mobility, Walking Index for Spinal Cord Injury II, and 10 m and 6 min walking tests. Two pre-treatment assessment time points were chosen for outcome stability: 4 weeks before treatment and immediately before treatment. At post-assessment (i.e., immediately after treatment, high motivation and positive changes were reported by the subjects (adapted Patients’ Global Impression of Change. Significant improvements were shown in lower limb muscle strength (LEMS, P = 0.008, balance (BBS, P = 0.008, and functional mobility (TUG, P = 0.007. At follow-up assessment (i.e., 2–3 months after treatment, functional mobility (TUG remained significantly improved (P = 0.005 in contrast to the other outcome measures. In summary, unsupervised exercises at home with the VR training system led to beneficial

  18. Impact of Polyphenol Supplementation on Acute and Chronic Response to Resistance Training.

    Science.gov (United States)

    Beyer, Kyle S; Stout, Jeffrey R; Fukuda, David H; Jajtner, Adam R; Townsend, Jeremy R; Church, David D; Wang, Ran; Riffe, Joshua J; Muddle, Tyler W D; Herrlinger, Kelli A; Hoffman, Jay R

    2017-11-01

    Beyer, KS, Stout, JR, Fukuda, DH, Jajtner, AR, Townsend, JR, Church, DD, Wang, R, Riffe, JJ, Muddle, TWD, Herrlinger, KA, and Hoffman, JR. Impact of polyphenol supplementation on acute and chronic response to resistance training. J Strength Cond Res 31(11): 2945-2954, 2017-This study investigated the effect of a proprietary polyphenol blend (PPB) on acute and chronic adaptations to resistance exercise. Forty untrained men were assigned to control, PPB, or placebo. Participants in PPB or placebo groups