WorldWideScience

Sample records for leg muscles tibialis

  1. Congenital bilateral agenesis of the tibialis anterior muscles: a rare case report.

    Science.gov (United States)

    Htwe, Ohnmar; Swarhib, M; Pei, Tan Sook; Naicker, Amaramalar Selvi; Das, S

    2012-01-01

    Congenital bilateral agenesis of the tibialis anterior muscles is a rare condition. We present a case of congenital absence of bilateral tibialis anterior muscles in a 6-year-old boy who presented with an abnormal gait. He was previously diagnosed to have bilateral congenital talipes equinovarus (CTEV) deformity for which he underwent corrective surgery two times. However, he still had a residual foot problem and claimed to have difficulty in walking. On examination, he walked with a high stepping gait and muscle power of both lower limbs was 5/5 on the medical research council scale (MRCS) except for both ankle dorsiflexors and long toe extensors. The sensation was intact. Magnetic Resonance Imaging (MRI) study of both legs revealed that tibialis anterior muscles were not visualized on both sides suggestive of agenesis of the tibialis anterior muscles. The rest of the muscles appeared mildly atrophied. The electrophysiological study showed normal motor and sensory conduction in both upper and lower limbs. Electromyographic (EMG) study of the vastus medialis was within normal limit and no response could be elicited for EMG of tibialis anterior muscles suggesting possible absence of tibialis anterior muscles, bilaterally. The patient underwent split tibialis posterior tendon transfer to achieve a balanced and functional foot and was well on discharge. The present case describes the normal anatomy and embryology of tibialis anterior muscles as well as possible causes of its agenesis along with its clinical implications.

  2. Ultrasonographic Evaluation of Botulinum Toxin Injection Site for the Medial Approach to Tibialis Posterior Muscle in Chronic Stroke Patients with Spastic Equinovarus Foot: An Observational Study

    Directory of Open Access Journals (Sweden)

    Alessandro Picelli

    2017-11-01

    Full Text Available The tibialis posterior muscle is a frequent target for injection of botulinum toxin during the management of spastic equinovarus foot in adults with post-stroke spasticity. Although it is deep-seated, the needle insertion into the tibialis posterior muscle is usually performed using anatomical landmarks and safety information obtained from healthy subjects and cadavers. Our aim was to evaluate the botulinum toxin injection site for the medial approach to the tibialis posterior muscle in chronic stroke patients with spastic equinovarus foot. Forty-six patients were evaluated at the affected middle lower leg medial surface with ultrasonography according to the following parameters: tibialis posterior muscle depth, thickness, and echo intensity. As to the spastic tibialis posterior, we found a mean muscle depth of 26.5 mm and a mean muscle thickness of 10.1 mm. Furthermore we observed a median tibialis posterior muscle echo intensity of 3.00 on the Heckmatt scale. The tibialis posterior muscle thickness was found to be inversely associated with its depth (p < 0.001 and echo intensity (p = 0.006. Furthermore, tibialis posterior muscle depth was found to be directly associated with its echo intensity (p = 0.004. Our findings may usefully inform manual needle placement into the tibialis posterior for the botulinum toxin treatment of spastic equinovarus foot in chronic stroke patients.

  3. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P......) of the total ankle dorsiflexor muscle volume, which was 267 +/- 10 cm. Relative cross-sectional areas occupied by Type I, IIA, and IIB fibers in the tibialis anterior were 69.3 +/- 2.2, 27.4 +/- 2.76, and 3.2 +/- 1.0%, respectively. ATP economy of force maintenance did not change significantly during the 60-s...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P economy compared with those maintaining the force (3...

  4. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P.......7 +/- 0.6 vs 5.3 +/- 0.6 N.s.micromol-1; P temperature and low ATP economy...

  5. Effects of Shoes and a Prefabricated Medial Arch Support on Medial Gastrocnemius and Tibialis Anterior Activity while doing Leg Press Exercise in Normal Feet Athletes

    Directory of Open Access Journals (Sweden)

    Maryam Sheikhi

    2017-04-01

    Full Text Available Background: Nowadays, different types of exercise machines are being used in the field of athletic training, recreation, post-injury and post-operation rehabilitation. Leg press is a commonly-used one that retrains muscles and simulates natural functional activities. In this activity, feet are in contact with a footrest to exert muscular forces. In addition, the footrest inserts reactive forces to feet and from the feet load would transfer to structures that are more proximal. Any misalignment in foot structure may interfere its function. Objective: The aim of this study was to assess the effect of shoes and using a prefabricated medial arch support on the activity of Tibialis anterior and medial gastrocnemius muscles while doing leg press exercise in normal feet subjects. Method: 14 men with normal Medial Longitudinal Arch and normal Body Mass Index aged between 18-35 years old, with at least 6 months experience of doing leg press volunteered to participate in this study.  Medial gastrocnemius and Tibialis anterior activity were measured by surface electromyography while doing leg press with 70% of subjects 1 Repetition Maximum.  To increase accuracy, motion was divided into knee flexion and knee extension phases. Peak Amplitude, Time to Peak Amplitude and Root Mean Square variables were used for analysis. Wilcoxon nonparametric test was used to compare the results. Results: No statistically significant difference was found in the electromyographic parameters of Medial gastrocnemius nor Tibialis anterior in any phases of motion, except for an increase in Tibialis anterior time to peak amplitude in shod condition compared with barefoot in knee extension phase of motion (p-value=0.008 and Tibialis anterior RMS in knee flexion phase in orthotic condition compared to shod (p-value=0.03. Conclusion: It seems that in high loads shoes or medial arch supports cannot change electromyographic parameters in Medial gastrocnemius nor Tibialis anterior in

  6. Muscle hernias of the lower leg: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Mellado, J.M. [Radiology Department, Hospital Virgen de la Cinta, Tortosa, Tarragona (Spain)]|[IDI - Centre Tarragona, Ressonancia Magnetica, Hospital Joan XXIII, Tarragona (Spain); Perez del Palomar, L. [Radiology Department, Hospital Virgen de la Cinta, Tortosa, Tarragona (Spain)

    1999-08-01

    Muscle hernias of the lower leg involving the tibialis anterior, peroneus brevis, and lateral head of the gastrocnemius were found in three different patients. MRI findings allowed recognition of herniated muscle in all cases and identification of fascial defect in two of them. MR imaging findings and the value of dynamic MR imaging is emphasized. (orig.) With 3 figs., 10 refs.

  7. Changes in joint coupling and variability during walking following tibialis posterior muscle fatigue

    Directory of Open Access Journals (Sweden)

    Ferber Reed

    2011-02-01

    Full Text Available Abstract Background The tibialis posterior muscle is believed to play a key role in controlling foot mechanics during the stance phase of gait. However, an experiment involving localised tibialis posterior muscle fatigue, and analysis of discrete rearfoot and forefoot kinematic variables, indicated that reduced force output of the tibialis posterior muscle did not alter rearfoot and forefoot motion during gait. Thus, to better understand how muscle fatigue affects foot kinematics and injury potential, the purpose of this study was to reanalyze the data and investigate shank, rearfoot and forefoot joint coupling and coupling variability during walking. Methods Twenty-nine participants underwent an exercise fatigue protocol aimed at reducing the force output of tibialis posterior. An eight camera motion analysis system was used to evaluate 3 D shank and foot joint coupling and coupling variability during treadmill walking both pre- and post-fatigue. Results The fatigue protocol was successful in reducing the maximal isometric force by over 30% and a concomitant increase in coupling motion of the shank in the transverse plane and forefoot in the sagittal and transverse planes relative to frontal plane motion of the rearfoot. In addition, an increase in joint coupling variability was measured between the shank and rearfoot and between the rearfoot and forefoot during the fatigue condition. Conclusions The reduced function of the tibialis posterior muscle following fatigue resulted in a disruption in typical shank and foot joint coupling patterns and an increased variability in joint coupling. These results could help explain tibialis posterior injury aetiology.

  8. Double layer repair of tibialis anterior muscle hernia in a soccer player: a case report and review of the literature.

    Science.gov (United States)

    Dönmez, Gürhan; Evrenos, Mustafa Kürsat; Cereb, Meryem; Karanfil, Yigitcan; Doral, Mahmut Nedim

    2015-01-01

    muscle herniations usually present in athletes especially in the lower legs; occurring through defects in the deep fascial layer of the muscles and typically seen following local blunt trauma or muscle hypertrophy after strenuous exercise. Management of muscle hernias varies from conservative therapy to surgical repair and usually needs multidisciplinary collaboration for differential diagnosis. herein tibialis anterior muscle hernia in 17-year-old male soccer player was presented. The diagnosis was confirmed with dynamic ultrasonographic views changing with the different movements of the ankle. Since the symptoms were not relieved with conservative methods, surgical repair of the defect was offered. we preferred to repair fascial defect with double layer and Mesh graft that were placed over primary suture repair. No complications were reported such as wound or mesh infection postoperatively. The patient was clinically satisfied and returned his previous activity level after 3 months of surgery. After 2 years of follow-up the feature of the bulge was dissolved and player was satisfied with the operation. knowledge of the lower extremity muscle herniation is essential for both proper management and/or surgical referral. The importance of protective devices in prevention, dynamic ultrasonography in diagnosis and double layer repair of the fascial defect with Mesh graft in treatment of muscle herniations were highlighted.

  9. Intramuscular Electrical Stimulation for Muscle Activation of the Tibialis Anterior After Surgical Repair: A Case Report.

    Science.gov (United States)

    Hollis, Sharon; McClure, Philip

    2017-12-01

    Background Loss of voluntary activation of musculature can result in muscle weakness. External neuromuscular stimulation can be utilized to improve voluntary activation but is often poorly tolerated because of pain associated with required stimulus level. Intramuscular electrical stimulation requires much lower voltage and may be better tolerated, and therefore more effective at restoring voluntary muscle activation. Case Description A 71-year-old man sustained a rupture of the distal attachment of the tibialis anterior tendon. Thirty-two weeks after surgical repair, there was no palpable or visible tension development in the muscle belly or tendon. Dorsiflexion was dependent on toe extensors. Electrical stimulation applied via a dry needling placement in the muscle belly was utilized to induce an isometric contraction. Outcomes Five sessions of intramuscular electrical stimulation were delivered. By day 4 (second visit), the patient was able to dorsiflex without prominent use of the extensor hallucis longus. By day 6 (third visit), active-range-of-motion dorsiflexion with toes flexed increased 20° (-10° to 10°). Eighteen days after the initial treatment, the patient walked without his previous high-step gait pattern, and the tibialis anterior muscle test improved to withstanding moderate resistance (manual muscle test score, 4/5). Discussion The rapid change in muscle function observed suggests that intramuscular electrical stimulation may facilitate voluntary muscle activation. Level of Evidence Therapy, level 5. J Orthop Sports Phys Ther 2017;47(12):965-969. Epub 15 Oct 2017. doi:10.2519/jospt.2017.7368.

  10. Proteomic studies of rat tibialis anterior muscle during postnatal growth and development.

    Science.gov (United States)

    Sun, Hualin; Zhu, Ting; Ding, Fei; Hu, Nan; Gu, Xiaosong

    2009-12-01

    In this study, a proteomic analysis consisting of two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry was accomplished to investigate the complex protein expression patterns in rat tibialis anterior muscle during postnatal 3-month period. We determined the time-dependent expression alterations of 107 protein spots, among which 53 protein spots were identified. These identified proteins included skeletal contractile proteins, metabolic enzymes, chaperone, intermediate filament, and signal transduction proteins. The time-dependent expression of three proteins, such as Mylpf, desmin, and RKIP, was confirmed by Western blot analysis and immunohistochemistry. The functional implication of these expression changes was also discussed. We further analyzed the linkage and interactions among the differentially expressed proteins (MAPK1, RKIP, AHSG, etc.). Collectively, the results might add to the understanding of the molecular mechanisms regulating postnatal growth and development of rat tibialis anterior muscle.

  11. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    Science.gov (United States)

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Comparison of the tibialis anterior and soleus muscles isolation ratios during the sit-to-stand movement in elderly people.

    Science.gov (United States)

    Lee, Sang-Hoon; Yoo, Won-Gyu

    2017-06-01

    [Purpose] To compared activation of the tibialis anterior and soleus muscles during the sit-to-stand movement in elderly people. [Subjects and Methods] Ten elderly women were enrolled. The activities of the dominant lower extremity muscles were measured using a wireless electromyography system. Subjects performed natural sit-to-stand tasks. [Results] In the pre-thigh off phase, the tibialis anterior isolation ratio was significantly higher than the soleus isolation ratio. In the post-thigh off phase, the tibialis and soleus isolation ratios did not significantly differ. [Conclusion] This result suggests that selective soleus exercises might help to reduce the risk of falling in the elderly.

  13. Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography.

    Science.gov (United States)

    Koo, Terry K; Guo, Jing-Yi; Cohen, Jeffrey H; Parker, Kevin J

    2014-01-01

    Quantifying passive stretching responses of individual muscles helps the diagnosis of muscle disorders and aids the evaluation of surgical/rehabilitation treatments. Utilizing an animal model, we demonstrated that shear elastic modulus measured by supersonic shear wave elastography increases linearly with passive muscle force. This study aimed to use this state-of-the-art technology to study the relationship between shear elastic modulus and ankle dorsi-plantarflexion angle of resting tibialis anterior muscles and extract physiologically meaningful parameters from the elasticity-angle curve to better quantify passive stretching responses. Elasticity measurements were made at resting tibialis anterior of 20 healthy subjects with the ankle positioned from 50° plantarflexion to up to 15° dorsiflexion at every 5° for two cycles. Elasticity-angle data was curve-fitted by optimizing slack angle, slack elasticity, and rate of increase in elasticity within a piecewise exponential model. Elasticity-angle data of all subjects were well fitted by the piecewise exponential model with coefficients of determination ranging between 0.973 and 0.995. Mean (SD) of slack angle, slack elasticity, and rate of increase in elasticity were 10.9° (6.3°), 5.8 (1.9) kPa, and 0.0347 (0.0082) respectively. Intraclass correlation coefficients of each parameter were 0.852, 0.942, and 0.936 respectively, indicating excellent test-retest reliability. This study demonstrated the feasibility of using supersonic shear wave elastography to quantify passive stretching characteristics of individual muscle and provided preliminary normative values of slack angle, slack elasticity, and rate of increase in elasticity for human tibialis anterior muscles. Future studies will investigate diagnostic values of these parameters in clinical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Paired associative stimulation targeting the tibialis anterior muscle using either mono or biphasic transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Mrachacz-Kersting, Natalie; Stevenson, Andrew James Thomas

    2017-01-01

    Paired associative stimulation (PAS) protocols induce plastic changes within the motor cortex. The objectives of this study were to investigate PAS effects targeting the tibialis anterior (TA) muscle using a biphasic transcranial magnetic stimulation (TMS) pulse form and, to determine whether...... a reduced intensity of this pulse would lead to significant changes as has been reported for hand muscles using a monophasic TMS pulse. Three interventions were investigated: (1) suprathreshold PAbi-PAS (n = 11); (2) suprathreshold PAmono-PAS (n = 11) where PAS was applied using a biphasic or monophasic...

  15. Short-interval intracortical inhibition and facilitation targeting the tibialis anterior muscle

    DEFF Research Database (Denmark)

    Davodian, Danny; Stevenson, Andrew James Thomas; Ziemann, Ulf

    2017-01-01

    muscles, TMS activation of lower limbs tend to predominantly activate I1 waves given the histological differences (Terao et al., Brain Research, 2000). In the present study, we investigated the effects of stimulation intensities of S1 and S2 on motor cortex (M1) excitability targeting the tibialis...... (SICF) is thoroughly examined (Ilić et al., JPhysiol., 2002), while relatively little is known for lower limb muscles. SICI and SICF are thought to be caused by interaction of I3 waves (Hanajima et al., JPhysiol., 1998; Hanajima et al., JPhysiol., 2002) and while these can be elicited in upper limb...

  16. Evaluation of muscle function of the extensor digitorum longus muscle ex vivo and tibialis anterior muscle in situ in mice.

    Science.gov (United States)

    Hakim, Chady H; Wasala, Nalinda B; Duan, Dongsheng

    2013-02-09

    absence of dystrophin, the sarcolemma is damaged by the shearing force generated during force transmission. This membrane tearing initiates a chain reaction which leads to muscle cell death and loss of contractile machinery. As a consequence, muscle force is reduced and dead myofibers are replaced by fibrotic tissues (5). This later change increases muscle stiffness (6). Accurate measurement of these changes provides important guide to evaluate disease progression and to determine therapeutic efficacy of novel gene/cell/pharmacological interventions. Here, we present two methods to evaluate both contractile and passive mechanical properties of the extensor digitorum longus (EDL) muscle and the contractile properties of the tibialis anterior (TA) muscle.

  17. Leucine Supplementation Accelerates Connective Tissue Repair of Injured Tibialis Anterior Muscle

    Directory of Open Access Journals (Sweden)

    Marcelo G. Pereira

    2014-09-01

    Full Text Available This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA. Young male Wistar rats were supplemented with leucine (1.35 g/kg per day; then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA of regenerating myofibers (p > 0.05 from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-β receptor type I (TβR-I and Smad2/3 in regenerating muscles (p < 0.05. Leucine also reduced neonatal myosin heavy chain (MyHC-n (p < 0.05, increased adult MyHC-II expression (p < 0.05 and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05. Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TβR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases.

  18. Magnetic resonance imaging in the diagnosis of anterior tibialis muscle herniation.

    Science.gov (United States)

    Zeiss, J; Ebraheim, N A; Woldenberg, L S

    1989-07-01

    Magnetic resonance imaging (MRI) can be employed to successfully image the fascial compartments of the leg. Herniated muscle tissue and fascial discontinuity can each be unequivocally identified. Both the extent of fascial splitting and the size of the muscle herniation can be demarcated and quantified. MRI is favored over computed tomography because of its superior ability to distinguish soft-tissues structures, making it possible to see both muscle and fascia separately.

  19. Intermuscular interaction via myofascial force transmission: Effects of tibialis anterior and extensor digitorum longus length on force transmission from rat extensor digitorum longus muscle

    NARCIS (Netherlands)

    Maas, Huub; Baan, Guus C.; Huijing, P.A.J.B.M.

    2001-01-01

    Force transmission in rat anterior crural compartment, containing tibialis anterior (TA), extensor hallucis longus (EHL) and extensor digitorum longus (EDL) muscles, was investigated. These muscles together with the muscles of the peroneal compartment were excited maximally. Force was measured at

  20. Intermuscular interaction via myofascial force transmission: Effects of tibialis anterior and extensor digitrum longus length on force transmission from rat extensor digitorum longus muscle

    NARCIS (Netherlands)

    Maas, H.; Baan, G.C.; Huijing, P.A.J.B.M.

    2001-01-01

    Force transmission in rat anterior crural compartment, containing tibialis anterior (TA), extensor hallucis longus (EHL) and extensor digitorum longus (EDL) muscles, was investigated. These muscles together with the muscles of the peroneal compartment were excited maximally. Force was measured at

  1. Exercising the Tibialis Anterior Muscle of Children with Cerebral Palsy for Improved Neuroplasticity using an Electrical Guitar

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Moeslund, Thomas B.; Overholt, Daniel

    2014-01-01

    This paper is a suggestion on how to improve or extend a known method of exercising the tibialis anterior muscle for improved mobility for children with cerebral palsy through neuroplasticity. We suggest that by using slightly altered existing devices, in this case the Actuated Guitar, it is poss......This paper is a suggestion on how to improve or extend a known method of exercising the tibialis anterior muscle for improved mobility for children with cerebral palsy through neuroplasticity. We suggest that by using slightly altered existing devices, in this case the Actuated Guitar...

  2. Foot posture is associated with morphometry of the peroneus longus muscle, tibialis anterior tendon, and Achilles tendon.

    Science.gov (United States)

    Murley, G S; Tan, J M; Edwards, R M; De Luca, J; Munteanu, S E; Cook, J L

    2014-06-01

    The aim of this study was to investigate the association between foot type and the morphometry of selected muscles and tendons of the lower limb. Sixty-one healthy participants (31 male, 30 female; aged 27.1 ± 8.8 years) underwent gray-scale musculoskeletal ultrasound examination to determine the anterior-posterior (AP) thickness of tibialis anterior, tibialis posterior, and peroneus longus muscles and tendons as well as the Achilles tendon. Foot type was classified based on arch height and footprint measurements. Potentially confounding variables (height, weight, hip and waist circumference, rearfoot and ankle joint range of motion, and levels of physical activity) were also measured. Multiple linear regression models were used to determine the association between foot type with muscle and tendon morphometry accounting for potentially confounding variables. Foot type was significantly and independently associated with AP thickness of the tibialis anterior tendon, peroneus longus muscle, and Achilles tendon, accounting for approximately 7% to 16% of the variation. Flat-arched feet were associated with a thicker tibialis anterior tendon, a thicker peroneus longus muscle, and a thinner Achilles tendon. Foot type is associated with morphometry of tendons that control sagittal plane motion of the rearfoot; and the peroneus longus muscle that controls frontal plane motion of the rearfoot. These findings may be related to differences in tendon loading during gait. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The Comparing the Leg Muscles Electromyography during Single Leg Drop Landing in Pesplanus and Normal Men

    Directory of Open Access Journals (Sweden)

    mostafa bazvand

    2016-03-01

    Full Text Available Objective: pesplanus is one of the changes that brings about changes in muscle activation patterns. Being aware of muscles activity changes in various standing positions among pesplanus patients provides insights into preventing lower extremity injuries in this population. The aim of this study was to compare leg muscles electromyography during various standing positions in pesplanus and normal subjects. Methods: 60 healthy male university students, 30 subjects with pesplanus deformity (with average age 23/54±3/57 year, average height 175/34±7/62 cm, average weight 74/87±10/72 kg and 30 normal subjects (with average age 22/97±2/38 year, average height 176/6±5/59 cm, average weight 73/58±8/36 kg participated in this comparative study. Deformity of pesplanus was assessed with navicular drop test. Each subject performed single-leg landing dropping from 30cm height onto a force platform where muscles activity was recorded with EMG device. For data analysis, Matlab and Spss softwares were used and independent sample t-test was used to compare the dependent variables at a significance level of P &le 0/05. Results: Significant differences were observed between the two groups for the activities of the longus peroneus and anterior tibialis muscles ( p&le0/05 while no significant differences were observed in other muscles. Conclusion: The changes in the normal structure of the foot might affect muscle activities during standing, which can cause changes in the injury patterns. Therefore, it is proposed that focusing on corrective exercises and therapy plan can reduce these risks.

  4. Leg muscles activities during hyperventilation following a cycling exercise.

    Science.gov (United States)

    David, P; Mora, I; Terrien, J; Lelard, T; Petitjean, M

    2010-01-01

    The goal of this study was to establish how increased ventilation modifies postural stability, as characterized by body sway and leg muscle activities. Twelve healthy subjects had to perform six 30-second postural tests: one pre-exercise test while breathing gently and then one test every minute for the five minutes immediately following a maximum-intensity, incremental cycling exercise test. Subjects were asked to maintain an upright stance on a force plate for 30 s, with their eyes open. Movement of the centre of pressure in the sagittal plane was monitored in the time and spectral domains. Myoelectric activities of the soleus and tibialis anterior muscles were recorded using surface electromyography. Ventilatory parameters were measured with a portable, telemetric device. Postural changes related to respiratory variations were quantified by coherence analysis. The results showed that hyperventilation induced by exercise was accompanied by a significant increase in postural parameters, indicating a reduction in postural stability following a change in ventilatory drive. Coherence analysis confirmed the ventilatory origin of the postural oscillations. The results suggest that ventilation may be an important factor in postural disturbance during physical activity. The observed increases in leg muscle activities were most likely related to musculo-articular stiffening.

  5. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Ratkevicius, Aivaras; Quistorff, Bjørn

    2002-01-01

    at 37.5 ms. One train was delivered to the peroneal nerve every 2.5 s for 36 times under ischemic conditions. Anaerobic adenosine triphosphate (ATP) turnover was determined using 31-phosphorus magnetic resonance spectroscopy (P-MRS) of the human tibialis anterior muscle. Compared with constant...

  6. Study of the SEMG probability distribution of the paretic tibialis anterior muscle

    International Nuclear Information System (INIS)

    Cherniz, AnalIa S; Bonell, Claudia E; Tabernig, Carolina B

    2007-01-01

    The surface electromyographic signal is a stochastic signal that has been modeled as a Gaussian process, with a zero mean. It has been experimentally proved that this probability distribution can be adjusted with less error to a Laplacian type distribution. The selection of estimators for the detection of changes in the amplitude of the muscular signal depends, among other things, on the type of distribution. In the case of subjects with lesions to the superior motor neuron, the lack of central control affects the muscular tone, the force and the patterns of muscular movement involved in activities such as the gait cycle. In this work, the distribution types of the SEMG signal amplitudes of the tibialis anterior muscle are evaluated during gait, both in two healthy subjects and in two hemiparetic ones in order to select the estimators that best characterize them. It was observed that the Laplacian distribution function would be the one that best adjusts to the experimental data in the studied subjects, although this largely depends on the subject and on the data segment analyzed

  7. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain.

    Science.gov (United States)

    Klykken, Lindsey W; Pietrosimone, Brian G; Kim, Kyung-Min; Ingersoll, Christopher D; Hertel, Jay

    2011-01-01

    Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Case-control study. Laboratory. Ten individuals with acute ankle sprains (6 females, 4 males; age= 19.2 ± 3.8 years, height= 169.4 ± 8.5 cm, mass= 66.3 ± 11.6 kg) and 10 healthy individuals(6 females,4 males; age= 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass= 66.3 ± 10.2 kg) participated. The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (H(max)) and maximal muscle response (M(max)) and was then normalized using the H(max):M(max) ratio. The soleus MNPE in the ankle-sprain group was higher in the injured limb (H(max):M(max) = 0.63; 95% confidence interval [Cl],0.46, 0.80) than the uninjured limb (H(max):M(max) = 0.47; 95%Cl, 0.08, 0.93)(t(6) = 3.62,P =.01).In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (H(max):M(max) =0.06; 95% Cl, 0.01, 0.10) than in the uninjured ankle (H(max):M(max) =0.22; 95%Cl, 0.09, 0.35),but this finding was not different (t(9) =-2.01, P =.07). No differences were detected between injured (0.22; 95% Cl, 0.14, 0.29) and uninjured (0.25; 95%Cl, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t(9) =-0.739, P =.48). We found no side-to-side differences in any muscle among the healthy group. Facilitated MNPE was present in the involved soleus muscle of patients with acute

  8. Intra- and inter-rater reliabilities of measurement of ultrasound imaging for muscle thickness and pennation angle of tibialis anterior muscle in stroke patients.

    Science.gov (United States)

    Cho, Ki Hun; Lee, Hwang Jae; Lee, Wan Hee

    2017-07-01

    Dysfunction of skeletal muscle has been commonly reported in stroke patients. The purpose of this study was to investigate the intra- and inter-rater reliabilities of measurement of ultrasound imaging (USI) for pennation angle (PA) and muscle thickness (MT) of tibialis anterior muscle in stroke patients. Thirty-four stroke patients (19 men) participated in this study. USI was used for measurement of PA and MT of the tibialis anterior muscles at rest and during maximum voluntary contraction (MVC). Two examiners acquired images from all participants during two separate testing sessions, seven days apart. Intra-class correlation coefficients (ICCs), confidence interval (CI), standard error of measurement, minimal detectable change, and Bland-Altman plots were used for estimation of reliability. In the intra-rater reliability between measures, for all variables (PA and MT of the paretic and non-paretic sides of tibialis anterior muscles at rest and during MVC), the ICCs ranged between 0.639 and 0.998 and the CI was within an acceptable range of 0.388-0.999. In inter-rater reliability between examiners for the two tests, for all variables, the ICCs ranged between 0.690 and 0.995 and the CI was within an acceptable range of 0.463-0.997. In addition, significant difference was observed between the paretic and non-paretic sides of the tibialis anterior muscle architecture (p stroke patients. In addition, objective and quantitative measurements of tibialis anterior muscle using USI may provide appropriate management for the walking recovery of stroke patients.

  9. An ultrastructural and histochemical study of the flexor tibialis muscle fiber types in male and female stick insects (Eurycantha calcarata, L).

    Science.gov (United States)

    Pilehvarian, Ali Asghar

    2015-10-01

    In this study the ultrastructural and histochemical characteristics of the flexor tibialis muscle fibers of the specialized metathoracic legs in the male and those of homologous and unspecialized ones in the female stick insects, Eurycantha calcarata, L, were examined. For the ultrastructural analysis, the muscle was divided longitudinally and vertically to produce a total of 12 sample parts e.g., anterior-dorsal-distal (ADD), posterior-ventral-medial (PVM) and so on. Light and electron microscopes were used to observe the muscle tissue. The methods for myosin adenosine triphosphatase (mATPase) and nicotine adenine dinucleotide- tetrazolium (NADH-TR) staining were modified from the methods of (Stokes et al., '79; Anttila et al., 2009; Anttila and Manttari, 2009). Sections with thickness of 22 μm, were cut from the anterior and the posterior surfaces of the muscle, using a cryostat. The histochemical and ultrastructural results showed that the muscles of both the male and the female were mixtures of physiological fiber types, with predominantly fast fibers. The muscles were composed of fibers with different staining properties for both mATPase and NADH-TR activities. The population of fibers within the muscles was heterogeneous. The differences between the population of the male and that of the female were significant. The means of most criteria e.g., mitochondrial amount and sarcoplasmic reticulum area predicted that the muscle of the male contained more fast fibers than the female. The histochemical examination also showed that the muscle of the male contained more fibers stained darkly for mATPase and lightly for NADH-TR. © 2015 Wiley Periodicals, Inc.

  10. LEGS AND TRUNK MUSCLE HYPERTROPHY FOLLOWING WALK TRAINING WITH RESTRICTED LEG MUSCLE BLOOD FLOW

    Directory of Open Access Journals (Sweden)

    Mikako Sakamaki

    2011-06-01

    Full Text Available We examined the effect of walk training combined with blood flow restriction (BFR on the size of blood flow-restricted distal muscles, as well as, on the size of non-restricted muscles in the proximal limb and trunk. Nine men performed walk training with BFR and 8 men performed walk training alone. Training was conducted two times a day, 6 days/wk, for 3 wk using five sets of 2-min bouts (treadmill speed at 50 m/min, with a 1-min rest between bouts. After walk training with BFR, MRI-measured upper (3.8%, P < 0.05 and lower leg (3.2%, P < 0. 05 muscle volume increased significantly, whereas the muscle volume of the gluteus maximus (-0.6% and iliopsoas (1.8% and the muscle CSA of the lumber L4-L5 (-1.0 did not change. There was no significant change in muscle volume in the walk training alone. Our results suggest that the combination of leg muscle blood flow restriction with slow walk training elicits hypertrophy only in the distal blood flow restricted leg muscles. Exercise intensity may be too low during BFR walk training to increase muscle mass in the non- blood flow restricted muscles (gluteus maximus and other trunk muscles.

  11. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome.

    Science.gov (United States)

    Saeki, J; Nakamura, M; Nakao, S; Fujita, K; Yanase, K; Ichihashi, N

    2018-01-01

    Previous history of medial tibial stress syndrome (MTSS) is a risk factor for MTSS relapse, which suggests that there might be some physical factors that are related to MTSS development in runners with a history of MTSS. The relationship between MTSS and muscle stiffness can be assessed in a cross-sectional study that measures muscle stiffness in subjects with a history of MTSS, who do not have pain at the time of measurement, and in those without a history of MTSS. The purpose of this study was to compare the shear elastic modulus, which is an index of muscle stiffness, of all posterior lower leg muscles of subjects with a history of MTSS and those with no history and investigate which muscles could be related to MTSS. Twenty-four male collegiate runners (age, 20.0±1.7 years; height, 172.7±4.8 cm; weight, 57.3±3.7 kg) participated in this study; 14 had a history of MTSS, and 10 did not. The shear elastic moduli of the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and tibialis posterior were measured using shear wave elastography. The shear elastic moduli of the flexor digitorum longus and tibialis posterior were significantly higher in subjects with a history of MTSS than in those with no history. However, there was no significant difference in the shear elastic moduli of other muscles. The results of this study suggest that flexor digitorum longus and tibialis posterior stiffness could be related to MTSS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Influence of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing.

    Science.gov (United States)

    Karimi, Zanyar; Allahyari, Teimour; Azghani, Mahmood Reza; Khalkhali, Hamidreza

    2016-03-01

    The present study was an attempt to investigate the effect of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. Ten healthy subjects were recruited to stand for 2 h in three footwear conditions: barefoot, flat-bottomed shoe and unstable shoe. During standing, lower leg discomfort and EMG activity of medial gastrocnemius (MG) and tibialis anterior (TA) muscles were continuously monitored. Changes in lower leg volume over standing time also were measured. Lower leg discomfort rating reduced significantly while subjects standing on unstable shoe compared to the flat-bottomed shoe and barefoot condition. For lower leg volume, less changes also were observed with unstable shoe. The activity level and variation of right MG muscle was greater with unstable shoe compared to the other footwear conditions; however regarding the left MG muscle, significant difference was found between unstable shoe and flat-bottomed shoe only for activity level. Furthermore no significant differences were observed for the activity level and variation of TA muscles (right/left) among all footwear conditions. The findings suggested that prolonged standing with unstable footwear produces changes in lower leg muscles activity and leads to less volume changes. Perceived discomfort also was lower for this type of footwear and this might mean that unstable footwear can be used as ergonomic solution for employees whose work requires prolonged standing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Poststroke Muscle Architectural Parameters of the Tibialis Anterior and the Potential Implications for Rehabilitation of Foot Drop

    Directory of Open Access Journals (Sweden)

    John W. Ramsay

    2014-01-01

    Full Text Available Poststroke dorsiflexor weakness and paretic limb foot drop increase the risk of stumbling and falling and decrease overall functional mobility. It is of interest whether dorsiflexor muscle weakness is primarily neurological in origin or whether morphological differences also contribute to the impairment. Ten poststroke hemiparetic individuals were imaged bilaterally using noninvasive medical imaging techniques. Magnetic resonance imaging was used to identify changes in tibialis anterior muscle volume and muscle belly length. Ultrasonography was used to measure fascicle length and pennation angle in a neutral position. We found no clinically meaningful bilateral differences in any architectural parameter across all subjects, which indicates that these subjects have the muscular capacity to dorsiflex their foot. Therefore, poststroke dorsiflexor weakness is primarily neural in origin and likely due to muscle activation failure or increased spasticity of the plantar flexors. The current finding suggests that electrical stimulation methods or additional neuromuscular retraining may be more beneficial than targeting muscle strength (i.e., increasing muscle mass.

  14. Action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after nerve injury.

    Science.gov (United States)

    Peretti, Ana Luiza; Antunes, Juliana Sobral; Lovison, Keli; Kunz, Regina Inês; Castor, Lidyane Regina Gomes; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor; Ribeiro, Lucinéia de Fátima Chasko

    2017-01-01

    To evaluate the action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after peripheral nerve injury. Wistar rats were divided into four groups, with seven animals each: Control Group, Vanillin Group, Injury Group, and Injury + Vanillin Group. The Injury Group and the Injury + Vanillin Group animals were submitted to nerve injury by compression of the sciatic nerve; the Vanillin Group and Injury + Vanillin Group, were treated daily with oral doses of vanillin (150mg/kg) from the 3rd to the 21st day after induction of nerve injury. At the end of the experiment, the tibialis anterior and soleus muscles were dissected and processed for light microscopy and submitted to morphological analysis. The nerve compression promoted morphological changes, typical of denervation, and the treatment with vanillin was responsible for different responses in the studied muscles. For the tibialis anterior, there was an increase in the number of satellite cells, central nuclei and fiber atrophy, as well as fascicular disorganization. In the soleus, only increased vascularization was observed, with no exacerbation of the morphological alterations in the fibers. The treatment with vanillin promoted increase in intramuscular vascularization for the muscles studied, with pro-inflammatory potential for tibialis anterior, but not for soleus muscle. Avaliar a ação da vanilina (Vanilla planifolia) sobre a morfologia dos músculos tibial anterior e sóleo após lesão nervosa periférica. Ratos Wistar foram divididos em quatro grupos, com sete animais cada, sendo Grupo Controle, Grupo Vanilina, Grupo Lesão e Grupo Lesão + Vanilina. Os animais dos Grupos Lesão e Grupo Lesão + Vanilina foram submetidos à lesão nervosa por meio da compressão do nervo isquiático, e os Grupos Vanilina e Grupo Lesão + Vanilina foram tratados diariamente com doses orais de vanilina (150mg/kg) do 3o ao 21o dia após a indução da lesão nervosa. Ao término do

  15. Posterior tibialis tendonopathy in an adolescent soccer player: a case report.

    Science.gov (United States)

    Yuill, Erik A; Macintyre, Ian G

    2010-12-01

    Detail the progress of an adolescent soccer player with right-sided chronic medial foot pain due to striking an opponent's leg while kicking the ball. The patient underwent diagnostic ultrasound and a conservative treatment plan. The most important features were hindfoot varus, forefoot abduction, flatfoot deformity, and inability to single leg heel raise due to pain. Conventional treatment was aimed at decreasing hypertonicity and improving function of the posterior tibialis muscle and tendon. Conservative treatment approach utilized soft tissue therapy in the form of Active Release Technique(®), and eccentric exercises designed to focus on the posterior tibial muscle and lower limb stability. Outcome measures included subjective pain ratings, and resisted muscle testing. A patient with posterior tibialis tendonopathy due to injury while playing soccer was relieved of his pain after 4 treatments over 4 weeks of soft tissue therapy and rehabilitative exercises focusing on the lower limb, specifically the posterior tibialis muscle.

  16. Ultrasound imaging of muscle contraction of the tibialis anterior in patients with facioscapulohumeral dystrophy

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Goselink, Rianne; Lassche, Saskia; Nillesen, Maartje; Sprengers, Andre; Verdonschot, Nico; van Alfen, Nens; De Korte, Chris

    2017-01-01

    In fascioscapulohumeral muscular dystrophy (FSHD) and many other neuromuscular disorders there is a need for biomarkers to diagnose, quantify and longitudinally follow muscle disease. Furthermore, the pathophysiological mechanisms leading to muscle weakness in most neuromuscular disorders are not

  17. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer.

    Science.gov (United States)

    Alves-Pinto, Ana; Blumenstein, Tobias; Turova, Varvara; Lampe, Renée

    2016-01-01

    Cycling on a recumbent ergometer constitutes one of the most popular rehabilitation exercises in cerebral palsy (CP). However, no control is performed on how muscles are being used during training. Given that patients with CP present altered muscular activity patterns during cycling or walking, it is possible that an incorrect pattern of muscle activation is being promoted during rehabilitation cycling. This study investigated patterns of muscular activation during cycling on a recumbent ergometer in patients with CP and whether those patterns are determined by the degree of spasticity and of mobility. Electromyographic (EMG) recordings of lower leg muscle activation during cycling on a recumbent ergometer were performed in 14 adult patients diagnosed with CP and five adult healthy participants. EMG recordings were done with an eight-channel EMG system built in the laboratory. The activity of the following muscles was recorded: Musculus rectus femoris, Musculus biceps femoris, Musculus tibialis anterior, and Musculus gastrocnemius. The degree of muscle spasticity and mobility was assessed using the Modified Ashworth Scale and the Gross Motor Function Classification System, respectively. Muscle activation patterns were described in terms of onset and duration of activation as well as duration of cocontractions. Muscle activation in CP was characterized by earlier onsets, longer periods of activation, a higher occurrence of agonist-antagonist cocontractions, and a more variable cycling tempo in comparison to healthy participants. The degree of altered muscle activation pattern correlated significantly with the degree of spasticity. This study confirmed the occurrence of altered lower leg muscle activation patterns in patients with CP during cycling on a recumbent ergometer. There is a need to develop feedback systems that can inform patients and therapists of an incorrect muscle activation during cycling and support the training of a more physiological activation

  18. A 3D active-passive numerical skeletal muscle model incorporating initial tissue strains. Validation with experimental results on rat tibialis anterior muscle.

    Science.gov (United States)

    Grasa, J; Ramírez, A; Osta, R; Muñoz, M J; Soteras, F; Calvo, B

    2011-10-01

    This paper presents a three-dimensional finite element model of skeletal muscle and its validation incorporating inital tissue strains. A constitutive relation was determined by using a convex free strain energy function (SEF) where active and passive response contributions were obtained fitting experimental data from the rat tibialis anterior (TA) muscle. The passive and active finite strains response was modelled within the framework of continuum mechanics by a quasi-incompressible transversely isotropic material formulation. Magnetic resonance images (MRI) were obtained to reconstruct the external geometry of the TA. This geometry includes initial strains also taken into account in the numerical model. The numerical results show excellent agreement with the experimental results when comparing reaction force-extension curves both in passive and active tests. The proposed constitutive model for the muscle is implemented in a subroutine in the commercial finite element software package ABAQUS.

  19. Ultrasound Imaging of Muscle Contraction of the Tibialis Anterior in Patients with Facioscapulohumeral Dystrophy

    NARCIS (Netherlands)

    Gijsbertse, Kaj; Goselink, Rianne; Lassche, Saskia; Nillesen, Maartje; Sprengers, André; Verdonschot, Nico; van Alfen, Nens; de Korte, Chris

    2017-01-01

    A need exists for biomarkers to diagnose, quantify and longitudinally follow facioscapulohumeral muscular dystrophy (FSHD) and many other neuromuscular disorders. Furthermore, the pathophysiological mechanisms leading to muscle weakness in most neuromuscular disorders are not completely understood.

  20. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Torriani, Martin [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Massachusetts General Hospital, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Townsend, Elise [MGH Institute of Health Professions and Massachusetts General Hospital, Boston, MA (United States); Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Tseng, Brian S. [Massachusetts General Hospital and Harvard Medical School, Pediatric Neuromuscular Clinic, Boston, MA (United States); Novartis Institute of Biomedical Research, Cambridge, MA (United States)

    2012-04-15

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)

  1. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    International Nuclear Information System (INIS)

    Torriani, Martin; Townsend, Elise; Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H.; Tseng, Brian S.

    2012-01-01

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)

  2. Comparing the amount of EMG activity of the selected involved muscles in ankle strategy in female athletes while standing on one leg on shuttle balance and wobble board

    Directory of Open Access Journals (Sweden)

    Mansouri R

    2015-05-01

    Full Text Available Abstract Background: It seems that using shuttle balance which has recently been produced in Iran would be beneficial in exercise prescription for preventing sports injuries and recovery. The purpose of this study is comparing the amount of the electromyography activity of involved muscles in ankle strategy while standing on one leg on shuttle balance versus wobble board. Materials and Methods: this study is a functional and cause-compare study. 15 female students 20-22 years of age having the enterance standards were selected meaningfully. The amount of EMG activity of selected muscles (Tibialis Anterior, Gastrocnemius, Rectus Femoris and Hamstring was measured while standing on one leg on two devices. The difference in means of muscles activity in both of devices was estimated using multivariate analysis of variance. Results: The results showed a significant difference between the amount of EMG activity of involved muscles (p=0.001. Also, the results of the intragroup effects showed that the electromyography activity of Tibialis Anterior, Rectus Femoris and Hamstring while standing on shuttle balance was significantly more than the activity while standing on wobble board (p0/05. Conclusion: It seems that standing on shuttle balance can make higher electromyography activity in the muscles that are involved on ankle and thigh joints, i.e. Tibialis Anterior, Rectus Femoris and Hamstring. So it is recommended that shuttle balance can be used in balance training program.

  3. Recovery time of motor evoked potentials following lengthening and shortening muscle action in the tibialis anterior

    NARCIS (Netherlands)

    Tallent, J.; Goodall, S.; Hortobagyi, T.; Gibson, A. St Clair; French, D. N.; Howatson, G.

    Motor evoked potentials (MEP) at rest remain facilitated following an isometric muscle contraction. Because the pre-synaptic and post-synaptic control of shortening (SHO) and lengthening (LEN) contractions differs, the possibility exists that the recovery of the MEP is also task specific. The time

  4. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    Science.gov (United States)

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p  Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    Science.gov (United States)

    Vohra, Ravneet S; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2015-01-01

    The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  6. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    Directory of Open Access Journals (Sweden)

    Ravneet S Vohra

    Full Text Available The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD and determine the relationships between non-contractile content and functional abilities.Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus were assessed by magnetic resonance imaging (MRI. Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed.Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus was significantly greater than control group (p<0.05. Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84 and 30 feet walk (rs = 0.66-0.80. Dorsiflexor (DF and plantarflexor (PF specific torque was significantly different between the groups.Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  7. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  8. Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle.

    Science.gov (United States)

    Roseguini, Bruno T; Mehmet Soylu, S; Whyte, Jeffrey J; Yang, H T; Newcomer, Sean; Laughlin, M Harold

    2010-06-01

    Application of intermittent pneumatic compressions (IPC) is an extensively used therapeutic strategy in vascular medicine, but the mechanisms by which this method works are unclear. We tested the hypothesis that acute application (150 min) of cyclic leg compressions in a rat model signals upregulation of angiogenic factors in skeletal muscle. To explore the impact of different pressures and frequency of compressions, we divided rats into four groups as follows: 120 mmHg (2 s inflation/2 s deflation), 200 mmHg (2 s/2 s), 120 mmHg (4 s/16 s), and control (no intervention). Blood flow and leg oxygenation (study 1) and the mRNA expression of angiogenic mediators in the rat tibialis anterior muscle (study 2) were assessed after a single session of IPC. In all three groups exposed to the intervention, a modest hyperemia (approximately 37% above baseline) between compressions and a slight, nonsignificant increase in leg oxygen consumption (approximately 30%) were observed during IPC. Compared with values in the control group, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) mRNA increased significantly (P < 0.05) only in rats exposed to the higher frequency of compressions (2 s on/2 s off). Endothelial nitric oxide synthase, matrix metalloproteinase-2, and hypoxia-inducible factor-1alpha mRNA did not change significantly following the intervention. These findings show that IPC application augments the mRNA content of key angiogenic factors in skeletal muscle. Importantly, the magnitude of changes in mRNA expression appeared to be modulated by the frequency of compressions such that a higher frequency (15 cycles/min) evoked more robust changes in VEGF and MCP-1 compared with a lower frequency (3 cycles/min).

  9. Interaction Between Leg Muscle Performance and Sprint Acceleration Kinematics

    Directory of Open Access Journals (Sweden)

    Lockie Robert G.

    2015-12-01

    Full Text Available This study investigated relationships between 10 m sprint acceleration, step kinematics (step length and frequency, contact and flight time, and leg muscle performance (power, stiffness, strength. Twenty-eight field sport athletes completed 10 m sprints that were timed and filmed. Velocity and step kinematics were measured for the 0-5, 5-10, and 0-10 m intervals to assess acceleration. Leg power was measured via countermovement jumps (CMJ, a fivebound test (5BT, and the reactive strength index (RSI defined by 40 cm drop jumps. Leg stiffness was measured by bilateral and unilateral hopping. A three-repetition maximum squat determined strength. Pearson’s correlations and stepwise regression (p ≤ 0.05 determined velocity, step kinematics, and leg muscle performance relationships. CMJ height correlated with and predicted velocity in all intervals (r = 0.40-0.54. The 5BT (5-10 and 0-10 m intervals and RSI (5-10 m interval also related to velocity (r = 0.37-0.47. Leg stiffness did not correlate with acceleration kinematics. Greater leg strength related to and predicted lower 0-5 m flight times (r = -0.46 to -0.51, and a longer 0-10 m step length (r = 0.38. Although results supported research emphasizing the value of leg power and strength for acceleration, the correlations and predictive relationships (r2 = 0.14-0.29 tended to be low, which highlights the complex interaction between sprint technique and leg muscle performance. Nonetheless, given the established relationships between speed, leg power and strength, strength and conditioning coaches should ensure these qualities are expressed during acceleration in field sport athletes.

  10. Interaction Between Leg Muscle Performance and Sprint Acceleration Kinematics.

    Science.gov (United States)

    Lockie, Robert G; Jalilvand, Farzad; Callaghan, Samuel J; Jeffriess, Matthew D; Murphy, Aron J

    2015-12-22

    This study investigated relationships between 10 m sprint acceleration, step kinematics (step length and frequency, contact and flight time), and leg muscle performance (power, stiffness, strength). Twenty-eight field sport athletes completed 10 m sprints that were timed and filmed. Velocity and step kinematics were measured for the 0-5, 5-10, and 0-10 m intervals to assess acceleration. Leg power was measured via countermovement jumps (CMJ), a five-bound test (5BT), and the reactive strength index (RSI) defined by 40 cm drop jumps. Leg stiffness was measured by bilateral and unilateral hopping. A three-repetition maximum squat determined strength. Pearson's correlations and stepwise regression (p ≤ 0.05) determined velocity, step kinematics, and leg muscle performance relationships. CMJ height correlated with and predicted velocity in all intervals (r = 0.40-0.54). The 5BT (5-10 and 0-10 m intervals) and RSI (5-10 m interval) also related to velocity (r = 0.37-0.47). Leg stiffness did not correlate with acceleration kinematics. Greater leg strength related to and predicted lower 0-5 m flight times (r = -0.46 to -0.51), and a longer 0-10 m step length (r = 0.38). Although results supported research emphasizing the value of leg power and strength for acceleration, the correlations and predictive relationships (r(2) = 0.14-0.29) tended to be low, which highlights the complex interaction between sprint technique and leg muscle performance. Nonetheless, given the established relationships between speed, leg power and strength, strength and conditioning coaches should ensure these qualities are expressed during acceleration in field sport athletes.

  11. Volume estimation of extensor muscles of the lower leg based on MR imaging

    International Nuclear Information System (INIS)

    Lund, Hans; Christensen, Line; Savnik, Anette; Danneskiold-Samsoee, Bente; Bliddal, Henning; Boesen, Jens

    2002-01-01

    Magnetic resonance imaging can be used to measure the muscle volume of a given muscle or muscle group. The purpose of this study was to determine both the intra- and inter-observer variation of the manually outlined volume of the extensor muscles (tibialis anterior, extensor digitorum longus and extensor hallucis longus), to estimate the minimum number of slices needed for these calculations and to compare estimates of volume based on an assumed conic shape of the muscles with that of an assumed cylindrical shape, the calculation in both cases based on the Cavalieri principle. Eleven young and healthy subjects (4 women and 7 men, age range 24-40 years) participated. Magnetic resonance imaging of the left leg was obtained on a 1.5-T MR system using a knee coil (receive only). A total of 50 consecutive slices were obtained beginning 10 cm below the caput fibula sin. and proceeding distally with a slice thickness of 1.5 mm without gap. The intra-class correlation coefficient (ICC) was used to calculate the relative reliability (interval from 0 to 1.0). A high reliability for both intra- and inter-reliability was observed (ICC 0.98 and 1.0). The difference was only 0.004% between calculations based on measurement of all 50 slices with respect to 8 slices equally distributed along the muscle group. No difference was found between the two different volumetric assumptions in the Cavalieri principle. The manually outlining of extensor muscles volumes was reliable and only 8 slices of the calf were needed. No difference was seen between the two used mathematical calculations. (orig.)

  12. Volume estimation of extensor muscles of the lower leg based on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Hans; Christensen, Line; Savnik, Anette; Danneskiold-Samsoee, Bente; Bliddal, Henning [The Parker Institute, Frederiksberg Hospital, 2000 Frederiksberg (Denmark); Boesen, Jens [Department of Radiology, Frederiksberg Hospital, 2000 Frederiksberg (Denmark)

    2002-12-01

    Magnetic resonance imaging can be used to measure the muscle volume of a given muscle or muscle group. The purpose of this study was to determine both the intra- and inter-observer variation of the manually outlined volume of the extensor muscles (tibialis anterior, extensor digitorum longus and extensor hallucis longus), to estimate the minimum number of slices needed for these calculations and to compare estimates of volume based on an assumed conic shape of the muscles with that of an assumed cylindrical shape, the calculation in both cases based on the Cavalieri principle. Eleven young and healthy subjects (4 women and 7 men, age range 24-40 years) participated. Magnetic resonance imaging of the left leg was obtained on a 1.5-T MR system using a knee coil (receive only). A total of 50 consecutive slices were obtained beginning 10 cm below the caput fibula sin. and proceeding distally with a slice thickness of 1.5 mm without gap. The intra-class correlation coefficient (ICC) was used to calculate the relative reliability (interval from 0 to 1.0). A high reliability for both intra- and inter-reliability was observed (ICC 0.98 and 1.0). The difference was only 0.004% between calculations based on measurement of all 50 slices with respect to 8 slices equally distributed along the muscle group. No difference was found between the two different volumetric assumptions in the Cavalieri principle. The manually outlining of extensor muscles volumes was reliable and only 8 slices of the calf were needed. No difference was seen between the two used mathematical calculations. (orig.)

  13. Age-related changes in the effects of strength training on lower leg muscles in healthy individuals measured using MRI.

    Science.gov (United States)

    Psatha, Maria; Wu, Zhiqing; Gammie, Fiona; Ratkevicius, Aivaras; Wackerhage, Henning; Redpath, Thomas W; Gilbert, Fiona J; Meakin, Judith R; Aspden, Richard M

    2017-01-01

    We previously measured the rate of regaining muscle strength during rehabilitation of lower leg muscles in patients following lower leg casting. Our primary aim in this study was to measure the rate of gain of strength in healthy individuals undergoing a similar training regime. Our secondary aim was to test the ability of MRI to provide a biomarker for muscle function. Men and women were recruited in three age groups: 20-30, 50-65 and over 70 years. Their response to resistance training of the right lower leg twice a week for 8 weeks was monitored using a dynamometer and MRI of tibialis anterior, soleus and gastrocnemius muscles at 2 weekly intervals to measure muscle size (anatomical cross-sectional area ( ACSA )) and quality ( T 2 relaxation). Forty-four volunteers completed the study. Baseline strength declined with age. Training had no effect in middle-aged females or in elderly men in dorsiflexion. Other groups significantly increased both plantarflexion and dorsiflexion strength at rates up to 5.5 N m week -1 in young females in plantarflexion and 1.25 N m week -1 in young males in dorsiflexion. No changes were observed in ACSA or T 2 in any age group in any muscle. Exercise training improves muscle strength in males at all ages except the elderly in dorsiflexion. Responses in females were less clear with variation across age and muscle groups. These results were not reflected in simple MRI measures that do not, therefore, provide a good biomarker for muscle atrophy or the efficacy of rehabilitation.

  14. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer

    Directory of Open Access Journals (Sweden)

    Alves-Pinto A

    2016-06-01

    Full Text Available Ana Alves-Pinto,1,* Tobias Blumenstein,1,* Varvara Turova,1 Renée Lampe1,2 1Research Unit of the Buhl-Strohmaier Foundation for Cerebral Palsy and Paediatric Neuroorthopaedics, Orthopaedic Department, Klinikum rechts der Isar, 2Markus Würth Professorship, Technical University of Munich, Munich, Germany *These authors contributed equally to this work Objective: Cycling on a recumbent ergometer constitutes one of the most popular rehabilitation exercises in cerebral palsy (CP. However, no control is performed on how muscles are being used during training. Given that patients with CP present altered muscular activity patterns during cycling or walking, it is possible that an incorrect pattern of muscle activation is being promoted during rehabilitation cycling. This study investigated patterns of muscular activation during cycling on a recumbent ergometer in patients with CP and whether those patterns are determined by the degree of spasticity and of mobility.Methods: Electromyographic (EMG recordings of lower leg muscle activation during cycling on a recumbent ergometer were performed in 14 adult patients diagnosed with CP and five adult healthy participants. EMG recordings were done with an eight-channel EMG system built in the laboratory. The activity of the following muscles was recorded: Musculus rectus femoris, Musculus biceps femoris, Musculus tibialis anterior, and Musculus gastrocnemius. The degree of muscle spasticity and mobility was assessed using the Modified Ashworth Scale and the Gross Motor Function Classification System, respectively. Muscle activation patterns were described in terms of onset and duration of activation as well as duration of cocontractions.Results: Muscle activation in CP was characterized by earlier onsets, longer periods of activation, a higher occurrence of agonist–antagonist cocontractions, and a more variable cycling tempo in comparison to healthy participants. The degree of altered muscle activation

  15. Muscle strategies for leg extensions on a "Reformer" apparatus.

    Science.gov (United States)

    Cantergi, Débora; Loss, Jefferson Fagundes; Jinha, Azim; Brodt, Guilherme Auler; Herzog, Walter

    2015-04-01

    Considering the kinematics of leg extensions performed on a Reformer apparatus, one would expect high activation of hip and knee extensor muscle groups. However, because of the bi-articular nature of some lower limb muscles, and the possibility to vary the direction of force application on the Reformer bar, muscles can be coordinated theoretically in a variety of ways and still achieve the desired outcome. Hence, the aim of this study was to determine the knee and hip moments during leg extensions performed on the Reformer apparatus and to estimate the forces in individual muscles crossing these joints using static optimization. Fifteen subjects performed leg extensions exercises on the Reformer apparatus using an individually chosen resistance. To our big surprise, we found that subjects performed the exercise using two conceptually different strategies (i) the first group used simultaneous hip and knee extension moments, (ii) while the second group used simultaneous hip flexion and knee extension moments to perform the exercise. These different strategies were achieved by changing the direction of the resultant force applied by the subject's feet on the Reformer bar. While leg extensions on the Reformer apparatus have been thought to strengthen the hip and knee extensors muscles, our results demonstrate that patients can perform the exercise in a different and unexpected way. In order to control the hip and knee moments and achieve the desired outcome of the exercise, the direction of force application on the Reformer bar must be controlled carefully. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions

    Directory of Open Access Journals (Sweden)

    Brent J. Raiteri

    2016-07-01

    Full Text Available Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a to determine the intra-session reliability of a novel 3D ultrasound (3DUS imaging method for measuring in vivo human muscle and aponeurosis deformations and (b to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions. Methods. Participants (n = 12 were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle. Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%. The TA remained

  17. Does EMG activation differ among fatigue-resistant leg muscles ...

    African Journals Online (AJOL)

    The participants (N=32) were divided into two groups according to the Fatigue Index value [Group I: Less Fatigue Resistant (LFR), n=17; Group II: More Fatigue Resistant (MFR), n=15]. The repeated EMG activities of four leg muscles [rectus femoris, biceps femoris, vastus lateralis and vastus medialis] were analysed during ...

  18. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    Directory of Open Access Journals (Sweden)

    Ulrich Lindemann

    Full Text Available The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628, leg push power (r = 0.550, isometric quadriceps strength (r = 0.442, hand grip strength (r = 0.367, fast gait speed (r = 0.291, habitual gait speed (r = 0.256, body mass index (r = 0.411 and age (r = -0.392. Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  19. Muscle recruitment patterns during the prone leg extension

    Directory of Open Access Journals (Sweden)

    Rayfield Ben

    2004-02-01

    Full Text Available Abstract Background The prone leg extension (PLE is a clinical test used to evaluate the function of the lumbopelvis. It has been theorized that a normal and consistent pattern of muscle activation exists. Previous research has found two contradictory patterns of muscle activation during PLE in normal individuals. One study shows an almost simultaneous activation of the lower erector spinae and hamstring muscle group with a delayed activation of the gluteus maximus, while the second describes the order of activation being ipsilateral erector spinae (to the leg being extended, hamstrings, contralateral erector spinae and gluteus maximus. Due to the different conclusions from these two studies and the lack of quantified muscle onset times, expressed in absolute time this study attempted to quantify the muscle onset times (in milliseconds during the prone leg extension, while noting if a consistent order of activation exists and whether a timing relationship also exists between the gluteus maximus and contralateral latissimus dorsi. Methods 10 asymptomatic males (Average height: 175.2 cm (SD 6.5, Average Weight 75.9 kg (SD 6.5, Average Age: 27.1(SD 1.28 and 4 asymptomatic females (Average height 164.5 (SD 2.9, weight: 56.2 (SD 8.9, Average Age: 25 (SD 1 performed the prone leg extension task while the myoelectric signal was recorded from the bilateral lower erector spinae, gluteus maximus and hamstring muscle groups. Activation onsets were determined from the rectified EMG signal relative to the onset of the hamstrings muscle group. Results No consistent recruitment patterns were detected for prone leg extension among the hamstring muscle group and the erector spinae. However, a consistent delay in the Gluteus Maximus firing of approximately 370 ms after the first muscle activated was found. Five out of 14 asymptomatic subjects showed a delay in gluteus maximus firing exceeding the average delay found in previous research of subjects considered to

  20. Use of local muscle flaps to cover leg bone exposures

    Directory of Open Access Journals (Sweden)

    Francisco d'Avila

    Full Text Available Objective: To evaluate the use of the medial gastrocnemius muscle and/or soleus muscle flaps as surgical treatment of the leg bone exposure.Methods: We retrospectively analyzed the medical records of patients undergoing transposition of the medial gastrocnemius and / or soleus for treating exposed bone in the leg, from January 1976 to July 2009, gathering information on epidemiological data, the etiology the lesion, the time between the initial injury and muscle transposition, the muscle used to cover the lesion, the healing evolution of the skin coverage and the function of the gastrocnemius-soleus unit.Results: 53 patients were operated, the ages varying between nine and 84 years (mean age 41; 42 were male and 11 female. The main initial injury was trauma (84.8%, consisting of tibia and / or fibula fracture. The most frequently used muscle was the soleus, in 40 cases (75.5%. The rank of 49 patients (92.5% was excellent or good outcome, of three (5.6% as regular and of one (1.9% as unsatisfactory.Conclusion: the treatment of bone exposure with local muscle flaps (gastrocnemius and/or soleus enables obtaining satisfactory results in covering of exposed structures, favoring local vascularization and improving the initial injury. It offers the advantage of providing a treatment in only one surgical procedure, an earlier recovery and reduced hospital stay.

  1. High-frequency electrical stimulation (HFES data lean and obese Zucker rat tibialis anterior muscle: Regulation of glycogen synthase kinase 3 beta (GSK3B associated proteins

    Directory of Open Access Journals (Sweden)

    Gautam K. Ginjupalli

    2018-02-01

    Full Text Available Anaerobic exercise has been advocated as a prescribed treatment for the management of diabetes: however, alterations in exercise-induced signaling remain largely unexplored in the diabetic muscle. Here, we compare the basal and the in situ contraction-induced phosphorylation of the AMPK, GSK3beta, and Shp2 in the lean and obese (fa/fa Zucker rat tibialis anterior (TA muscle following a single bout of contractile stimuli. This article represents data associated with prior publications from our lab (Katta et al., 2009; Katta et al., 2009; Tullgren et al., 1991 [1–3] and concurrent Data in Brief articles (Ginjupalli et al., 2017; Rice et al., 2017; Rice et al., 2017; Rice et al., 2017 [4–7].

  2. Consequences of simulated car driving at constant high speed on the sensorimotor control of leg muscles and the braking response.

    Science.gov (United States)

    Jammes, Yves; Behr, Michel; Weber, Jean P; Berdah, Stephane

    2017-11-01

    Due to the increase in time spent seated in cars, there is a risk of fatigue of the leg muscles which adjust the force exerted on the accelerator pedal. Any change in their sensorimotor control could lengthen the response to emergency braking. Fourteen healthy male subjects (mean age: 42 ± 4 years) were explored. Before and after a 1-h driving trial at 120 km h -1 , we measured the braking response, the maximal leg extension and foot inversion forces, the tonic vibratory response (TVR) in gastrocnemius medialis (GM) and tibialis anterior (TA) muscles to explore the myotatic reflex, and the Hoffmann reflex (H-reflex). During driving, surface electromyograms (EMGs) of GM and TA were recorded and the ratio between high (H) and low (L) EMG energies allowed to evaluate the recruitment of high- and low-frequency motor unit discharges. During driving, the H/L ratio decreased in TA, whereas modest and often no significant H/L changes occurred in GM muscle. After driving, the maximal foot inversion force decreased (-19%), while the leg extension force did not vary. Reduced TVR amplitude (-29%) was measured in TA, but no H-reflex changes were noted. The braking reaction time was not modified after the driving trial. Driving at constant elevated speed reduced the myotatic reflex and the recruitment of motor units in TA muscle. The corresponding changes were rarely present in the GM muscle that plays a key role in the braking response, and this could explain the absence of a reduced braking reaction time. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise

    Directory of Open Access Journals (Sweden)

    Kari eKalliokoski

    2011-10-01

    Full Text Available One-legged dynamic knee-extension exercise (DKE is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron emission tomography (PET determined uptake of [18F]-fluoro-deoxy-glucose (GU during DKE. Five healthy male subjects performed DKE at 25 W for 35 min and both the contracting and contralateral resting leg were scanned with PET from mid-thigh and distally. On average, exercise GU was the highest in the vastus intermedius (VI and lowest in the vastus lateralis (VL (VI vs VL, p<0.05, whereas the coefficient of variation was highest in VL (VL vs VI, p<0.05. Coefficient of variation between the mean values of the four QF muscles in the exercising leg was 35±9%. Compared to mean GU in QF (=100%, GU was on average 73% in VL, 84% in rectus femoris, 115% in vastus medialis, and 142% in VI. Variable activation of hamstring muscles and muscles of the lower leg was also observed. These results show that GU of different muscles of quadriceps muscle group as well as between individuals vary greatly during DKE, and suggests that muscle activity is not equal between quadriceps muscles in this exercise model. Furthermore, posterior thigh muscles and lower leg muscles are more active than hitherto thought even during this moderate exercise intensity.

  4. Elicitability of muscle cramps in different leg and foot muscles.

    Science.gov (United States)

    Minetto, Marco Alessandro; Botter, Alberto

    2009-10-01

    To explore the efficacy of muscle motor point stimulation in eliciting muscle cramps, 11 subjects underwent eight sessions of electrical stimulation of the following muscles bilaterally: abductor hallucis flexor hallucis brevis, and both heads of the gastrocnemius muscles. Bursts of 150 square wave stimuli (duration: 152 micros; current intensity: 30% supramaximal) were applied. The stimulation frequency was increased from 4 pulses per second (pps) at increments of 2 pps until a cramp was induced. The number of cramps that could be elicited was smaller in flexor hallucis brevis than in abductor hallucis (16 vs. 22 out of 22 trials each; P cramp susceptibility, and the intermuscle variability in the elicitability profile for electrically induced cramps supports the use of the proposed method for cramp research.

  5. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Boushel, Robert; Langberg, Henning

    2011-01-01

    to mean GU in QF (=100%), GU was on average 73% in VL, 84% in rectus femoris, 115% in vastus medialis, and 142% in VI. Variable activation of hamstring muscles and muscles of the lower leg was also observed. These results show that GU of different muscles of quadriceps muscle group as well as between......One-legged dynamic knee-extension exercise (DKE) is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron...... in the vastus intermedius (VI) and lowest in the vastus lateralis (VL; VI vs VL, p muscles in the exercising leg was 35 ± 9%. Compared...

  6. THE EFFECTS OF SINGLE LEG HOP PROGRESSION AND DOUBLE LEGS HOP PROGRESSION EXERCISE TO INCREASE SPEED AND EXPLOSIVE POWER OF LEG MUSCLE

    Directory of Open Access Journals (Sweden)

    Nining W. Kusnanik

    2015-05-01

    Full Text Available The main purpose of this study was to determine the effect of single leg hop progression and double legs hop progression exercise to increase speed and explosive power of leg muscles. Plyometric is one of the training methods that can increase explosive power. There are many models of plyometric training including single leg hop progression and double leg hop progression. This research was experimental using match subject design techniques. The subjects of this study were 39 students who joined basketball school club. There were 3 groups in this study: Group 1 were 13 students who given sin¬gle leg hop progression exercise, Group 2 were 13 students who given double legs hop progression exercise, Group 3 were 13 students who given conventional exercise. The data was collected during pre test and post test by testing 30m speed running and vertical jump. The data was analyzed using Analysis of Varians (Anova. It was found that there were significantly increased on speed and explosive power of leg muscles of Group 1 and Group 2. It can be stated that single leg hop progression exercise was more effective than double leg hop progression exercise. The recent findings supported the hypothesis that single leg hop progression and double legs hop progression exercise can increase speed and explosive power of leg muscles. These finding were supported by some previous studies (Singh, et al, 2011; Shallaby, H.K., 2010. The single leg hop progression is more effective than double legs hop progression. This finding was consistent with some previous evidences (McCurdy, et al, 2005; Makaruk et al, 2011.

  7. Homologous muscle contraction during unilateral movement does not show a dominant effect on leg representation of the ipsilateral primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Shin-Yi Chiou

    Full Text Available Co-activation of homo- and heterotopic representations in the primary motor cortex (M1 ipsilateral to a unilateral motor task has been observed in neuroimaging studies. Further analysis showed that the ipsilateral M1 is involved in motor execution along with the contralateral M1 in humans. Additionally, transcranial magnetic stimulation (TMS studies have revealed that the size of the co-activation in the ipsilateral M1 has a muscle-dominant effect in the upper limbs, with a prominent decline of inhibition within the ipsilateral M1 occurring when a homologous muscle contracts. However, the homologous muscle-dominant effect in the ipsilateral M1 is less clear in the lower limbs. The present study investigates the response of corticospinal output and intracortical inhibition in the leg representation of the ipsilateral M1 during a unilateral motor task, with homo- or heterogeneous muscles. We assessed functional changes within the ipsilateral M1 and in corticospinal outputs associated with different contracting muscles in 15 right-handed healthy subjects. Motor tasks were performed with the right-side limb, including movements of the upper and lower limbs. TMS paradigms were measured, consisting of short-interval intracortical inhibition (SICI and recruitment curves (RCs of motor evoked potentials (MEPs in the right M1, and responses were recorded from the left rectus femoris (RF and left tibialis anterior (TA muscles. TMS results showed that significant declines in SICI and prominent increases in MEPs of the left TA and left RF during unilateral movements. Cortical activations were associated with the muscles contracting during the movements. The present data demonstrate that activation of the ipsilateral M1 on leg representation could be increased during unilateral movement. However, no homologous muscle-dominant effect was evident in the leg muscles. The results may reflect that functional coupling of bilateral leg muscles is a reciprocal

  8. Repair of a soft tissue defect of medial malleolus with cross-leg bridge free transfer of anterolateral thigh muscle flap: a case report

    Directory of Open Access Journals (Sweden)

    ZHANG Gong-lin

    2012-11-01

    Full Text Available 【Abstract】A 38-year-old man sustained a traffic accident injury to his right medial malleolus and leg. It was an open fracture of the right tibia and fibula accompanied by a large soft tissue defect of the right medial malleolus sized 12 cm×4 cm. Doppler examination revealed that the tibialis posterior vessel was occluded due to thrombosis. The anterior tibial artery was patent. Three weeks after injury, the left anterolateral thigh muscle flap was harvested and transplanted to the right medial malleolus defect area for repair of the soft tissue defect, and an end-to-side anasto-mosis was performed between the posterior tibial vessel of the contralateral leg and the muscle flap’s vascular pedicle. A split thickness free skin graft was used to cover the muscle flap and around the flap’s vascular pedicle. The vascular pedicle was cut off after 28 days and the muscle flap sur-vived completely. After 3-year follow-up postoperatively, the right tibia and fibula fractures were confirmed healing radiologically. The posterior tibial artery of contralateral leg was patent by clinical and Doppler examinations. This tech-nique can be used to preserve the flow and patency of re-cipient arteries. Key words: Surgical flaps; Soft tissue injuries; Leg injuries; Wound healing

  9. T₂ mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Arpan, Ishu; Forbes, Sean C; Lott, Donovan J; Senesac, Claudia R; Daniels, Michael J; Triplett, William T; Deol, Jasjit K; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2013-03-01

    Skeletal muscles of children with Duchenne muscular dystrophy (DMD) show enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in the MR proton transverse relaxation time (T₂). Therefore, the examination of T₂ changes in individual muscles may be useful for the monitoring of disease progression in DMD. In this study, we used the mean T₂, percentage of elevated pixels and T₂ heterogeneity to assess changes in the composition of dystrophic muscles. In addition, we used fat saturation to distinguish T₂ changes caused by edema and inflammation from fat infiltration in muscles. Thirty subjects with DMD and 15 age-matched controls underwent T₂ -weighted imaging of their lower leg using a 3-T MR system. T₂ maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). The mean T₂ of the traced regions of interest, width of the T₂ histograms and percentage of elevated pixels were calculated. We found that, even in young children with DMD, lower leg muscles showed elevated mean T₂, were more heterogeneous and had a greater percentage of elevated pixels than in controls. T₂ measures decreased with fat saturation, but were still higher (P tissue in children with DMD, even in the early stages of the disease. Therefore, T₂ mapping may prove to be clinically useful in the monitoring of muscle changes caused by the disease process or by therapeutic interventions in DMD. Copyright © 2012 John Wiley & Sons, Ltd.

  10. The influence of foot position on lower leg muscle activity during a heel raise exercise measured with fine-wire and surface EMG.

    Science.gov (United States)

    Akuzawa, Hiroshi; Imai, Atsushi; Iizuka, Satoshi; Matsunaga, Naoto; Kaneoka, Koji

    2017-11-01

    Exercises for lower leg muscles are important to improve function. To examine the influence of foot position on lower leg muscle activity during heel raises. Cross-sectional laboratory study. Laboratory. Fourteen healthy men participated in this study. The muscle activity levels of the tibialis posterior (TP), peroneus longus (PL), flexor digitorum longus (FDL) and medial gastrocnemius (MG) were measured. The heel raises consisted of three foot positions: 1) neutral, 2) 30° abduction, and 3) 30° adduction. The EMG data for five repetitions of each foot position were normalized to maximum voluntary contraction. One-way repeated measure ANOVA was employed for statistical analysis. The muscle activity level of TP, PL and FDL was significantly different between the three foot positions during the heel raises. TP and FDL showed the highest activity level in 30° foot adduction while PL demonstrated the highest activity level in 30° foot abduction. Heel raises with 30° foot adduction and abduction positions can change lower leg muscle activity; These findings suggest that altering foot posture during the heel raise exercise may benefit patients with impaired TP, PL or FDL function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The interaction between NGF-induced hyperalgesia and acid-provoked pain in the infrapatellar fat pad and tibialis anterior muscle of healthy volunteers.

    Science.gov (United States)

    Munkholm, T K; Arendt-Nielsen, L

    2017-03-01

    Tissue pH is lowered in inflamed tissues, and the increased proton concentration activates acid-sensing ion channels (ASICs), contributing to pain and hyperalgesia. ASICs can be upregulated by nerve growth factor (NGF). The aim of this study was to investigate two new human experimental pain models combining NGF- and acid-induced pain in a randomized, controlled, double-blind study. In experiment 1, volunteers (N = 16) received an injection of either NGF or isotonic saline in each infrapatellar fat pad (IFP). One day after 5 mL of phosphate-buffered acidic saline was infused into each IFP at a rate of 20 mL/h. In experiment 2, the tibialis anterior (TA) muscle of additional volunteers (N = 16) was examined, following the same procedure except that the volume and infusion rate of acid were different (10 mL, 30 mL/h). Continuous pain ratings were recorded during and after acid infusions. In addition, soreness scores on a Likert scale and pressure pain thresholds (PPTs) were assessed. The PPT of the IFP was significantly decreased at the NGF injection site on day 1, but acid-provoked pain ratings and the change in PPT from pre- to postinfusion between the knees were similar. In the muscle pain model, local mechanical hyperalgesia developed 3 h after the NGF injection and a significant additional decrease in PPT was found after acid infusion compared to preinfusion. NGF sensitization in the IFP was not facilitated by acid, whereas an acid-provoked enhancement of muscle hyperalgesia was found. NGF sensitization of adipose tissue responds differently to acid provocation compared to muscle tissue. Quantification of two novel pain models combining NGF and acid. Hyperalgesia developed after NGF injection in the infrapatellar fat pad, but it was not facilitated by acid provocation. Contrary, NGF-induced hyperalgesia in muscle tissue was enhanced by acid. © 2016 European Pain Federation - EFIC®.

  12. The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.

    Science.gov (United States)

    Guschlbauer, Christoph; Scharstein, Hans; Büschges, Ansgar

    2007-03-01

    We investigated the properties of the extensor tibiae muscle of the stick insect (Carausius morosus) middle leg. Muscle geometry of the middle leg was compared to that of the front and hind legs and to the flexor tibiae, respectively. The mean length of the extensor tibiae fibres is 1.41+/-0.23 mm and flexor fibres are 2.11+/-0.30 mm long. The change of fibre length with joint angle was measured and closely follows a cosine function. Its amplitude gives effective moment arm lengths of 0.28+/-0.02 mm for the extensor and 0.56+/-0.04 mm for the flexor. Resting extensor tibiae muscle passive tonic force increased from 2 to 5 mN in the maximum femur-tibia (FT)-joint working range when stretched by ramps. Active muscle properties were measured with simultaneous activation (up to 200 pulses s(-1)) of all three motoneurons innervating the extensor tibiae, because this reflects most closely physiological muscle activation during leg swing. The force-length relationship corresponds closely to the typical characteristic according to the sliding filament hypothesis: it has a plateau at medium fibre lengths, declines nearly linearly in force at both longer and shorter fibre lengths, and the muscle's working range lies in the short to medium fibre length range. Maximum contraction velocity showed a similar relationship. The force-velocity relationship was the traditional Hill curve hyperbola, but deviated from the hyperbolic shape in the region of maximum contraction force close to the isometric contraction. Step-like changes in muscle length induced by loaded release experiments characterised the non-linear series elasticity as a quadratic spring.

  13. Glucose Uptake Is Decreased in Affected Lower Leg Muscles of Hemiparetic Persons during Level Walking.

    Science.gov (United States)

    Oi, Naoyuki; Itoh, Masatoshi; Tobimatsu, Yoshiko; Konno, Shinichi; Kikuchi, Shinichi; Iwaya, Tsutomu

    2015-12-01

    Stroke patients suffer from gait disturbance due to altered leg muscle actions. Many kinesiological studies have investigated muscle actions, but the metabolic activity of muscles in stroke patients remains to be investigated. We therefore evaluated energy consumption in lower extremity muscles during level walking in hemiparetic individuals. Glucose uptake was measured by positron emission tomography (PET) using (18)F-fluorodeoxyglucose ((18)F-FDG) in eight hemiparetic (mean age: 56 years) and 11 healthy (mean age: 26 years) participants. Standardized uptake ratio (SUR) was computed in each muscle to express the (18)F-FDG-uptake level. SUR was compared across gluteal, thigh, and lower leg muscles and across individual muscles within each muscle group. For each muscle, SUR was compared among the paretic limb of hemiparetic participants, the non-paretic limb of hemiparetic participants, and the right limb of healthy participants. In paretic limbs, mean SUR did not differ between the three muscle groups, or between individual muscles within each muscle group. SURs of paretic lower leg muscles and gluteus minimus muscle were significantly smaller than those of non-paretic limb and healthy participants (p limb of hemiparetic participants, SUR of the lower leg muscles was larger than that of the thigh muscles (p muscles were larger in the non-paretic limb of hemiparetic participants, compared to the right limb of healthy participants (p lower extremity muscles during level walking in hemiparetic individuals.

  14. Arm and leg substrate utilization and muscle adaptation after prolonged low-intensity training

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff

    2010-01-01

    This review will focus on current data where substrate metabolism in arm and leg muscle is investigated and discuss the presence of higher carbohydrate oxidation and lactate release observed during arm compared with leg exercise. Furthermore, a basis for a possible difference in substrate...... partitioning between endogenous and exogenous substrate during arm and leg exercise will be debated. Moreover the review will probe if differences between arm and leg muscle are merely a result of different training status rather than a qualitative difference in limb substrate regulation. Along this line...... the review will address the available studies on low-intensity training performed separately with arm or legs or as whole-body training to evaluate if this leads to different adaptations in arm and leg muscle resulting in different substrate utilization patterns during separate arm or leg exercise...

  15. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review.

    Science.gov (United States)

    Ozaki, Hayao; Loenneke, Jeremy P; Thiebaud, Robert S; Stager, Joel M; Abe, Takashi

    2013-01-01

    It is known that ambulatory exercises such as brisk walking and jogging are potent stimuli for improving aerobic capacity, but it is less understood whether ambulatory exercise can increase leg muscle size and function. The purpose of this brief review is to discuss whether or not ambulatory exercise elicits leg muscle hypertrophy in older adults. Daily ambulatory activity with moderate (>3 metabolic equivalents [METs], which is defined as the ratio of the work metabolic rate to the resting metabolic rate) intensity estimated by accelerometer is positively correlated with lower body muscle size and function in older adults. Although there is conflicting data on the effects of short-term training, it is possible that relatively long periods of walking, jogging, or intermittent running for over half a year can increase leg muscle size among older adults. In addition, slow-walk training with a combination of leg muscle blood flow restriction elicits muscle hypertrophy only in the blood flow restricted leg muscles. Competitive marathon running and regular high intensity distance running in young and middle-aged adults may not produce leg muscle hypertrophy due to insufficient recovery from the damaging running bout, although there have been no studies that have investigated the effects of running on leg muscle morphology in older subjects. It is clear that skeletal muscle hypertrophy can occur independently of exercise mode and load.

  16. Reconstruction of human swing leg motion with passive biarticular muscle models.

    Science.gov (United States)

    Ahmad Sharbafi, Maziar; Mohammadi Nejad Rashty, Aida; Rode, Christian; Seyfarth, Andre

    2017-04-01

    Template models, which are utilized to demonstrate general aspects in human locomotion, mostly investigate stance leg operation. The goal of this paper is presenting a new conceptual walking model benefiting from swing leg dynamics. Considering a double pendulum equipped with combinations of biarticular springs for the swing leg beside spring-mass (SLIP) model for the stance leg, a novel SLIP-based model, is proposed to explain human-like leg behavior in walking. The action of biarticular muscles in swing leg motion helps represent human walking features, like leg retraction, ground reaction force and generating symmetric walking patterns, in simulations. In order to stabilize the motion by the proposed passive structure, swing leg biarticular muscle parameters such as lever arm ratios, stiffnesses and rest lengths need to be properly adjusted. Comparison of simulation results with human experiments shows the ability of the proposed model in replicating kinematic and kinetic behavior of both stance and swing legs as well as biarticular thigh muscle force of the swing leg. This substantiates the important functional role of biarticular muscles in leg swing. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Diabetic Zucker rat Tibialis anterior muscle high-frequency electrical stimulation (HFES data: Regulation of MAPKs associated proteins

    Directory of Open Access Journals (Sweden)

    Gautam K. Ginjupalli

    2018-02-01

    Full Text Available Anaerobic exercise has been advocated as a prescribed treatment for the management of diabetes: however, alterations in exercise-induced signaling remain largely unexplored in the diabetic muscle. Here, we compare the basal and the in situ contraction-induced phosphorylation of the mitogen-activated protein kinases (MAPKs ERK 1/2, p38, and JNK in the lean and obese (fa/fa Zucker rat tibialus anterior (TA muscle following a single bout of contractile stimuli. This article represents data associated with prior publications from our lab (Katta et al., 2009, Katta et al., 2009, Tullgren et al., 1991 [1–3] and concurrent Data in Brief articles (Ginjupalli et al., 2017, Rice et al., 2017, Rice et al., 2017, Rice et al., 2017 [4–7].

  18. Leg muscle activation patterns during walking and leg lean mass are different in children with and without developmental coordination disorder.

    Science.gov (United States)

    Yam, Timothy T T; Fong, Shirley S M

    2018-02-01

    Previous studies have shown that children with developmental coordination disorder (DCD) have a higher body fat and greater gait variability. Little research has investigated the gait muscle activity and lean mass measures in children with DCD. To compare the leg muscle activation patterns of the gait cycle and leg lean mass between children with and without DCD. Fifty-one children were in the DCD group (38 males and 13 females; 7.95 ± 1.04 years) and fifty-two in the control group (34 males and 18 females; 8.02 ± 1.00 years). Peak muscle activation patterns of treadmill walking in the right leg for the eight-gait phases were measured by means of surface electromyography, an electrogoniometer, and foot contact switches. Leg lean mass measures were evaluated using a whole-body dual energy X-ray absorptiometry scan. Children with DCD had a lower leg lean mass and appendicular lean mass index compared to the control group. Furthermore, they exhibited a less-pronounced peak muscle activation during the heel strike (gastrocnemius medialis), early swing (biceps femoris) and late swing phases (gastrocnemius medialis) of gait. Although lower limb total mass was similar between groups, the DCD group displayed lower lean mass measures than controls. Furthermore, children with DCD illustrated a lower leg peak muscle activation during the heel strike, early swing and late swing phases of gait when walking on a treadmill. Our results emphasize the need to incorporate lower limb phasic muscle strengthening components into gait rehabilitation programs for children with DCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effects of kinesthetic illusory sensation induced by a visual stimulus on the corticomotor excitability of the leg muscles.

    Science.gov (United States)

    Aoyama, T; Kaneko, F; Hayami, T; Shibata, E

    2012-04-11

    A novel method of visual stimulus, reported by Kaneko et al. [14], induced a vivid kinesthetic illusion and increased the corticomotor excitability of the finger muscles without any overt movement. To explore the effect of this method on the lower limbs, motor evoked potentials (MEP) were recorded from the left tibialis anterior (TA) and soleus muscles using transcranial magnetic stimulation (TMS). A computer screen that showed the moving image of an ankle movement was placed over the subject's leg, and its position was modulated to induce an illusory sensation that the subject's own ankle was moving (illusion condition). TMS was delivered at rest and at two different times during the illusion condition (ankle dorsiflexion phase: illusion-DF; ankle plantarflexion phase: illusion-PF). The MEP amplitude of the TA, which is the agonist muscle for ankle dorsiflexion, was significantly increased during the illusion-DF condition. This indicated that the visual stimulus showing the moving image of an ankle movement could induce a kinesthetic illusion and selectively increase the corticomotor excitability in an agonist muscle for an illusion, as was previously reported for an upper limb. The MEP amplitude of the soleus, which is the agonist muscle for ankle plantarflexion, increased during the illusion-PF condition, but not significantly. Because of the vividness of the illusory sensation was significantly greater during the illusion-DF condition than the illusion-PF condition, we concluded that the vividness of the illusory sensation had a crucial role in increasing corticomotor excitability. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Periodic leg movement, nasal CPAP, and expiratory muscles.

    Science.gov (United States)

    Seo, Won Hee; Guilleminault, Christian

    2012-07-01

    Periodic leg movements (PLMs) may appear during nasal CPAP titration, persisting despite the elimination of hypopneas. Systematic recordings of expiratory abdominal muscles on the right and left sides with surface electromyographic (EMG) electrodes lateral to navel, and close from the lateral side of abdomen, were added during nasal CPAP titration for treatment of obstructive sleep apnea (OSA). Positive airway pressure was titrated during nocturnal polysomnography, based on analysis of the flow curve derived from the CPAP equipment and EEG analysis, including persistence of phases A2 and A3 of the cyclic alternating pattern (CAP). The requirement was to eliminate American Association of Sleep Medicine (AASM)-defined hypopnea and also flow limitation and abnormal EEG patterns. When CPAP reached valid results, it was lowered at the time of awakening by 2 or 3 cm H(2)O, and titration was performed again. Data collected during a 7-month period on adults with a prior diagnosis of OSA who had received treatment with nasal CPAP regardless of age and sex were rendered anonymous and were retrospectively rescored by a blinded investigator. Eighty-one successively seen patients with PLMs during CPAP titration were investigated. Elimination of AASM-defined hypopnea was not sufficient to eliminate the PLMs observed during the titration; higher CPAP eliminated flow limitation and CAP phases A2 and A3 and persisting PLMs. PLMs were associated with simultaneous EMG bursts in expiratory abdominal muscles. The presence of PLMs during CPAP titration indicates the persistence of sleep-disordered breathing. PLMs during CPAP titration are related to the presence of abdominal expiratory muscle activity.

  1. Leg crossing with muscle tensing, a physical counter-manoeuvre to prevent syncope, enhances leg blood flow

    NARCIS (Netherlands)

    Groothuis, Jan T.; van Dijk, Nynke; ter Woerds, Walter; Wieling, Wouter; Hopman, Maria T. E.

    2007-01-01

    In patients with orthostatic intolerance, the mechanisms to maintain BP (blood pressure) fail. A physical counter-manoeuvre to postpone or even prevent orthostatic intolerance in these patients is leg crossing combined with muscle tensing. Although the central haemodynamic effects of physical

  2. Leg crossing with muscle tensing, a physical counter-manoeuvre to prevent syncope, enhances leg blood flow.

    NARCIS (Netherlands)

    Groothuis, J.T.; Dijk, N. van; Woerds, W. ter; Wieling, W.; Hopman, M.T.E.

    2007-01-01

    In patients with orthostatic intolerance, the mechanisms to maintain BP (blood pressure) fail. A physical counter-manoeuvre to postpone or even prevent orthostatic intolerance in these patients is leg crossing combined with muscle tensing. Although the central haemodynamic effects of physical

  3. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    Science.gov (United States)

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  4. Metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    Science.gov (United States)

    Tischler, M. E.

    1984-01-01

    Metabolic changes on hypokinetic rats were measured. Two groups of animals were studied: (1) weight bearing control which were tail casted but allowed to walk on all four limbs, and (2) hypokinetic with no load bearing of the hindlimbs. The control and hypokinetic rats gained weight at a steady and similar rate over 6 days. Hypokinesia for 6 days led to significantly lower relative weights of the soleus, gastrocnemius and plantaris muscles. Hypokinesia did not effect the relative mass of the anterior tibialis or extensor digitorum longus (EDL) muscles.

  5. Shaping leg muscles in Drosophila: role of ladybird, a conserved regulator of appendicular myogenesis.

    Directory of Open Access Journals (Sweden)

    Tariq Maqbool

    Full Text Available Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. Ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing

  6. Shaping leg muscles in Drosophila: role of ladybird, a conserved regulator of appendicular myogenesis.

    Science.gov (United States)

    Maqbool, Tariq; Soler, Cedric; Jagla, Teresa; Daczewska, Malgorzata; Lodha, Neha; Palliyil, Sudhir; VijayRaghavan, K; Jagla, Krzysztof

    2006-12-27

    Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. Ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing ladybird/Lbx1. The

  7. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Laughlin, M H

    2011-12-01

    Intermittent pneumatic leg compressions (IPC) have proven to be an effective noninvasive approach for treatment of patients with claudication, but the mechanisms underlying the clinical benefits remain elusive. In the present study, a rodent model of claudication produced by bilateral ligation of the femoral artery was used to investigate the acute impact of a single session of IPC (150 min) on hemodynamics, skeletal muscle (tibialis anterior), and isolated collateral artery (perforating artery) expression of a subset of genes associated with inflammation and vascular remodeling. In addition, the effect of compression frequency (15 vs. 3 compressions/min) on the expression of these factors was studied. In ligated animals, IPC evoked an increase of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CXCL1) mRNA (P < 0.01) and immunostaining (P < 0.05), as well as a minor increase in VEGF immunostaining in the muscle endomysium 150 min postintervention. Further, collateral arteries from these animals showed an increased expression of MCP-1 (approximately twofold, P = 0.02). These effects were most evident in the group exposed to the high-frequency protocol (15 compressions/min). In contrast, IPC in sham-operated control animals evoked a modest initial upregulation of VEGF (P = 0.01), MCP-1 (P = 0.02), and CXCL1 (P = 0.03) mRNA in the muscle without concomitant changes in protein levels. No changes in gene expression were observed in arteries isolated from sham animals. In conclusion, IPC acutely up-regulates the expression of important factors involved in vascular remodeling in the compressed muscle and collateral arteries in a model of hindlimb ischemia. These effects appear to be dependent on the compression frequency, such that a high compression frequency (15 compressions/min) evokes more consistent and robust effects compared with the frequency commonly employed clinically to treat patients with claudication (3

  8. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  9. Quantitative ultrasound of lower leg and foot muscles: feasibility and reference values

    NARCIS (Netherlands)

    Verhulst, F.V.; Leeuwesteijn, A.E.; Louwerens, J.W.; Geurts, A.C.H.; Alfen, N. van; Pillen, S.

    2011-01-01

    BACKGROUND: Ultrasound is a non-invasive method to quantitatively measure various muscle parameters. Purpose of this study was to assess the feasibility of ultrasound of lower leg and foot muscles and to obtain reference values for muscle thickness (MT) and echo intensity (EI). METHODS: Ultrasound

  10. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review

    Directory of Open Access Journals (Sweden)

    Ozaki H

    2013-03-01

    Full Text Available Hayao Ozaki,1 Jeremy P Loenneke,2 Robert S Thiebaud,2 Joel M Stager,3 Takashi Abe31Juntendo University, Inzai, Chiba, Japan; 2Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA; 3Department of Kinesiology, Indiana University, Bloomington, IN, USAAbstract: It is known that ambulatory exercises such as brisk walking and jogging are potent stimuli for improving aerobic capacity, but it is less understood whether ambulatory exercise can increase leg muscle size and function. The purpose of this brief review is to discuss whether or not ambulatory exercise elicits leg muscle hypertrophy in older adults. Daily ambulatory activity with moderate (>3 metabolic equivalents [METs], which is defined as the ratio of the work metabolic rate to the resting metabolic rate intensity estimated by accelerometer is positively correlated with lower body muscle size and function in older adults. Although there is conflicting data on the effects of short-term training, it is possible that relatively long periods of walking, jogging, or intermittent running for over half a year can increase leg muscle size among older adults. In addition, slow-walk training with a combination of leg muscle blood flow restriction elicits muscle hypertrophy only in the blood flow restricted leg muscles. Competitive marathon running and regular high intensity distance running in young and middle-aged adults may not produce leg muscle hypertrophy due to insufficient recovery from the damaging running bout, although there have been no studies that have investigated the effects of running on leg muscle morphology in older subjects. It is clear that skeletal muscle hypertrophy can occur independently of exercise mode and load.Keywords: aerobic exercise, muscle mass, aging, strength, sarcopenia

  11. Leg Muscle Mass and Foot Symptoms, Structure, and Function: The Johnston County Osteoarthritis Project.

    Science.gov (United States)

    Golightly, Yvonne M; Dufour, Alyssa B; Hannan, Marian T; Hillstrom, Howard J; Katz, Patricia P; Jordan, Joanne M

    2016-03-01

    Loss of muscle mass occurs with aging and in lower limbs it may be accelerated by foot problems. In this cross-sectional analysis, we evaluated the relationship of leg muscle mass to foot symptoms (presence or absence of pain, aching, or stiffness), structure while standing (high arch or low arch), and function while walking (pronated or supinated) in a community-based study of Caucasian and African American men and women who were 50-95 years old. In the Johnston County Osteoarthritis Project, leg muscle mass was measured with whole body dual-energy x-ray absorptiometry, and plantar foot pressure data, using predetermined values, were used to classify foot structure and function. Sex-specific crude and adjusted (age, body mass index, and race) linear regression models examined associations of leg muscle mass index (Leg muscle mass [kg]/Height [m](2)) with foot symptoms, structure, and function. Complete data were available for 1,037 participants (mean age 68 years, mean body mass index 31 kg/m(2), 68% women, 29% African American). In women, pronated foot function was associated with lower leg muscle mass in crude (p = .02), but not adjusted (p = .22), models. A low arch was associated with a higher leg muscle mass in adjusted models for both men and women (p Leg muscle mass was associated with foot structure in our biracial sample, whereas relations between leg muscle mass and foot function were attenuated by age, body mass index, and race. Future longitudinal analyses are needed to explain the temporal relationship between these conditions and how they relate to other aspects of impairment and physical function. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Regulation of PDH in human arm and leg muscles at rest and during intense exercise

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Birk, Jesper Bratz; Damsgaard, Rasmus

    2008-01-01

    arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P

  13. Aberrant femoral torsion presenting with frog-leg squatting mimicking gluteal muscle contracture.

    Science.gov (United States)

    Chiang, Chia-Ling; Tsai, Meng-Yuan; Chang, Wei-Ning; Chen, Clement Kuen-Huang

    2012-04-01

    Patients with frog-leg squatting have restricted internal rotation and adduction of the affected hips during sitting or squatting. In the surgical literature, the cause generally has been presumed to arise from and be pathognomonic for gluteal muscle contracture. However, we have encountered patients with frog-leg squatting but without gluteal muscle contracture. We therefore raised the following questions: What are the imaging features of patients with frog-leg squatting? Do conditions other than gluteal muscle contracture manifest frog-leg squatting? We retrospectively reviewed the MR images of 67 patients presenting with frog-leg squatting from April 1998 to July 2010. There were four females and 63 males; their mean age was 22.2 years (range, 4-50 years). During MRI readout, we observed aberrant axes of some femoral necks and obtained additional CT to measure femoral torsion angles in 59 of the 67 patients. MR images of 27 (40%) patients had signs of gluteal muscle contracture. Twenty-two (33%) patients (40 femora) had aberrant femoral torsion, including diminished anteversion (range, 6°-0°; average, 3.9°) in 11 femora of eight patients and femoral retroversion (range, muscle contracture or aberrant femoral torsion. The observation of aberrant femoral torsion was not anticipated before imaging studies. In addition to gluteal muscle contracture, aberrant femoral torsion can be a cause of frog-leg squatting. Level II, diagnostic study. See the guidelines for Authors for a complete description of levels of evidence.

  14. Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults

    NARCIS (Netherlands)

    Muehlbauer, Thomas; Granacher, Urs; Borde, Ron; Hortobagyi, Tibor

    2018-01-01

    Background: Gait speed declines with increasing age, but it is unclear if gait speed preferentially correlates with leg muscle strength or mass.  Objective: We determined the relationship between gait speed and (1) leg muscle strength measured at 3 lower extremity joints and (2) leg lean tissue mass

  15. Comparative study of the effects of the Ga-As (904 nm, 150 mW) laser and the pulsed ultrasound of 1 MHz in inflammation of tibialis muscle of Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Marcus Vinicius de Mello; Rocha, Lamara Laguardia Valente; Santos, Helio Ricardo dos; Silva, Andre Luis dos Santos; Barbosa, Luis Guilherme; Reis, Joao Batista Alves dos [Centro Universitario de Caratinga, MG (Brazil)]. E-mail; orofacial_1@hotmail.com; Costa, Daniel Almeida da [Faculdade de Minas, Belo Horizonte, MG (Brazil); Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    This paper aims to compare the therapeutic effect of the laser As-Ga of 904 nm and pulsed Ultrasound of 1 MHz applied in striated skeletal muscle of inflamed rats. The animals received an intramuscular injection of bupivacaine hydrochloride in tibialis muscle in order to induce the inflammatory process, and after 24 hours, the time was considered 0 for the initiation of therapy, using a laser and ultrasound. Samples collected the muscles of the animals were stained with Hematoxylin-Eosin and histological sections of the groups used for the analysis of the muscle tissue in relation to reducing the inflammatory process, comparing the results of the two therapies used. In this study it is suggested that both treatment with laser as with ultrasound can act as anti-inflammatory. However, the laser seems to have anti-inflammatory effect for all periods observed, while the ultrasound was only able to induce declining inflammatory response to seven days. (author)

  16. THE ROLE OF LEG AND TRUNK MUSCLES PROPRIOCEPTION ON STATIC AND DYNAMIC POSTURAL CONTROL

    Directory of Open Access Journals (Sweden)

    SEYED Hossein Hosseinimehr

    2010-04-01

    Full Text Available The proprioception information is a prerequisite for balance, body’s navigation system, and the movement coordinator. Due to changes between the angles of ankle, knee, and hip joints the aforementioned information are important in the coordination of the limbs and postural balance. The aim of this study was to investigate therole of leg and trunk muscles proprioception on static and dynamic postural control. Thirty males students of physical education and sport sciences (age =21.23 ± 2.95 years, height = 170.4 ± 5.1 cm, and weight = 70.7 ± 5.6 kg participated in this study volunteered. Vibration (100HZ was used to disturb of proprioception. Vibrationoperated on leg muscle (gasterocnemius and trunk muscles (erector spine muscle, at L1 level. Leg stance time and Star Excursion Balance Test were used for evaluation of static and dynamic postural control respectively.Subjects performed pre and post (with operated vibration leg stance time and star excursion balance test. Paired sample test used for investigation the effect of vibration on leg and trunk muscles in static and dynamic postural control. Result of this study showed in static postural control, there is no significant difference between pre and post test (operated vibration in leg and trunk muscles (p≤0.05. In contrast there is significant difference indynamic postural control between pre and post test in leg muscles in 8 directions of star excursion balance test (p≤0.05 while there is only significant difference in trunk muscle in antrolateral and lateral of star excursion balance test (p≤0.05. During physical training such conditions like fatigue and injury can disturbproprioceptions’ information. Thus, due to the importance of this information we recommend that coaches'additionally specific trainings any sport used specific exercises to enhance the proprioception information

  17. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  18. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  19. Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects.

    Science.gov (United States)

    Dingenen, Bart; Janssens, Luc; Claes, Steven; Bellemans, Johan; Staes, Filip F

    2016-06-01

    Previous studies mainly focused on muscles at the operated knee after anterior cruciate ligament reconstruction, less on muscles around other joints of the operated and non-operated leg. The aim of this study was to investigate muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects. Lower extremity muscle activation onset times of both legs of 20 fully returned to sport anterior cruciate ligament reconstructed subjects and 20 non-injured control subjects were measured during the transition from double-leg stance to single-leg stance in eyes open and eyes closed conditions. Analysis of covariance (ANCOVA) was used to evaluate differences between groups and differences between legs within both groups, while controlling for peak center of pressure velocity. Significantly delayed muscle activation onset times were found in the anterior cruciate ligament reconstructed group compared to the control group for gluteus maximus, gluteus medius, vastus medialis obliquus, medial hamstrings, lateral hamstrings and gastrocnemius in both eyes open and eyes closed conditions (Panterior cruciate ligament reconstructed group, no significant different muscle activation onset times were found between the operated and non-operated leg (P>.05). Despite completion of rehabilitation and full return to sport, the anterior cruciate ligament reconstructed group showed neuromuscular control deficits that were not limited to the operated knee joint. Clinicians should focus on relearning multi-segmental anticipatory neuromuscular control strategies after anterior cruciate ligament reconstruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Postnatal development of fiber type composition in rabbit jaw and leg muscles

    NARCIS (Netherlands)

    Korfage, J. A. M.; Helmers, R.; Matignon, M. de Goüyon; van Wessel, T.; Langenbach, G. E. J.; van Eijden, T. M. G. J.

    2009-01-01

    We examined the difference in fiber type composition and cross-sectional areas during postnatal development in male rabbit jaw muscles and compared these with changes in leg muscles. The myosin heavy chain (MyHC) content of the fibers was determined by immunohistochemistry. No fiber type difference

  1. Impact of Running Exercise Duration on Leg Muscle Strength among the people Joining Indorunners Bandung Community

    Directory of Open Access Journals (Sweden)

    Agaprita Eunike Sirait

    2017-03-01

    Full Text Available Background: Indorunners Bandung is a community for runners that has a routine exercise schedule for running around the city of Bandung. Exercise, like running, if is conducted in an accurate duration may improve physical fitness. One of the aspects of physical fitness is leg muscles strength. Many people fail to fathom the importance of exercise duration, so, they fail to get the benefit. The aim of this study was to discover the impact of running exercise duration on leg muscles strength among the people joining Indorunners Bandung community. Methods: A comparative study was conducted to 41 people, 31 males and 10 females, of Indorunners Bandung community from September to November 2015. Each participant filled a questionnaire about his/her personal data, and then was grouped by his/her duration of exercise per week, which were 150 minutes/week, 150–299 minutes/week, and 300 minutes/week or more. The respondents were measured for their leg muscles strength. The data collected were analyzed using ANOVA test. Results: There was significant difference of lower extremities muscle strength both in men (p<0.001 and women (p=0.029. These results showed that there was a difference in leg muscles strength among the people joining Indorunners Bandung community with different exercise duration per week. Conclusions: There is a difference in leg muscles strength among the people joining Indorunners Bandung community with different exercise duration per week.

  2. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    OpenAIRE

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, ...

  3. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans

    DEFF Research Database (Denmark)

    Ara, I; Larsen, S; Stallknecht, Bente Merete

    2011-01-01

    was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.Methods:Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus......, and plasma leptin was higher in O than in PO and C.Conclusions:In O subjects, maximal fat oxidation during exercise and the eliciting relative exercise intensity are increased. This is associated with higher intramuscular triglyceride levels and higher resting non esterified fatty acid (NEFA) concentrations...... deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.Results:During the graded exercise tests, peak fat oxidation during leg cycling...

  4. Leg muscle reflexes mediated by cutaneous A-beta fibres are normal during gait in reflex sympathetic dystrophy.

    Science.gov (United States)

    van der Laan, L; Boks, L M; van Wezel, B M; Goris, R J; Duysens, J E

    2000-04-01

    Reflex sympathetic dystrophy (RSD) is, from the onset, characterized by various neurological deficits such as an alteration of sensation and a decrease in muscle strength. We investigated if afferent A-beta fibre-mediated reflexes are changed in lower extremities affected by acute RSD. The involvement of these fibres was determined by analyzing reflex responses from the tibialis anterior (TA) and biceps femoris (BF) muscles after electrical stimulation of the sural nerve. The reflexes were studied during walking on a treadmill to investigate whether the abnormalities in gait of the patients were related either to abnormal amplitudes or deficient phase-dependent modulation of reflexes. In 5 patients with acute RSD of the leg and 5 healthy volunteers these reflex responses were determined during the early and late swing phase of the step cycle. No significant difference was found between the RSD and the volunteers. During early swing the mean amplitude of the facilitatory P2 responses in BF and TA increased as a function of stimulus intensity (1.5, 2 and 2.5 times the perception threshold) in both groups. At end swing the same stimuli induced suppressive responses in TA. This phase-dependent reflex reversal from facilitation in early swing to suppression in late swing occurred equally in both groups. In the acute phase of RSD of the lower extremity there is no evidence for abnormal A-beta fibre-mediated reflexes or for defective regulation of such reflexes. This finding has implications for both the theory on RSD pathophysiology and RSD models, which are based on abnormal functioning of A-beta fibres.

  5. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP and NE concentrations to gain insight into the interstitial and intravascular mechanisms by which ATP causes muscle vasodilation and sympatholysis. Leg hemodynamics and muscle interstitial nucleotide and norepinephrine (NE) concentrations were measured during: 1) femoral arterial ATP infusion (0......, respectively (Pcontracting muscle (Pmuscle, whereas interstitial NE concentrations increased similarly in both active...... and inactive muscles. These results suggest that the vasodilatory and sympatholytic effects of intraluminal ATP are mainly mediated via endothelial prinergic receptors. Intraluminal ATP and muscle contractions appear to modulate sympathetic nerve activity by inhibiting the effect of NE rather than blunting its...

  6. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  7. Leg muscle power in 12-year-old black and white Tunisian football players.

    Science.gov (United States)

    Ben Ayed, Karim; Latiri, Imed; Dore, Eric; Tabka, Zouhair

    2011-04-01

    This study examined leg muscle power of young male Tunisian black and white football players and extended the analysis to determine whether there is a relationship between cycling peak power output (PPO) and some field tests. A total of 113 children (white group (WG) = n = 56; black group (BG) = n = 57) participated in this investigation. Anthropometric data included age, body mass (BM), height, leg length (LL), body mass index (BMI), and leg muscle volume (LMV). Cycling PPO was measured including a force-velocity test. Peak power output (PPO; W and W/kg), Fopt (optimal braking force), and Vopt (optimal velocity) were significantly higher in the WG compared with the BG (p force-velocity test as explanatory factors showed that 33% of the variance of PPO of BG was explained by qualitative factors that may be related to cycling skill, muscle composition, and socioeconomic and training status.

  8. Recovery of atrophic leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1988-01-01

    Thirty-five patients with hemiplegia due to cerebrovascular accidents were studied with regared to the muscle wastings before and after rehabilitation training. Hemiplegics were composed of 12 improved and 23 non-improved patients. The CT scan was carried out at the midportion of the thigh and largest-diameter section of the calf. Muscle size of each cross-sectional area was measured on CT image and the increase of size (ΔS) in each muscle after training was calculated. The ΔS of quadriceps femoris was correlated with that of whole cross-section of the thigh. The gracilis in non-affected side was not correlated with that of whole muscles. In both legs, there was an increase in leg muscle size after training. These changes were nost marked in the non-affected side of the improved patients. After training the difference between the two limbs remained unchanged. Recovery of muscle wasting in both legs was seen first in the quadriceps in thigh and flexors in calf. Gracilis was relatively unchanged in comparison with other muscles. Remarkable increase of muscle size in non-affected side was worthwhile to note. (author)

  9. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    Science.gov (United States)

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  10. Glucose clearance is higher in arm than leg muscle in type 2 diabetes

    DEFF Research Database (Denmark)

    Olsen, David B; Sacchetti, Massimo; Dela, Flemming

    2005-01-01

    and insulin resistance may not be evenly distributed. We measured basal and insulin-mediated (1 pmol min-1 kg-1) GC simultaneously in the arm and leg in type 2 diabetes patients (TYPE 2) and controls (CON) (n=6 for both). During the clamp arterio-venous glucose extraction was higher in CON versus TYPE 2...... in the arm (6.9+/-1.0 versus 4.7+/-0.8%; mean+/-s.e.m.; P=0.029), but not in the leg (4.2+/-0.8 versus 3.1+/-0.6%). Blood flow was not different between CON and TYPE 2 but was higher (Parm versus leg (CON: 74+/-8 versus 56+/-5; TYPE 2: 87+/-9 versus 43+/-6 ml min-1 kg-1 muscle, respectively......). At basal, CON had 84% higher arm GC (P=0.012) and 87% higher leg GC (P=0.016) compared with TYPE 2. During clamp, the difference between CON and TYPE 2 in arm GC was diminished to 54% but maintained at 80% in the leg. In conclusion, this study shows that glucose clearance is higher in arm than leg muscles...

  11. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    Science.gov (United States)

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    OpenAIRE

    Jingtao Lei; Jianmin Zhu

    2017-01-01

    Pneumatic artificial muscles (PAMs) have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and d...

  13. Quantitation of progressive muscle fatigue during dynamic leg exercise in humans

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1995-01-01

    , a product of a contraction rate (1 Hz), force measured at the ankle, and distance of ankle movement from 90 degrees to 150 degrees of KE, was precisely controlled. Lack of rise in myoelectric activity in biceps femoris of the active leg during DKE and MVC was consistent with restriction of muscle action...

  14. Effect of armor and carrying load on body balance and leg muscle function.

    Science.gov (United States)

    Park, Huiju; Branson, Donna; Kim, Seonyoung; Warren, Aric; Jacobson, Bert; Petrova, Adriana; Peksoz, Semra; Kamenidis, Panagiotis

    2014-01-01

    This study investigated the impact of weight and weight distribution of body armor and load carriage on static body balance and leg muscle function. A series of human performance tests were conducted with seven male, healthy, right-handed military students in seven garment conditions with varying weight and weight distributions. Static body balance was assessed by analyzing the trajectory of center of plantar pressure and symmetry of weight bearing in the feet. Leg muscle functions were assessed by analyzing the peak electromyography amplitude of four selected leg muscles during walking. Results of this study showed that uneven weight distribution of garment and load beyond an additional 9 kg impaired static body balance as evidenced by increased sway of center of plantar pressure and asymmetry of weight bearing in the feet. Added weight on non-dominant side of the body created greater impediment to static balance. Increased garment weight also elevated peak EMG amplitude in the rectus femoris to maintain body balance and in the medial gastrocnemius to increase propulsive force. Negative impacts on balance and leg muscle function with increased carrying loads, particularly with an uneven weight distribution, should be stressed to soldiers, designers, and sports enthusiasts. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Interleukin-6 release is higher across arm than leg muscles during whole-body exercise

    DEFF Research Database (Denmark)

    Helge, Jørn W; Klein, Ditte K; Andersen, Thor Munch

    2011-01-01

    ± 7 and 47 ± 7 µmol min(-1) (kg lean limb mass)(-1)) were lower, glucose uptake similar (51 ± 12 and 41 ± 8 mmol min(-1) (kg lean limb mass)(-1)) and lactate release higher (82 ± 32 and -2 ± 12 µmol min(-1) (kg lean limb mass)(-1)) in arms than legs, respectively, during exercise (P ....05). No correlations were present between IL-6 release and exogenous substrate uptakes. Muscle glycogen was similar in arms and legs before exercise (388 ± 22 and 428 ± 25 mmol (kg dry weight)(-1)), but after exercise it was only significantly lower in the leg (219 ± 29 mmol (kg dry weight)(-1)). The novel finding......Exercising muscle releases interleukin-6 (IL-6), but the mechanisms controlling this process are poorly understood. This study was performed to test the hypothesis that the IL-6 release differs in arm and leg muscle during whole-body exercise, owing to differences in muscle metabolism. Sixteen...

  16. Leg muscle activation during gait in Parkinson's disease : Adaptation and interlimb coordination

    NARCIS (Netherlands)

    Dietz, [No Value; Zijlstra, W; Prokop, T; Berger, W

    1995-01-01

    Adaptation in leg muscle activity and coordination between lower limbs were studied during walking on a treadmill with split belts in one group of parkinsonian patients and one of age-matched healthy subjects. Four different belt speeds (0.25/0.5/0.75/1.0 m/sec) were applied in selected combinations

  17. Effect of Ladder Drill Exercise on Speed, Surrounding, and Power Leg Muscle

    Directory of Open Access Journals (Sweden)

    Ketut Chandra Adinata Kusuma

    2017-10-01

    Full Text Available This study aimed at finding the effect of ladder drill training upon: (1 run speed, (2 agility, and (2 power of leg muscle. This study is an experimental research. This study utilized one group pre test-post test design. There were total people as the subject of this research. Data collection technique used 30-meter sprint test to measure run speed, Illinois agility test to measure agility, and vertical jump test to measure power of leg muscle. Data analysis technique which was used for normality test, homogeneity test/F-test, and T-test with significant level 5% by using SPSS 16.0.0. Based on the finding, there was effect of ladder drill training upon run speed with sig value=0.007, agility and power of leg muscle with sig value=0.000. Based on the data analysis, it could be concluded that there was significant effect of ladder drill training upon run speed, agility and power of leg muscle.

  18. Coordinated development of muscles and tendon-like structures: early interactions in the Drosophila leg

    Directory of Open Access Journals (Sweden)

    cedric esoler

    2016-02-01

    Full Text Available The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates during the early steps of leg development, we affect the spatial localisation of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.

  19. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    NARCIS (Netherlands)

    Wong, J.D.; Bobbert, M.F.; van Soest, A.J.; Gribble, P.L.; Kistemaker, D.A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively

  20. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  1. Computed tomographic findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Kotera, Minoru; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1986-01-01

    The computed tomography (CT) scan was performed in 52 hemiplegics due to cerebrovascular accidents and 12 normal controls on the mid-portion of the thigh and the largest-diameter section of the calf. Muscle size and average CT density of the muscle were measured. The salient feature was hypertrophic gracilis muscle of the hemiplegic side. Other muscles were more atrophied with lower CT density compared with those of the contralateral side. The size of the quadriceps muscle was especially small. The ratio of the quadriceps to all the thigh muscles in cross section was significantly smaller in affected side of hemiplegics than that of normal controls. This was observed even in normal side of the hemiplegics but the ratios of adductor and flexor muscles of the thigh showed no difference. Hypertrophy of gracilis muscle with high CT density was observed only on hemiplegic side. Muscle atrophies were marked in non-ambulatory patients. The ratios of quadriceps and saltorius muscles of thigh in non-ambulatory patients were significantly smaller than those of ambulatory patients. It could not be detected that there is relationship of the sevirity of the muscle atrophy and parietal lobe dysfunction. This atrophy considered to be the result of disuse of the paralyzed leg and pyramidal tract dysfunction. (author)

  2. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    Science.gov (United States)

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  3. Classification system for flexor digitorum accessorius longus muscle variants within the leg: clinical correlations.

    Science.gov (United States)

    Hur, Mi-Sun; Won, Hyung-Sun; Oh, Chang-Seok; Chung, In-Hyuk; Lee, Woo-Chun; Yoon, Young Cheol

    2014-10-01

    The flexor digitorum accessorius longus (FDAL), a variant leg muscle, can cause tarsal tunnel syndrome. This study was performed to classify the variants of the FDAL by dissection and to correlate the dissection results with clinical cases of tarsal tunnel syndrome caused by this muscle. Eighty lower limbs of embalmed Korean cadavers were dissected. MR images of two clinical cases of tarsal tunnel syndrome caused by the FDAL were correlated with the dissection results. The FDAL was observed in nine out of 80 specimens (11.3%) and it was classified into three types depending on its site of origin and its relationship to the posterior tibial neurovascular bundle (PTNV) in the leg. In Type I (6.3%), the FDAL originated in the leg and ran superficially along the PTNV, either not crossing (Type Ia, 3.8%) or crossing (Type Ib, 2.5%) the neurovascular bundle. In Type II (6.3%), it originated in the tarsal tunnel. Most FDALs followed a similar course in the tarsal tunnel and the plantar pedis. On correlating the MR images of the clinical cases with this classification, the FDAL corresponded to Types Ia and II. All three types of FDAL can compress the tibial nerve in the tarsal tunnel or the distal leg. Clarification of the topographical relationship between this muscle and the PTNV would help to improve the results of surgery for tarsal tunnel syndrome caused by the FDAL. © 2014 Wiley Periodicals, Inc.

  4. Anatomical description of the leg muscles of Procyon cancrivorus (Cuvier 1798

    Directory of Open Access Journals (Sweden)

    Firmino Cardoso Pereira

    2010-09-01

    Full Text Available The Procyon cancrivorus, as well as its entire family, is an endemic species of the Americas. It is widely found throughout the Brazilian territory and it inhabits all biomes, particularly the cerrado. This study used five adult specimens of P. cancrivorus for the characterization of the leg muscles. The animals were collected on roads (i. e. they had been killed by accident. The muscles were dissected, observing their proximal and distal insertions macroscopically, together with their topographic relationships to the arteries and nerves. The muscles studied are considered muscles of the tibia. The cranial tibial muscles, brevis, longus, long digital extensor and lateral extensor digitorum are craniolaterally distinct in the tibia, and the gastrocnemius muscles, lateral flexor of the fingers, popliteus, flexor digitorum, flexor digitorum and medial tibial flow are located in the caudal region of the tibia. The muscles of this group act as flexors and extensors of the hock joint and as flexors and extensors of the digital joints, except the popliteal muscle that acts as a flexor of the knee joint. The muscles studied were compared with their muscles in domestic carnivores, like the dog and cat, and great similarity was found.

  5. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    Science.gov (United States)

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padjactivities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Experience with peroneus brevis muscle flaps for reconstruction of distal leg and ankle defects

    Directory of Open Access Journals (Sweden)

    Babu Bajantri

    2013-01-01

    Full Text Available Objective: Peroneus brevis is a muscle in the leg which is expendable without much functional deficit. The objective of this study was to find out its usefulness in coverage of the defects of the lower leg and ankle. Patients and Methods: A retrospective analysis of the use of 39 pedicled peroneus brevis muscle flaps used for coverage of defects of the lower leg and ankle between November 2010 and December 2012 was carried out. The flaps were proximally based for defects of the lower third of the leg in 12 patients and distally based for reconstruction of defects of the ankle in 26 patients, with one patient having flaps on both ankles. Results: Partial flap loss in critical areas was found in four patients requiring further flap cover and in non-critical areas in two patients, which were managed with a skin graft. Three of the four critical losses occurred when we used it for covering defects over the medial malleolus. There was no complete flap loss in any of the patients. Conclusion: This flap has a unique vascular pattern and fails to fit into the classification of the vasculature of muscles by Mathes and Nahai. The unusual feature is an axial vessel system running down the deep aspect of the muscle and linking the perforators from the peroneal artery and anterior tibial artery, which allows it to be raised proximally or distally on a single perforator. The flap is simple to raise and safe for the reconstruction of small-to moderate-sized skin defects of the distal third of the tibia and all parts of the ankle except the medial malleolus, which is too far from the pedicle of the distally based flap. The donor site can be closed primarily to provide a linear scar. The muscle flap thins with time to provide a good result aesthetically at the primary defect.

  7. Differential catabolism of muscle protein in garden warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration.

    Science.gov (United States)

    Bauchinger, U; Biebach, H

    2001-05-01

    Samples of flight and leg muscle tissue were taken from migratory garden warblers at three different stages of migration: (1) pre-flight: when birds face an extended flight phase within the next few days, (2) post-flight: when they have just completed an extended flight phase, and (3) recovery: when they are at the end of a stop-over period following an extended flight phase. The changes in body mass are closely related to the changes in flight (Pflight. From pre- to post-flight, the flight and the leg muscle masses decrease by about 22%, but are restored to about 12% above the pre-flight masses during the recovery period. Biochemical analyses show that following flight a selective reduction occurred in the myofibrillar (contractile) component of the flight muscle (Pflight and leg muscle act as a protein source during long-distance migration. As a loss of leg muscle mass is additionally observed besides the loss in flight muscle mass, mass change seems not to be strictly associated with the mechanical power output requirements during flight. Whereas the specific content of sarcoplasmic proteins in the flight muscle is nearly twice as high as that in the leg muscle (Pflight muscle is one of the highest observed in muscles of a vertebrate.

  8. Quantitation of progressive muscle fatigue during dynamic leg exercise in humans

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1995-01-01

    There is virtually no published information on muscle fatigue, defined as a gradual decline in force-generating capacity, during conventional dynamic (D) leg exercise. To quantitate progression of fatigue, we developed 1) a model featuring integration of maximal voluntary static contraction (MVC.......05) for matched DKE work rates. To track fatigue, MVC (90 degrees knee angle) was performed every 2 min of DKE. After 4 min of DKE at work rates corresponding to (mean +/- SE) 66 +/- 2, 78 +/- 2, and 100% of peak DKE O2 uptake, MVC fell to 95 +/- 3, 90 +/- 5, and 65 +/- 7%* of MVC of rested muscle, respectively...... (*P fatigue during D leg exercise provides a framework to study the effects of a variety...

  9. Effect of Locomotor Training on Exhaustion of Leg Muscle Activity in Chronic Complete Spinal Cord Injury.

    Science.gov (United States)

    Schrafl-Altermatt, Miriam; Dietz, Volker; Bolliger, Marc

    2017-08-01

    The aim of this study was to evaluate the effect of a continuous locomotor training on leg muscle electromyographic (EMG) exhaustion during assisted stepping movements in a patient with motor complete spinal cord injury (SCI). EMG exhaustion and loss of potentials starts to develop in untrained patients at ∼6 months after injury. In the trained patient examined in this study, exhaustion was also observed but occurred with a delay of several months. In contrast to an untrained patient, no more EMG exhaustion was observed in the very chronic stage. At this time (12 years after injury) a basic locomotor pattern of leg muscle activity of reduced amplitude could still be elicited, but it was resistant to exhaustion and unchanged in amplitude after 12 min of assisted stepping. It is suggested that fatigue-resistant motor units prevail at this stage and can still be activated during stepping as a result of the training.

  10. The effects of anthropometry and leg muscle power on drive and transition phase of acceleration

    DEFF Research Database (Denmark)

    Nikolaidis, Pantelis T.; Ingebrigtsen, Jørgen; Jeffreys, Ian

    2016-01-01

    Background: The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). METHODS: Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice, in the beginn...

  11. CT findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1987-01-01

    Muscle wastings in hemiplegics due to cerebrovascular accidents were studied with CT scanning in the mid-portion of the thigh and largest-diameter section of the calf bilaterally. Muscle size and average CT density of muscle were measured. The 80 patients were classified into one of the following three stages of disability, i.e. stage 1, severely disabled (wheel-chair-bound but capable of self care [20 patients]); stage 2, moderately disabled (poorly ambulatory [41 patients]); and stage 3, mildly disabled (well ambulatory [19 patients]). Muscle cross-sectional area and CT density in both legs of non-ambulatory patients were smaller and lower than those of other groups. The atrophic change was marked in the affected side, but it was also noticeable in the non-affected side. Gracilis muscle was relatively well spared in all 3 stages. These CT findings of hemiplegics were similar to those of disuse atropy in patients with knee or hip joint lesions. Atrophy was seen first in the quadriceps in thigh and flexor muscle group in calf. These findings were similar to the systemic myogenic or neurogenic atrophies. Although gracilis and sartorius muscles were spared in these systemic deseases, only gracilis muscle was spared in hemiplegics and in patients with disuse atrophy. The ratios of the size of quadriceps, adductor group and sartorius muscle of thigh in affected side to that of non-affected side were smaller in more severely disabled group. Those of the other muscles showed no differences among each stages. In stage 3, there was significant negative correlation between the ratio of quadriceps muscle and periods from the attack. There was no relationship between the severity of the muscle atrophy and parietal lobe lesion. The atrophy is considered to be the result of disuse from immobilization. (author)

  12. Changes in serum creatine kinase, leg muscle tightness, and delayed onset muscle soreness after a full marathon race.

    Science.gov (United States)

    Tojima, Michio; Noma, Kensuke; Torii, Suguru

    2016-06-01

    Muscle tightness (MT) is believed to be an important cause of injury for runners. This study evaluated the change of serum creatine kinase (CK), MT in the leg muscles, and delayed onset muscle soreness after running. We evaluated 11 college students who completed a full marathon race. Participants completed a questionnaire on the right quadriceps muscle soreness. The CK activity and MT (iliopsoas, rectus femoris, hamstrings, gastrocnemius, and soleus muscles) were measured. The time points for CK measurements were before; immediately after; and at 1, 2, and 5 days after the race. The time points for MT measurements were the same as for CK except MT was not measured one day after the race. The time points for muscle soreness analysis were before the race and then every morning and night for 5 days after the race. Long-distance running led to significant increases in CK, MT, and muscle soreness. The CK levels peaked day 1 after the race. MT of iliopsoas peaked on day 5; of rectus femoris immediately after the race; and of hamstrings, gastrocnemius, and soleus on day 2. muscle soreness peaked at night on day 1. MT did not decrease to the pre-race levels on day 5. There were no significant changes but CK tended to correlate with the peak of MT of the rectus femoris (r=0.55, P=0.082) and hamstrings (r=0.57, P=0.065). Long-distance running may cause muscle fiber microdamage that may consequently increase CK, MT, and muscle soreness.

  13. Night Leg Cramps

    Science.gov (United States)

    Symptoms Night leg cramps By Mayo Clinic Staff Night leg cramps, also called nocturnal leg cramps, are painful, involuntary contractions or spasms of muscles in your legs, usually occurring when you're in bed. Night ...

  14. Mechanical Impedance of the non-loaded Lower Leg with Relaxed Muscles in the Transverse Plane

    Directory of Open Access Journals (Sweden)

    Evandro Maicon Ficanha

    2015-12-01

    Full Text Available This paper describes the protocols and results of the experiments for the estimation of the mechanical impedance of the humans’ lower leg in the External-Internal (EI direction in the transverse plane under non-load bearing condition and with relaxed muscles. The objectives of the estimation of the lower leg’s mechanical impedance are to facilitate the design of passive and active prostheses with mechanical characteristics similar to the humans’ lower leg, and to define a reference that can be compared to the values from the patients suffering from spasticity. The experiments were performed with 10 unimpaired male subjects using a lower extremity rehabilitation robot (Anklebot, Interactive Motion Technologies, Inc. capable of applying torque perturbations to the foot. The subjects were in a seated position, and the Anklebot recorded the applied torques and the resulting angular movement of the lower leg. In this configuration, the recorded dynamics are due mainly to the rotations of the ankle’s talocrural and the subtalar joints, and any contribution of the tibiofibular joints and knee joint. The dynamic mechanical impedance of the lower leg was estimated in the frequency domain with an average coherence of 0.92 within the frequency range of 0 to 30Hz, showing a linear correlation between the displacement and the torques within this frequency range under the conditions of the experiment. The mean magnitude of the quasi-static stiffness of the lower leg (the impedance magnitude averaged in the range of 0-1 Hz was determined as 4.9±0.74 Nm/rad. The direct estimation of the quasi-static stiffness of the lower leg results in the mean value of 5.8±0.81 Nm/rad. An analysis of variance (ANOVA shows that the estimated values for the quasi-static stiffness from the two experiments are not statistically different.

  15. Features interference EMG leg extensor muscles of skilled players in the context of the special exercises

    Directory of Open Access Journals (Sweden)

    Sirenko P.A.

    2013-06-01

    Full Text Available The article considers the problems of improvement of physical training of skilled players. The main instrumental method of the research is electromyography. The aim of the research is determination of the optimal angle of the provisions of legs on her hips for the appearance of a maximum of bioelectric activity of the muscles of the front panel hips in exercise unbending legs sitting on the mechanical simulator. In the course of research we have worked for electromyography 10 players of FC Metalist at the age of 19 – 30 years during the five-second of the submaximum contraction of these muscles as: musculus rectus femoris, musculus vastus medialis, musculus vastus lateralis. The results of the analysis of segments of electromyography allowed to make a conclusion, that we investigated the provisions of the angle of 140 degrees has the lowest preconditions for the appearance of muscle strength. We have obtained data testify to the fact that the angle of 90 degrees is the position of the greatest preconditions for the appearance of muscle strength.

  16. Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking.

    Science.gov (United States)

    Hsu, Chao-Jung; Kim, Janis; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-12-01

    Individuals with stroke usually show reduced muscle activities of the paretic leg and asymmetrical gait pattern during walking. To determine whether applying a resistance force to the nonparetic leg would enhance the muscle activities of the paretic leg and improve the symmetry of spatiotemporal gait parameters in individuals with poststroke hemiparesis. Fifteen individuals with chronic poststroke hemiparesis participated in this study. A controlled resistance force was applied to the nonparetic leg using a customized cable-driven robotic system while subjects walked on a treadmill. Subjects completed 2 test sections with the resistance force applied at different phases of gait (ie, early and late swing phases) and different magnitudes (10%, 20%, and 30% of maximum voluntary contraction [MVC] of nonparetic leg hip flexors). Electromyographic (EMG) activity of the muscles of the paretic leg and spatiotemporal gait parameters were collected. Significant increases in integrated EMG of medial gastrocnemius, medial hamstrings, vastus medialis, and tibialis anterior of the paretic leg were observed when the resistance was applied during the early swing phase of the nonparetic leg, compared with baseline. Additionally, resistance with 30% of MVC induced the greatest level of muscle activity than that with 10% or 20% of MVC. The symmetry index of gait parameters also improved with resistance applied during the early swing phase. Applying a controlled resistance force to the nonparetic leg during early swing phase may induce forced use on the paretic leg and improve the spatiotemporal symmetry of gait in individuals with poststroke hemiparesis.

  17. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    Science.gov (United States)

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. Copyright © 2014 the American Physiological Society.

  18. Net joint moments and muscle activation in barbell squats without and with restricted anterior leg rotation.

    Science.gov (United States)

    Chiu, Loren Z F; vonGaza, Gabriella L; Jean, Liane M Y

    2017-01-01

    Muscle utilisation in squat exercise depends on technique. The purpose of this study was to compare net joint moments (NJMs) and muscle activation during squats without and with restricted leg dorsiflexion. Experienced men (n = 5) and women (n = 4) performed full squats at 80% one repetition maximum. 3D motion analysis, force platform and (EMG) data were collected. Restricting anterior leg rotation reduced anterior leg (P = 0.001) and posterior thigh (P  0.05), vastus medialis (P > 0.05) and rectus femoris (P > 0.05) EMG were not different between squat types. Unrestricted squats have higher ankle plantar flexor and knee extensor NJM than previously reported from jumping and landing. However, ankle plantar flexor and knee extensor NJM are lower in restricted squats than previous studies of jumping and landing. The high NJM in unrestricted squat exercise performed through a full range of motion suggests this squat type would be more effective to stimulate adaptations in the lower extremity musculature than restricted squats.

  19. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    Science.gov (United States)

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. Copyright © 2016 the American Physiological Society.

  20. The Effect of Kick Type on the Relationship between Kicking Leg Muscle Activation and Ball Velocity

    Directory of Open Access Journals (Sweden)

    Ali Onur Cerrah

    2018-03-01

    Full Text Available This study aimed to identify the effects of different kick types on the relationship between kicking leg muscle activation and ball velocity. The muscle activation of selected knee extensor and flexor muscles of 10 amateur soccer players were measured using electromyography during the performance of six maximal soccer kick types. The highest ball velocity was achieved by the instep kick (96.2 km/hr-1, followed by the lofted kick, the inside curve kick, the outside kick, the outside curve kick, and finally the inside kick (81.3 km/hr-1. There were significant positive correlations between muscle activation and ball velocity for the vastus lateralis and lofted (0.765, inside curve (0.792 and instep kicks (0.788, and for the gastrocnemious with the outside kick (0.796. Non-significant correlations between muscle activation and ball velocity exhibited a trend such that they were positive for the vastus medialis and vastus lateralis but negative for the biceps femoris and gastrocnemious for inside-foot-dominated kicks, while this trend was reversed for outside-foot-dominated kicks. According to results, the noted trends can be explained by the change in muscle activation patterns required to orientate the foot for each type of kick; this has implications for players’ training activities.

  1. EFFECT OF MODERATE ALTITUDE ON PERIPHERAL MUSCLE OXYGENATION DURING LEG RESISTANCE EXERCISE IN YOUNG MALES

    Directory of Open Access Journals (Sweden)

    Toshio Matsuoka

    2004-09-01

    Full Text Available Training at moderate altitude (~1800m is often used by athletes to stimulate muscle hypoxia. However, limited date is available on peripheral muscle oxidative metabolism at this altitude (1800AL. The purpose of this study was to determine whether acute exposure to 1800AL alters muscle oxygenation in the vastus lateralis muscle during resistance exercise. Twenty young active male subjects (aged 16 - 21 yr performed up to 50 repetitions of the parallel squat at 1800AL and near sea level (SL. They performed the exercise protocol within 3 h after arrival at 1800 AL. During the exercise, the changes in oxygenated hemoglobin (OxyHb in the vastus lateralis muscle, arterial oxygen saturation (SpO2, and heart rate were measured using near infrared continuous wave spectroscopy (NIRcws and pulse oximetry, respectively. Changes in OxyHb were expressed by Deff defined as the relative index of the maximum change ratio (% from the resting level. OxyHb in the vastus lateralis muscle decreased dramatically from the resting level immediately after the start of exercise at both altitudes. The Deff during exercise was significantly (p < 0.001 lower at 1800AL (60.4 ± 6.2 % than at near SL (74.4 ± 7.6 %. SpO2 during exercise was significantly (p < 0.001 lower at 1800AL (92.0 ± 1.7 % than at near SL (96.7 ± 1.2 %. Differences (SL - 1800AL in Deff during exercise correlated fairly strongly with differences in SpO2 during exercise (r = 0.660. These results suggested that acute exposure to moderate altitude caused a more dramatical decrease in peripheral muscle oxygenation during leg resistance exercise. It is salient to note, therefore , that peripheral muscle oxygenation status at moderate altitude could be evaluated using NIRcws and that moderate altitudes might be effectively used to apply hypoxic stress on peripheral muscles.

  2. Effects of wearing lower leg compression sleeves on locomotion economy.

    Science.gov (United States)

    Kurz, Eduard; Anders, Christoph

    2018-02-15

    The purpose of this investigation was to assess the effect of compression sleeves on muscle activation cost during locomotion. Twenty-two recreationally active men (age: 25 ± 3 years) ran on a treadmill at four different speeds (ordered sequence of 2.8, 3.3, 2.2, and 3.9 m/s). The tests were performed without (control situation, CON) and while wearing specially designed lower leg compression sleeves (SL). Myoelectric activity of five lower leg muscles (tibialis anterior, fibularis longus, lateral and medial head of gastrocnemius, and soleus) was captured using Surface EMG. To assess muscle activation cost, the cumulative muscle activity per distance travelled (CMAPD) of the CON and SL situations was determined. Repeated measures analyses of variance were performed separately for each muscle. The analyses revealed a reduced lower leg muscle activation cost with respect to test situation for SL for all muscles (p  0.18). The respective significant reductions of CMAPD values during SL ranged between 4% and 16% and were largest at 2.8 m/s. The findings presented point towards an improved muscle activation cost while wearing lower leg compression sleeves during locomotion that have potential to postpone muscle fatigue.

  3. Age-related changes in the effects of strength training on lower leg muscles in healthy individuals measured using MRI

    OpenAIRE

    Psatha, Maria; Wu, Zhiqing; Gammie, Fiona; Ratkevicius, Aivaras; Wackerhage, Henning; Redpath, Thomas W; Gilbert, Fiona J; Meakin, Judith R; Aspden, Richard M

    2017-01-01

    Background We previously measured the rate of regaining muscle strength during rehabilitation of lower leg muscles in patients following lower leg casting. Our primary aim in this study was to measure the rate of gain of strength in healthy individuals undergoing a similar training regime. Our secondary aim was to test the ability of MRI to provide a biomarker for muscle function. Methods Men and women were recruited in three age groups: 20?30, 50?65 and over 70 years. Their response to resis...

  4. Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance.

    Directory of Open Access Journals (Sweden)

    Benjamin Pageaux

    Full Text Available We recently developed a high intensity one leg dynamic exercise (OLDE protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60, 100 (MVC100 and 140 (MVC140 deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s, 20 s (P20 and 40 s (P40 post-exercise. Electromyographic (EMG signal was analyzed via the root mean square (RMS for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001. MVC60 and MVC100 recovered between P20 (P < 0.05 and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05. High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion.

  5. Alterations in Leg Extensor Muscle-Tendon Unit Biomechanical Properties With Ageing and Mechanical Loading

    Directory of Open Access Journals (Sweden)

    Christopher McCrum

    2018-02-01

    Full Text Available Tendons transfer forces produced by muscle to the skeletal system and can therefore have a large influence on movement effectiveness and safety. Tendons are mechanosensitive, meaning that they adapt their material, morphological and hence their mechanical properties in response to mechanical loading. Therefore, unloading due to immobilization or inactivity could lead to changes in tendon mechanical properties. Additionally, ageing may influence tendon biomechanical properties directly, as a result of biological changes in the tendon, and indirectly, due to reduced muscle strength and physical activity. This review aimed to examine age-related differences in human leg extensor (triceps surae and quadriceps femoris muscle-tendon unit biomechanical properties. Additionally, this review aimed to assess if, and to what extent mechanical loading interventions could counteract these changes in older adults. There appear to be consistent reductions in human triceps surae and quadriceps femoris muscle strength, accompanied by similar reductions in tendon stiffness and elastic modulus with ageing, whereas the effect on tendon cross sectional area is unclear. Therefore, the observed age-related changes in tendon stiffness are predominantly due to changes in tendon material rather than size with age. However, human tendons appear to retain their mechanosensitivity with age, as intervention studies report alterations in tendon biomechanical properties in older adults of similar magnitudes to younger adults over 12–14 weeks of training. Interventions should implement tendon strains corresponding to high mechanical loads (i.e., 80–90% MVC with repetitive loading for up to 3–4 months to successfully counteract age-related changes in leg extensor muscle-tendon unit biomechanical properties.

  6. Tibialis Posterior Tenosynovitis: A Unique Musculoskeletal Manifestation of Gout.

    Science.gov (United States)

    Shupper, Peter; Stitik, Todd P

    2018-02-01

    Extra-articular manifestations of gout can present in several ways, including tenosynovitis. We present a rare case of acute tibialis posterior gouty tenosynovitis. An 82-year-old man with a history of well-controlled gout presented with acute onset of left ankle pain, occurring without inciting event. The medial ankle was slightly erythematous with moderate dorsal-medial swelling and mild dorsal-lateral swelling, with severe tenderness to palpation over the medial retro-malleolar region. Range of motion and manual muscle testing were pain limited throughout. Ultrasound examination revealed a left posterior tibialis tendon sheath tenosynovitis with effusion and overlying soft tissue edema. Tendon sheath aspirate revealed sodium urate crystals and a white blood cell count of 6400/μL. Tendon sheath injection with a mixture of 1% lidocaine and dexamethasone 4 mg resulted in symptom resolution. Repeat ultrasound examination demonstrated no evidence of tibialis posterior tendon sheath effusion. This case is unique not only because acute gouty posterior tibialis tenosynovitis is very rare, particularly in a normouricemic individual, but also because the sonographic evidence of gouty infiltration into the posterior tibialis tendon and overlying subcutaneous tissue considerably aided in arriving at the correct diagnosis in a timely manner.

  7. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.

    Science.gov (United States)

    Ewing, Katie A; Fernandez, Justin W; Begg, Rezaul K; Galea, Mary P; Lee, Peter V S

    2016-10-03

    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES

    Science.gov (United States)

    Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J.; Hakansson, Nils A.

    2017-01-01

    Background Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. Hypothesis/Purpose The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Study Design Cross-Sectional Methods Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects’ gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. Results A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p gluteus maximus and medius, respectively). Conclusion Modifying the traditional single-leg bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation

  9. The role of eccentric regime of leg muscle work in alpine skiing

    Directory of Open Access Journals (Sweden)

    Ropret Robert

    2017-01-01

    Full Text Available Alpine skiing is characterized by a great number of leg movements with muscle contractions in eccentric regime. The role of these movements is to absorb gravitation and inertial forces, manage skis more precisely and maintain balance. Recent studies have determined the volume, duration and intenisty of eccentric contractions as well as the basic characteristics of movement amplitudes and velocities. Based on the previous findings the experiments involving eccentric training using a bicycle ergometer confirmed a positive impact that this kind of training has on increasing maximum power, strength, endurance, coordination, injury prevention, metabolic work efficiency, more efficient work with longer muscle length and its role in miming skiers' movements. This paper is an review of the studies so far in the field of kinematics, skiing dynamics and the effect of eccentric training on the development of athletes' performances.

  10. Muscle activity during leg strengthening exercise using free weights and elastic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H

    2013-01-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG......) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG....... Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: low...

  11. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1996-01-01

    Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight...... healthy men performed exhaustive constant work rate knee extension (21 +/- 3 W, 79 +/- 2 and 87 +/- 2% of 1-leg knee extension O2 peak uptake for normoxia and hypobaria, respectively) from knee angles of 90-150 degrees at a rate of 1 Hz. MVC (90 degrees knee angle) was performed before dynamic exercise...... and during MVC force was 578 +/- 29 N in normoxia and 569 +/- 29 N in hypobaria before exercise and fell, at exhaustion, to similar levels (265 +/- 10 and 284 +/- 20 N for normoxia and hypobaria, respectively; P > 0.05) that were higher (P

  12. Differences in the EMG pattern of lea muscle activation during locomotion in Parkinson's disease

    NARCIS (Netherlands)

    Albani, G; Sandrini, G; Kunig, G; Martin-Soelch, C; Mauro, A; Pignatti, R; Pacchetti, C; Dietz, [No Value; Leenders, KL

    2003-01-01

    In this pilot study, EMG patterns of leg muscle activation were studied in five parkinsonian patients with (B1) and five without (B2) freezing. Gastrocnemius medialis (GM) and tibialis anterior (TA) activity was analysed, by means of surface electromyography (EMG), during treadmill walking at two

  13. Lower leg muscle density is independently associated with fall status in community-dwelling older adults.

    Science.gov (United States)

    Frank-Wilson, A W; Farthing, J P; Chilibeck, P D; Arnold, C M; Davison, K S; Olszynski, W P; Kontulainen, S A

    2016-07-01

    Muscle density is a risk factor for fractures in older adults; however, its association with falls is not well described. After adjusting for biologically relevant confounding factors, a unit decrease in muscle density was associated with a 17 % increase in odds of reporting a fall, independent of functional mobility. Falls are the leading cause of injury, disability, and fractures in older adults. Low muscle density (i.e., caused by muscle adiposity) and functional mobility have been identified as risk factors for incident disability and fractures in older adults; however, it is not known if these are also independently associated with falls. The purpose of this study was to explore the associations of muscle density and functional mobility with fall status. Cross-sectional observational study of 183 men and women aged 60-98 years. Descriptive data, including a 12-month fall recall, Timed Up and Go (TUG) test performance, lower leg muscle area, and density. Odds ratio (OR) of being a faller were calculated, adjusted for age, sex, body mass index, general health status, diabetes, and comorbidities. Every mg/cm(3) increase in muscle density (mean 70.2, SD 2.6 mg/cm(3)) independently reduced the odds of being a faller by 19 % (OR 0.81 [95 % CI 0.67 to 0.97]), and every 1 s longer TUG test time (mean 9.8, SD 2.6 s) independently increased the odds by 17 % (OR 1.17 [95 % CI 1.01 to 1.37]). When both muscle density and TUG test time were included in the same model, only age (OR 0.93 [95 % CI 0.87 to 0.99]) and muscle density (OR 0.83 [95 % CI 0.69 to 0.99]) were independently associated with fall status. Muscle density was associated with fall status, independent of functional mobility. Muscle density may compliment functional mobility tests as a biometric outcome for assessing fall risk in well-functioning older adults.

  14. Comparative study of the effects of the Ga-As (904 nm, 150mW laser and the pulsed ultrasound of 1 MHz in inflammation of tibialis muscle of Wistar rats

    Directory of Open Access Journals (Sweden)

    Marcus Vinícius de Mello Pinto

    2008-12-01

    Full Text Available This paper aims to compare the therapeutic effect of the laser As-Ga of 904nm and pulsed Ultrasound of 1 MHz applied in striated skeletal muscle of inflamed rats. The animals received an intramuscular injection of bupivacaine hydrochloride in tibialis muscle in order to induce the inflammatory process, and after 24 hours, the time was considered 0 for the initiation of therapy, using a laser and ultrasound. Samples collected the muscles of the animals were stained with Hematoxylin-Eosin and histological sections of the groups used for the analysis of the muscle tissue in relation to reducing the inflammatory process, comparing the results of the two therapies used. In this study it is suggested that both treatment with laser as with ultrasound can act as anti-inflammatory. However, the laser seems to have anti-inflammatory effect for all periods observed, while the ultrasound was only able to induce declining inflammatory response to seven days.O presente trabalho tem como objetivo comparar o efeito terapêutico do Laser As-Ga de 904nm e do Ultra-som pulsado de 1 MHz aplicado em músculo estriado esquelético inflamado de ratos Wistar. Os animais receberam uma injeção intramuscular de cloridrato de bupivacaína no músculo tibial, a fim de induzir o processo inflamatório, e após 24 horas, foi considerado o tempo 0 para o início da terapia, utilizando-se o laser e o ultra-som. As amostras coletadas dos músculos dos 35 animais foram coradas com Hematoxilina-Eosina e as secções histológicas dos grupos serviram para as análises do tecido muscular em relação à redução do processo inflamatório, comparando os resultados das duas terapias utilizadas. Neste trabalho sugere-se que tanto os tratamentos com laser quanto com ultra-som podem agir como antiinflamatórios, no entanto, o laser parece ter efeito antiinflamatório durante todos os períodos observados, enquanto o ultra-som somente foi capaz de induzir diminuição da resposta

  15. Different fatigue-resistant leg muscles and EMG response during whole-body vibration.

    Science.gov (United States)

    Simsek, Deniz

    2017-12-01

    The purpose of this study was to determine the effects of static whole-body vibration (WBV) on the Electromyograhic (EMG) responses of leg muscles, which are fatigue-resistant in different manner. The study population was divided into two groups according to the values obtained by the Fatigue Index [Group I: Less Fatigue Resistant (LFR), n=11; Group II: More Fatigue Resistant (MFR), n=11]. The repeated electromyographic (EMG) activities of four leg muscles were analyzed the following determinants: (1) frequency (30 Hz, 35 Hz and 40 Hz); (2) stance position (static squat position); (3) amplitude (2 mm and 4 mm) and (4) knee flexion angle (120°), (5) vertical vibration platform. Vibration data were analyzed using Minitab 16 (Minitab Ltd, State College, PA, USA). The significance level was set at pmuscle fatigue (pEMG activation at higher frequencies (max at 40 Hz) and amplitudes (4 mm) (p<.05). The present study can be used for the optimal prescription of vibration exercise and can serve to guide the development of training programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. ACTN3 R577X polymorphism and explosive leg-muscle power in elite basketball players.

    Science.gov (United States)

    Garatachea, Nuria; Verde, Zoraida; Santos-Lozano, Alejandro; Yvert, Thomas; Rodriguez-Romo, Gabriel; Sarasa, Francisco J; Hernández-Sánchez, Sonsoles; Santiago, Catalina; Lucia, Alejandro

    2014-03-01

    To determine the association of the ACTN3 R577X polymorphism with leg-muscle explosive power in Spanish (white) elite basketball players and controls. 100 (60 men) elite basketball players (cases) and 283 nonathletic controls. The authors assessed power performance by means of the vertical-squat and countermovement-jump tests. Genotype distributions did not differ between groups (cases: 37.0% [RR], 42.0% [RX], and 21.0% [XX]; controls: 31.8% [RR], 49.8% [RX], and 18.4% [XX]; P = .353). The authors did not observe any effect of the ACTN3 R577X polymorphism on study phenotypes in either group, including when they performed the analyses separately in men and women. They found no association between the ACTN3 R577X polymorphism and the likelihood of being an elite basketball player using the dominant or the recessive model, and the results remained unaltered when the analyses were adjusted for sex, weight, height, and age or when performed for men and women separately. Although the ACTN3 R577X is associated with explosive muscle performance and this phenotype is important in the sport of basketball (ie, during jumps), the authors found no association with leg explosive power in elite basket players or with the status of being this type of athlete.

  17. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    Science.gov (United States)

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation. 3.

  18. The Effects of Active Straight Leg Raising on Tonicity and Activity of Pelvic Stabilizer Muscles

    Directory of Open Access Journals (Sweden)

    Azadeh Shadmehr

    2011-01-01

    Full Text Available Objective: Active straight leg raising (SLR test is advocated as a valid diagnostic method in diagnosis of sacroiliac joint (SIJ dysfunction that can assess the quality of load transfer between trunk and lower limb. The aim of this study is Comparison of changes in tonicity and activity of pelvic stabilizer muscles during active SLR, between healthy individuals and patients with sacroiliac joint pain. Materials & Methods: A case – control study was designed in 26 women (19-50 years old. With use of simple sampling, surface electromyography from rectus abdominis, external oblique, internal oblique, adductor longus, erector spine, gluteus maximus and biceps femoris was recorded in 26 subjects (15 healthy females and 11 females with sacroiliac pain in resting position and during active SLR test. Resting muscle tonicity and rms during ramp time and hold time in active SLR test were assessed by non parametric-two independent sample test. Results: Biceps femoris activity in resting position was significantly larger in patients group (P<0.05. During the active SLR, the women with sacroiliac joint pain used much less activity in some pelvic stabilizer muscles compared to the healthy subjects (P<0.05. Conclusion: The increased resting tonicity of biceps femoris and decreased activity of pelvic stabilizer muscles in subjects with sacroiliac joint pain, suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.

  19. Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III.

    Science.gov (United States)

    Dhaliwal, Trilok S; Beillas, Philippe; Chou, Clifford C; Prasad, Priya; Yang, King H; King, Albert I

    2002-11-01

    Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.

  20. The Effect of Electrical Stimulation of the Calf Muscle on Leg Fluid Accumulation over a Long Period of Sitting.

    Science.gov (United States)

    Vena, Daniel; Rubianto, Jonathan; Popovic, Milos R; Fernie, Geoff R; Yadollahi, Azadeh

    2017-07-20

    Leg fluid accumulation during sedentary behaviours such as sitting can lead to leg edema and associated adverse health consequences. This study investigates the use calf muscle electrical stimulation (ES) to reduce seated leg fluid accumulation. Thirteen non-obese, normotensive men (mean age 51 yr.) with sleep apnea were enrolled in the study. Participants first lay supine for 30 minutes to equalize fluid distribution and then sat for 150 minutes. While seated, participants received either active or sham ES of the calf muscles, according to random assignment. Participants returned one-week later to cross over to the other study condition. Leg fluid was measured continuously while sitting using the bioelectrical impedance method. Fluid accumulation in the leg was reduced by more than 40% using active ES, compared to sham ES (∆ = 51.9 ± 8.8 ml vs. ∆ = 91.5 ± 8.9 ml, P calf muscle ES is an effective method for reducing accumulation of fluid during long sedentary periods and has potential use as a device for preventing leg edema to treat associated health consequences in at-risk groups and settings.

  1. Neural adjustment in the activation of the lower leg muscles through daily physical exercises in community-based elderly persons.

    Science.gov (United States)

    Maejima, Hiroshi; Murase, Azusa; Sunahori, Hitoshi; Kanetada, Yuji; Otani, Takuya; Yoshimura, Osamu; Tobimatsu, Yoshiko

    2007-02-01

    Reflecting the rapidly aging population, community-based interventions in the form of physical exercise have been introduced to promote the health of elderly persons. Many investigation studies have focused on muscle strength in the lower leg as a potent indicator of the effect of physical exercises. The objective of this study was to assess the effect of long-term daily exercises on neural command in lower leg muscle activations. Twenty-six community-based elderly persons (13 men and 13 women; 69.8 +/- 0.5 years old) participated in this study. Daily exercise was comprised of walking for more than 30 min, stretching, muscle strengthening and balance exercise, and was continued for three months. Muscle strength and surface electromyography of the tibia anterior, rectus femoris, and biceps femoris were measured in maximum isometric voluntary contraction both before and after the intervention. The mean frequency of the firing of motor units was calculated based on fast Fourier transformation of the electromyography. As the results of the intervention, muscle strength increased significantly only in biceps femoris, whereas the mean frequency of motor units decreased significantly in every muscle, indicating that motor unit firing in lower frequency efficiently induces the same or greater strength compared with before the intervention. Thus, synchronization of motor units compensates for the lower frequency of motor unit firing to maintain muscular strength. In conclusion, long-term physical exercises in the elderly can modulate the neural adjustment of lower leg muscles to promote efficient output of muscle strength.

  2. Tibialis posterior in health and disease: a review of structure and function with specific reference to electromyographic studies

    Directory of Open Access Journals (Sweden)

    Woodburn James

    2009-08-01

    Full Text Available Abstract Tibialis posterior has a vital role during gait as the primary dynamic stabiliser of the medial longitudinal arch; however, the muscle and tendon are prone to dysfunction with several conditions. We present an overview of tibialis posterior muscle and tendon anatomy with images from cadaveric work on fresh frozen limbs and a review of current evidence that define normal and abnormal tibialis posterior muscle activation during gait. A video is available that demonstrates ultrasound guided intra-muscular insertion techniques for tibialis posterior electromyography. Current electromyography literature indicates tibialis posterior intensity and timing during walking is variable in healthy adults and has a disease-specific activation profile among different pathologies. Flat-arched foot posture and tibialis posterior tendon dysfunction are associated with greater tibialis posterior muscle activity during stance phase, compared to normal or healthy participants, respectively. Cerebral palsy is associated with four potentially abnormal profiles during the entire gait cycle; however it is unclear how these profiles are defined as these studies lack control groups that characterise electromyographic activity from developmentally normal children. Intervention studies show antipronation taping to significantly decrease tibialis posterior muscle activation during walking compared to barefoot, although this research is based on only four participants. However, other interventions such as foot orthoses and footwear do not appear to systematically effect muscle activation during walking or running, respectively. This review highlights deficits in current evidence and provides suggestions for the future research agenda.

  3. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle.

    Science.gov (United States)

    Liu, K; Chen, L E; Seaber, A V; Johnson, G W; Urbaniak, J R

    1999-01-01

    Intermittent pneumatic compression has been established as a method of clinically preventing deep vein thrombosis, but the mechanism has not been documented. This study observed the effects of intermittent pneumatic compression of legs on the microcirculation of distant skeletal muscle. The cremaster muscles of 80 male rats were exposed, a specially designed intermittent pneumatic-compression device was applied to both legs for 60 minutes, and the microcirculation of the muscles was assessed by measurement of the vessel diameter in three categories (10-20, 21-40, and 41-70 microm) for 120 minutes. The results showed significant vasodilation in arterial and venous vessels during the application of intermittent pneumatic compression, which disappeared after termination of the compression. The vasodilation reached a maximum 30 minutes after initiation of the compression and could be completely blocked by an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine (10 micromol/min). A 120-minute infusion of NG-monomethyl-L-arginine, beginning coincident with 60 minutes of intermittent pneumatic compression, resulted in a significant decrease in arterial diameter that remained at almost the same level after termination of the compression. The magnitude of the decrease in diameter in the group treated with intermittent pneumatic compression and NG-monomethyl-L-arginine was comparable with that in the group treated with NG-monomethyl-L-arginine alone. The results imply that the production of nitric oxide is involved in the positive influence of intermittent pneumatic compression on circulation. It is postulated that the rapid increase in venous velocity induced by intermittent pneumatic compression produces strong shear stress on the vascular endothelium, which stimulates an increased release of nitric oxide and thereby causes systemic vasodilation.

  4. Postmortem changes in physiochemical and sensory properties of red snow crab (Chionoecetes japonicus leg muscle during freeze storage

    Directory of Open Access Journals (Sweden)

    Joon-Young Jun

    2017-07-01

    Full Text Available Abstract In order to evaluate the maximal storable period of the raw crab for a non-thermal muscle separation, the quality changes of the leg meat of red snow crab (Chionoecetes japonicus during freeze storage were investigated. Fresh red snow crabs were stored at −20 °C for 7 weeks, and the leg muscle was separated by a no heating separation (NHS method every week. During the storage, considerable loss of the leg muscle did not occur and microbiological risk was very low. In contrast, discoloration appeared at 2-week storage on around carapace and the leg muscle turned yellow at storage 3-week. In physiochemical parameters, protein and free amino acids gradually decreased with storage time, expected that proteolytic enzymes still activated at −20 °C. At 4-week storage, the sensory acceptance dropped down below point 4 as low as inedible and notable inflection points in pH and acidity were observed. The volatile base nitrogen was low, though a little increase was recorded. These results suggested that the maximal storable period at −20 °C of the raw material was within 2 weeks and it was depended on external factor such as the discoloration. The present study might be referred as basic data for approaches to solve quality loss occurred in non-thermal muscle separation.

  5. Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1

    DEFF Research Database (Denmark)

    Tasca, Giorgio; D'Amico, Adele; Monforte, Mauro

    2015-01-01

    of thigh and posterior leg with sparing of gracilis, tibialis anterior and, to a lesser extent, short head of biceps femoris. Mutations in STIM1 are associated with a homogeneous involvement on imaging despite variable clinical features. Muscle imaging can be useful in identifying STIM1-mutated patients...

  6. Growth responses of breast and leg muscles to essential amino acids in broiler chicks.

    Science.gov (United States)

    Mehri, M; Bagherzadeh-Kasmani, F; Rokouei, M

    2016-03-01

    The first three essential amino acids (EAA) for broilers including methionine (Met), lysine (Lys) and threonine (Thr) may greatly influence the growth of chick muscles at early stages of life. In order to survey the potential effects of those EAA on growth muscles, a rotatable three-variable central composite design (CCD) was conducted to track the interrelationships of dietary digestible Met (dMet), Lys (dLys) and Thr (dThr) for optimization of processing yields in broiler chicks using response surface methodology. A total of 60 floor pens of six birds each were assigned to 15 dietary treatments based on CCD containing five levels of dMet (0.416% to 0.584% of diet), dLys (0.881% to 1.319% of diet) and dThr (0.532% to 0.868% of diet) from 3 to 16 days of age. Experimental treatments significantly affected breast mass (BM) and leg mass (LM) of the birds (Pdiet, and maximum LM point may be achieved with 0.58%, 1.09% and 0.70% of dMet, dLys and dThr, respectively, in diet. The resultant ideal ratios of dMet and dThr to dLys were 55% and 72% for BM; 53% and 64% for LM. Moreover, sensitivity analysis showed that the most important amino acids in BM and LM models were Lys and Thr, respectively. In conclusion, providing these three amino acid for BM optimization may warrant LM optimization and higher ideal ratios of dMet and dThr for breast muscle may indicate the higher importance of these EAA in this muscle than those in thigh muscle.

  7. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  8. Influence of shoes and foot orthoses on lower extremity muscle activation onset times in healthy subjects during the transition from double-leg stance to single-leg stance.

    Science.gov (United States)

    Dingenen, B; Peeraer, L; Deschamps, K; Fieuws, S; Janssens, L; Staes, F

    2015-01-01

    The aim of this study was to evaluate the influence of shoes and foot orthoses on lower extremity muscle activation patterns in healthy subjects during the transition from double-leg stance to single-leg stance. Eight male and seven female young asymptomatic adults who wear foot orthoses were recruited. Muscle activation onset times of 9 lower extremity muscles were recorded using surface electromyography during the transition from double-leg stance to single-leg stance, performed with eyes open and with eyes closed. This was tested in 4 experimental conditions: 1) barefoot (BF); 2) shoes only (SO); 3) shoes with standardized FO (SSFO); and 4) shoes with customized FO (SCFO). Based on a four-way (condition-region-leg-vision) linear model for repeated measures, we found a significant condition effect (P=0.025). Differences between conditions did not depend on the leg and/or the vision condition, but on the region (ankle-knee-hip). Based on a two-way (condition-muscle) linear model within each region, only significant differences between conditions for peroneus longus (P=0.003) were found. The onset times of peroneus longus were significantly earlier in SO (P=0.029) and SCFO (P=0.001) compared to BF. These results indicate that SO and SCFO can accelerate peroneus longus muscle activation onset times during the transition from double-leg stance to single-leg stance. Further research is required to determine how these adaptations may develop over time.

  9. Leg Injuries and Disorders

    Science.gov (United States)

    Your legs are made up of bones, blood vessels, muscles, and other connective tissue. They are important for motion ... falling, or having an accident can damage your legs. Common leg injuries include sprains and strains, joint ...

  10. Tracking control of a leg rehabilitation machine driven by pneumatic artificial muscles using composite fuzzy theory.

    Science.gov (United States)

    Chang, Ming-Kun

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

  11. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes.

    Science.gov (United States)

    Secomb, Josh L; Nimphius, Sophia; Farley, Oliver R L; Lundgren, Lina E; Tran, Tai T; Sheppard, Jeremy M

    2015-12-01

    The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key pointsGreater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes.Isometric strength underpinned performance in the CMJ and SJ in these athletes.Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit.

  12. Compartment Syndrome Following Directly Repair of Hernia of Anterior Tibialis

    Directory of Open Access Journals (Sweden)

    Yuan-Ta Li

    2015-01-01

    Full Text Available We present a case of a patient with hernia of anterior tibialis who was treated operatively. Muscle herniation through a fascial defect is rare, which requires repair of fascial defects. We performed a simple closure of fascial defect. A fasciotomy was proceeded to complication of acute compartment syndrome developed after the operation. The sequelae as weakness of dorsiflexion of ankle and big toe were present.

  13. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  14. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes?

    DEFF Research Database (Denmark)

    Larsen, Steen; Ara, I; Rabøl, R

    2009-01-01

    AIM/HYPOTHESIS: The aim of the study was to investigate mitochondrial function, fibre type distribution and substrate oxidation in arm and leg muscle during exercise in patients with type 2 diabetes and in obese and lean controls. METHODS: Indirect calorimetry was used to calculate fat and carboh...

  15. The minimum sit-to-stand height test: reliability, responsiveness and relationship to leg muscle strength.

    Science.gov (United States)

    Schurr, Karl; Sherrington, Catherine; Wallbank, Geraldine; Pamphlett, Patricia; Olivetti, Lynette

    2012-07-01

    To determine the reliability of the minimum sit-to-stand height test, its responsiveness and its relationship to leg muscle strength among rehabilitation unit inpatients and outpatients. Reliability study using two measurers and two test occasions. Secondary analysis of data from two clinical trials. Inpatient and outpatient rehabilitation services in three public hospitals. Eighteen hospital patients and five others participated in the reliability study. Seventy-two rehabilitation unit inpatients and 80 outpatients participated in the clinical trials. The minimum sit-to-stand height test was assessed using a standard procedure. For the reliability study, a second tester repeated the minimum sit-to-stand height test on the same day. In the inpatient clinical trial the measures were repeated two weeks later. In the outpatient trial the measures were repeated five weeks later. Knee extensor muscle strength was assessed in the clinical trials using a hand-held dynamometer. The reliability for the minimum sit-to-stand height test was excellent (intraclass correlation coefficient (ICC) 0.91, 95% confidence interval (CI) 0.81-0.96). The standard error of measurement was 34 mm. Responsiveness was moderate in the inpatient trial (effect size: 0.53) but small in the outpatient trial (effect size: 0.16). A small proportion (8-17%) of variability in minimum sit-to-stand height test was explained by knee extensor muscle strength. The minimum sit-to-stand height test has excellent reliability and moderate responsiveness in an inpatient rehabilitation setting. Responsiveness in an outpatient rehabilitation setting requires further investigation. Performance is influenced by factors other than knee extensor muscle strength.

  16. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly.

    Science.gov (United States)

    Toebes, Marcel J P; Hoozemans, Marco J M; Dekker, Joost; van Dieën, Jaap H

    2014-01-01

    This study assessed effects of unilateral leg muscle fatigue (ULMF) on balance control in gait during the stance and swing phases of the fatigued leg in healthy elderly, to test the assumption that leg muscle strength limits balance control during the stance-phase. Ten subjects (aged 63.4, SD 5.5 years) walked on a treadmill in 4 conditions: unperturbed unfatigued, unperturbed fatigued, perturbed unfatigued, and perturbed fatigued. The perturbations were lateral trunk pulls just before contralateral heel contact. ULMF was evoked by unilateral squat exercise until task failure. Isometric knee extension strength was measured to verify the presence of muscle fatigue. Between-stride standard deviations and Lyapunov exponents of trunk kinematics were used as indicators of balance control. Required perturbation force and the deviation of trunk kinematics from unperturbed gait were used to assess perturbation responses. Knee extension strength decreased considerably (17.3% SD 8.6%) as a result ULMF. ULMF did not affect steady-state gait balance. Less force was required to perturb subjects when the fatigued leg was in the stance-phase compared to the swing-phase. Subjects showed a faster return to the unperturbed gait pattern in the fatigued than in the unfatigued condition, after perturbations in swing and stance of the fatigued leg. The results of this study are not in line with the hypothesized effects of leg muscle fatigue on balance in gait. The healthy elderly subjects were able to cope with substantial ULMF during steady-state gait and demonstrated faster balance recovery after laterally directed mechanical perturbations in the fatigued than in the unfatigued condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Quantification of muscle oxygenation and flow of healthy volunteers during cuff occlusion of arm and leg flexor muscles and plantar flexion exercise

    Science.gov (United States)

    Durduran, Turgut; Yu, Guoqiang; Zhou, Chao; Lech, Gwen; Chance, Britton; Yodh, Arjun G.

    2003-07-01

    A hybrid instrument combining near infrared and diffuse correlation spectroscopies was used to measure muscle oxygenation and blood flow dynamics during cuff occlusion and ischemia. Measurements were done on six healthy subjects on their arm and leg flexor muscles. Hemodynamic response was characterized for blood oxygen saturation, total hemoglobin concenration and relative blood flow speed. The characterization allowed us to define the normal response range as well as showing the feasibility of using a hybrid instrument for dynamic measurements.

  18. Test-retest reliability of maximal leg muscle power and functional performance measures in patients with severe osteoarthritis (OA)

    DEFF Research Database (Denmark)

    Villadsen, Allan; Roos, Ewa M.; Overgaard, Søren

    Abstract : Purpose To evaluate the reliability of single-joint and multi-joint maximal leg muscle power and functional performance measures in patients with severe OA. Background Muscle power, taking both strength and velocity into account, is a more functional measure of lower extremity muscle...... and scheduled for unilateral total hip (n=9) or knee (n=11) replacement. Patients underwent a test battery on two occasions separated by approximately one week (range 7 to 11 days). Muscle power was measured using: 1. A linear encoder, unilateral lower limb isolated single-joint dynamic movement, e.g. knee...... activity compared with the traditionally used isometric and/or isokinetic muscle strength. More functional measures are preferred to determine muscle function and as outcomes in exercise studies in patients with OA. Methods Subjects: 20 patients (mean age 68.7±7.2, BMI 29.0±3.9) diagnosed with severe OA...

  19. Unilateral Variation in Extensor digitorum longus muscle.

    Science.gov (United States)

    Banerje, A; Singh, S; Raza, K; Rani, N; Kaler, S

    2016-01-01

    During a routine dissection of an adult embalmed male cadaver for educational purpose in the department of anatomy at AIIMS, New Delhi, India, a rare unilateral variation of extensor digitorum longus (EDL) was found which is a muscle of anterior compartment of the leg. There was a split tendon of EDL muscle in the anterior compartment of left leg which became a common tendon in front of the ankle joint. This common tendon of EDL muscle again divided into four slips and were inserted in to the lateral four toes. In the upper part of the leg, the anterior tibial vessel and deep fibular nerve lie between the EDL and tibialis anterior. Knowledge of this type of anomaly is useful in diagnosis and treatment of compartmental syndrome. One of the tendon from the split tendon of EDL muscle can be used as a graft in tendon replacement surgeries. The split tendon may also be capable for some precise movements of the toes.

  20. Effects of bodyweight-based exercise training on muscle functions of leg multi-joint movement in elderly individuals.

    Science.gov (United States)

    Yamauchi, Junichiro; Nakayama, Satoshi; Ishii, Naokata

    2009-09-01

    Because demands of functional exercise training with using own bodyweight for elderly individuals were increasing, the present study investigated the effects of bodyweight-based exercise training on muscle functions of leg multi-joint movements in elderly individuals. Twenty-seven untrained healthy elderly individuals (mean +/- standard deviation, 66.0 +/- 5.7 years) completed the training program for 10 months. The exercise program consisted mainly of exercises for large leg muscle groups without using external weight, performing 10-50 repetitions and 1-3 sets for each exercise. Before and after the training period, force-velocity relations of knee-hip extension movements were measured with a servo-controlled dynamometer and the maximum force (Fmax), velocity (Vmax) and power (Pmax) were determined. After the training, Fmax and Pmax increased and these increases represented 15% (P elderly individuals; however, the initial training status is important for progressive increases in muscle force.

  1. N-of-1 trials of quinine efficacy in skeletal muscle cramps of the leg

    Science.gov (United States)

    Woodfield, Rachel; Goodyear-Smith, Felicity; Arroll, Bruce

    2005-01-01

    Background Skeletal muscle cramps affect over a third of the ambulatory elderly population. Quinine is the established treatment, but there are safety concerns, and evidence for efficacy is conflicting. A recent meta-analysis established a small advantage for quinine, but identified the need for additional studies. N-of-1 trials compare two treatments, in a randomised, double-blind, multiple crossover study on a patient-by-patient basis. They have been used to compare treatments in osteoarthritis and may be suitable for determining the individual efficacy of quinine. Aim To establish efficacy and safety of quinine sulphate use for the treatment of leg-muscle cramp. Design of study Double-blind, randomised series of n-of-1 controlled trials of quinine versus placebo for muscle cramps. Setting New Zealand general practices. Method The participants were 13 general practice patients (six males; seven females; median age = 75 years) already prescribed quinine. Following a 2-week washout, each patient received three 4-week treatment blocks of quinine sulphate and matched placebo capsules with an individual, randomised crossover design. The main outcome measures were: patient diaries of cramp occurrence, duration and severity; capsule counts; and blood quinine levels in the final treatment block. Results Ten patients completed the trial. Three patients were identified for whom quinine was clearly beneficial (P<0.05), six showed non-significant benefit and one showed no benefit. All patients elected to continue quinine post-study. Conclusion Series of n-of-1 studies differentiated patients whom quinine had statistically significant effects; those with trend towards effectiveness; those for whom quinine was probably not effective. Ideally n-of-1 trial should be performed when a patient is commenced on quinine. More cycles in n-of-1 studies of quinine may address issues of statistical power. PMID:15808032

  2. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise?

    Science.gov (United States)

    Cochrane, D J; Booker, H R; Mundel, T; Barnes, M J

    2013-11-01

    Intermittent pneumatic compression (IPC) has gained rapid popularity as a post-exercise recovery modality. Despite its widespread use and anecdotal claims for enhancing muscle recovery there is no scientific evidence to support its use. 10 healthy, active males performed a strenuous bout of eccentric exercise (3 sets of 100 repetitions) followed by IPC treatment or control performed immediately after exercise and at 24 and 48 h post-exercise. Muscular performance measurements were taken prior to exercise and 24, 48 and 72 h post-exercise and included single-leg vertical jump (VJ) and peak and average isometric [knee angle 75º] (ISO), concentric (CON) and eccentric (ECC) contractions performed at slow (30° · s⁻¹) and fast (180° · s⁻¹) velocities. Plasma creatine kinase (CK) samples were taken at pre- and post-exercise 24, 48 and 72 h. Strenuous eccentric exercise resulted in a significant decrease in peak ISO, peak and average CON (30° · s⁻¹) at 24 h compared to pre-exercise for both IPC and control, however VJ performance remained unchanged. There were no significant differences between conditions (IPC and control) or condition-time interactions for any of the contraction types (ISO, CON, ECC) or velocities (CON, ECC 30° · s⁻¹ and 180° · s⁻¹). However, CK was significantly elevated at 24 h compared to pre-exercise in both conditions (IPC and control). IPC did not attenuate muscle force loss following a bout of strenuous eccentric exercise in comparison to a control. While IPC has been used in the clinical setting to treat pathologic conditions, the parameters used to treat muscle damage following strenuous exercise in healthy participants are likely to be very different than those used to treat pathologic conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Improved Ventilatory Efficiency with Locomotor Muscle Afferent Inhibition is Strongly Associated with Leg Composition in Heart Failure.

    Science.gov (United States)

    Keller-Ross, Manda L; Johnson, Bruce D; Carter, Rickey E; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Olson, Thomas P

    2016-01-01

    Skeletal muscle atrophy contributes to increased afferent feedback (group III and IV) and may influence ventilatory control (high VE/VCO2 slope) in heart failure (HF). This study examined the influence of muscle mass on the change in VE/VCO2 with afferent neural block during exercise in HF. 17 participants [9 HF (60±6 yrs) and 8 controls (CTL) (63±7 yrs, mean±SD)] completed 3 sessions. Session 1: dual energy x-ray absorptiometry and graded cycle exercise to volitional fatigue. Sessions 2 and 3: 5 min of constant-work cycle exercise (65% of peak power) randomized to lumbar intrathecal injection of fentanyl (afferent blockade) or placebo. Ventilation (VE) and gas exchange (oxygen consumption, VO2; carbon dioxide production, VCO2) were measured. Peak work and VO2 were lower in HF (pLeg fat was greater in HF (34.4±3.0 and 26.3±1.8%) and leg muscle mass was lower in HF (63.0±2.8 and 70.4±1.8%, respectively, pleg muscle mass (r2=0.58, pleg fat mass (r2=0.73, pleg muscle mass had the greatest improvement in VE/VCO2 with afferent blockade with leg fat mass being the only predictor for the improvement in VE/VCO2 slope. Both leg muscle mass and fat mass are important contributors to ventilatory abnormalities and strongly associated to improvements in VE/VCO2 slope with locomotor afferent inhibition in HF. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity

    DEFF Research Database (Denmark)

    Boushel, Robert; Gnaiger, E.; Larsen, F. J.

    2015-01-01

    of the vastus lateralis in healthy volunteers (7 male, 2 female) before and after 42 days of skiing at 60% HR max. Peak pulmonary VO2 (3.52 ± 0.18 L.min-1 pre vs 3.52 ± 0.19 post) and VO2 across the leg (2.8 ± 0.4L.min-1 pre vs 3.0 ± 0.2 post) were unchanged after the ski journey. Peak leg O2 delivery (3.6 ± 0...... at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand.......We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy...

  5. Foot muscle morphology is related to center of pressure sway and control mechanisms during single-leg standing.

    Science.gov (United States)

    Zhang, Xianyi; Schütte, Kurt Heinrich; Vanwanseele, Benedicte

    2017-09-01

    Maintaining balance is vitally important in everyday life. Investigating the effects of individual foot muscle morphology on balance may provide insights into neuromuscular balance control mechanisms. This study aimed to examine the correlation between the morphology of foot muscles and balance performance during single-leg standing. Twenty-eight recreational runners were recruited in this study. An ultrasound device was used to measure the thickness and cross-sectional area of three intrinsic foot muscles (abductor hallucis, flexor digitorum brevis and quadratus plantae) and peroneus muscles. Participants were required to perform 30s of single-leg standing for three trials on a force plate, which was used to record the center of pressure (COP). The standard deviation of the amplitude and ellipse area of the COP were calculated. In addition, stabilogram diffusion analysis (SDA) was performed on COP data. Pearson correlation coefficients were computed to examine the correlation between foot muscle morphology and traditional COP parameters as well as with SDA parameters. Our results showed that larger abductor hallucis correlated to smaller COP sway, while larger peroneus muscles correlated to larger COP sway during single-leg standing. Larger abductor hallucis also benefited open-loop dynamic stability, as well as supported a more efficient transfer from open-loop to closed loop control mechanisms. These results suggest that the morphology of foot muscles plays an important role in balance performance, and that strengthening the intrinsic foot muscles may be an effective way to improve balance. Copyright © 2017. Published by Elsevier B.V.

  6. Local heat application to the leg reduces muscle sympathetic nerve activity in human.

    Science.gov (United States)

    Takahashi, Noriyo; Nakamura, Takeshi; Kanno, Nami; Kimura, Kenichi; Toge, Yasushi; Lee, Kyu-Ha; Tajima, Fumihiro

    2011-09-01

    The study was designed to assess the effects of local heat (LH) application on postganglionic muscle sympathetic nerve activity (MSNA) measured by microneurography in healthy men. In the first protocol, MSNA of the left peroneal nerve, blood pressure (BP), heart rate (HR), and skin temperature of the shin (TSK) were recorded in nine men. In the second protocol, leg blood flow (LBF) was measured in the same subjects by strain-gauge plethysmography. In both protocols, after 10 min of rest in the supine position, a heated hydrocollator pack was applied to the shin and anterior foot for 15 min and recovery was monitored over a period of 20 min. TSK gradually increased from 31.7 ± 0.1 to 41.9 ± 0.5°C (mean ± SEM) during LH. No subject complained of pain, and BP and HR remained constant. The MSNA burst rate (16.1 ± 2.1 beats/min) during the control period decreased significantly (P < 0.05) to 72.0 ± 2.3% during LH. Total MSNA also decreased to 59.2 ± 2.6% (P < 0.05) during LH, but both immediately returned to baseline at recovery. In contrast, LBF in the left leg significantly and immediately increased (P < 0.05) after LH application and remained significantly elevated until the end of the recovery period. These results suggest that: (1) LH application significantly attenuates MSNA without any changes in HR and BP. (2) Other factors in addition to MSNA seem to control regional blood flow in the lower extremity during LH.

  7. Blood flow after contraction and cuff occlusion is reduced in subjects with muscle soreness after eccentric exercise.

    Science.gov (United States)

    Souza-Silva, E; Christensen, S W; Hirata, R P; Larsen, R G; Graven-Nielsen, T

    2018-01-01

    Delayed onset muscle soreness (DOMS) occurs within 1-2 days after eccentric exercise, but the mechanism mediating hypersensitivity is unclear. This study hypothesized that eccentric exercise reduces the blood flow response following muscle contractions and cuff occlusion, which may result in accumulated algesic substances being a part of the sensitization in DOMS. Twelve healthy subjects (five women) performed dorsiflexion exercise (five sets of 10 repeated eccentric contractions) in one leg, while the contralateral leg was the control. The maximal voluntary contraction (MVC) of the tibialis anterior muscle was recorded. Blood flow was assessed by ultrasound Doppler on the anterior tibialis artery (ATA) and within the anterior tibialis muscle tissue before and immediately after 1-second MVC, 5-seconds MVC, and 5-minutes thigh cuff occlusion. Pressure pain thresholds (PPTs) were recorded on the tibialis anterior muscle. All measures were done bilaterally at day 0 (pre-exercise), day 2, and day 6 (post-exercise). Subjects scored the muscle soreness on a Likert scale for 6 days. Eccentric exercise increased Likert scores at day 1 and day 2 compared with day 0 (Pcontraction/occlusion blood flow (~16%, Peccentric contractions decreased vessel diameter, impaired the blood flow response, and promoted hyperalgesia. Thus, the results suggest that the blood flow reduction may be involved in the increased pain response after eccentric exercise. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The effects of performing a one-legged bridge with hip abduction and use of a sling on trunk and lower extremity muscle activation in healthy adults.

    Science.gov (United States)

    Choi, Kyuju; Bak, Jongwoo; Cho, Minkwon; Chung, Yijung

    2016-09-01

    [Purpose] This study investigated the changes in the muscle activities of the trunk and lower limbs of healthy adults during a one-legged bridge exercise using a sling, and with the addition of hip abduction. [Subjects and Methods] Twenty-seven healthy individuals participated in this study (14 males and 13 females). The participants were instructed to perform the bridge exercises under five different conditions. Trunk and lower limb muscle activation of the erector spinae (ES), external oblique (EO), gluteus maximus (GM), and biceps femoris (BF) was measured using surface electromyography. Data analysis was performed using the mean scores of three trials performed under each condition. [Results] There was a significant increase in bilateral EO and contralateral GM with the one-legged bridge compared with the one-legged bridge with sling exercise. Muscle activation of the ipsilateral GM and BF was significantly less during the one-legged bridge exercise compared to the one-legged bridge with sling exercise, and was significantly greater during the one-legged bridge with hip abduction compared to the one-legged bridge exercise. The muscle activation of the contralateral GM and BF was significantly greater with the one-legged bridge with hip abduction compared to the general bridge exercise. [Conclusion] With the one-legged bridge with hip abduction, the ipsilateral EO, GM and BF muscle activities were significantly greater than those of the one-legged bridge exercise. The muscle activation of all trunk and contralateral lower extremity muscles increased with the bridge with sling exercises compared with general bridge exercises.

  9. Placebo effect of an inert gel on experimentally induced leg muscle pain

    Directory of Open Access Journals (Sweden)

    James G Hopker

    2010-11-01

    Full Text Available James G Hopker1, Abigail J Foad2, Christopher J Beedie2, Damian A Coleman2, Geoffrey Leach11Centre for Sports Studies, University of Kent, Chatham, Kent, UK; 2Department of Sports Science, Tourism and Leisure, Canterbury Christ Church University, Canterbury, Kent, UKPurpose: This study examined the therapeutic effects of an inert placebo gel on experimentally induced muscle pain in a sports therapy setting. It aimed to investigate the degree to which conditioned analgesia, coupled with an expectation of intervention, was a factor in subsequent analgesia.Methods: Participants were sixteen male and eight female sports therapy students at a UK University. With institutional ethics board approval and following informed consent procedures, each was exposed to pain stimulus in the lower leg in five conditions, ie, conditioning, prebaseline, experimental (two placebo gel applications, and postbaseline. In conditioning trials, participants identified a level of pain stimulus equivalent to a perceived pain rating of 6/10. An inert placebo gel was then applied to the site with the explicit instruction that it was an analgesic. Participants were re-exposed to the pain stimulus, the level of which, without their knowledge, had been decreased, creating the impression of an analgesic effect resulting from the gel. In experimental conditions, the placebo gel was applied and the level of pain stimulus required to elicit a pain rating of 6/10 recorded.Results: Following application of the placebo gel, the level of pain stimulus required to elicit a pain rating of 6/10 increased by 8.2%. Application of the placebo gel significantly decreased participant’s perceptions of muscle pain (P = 0.001.Conclusion: Subjects’ experience and expectation of pain reduction may be major factors in the therapeutic process. These factors should be considered in the sports therapeutic environment.Keywords: conditioning, expectation, perception, positive belief, sports therapy

  10. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79 : the health, aging and body composition study

    NARCIS (Netherlands)

    Visser, Marjolein; Kritchevsky, Stephen B; Goodpaster, Bret H; Newman, Anne B; Nevitt, Michael; Stamm, Elizabeth; Harris, Tamara B

    OBJECTIVES: The loss of muscle mass with aging, or sarcopenia, is hypothesized to be associated with the deterioration of physical function. Our aim was to determine whether low leg muscle mass and greater fat infiltration in the muscle were associated with poor lower extremity performance (LEP).

  11. Optimal Resistive Forces for Maximizing the Reliability of Leg Muscles' Capacities Tested on a Cycle Ergometer.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Jaric, Slobodan

    2018-02-01

    This study determined the optimal resistive forces for testing muscle capacities through the standard cycle ergometer test (1 resistive force applied) and a recently developed 2-point method (2 resistive forces used for force-velocity modelling). Twenty-six men were tested twice on maximal sprints performed on a leg cycle ergometer against 5 flywheel resistive forces (R1-R5). The reliability of the cadence and maximum power measured against the 5 individual resistive forces, as well as the reliability of the force-velocity relationship parameters obtained from the selected 2-point methods (R1-R2, R1-R3, R1-R4, and R1-R5), were compared. The reliability of outcomes obtained from individual resistive forces was high except for R5. As a consequence, the combination of R1 (≈175 rpm) and R4 (≈110 rpm) provided the most reliable 2-point method (CV: 1.46%-4.04%; ICC: 0.89-0.96). Although the reliability of power capacity was similar for the R1-R4 2-point method (CV: 3.18%; ICC: 0.96) and the standard test (CV: 3.31%; ICC: 0.95), the 2-point method should be recommended because it also reveals maximum force and velocity capacities. Finally, we conclude that the 2-point method in cycling should be based on 2 distant resistive forces, but avoiding cadences below 110 rpm.

  12. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes

    Directory of Open Access Journals (Sweden)

    Josh L. Secomb, Sophia Nimphius, Oliver R.L. Farley, Lina E. Lundgren, Tai T. Tran, Jeremy M. Sheppard

    2015-12-01

    Full Text Available The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ and squat jump (SJ, and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23 and female (n = 7 surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP. In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73 were identified between the thickness of the vastus lateralis (VL and lateral gastrocnemius (LG muscles, and VL pennation angle and; peak force (PF in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59 were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59 also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle.

  13. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command.

    Science.gov (United States)

    Doherty, Connor J; Incognito, Anthony V; Notay, Karambir; Burns, Matthew J; Slysz, Joshua T; Seed, Jeremy D; Nardone, Massimo; Burr, Jamie F; Millar, Philip J

    2018-01-01

    The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P cycling ( P 0.05). Reductions in total MSNA were attenuated during the first ( P cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.

  14. Near-Infrared Spectroscopic Measurement of the Effect of Leg Dominance on Muscle Oxygen Saturation During Cycling

    Science.gov (United States)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Paunescu, Lelia Adelina; Pereira, Chelsea; Smith, Charles P.; Soller, Babs R.

    2011-01-01

    The effect of leg dominance on the symmetry of the biomechanics during cycling remains uncertain -- asymmetries have been observed in kinematics and kinetics, while symmetries were found in muscle activation. No studies have yet investigated the symmetry of muscle metabolism during cycling. Near-infrared spectroscopy (NIRS) provides a non-invasive method to investigate the metabolic responses of specific muscles during cycling. PURPOSE: To determine whether there was an effect of leg dominance on thigh muscle oxygen saturation (SmO2) during incrementally loaded submaximal cycling using NIRS. METHODS: Eight right leg dominant, untrained subjects (5 men, 3 women; 31+/-2 yrs; 168.6+/-1.0 cm; 67.2+/-1.8 kg, mean +/- SE) volunteered to participate. Spectra were collected bilaterally from the vastus lateralis (VL) during supine rest and cycling. SmO2 was calculated using previously published methods. Subjects pedaled at 65 rpm while resistance to pedaling was increased in 0.5 kp increments from 0.5 kp every 3 min until the subject reached 80% of age-predicted maximal heart rate. SmO2 was averaged over 3 min for each completed stage. A two-way ANOVA was performed to test for leg differences. A priori contrasts were used to compare work levels to rest. RESULTS: VL SmO2 was not different between the dominant and non-dominant legs at rest and during exercise (p=0.57). How SmO2 changed with workload was also not different between legs (p=0.32). SmO2 at 0.5 kp (60.3+/-4.0, p=0.12) and 1.0 kp (59.5+/-4.0, p=0.10) was not different from rest (69.1+/-4.0). SmO2 at 1.5 kp (55.4 4.0, p=0.02), 2.0 kp (55.7+/-5.0, p=0.04), and 2.5 kp (43.4+/-7.9, p=0.01) was significantly lower than rest. CONCLUSION: VL SmO2 during cycling is not different between dominant and non-dominant legs and decreases with moderate workload in untrained cyclists. Assuming blood flow is directed equally to both legs, similar levels of oxygen extraction (as indicated by SmO2) suggests the metabolic load of

  15. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes

    OpenAIRE

    Secomb, Josh L.; Nimphius, Sophia; Farley, Oliver R.L.; Lundgren, Lina E.; Tran, Tai T.; Sheppard, Jeremy M.

    2015-01-01

    The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isome...

  16. MRI of tibialis anterior tendon rupture

    International Nuclear Information System (INIS)

    Gallo, Robert A.; DeMeo, Patrick J.; Kolman, Brett H.; Daffner, Richard H.; Sciulli, Robert L.; Roberts, Catherine C.

    2004-01-01

    Ruptures of the tibialis anterior tendon are rare. We present the clinical histories and MRI findings of three recent male patients with tibialis anterior tendon rupture aged 58-67 years, all of whom presented with pain over the dorsum of the ankle. Two of the three patients presented with complete rupture showing discontinuity of the tendon, thickening of the retracted portion of the tendon, and excess fluid in the tendon sheath. One patient demonstrated a partial tear showing an attenuated tendon with increased surrounding fluid. Although rupture of the tibialis anterior tendon is a rarely reported entity, MRI is a useful modality in the definitive detection and characterization of tibialis anterior tendon ruptures. (orig.)

  17. An analysis on muscle tone of lower limb muscles on flexible flat foot.

    Science.gov (United States)

    Um, Gi-Mai; Wang, Joong-San; Park, Si-Eun

    2015-10-01

    [Purpose] The aim of this study was to examine differences in the muscle tone and stiffness of leg muscles according to types of flexible flat foot. [Subjects and Methods] For 30 subjects 10 in a normal foot group (NFG), 10 in group with both flexible flat feet (BFFG), and 10 in a group with flexible flat feet on one side (OFFG), myotonometry was used to measure the muscle tone and stiffness of the tibialis anterior muscle (TA), the rectus femoris muscle (RF), the medial gastrocnemius (MG), and the long head of the biceps femoris muscle (BF) of both lower extremities. [Results] In the measurement results, only the stiffness of TA and MG of the NFG and the BFFG showed significant differences. The muscle tone and stiffness were highest in the BFFG, followed by the OFFG and NFG, although the difference was insignificant. In the case of the OFFG, there was no significant difference in muscle tone and stiffness compared to that in the NGF and the BFFG. Furthermore, in the NFG, the non-dominant leg showed greater muscle tone and stiffness than the dominant leg, although the difference was insignificant. [Conclusion] During the relax condition, the flexible flat foot generally showed a greater muscle tone and stiffness of both lower extremities compared to the normal foot. The stiffness was particularly higher in the TA and MG muscles. Therefore, the muscle tone and stiffness of the lower extremity muscles must be considered in the treatment of flat foot.

  18. Timing of muscle response to a sudden leg perturbation: comparison between adolescents and adults with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Maria Stella Valle

    Full Text Available Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test. In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.

  19. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance

    LENUS (Irish Health Repository)

    McCreesh, Karen

    2011-09-13

    Abstract Background Knowledge of normal muscle characteristics is crucial in planning rehabilitation programmes for injured athletes. There is a high incidence of ankle and anterior tibial symptoms in football players, however little is known about the effect of limb dominance on the anterior tibial muscle group (ATMG). The purpose of this study was to assess the effect of limb dominance and sports-specific activity on ATMG thickness in Gaelic footballers and non-football playing controls using ultrasound measurements, and to compare results from transverse and longitudinal scans. Methods Bilateral ultrasound scans were taken to assess the ATMG size in 10 Gaelic footballers and 10 sedentary controls (age range 18-25 yrs), using a previously published protocol. Both transverse and longitudinal images were taken. Muscle thickness measurements were carried out blind to group and side of dominance, using the Image-J programme. Results Muscle thickness on the dominant leg was significantly greater than the non-dominant leg in the footballers with a mean difference of 7.3%, while there was no significant dominance effect in the controls (p < 0.05). There was no significant difference between the measurements from transverse or longitudinal scans. Conclusions A significant dominance effect exists in ATMG size in this group of Gaelic footballers, likely attributable to the kicking action involved in the sport. This should be taken into account when rehabilitating footballers with anterior tibial pathology. Ultrasound is a reliable tool to measure ATMG thickness, and measurement may be taken in transverse or longitudinal section.

  20. Ultrasonography of the lower leg: technique, anatomy and pathologic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thain, L.M.F. [Univ. of Western Ontario, London Health Sciences Centre, Departments of Diagnostic Radiology and Nuclear Medicine, London, Ontario (Canada); Lee, S.L. [Univ. of Western Ontario, Dept. of Anaestesia, London, Ontario (Canada); Downey, D.B. [Univ. of Western Ontario, Diagnostic Ultrasound, London Health Sciences Centre, Dept. of Diagnostic Radiology and Nuclear Medicine, London, Ontario (Canada)

    2001-10-01

    Ultrasonography (US) is a useful modality for examining the lower leg, particularly in patients who have sustained muscular, tendinous or bony injuries. This paper will demonstrate the proper technique for US examination of each compartment of the lower leg. The bones, muscles and tendons of the lower leg (i.e., patellar tendon, superficial posterior fascial compartment [gastrocnemius, plantaris, soleus], deep posterior fascial compartment [tibialis posterior, flexor digitorum longus, flexor hallucis longus], lateral fascial compartment [peroneus longus, peroneus brevis], anterior faccial compartment [tibialis anterior, extensor digitorum longus, extensor hallucis longus], tibia and the fibula) will be reviewed with respect to their surface anatomy, US appearance and common pathologic conditions. A linear array high-frequency (at least 7.5 MHz) transducer should be used. One with variable centre frequency is useful to allow the examination of both deep and superficial areas in the same patient without switching transducers. Power Doppler is used to identify areas of increased blood flow, often due to inflammation or active healing. The transducer must be maintained perpendicular to the long axis of tendons to avoid anisotropy artifacts, which give a false appearance of decreased echogenicity. Structures should be followed from origin to insertion in the long and short axes. (author)

  1. Ultrasonography of the lower leg: technique, anatomy and pathologic conditions

    International Nuclear Information System (INIS)

    Thain, L.M.F.; Lee, S.L.; Downey, D.B.

    2001-01-01

    Ultrasonography (US) is a useful modality for examining the lower leg, particularly in patients who have sustained muscular, tendinous or bony injuries. This paper will demonstrate the proper technique for US examination of each compartment of the lower leg. The bones, muscles and tendons of the lower leg (i.e., patellar tendon, superficial posterior fascial compartment [gastrocnemius, plantaris, soleus], deep posterior fascial compartment [tibialis posterior, flexor digitorum longus, flexor hallucis longus], lateral fascial compartment [peroneus longus, peroneus brevis], anterior faccial compartment [tibialis anterior, extensor digitorum longus, extensor hallucis longus], tibia and the fibula) will be reviewed with respect to their surface anatomy, US appearance and common pathologic conditions. A linear array high-frequency (at least 7.5 MHz) transducer should be used. One with variable centre frequency is useful to allow the examination of both deep and superficial areas in the same patient without switching transducers. Power Doppler is used to identify areas of increased blood flow, often due to inflammation or active healing. The transducer must be maintained perpendicular to the long axis of tendons to avoid anisotropy artifacts, which give a false appearance of decreased echogenicity. Structures should be followed from origin to insertion in the long and short axes. (author)

  2. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy.

    Science.gov (United States)

    Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E

    2014-05-01

    The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. More gain less pain: balance control learning shifts the activation patterns of leg and neck muscles and increases muscular parsimony.

    Science.gov (United States)

    Iodice, Pierpaolo; Cesinaro, Stefano; Romani, Gian Luca; Pezzulo, Giovanni

    2015-07-01

    Athletes such as skaters or surfers maintain their balance on very unstable platforms. Remarkably, the most skilled athletes seem to execute these feats almost effortlessly. However, the dynamics that lead to the acquisition of a defined and efficient postural strategy are incompletely known. To understand the posture reorganization process due to learning and expertise, we trained twelve participants in a demanding balance/posture maintenance task for 4 months and measured their muscular activity before and after a (predictable) disturbance cued by an auditory signal. The balance training determined significant delays in the latency of participants' muscular activity: from largely anticipatory muscular activity (prior to training) to a mixed anticipatory-compensatory control strategy (after training). After training, the onset of activation was delayed for all muscles, and the sequence of activation systematically reflected the muscle position in the body from top to bottom: neck/upper body muscles were recruited first and in an anticipatory fashion, whereas leg muscles were recruited after the disturbance onset, producing compensatory adjustments. The resulting control strategy includes a mixture of anticipatory and compensatory postural adjustments, with a systematic sequence of muscular activation reflecting the different demands of neck and leg muscles. Our results suggest that subjects learned the precise timing of the disturbance onset and used this information to deploy postural adjustments just-in-time and to transfer at least part of the control of posture from anticipatory to less-demanding feedback-based strategies. In turn, this strategy shift increases the cost-efficiency of muscular activity, which is a key signature of skilled performance.

  4. Skeletal muscle CT of lower extremities in myotonic dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirofumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya

    1988-02-01

    We evaluated the leg and thigh muscles of 4 control subjects and 10 patients with myotonic dystrophy using computed tomography. Taking previous reports about the skeletal muscle CT of myotonic dystrophy into account, we concluded that the following 5 features are characteristic of myotonic dystrophy: 1. The main change is the appearance of low-density areas in muscles; these areas reflect fat tissue. In addition, the muscle mass decreases in size. 2. The leg is more severely affected than the thigh. 3. In the thigh, although the m. quadriceps femoris, especially the vastus muscles, tends to be affected, the m. adductor longus and magnus tend to be preserved. 4. In the leg, although the m. tibialis anterior and m. triceps surae tend to be affected, the m. peroneus longus, brevis, and m. tibialis posterior tend to be preserved. 5. Compensatory hypertrophy is often observed in the m. rectus femoris, m. adductor longus, m. adductor magnus, m. peroneus longus, and m. peroneus brevis, accompanied by the involvement of their agonist muscles.

  5. Localization of nerve entry points as targets to block spasticity of the deep posterior compartment muscles of the leg.

    Science.gov (United States)

    Hu, Shuaiyu; Zhuo, Lifan; Zhang, Xiaoming; Yang, Shengbo

    2017-10-01

    To identify the optimal body surface puncture locations and the depths of nerve entry points (NEPs) in the deep posterior compartment muscles of the leg, 60 lower limbs of thirty adult cadavers were dissected in prone position. A curved line on the skin surface joining the lateral to the medial epicondyles of the femur was taken as a horizontal reference line (H). Another curved line joining the lateral epicondyle of the femur to the lateral malleolus was designated the longitudinal reference line (L). Following dissection, the NEPs were labeled with barium sulfate and then subjected to spiral computed tomography scanning. The projection point of the NEP on the posterior skin surface of the leg was designated P, and the projection in the opposite direction across the transverse plane was designated P'. The intersections of P on H and L were identified as P H and P L , and their positions and the depth of the NEP on PP' were measured using the Syngo system and expressed as percentages of H, L, and PP'. The P H points of the tibial posterior, flexor hallucis longus and flexor digitorum longus muscles were located at 38.10, 46.20, and 55.21% of H, respectively. The P L points were located at 25.35, 41.30, and 45.39% of L, respectively. The depths of the NEPs were 49.11, 54.64, and 55.95% of PP', respectively. The accurate location of these NEPs should improve the efficacy and efficiency of chemical neurolysis for treating spasticity of the deep posterior compartment muscles of the leg. Clin. Anat. 30:855-860, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Muscle timing in injured and non-injured leg of athletes with chronic ankle instability in response to a visual stimulus during forward jumping.

    Science.gov (United States)

    Fereydounnia, Sara; Shadmehr, Azadeh; Talebian Moghadam, Saeed; Olyaei, Gholamreza; Jalaie, Shohreh; Tahmasebi, Ali

    2016-01-01

    The aim of this study was to investigate premotor time, motor time and reaction time of the injured and non-injured leg muscles of athletes with chronic ankle instability in response to a visual stimulus during forward jumping. Surface electromyography was performed on injured and non-injured leg of eight athletes with chronic ankle instability during forward jumping. Results showed that premotor time of the peroneus longus was significantly longer in non-injured leg compared with injured leg (489.37 ± 220.22 ms vs. 306.46 ± 142.92 ms, P = 0.031); on the contrary, motor time of the peroneus longus was significantly shorter in non-injured leg compared with injured leg (569.04 ± 318.62 ms vs. 715.12 ± 328.72 ms, P = 0.022). No significant difference was noted in the timing of other calf muscles (P > 0.05). According to the results of this study, rehabilitation protocols, regarding ankle instability, need to put greater emphasis on tasks that require proper timing of muscles and muscle re-education so that protocols could reduce residual symptoms after sprain and prevent recurrent sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Regeneração do músculo tibial anterior em diferentes períodos após lesão por estimulação elétrica neuromuscular Regeneration of the tibialis anterior muscle at different times following injury induced by neuromuscular electrical stimulation

    Directory of Open Access Journals (Sweden)

    AP Botelho

    2007-04-01

    Full Text Available CONTEXTUALIZAÇÃO: Lesões no musculoesquelético podem ser causadas pela própria contração muscular. OBJETIVO: Analisar em diferentes períodos a lesão do músculo tibial anterior (TA induzida pela eletroestimulação. MATERIAL E MÉTODO: ratos Wistar macho (298,2 ± 16,0g foram divididos nos grupos: eletroestimulado (EE e analisado após 3 e 5 dias (n= 20 e controle (C, 3 e 5 dias (n = 14. O TA, mantido em alongamento, foi lesado por eletroestimulação neuromuscular (90 min, 30Hz, 1m/s, Ton/Toff 4s e 4mA. Após 3 e 5 dias, os animais foram sacrificados e os músculos retirados, sendo os cortes histológicos (10 µm obtidos em criostato e corados com Azul de Toluidina. Os pesos corporal e muscular foram analisados estatisticamente pelo teste T-Student (p BACKGROUND: Skeletal muscle injuries may be caused by contraction of the muscle concerned. OBJECTIVE: To analyze the tibialis anterior muscle at different times following injury induced by electrical stimulation. METHOD: Male Wistar rats (298.2 ± 16.0g were divided into two electrically stimulated groups evaluated after three and five days (n= 20 and two control groups, also evaluated after three and five days (n= 14. While stretched, the tibialis anterior muscle was injured by neuromuscular electrical stimulation (90 minutes, 30 Hz, 1 m/s, Ton/Toff 4 s and 4 mA. Three and five days afterwards, the animals were sacrificed and the muscles were removed. Histological sections were cut (10 µm using a cryostat and were stained with toluidine blue. The body and muscle weights were statistically analyzed using Student's t test (p < 0.05. RESULTS: The final body weight was higher than the initial weight for the 3-day control group (288.5 ± 18.3g vs. 308.5 ± 24.3g and 5-day control group (288.4 ± 15.0g vs. 305.5 ± 20.7g and lower for the 3-day stimulated group (305.0 ± 13.0g vs. 285.6 ± 13.2g and 5-day stimulated group (306.1 ± 12.4g vs. 278.4 ± 20.9g. The relative muscle weight in the 5

  8. Hop performance and leg muscle power in athletes: Reliability of a test battery.

    Science.gov (United States)

    Kockum, Britta; Heijne, Annette I-L M

    2015-08-01

    To measure the absolute and relative reliability and the smallest real difference (SRD) in three commonly used hop tests, two leg-power tests and the single-leg squat jump. Methodological study. Clinical setting. Fourteen healthy athletes (seven women and seven men) were evaluated in a standardized test-retest design. The Intra-class correlation coefficient (ICC2.1), Standard Error of Measurement (SEM) and SRD were calculated for the vertical jump, one-leg hop for distance, side-hop, single-leg squat jump and knee-flexion and knee-extension power tests. All tests showed good to excellent ICC (0.84-0.98). The SEM (%) ranged between 3.4 and 11.1 for the four hop tests and between 8.1 and 12.4 for the leg-power tests. The SRD (%) for the hop tests ranged between 9.3 and 30.7 and for the three power tests between 22.4 and 34.3. The absolute reliability of this test protocol showed good to excellent ICC values and measurement errors of approximately 10%. This instrument can be recommended for determining function in terms of power in healthy athletes or late in the rehabilitation process. The tests' methodological errors must be considered and caution should be taken regarding the standardization procedure during testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The tibialis anterior reflex in healthy subjects and in L5 radicular compression

    NARCIS (Netherlands)

    Stam, J.

    1988-01-01

    Phasic stretch reflexes were evoked in the tibialis anterior (TA) muscle, by tapping the dorsal side of the foot with a hand-held reflex hammer. The responses were recorded by means of surface electrodes. The TA reflex was examined in 70 healthy subjects and in 18 patients with L5 radicular

  10. Facilitation of soleus but not tibialis anterior motor evoked potentials before onset of antagonist contraction

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Zuur, Abraham Theodore; Nielsen, Jens Bo

    2008-01-01

    the MEP is evoked. Methods: Seated subjects (n=11) were instructed to react to an auditory cue by contracting either the tibialis anterior (TA) or soleus muscle of the left ankle to 30% of their maximal dorsiflexion voluntary contraction (MVC) or plantar flexion MVC, respectively. Focal TMS at 1.2 x motor...

  11. The Influence of Dual Pressure Biofeedback Units on Pelvic Rotation and Abdominal Muscle Activity during the Active Straight Leg Raise in Women with Chronic Lower Back Pain

    OpenAIRE

    Noh, Kyung-Hee; Kim, Ji-Won; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-01-01

    [Purpose] This study was performed to assess the influence of applying dual pressure biofeedback units (DPBUs) on the angle of pelvic rotation and abdominal muscle activity during the active straight leg raise (ASLR). [Subjects] Seventeen patients with low-back pain (LBP) participated in this study. [Methods] The subjects were asked to perform an active straight leg raise (ASLR) without a PBU, with a single PBU, and with DPBUs. The angles of pelvic rotation were measured using a three-dimensi...

  12. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    Science.gov (United States)

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  13. Rupture of the tibialis anterior tendon

    NARCIS (Netherlands)

    van Acker, Gijs; Pingen, Francien; Luitse, Jan; Goslings, Carel

    2006-01-01

    Rupture of the tibialis anterior tendon is rare. There is usually a delay in diagnosis, probably because it is an uncommon entity. Diagnosis is easy however, and recovery with surgical treatment is satisfactory if repair is performed within the first three months following the initial trauma. After

  14. Straight-leg rasing in 'short hamstrings'. An experimental study of muscle elasticy and defense reactions.

    NARCIS (Netherlands)

    Göeken, Ludwig Nanno Hiltjo

    1988-01-01

    The central guestion asked in this thesis is whether an Experimental Straight-Leg Raising test (E.S.L.R.) can contribute to the solution of a diagnostical problem frequently encountered in rehabilitation medicine. It concerns the determination of the cause of the movement restriction in patients who

  15. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1996-01-01

    Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight...

  16. Single-leg landing neuromechanical data following load and land height manipulations

    Directory of Open Access Journals (Sweden)

    Andrew D. Nordin

    2016-09-01

    Full Text Available Lower extremity sagittal kinematic and kinetic data are summarized alongside electrical muscle activities during single-leg landing trials completed in contrasting external load and landing height conditions. Nineteen subjects were analyzed during 9 landing trials in each of 6 experimental conditions computed as percentages of subject anthropometrics (bodyweight: BW and subject height: H; BW, BW+12.5%, BW+25%, and H12.5%, H25%. Twelve lower extremity variables (sagittal hip, knee, ankle angles and moments, vertical ground reaction force (GRFz, gluteus maximus, biceps femoris, vastus medials, medial gastrocnemius, and tibialis anterior muscles were assessed using separate principal component analyses (PCA. Variable trends across conditions were summarized in “Neuromechanical synergies in single-leg landing reveal changes in movement control. Human Movement Science” (Nordin and Dufek, 2016 [1], revealing changes in landing biomechanics and movement control.

  17. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles.

    Science.gov (United States)

    Senefeld, Jonathon; Yoon, Tejin; Bement, Marie Hoeger; Hunter, Sandra K

    2013-09-01

    Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). Power (from MVCCs) decreased similarly for men and women for both muscles (P > 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P muscle fatigue often observed during isometric tasks was diminished during fast dynamic contractions for upper and lower limb muscles. Copyright © Published 2013 by Wiley Periodicals, Inc. This article is a US Government wmusork and, as such, is in the public domain in the United States of America.

  18. Monitoring of color and pH in muscles of pork leg (m. adductor and m. semimembranosus

    Directory of Open Access Journals (Sweden)

    Martina Bednářová

    2014-02-01

    Full Text Available In order to identify PSE pork meat, pH and color testing was performed directly in a cutting plant (72 hours post mortem in this research. Specifically pork leg muscles musculi adductor (AD and semimembranosus (SM from five selected suppliers (A, B, C, D, E were examined. Twenty samples of meat for each muscle were examined from each supplier. The measured pH values ranged from 5.43 to 5.63, and the L* values from 46.13 to 57.18. No statistically significant differences in pH values and color were detected among the various suppliers with the exception of the a* and b* parameters for two suppliers, namely A and B (p<0.01. On the contrary, a statistically significant difference (p<0.5 was recorded between individual muscles (AD/SM across all the suppliers (A, B, C, D, E with the exception of a* parameter from suppliers B, C, D, E, and pH values for the E supplier. Our results revealed that individual muscles differ in values of pH and color. In comparison with literature, pH and lightness L* values in musculus adductor point to PSE (pale, soft and exudative meat, while the values of musculus semimebranosus to RFN (red, firm and non-exudative. Use of PSE meat in production of meat products can cause several problems. In particular, it causes light color, low water-holding capacity, poor fat emulsifying ability, lower yield, granular or crumbly texture and poor consistency of the finished product. Therefore classification of the meat directly cutting plant may be possible solution for this problem. The finished product pruduces from muscles of musculi semimembranosus can obtain better quality than the finished product from musculi adductor.

  19. Immobilization tests and periodic leg movements in sleep for the diagnosis of restless leg syndrome.

    Science.gov (United States)

    Montplaisir, J; Boucher, S; Nicolas, A; Lesperance, P; Gosselin, A; Rompré, P; Lavigne, G

    1998-03-01

    Patients with restless leg syndrome (RLS) complain of motor restlessness, usually occurring while they rest in the evening. Two immobilization tests have been described to assess leg restlessness in these patients. In the first test, the patient sits in bed with his or her legs outstretched while electromyograms are recorded from right and left anterior tibialis muscles for an hour (Suggested Immobilization Test [SIT]); in the second test, the legs are immobilized in a stretcher (Forced Immobilization Test [FIT]). In the current study, the SIT and the FIT were compared in patients with RLS and normal control subjects matched for age and sex. More leg movements were seen in patients than in controls during immobilization tests, especially the SIT. These movements were periodic, occurring at a frequency of approximately one every 12 seconds. The SIT (index > 40) was found to discriminate between RLS and control subjects better than the FIT (index > 25). Patients were also recorded during two consecutive nights to measure periodic leg movements in sleep (PLMS). A SIT index greater than 40 and a PLMS index greater than 11 (highest PLMS index of 2 consecutive nights) were found to discriminate patients with RLS from control subjects with similar power. With each of these two measures, the clinical diagnosis was correctly predicted in 81% of patients and 81% of the control subjects. The SIT has several advantages over the measure of the PLMS index; it does not require an all-night polygraphic recording and can be administered several times a day to measure circadian fluctuation of motor restlessness.

  20. Divergent muscle sympathetic responses to dynamic leg exercise in heart failure and age-matched healthy subjects.

    Science.gov (United States)

    Notarius, Catherine F; Millar, Philip J; Murai, Hisayoshi; Morris, Beverley L; Marzolini, Susan; Oh, Paul; Floras, John S

    2015-02-01

    People with diminished ventricular contraction who develop heart failure have higher sympathetic nerve firing rates at rest compared with healthy individuals of a similar age and this is associated with less exercise capacity. During handgrip exercise, sympathetic nerve activity to muscle is higher in patients with heart failure but the response to leg exercise is unknown because its recording requires stillness. We measured sympathetic activity from one leg while the other leg cycled at a moderate level and observed a decrease in nerve firing rate in healthy subjects but an increase in subjects with heart failure. Because these nerves release noradrenaline, which can restrict muscle blood flow, this observation helps explain the limited exercise capacity of patients with heart failure. Lower nerve traffic during exercise was associated with greater peak oxygen uptake, suggesting that if exercise training attenuated sympathetic outflow functional capacity in heart failure would improve. The reflex fibular muscle sympathetic nerve (MSNA) response to dynamic handgrip exercise is elicited at a lower threshold in heart failure with reduced ejection fraction (HFrEF). The present aim was to test the hypothesis that the contralateral MSNA response to mild to moderate dynamic one-legged exercise is augmented in HFrEF relative to age- and sex-matched controls. Heart rate (HR), blood pressure and MSNA were recorded in 16 patients with HFrEF (left ventricular ejection fraction = 31 ± 2%; age 62 ± 3 years, mean ± SE) and 13 healthy control subjects (56 ± 2 years) before and during 2 min of upright one-legged unloaded cycling followed by 2 min at 50% of peak oxygen uptake (V̇O2,peak). Resting HR and blood pressure were similar between groups whereas MSNA burst frequency was higher (50.0 ± 2.0 vs. 42.3 ± 2.7 bursts min(-1), P = 0.03) and V̇O2,peak lower (18.0 ± 2.0 vs. 32.6 ± 2.8 ml kg(-1) min(-1), P Exercise increased HR (P exercise in the healthy controls but

  1. Age Differences in Dynamic Fatigability and Variability of Arm and Leg Muscles: Associations with Physical Function

    Science.gov (United States)

    Senefeld, Jonathon; Yoon, Tejin; Hunter, Sandra K.

    2016-01-01

    Introduction It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. Methods 35 young (16 males; 21.0±2.6 years) and 32 old (18 males; 71.3±6.2 years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3 s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. Results Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, Pmuscles was associated with greater walking endurance (r=−0.34, P=0.048) and balance (r=−0.41, P=0.014) among old adults. Conclusions An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance. PMID:27989926

  2. Magnetic resonance imaging findings of the skeletal muscle of a patient with nemaline myopathy.

    Science.gov (United States)

    Oishi, M; Mochizuki, Y

    1998-09-01

    This is the first magnetic resonance imaging (MRI) report of nemaline myopathy in which muscle atrophy was not apparent clinically in the lower extremities because of subcutaneous fat. The patient is a 38-year-old woman who was admitted to our hospital because of muscle weakness of the four extremities. Until the age of 17 years, she was asymptomatic except that her running speed was slow. The T1-weighted image of muscle MRI at the mid-thigh level showed hyperintensity of the quadriceps femoris muscle and relatively spared hamstring muscle. The T2-weighted image of muscle MRI at the maximum diameter of the lower leg showed hyperintensity of the tibialis anterior muscle and a relatively spared triceps surae muscle. The biopsy specimen of the right deltoid muscle showed nemaline bodies and type II fiber deficiency.

  3. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis.

    Science.gov (United States)

    Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati

    2013-01-01

    BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (Pafter the HEP (PAfter the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.

  4. The effects of performing a one-legged bridge with hip abduction and use of a sling on trunk and lower extremity muscle activation in healthy adults

    OpenAIRE

    Choi, Kyuju; Bak, Jongwoo; Cho, Minkwon; Chung, Yijung

    2016-01-01

    [Purpose] This study investigated the changes in the muscle activities of the trunk and lower limbs of healthy adults during a one-legged bridge exercise using a sling, and with the addition of hip abduction. [Subjects and Methods] Twenty-seven healthy individuals participated in this study (14 males and 13 females). The participants were instructed to perform the bridge exercises under five different conditions. Trunk and lower limb muscle activation of the erector spinae (ES), external obli...

  5. Contribution of Leg-Muscle Forces to Paddle Force and Kayak Speed During Maximal-Effort Flat-Water Paddling.

    Science.gov (United States)

    Nilsson, Johnny E; Rosdahl, Hans G

    2016-01-01

    The purpose was to investigate the contribution of leg-muscle-generated forces to paddle force and kayak speed during maximal-effort flat-water paddling. Five elite male kayakers at national and international level participated. The participants warmed up at progressively increasing speeds and then performed a maximal-effort, nonrestricted paddling sequence. This was followed after 5 min rest by a maximal-effort paddling sequence with the leg action restricted--the knee joints "locked." Left- and right-side foot-bar and paddle forces were recorded with specially designed force devices. In addition, knee angular displacement of the right and left knees was recorded with electrogoniometric technique, and the kayak speed was calculated from GPS signals sampled at 5 Hz. The results showed that reduction in both push and pull foot-bar forces resulted in a reduction of 21% and 16% in mean paddle-stroke force and mean kayak speed, respectively. Thus, the contribution of foot-bar force from lower-limb action significantly contributes to kayakers' paddling performance.

  6. The effects of a weight belt on trunk and leg muscle activity and joint kinematics during the squat exercise.

    Science.gov (United States)

    Zink, A J; Whiting, W C; Vincent, W J; McLaine, A J

    2001-05-01

    Fourteen healthy men participated in a study designed to examine the effects of weight-belt use on trunk- and leg-muscle myoelectric activity (EMG) and joint kinematics during the squat exercise. Each subject performed the parallel back squat exercise at a self-selected speed according to his own technique with 90% of his IRM both without a weight belt (NWB) and with a weight belt (WB). Myoelectric activity of the right vastus lateralis, biceps femoris, adductor magnus, gluteus maximus, and erector spinae was recorded using surface electrodes. Subjects were videotaped from a sagittal plane view while standing on a force plate. WB trials were completed significantly faster (p squat exercise may affect the path of the barbell and speed of the lift without altering myoelectric activity. This suggests that the use of a weight belt may improve a lifter's explosive power by increasing the speed of the movement without compromising the joint range of motion or overall lifting technique.

  7. Comparison of Abdominal Muscle Activity During a Single-Legged Hold in the Hook-Lying Position on the Floor and on a Round Foam Roll

    Science.gov (United States)

    Kim, Su-Jung; Kwon, Oh-Yun; Yi, Chung-Hwi; Jeon, Hye-Seon; Oh, Jae-Seop; Cynn, Heon-Seock; Weon, Jong-Hyuck

    2011-01-01

    Context: To improve trunk stability or trunk muscle strength, many athletic trainers and physiotherapists use various types of unstable equipment for training. The round foam roll is one of those unstable pieces of equipment and may be useful for improving trunk stability. Objective: To assess the effect of the supporting surface (floor versus round foam roll) on the activity of abdominal muscles during a single-legged hold exercise performed in the hook-lying position on the floor and on a round foam roll. Design: Crossover study. Setting: University research laboratory. Patients or Other Participants: Nineteen healthy volunteers (11 men, 8 women) from a university population. Interventions : The participants were instructed to perform a single-legged hold exercise while in the hook-lying position on the floor (stable surface) and on a round foam roll (unstable surface). Main Outcome Measure(s): Surface electromyography (EMG) signals were recorded from the bilateral rectus abdominis, internal oblique, and external oblique muscles. Dependent variables were examined with a paired t test. Results: The EMG activities in all abdominal muscles were greater during the single-legged hold exercise performed on the round foam roll than on the stable surface. Conclusions: The single-legged hold exercise in the hook-lying position on an unstable supporting surface induced greater abdominal muscle EMG amplitude than the same exercise performed on a stable supporting surface. These results suggest that performing the single-legged hold exercise while in the hook-lying position on a round foam roll is useful for activating the abdominal muscles. PMID:21944072

  8. Leg blood flow is impaired during small muscle mass exercise in patients with COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2017-01-01

    -extensor exercise, and during arterial infusions of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively. Ten patients with moderate to severe COPD and eight age- and sex matched healthy controls were studied. During knee-extensor exercise (10 W), leg blood flow was lower in the patients compared...... the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response...

  9. Trunk and hip muscle recruitment patterns during the prone leg extension following a lateral ankle sprain: A prospective case study pre and post injury

    Directory of Open Access Journals (Sweden)

    Lehman Gregory J

    2006-02-01

    Full Text Available Abstract Background and case presentation The prone leg extension (PLE is commonly used to identify dysfunction of muscle recruitment patterns. The prone leg extension is theorized to identify proximal muscle disturbances which are a result of distal injury or dysfunction (i.e. an ankle sprain. This case study compares the trunk and hip muscle (bilateral lower erector spine, ipsilateral hamstring and ipsilateral gluteus maximus timing during a PLE of a 27 year old female runner during a healthy state (pre ankle sprain and 2 and 8 weeks post ankle sprain. Results and discussion The gluteus maximus muscle onsets at 8 weeks post injury appeared to occur earlier compared with 2 weeks post injury. The Right Erector Spinae at 8 weeks post injury was also active earlier compared with the participant's non-injured state. A large degree of variability can be noted within trials on the same day for all muscle groups. Conclusion An acute ankle injury did not result in a delay in gluteus maximus muscle activation. The utility of the prone leg extension as a clinical and functional test is questionable due to the normal variability seen during the test and our current inability to determine what is normal and what is dysfunctional.

  10. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis.

    Science.gov (United States)

    Xu, Zhe-rong; Tan, Zhong-ju; Zhang, Qin; Gui, Qi-feng; Yang, Yun-mei

    2015-01-14

    In the present study, we performed a meta-analysis to assess the ability of leucine supplementation to increase the muscle protein fraction synthetic rate and to augment lean body mass or leg lean mass in elderly patients. A literature search was conducted on Medline, Cochrane, EMBASE and Google Scholar databases up to 31 December 2013 for clinical trials that investigated the administration of leucine as a nutrient that affects muscle protein metabolism and muscle mass in elderly subjects. The included studies were randomised controlled trials. The primary outcome for the meta-analysis was the protein fractional synthetic rate. Secondary outcomes included lean body mass and leg lean mass. A total of nine studies were included in the meta-analysis. The results showed that the muscle protein fractional synthetic rate after intervention significantly increased in the leucine group compared with the control group (pooled standardised difference in mean changes 1·08, 95% CI 0·50, 1·67; Pmass (pooled standardised difference in mean changes 0·18, 95% CI - 0·18, 0·54; P= 0·318) or leg lean mass (pooled standardised difference in mean changes 0·006, 95% CI - 0·32, 0·44; P= 0·756). These findings suggest that leucine supplementation is useful to address the age-related decline in muscle mass in elderly individuals, as it increases the muscle protein fractional synthetic rate.

  11. Trunk and hip muscle recruitment patterns during the prone leg extension following a lateral ankle sprain: A prospective case study pre and post injury

    Science.gov (United States)

    Lehman, Gregory J

    2006-01-01

    Background and case presentation The prone leg extension (PLE) is commonly used to identify dysfunction of muscle recruitment patterns. The prone leg extension is theorized to identify proximal muscle disturbances which are a result of distal injury or dysfunction (i.e. an ankle sprain). This case study compares the trunk and hip muscle (bilateral lower erector spine, ipsilateral hamstring and ipsilateral gluteus maximus) timing during a PLE of a 27 year old female runner during a healthy state (pre ankle sprain) and 2 and 8 weeks post ankle sprain. Results and discussion The gluteus maximus muscle onsets at 8 weeks post injury appeared to occur earlier compared with 2 weeks post injury. The Right Erector Spinae at 8 weeks post injury was also active earlier compared with the participant's non-injured state. A large degree of variability can be noted within trials on the same day for all muscle groups. Conclusion An acute ankle injury did not result in a delay in gluteus maximus muscle activation. The utility of the prone leg extension as a clinical and functional test is questionable due to the normal variability seen during the test and our current inability to determine what is normal and what is dysfunctional. PMID:16504168

  12. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers.

    Science.gov (United States)

    Chen, Ying; He, Lu; Xu, Kaishou; Li, Jinling; Guan, Buyun; Tang, Hongmei

    2018-01-01

    To compare the muscle thickness, fascicle length, and pennation angle of the gastrocnemius, soleus, and tibialis anterior between Asian children with spastic cerebral palsy (CP) and typically developing (TD) peers. This cross-sectional study involved a total of 72 children with hemiplegic CP (n = 24), and diplegic CP (n = 24) and their TD peers (n = 24). Muscle architecture was measured at rest using ultrasound. Clinical measures included gross motor function and a modified Ashworth scale. The thicknesses of the tibialis anterior and medial gastrocnemius muscles were smaller in the affected calf of children with CP (ppeers. Additionally, the lengths of the lateral gastrocnemius and soleus fascicle were shorter (ppeers. The fascicle length was shorter in the affected calf of children with CP (ppeers or the unaffected calf of children with hemiplegic CP. However, the length of the lateral gastrocnemius fascicle was similar between the two legs of children with hemiplegic CP. The pennation angles of the medial gastrocnemius and soleus muscles were larger (ppeers. The fascicle length of the lateral gastrocnemius and the thickness of the soleus muscle were positively correlated with gross motor function scores in children with CP (p<0.05). Muscle thickness and fascicle length were lower in the affected tibialis anterior, gastrocnemius, and soleus in children with spastic CP. These changes may limit the ability to stand and walk, and indicate a need to strengthen the affected muscle.

  13. Response of the muscles in the pelvic floor and the lower lateral abdominal wall during the Active Straight Leg Raise in women with and without pelvic girdle pain: An experimental study.

    Science.gov (United States)

    Sjödahl, Jenny; Gutke, Annelie; Ghaffari, Ghazaleh; Strömberg, Tomas; Öberg, Birgitta

    2016-06-01

    The relationship between activation of the stabilizing muscles of the lumbopelvic region during the Active Straight Leg Raise test and pelvic girdle pain remains unknown. Therefore, the aim was to examine automatic contractions in relation to pre-activation in the muscles of the pelvic floor and the lower lateral abdominal wall during leg lifts, performed as the Active Straight Leg Raise test, in women with and without persistent postpartum pelvic girdle pain. Sixteen women with pelvic girdle pain and eleven pain-free women performed contralateral and ipsilateral leg lifts, while surface electromyographic activity was recorded from the pelvic floor and unilaterally from the lower lateral abdominal wall. As participants performed leg lifts onset time was calculated as the time from increased muscle activity to leg lift initiation. No significant differences were observed between the groups during the contralateral leg lift. During the subsequent ipsilateral leg lift, pre-activation in the pelvic floor muscles was observed in 36% of women with pelvic girdle pain and in 91% of pain-free women (P=0.01). Compared to pain-free women, women with pelvic girdle pain also showed significantly later onset time in both the pelvic floor muscles (P=0.01) and the muscles of the lower lateral abdominal wall (Pactivation patterns influence women's ability to stabilize the pelvis during leg lifts. This could be linked to provocation of pain during repeated movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Contribution of Leg Muscle Explosive Power and Eye-Hand Coordination to The Accuracy Smash of Athletes in Volleyball Club of Universitas Islam Riau

    Directory of Open Access Journals (Sweden)

    Mimi Yulianti

    2017-11-01

    Full Text Available The purpose of this study was to determine the contribution of leg muscle explosive power and eye-hand coordination. The type of research was correlational. The population in this study was all athletes who actively follow the training as many as 20 people and using total sampling technique. Thus the sample in this study amounted to 20 men athletes. The data were collected using the measurement test on the three variables: the leg muscle explosive power data was using vertical jump test, eyehand coordination was using ballwerfen und fangen test and smash accuracy was using smash accuracy test. The data were analyzed by product moment correlation and double correlation and then continued with contribution of the determinant formula. Based on data analysis found that there was contribution of leg muscle explosive power equal to 35,52%, eye-hand coordination equal to 20,79%, and both equal to 40,70% regarding to the accuracy smash of volleyball atletes of Universitas Islam Riau. It was concluded that there was contribution of leg muscle explosive power and eye-hand coordination to the smash accuracy of volleyball athlete of Universitas Islam Riau.

  15. Leg for life? The use of sartorius muscle flap for the treatment of an infected vascular reconstructions after VA-ECMO use. A case report

    Directory of Open Access Journals (Sweden)

    George V. Patrut

    2015-01-01

    Conclusion: Although ischemic complications associated with VA-ECMO are accepted by intensivists under the slogan “leg for life”, for the repair of the femoral artery in the presence of groin infection the sartorius muscle remains an efficient solution for limb salvage.

  16. The Effect of Intelligence, Leg Muscle Strength, and Balance Towards The Learning Outcomes of Pencak Silat with Empty-Handed Single Artistic

    Directory of Open Access Journals (Sweden)

    Aridhotul Haqiyah

    2017-10-01

    Full Text Available This study aims to Determine the effect of intelligence, leg muscle strength, as well as the balance towards the learning outcomes of pencak silat empty-handed single artistic on the Physical Education students of Islamic University 45 Bekasi. The research method is a survey, and the analysis technique is path analysis. This research held in Islamic University 45 Bekasi with 122 people of population. The sampling technique used is random sampling, then a sample of this research is 60 people. The instruments used are a rubric 4 scale (very good, good, enough and less of the learning outcomes of pencak silat emptyhanded single artistic, intelligence test with IST (Intelligent Structure Test, leg muscle strength with instrument squat test, and test of balance by using the modified bass test of dynamic balance. Based the result of the data processing and analysis, the Conclusions are: : (1 Intelligence directly effect on the learningoutcomes of pencak silat empty-handed single artistic with ρy1  = 0.359, (2 Leg muscles strength directlyeffect on the learning outcomes of pencak silat empty-handed single artistic with ρy2 = 0.228, (3 Balance directly effect on the learning outcomes of pencak silat empty-handed single artistic with ρy3 = 0.356, (4 Intelligence directly effects on the balance with ρ31 = 0.662, and (5 Leg muscle strength directly effectson the balance with ρ32 = 0.298.

  17. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking

    NARCIS (Netherlands)

    Hu, H.; Meijer, O.G.; van Dieen, J.H.; Hodges, P.W.; Bruijn, S.M.; Strijers, R.L.M.; Nanayakkara, P.W.B.; van Royen, B.J.; Wu, W.H.; Xia, C.

    2010-01-01

    Women with pregnancy-related pelvic girdle pain (PPP), or athletes with groin pain, may have trouble with the active straight leg raise (ASLR), for which a pelvic belt can be beneficial. How the problems emerge, or how the belt works, remains insufficiently understood. We assessed muscle activity

  18. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.

    Science.gov (United States)

    Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-10-01

    To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Bilateral idiopathic calf muscle hypertrophy: an exceptional cause of unsightly leg curvature.

    Science.gov (United States)

    Herlin, C; Chaput, B; Rivier, F; Doucet, J C; Bigorre, M; Captier, G

    2015-04-01

    The authors present the management of a young female patient who presented with longstanding bilateral calf muscle hypertrophy, with no known cause. Taking into account the patient's wishes and the fact that the hypertrophy was mainly located in the posteromedial compartment, we chose to carry out a subtotal bilateral resection of medial gastrocnemius muscles. This procedure was performed with an harmonic scalpel, permitting a excellent cosmetic result while avoiding complications or functional impairment. After a reviewing of the commonly used techniques, the authors discuss the chosen surgical approach taking into account its clinical particularity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Bilateral motor unit synchronization of leg muscles during a simple dynamic balance task

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; Roerdink, M.; Flipse, I.; Groenewoud, K.; Beek, P.J.

    2009-01-01

    To handle the rich repertoire of behavioural goals, the CNS has to control the many degrees of freedom of the musculoskeletal system in a flexible manner. This problem can be drastically simplified if muscle synergies serve as the to-be-controlled building blocks of motor performance, instead of the

  1. Muscle activity and spine load during anterior chain whole body linkage exercises: the body saw, hanging leg raise and walkout from a push-up.

    Science.gov (United States)

    McGill, Stuart; Andersen, Jordan; Cannon, Jordan

    2015-01-01

    This study examined anterior chain whole body linkage exercises, namely the body saw, hanging leg raise and walkout from a push-up. Investigation of these exercises focused on which particular muscles were challenged and the magnitude of the resulting spine load. Fourteen males performed the exercises while muscle activity, external force and 3D body segment motion were recorded. A sophisticated and anatomically detailed 3D model used muscle activity and body segment kinematics to estimate muscle force, and thus sensitivity to each individual's choice of motor control for each task. Gradations of muscle activity and spine load characteristics were observed across tasks. On average, the hanging straight leg raise created approximately 3000 N of spine compression while the body saw created less than 2500 N. The hanging straight leg raise created the highest challenge to the abdominal wall (>130% MVC in rectus abdominis, 88% MVC in external oblique). The body saw resulted in almost 140% MVC activation of the serratus anterior. All other exercises produced substantial abdominal challenge, although the body saw did so in the most spine conserving way. These findings, along with consideration of an individual's injury history, training goals and current fitness level, should assist in exercise choice and programme design.

  2. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    Science.gov (United States)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  3. Intermittent pneumatic leg compressions enhance muscle performance and blood flow in a model of peripheral arterial insufficiency.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Yang, Hsiao T; Terjung, Ronald; Laughlin, M H

    2012-05-01

    Despite the escalating prevalence in the aging population, few therapeutic options exist to treat patients with peripheral arterial disease. Application of intermittent pneumatic leg compressions (IPC) is regarded as a promising noninvasive approach to treat this condition, but the clinical efficacy, as well the mechanistic basis of action of this therapy, remain poorly defined. We tested the hypothesis that 2 wk of daily application of IPC enhances exercise tolerance by improving blood flow and promoting angiogenesis in skeletal muscle in a model of peripheral arterial insufficiency. Male Sprague-Dawley rats were subjected to bilateral ligation of the femoral artery and randomly allocated to treatment or sham groups. Animals were anesthetized daily and exposed to 1-h sessions of bilateral IPC or sham treatment for 14-16 consecutive days. A third group of nonligated rats was also studied. Marked increases in treadmill exercise tolerance (∼33%, P < 0.05) and improved muscle performance in situ (∼10%, P < 0.05) were observed in IPC-treated animals. Compared with sham-treated controls, blood flow measured with isotope-labeled microspheres during in situ contractions tended to be higher in IPC-treated animals in muscles composed of predominantly fast-twitch white fibers, such as the plantaris (∼93%, P = 0.02). Capillary contacts per fiber and citrate synthase activity were not significantly altered by IPC treatment. Collectively, these data indicate that IPC improves exercise tolerance in a model of peripheral arterial insufficiency in part by enhancing blood flow to collateral-dependent tissues.

  4. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate‐intensity exercise in human skeletal muscle

    Science.gov (United States)

    Gram, M.; Dybboe, R.; Kuhlman, A. B.; Prats, C.; Greenhaff, P. L.; Constantin‐Teodosiu, D.; Birk, J. B.; Wojtaszewski, J. F. P.; Dela, F.; Helge, J. W.

    2016-01-01

    Key points This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate‐intensity exercise.Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two‐legged dynamic knee‐extensor moderate‐intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise.Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise.Using a combined whole‐leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. Abstract Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate‐intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two‐legged isolated knee‐extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net

  5. Muscle ion transporters and antioxidative proteins have different adaptive potential in arm than in leg skeletal muscle with exercise training

    DEFF Research Database (Denmark)

    Mohr, Magni; Nielsen, Tobias Schmidt; Weihe, Pál

    2017-01-01

    It was evaluated whether upper-body compared to lower-body musculature exhibits a different phenotype in relation to capacity for handling reactive oxygen species (ROS), H(+), La(-), Na(+), K(+) and also whether it differs in adaptive potential to exercise training. Eighty-three sedentary...... premenopausal women aged 45 ± 6 years (mean ± SD) were randomized into a high-intensity intermittent swimming group (HIS, n = 21), a moderate-intensity swimming group (MOS, n = 21), a soccer group (SOC, n = 21), or a control group (CON, n = 20). Intervention groups completed three weekly training sessions...... for 15 weeks, and pre- and postintervention biopsies were obtained from deltoideus and vastus lateralis muscle. Before training, monocarboxylate transporter 4 (MCT4), Na(+)/K(+) pump α2, and superoxide dismutase 2 (SOD2) expressions were lower (P

  6. Venogram - leg

    Science.gov (United States)

    Phlebogram - leg; Venography - leg; Angiogram - leg ... into a vein in the foot of the leg being looked at. An intravenous (IV) line is ... vein. A tourniquet may be placed on your leg so the dye flows into the deeper veins. ...

  7. Infrared thermography applied to lower limb muscles in elite soccer players with functional ankle equinus and non-equinus condition.

    Science.gov (United States)

    Rodríguez-Sanz, David; Losa-Iglesias, Marta Elena; López-López, Daniel; Calvo-Lobo, César; Palomo-López, Patricia; Becerro-de-Bengoa-Vallejo, Ricardo

    2017-01-01

    Gastrocnemius-soleus equinus (GSE) is a foot-ankle complaint in which the extensibility of the gastrocnemius (G) and soleus muscles (triceps surae) and ankle are limited to a dorsiflexion beyond a neutral ankle position. The asymmetric forces of leg muscles and the associated asymmetric loading forces might promote major activation of the triceps surae, tibialis anterior, transverses abdominal and multifidus muscles. Here, we made infrared recordings of 21 sportsmen (elite professional soccer players) before activity and after 30 min of running. These recordings were used to assess temperature modifications on the gastrocnemius, tibialis anterior, and Achilles tendon in GSE and non-GSE participants. We identified significant temperature modifications among GSE and non-GSE participants for the tibialis anterior muscle (mean, minimum, and maximum temperature values). The cutaneous temperature increased as a direct consequence of muscle activity in GSE participants. IR imaging capture was reliable to muscle pattern activation for lower limb. Based on our findings, we propose that non-invasive IR evaluation is suitable for clinical evaluation of the status of these muscles.

  8. Infrared thermography applied to lower limb muscles in elite soccer players with functional ankle equinus and non-equinus condition

    Directory of Open Access Journals (Sweden)

    David Rodríguez-Sanz

    2017-05-01

    Full Text Available Gastrocnemius-soleus equinus (GSE is a foot-ankle complaint in which the extensibility of the gastrocnemius (G and soleus muscles (triceps surae and ankle are limited to a dorsiflexion beyond a neutral ankle position. The asymmetric forces of leg muscles and the associated asymmetric loading forces might promote major activation of the triceps surae, tibialis anterior, transverses abdominal and multifidus muscles. Here, we made infrared recordings of 21 sportsmen (elite professional soccer players before activity and after 30 min of running. These recordings were used to assess temperature modifications on the gastrocnemius, tibialis anterior, and Achilles tendon in GSE and non-GSE participants. We identified significant temperature modifications among GSE and non-GSE participants for the tibialis anterior muscle (mean, minimum, and maximum temperature values. The cutaneous temperature increased as a direct consequence of muscle activity in GSE participants. IR imaging capture was reliable to muscle pattern activation for lower limb. Based on our findings, we propose that non-invasive IR evaluation is suitable for clinical evaluation of the status of these muscles.

  9. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait

    DEFF Research Database (Denmark)

    Hvass Petersen, Tue; Kliim-Due, Mette; Farmer, Simon F.

    2010-01-01

    Corticospinal drive has been shown to contribute significantly to the control of walking in adult human subjects. It is unknown to what an extent functional change in this drive is important for maturation of gait in children. In adults, populations of motor units within a muscle show synchronized...... discharges during walking with pronounced coherence in the 15-50 Hz frequency band. This coherence has been shown to depend on cortical drive. Here, we investigated how this coherence changes with development. 44 healthy children aged 4 - 15 yrs participated in the study. Electromyographic activity (EMG...

  10. Does peroperative external pneumatic leg muscle compression prevent post-operative venous thrombosis in neurosurgery?

    Science.gov (United States)

    Bynke, O; Hillman, J; Lassvik, C

    1987-01-01

    Post-operative deep venous thrombosis (DVT) is a frequent and potentially life-threatening complication in neurosurgery. In this field of surgery, with its special demands for exact haemostasis, prophylaxis against deep venous thrombosis with anticoagulant drugs has been utilized only reluctantly. Postoperative pneumatic muscle compression (EPC) has been shown to be effective, although there are several practical considerations involved with this method which limit its clinical applicability. In the present study per-operative EPC was evaluated and was found to provide good protection against DVT in patients with increased risk from this complication. This method has the advantage of being effective, safe, inexpensive and readily practicable.

  11. Sleep/wake estimation using only anterior tibialis electromyography data

    Directory of Open Access Journals (Sweden)

    Hwang SuHwan

    2012-05-01

    Full Text Available Abstract Background In sleep efficiency monitoring system, actigraphy is the simplest and most commonly used device. However, low specificity to wakefulness of actigraphy was revealed in previous studies. In this study, we assumed that sleep/wake estimation using actigraphy and electromyography (EMG signals would show different patterns. Furthermore, each EMG pattern in two states (sleep, wake during sleep was analysed. Finally, we proposed two types of method for the estimation of sleep/wake patterns using only EMG signals from anterior tibialis muscles and the results were compared with PSG data. Methods Seven healthy subjects and five patients (2 obstructive sleep apnea, 3 periodic limb movement disorder participated in this study. Night time polysomnography (PSG recordings were conducted, and electrooculogram, EMG, electroencephalogram, electrocardiogram, and respiration data were collected. Time domain analysis and frequency domain analysis were applied to estimate the sleep/wake patterns. Each method was based on changes in amplitude or spectrum (total power of anterior tibialis electromyography signals during the transition from the sleep state to the wake state. To obtain the results, leave-one-out-cross-validation technique was adopted. Results Total sleep time of the each group was about 8 hours. For healthy subjects, the mean epoch-by-epoch results between time domain analysis and PSG data were 99%, 71%, 80% and 0.64 (sensitivity, specificity, accuracy and kappa value, respectively. For frequency domain analysis, the corresponding values were 99%, 73%, 81% and 0.67, respectively. Absolute and relative differences between sleep efficiency index from PSG and our methods were 0.8 and 0.8% (for frequency domain analysis. In patients with sleep-related disorder, our proposed methods revealed the substantial agreement (kappa > 0.61 for OSA patients and moderate or fair agreement for PLMD patients. Conclusions The results of our proposed

  12. Improvement in upper leg muscle strength underlies beneficial effects of exercise therapy in knee osteoarthritis: secondary analysis from a randomised controlled trial.

    Science.gov (United States)

    Knoop, J; Steultjens, M P M; Roorda, L D; Lems, W F; van der Esch, M; Thorstensson, C A; Twisk, J W R; Bierma-Zeinstra, S M A; van der Leeden, M; Dekker, J

    2015-06-01

    Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee proprioception) underlie the beneficial effects of exercise therapy in patients with knee OA. Secondary analyses from a randomised controlled trial, with measurements at baseline, 6 weeks, 12 weeks and 38 weeks. Rehabilitation centre. One hundred and fifty-nine patients diagnosed with knee OA. Exercise therapy. Changes in pain [numeric rating scale (NRS)] and activity limitations [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and get-up-and-go test] during the study period. Independent variables were changes in upper leg muscle strength and knee joint proprioception (i.e. motion sense) during the study period. Longitudinal regression analyses (generalised estimating equation) were performed to analyse associations between changes in upper leg muscle strength and knee proprioception with changes in pain and activity limitations. Improved muscle strength was significantly associated with reductions in NRS pain {B coefficient -2.5 [95% confidence interval (CI) -3.7 to -1.4], meaning that every change of 1 unit of strength was linked to a change of -2.5 units of pain}, WOMAC physical function (-8.8, 95% CI -13.4 to -4.2) and get-up-and-go test (-1.7, 95% CI -2.4 to -1.0). Improved proprioception was not significantly associated with better outcomes of exercise therapy (P>0.05). Upper leg muscle strengthening is one of the mechanisms underlying the beneficial effects of exercise therapy in patients with knee OA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  13. Lower limb muscle pre-motor time measures during a choice reaction task associate with knee abduction loads during dynamic single leg landings.

    Science.gov (United States)

    McLean, Scott G; Borotikar, Bhushan; Lucey, Sarah M

    2010-07-01

    Female neuromuscular control during dynamic landings is considered central to their increased ACL injury risk relative to males. There is limited insight, however, into the neuromuscular parameters governing this risk, which may hinder prevention success. This study targeted a new screenable and potentially trainable neuromuscular risk factor. Specifically, we examined whether lower limb muscle pre-motor times, being the time between stimulus presentation and initiation of the muscle EMG burst, elicited during a simple choice reaction task correlated with knee abduction loads during separate single leg landings. Twenty female NCAA athletes had muscle (n=8) pre-motor time and knee biomechanics data recorded bilaterally during a choice reaction task. Knee biomechanics were also quantified during anticipated and unanticipated single (dominant and non-dominant) leg landings. Mean peak knee abduction loads during landings were submitted to a two-way ANOVA to test for limb and decision effects. Individual regression coefficients were initially computed between-limb-based muscle pre-motor times and peak abduction moments elicited during both the choice reaction and landing tasks. Limb-based linear stepwise regression coefficients were also computed between muscle PMT's demonstrating significant (Pmuscle pre-motor times during a specific choice reaction task are associated with peak knee abduction loads during separate single leg landings. These muscles appear critical in stabilizing the knee against the extreme dynamic load states associated with such tasks. Targeted screening and training of supraspinal processes governing these muscle pre-motor times may ultimately enable external knee loads associated with landings to be more effectively countered by the overarching neuromuscular strategy. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Effect of Feedback Corrective Exercise on Knee Valgus and Electromyographic Activity of Lower Limb Muscles in Single Leg Squat

    Directory of Open Access Journals (Sweden)

    Negar Koorosh-fard

    2015-07-01

    Full Text Available Objective: The aim of this study was assessing the effect of feedback correcting exercise in front of mirror during running on frontal plane knee and pelvic kinematic and electromyography activity of some lower extremity muscles in single leg squat (SLS. Materials & Methods: This study was quasi experimental. 23 active female subjects participated in two experimental and control groups with mean age (21.86± 2.43 years .experimental group contains subjects with knee valgus and pelvic drop angle more than a mean plus one standard deviation of the population in functional SLS. Muscular activity (RMS of gluteus maximus, Gluteus medius, rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus, angle of knee valgus and pelvic drop were register in end of SLS Pre and post of 8 training sessions. Comparing Variable has done with independent t statistical test between 2 groups and pair sample t test within each groups with significant level of 0.05. Results: Statistical analysis Before training showed no significant differences in pelvic drop between two groups (P&ge0.05, but knee valgus angle was significantly more than control group (P&le0.05. In spit that most muscle activities (% MVC except biceps femoris (P&le0.05, were greater in experimental group, no significant difference (P&ge0.05 has seen in two groups. Comparing pre and post test has showed no significant difference in knee valgus of experimental group, however it decreased around 2 degrees and although %MVC decreased in all muscles, just rectuse femoris has shown significant difference (P&le0.05. No significant difference has seen in control group in all variables (P&ge0.05. Conclusion: Findings showed poor neuromuscular control in experimental group which improved to some extent after training because lower muscle activity and energy consumption in specific movement with similar kinematic indicate improvement of motor control or cause learning. It seems that

  15. Chronic impairment of leg muscle blood flow following cardiac catheterization in childhood

    International Nuclear Information System (INIS)

    Skovranek, J.; Samanek, M.

    1979-01-01

    In 99 patients with congenital heart defects or chronic respiratory disease without clinical symptoms of disturbances in peripheral circulation, resting and maximal blood flow in the anterior tibial muscle of both extremities were investigated 2.7 yrs (average) after cardiac catheterization. The method used involved 133 Xe clearance. Resting blood flow was normal and no difference could be demonstrated between the extremity originally used for catheterization and the contralateral control extremity. No disturbance in maximal blood flow could be proved in the extremity used for catheterization by the venous route only. Maximal blood flow was significantly lower in that extremity where the femoral artery had been catheterized or cannulated for pressure measurement and blood sampling. The disturbance in maximal flow was shown regardless of whether the arterial catheterization involved the Seldinger percutaneous technique, arteriotomy, or mere cannulation of the femoral artery. The values in the involved extremity did not differ significantly from the values in a healthy population

  16. Excitability changes in the left primary motor cortex innervating the hand muscles induced during speech about hand or leg movements.

    Science.gov (United States)

    Onmyoji, Yusuke; Kubota, Shinji; Hirano, Masato; Tanaka, Megumi; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-05-06

    In the present study, we used transcranial magnetic stimulation (TMS) to investigate the changes in the excitability of the left primary motor cortex (M1) innervating the hand muscles and in short-interval intracortical inhibition (SICI) during speech describing hand or leg movements. In experiment 1, we investigated the effects of the contents of speech on the amplitude of the motor evoked potentials (MEPs) induced during reading aloud and silent reading. In experiment 2, we repeated experiment 1 with an additional condition, the non-vocal oral movement (No-Voc OM) condition, and investigated the change in SICI induced in each condition using the paired TMS paradigm. The MEP observed in the reading aloud and No-Voc OM conditions exhibited significantly greater amplitudes than those seen in the silent reading conditions, irrespective of the content of the sentences spoken by the subjects or the timing of the TMS. There were no significant differences in SICI between the experimental conditions. Our findings suggest that the increased excitability of the left M1 hand area detected during speech was mainly caused by speech-related oral movements and the activation of language processing-related brain functions. The increased left M1 excitability was probably also mediated by neural mechanisms other than reduced SICI; i.e., disinhibition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Reliability of MR-Based Volumetric 3-D Analysis of Pelvic Muscles among Subjects with Low Back with Leg Pain and Healthy Volunteers

    Science.gov (United States)

    Skorupska, Elżbieta; Keczmer, Przemysław; Łochowski, Rafał M.; Tomal, Paulina; Rychlik, Michał; Samborski, Włodzimierz

    2016-01-01

    Aim Lately, the diagnostic value of magnetic resonance imaging, Lasègue sign and classic neurological signs have been considered not accurate enough to distinguish the radicular from non-radicular low back with leg pain (LBLP) and a calculation of the symptomatic side muscle volume has been indicated as a probable valuable marker. However, only the multifidus muscle volume has been calculated so far. The main objective of the study was to verify whether LBLP subjects presented symptomatic side pelvic muscle atrophy compared to healthy volunteers. The second aim was to assess the inter-rater reliability of 3-D manual method for segmenting and measuring the volume of the gluteus maximus, gluteus medius, gluteus minimus and piriformis muscles in both LBLP patients and healthy subjects. Method Two independent raters analyzed MR images of LBLP and healthy subjects towards muscle volume of four pelvic muscles, i.e. the piriformis, gluteus minimus, gluteus medius and gluteus maximus. For both sides, the MR images of the muscles without adipose tissue infiltration were manually segmented in 3-D medical images. Results Symptomatic muscle atrophy was confirmed in only over 50% of LBLP subjects (gluteus maximus (pgluteus minimus (pgluteus medius muscle in LBLP patients, which was equal to 0.848. Conclusion More than 50% of LBLP subjects presented symptomatic gluteus maximus, gluteus minimus and piriformis muscle atrophy. 3-D manual segmentation reliably measured muscle volume in all the measured pelvic muscles in both healthy and LBLP subjects. To answer the question of what kind of muscle atrophy is indicative of radicular or non-radicular pain further studies are required. PMID:27459688

  18. Reliability of MR-Based Volumetric 3-D Analysis of Pelvic Muscles among Subjects with Low Back with Leg Pain and Healthy Volunteers.

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorupska

    Full Text Available Lately, the diagnostic value of magnetic resonance imaging, Lasègue sign and classic neurological signs have been considered not accurate enough to distinguish the radicular from non-radicular low back with leg pain (LBLP and a calculation of the symptomatic side muscle volume has been indicated as a probable valuable marker. However, only the multifidus muscle volume has been calculated so far. The main objective of the study was to verify whether LBLP subjects presented symptomatic side pelvic muscle atrophy compared to healthy volunteers. The second aim was to assess the inter-rater reliability of 3-D manual method for segmenting and measuring the volume of the gluteus maximus, gluteus medius, gluteus minimus and piriformis muscles in both LBLP patients and healthy subjects.Two independent raters analyzed MR images of LBLP and healthy subjects towards muscle volume of four pelvic muscles, i.e. the piriformis, gluteus minimus, gluteus medius and gluteus maximus. For both sides, the MR images of the muscles without adipose tissue infiltration were manually segmented in 3-D medical images.Symptomatic muscle atrophy was confirmed in only over 50% of LBLP subjects (gluteus maximus (p<0.001, gluteus minimus (p<0.01 and piriformis (p<0.05. The ICC values indicated that the inter-rater reproducibility was greater than 0.90 for all measurements (LBLP and healthy subjects, except for the measurement of the right gluteus medius muscle in LBLP patients, which was equal to 0.848.More than 50% of LBLP subjects presented symptomatic gluteus maximus, gluteus minimus and piriformis muscle atrophy. 3-D manual segmentation reliably measured muscle volume in all the measured pelvic muscles in both healthy and LBLP subjects. To answer the question of what kind of muscle atrophy is indicative of radicular or non-radicular pain further studies are required.

  19. Block-step asymmetry 5 years after large-head metal-on-metal total hip arthroplasty is related to lower muscle mass and leg power on the implant side.

    Science.gov (United States)

    Hjorth, M H; Stilling, M; Lorenzen, N D; Jakobsen, S S; Soballe, K; Mechlenburg, I

    2014-06-01

    Metal-on-metal articulations mimic the human hip anatomy, presumably lower dislocation rates and increase the range-of-motion. This study aims to measure the muscle mass and power of both legs in patients with unilateral metal-on-metal total hip arthroplasty, and to investigate their effect on block-step test, spatio-temporal gait parameters and self-reported function. Twenty-eight patients (7 women), mean age 50 (28-68) years, participated in a 5-7 year follow-up. Patients had received one type unilateral large-head metal-on-metal total hip articulation, all of which were well-functioning at follow-up. Mean muscle mass was measured by the total-body Dual energy X-ray Absorption scans, and muscle power was measured in a leg extensor power rig. Block-step test and spatio-temporal gait parameters were measured with an inertial measurement unit. Self-reported function was assessed by the Hip Disability and Osteoarthritis Outcome Score. We found a significant difference between the mean muscle mass of the implant-side leg and the non-implant-side leg in hip, thigh and calf areas (Ppower (P=0.025). Correlations between mean muscle mass and mean muscle power were significant for both the implant-side leg (r=0.45, P=0.018) and the non-implant-side leg (r=0.51, P=0.007). The difference in mean muscle power between legs correlated with block-step test asymmetry during ascending (r=0.40, P=0.047) and descending (r=0.53, P=0.006). Correlations between self-reported function and power of the implant-side leg were not significant. Young patients have not fully regained muscle mass, muscle power and function 5-7 years after metal-on-metal total hip arthroplasty. Copyright © 2014. Published by Elsevier Ltd.

  20. Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans.

    Science.gov (United States)

    Sheldon, Ryan D; Roseguini, Bruno T; Thyfault, John P; Crist, Brett D; Laughlin, M H; Newcomer, Sean C

    2012-06-01

    The mechanisms by which intermittent pneumatic leg compression (IPC) treatment effectively treats symptoms associated with peripheral artery disease remain speculative. With the aim of gaining mechanistic insight into IPC treatment, the purpose of this study was to investigate the effect of IPC frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression. In this two study investigation, healthy male subjects underwent an hour of either high-frequency (HF; 2-s inflation/3-s deflation) or low-frequency (LF; 4-s inflation/16-s deflation) IPC treatment of the foot and calf. In study 1 (n = 11; 23.5 ± 4.7 yr), subjects underwent both HF and LF treatment on separate days. Doppler/ultrasonography was used to measure popliteal artery diameter and blood velocity at baseline and during IPC treatment. Flow-mediated dilation (FMD) and peak reactive hyperemia blood flow (RHBF) were determined before and after IPC treatment. In study 2 (n = 19; 22.0 ± 4.6 yr), skeletal muscle biopsies were taken from the lateral gastrocnemius of the treated and control limb at baseline and at 30- and 150-min posttreatment. Quantitative PCR was used to assess mRNA concentrations of genes associated with inflammation and vascular remodeling. No treatment effect on vascular function was observed. Cuff deflation resulted in increased blood flow (BF) and shear rate (SR) in both treatments at the onset of treatment compared with baseline (P < 0.01). BF and SR significantly diminished by 45 min of HF treatment only (P < 0.01). Both treatments reduced BF and SR and elevated oscillatory shear index compared with baseline (P < 0.01) during cuff inflation. IPC decreased the mRNA expression of cysteine-rich protein 61 from baseline and controls (P <0 .01) and connective tissue growth factor from baseline (P < 0.05) in a frequency-dependent manner. In conclusion, a single session of IPC acutely impacts limb hemodynamics and skeletal muscle gene expression in a frequency

  1. Twelve weeks’ progressive resistance training combined with protein supplementation beyond habitual intakes increases upper leg lean tissue mass, muscle strength and extended gait speed in healthy older women.

    OpenAIRE

    Francis, P

    2016-01-01

    The age-related decline in functional capability is preceded by a reduction in muscle quality. The purpose of this study was to assess the combined effects of progressive resistance training (PRT) and protein supplementation beyond habitual intakes on upper leg lean tissue mass (LTM), muscle quality and functional capability in healthy 50 – 70y women. In a single-blinded, randomized, controlled design, 57 healthy older women (age 61.1 ± 5.1 years, 1.61 ± 0.65 m, 65.3 ± 15.3 kg) consumed 0.33 ...

  2. Pneumatic muscle actuator for resistive exercise in microgravity: test with a leg model.

    Science.gov (United States)

    Serres, Jennifer L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Repperger, Daniel W; Gerschutz, Maria J

    2010-02-01

    A proof-of-concept demonstration is described in which a DC servomotor (simulating the quadriceps of a human operator) rotated a pulley 90 degrees (simulating knee extension). A pneumatic muscle actuator (PMA) generated an opposing force (antagonist) to the rotating pulley. One application of such a device is for use in microgravity environments because the PMA is compact, simple, and of relatively small mass (283 g). In addition, the operator can set a computer-controlled force-level range in response to individual user changes in exercise conditioning over time. A PMA was used in this study and interacted with a DC servomotor. For each trial, the PMA contracted in response to internal pressure. An input voltage profile activated the DC servomotor, resulting in the following three phases: an isokinetic counterclockwise pulley rotation of 90 degrees over 5 s (Phase I), the position was held for 5 s (Phase II), and an isokinetic clockwise rotation of 90 degrees over 5 s (Phase III). Root mean square error (RMSE) values were used to evaluate the pulley rotation. For Phase I, when the PMA pressures (in kPa) were 300, 450, and 575, the percent RMSE, respectively, were 5.24, 6.23, and 4.59. For Phase II, the percent RMSE were 2.81, 2.57, and 5.63, respectively. For Phase III, the percent RMSE were 5.69, 2.63, and 3.30, respectively. This study presents a demonstration of a PMA device that can enhance exercise by providing a wide range of resistive loads.

  3. Coupling of albumin flux to volume flow in skin and muscles of anesthetized rats

    International Nuclear Information System (INIS)

    Renkin, E.M.; Gustafson-Sgro, M.; Sibley, L.

    1988-01-01

    Bovine serum albumin (BSA) labeled with 131 I or 125 I was injected intravenously in pentobarbital sodium-anesthetized rats, and tracer clearances into leg skin and muscles were measured over 30, 60, and 120 min. BSA labeled with the alternate tracer was used as vascular volume reference. Two minutes before injection of the tracer, a ligature was tied around one femoral vein to occlude outflow partially and raise capillary pressure in that leg. The unoccluded leg served as control. Skin and muscles of the occluded leg had variably and substantially higher water contents (delta W) than paired control tissues and slightly but consistently increased albumin clearances (CA). The delta CA/delta W, equivalent to the albumin concentration of capillary filtrate relative to plasma determined by linear regression, were as follows: leg skin 0.004 (95% confidence limits -0.001 to +0.009), muscle biceps femoris 0.005 (0.001-0.010), muscle gastrocnemius 0.011 (0.004-0.019), muscle tibialis anterior 0.016 (0.012-0.021). All these values are significantly less than 0.10, which corresponds to a reflection coefficient for serum albumin (sigma A) of 0.90. Convective coupling of albumin flux to volume flux in skin and muscles of intact, anesthetized rats is low, with sigma AS in the range 0.98 to greater than 0.99

  4. The Influence of Dual Pressure Biofeedback Units on Pelvic Rotation and Abdominal Muscle Activity during the Active Straight Leg Raise in Women with Chronic Lower Back Pain.

    Science.gov (United States)

    Noh, Kyung-Hee; Kim, Ji-Won; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-05-01

    [Purpose] This study was performed to assess the influence of applying dual pressure biofeedback units (DPBUs) on the angle of pelvic rotation and abdominal muscle activity during the active straight leg raise (ASLR). [Subjects] Seventeen patients with low-back pain (LBP) participated in this study. [Methods] The subjects were asked to perform an active straight leg raise (ASLR) without a PBU, with a single PBU, and with DPBUs. The angles of pelvic rotation were measured using a three-dimensional motion-analysis system, and the muscle activity of the bilateral internal oblique abdominis (IO), external oblique abdominis (EO), and rectus abdominis (RA) was recorded using surface electromyography (EMG). One-way repeated-measures ANOVA was performed to determine the rotation angles and muscle activity under the three conditions. [Results] The EMG activity of the ipsilateral IO, contralateral EO, and bilateral RA was greater and pelvic rotation was lower with the DPBUs than with no PBU or a single PBU. [Conclusion] The results of this study suggest that applying DPBUs during ASLR is effective in decreasing unwanted pelvic rotation and increasing abdominal muscle activity in women with chronic low back pain.

  5. Blood flow after contraction and cuff occlusion is reduced in subjects with muscle soreness after eccentric exercise

    DEFF Research Database (Denmark)

    Souza-Silva, Eduardo; Wittrup Christensen, Steffan; Hirata, Rogerio Pessoto

    2018-01-01

    Purpose: Delayed onset muscle soreness (DOMS) occur within 1-2 days after eccentric exercise but the mechanism mediating hypersensitivity is unclear. This study hypothesized that eccentric exercise reduces the blood flow response following muscle contractions and cuff occlusion, which may result...... anterior muscle. All measures were done bilaterally at day-0 (pre-exercise), day-2 and day-6 (post-exercise). Subjects scored the muscle soreness on a Likert scale for 6 days. Results: Eccentric exercise increased Likert scores at day-1 and day-2 compared with day-0 (P... in accumulated algesic substances being a part of the sensitization in DOMS. Methods: Twelve healthy subjects (5 women) performed dorsiflexion exercise (5 sets of 10 repeated eccentric contractions) in one leg, while the contralateral leg was the control. The maximal voluntary contraction (MVC) of the tibialis...

  6. [Blood distribution in the human leg arteries during orthostasis: role of the hydrostatic factor and posturotonic straining of the anti-gravity muscles].

    Science.gov (United States)

    Modin, A Iu

    2004-01-01

    Ultrasonic visualization and dopplerography were used to study volumetric blood flows along the femoral artery, deep artery of the thigh, and the popliteal and sural arteries in normal volunteers. Active standing test resulted in significant blood redistribution among the arteries with prioritized blood supply to predominantly anti-g muscles but not to predominantly locomotor muscles. Elimination of static loading on the anti-g muscles by weight removal (transfer of the body mass on the other leg) was conducive to the opposite effect, i.e. absolute and relative decreases in the intensity of blood flow along the sural artery and a relatively more marked blood redistribution toward the deep artery of the thigh.

  7. A low arm and leg muscle mass to total body weight ratio is associated with an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2010-2011.

    Science.gov (United States)

    Kim, Yong Hwan; So, Wi-Young

    2016-09-14

    The aim of this study was to investigate the association between metabolic syndrome (MetS) and arm and leg muscle mass to total weight ratios in Korean adults. This was a randomized, controlled, cross-sectional study. Data from 2,383 adults (1,030 men and 1,353 women) were collected from the Korea National Health and Nutrition Examination Survey 2010-2011. Blood lipid profiles, blood pressure, and anthropometric characteristics, including weight, height, waist circumference, and muscle mass on dual energy X-ray absorptiometry (DXA), were evaluated in the participants. MetS was defined according to the criteria of the National Cholesterol Education Program Adult Treatment Panel III. The average mass of both arms and legs was determined using regional muscle analysis by DXA. Afterwards, the arm and leg muscle mass to total body weight ratio was determined and classified into 4 quartiles (i.e., quartile 1 [highest muscle ratio] to quartile 4 [lowest muscle ratio]). According to the arm muscle and leg muscle ratios, there was a higher prevalence of MetS in quartile 4 than in quartile 1 in both men and women. A low arm and leg muscle mass to body weight ratio was associated with a higher prevalence of MetS after adjusting for age, physical activity, frequency of smoking, and frequency of alcohol consumption. In conclusion, MetS patients demonstrated a lower arm and leg muscle mass to body weight ratio. Strength training for the lower and upper extremities is recommended because it can have a positive effect on MetS prevention.

  8. Voluntary enhanced cocontraction of hamstring muscles during open kinetic chain leg extension exercise: its potential unloading effect on the anterior cruciate ligament.

    Science.gov (United States)

    Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio M; Brunetti, Antonella; Brunetti, Orazio; Pettorossi, Vito E

    2014-09-01

    A number of research studies provide evidence that hamstring cocontraction during open kinetic chain knee extension exercises enhances tibiofemoral (TF) stability and reduces the strain on the anterior cruciate ligament. To determine the possible increase in hamstring muscle coactivation caused by a voluntary cocontraction effort during open kinetic chain leg-extension exercises, and to assess whether an intentional hamstring cocontraction can completely suppress the anterior TF shear force during these exercises. Descriptive laboratory study. Knee kinematics as well as electromyographic activity in the semitendinosus (ST), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris muscles were measured in 20 healthy men during isotonic leg extension exercises with resistance (R) ranging from 10% to 80% of the 1-repetition maximum (1RM). The same exercises were also performed while the participants attempted to enhance hamstring coactivation through a voluntary cocontraction effort. The data served as input parameters for a model to calculate the shear and compressive TF forces in leg extension exercises for any set of coactivation patterns of the different hamstring muscles. For R≤ 40% 1RM, the peak coactivation levels obtained with intentional cocontraction (l) were significantly higher (P hamstring muscle, maximum level l was reached at R = 30% 1RM, corresponding to 9.2%, 10.5%, and 24.5% maximum voluntary isometric contraction (MVIC) for the BF, ST, and SM, respectively, whereas the ratio l/l 0 reached its maximum at R = 20% 1RM and was approximately 2, 3, and 4 for the BF, SM, and ST, respectively. The voluntary enhanced coactivation level l obtained for R≤ 30% 1RM completely suppressed the anterior TF shear force developed by the quadriceps during the exercise. In leg extension exercises with resistance R≤ 40% 1RM, coactivation of the BF, SM, and ST can be significantly enhanced (up to 2, 3, and 4 times, respectively) by a voluntary hamstring

  9. Repeated blood flow restriction induces muscle fiber hypertrophy.

    Science.gov (United States)

    Sudo, Mizuki; Ando, Soichi; Kano, Yutaka

    2017-02-01

    We recently developed an animal model to investigate the effects of eccentric contraction (ECC) and blood flow restriction (BFR) on muscle tissue at the cellular level. This study clarified the effects of repeated BFR, ECC, and BFR combined with ECC (BFR+ECC) on muscle fiber hypertrophy. Male Wistar rats were assigned to 3 groups: BFR, ECC, and BFR+ECC. The contralateral leg in the BFR group served as a control (CONT). Muscle fiber cross-sectional area (CSA) of the tibialis anterior was determined after the respective treatments for 6 weeks. CSA was greater in the BFR+ECC group than in the CONT (P hypertrophy at the cellular level. Muscle Nerve 55: 274-276, 2017. © 2016 Wiley Periodicals, Inc.

  10. Effects of fatigue on lower limb, pelvis and trunk kinematics and lower limb muscle activity during single-leg landing after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Lessi, Giovanna Camparis; Serrão, Fábio Viadanna

    2017-08-01

    Because there are no studies that have evaluated the effects of fatigue on the kinematics of the trunk and pelvis or on muscle activation in subjects with ACL reconstruction, the aim of this study was to evaluate the effects of fatigue on the lower limb, pelvis and trunk kinematics and lower limb muscle activation in subjects with ACL reconstruction during a single-leg landing compared to a healthy control group. The participants included 20 subjects with ACL reconstruction (ACL reconstruction group-ACLRG) and 20 healthy subjects (control group-CG) who were aged between 18 and 35 years. Kinematic and electromyographic analyses were performed during a single-leg landing before and after fatigue. The fatigue protocol included a series of 10 squats, two vertical jumps, and 20 steps. The effects of fatigue were increased peak trunk flexion and increased activation of the vastus lateralis, biceps femoris (BF) and gluteus maximus (GMax) during the landing phase. After the fatigue protocol, an increase in peak trunk flexion and activation of the GMax and BF were observed, most likely as a strategy to reduce the load on the ACL. ACL injury prevention programs should include strength and endurance exercises for the hip and trunk extensor muscles so that they can efficiently control trunk flexion during landing. Prospective comparative study, Level II.

  11. Performance, carcass yield, and qualitative characteristics of breast and leg muscles of broilers fed diets supplemented with vitamin E at different ages

    Directory of Open Access Journals (Sweden)

    FR Leonel

    2007-06-01

    Full Text Available The effects of vitamin E supplementation (300 mg/kg diet in the diet of broiler chickens for different periods during rearing on the performance and qualitative traits of breast and leg muscles were evaluated. Seven hundred and twenty day-old chicks were distributed into six treatments: basal diet (25 mg vitamin E/kg diet, and diet supplemented with vitamin E from 1 to 15, 1 to 30, 1 to 45, 14 to 45 and 30 to 45 days of age. Vitamin E content, lipid percentage, TBARS (0 and 3 days of storage, color (*L, *a, *b, and pH were evaluated. There were no differences (p>0.05 among treatments in performance, carcass yield, and cut yields. Qualitative parameters (pH and color presented no differences, although vitamin E positively affected TBARS values at 3 days of storage, mainly in leg muscles. Vitamin E levels in both muscles were higher in the birds supplemented throughout the experiment.

  12. Effects of neuromuscular electrical stimulation on tibialis anterior muscle of spastic hemiparetic children Efeitos de estimulação elétrica neuromuscular no músculo tibial anterior em crianças hemiparéticas espásticas

    Directory of Open Access Journals (Sweden)

    LCBG Nunes

    2008-08-01

    Full Text Available OBJECTIVE: This study evaluated the effects of neuromuscular electrical stimulation (NMES on muscle strength, range of motion (ROM and gross motor function, among spastic hemiparetic children while standing, walking, running and jumping. METHODS: Ten children were divided into two groups of five. The children who were normally receiving physical therapy sessions twice a week had two 30-minute NMES sessions per week (group 1, while those who were having one physical therapy session per week had one 30-minute NMES session per week (group 2, for seven weeks in both groups. The children were evaluated three times: before beginning the NMES protocol (initial, right after the end of the protocol (final and eight weeks after the final evaluation (follow-up. The evaluations included manual goniometry on ankle dorsiflexion, manual muscle strength of the tibialis anterior and gross motor function (measurements while standing, walking, running and jumping. The statistical analysis was performed using the Wilcoxon and Mann-Whitney tests, considering a p level of 0.05. RESULTS: There were significant increases in muscle strength, gross motor function and passive ROM of ankle dorsiflexion, in both groups, and in active dorsiflexion in the first group. No significant differences were found between the groups. CONCLUSIONS: The improvements in ROM, muscle strength and gross motor function demonstrated that the use of NMES was effective in both groups, since no significant differences were found between the groups. This study suggests that NMES may be a useful therapeutic tool, even when applied once a week. Further studies are needed to confirm these findings.OBJETIVO: Este estudo avaliou os efeitos da estimulação elétrica neuromuscular (EENM na força, amplitude de movimento (ADM e função motora grossa (FMG em pé, andando, correndo e pulando de crianças hemiparéticas espásticas. MÉTODOS: Dez crianças foram divididas em dois grupos de cinco. As que

  13. Functional electrical stimulation applied to gluteus medius and tibialis anterior corresponding gait cycle for stroke.

    Science.gov (United States)

    Kim, Jung-Hyun; Chung, Yijung; Kim, Young; Hwang, Sujin

    2012-05-01

    The purpose of this study was to determine the influence of functional electrical stimulation (FES) applied to the tibialis anterior and gluteus medius muscles on the improvement of the spatiotemporal parameters of gait in individuals with a hemiparetic stroke. Thirty-six patients who had suffered a hemiparesis post stroke were enrolled in this study. The participants walked at a self-selected velocity on three different FES applications: (1) FES-triggered gait on the gluteus medius in the stance phase and the tibialis anterior in the swing phase (GM+TA), (2) FES-triggered gait on the tibialis anterior in the swing phase (TA only), and (3) gait without FES-triggered (Non-FES). FES was triggered when the heel in the affected lower limb was placed in contact with an on or off foot switch sensor. The effect of FES applications was assessed using GAITRite for spatiotemporal data. The gait speed, cadence, and stride length were significantly higher under the GM+TA condition than under the TA only and None-FES conditions. The gait speed, cadence and stride length were increased significantly in the TA only condition compared with the Non-FES condition. The double support time and gait symmetry were significantly improved in the GM+TA condition compared to the TA only and Non-FES conditions. These findings suggest that walking with FES of the gluteus medius in the stance phase and tibialis anterior in the swing phase can improve the spatiotemporal parameters of gait in individuals with hemiparetic stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Rupture of the anterior tibialis tendon: A review of the literature and case study of reconstruction with semitendinosus tendon in a patient with diabetes mellitus and polyneuropathy

    Directory of Open Access Journals (Sweden)

    Igor Frangež

    2015-10-01

    Full Text Available Abstract:Background: Rupture of the tibialis anterior tendon is a rare injury. It can be traumatic or spontaneous. Spontaneous rupture is usually a consequence of degenerative changes of the tendon caused by accompanied diseases. For successful treatment and rehabilitation early diagnosis is mandatory. For diagnosis a clinical examination is most important and ultrasound examination and/or magnetic resonance additionally confirms the diagnosis. Treatment can be operative or conservative with below knee non-weight bearing cast. Conservative treatment is usually decided where ruptures are older than three months, especially in patients with poorer mobility or with accompanied diseases. In the literature there are several techniques considering surgical treatment.Case report: A 56 years old men with diabetes mellitus and polyneuropathy sustained a rupture of the tibialis anterior tendon at injury walking downhill. Rupture was at first unrecognized and was treated as an ankle sprain.  After two months he was reexamined and a rupture of the tibialis anterior tendon was diagnosed and surgically reconstructed using semitendinosus tendon graft. Conclusion: Rupture of the anterior tendon of tibialis muscle was reconstructed by using an autologous graft of semitendinosus muscle tendon, in which we achieved good long-term results. Tendon of semitendinosus is suitable because it has properties similar to anterior tendon of tibialis muscle. Because of the similar diameters it is also suitable for bridging of longer defects, such as in our case. 

  15. The influence of foot arch on ankle joint torques andon sEMG signal amplitude in selected lower leg muscles

    Directory of Open Access Journals (Sweden)

    Żebrowska Kinga

    2016-09-01

    Full Text Available Introduction: This study sought to assess the influence of proper foot arch on electromyographic activity of selected lower limb muscles. The aim of this work was to evaluate the effects of foot arch on the activity of selected muscles and to determine whether electromyography might help to identify types of flat feet resulting from muscle- or ligament-related causes.

  16. The effect of lumbar posture on abdominal muscle thickness during an isometric leg task in people with and without non-specific low back pain.

    Science.gov (United States)

    Pinto, Rafael Zambelli; Ferreira, Paulo Henrique; Franco, Marcia Rodrigues; Ferreira, Mariana Calais; Ferreira, Manuela Loureiro; Teixeira-Salmela, Luci Fuscaldi; Oliveira, Vinicius C; Maher, Christopher

    2011-12-01

    This study investigated the effect of lumbar posture on function of transversus abdominis (TrA) and obliquus internus (OI) in people with and without non-specific low back pain (LBP) during a lower limb task. Rehabilitative ultrasound was used to measure thickness change of TrA and OI during a lower limb task that challenged the stability of the spine. Measures were taken in supine in neutral and flexed lumbar postures in 30 patients and 30 healthy subjects. Data were analysed using a two-way (groups, postures) ANOVA. Our results showed that lumbar posture influenced percent thickness change of the TRA muscle but not for OI. An interaction between group and posture was found for TrA thickness change (F(1,56) = 6.818, p = 0.012). For this muscle, only healthy participants showed greater thickness change with neutral posture compared to flexed (mean difference = 6.2%; 95% CI: 3.1-9.3%; p posture can facilitate an increase in thickness of the TrA muscle while performing a leg task, however this effect was not observed for this muscle in patients with LBP. No significant difference in TrA and OI thickness change between people with and without non-specific LBP was found. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Diffusion Properties and 3D Architecture of Human Lower Leg Muscles Assessed with Ultra-High-Field-Strength Diffusion-Tensor MR Imaging and Tractography: Reproducibility and Sensitivity to Sex Difference and Intramuscular Variability.

    Science.gov (United States)

    Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David

    2018-05-01

    Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is

  18. Computed tomographic findings of skeletal muscles in amyotrophic lateral sclerosis (ALS)

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Imai, Terukuni; Sadashima, Hiromichi; Matsumoto, Sadayuki; Yamamoto, Toru; Kusaka, Hirobumi; Yamasaki, Masahiro; Maya, Kiyomi; Tanabe, Masaya (Kitano Hospital, Osaka (Japan))

    1989-04-01

    We evaluated the Computed Tomographic (CT) findings of skeletal muscles in 12 cases of amyotrophic lateral sclerosis (ALS), 1 case of spinal progressive muscular atrophy (SPMA), and 1 case of Kugelberg-Welander disease. CT examination was performed in the neck, shoulders, abdomen, pelvis, thighs, and lower legs, 15 muscles were selected for evaluation. The following muscles tended to be affected: m. transversospinalis (12 cases were abnormal), m. deltoideus (10), m. subscapularis (10), m. infraspinatus (10), mm. dorsi (12), hamstring muscles (14), m. tibialis anterior (14), and m. triceps surae (14). On the contrary, the following muscles tended to be preserved: m. sternocleidomastoideus (only 7 cases were abnormal), m. psoas major (7), m. gluteus maximus (7), m. rectus femoris (7), m. sartorius (7) and m. gracilis (6). The distribution of the muscles affected showed neither proximal nor distal dominancy. As the disease advanced, however, all the muscles became affected without any severity. CT findings of skeletal muscles in ALS were characterized by muscle atrophy and fat infiltration, which showed a patchy, linear, or moth-eaten appearance. In mildly affected cases, there was muscle atrophy without internal architectual changes. In moderately affected cases, muscle atrophy advanced and internal architectural changes (patchy, linear, and moth-eaten fat infiltration) became evident. In most advanced cases, every muscle showed a ragged appearance because of severe muscle atrophy and internal architectural changes. These findings were well distinguished from those of SPMA, which resembled the CT pattern of primary muscle diseases. (author).

  19. Reinnervation of the tibialis anterior following sciatic nerve crush injury: a confocal microscopic study in transgenic mice.

    Science.gov (United States)

    Magill, Christina K; Tong, Alice; Kawamura, David; Hayashi, Ayato; Hunter, Daniel A; Parsadanian, Alexander; Mackinnon, Susan E; Myckatyn, Terence M

    2007-09-01

    Transgenic mice whose axons and Schwann cells express fluorescent chromophores enable new imaging techniques and augment concepts in developmental neurobiology. The utility of these tools in the study of traumatic nerve injury depends on employing nerve models that are amenable to microsurgical manipulation and gauging functional recovery. Motor recovery from sciatic nerve crush injury is studied here by evaluating motor endplates of the tibialis anterior muscle, which is innervated by the deep peroneal branch of the sciatic nerve. Following sciatic nerve crush, the deep surface of the tibialis anterior muscle is examined using whole mount confocal microscopy, and reinnervation is characterized by imaging fluorescent axons or Schwann cells (SCs). One week following sciatic crush injury, 100% of motor endplates are denervated with partial reinnervation at 2 weeks, hyperinnervation at 3 and 4 weeks, and restoration of a 1:1 axon to motor endplate relationship 6 weeks after injury. Walking track analysis reveals progressive recovery of sciatic nerve function by 6 weeks. SCs reveal reduced S100 expression within 2 weeks of denervation, correlating with regression to a more immature phenotype. Reinnervation of SCs restores S100 expression and a fully differentiated phenotype. Following denervation, there is altered morphology of circumscribed terminal Schwann cells demonstrating extensive process formation between adjacent motor endplates. The thin, uniformly innervated tibialis anterior muscle is well suited for studying motor reinnervation following sciatic nerve injury. Confocal microscopy may be performed coincident with other techniques of assessing nerve regeneration and functional recovery.

  20. Lower Extremity Muscle Activation and Kinematics of Catchers When Throwing Using Various Squatting and Throwing Postures

    Directory of Open Access Journals (Sweden)

    Yi-Chien Peng, Kuo-Cheng Lo, Lin-Hwa Wang

    2015-09-01

    Full Text Available This study investigated the differences in joint motions and muscle activities of the lower extremities involved in various squatting postures. The motion capture system with thirty-one reflective markers attached on participants was used for motion data collection. The electromyography system was applied over the quadriceps, biceps femoris, tibialis anterior, and gastrocnemius muscles of the pivot and stride leg. The joint extension and flexion in wide squatting are greater than in general squatting (p = 0.005. Knee joint extension and flexion in general squatting are significantly greater than in wide squatting (p = 0.001. The adduction and abduction of the hip joint in stride passing are significantly greater than in step squatting (p = 0.000. Furthermore, the adduction and abduction of the knee joint in stride passing are also significantly greater than in step squatting (p = 0.000. When stride passing is performed, the muscle activation of the hamstring of the pivot foot in general squatting is significantly greater than in wide squatting (p < 0.05, and this difference continues to the stride period. Most catchers use a general or wide squatting width, exclusive of a narrow one. Therefore, the training design for strengthening the lower extremity muscles should consider the appropriateness of the common squat width to enhance squat-up performance. For lower limb muscle activation, wide squatting requires more active gastrocnemius and tibialis anterior muscles. Baseball players should extend the knee angle of the pivot foot before catching the ball.

  1. Skeletal muscle water T2 as a biomarker of disease status and exercise effects in patients with Duchenne muscular dystrophy.

    Science.gov (United States)

    Mankodi, Ami; Azzabou, Noura; Bulea, Thomas; Reyngoudt, Harmen; Shimellis, Hirity; Ren, Yupeng; Kim, Eunhee; Fischbeck, Kenneth H; Carlier, Pierre G

    2017-08-01

    The purpose of this study was to examine exercise effects on muscle water T 2 in patients with Duchenne muscular dystrophy (DMD). In 12 DMD subjects and 19 controls, lower leg muscle fat (%) was measured by Dixon and muscle water T 2 and R 2 (1/T 2 ) by the tri-exponential model. Muscle water R 2 was measured again at 3 hours after an ankle dorsiflexion exercise. The muscle fat fraction was higher in DMD participants than in controls (p < .001) except in the tibialis posterior muscle. Muscle water T 2 was measured independent of the degree of fatty degeneration in DMD muscle. At baseline, muscle water T 2 was higher in all but the extensor digitorum longus muscles of DMD participants than controls (p < .001). DMD participants had a lower muscle torque (p < .001) and exerted less power (p < .01) during exercise than controls. Nevertheless, muscle water R 2 decreased (T 2 increased) after exercise from baseline in DMD subjects and controls with greater changes in the target muscles of the exercise than in ankle plantarflexor muscles. Skeletal muscle water T 2 is a sensitive biomarker of the disease status in DMD and of the exercise response in DMD patients and controls. Published by Elsevier B.V.

  2. Efficacy of Nintendo Wii Training on Mechanical Leg Muscle Function and Postural Balance in Community-Dwelling Older Adults

    DEFF Research Database (Denmark)

    Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten

    2013-01-01

    BACKGROUND: Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown....... METHODS: This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary...... end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. RESULTS: Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction...

  3. A computational model to investigate the effect of pennation angle on surface electromyogram of Tibialis Anterior.

    Directory of Open Access Journals (Sweden)

    Diptasree Maitra Ghosh

    Full Text Available This study has described and experimentally validated the differential electrodes surface electromyography (sEMG model for tibialis anterior muscles during isometric contraction. This model has investigated the effect of pennation angle on the simulated sEMG signal. The results show that there is no significant effect of pennation angle in the range 0° to 20° to the single fibre action potential shape recorded on the skin surface. However, the changes with respect to pennation angle are observed in sEMG amplitude, frequency and fractal dimension. It is also observed that at different levels of muscle contractions there is similarity in the relationships with Root Mean Square, Median Frequency, and Fractal Dimension of the recorded and simulated sEMG signals.

  4. Protein turnover in the breast muscle of broiler chicks and studies addressing chlorine dioxide sanitation of hatching eggs, poultry leg problems and wheat middling diets for laying hens

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, P.H.

    1988-01-01

    Developmental changes occurred in breast muscle Ks measured by {sup 14}C-tyrosine incorporation at 10, 16, 22 and 34 days of age. Protein synthesis rates decreased as the birds matures: 30 to 11.2%/d between 10 and 34 days of age. In a second study birds fed diets low in lysine or protein-energy had reduced fractional rates of protein synthesis and free tyrosine, branched chain and large neutral amino acid concentrations as compared to control birds the same body weight. Artificial weight loading and reduced dietary protein levels were used to study the effects of body weight on the severity of leg deformities in chicks and poults. Experiments investigating the practicality of wheat middlings as an alternate feedstuff for laying hens suggested that high levels in the diet will reduce egg production, feed conversion, hen livability and egg yolk color. Lastly, chlorine dioxide foam and dipping solutions were compared with formaldehyde fumigation for sanitizing hatching eggs.

  5. Protein turnover in the breast muscle of broiler chicks and studies addressing chlorine dioxide sanitation of hatching eggs, poultry leg problems and wheat middling diets for laying hens

    International Nuclear Information System (INIS)

    Patterson, P.H.

    1988-01-01

    Developmental changes occurred in breast muscle Ks measured by 14 C-tyrosine incorporation at 10, 16, 22 and 34 days of age. Protein synthesis rates decreased as the birds matures: 30 to 11.2%/d between 10 and 34 days of age. In a second study birds fed diets low in lysine or protein-energy had reduced fractional rates of protein synthesis and free tyrosine, branched chain and large neutral amino acid concentrations as compared to control birds the same body weight. Artificial weight loading and reduced dietary protein levels were used to study the effects of body weight on the severity of leg deformities in chicks and poults. Experiments investigating the practicality of wheat middlings as an alternate feedstuff for laying hens suggested that high levels in the diet will reduce egg production, feed conversion, hen livability and egg yolk color. Lastly, chlorine dioxide foam and dipping solutions were compared with formaldehyde fumigation for sanitizing hatching eggs

  6. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Egelund, Jon; Mandrup Jensen, Camilla Maria

    2017-01-01

    the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (3.1 ± 0.5 [mean ± SEM] years after final menstrual period) women only separated by 4 (50 ± 0 versus 54 ± 1......Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women due to the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined......) years of age were included. Before training, leg blood flow, O2 delivery, O2 uptake, and lactate release during knee-extensor exercise were similar in pre- and postmenopausal women. Exercise training reduced (P

  7. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A suppressed during prolonged physical inactivity (sitting

    Directory of Open Access Journals (Sweden)

    Zderic Theodore W

    2012-10-01

    Full Text Available Abstract Background Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting. Methods Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests. Results These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A, a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions

  8. Effect of exercise-induced enhancement of the leg-extensor muscle-tendon unit capacities on ambulatory mechanics and knee osteoarthritis markers in the elderly.

    Directory of Open Access Journals (Sweden)

    Kiros Karamanidis

    Full Text Available Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS and quadriceps femoris (QF muscle-tendon unit (MTU capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly.Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry.Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention.This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly

  9. In the unloaded lower leg, vibration extrudes venous blood out of the calf muscles probably by direct acceleration and without arterial vasodilation.

    Science.gov (United States)

    Zange, Jochen; Molitor, Sven; Illbruck, Agnes; Müller, Klaus; Schönau, Eckhard; Kohl-Bareis, Matthias; Rittweger, Jörn

    2014-05-01

    During vibration of the whole unloaded lower leg, effects on capillary blood content and blood oxygenation were measured in the calf muscle. The hypotheses predicted extrusion of venous blood by a tonic reflex contraction and that reactive hyperaemia could be observed after vibration. Twelve male subjects sat in front of a vibration platform with their right foot affixed to the platform. In four intervals of 3-min duration vibration was applied with a peak-to-peak displacement of 5 mm at frequencies 15 or 25 Hz, and two foot positions, respectively. Near infrared spectroscopy was used for measuring haemoglobin oxygen saturation (SmO2) and the concentration of total haemoglobin (tHb) in the medial gastrocnemius muscle. Within 30 s of vibration SmO2 increased from 55 ± 1 to 66 ± 1 % (mean ± SE). Within 1.5 min afterwards SmO2 decreased to a steady state (62 ± 1 %). During the following 3 min of recovery SmO2 slowly decreased back to base line. THb decreased within the first 30 s of vibration, remained almost constant until the end of vibration, and slowly recovered to baseline afterwards. No significant differences were found for the two vibration frequencies and the two foot positions. The relaxed and unloaded calf muscles did not respond to vibration with a remarkable reflex contraction. The acceleration by vibration apparently ejected capillary venous blood from the muscle. Subsequent recovery did not match with a reactive hyperaemia indicating that the mere mechanical stress did not cause vasodilation.

  10. The Effect of Ankle Kinesio Tape on Ankle Muscle Activity During a Drop Landing.

    Science.gov (United States)

    Fayson, Shirleeah D; Needle, Alan R; Kaminski, Thomas W

    2015-11-01

    The use of Kinesio Tape among health care professional has grown recently in efforts to efficiently prevent and treat joint injuries. However, limited evidence exists regarding the efficacy of this technique in enhancing joint stability and neuromuscular control. To determine how Kinesio Tape application to the ankle joint alters forces and muscle activity during a drop-jump maneuver. Single-group pretest- posttest. University laboratory. 22 healthy adults with no previous history of ankle injury. Participants were instrumented with electromyography on the lower-leg muscles as they jumped from a 35-cm platform onto force plates. Test trials were performed without tape (BL), immediately after application of Kinesio Tape to the ankle (KT-I), and after 24 h of continued use (KT-24). Peak ground-reaction forces (GRFs) and time to peak GRF were compared across taping conditions, and the timing and amplitude of muscle activity from the tibialis anterior, peroneus longus, and lateral gastrocnemius were compared across taping conditions. No significant differences in amplitude or timing of GRFs were observed (P > .05). However, muscle activity was observed to decrease from BL to KT-I in the tibialis anterior (P = .027) and from BL to KT-24 in the PL (P = .022). The data suggest that Kinesio Tape decreases muscle activity in the ankle during a drop-jump maneuver, although no changes in GRFs were observed. This is contrary to the proposed mechanisms of Kinesio Tape. Further research might investigate how this affects participants with a history of injury.

  11. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men

    DEFF Research Database (Denmark)

    Gram, Martin; Vigelsø Hansen, Andreas; Yokota, Takashi

    2014-01-01

    Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative...... capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mt...... of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity...

  12. Twelve weeks' progressive resistance training combined with protein supplementation beyond habitual intakes increases upper leg lean tissue mass, muscle strength and extended gait speed in healthy older women.

    Science.gov (United States)

    Francis, Peter; Mc Cormack, William; Toomey, Clodagh; Norton, Catherine; Saunders, Jean; Kerin, Emmet; Lyons, Mark; Jakeman, Philip

    2017-12-01

    The age-related decline in functional capability is preceded by a reduction in muscle quality. The purpose of this study was to assess the combined effects of progressive resistance training (PRT) and protein supplementation beyond habitual intakes on upper leg lean tissue mass (LTM), muscle quality and functional capability in healthy 50-70 years women. In a single-blinded, randomized, controlled design, 57 healthy older women (age 61.1 ± 5.1 years, 1.61 ± 0.65 m, 65.3 ± 15.3 kg) consumed 0.33 g/kg body mass of a milk-based protein matrix (PRO) for 12 weeks. Of the 57 women, 29 also engaged in a PRT intervention (PRO + PRT). In comparison to the PRO group (n = 28), those in the PRO + PRT group had an increase in upper leg LTM [0.04 (95% CI -0.07 to 0.01) kg vs. 0.13 (95% CI 0.08-0.18) kg, P = 0.027], as measured by Dual-energy X-ray absorptiometry; an increase in knee extensor (KE) torque [-1.6 (95% CI -7.3 to 4.4 N m) vs. 10.2 (95% CI 4.3-15.8 N m), P = 0.007], as measured from a maximal voluntary isometric contraction (Con-Trex MJ; CMV AG); and an increase in extended gait speed [-0.01 (95% CI -0.52-0.04) m s -1 vs. 0.10 (95% CI 0.05-0.22) m s -1 , P = 0.001] as measured from a maximal 900 m effort. There was no difference between groups in the time taken to complete 5 chair rises or the number of chair rises performed in 30 s (P > 0.05). PRT in healthy older women ingesting a dietary protein supplement is an effective strategy to improve upper leg LTM, KE torque and extended gait speed in healthy older women.

  13. Eccentric exercise slows in vivo microvascular reactivity during brief contractions in human skeletal muscle.

    Science.gov (United States)

    Larsen, Ryan G; Hirata, Rogerio P; Madzak, Adnan; Frøkjær, Jens B; Graven-Nielsen, Thomas

    2015-12-01

    Unaccustomed exercise involving eccentric contractions results in muscle soreness and an overall decline in muscle function, however, little is known about the effects of eccentric exercise on microvascular reactivity in human skeletal muscle. Fourteen healthy men and women performed eccentric contractions of the dorsiflexor muscles in one leg, while the contralateral leg served as a control. At baseline, and 24 and 48 h after eccentric exercise, the following were acquired bilaterally in the tibialis anterior muscle: 1) transverse relaxation time (T2)-weighted magnetic resonance images to determine muscle cross-sectional area (mCSA) and T2; 2) blood oxygen level-dependent (BOLD) images during and following brief, maximal voluntary contractions (MVC) to monitor the hyperemic responses with participants positioned supine in a 3T magnet; 3) muscle strength; and 4) pain pressure threshold. Compared with the control leg, eccentric exercise resulted in soreness, decline in strength (∼20%), increased mCSA (∼7%), and prolonged T2 (∼7%) at 24 and 48 h (P eccentric exercise, such that time-to-peak (∼35%, P contraction-induced hyperemic response suggests slowed microvascular reactivity and altered matching of O2 delivery to O2 utilization within muscle tissue showing signs of muscle damage. These changes in microvascular regulation after eccentric exercise may impede rapid adjustments in muscle blood flow at exercise onset and during activities involving brief bursts of muscle activation, which may impair O2 delivery and contribute to reduced muscle function after eccentric exercise. Copyright © 2015 the American Physiological Society.

  14. Young, healthy subjects can reduce the activity of calf muscles when provided with EMG biofeedback in upright stance

    Directory of Open Access Journals (Sweden)

    Taian M. Vieira

    2016-04-01

    Full Text Available Recent evidence suggests the minimisation of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimising the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimise the level of muscle activation during standing without increasing the excursion of the centre of pressure (CoP. CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from ten healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects’ responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P<0.05 and an increase in tibialis anterior EMG (~10%; P<0.05. Furthermore, CoP mean position significantly shifted backward (~30 mm. In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at

  15. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Connolly, Luke; Weihe, Pál

    2015-01-01

    =21) or a non-training control group (CON, n=20), the training groups completed three workouts per week for 15 weeks. Resting muscle biopsies were obtained from m. vastus lateralis and m. deltoideus before and after the intervention. After the training intervention, a larger (P

  16. Hemodynamic changes in rat leg muscles during tourniquet-induced ischemia-reperfusion injury observed by near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Kim, J G; Lee, J; Tromberg, B J; Brenner, M; Roe, J; Walters, T J

    2009-01-01

    In this study, we hypothesized that non-invasive continuous wave near-infrared spectroscopy (CWNIRS) can determine the severity or reversibility of muscle damage due to ischemia/reperfusion (I/R), and the results will be highly correlated with those from physical examination and histological analysis. To test this hypothesis, we performed CWNIRS measurements on two groups of male Sprague-Dawley rats (∼400 g) that underwent 2 h (n = 6) or 3 h (n = 7) of pneumatic tourniquet application (TKA). Tissue oxyhemoglobin [HbO 2 ] and deoxyhemoglobin [Hb] concentration changes were monitored during the 2 h or 3 h of 250 mmHg TKA and for an additional 2 h post-TKA. Rats were euthanized 24 h post-TKA and examined for injury, edema and viability of muscles. Contralateral muscles served as controls for each animal. In both groups, [HbO 2 ] dropped immediately, then gradually decreased further after TKA and then recovered once the tourniquet was released. However, releasing after 2 h of TKA caused [HbO 2 ] to overshoot above the baseline during reperfusion while the 3 h group continued to have lower [HbO 2 ] than baseline. We found a significant correlation between the elapsed time from tourniquet release to the first recovery peak of [HbO 2 ] and the muscle weight ratio between tourniquet and contralateral limb muscles (R = 0.86). Hemodynamic patterns from non-invasive CWNIRS demonstrated significant differences between 2 h and 3 h I/R. The results demonstrate that CWNIRS may be useful as a non-invasive prognostic tool for conditions involving vascular compromise such as extremity compartment syndrome

  17. A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure

    Directory of Open Access Journals (Sweden)

    A.C. Barroco

    2017-10-01

    Full Text Available Heart failure is characterized by the inability of the cardiovascular system to maintain oxygen (O2 delivery (i.e., muscle blood flow in non-hypoxemic patients to meet O2 demands. The resulting increase in fractional O2 extraction can be non-invasively tracked by deoxygenated hemoglobin concentration (deoxi-Hb as measured by near-infrared spectroscopy (NIRS. We aimed to establish a simplified approach to extract deoxi-Hb-based indices of impaired muscle O2 delivery during rapidly-incrementing exercise in heart failure. We continuously probed the right vastus lateralis muscle with continuous-wave NIRS during a ramp-incremental cardiopulmonary exercise test in 10 patients (left ventricular ejection fraction <35% and 10 age-matched healthy males. Deoxi-Hb is reported as % of total response (onset to peak exercise in relation to work rate. Patients showed lower maximum exercise capacity and O2 uptake-work rate than controls (P<0.05. The deoxi-Hb response profile as a function of work rate was S-shaped in all subjects, i.e., it presented three distinct phases. Increased muscle deoxygenation in patients compared to controls was demonstrated by: i a steeper mid-exercise deoxi-Hb-work rate slope (2.2±1.3 vs 1.0±0.3% peak/W, respectively; P<0.05, and ii late-exercise increase in deoxi-Hb, which contrasted with stable or decreasing deoxi-Hb in all controls. Steeper deoxi-Hb-work rate slope was associated with lower peak work rate in patients (r=–0.73; P=0.01. This simplified approach to deoxi-Hb interpretation might prove useful in clinical settings to quantify impairments in O2 delivery by NIRS during ramp-incremental exercise in individual heart failure patients.

  18. Medium-latency stretch reflexes of foot and leg muscles analysed by cooling the lower limb in standing humans.

    Science.gov (United States)

    Schieppati, M; Nardone, A

    1997-09-15

    1. In standing subjects, an ankle-dorsiflexing perturbation of the supporting surface evokes a short-latency response (SLR) and a medium-latency response (MLR) to stretch in both soleus (Sol) and flexor digitorum brevis (FDB) muscles. The SLR is the counterpart of the monosynaptic reflex, whilst the MLR might be either mediated by Ia fibres, the delay being due to a long-loop central circuit, or by fibres of slower conduction velocity. Since small afferents are slowed more than large ones by low temperature, a greater latency increment for the MLR than the SLR induced by cooling of the limb would point to a peripheral origin of the MLR. 2. In nine subjects, one limb was cooled by circulating water in a tube wrapped around it for about 120 min. Perturbations were delivered to the same limb prior to and during cooling, and after rewarming. EMG was recorded by surface electrodes from the Sol and FDB muscles. 3. The mean increase in latency of MLRs was significantly greater than that of SLRs in both muscles. On average, the Sol SLR increased from 42.4 to 47.0 ms and the Sol MLR from 72.0 to 82.3 ms. The FDB SLR increased from 58.1 to 66.5 ms and the FDB MLR from 94.9 to 110.5 ms. The mean difference (MLR minus SLR) increased from 29.6 to 35.2 ms for Sol, and from 36.8 to 43.9 ms for FDB at the end of cooling. After 30 min of rewarming, the responses of both muscles recovered towards control values. 4. The greater latency increment of the MLRs than of the SLRs favours the hypothesis of a slower conduction velocity of the responsible afferent fibres. The most likely candidate fibres are the spindle group II afferents.

  19. Increased gain of vestibulospinal potentials evoked in neck and leg muscles when standing under height-induced postural threat.

    Science.gov (United States)

    Naranjo, E N; Allum, J H J; Inglis, J T; Carpenter, M G

    2015-05-07

    To measure changes in amplitudes of vestibular evoked myogenic potentials (VEMPs) elicited from neck, upper and lower limb muscles during a quiet standing task with increased postural threat achieved by manipulating surface height. Twenty eight subjects were tested while standing on a platform raised to 0.8 m and 3.2 m from the ground. Surface electromyography was recorded from the ipsilateral sternocleidomastoid (SCM), biceps brachii (BB), flexor carpi radialis (FCR), soleus (SOL) and medial gastrocnemius (MG) muscles. Stimulation was with air-conducted short tone bursts (4 ms). After controlling for background muscle activity, VEMP amplitudes were compared between heights and correlated with changes in state anxiety, fear and arousal. VEMP amplitude significantly increased in SCM (9%) and SOL (12.7%) with increased surface height (pgains. Results demonstrate that VEMPs can be used to test different VSR pathways simultaneously during stance. Since fear and anxiety are prevalent with vestibular disorders, they should be considered as potential contributing factors for clinical vestibular outcome measures. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. X-rays computed tomographic scans of lower limb and trunk muscles in facioscapulohumeral muscular dystrophy

    International Nuclear Information System (INIS)

    Horikawa, Hirosei; Mano, Yukio; Takayanagi, Tetsuya; Takahashi, Keiichi; Nishio, Hisahide.

    1992-01-01

    X-rays computed tomographic (CT) scans of muscles of the lower limbs and the trunk in 14 patients with facioscapulohumeral muscular dystrophy (FSH) were studied. The CT scans showed that the affected muscles were decreased in density and size. The laterality of muscular involvement was sometimes observed. The muscular lesions in the lower limbs showed proximal distribution. In the thigh, the hamstrings were affected first, the adductor muscles second, and then the muscular involvement progressed to the quadriceps femoris muscle. In the lower leg, the gastrocnemius and soleus muscles were relatively spared as compared with the tibialis anterior muscle. In the lumbar girdle, the abdominal muscles were involved first, the gluteal muscles second, the back muscles third, and the psoas major muscle were relatively spared. The muscular weakness of this distribution exacerbated lumbar lordosis. The neck muscles were less affected than those of the lumbar girdle. The CT scans in FSH demonstrated the characteristic pattern of muscular involvement, which differed from the inherited muscular diseases such as Duchenne muscular dystrophy, myotonic dystrophy, and others. (author)

  1. X-rays computed tomographic scans of lower limb and trunk muscles in facioscapulohumeral muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Horikawa, Hirosei; Mano, Yukio; Takayanagi, Tetsuya (Nara Medical Univ., Kashihara (Japan)); Takahashi, Keiichi; Nishio, Hisahide

    1992-10-01

    X-rays computed tomographic (CT) scans of muscles of the lower limbs and the trunk in 14 patients with facioscapulohumeral muscular dystrophy (FSH) were studied. The CT scans showed that the affected muscles were decreased in density and size. The laterality of muscular involvement was sometimes observed. The muscular lesions in the lower limbs showed proximal distribution. In the thigh, the hamstrings were affected first, the adductor muscles second, and then the muscular involvement progressed to the quadriceps femoris muscle. In the lower leg, the gastrocnemius and soleus muscles were relatively spared as compared with the tibialis anterior muscle. In the lumbar girdle, the abdominal muscles were involved first, the gluteal muscles second, the back muscles third, and the psoas major muscle were relatively spared. The muscular weakness of this distribution exacerbated lumbar lordosis. The neck muscles were less affected than those of the lumbar girdle. The CT scans in FSH demonstrated the characteristic pattern of muscular involvement, which differed from the inherited muscular diseases such as Duchenne muscular dystrophy, myotonic dystrophy, and others. (author).

  2. An increased response to experimental muscle pain is related to psychological status in women with chronic non-traumatic neck-shoulder pain

    Science.gov (United States)

    2011-01-01

    Background Neck-shoulder pain conditions, e.g., chronic trapezius myalgia, have been associated with sensory disturbances such as increased sensitivity to experimentally induced pain. This study investigated pain sensitivity in terms of bilateral pressure pain thresholds over the trapezius and tibialis anterior muscles and pain responses after a unilateral hypertonic saline infusion into the right legs tibialis anterior muscle and related those parameters to intensity and area size of the clinical pain and to psychological factors (sleeping problems, depression, anxiety, catastrophizing and fear-avoidance). Methods Nineteen women with chronic non-traumatic neck-shoulder pain but without simultaneous anatomically widespread clinical pain (NSP) and 30 age-matched pain-free female control subjects (CON) participated in the study. Results NSP had lower pressure pain thresholds over the trapezius and over the tibialis anterior muscles and experienced hypertonic saline-evoked pain in the tibialis anterior muscle to be significantly more intense and locally more widespread than CON. More intense symptoms of anxiety and depression together with a higher disability level were associated with increased pain responses to experimental pain induction and a larger area size of the clinical neck-shoulder pain at its worst. Conclusion These results indicate that central mechanisms e.g., central sensitization and altered descending control, are involved in chronic neck-shoulder pain since sensory hypersensitivity was found in areas distant to the site of clinical pain. Psychological status was found to interact with the perception, intensity, duration and distribution of induced pain (hypertonic saline) together with the spreading of clinical pain. The duration and intensity of pain correlated negatively with pressure pain thresholds. PMID:21992460

  3. An increased response to experimental muscle pain is related to psychological status in women with chronic non-traumatic neck-shoulder pain

    Directory of Open Access Journals (Sweden)

    Persson Ann L

    2011-10-01

    Full Text Available Abstract Background Neck-shoulder pain conditions, e.g., chronic trapezius myalgia, have been associated with sensory disturbances such as increased sensitivity to experimentally induced pain. This study investigated pain sensitivity in terms of bilateral pressure pain thresholds over the trapezius and tibialis anterior muscles and pain responses after a unilateral hypertonic saline infusion into the right legs tibialis anterior muscle and related those parameters to intensity and area size of the clinical pain and to psychological factors (sleeping problems, depression, anxiety, catastrophizing and fear-avoidance. Methods Nineteen women with chronic non-traumatic neck-shoulder pain but without simultaneous anatomically widespread clinical pain (NSP and 30 age-matched pain-free female control subjects (CON participated in the study. Results NSP had lower pressure pain thresholds over the trapezius and over the tibialis anterior muscles and experienced hypertonic saline-evoked pain in the tibialis anterior muscle to be significantly more intense and locally more widespread than CON. More intense symptoms of anxiety and depression together with a higher disability level were associated with increased pain responses to experimental pain induction and a larger area size of the clinical neck-shoulder pain at its worst. Conclusion These results indicate that central mechanisms e.g., central sensitization and altered descending control, are involved in chronic neck-shoulder pain since sensory hypersensitivity was found in areas distant to the site of clinical pain. Psychological status was found to interact with the perception, intensity, duration and distribution of induced pain (hypertonic saline together with the spreading of clinical pain. The duration and intensity of pain correlated negatively with pressure pain thresholds.

  4. Electrophysiologic evaluation of lumbosacral single nerve roots using compound muscle action potentials.

    Science.gov (United States)

    Ogura, Taku; Shikata, Hideto; Hase, Hitoshi; Mori, Masaki; Hayashida, Taturo; Osawa, Toru; Mikami, Yasuo; Kubo, Toshikazu

    2003-10-01

    Transcutaneous electrical stimulation applied to the vertebral column produces compound muscle action potentials (CMAPs) from the leg muscles. Using this method, we evaluated the efferent pathways of the lumbosacral nerve roots. The subjects were 26 healthy volunteers and 31 patients with lumbar disc herniation (LDH). CMAP recordings were obtained from the bilateral vastus medialis, tibialis anterior, extensor digitorum brevis, and abductor hallucis muscles using low-output-impedance stimulation. In normal subjects, the CMAP latency increased linearly with the distance between the stimulating electrode and the recording electrode, with little difference in latency between the left and the right sides in each subject. The CMAP amplitude was significantly lower in the patients with LDH, and the latency was also prolonged when the stimulating electrode was placed above the lesion. This technique may thus be a useful noninvasive method for assessing lumbosacral nerve root function in patients with LDH.

  5. Clubfoot posteromedial release: advantages of tibialis anterior tendon lengthening.

    Science.gov (United States)

    Wicart, Philippe R; Barthes, Xavier; Ghanem, Ismat; Seringe, Raphaël

    2002-01-01

    The aim of this study is to evaluate the eventual advantages of tibialis anterior (TA) tendon lengthening during clubfoot posteromedial release. A continuous series of 60 idiopathic clubfeet has been retrospectively studied. Tibialis anterior lengthening (TAL) began to be performed in 1984. Two groups of 30 feet have been distinguished: without TAL (before 1984) and with TAL (after 1984). There was no significant difference between the 2 groups concerning mean age at surgery, preoperative clinical and radiologic data. Mean postoperative follow-up was 10 years and minimal follow-up required was 5 years. TAL decreased Triceps surae relative insufficiency and improved monopodal jump. TAL balanced TA and peroneus longus, decreased dynamic supination and balanced forefoot pronation and supination. The feet without TAL presented lack of anteromedial support (20% without TAL, 0% with TAL) and medial arch cavus with dorsal talo-navicular subluxation (20% without TAL, 3,3% with TAL). TAL decreased the rate of recurrence and surgical revision.

  6. Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery.

    Science.gov (United States)

    Zuj, K A; Prince, C N; Hughson, R L; Peterson, S D

    2018-02-01

    This study tested the hypothesis that intermittent compression of the lower limb would increase blood flow during exercise and postexercise recovery. Data were collected from 12 healthy individuals (8 men) who performed 3 min of standing plantar flexion exercise. The following three conditions were tested: no applied compression (NoComp), compression during the exercise period only (ExComp), and compression during 2 min of standing postexercise recovery. Doppler ultrasound was used to determine superficial femoral artery (SFA) blood flow responses. Mean arterial pressure (MAP) and cardiac stroke volume (SV) were assessed using finger photoplethysmography, with vascular conductance (VC) calculated as VC = SFA flow/MAP. Compared with the NoComp condition, compression resulted in increased MAP during exercise [+3.5 ± 4.1 mmHg (mean ± SD)] but not during postexercise recovery (+1.6 ± 5.9 mmHg). SV increased with compression during both exercise (+4.8 ± 5.1 ml) and recovery (+8.0 ± 6.6 ml) compared with NoComp. There was a greater increase in SFA flow with compression during exercise (+52.1 ± 57.2 ml/min) and during recovery (+58.6 ± 56.7 ml/min). VC immediately following exercise was also significantly greater in the ExComp condition compared with the NoComp condition (+0.57 ± 0.42 ml·min -1 ·mmHg -1 ), suggesting the observed increase in blood flow during exercise was in part because of changes in VC. Results from this study support the hypothesis that intermittent compression applied during exercise and recovery from exercise results in increased limb blood flow, potentially contributing to changes in exercise performance and recovery. NEW & NOTEWORTHY Blood flow to working skeletal muscle is achieved in part through the rhythmic actions of the skeletal muscle pump. This study demonstrated that the application of intermittent pneumatic compression during the diastolic phase of the cardiac cycle, to mimic the mechanical

  7. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion.

    Science.gov (United States)

    Siddiqi, Ariba; Poosapadi Arjunan, Sridhar; Kumar, Dinesh Kant

    2018-01-16

    This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.

  8. The effects of anthropometry and leg muscle power on drive and transition phase of acceleration: a longitudinal study on young soccer players.

    Science.gov (United States)

    Nikolaidis, Pantelis T; Ingebrigtsen, Jorgen; Jeffreys, Ian

    2016-10-01

    The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice, in the beginning and in the end of competitive season, for anthropometric characteristics, countermovement jump and 20-meter acceleration (split 0-10 meters and 10-20 meters, indices of drive and transition, respectively). The soccer players were grouped according to seasonal changes in 20-meter acceleration (Δacc) in responders (Δacc≤-0.10 s), control (-0.05≤Δacc≤0.08 s) and non-responders (Δacc≥0.10 s). Compared with the non-responders at baseline, the responders were younger (-2.0 years [-2.8;-1.1]), shorter (-10.1 cm [-19.4;-0.7]), with higher body fat percentage (7.7% [2.7%;12.6%]) and fat mass (4.1 kg [0.7;7.4]), and lower performance in the countermovement jump (-8.9 cm [-13.9;-4.0]) and 20 m acceleration (0.63 s [0.39;0.87]); during the season they had smaller body mass gain (-2.8 kg [-5.4;-0.1]), decreased Body Mass Index (BMI, -1.0 kg/m2 [-1.9;0]) and greater improvement in the 20-meter acceleration (-0.33 s [-0.38;-0.28]). The effect size for these between-group differences was large (η2≥0.18). The Δacc and Δ10-20 were moderately correlated with body mass difference (r=0.48 and r=0.53, P<0.01, respectively) and ΔBMI (r=0.50 and r=0.51, P<0.01, respectively), whereas the Δ0-10 was correlated with ΔBMI (r=0.34, P<0.05) and ΔCMJ (r=-0.34, P<0.05). The findings indicated that the changes in body mass had the largest effect on changes in accelerative ability and on both two phases (drive and transition). On the contrary, changes in leg muscle power had impact only on the drive phase of the acceleration.

  9. The automatic pelvic floor muscle response to the active straight leg raise in cases with pelvic girdle pain and matched controls.

    Science.gov (United States)

    Stuge, Britt; Sætre, Kaja; Ingeborg Hoff, Brækken

    2013-08-01

    The active straight leg raise (ASLR) test has been proposed as a clinical test for the assessment of pelvic girdle pain (PGP). Little is known about the activation of the pelvic floor muscles (PFM) during ASLR. The main aim of this study was to examine the automatic PFM contraction during ASLR. Specific aims were to compare automatic contraction to rest and to voluntary contraction, to compare PFM contraction during ASLR with and without compression and to examine whether there were any differences in PFM contraction between women with and without clinically diagnosed PGP during ASLR. Forty-nine pairs of women participated in a cross-sectional study with individual, one-to-one matched cases and controls. PFM was assessed by reliable and valid 3D ultrasound at rest, during voluntary and automatic contraction. Test-retest data for the levator hiatus during ASLR showed good repeatability. Significantly automatic PFM contractions occurred when ASLR tests were performed. There was a strong positive correlation between voluntary and automatic PFM contractions. Manual compression reduced the automatic PFM contraction during ASLR by 62-66%. There were no significant differences between cases and controls in reduction of levator hiatus or muscle length from rest to automatic contractions during ASLR. Interestingly, a significantly smaller levator hiatus was found in women with PGP than in controls, at rest, during an automatic contraction with ASLR and during voluntary contraction. In conclusion, a significant automatic PFM contraction occurred during ASLR, both in cases and in controls. Women with PGP had a significantly smaller levator hiatus than controls. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. High lateral plantar pressure is related to an increased tibialis anterior/fibularis longus activity ratio in patients with recurrent lateral ankle sprain

    Directory of Open Access Journals (Sweden)

    Mineta S

    2017-06-01

    Full Text Available Shinshiro Mineta,1 Takayuki Inami,2 Raldy Mariano,3 Norikazu Hirose4 1Graduate School of Sport Sciences, 2Institute of Physical Education, Keio University, Hiyoshi, Yokohama, 3Graduate School of Asia-Pacific Studies, Waseda University, Shinjuku, Tokyo, 4Faculty of Sport Sciences, Waseda University, Higashifushimi, Nishitokyo, Japan Introduction: Center of pressure (COP is a sudden displacement at the time of a lateral ankle sprain (LAS. It has been suggested that the distribution of plantar pressure and the quantity of COP displacement are important for assessing the risk of LAS. Therefore, we evaluated the plantar pressure during a single-leg balance test with eyes closed (SLB-C to identify the factors and characteristics of plantar pressure in people with repeated cases of LAS.Methods: We recruited 22 collegiate athletes and divided them into an instability group (IG; n=11 and a control group (CG; n=11. We measured the distribution of plantar pressure and lower extremity muscle activity during a SLB-C along with static alignment and isometric ankle strength.Results: The fibularis longus (FL activity was significantly lower in the IG than in the CG. The lateral plantar pressure (LPP/medial plantar pressure (MPP ratio was also higher in the IG than in the CG. In addition, the LPP/MPP ratio was correlated with the tibialis anterior (TA/FL ratio.Conclusion: These results suggest that increased lateral plantar pressure is related to decreased FL activity and increased TA/FL ratio. Keywords: chronic ankle instability, ankle sprain, postural stability, soccer, prevention

  11. Changes in biomechanics and muscle activation in injured ballet dancers during a jump-land task with turnout (Sissonne Fermée).

    Science.gov (United States)

    Lee, Hsing-Hsan; Lin, Chia-Wei; Wu, Hong-Wen; Wu, Tzu-Chuan; Lin, Cheng-Feng

    2012-01-01

    Large impact loading with abnormal muscle activity and motion patterns may contribute to lower extremity injuries in ballet dancers. Yet, few studies investigated the influence of injury on the ballet movement. The purpose of this study was to find the neuromuscular and biomechanical characteristics in dancers with and without ankle injury during a jump-landing Sissonne Fermée task. Twenty-two ballet dancers were recruited and divided into the injured group (n = 11) and the uninjured group (n = 11). They performed a ballet movement called "Sissonne Fermée" with reflective markers and electrodes attached to their lower extremities. Ground reaction force, joint kinematics, and muscle activity were measured. The injured dancers had greater peak ankle eversion but smaller hindfoot-to-tibial eversion angles. Also, the injured dancers had greater activity of the hamstring of the dominant leg and tibialis anterior of the non-dominant leg during the pre-landing phase. The injured dancers had greater tibialis anterior activity of the dominant leg but less muscle activity in the medial gastrocnemius of the non-dominant leg during the post-landing phase. The injured dancers had a greater co-contraction index in the non-dominant ankle and a lower loading rate. The higher co-contraction indices showed that the injured dancers required more muscle effort to control ankle stability. Furthermore, the injured dancers used a "load avoidance strategy" to protect themselves from re-injury. Neuromuscular control training of the ankle joint for ballet dancers to prevent injury is necessary.

  12. The Acute Effects of Unilateral Ankle Plantar Flexors Static- Stretching on Postural Sway and Gastrocnemius Muscle Activity During Single-Leg Balance Tasks

    Directory of Open Access Journals (Sweden)

    Bráulio N. Lima, Paulo R.G. Lucareli, Willy A. Gomes, Josinaldo J. Silva, Andre S. Bley, Erin H. Hartigan, Paulo H. Marchetti

    2014-09-01

    Full Text Available The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG and the center of pressure (COP during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipodal quiet standing for 30s before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch a unilateral ankle plantar flexor static- stretching protocol [6 sets of 45s/15s, 70-90% point of discomfort (POD]. Postural sway was described using the COP area, COP speed (antero-posterior and medio-lateral directions and COP frequency (antero-posterior and medio-lateral directions. Surface EMG (EMG integral [IEMG] and Median frequency[FM] was used to describe the muscular activity of gastrocnemius lateralis. Ankle dorsiflexion passive range of motion increased in the stretched limb before and after the static-stretching protocol (mean ± SD: 15.0° ± 6.0 and 21.5° ± 7.0 [p < 0.001]. COP area and IEMG increased in the stretch limb between pre-stretching and immediately post-stretching (p = 0.015 and p = 0.036, respectively. In conclusion, our static- stretching protocol effectively increased passive ankle ROM. The increased ROM appears to increase postural sway and muscle activity; however these finding were only a temporary or transient effect.

  13. Irradiação contralateral de força para a ativação do músculo tibial anterior em portadores da doença de Charcot-Marie-Tooth: efeitos de um programa de intervenção por FNP Contralateral force irradiation for the activation of tibialis anterior muscle in carriers of Charcot-Marie-Tooth disease: effect of PNF intervention program

    Directory of Open Access Journals (Sweden)

    Paula C. Meningroni

    2009-10-01

    Full Text Available OBJETIVO: Avaliar a resposta do músculo tibial anterior (TA após um protocolo de cinco semanas com irradiação contralateral de força através de diagonais de facilitação neuromuscular proprioceptiva (FNP em pacientes com polineuropatia desmielinizante associada à doença de Charcot-Marie-Tooth do tipo 1A (CMT-1A. MÉTODOS: Participaram deste estudo 12 pacientes, de ambos os sexos. Eles foram tratados em uma frequência de duas vezes por semana, durante cinco semanas. Em cada sessão, foram utilizadas as diagonais de Chopping, extensão-adução com rotação interna (EARI e flexão-abdução com rotação interna (FARI. As diagonais foram repetidas quatro vezes, em ambos os membros superiores e inferiores; cada diagonal tinha duração média de 6 segundos. Durante as execuções, a resposta muscular do TA foi registrada por um eletromiógrafo de superfície, desprezando-se os 2 segundos iniciais e finais de cada diagonal. A média dos valores de Root Mean Square (RMS das quatro repetições foi normalizada em porcentagem. Os dados iniciais e finais foram submetidos ao teste em t para amostras pareadas com valores de p significativos OBJECTIVE: To evaluate the response of the tibialis anterior (TA muscle following a five-week protocol with contralateral irradiation force through Proprioceptive Neuromuscular Facilitation (PNF diagonals in patients with demyelinating polyneuropathy associated with Charcot-Marie-Tooth disease type 1A (CMT-1A. METHODS: The study included 12 patients of both sexes. They were treated twice-weekly for 5 weeks. At each session, they performed the following diagonal patterns: chopping, extension-adduction with internal rotation (EAIR and flexion-abduction with internal rotation (FAIR. The diagonals were repeated four times, in both upper and lower limbs, with each repetition lasting six seconds on average. During execution, the response of the TA muscle was recorded by a surface electromyograph disregarding the

  14. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.

    Science.gov (United States)

    Yavuz, Utku Şükrü; Negro, Francesco; Diedrichs, Robin; Farina, Dario

    2018-01-31

    Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs in order to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools in order to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol) and medial gastrocnemius (GM) muscles during isometric dorsi- and plantar-flexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated in order to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was a 4-fold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of non-reciprocal inhibitory pathways.

  15. The effect of low intensity shockwave treatment (Li-SWT) on human myoblasts and mouse skeletal muscle

    DEFF Research Database (Denmark)

    Hansen, Lise K; Schrøder, Henrik D; Lund, Lars

    2017-01-01

    and vascularization, both integral to survival and integration of transplanted cells. This study was conducted to demonstrate the response of myoblasts and skeletal muscle to Li-SWT. METHOD: Primary isolated human myoblasts and explants were treated with low intensity shockwaves and subsequently cell viability......, proliferation and differentiation were tested. Cardiotoxin induced injury was created in tibialis anterior muscles of 28 mice, and two days later, the lesions were treated with 500 impulses of Li-SWT on one of the legs. The treatment was repeated every third day of the period and ended on day 14 after...... limbs by a significantly increased expression of Angpt1, eNOS, iNOS, Vegfa, and Pecam1. CONCLUSION: Treatment was associated with an early upregulation in expression of selected apoptotic, pro-inflammatory, angiogenic and satellite cell activating genes after muscle injury. It also showed a late...

  16. Analysis of EMG temporal parameters from the tibialis anterior during hemiparetic gait

    International Nuclear Information System (INIS)

    Bonell, Claudia E; Cherniz, AnalIa S; Tabernig, Carolina B

    2007-01-01

    Functional electrical stimulation is a rehabilitation technique used to restore the motor muscular function by means of electrical stimulus commanded by a trigger signal under volitional control. In order to enhance the motor rehabilitation, a more convenient control signal may be provided by the same muscle that is being stimulated. For example, the tibialis anterior (TA) in the applications of foot drop correction could be used. This work presents the statistical analysis of the root mean square (RMS) and the absolute mean value (VMA) of the TA electromyogram (EMG) signal computed from different phases of the gait cycle related with increases/decreases stages of muscle activity. The EMG records of 40 strides of 2 subjects with hemiparesia were processed. The RMS and VMA parameters allow distinguishing the oscillation phase from the other analyzed intervals, but they present significant spreading of mean values. This led to conclude that it is possible to use these parameters to identify the start of TA muscle activity, but altogether with other parameter or sensor that would reduce the number of false positives

  17. Leg Swelling

    Science.gov (United States)

    ... ed. New York, N.Y.: The McGraw Hill Companies; 2016. http://www.accessmedicine.com. Accessed Dec. 31, ... http://www.mayoclinic.org/symptoms/leg-swelling/basics/definition/SYM-20050910 . Mayo Clinic Footer Legal Conditions and ...

  18. Community-dwelling female fallers have lower muscle density in their lower legs than non-fallers: evidence from the Saskatoon Canadian Multicentre Osteoporosis Study (CaMos) cohort.

    Science.gov (United States)

    Frank, A W; Farthing, J P; Chilibeck, P D; Arnold, C M; Olszynski, W P; Kontulainen, S A

    2015-01-01

    Our objectives were to determine whether peripheral quantitative computed tomography (pQCT)-derived lower leg muscle density and area, and basic functional mobility differ between community-dwelling older women who do and do not report recent falls. Matched case-control comparison. Academic biomedical imaging laboratory. 147 Women, 60 years or older (mean age 74.3 y, SD 7.7) recruited from a longitudinal, population-based cohort representing community-dwelling residents in the area of Saskatoon, Canada. A cross-sectional pQCT scan of the non-dominant lower leg was acquired to determine muscle density and area. Basic functional mobility (Timed Up and Go Test [TUG]) and SF36 health status were also measured. Fallers (one or more falls) and non-fallers (no falls) were grouped according to a 12-month retrospective survey and matched on measured covariates. The muscle density of fallers (n = 35) was a median of 2.1 mg/cm3 lower (P = 0.019, 95% C.I. -3.9 to -0.1) than non-fallers (n = 78) after matching and adjusting for age, body mass index, and SF36 general health scores. Muscle area and TUG did not differ between fallers and non-fallers. Muscle density may serve as a physiological marker in the assessment of lower leg muscular health and fall risk in community-dwelling elderly women. These results are limited to our study population who were mostly Caucasian. Prospective studies are required for verification.

  19. Leg Problems

    Science.gov (United States)

    ... TEAR of the ACHILLES TENDON that attaches the calf muscle to the heel. This injury will cause pain and difficulty pointing the foot down. A TORN CALF MUSCLE will be painful and might produce bruises. Self ...

  20. Leg pain

    Science.gov (United States)

    ... to a muscle cramp (also called a charley horse ). Common causes of cramps include: Dehydration or low ... muscle ( strain ) Hairline crack in the bone (stress fracture) Inflamed tendon ( tendinitis ) Shin splints (pain in the ...

  1. The effect of subtalar inversion/eversion on the dynamic function of the tibialis anterior, soleus, and gastrocnemius during the stance phase of gait.

    Science.gov (United States)

    Wang, Ruoli; Gutierrez-Farewik, Elena M

    2011-05-01

    The purpose of this study was to determine how gait deviation in one plane (i.e. excessive subtalar inversion/eversion) can affect the dynamic function of the tibialis anterior, gastrocnemius, and soleus to accelerate the subtalar, ankle, knee and hip joints, as well as the body center of mass. Induced acceleration analysis was performed based on a subject-specific three-dimensional linkage model configured by stance phase gait data and driven by one unit of muscle force. Eight healthy adult subjects were examined in gait analysis. The subtalar inversion/eversion was modeled by offsetting up to 20° from the normal subtalar angle while other configurations remained unaltered. This study showed that the gastrocnemius, soleus and tibialis anterior generally functioned as their anatomical definition in normal gait, but counterintuitive function was occasionally found in the bi-articular gastrocnemius. The plantarflexors play important roles in the body support and forward progression. Excessive subtalar eversion was found to enlarge the plantarflexors and tibialis anterior's function. Induced acceleration analysis demonstrated its ability to isolate the contributions of individual muscle to a given factor, and as a means of studying effect of pathological gait on the dynamic muscle functions. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The effect of creatine supplementation on mass and performance of rat skeletal muscle.

    Science.gov (United States)

    Young, Robert E; Young, John C

    2007-08-09

    This study investigated the effect of dietary creatine supplementation on hypertrophy and performance of rat skeletal muscle. Male Sprague-Dawley rats underwent either tibialis anterior ablation or partial ablation of the plantaris/gastrocnemius to induce compensatory hypertrophy of the extensor digitorum longus (EDL) or soleus respectively, or sham surgery. Creatine (300 mg/kg) was administered to one half of each group for 5 weeks, after which force production was measured. With the leg fixed at the knee and ankle, the distal tendon of the EDL or soleus was attached to a force transducer and the muscle was electrically stimulated via the sciatic nerve. Synergist ablation resulted in a significant increase in EDL mass and in soleus mass relative to control muscles. However, no effect of creatine supplementation on muscle mass or performance was found between control and either group of creatine-treated rats. Despite an apparent increase in muscle creatine content, creatine supplementation did not augment muscle hypertrophy or force production in rat EDL or soleus muscle, providing evidence that the potential benefits of creatine supplementation are not due to a direct effect on muscle but rather to an enhanced ability to train.

  3. Active and Inactive Leg Hemodynamics during Sequential Single-Leg Interval Cycling.

    Science.gov (United States)

    Gordon, Nicole; Abbiss, Chris R; Ihsan, Mohammed; Maiorana, Andrew J; Peiffer, Jeremiah J

    2018-01-11

    Leg order during sequential single-leg cycling (i.e. exercising both legs independently within a single session) may affect local muscular responses potentially influencing adaptations. This study examined the cardiovascular and skeletal muscle hemodynamic responses during double-leg and sequential single-leg cycling. Ten young healthy adults (28 ± 6 y) completed six 1-min double-leg intervals interspersed with one minute of passive recovery and, on a separate occasion, 12 (six with one leg followed by six with the other leg) 1-min single-leg intervals interspersed with one minute of passive recovery. Oxygen consumption, heart rate, blood pressure, muscle oxygenation, muscle blood volume and power output were measured throughout each session. Oxygen consumption, heart rate and power output were not different between sets of single-leg intervals but the average of both sets was lower than the double-leg intervals. Mean arterial pressure was higher during double-leg compared with sequential single-leg intervals (115 ± 9 mmHg vs. 104 ± 9 mmHg; p<0.05) and higher during the initial compared with second set of single-leg intervals (108 ± 10 mmHg vs. 101 ± 10 mmHg; p<0.05). The increase in muscle blood volume from baseline was similar between the active single-leg and double-leg (267 ± 150 μM[BULLET OPERATOR]cm vs. 214 ± 169 μM[BULLET OPERATOR]cm; p=0.26). The pattern of change in muscle blood volume from the initial to second set of intervals was significantly different (p<0.05) when the leg was active in the initial (-52.3 ± 111.6%) compared with second set (65.1 ± 152.9%). These data indicate that the order in which each leg performs sequential single-leg cycling influences the local hemodynamic responses, with the inactive muscle influencing the stimulus experienced by the contralateral leg.

  4. Extramuscular myofascial force transmission within the rat anterior tibial compartment: Proximodistal differences in muscle force

    NARCIS (Netherlands)

    Huijing, P.A.J.B.M.; Baan, G.C.

    2001-01-01

    Intramuscular connective tissues are continuous to extramuscular connective tissues. If force is transmitted there, differences should be present between force at proximal and distal attachments of muscles. Extensor digitorum longus (EDL), tibialis anterior (TA), and extensor hallucis longus muscles

  5. Myofascial force transmisison between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening

    NARCIS (Netherlands)

    Meijer, Hanneke J.M; Rijkelijkhuizen, Josina M.; Huijing, P.A.J.B.M.

    2007-01-01

    Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior

  6. Myofascial force transmission between antagonistic rat lower limb muscles: Effects of single muscle or muscle group lengthening.

    NARCIS (Netherlands)

    Meijer, H.J.M.; Rijkelijkhuizen, J.M.; Huijing, P.A.J.B.M.

    2007-01-01

    Effects of lengthening of the whole group of anterior crural muscles (tibialis anterior and extensor hallucis longus muscles (TA + EHL) and extensor digitorum longus (EDL)) on myofascial interaction between synergistic EDL and TA + EHL muscles, and on myofascial force transmission between anterior

  7. Comparison of clinical outcomes and second-look arthroscopic findings after ACL reconstruction using a hamstring autograft or a tibialis allograft.

    Science.gov (United States)

    Yoo, Seung-Hyun; Song, Eun-Kyoo; Shin, Young-Rok; Kim, Sung-Kyu; Seon, Jong-Keun

    2017-04-01

    The purpose of this prospective randomized clinical study was to compare the clinical and radiological outcomes, including tibial tunnel widening and the progression of osteoarthritis after ACL reconstruction using a hamstring autograft or a tibialis allograft. In addition, we compared the graft tear and synovial coverage of grafts in patients that underwent the second-look arthroscopy. Among 184 patients with an ACL injury who underwent ACL reconstruction, 68 patients of autograft group and 64 patients of tibialis allograft group were included for this study after minimum of 2-year follow-up. The Lachman and pivot-shift tests, Tegner activity score, Lysholm knee score, and IKDC score were compared between the two groups. The quadriceps and hamstring isokinetic strengths using dynamometer were also compared. Degree of OA was determined using the Kellgren-Lawrence grading system on the weight-bearing radiographs. In total, 51 patients (26 patients in autograft group and 25 in the tibialis allograft group) underwent the second-look arthroscopy, in which we compared the apparent tear of graft and synovial coverage of grafts. At the final follow-up, there were no statistical significances in the two groups in Lachman and pivot-shift tests (n.s.). The Tegner activity, Lysholm knee score, and IKDC scores were similar in the two groups. Moreover, no significant differences were observed in the muscle power (n.s.). Some patients showed the progression of OA (five in autograft and four in allograft groups) without intergroup difference (n.s.). Regarding the findings of second-look arthroscopy, although there was no significant difference in graft tear, synovial coverage was better in autograft group than in allograft group. Even though hamstring autografts and tibialis allografts provided good functional outcomes without significant differences, the second-look arthroscopy revealed that hamstring autografts produced better synovial coverage than tibialis allograft. I.

  8. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J

    2008-01-01

    were analyzed for mRNA content of VEGF, endothelial nitric oxide synthase (eNOS), and matrix metalloproteinase-2 (MMP-2). The passive leg movement caused an increase (P ... to cultured endothelial cells revealed that dialysate obtained during leg movement induced a 3.2-fold higher proliferation rate (P MMP-2 mRNA levels were......The present study used passive limb movement as an experimental model to study the effect of increased blood flow and passive stretch, without enhanced metabolic demand, in young healthy male subjects. The model used was 90 min of passive movement of the leg leading to a 2.8-fold increase (P

  9. Six weeks' aerobic retraining after two weeks' immobilization restores leg lean mass and aerobic capacity but does not fully rehabilitate leg strenght in young and older men

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Gram, Martin; Wiuff, Caroline

    2015-01-01

    OBJECTIVE: To determine the effect of aerobic retraining as rehabilitation after short-term leg immobilization on leg strength, leg work capacity, leg lean mass, leg muscle fibre type composition and leg capillary supply, in young and older men. SUBJECTS AND DESIGN: Seventeen young (23 ± 1 years...... immobilization had marked effects on leg strength, and work capacity and 6 weeks' retraining was sufficient to increase, but not completely rehabilitate, muscle strength, and to rehabilitate aerobic work capacity and leg lean mass (in the young men)....

  10. Broken Leg

    Science.gov (United States)

    ... the leg, which can result in a fracture. Stress fractures outside of sport situations are more common in people who have: ... shoes. Choose the appropriate shoe for your favorite sports or activities. And ... can prevent stress fractures. Rotate running with swimming or biking. If ...

  11. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  12. Tibialis posterior tendon transfer corrects the foot drop component of cavovarus foot deformity in Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Dreher, T; Wolf, S I; Heitzmann, D; Fremd, C; Klotz, M C; Wenz, W

    2014-03-19

    The foot drop component of cavovarus foot deformity in patients with Charcot-Marie-Tooth disease is commonly treated by tendon transfer to provide substitute foot dorsiflexion or by tenodesis to prevent the foot from dropping. Our goals were to use three-dimensional foot analysis to evaluate the outcome of tibialis posterior tendon transfer to the dorsum of the foot and to investigate whether the transfer works as an active substitution or as a tenodesis. We prospectively studied fourteen patients with Charcot-Marie-Tooth disease and cavovarus foot deformity in whom twenty-three feet were treated with tibialis posterior tendon transfer to correct the foot drop component as part of a foot deformity correction procedure. Five patients underwent unilateral treatment and nine underwent bilateral treatment; only one foot was analyzed in each of the latter patients. Standardized clinical examinations and three-dimensional gait analysis with a special foot model (Heidelberg Foot Measurement Method) were performed before and at a mean of 28.8 months after surgery. The three-dimensional gait analysis revealed significant increases in tibiotalar and foot-tibia dorsiflexion during the swing phase after surgery. These increases were accompanied by a significant reduction in maximum plantar flexion at the stance-swing transition but without a reduction in active range of motion. Passive ankle dorsiflexion measured in knee flexion and extension increased significantly without any relevant decrease in passive plantar flexion. The AOFAS (American Orthopaedic Foot & Ankle Society) score improved significantly. Tibialis posterior tendon transfer was effective at correcting the foot drop component of cavovarus foot deformity in patients with Charcot-Marie-Tooth disease, with the transfer apparently working as an active substitution. Although passive plantar flexion was not limited after surgery, active plantar flexion at push-off was significantly reduced and it is unknown whether

  13. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with (99m)Tc-methylene diphosphonate single photon emission computed tomography/computed tomography.

    Science.gov (United States)

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. (99m)Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis.

  14. Effect of electroacupuncture on the expression of agrin and acetylcholine receptor subtypes in rats with tibialis anterior muscular atrophy induced by sciatic nerve injection injury.

    Science.gov (United States)

    Yu, Jianqi; Wang, Meng; Liu, Junying; Zhang, Xiaoming; Yang, Shengbo

    2017-08-01

    To investigate the effects of electroacupuncture (EA) on mRNA and protein expression of agrin, acetylcholine receptor (AChR)-ε and AChR-γ in a rat model of tibialis anterior muscle atrophy induced by sciatic nerve injection injury, and to examine the underlying mechanism of action. Fifty-four adult Sprague-Dawley rats were divided into four groups: healthy control group (CON, n=6); sciatic nerve injury group (SNI, n=24), comprising rats euthanased at 1, 2, 4 and 6 weeks, respectively, after penicillin injection-induced SNI (n=6 each); CON+EA group (n=12), comprising healthy rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA at GB30 and ST36); and SNI+EA group, comprising rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA). The sciatic nerve functional index (SFI), tibialis anterior muscle weight, muscle fibre cross-sectional area (CSA), and changes in agrin, AChR-ε, and AChR-γ expression levels were analysed. Compared with the control group (CON), SNI rats showed decreased SFI. The weight of the tibialis anterior muscle and muscle fibre CSA decreased initially and recovered slightly over time. mRNA/protein expression of agrin and AChR-ε were downregulated and AChR-γ expression was detectable (vs zero expression in the CON/CON+EA groups). There were no significant differences in CON+EA versus CON groups. However, the SNI+EA group exhibited significant improvements compared with the untreated SNI group (patrophy induced by sciatic nerve injection injury by upregulating agrin and AChR-ε and downregulating AChR-γ. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Directory of Open Access Journals (Sweden)

    Cristina Roldán-Jiménez

    Full Text Available Sit-to-stand (STS tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG, biceps femoris (BF, vastus medialis of the quadriceps (QM, the abdominal rectus (AR, erector spinae (ES, rectus femoris (RF, soleus (SO and the tibialis anterior (TA. Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  16. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests.

    Science.gov (United States)

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects.

  17. Extramuscular myofascial force transmission within the rat anterior tibial compartment: Proximo-distal differences in muscle force

    NARCIS (Netherlands)

    Huijing, P.A.J.B.M.; Baan, G.C.

    2001-01-01

    Intramuscular connective tissues are continuous to extramuscular connective tissues. If force is transmitted there, differences should be present between force at proximal and distal attachments of muscles. Extensor digitorum longus (EDL), tibialis anterior (TA), and extensor hallucis longus muscles

  18. Variation of the Surface of the Longissimus Dorsi (LD Muscle and the Section of the Leg of Mutton at Young Sheep of Different Breed Structures

    Directory of Open Access Journals (Sweden)

    Elena Ilişiu

    2010-10-01

    Full Text Available The research was done on carcasses from the slaughter of young male sheep intensively fattened belonging to the local Tsigai race of mountain ecotype and its half-breeds with Suffolk and German blackface (GCCN. The purpose of the research was to determine Logissimus dorsi (LD and leg of moutton area, because these parts provide information on Ist meat quality. Research results have noted that lots of half-breeds achieved higher Longissimus dorsi (LD and leg of moutton area, compared with the pure breed batch. Compared with Tsigai breed, Longissimus dorsi (LD area deterrmined was higher with 10,75% to Suffolk x Tsigai half-breeds, and 0,07% respectively to German Blackface x Tsigai half-breeds. Leg of moutton area was higher with 17,27% to Suffolk x Tsigai halfbreeds, and 2,75% respectively to German Blackface x Tsigai half-breeds. Research carried out special information on Ist meat quality on carcass.

  19. Functioning of peripheral Ia pathways in infants with typical development: responses in antagonist muscle pairs.

    Science.gov (United States)

    Teulier, Caroline; Ulrich, Beverly D; Martin, Bernard

    2011-02-01

    In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional

  20. One-legged endurance training: leg blood flow and oxygen extraction during cycling exercise

    DEFF Research Database (Denmark)

    Rud, B; Foss, O; Krustrup, Peter

    2012-01-01

    Aim: As a consequence of enhanced local vascular conductance, perfusion of muscles increases with exercise intensity to suffice the oxygen demand. However, when maximal oxygen uptake (VO(2) max) and cardiac output are approached, the increase in conductance is blunted. Endurance training increases...... muscle metabolic capacity, but to what extent that affects the regulation of muscle vascular conductance during exercise is unknown. Methods: Seven weeks of one-legged endurance training was carried out by twelve subjects. Pulmonary VO(2) during cycling and one-legged cycling was tested before and after...... training, while VO(2) of the trained leg (TL) and control leg (CL) during cycling was determined after training. Results: VO(2) max for cycling was unaffected by training, although one-legged VO(2) max became 6.7 (2.3)% (mean ± SE) larger with TL than with CL. Also TL citrate synthase activity was higher...

  1. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance.

    Science.gov (United States)

    Vieira, Taian M; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in more efficiently controlling leg muscle activity during standing.

  2. Tibialis Spastic Varus Foot With Calcaneonavicular Coalition: A Case Report and Review of the Literature.

    Science.gov (United States)

    Kurashige, Toshinori; Suzuki, Seiichi

    2015-12-01

    Peroneal spastic flat foot is a well-known condition usually occurring with tarsal coalition. Conversely, tibialis spastic varus foot is a rare condition, which can be difficult to diagnose. Moreover, tibialis spastic varus foot with calcaneonavicular coalition is extremely rare, with only a few published case reports. Resection of the calcaneonavicular bar is performed in the majority of patients. We report a case of tibialis spastic varus foot with calcaneonavicular coalition in an 11-year-old boy with intellectual disability. His family noticed his right varus foot deformity 1.5 years earlier. There was no obvious history of trauma. The deformity gradually worsened with running. Because conservative treatment failed, resection of the coalition was performed that facilitated a good outcome. In this article, we report our experience of tibialis spastic varus foot with calcaneonavicular coalition and review the English literature of this condition. Therapeutic, Level IV: Case report. © 2015 The Author(s).

  3. Unilateral hip osteoarthritis: Its effects on preoperative lower limb muscle activation and intramuscular coordination patterns.

    Science.gov (United States)

    Schmidt, André; Stief, Felix; Lenarz, Katharina; Froemel, Dara; Lutz, Frederick; Barker, John; Meurer, Andrea

    2016-03-01

    The objective of this study was to test if patients with unilateral hip osteoarthritis (OA) show greater muscle activity asymmetry between their affected and non-affected limbs than healthy controls between their left and right limbs. Seventeen patients with unilateral hip OA (7 females, 10 males) and 17 age-matched healthy controls (7 females, 10 males) participated in this study. Both groups performed instrumented gait analysis at comparable speeds. Muscle activity was recorded simultaneously for the tibialis anterior (TA), gastrocnemius medialis (GM), vastus lateralis (VL), semitendinosus (ST), tensor fasciae latae (TFL), and gluteus medius (GLM) muscles. In hip OA patients, EMG data showed greater activity of the TA muscle in the non-affected limb, and greater TFL muscle activity in the affected limb. Compared to healthy controls, greater asymmetries between paired limbs were observed for the TA and GM muscles. Finally, the TFL muscle of the affected limb contributed more to the total limb muscle activity than did the non-affected limb. The observed alterations in TA and GM muscle activity in hip OA patients may be due to the greater peak braking and peak vertical forces measured in the non-affected limb. Contrary to this, greater TLF muscle activity of the affected limb indicates the demands put on stabilizing the hip during stance phase. Further studies are necessary to test whether leg length discrepancy affects muscle activation alterations between the affected and non-affected limb in unilateral hip OA patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Directory of Open Access Journals (Sweden)

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  5. Muscle activity adapts to anti-gravity posture during pedalling in persons with post-stroke hemiplegia.

    Science.gov (United States)

    Brown, D A; Kautz, S A; Dairaghi, C A

    1997-05-01

    With hemiplegia following stroke, a person's movement response to anti-gravity posture often appears rigid and inflexible, exacerbating the motor dysfunction. A major determinant of pathological movement in anti-gravity postures is the failure to adapt muscle-activity patterns automatically to changes in posture. The aim of the present study was to determine whether the impaired motor performance observed when persons with hemiplegia pedal in a horizontal position is exacerbated at more vertical anti-gravity body orientations. Twelve healthy elderly subjects and 17 subjects with chronic (> 6 months) post-stroke hemiplegia participated in the study. Subjects pedalled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload, cadence, and hip and knee kinematics. Pedal reaction forces, and crank and pedal kinematics, were measured and then used to calculate the work done by each leg and their net positive and negative components. The EMG was recorded from four leg muscles (tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris). The main result from this study was that impaired plegic leg performance, as measured by net negative work done by the plegic leg and abnormal early rectus femoris activity, was exacerbated at the most vertical body orientations. However, contrary to the belief that muscle activity cannot adapt to anti-gravity postures, net positive work increased appropriately and EMG activity in all muscles showed modulated levels of activity similar to those in elderly control subjects. These results support the hypothesis that increased verticality exacerbates the already impaired movement performance. Yet, much of the motor response to verticality was flexible and appropriate, given the mechanics of the task.

  6. Leg blood flow during static exercise.

    Science.gov (United States)

    Kilbom, A; Persson, J

    1982-01-01

    Leg blood flow was studied with the constant infusion dye technique during static exercise of the thigh muscles (quadriceps) and during hand-grips at 15 and 25-30% of MVC. Blood flow and oxygen uptake in the leg increased in quadriceps exercise and reached their highest values (around 1.21/min and 165 ml/min respectively) at 25-30% of MVC, whereas leg vascular resistance decreased. Regional circulatory adaptations and the oxygen uptake - leg blood flow relationship were in close agreement with the responses found in dynamic leg exercise. In view of the marked rise in intramuscular pressure previously observed during quadriceps contractions, a restriction of blood flow and an increased vascular resistance had been expected. Involuntary activation of leg muscles other than the quadriceps may explain the finding. Contractions of the contralateral quadriceps induced a slight increase in leg blood flow, whereas hand-grips had no influence on blood flow or vascular resistance in the leg. The distribution of the cardiac output during static contractions is discussed, and it is concluded that during hand-grips the increase in blood flow is predominantly distributed to the upper part of the body.

  7. Characterization of three dimensional volumetric strain distribution during passive tension of the human tibialis anterior using Cine Phase Contrast MRI.

    Science.gov (United States)

    Jensen, Elisabeth R; Morrow, Duane A; Felmlee, Joel P; Murthy, Naveen S; Kaufman, Kenton R

    2016-10-03

    Intramuscular pressure correlates strongly with muscle tension and is a promising tool for quantifying individual muscle force. However, clinical application is impeded by measurement variability that is not fully understood. Previous studies point to regional differences in IMP, specifically increasing pressure with muscle depth. Based on conservation of mass, intramuscular pressure and volumetric strain distributions may be inversely related. Therefore, we hypothesized volumetric strain would decrease with muscle depth. To test this we quantified 3D volumetric strain in the tibialis anterior of 12 healthy subjects using Cine Phase Contrast Magnetic Resonance Imaging. Cine Phase Contrast data were collected while a custom apparatus rotated the subjects' ankle continuously between neutral and plantarflexion. A T2-weighted image stack was used to define the resting tibials anterior position. Custom and commercial post-processing software were used to quantify the volumetric strain distribution. To characterize regional strain changes, the muscle was divided into superior-inferior sections and either medial-lateral or anterior-posterior slices. Mean volumetric strain was compared across the sections and slices. As hypothesized, volumetric strain demonstrated regional differences with a decreasing trend from the anterior (superficial) to the posterior (deep) muscle regions. Statistical tests showed significant main effects and interactions of superior-inferior and anterior-posterior position as well as superior-inferior and medial-lateral position on regional strain. These data support our hypothesis and imply a potential relationship between regional volumetric strain and intramuscular pressure. This finding may advance our understanding of intramuscular pressure variability sources and lead to more reliable measurement solutions in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Peripheral artery disease - legs

    Science.gov (United States)

    Peripheral vascular disease; PVD; PAD; Arteriosclerosis obliterans; Blockage of leg arteries; Claudication; Intermittent claudication; Vaso-occlusive disease of the legs; Arterial insufficiency of ...

  9. BRE facilitates skeletal muscle regeneration by promoting satellite cell motility and differentiation

    Directory of Open Access Journals (Sweden)

    Lihai Xiao

    2016-02-01

    Full Text Available The function of the Bre gene in satellite cells was investigated during skeletal muscle regeneration. The tibialis anterior leg muscle was experimentally injured in Bre knockout mutant (BRE-KO mice. It was established that the accompanying muscle regeneration was impaired as compared with their normal wild-type counterparts (BRE-WT. There were significantly fewer pax7+ satellite cells and smaller newly formed myofibers present in the injury sites of BRE-KO mice. Bre was required for satellite cell fusion and myofiber formation. The cell fusion index and average length of newly-formed BRE-KO myofibers were found to be significantly reduced as compared with BRE-WT myofibers. It is well established that satellite cells are highly invasive which confers on them the homing ability to reach the muscle injury sites. Hence, we tracked the migratory behavior of these cells using time-lapse microscopy. Image analysis revealed no difference in directionality of movement between BRE-KO and BRE-WT satellite cells but there was a significant decrease in the velocity of BRE-KO cell movement. Moreover, chemotactic migration assays indicated that BRE-KO satellite cells were significantly less responsive to chemoattractant SDF-1α than BRE-WT satellite cells. We also established that BRE normally protects CXCR4 from SDF-1α-induced degradation. In sum, BRE facilitates skeletal muscle regeneration by enhancing satellite cell motility, homing and fusion.

  10. Effects of Latrodectus spider venoms on sensory and motor nerve terminals of muscle spindles.

    Science.gov (United States)

    Queiroz, L S; Duchen, L W

    1982-08-23

    The effects of the venoms of the spiders Latrodectus mactans tredecimguttatus (black widow) and Latrodectus mactans hasselti (red back) on sensory nerve terminals in muscle spindles were studied in the mouse. A sublethal dose of venom was injected into tibialis anterior and extensor digitorum longus muscles of one leg. After survival from 30 minutes to 6 weeks muscles were examined in serial paraffin sections impregnated with silver or by electron microscopy. Sensory endings became swollen, some within 30 minutes, while over the next few hours there was progressive degeneration of annulospiral endings. By 24 hours every spindle identified by light or electron microscopy was devoid of sensory terminals. Degenerated nerve endings were taken up into the sarcoplasm of intrafusal muscle fibres. Regeneration of sensory axons began within 24 hours, new incomplete spirals were formed by 5 days and by 1 week annulospiral endings were almost all normal in appearance. Intrafusal motor terminals underwent similar acute degenerative and regenerative changes. These experiments show that intrafusal sensory and motor terminals are equally affected by Latrodectus venoms. Sensory nerve fibres possess a capacity for regeneration equal to that of motor fibres and reinnervate intrafusal muscle fibres close to their original sites of innervation.

  11. A Behavioral Mechanism of How Increases in Leg Strength Improve Old Adults' Gait Speed

    NARCIS (Netherlands)

    Uematsu, Azusa; Tsuchiya, Kazushi; Kadono, Norio; Kobayashi, Hirofumi; Kaetsu, Takamasa; Hortobagyi, Tibor; Suzuki, Shuji

    2014-01-01

    We examined a behavioral mechanism of how increases in leg strength improve healthy old adults' gait speed. Leg press strength training improved maximal leg press load 40% (p = 0.001) and isometric strength in 5 group of leg muscles 32% (p = 0.001) in a randomly allocated intervention group of

  12. Muscle force is determined also by muscle relative position: isolated effects

    NARCIS (Netherlands)

    Maas, Huub; Baan, Guus C.; Huijing, P.A.J.B.M.

    2004-01-01

    Effects on force of changes of the position of extensor digitorum longus muscle (EDL) relative to surrounding tissues were investigated in rat. Connective tissue at the muscle bellies of tibialis anterior (TA), extensor hallucis longus (EHL) and EDL was left intact, to allow myofascial force

  13. Chiasma crurale: intersection of the tibialis posterior and flexor digitorum longus tendons above the ankle. Magnetic resonance imaging-anatomic correlation in cadavers

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Florian M. [VA San Diego Medical Center, Department of Radiology, San Diego, CA (United States); Institut fuer Diagnostische Radiologie, Zurich (Switzerland); Gheno, Ramon; Nico, Marcelo A.C.; Trudell, Debra J.; Resnick, Donald [VA San Diego Medical Center, Department of Radiology, San Diego, CA (United States); Haghighi, Parviz [VA San Diego Medical Center, Department of Pathology, San Diego, CA (United States)

    2010-06-15

    To determine the precise anatomy and magnetic resonance (MR) imaging appearance of the chiasma crurale in cadavers, paying special attention to degenerative changes Twelve fresh human ankles were harvested from 11 nonembalmed cadavers (mean age at death 77 years) and used according to institutional guidelines. MR imaging and MR tenography were used to investigate the anatomy of the chiasma crurale using proton density-weighted sequences. The gross anatomy of the chiasma crurale was evaluated and compared to the MR imaging findings. Histology was used to elucidate further the structure of the chiasma crurale. Above the chiasma, five specimens had a small amount of fat tissue between the tibialis posterior and flexor digitorum longus tendon. In all specimens both tendons had a sheath below the chiasma but not above it. At the central portion of the chiasma there was no soft tissue between the tendons, except in two specimens that showed an anatomic variant consisting of a thick septum connecting the tibial periosteum and the deep transverse fascia of the leg. In MR images, eight specimens showed what were believed to be degenerative changes in the tendons at the level of the chiasma. However, during gross inspection and histologic analysis of the specimens, there was no tendon degeneration visible. At the central portion of the chiasma, there is no tissue between the tibialis posterior and flexor digitorum longus tendons unless there is an anatomic variant. At the chiasma crurale, areas with irregular tendon surfaces are normal findings and are not associated with tendon degeneration (fraying). (orig.)

  14. Neuromuscular Control Mechanisms During Single-Leg Jump Landing in Subacute Ankle Sprain Patients: A Case Control Study.

    Science.gov (United States)

    Allet, Lara; Zumstein, Franziska; Eichelberger, Patric; Armand, Stéphane; Punt, Ilona M

    2017-03-01

    Optimal neuromuscular control mechanisms are essential for preparing, maintaining, and restoring functional joint stability during jump landing and to prevent ankle injuries. In subacute ankle sprain patients, neither muscle activity nor kinematics during jump landing has previously been assessed. To compare neuromuscular control mechanisms and kinematics between subacute ankle sprain patients and healthy persons before and during the initial contact phase of a 25-cm single-leg jump. Case-control study. University hospital. Fifteen patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Subjects performed alternately 3 single-leg forward jumps of 25 cm (toe-to-heel distance) barefoot. Their results were compared with the data of 15 healthy subjects. Electromyographic (EMG) activity of the musculus (m.) gastrocnemius lateralis, m. tibialis anterior, and m. peroneus longus as well as kinematics for ankle, knee, and hip joint were recorded for pre-initial contact (IC) phase, post-initial contact phase, and reflex-induced phase. The results showed that EMG activity of the 3 muscles did not differ between ankle sprain patients (n = 15) and healthy persons (n = 15) for any of the analyzed time intervals (all P > .05). However, during the pre-IC phase, ankle sprain patients presented less plantar flexion, as well as during the post-IC phase after jump landing, compared to healthy persons (P ankle joint can lead to neuromuscular control mechanism disturbances through which functional instability might arise. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Dynamic characteristics of T2*-weighted signal in calf muscles of peripheral artery disease during low-intensity exercise.

    Science.gov (United States)

    Li, Zhijun; Muller, Matthew D; Wang, Jianli; Sica, Christopher T; Karunanayaka, Prasanna; Sinoway, Lawrence I; Yang, Qing X

    2017-07-01

    To evaluate the dynamic characteristics of T2* -weighted signal change in exercising skeletal muscle of healthy subjects and peripheral artery disease (PAD) patients under a low-intensity exercise paradigm. Nine PAD patients and nine age- and sex-matched healthy volunteers underwent a low-intensity exercise paradigm while magnetic resonance imaging (MRI) (3.0T) was obtained. T2*-weighted signal time-courses in lateral gastrocnemius, medial gastrocnemius, soleus, and tibialis anterior were acquired and analyzed. Correlations were performed between dynamic T2*-weighted signal and changes in heart rate, mean arterial pressure, leg pain, and perceived exertion. A significant signal decrease was observed during exercise in soleus and tibialis anterior of healthy participants (P = 0.0007-0.04 and 0.001-0.009, respectively). In PAD, negative signals were observed (P = 0.008-0.02 and 0.003-0.01, respectively) in soleus and lateral gastrocnemius during the early exercise stage. Then the signal gradually increased above the baseline in the lateral gastrocnemius during and after exercise in six of the eight patients who completed the study. This signal increase in patients' lateral gastrocnemius was significantly greater than in healthy subjects' during the later exercise stage (two-sample t-tests, P = 0.001-0.03). Heart rate and mean arterial pressure responses to exercise were significantly higher in PAD than healthy subjects (P = 0.036 and 0.008, respectively) and the patients experienced greater leg pain and exertion (P = 0.006 and P = 0.0014, respectively). During low-intensity exercise, there were different dynamic T2*-weighted signal behavior in the healthy and PAD exercising muscles. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:40-48. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Foot segmental motion and coupling in stage II and III tibialis posterior tendon dysfunction.

    Science.gov (United States)

    Van de Velde, Maarten; Matricali, Giovanni Arnoldo; Wuite, Sander; Roels, Charlotte; Staes, Filip; Deschamps, Kevin

    2017-06-01

    Classification systems developed in the field of posterior tibialis tendon dysfunction omit to include dynamic measurements. Since this may negatively affect the selection of the most appropriate treatment modality, studies on foot kinematics are highly recommended. Previous research characterised the foot kinematics in patients with posterior tibialis tendon dysfunction. However, none of the studies analysed foot segmental motion synchrony during stance phase, nor compared the kinematic behaviour of the foot in presence of different posterior tibialis tendon dysfunction stages. Therefore, we aimed at comparing foot segmental motion and coupling in patients with posterior tibialis tendon dysfunction grade 2 and 3 to those of asymptomatic subjects. Foot segmental motion of 11 patients suffering from posterior tibialis tendon dysfunction stage 2, 4 patients with posterior tibialis tendon dysfunction stage 3 and 15 asymptomatic subjects was objectively quantified with the Rizzoli foot model using an instrumented walkway and a 3D passive motion capture system. Dependent variables were the range of motion occurring at the different inter-segment angles during subphases of stance and swing phase as well as the cross-correlation coefficient between a number of segments. Significant differences in range of motion were predominantly found during the forefoot push off phase and swing phase. In general, both patient cohorts demonstrated a reduced range of motion compared to the control group. This hypomobility occurred predominantly in the rearfoot and midfoot (pfoot which should be considered in the decision making process since it may help explaining the success and failure of certain conservative and surgical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electromyography Exposes Heterogeneity in Muscle Co-Contraction following Stroke

    Directory of Open Access Journals (Sweden)

    Caitlin L. Banks

    2017-12-01

    Full Text Available Walking after stroke is often described as requiring excessive muscle co-contraction, yet, evidence that co-contraction is a ubiquitous motor control strategy for this population remains inconclusive. Co-contraction, the simultaneous activation of agonist and antagonist muscles, can be assessed with electromyography (EMG but is often described qualitatively. Here, our goal is to determine if co-contraction is associated with gait impairments following stroke. Fifteen individuals with chronic stroke and nine healthy controls walked on an instrumented treadmill at self-selected speed. Surface EMGs were collected from the medial gastrocnemius (MG, soleus (SOL, and tibialis anterior (TA of each leg. EMG envelope amplitudes were assessed in three ways: (1 no normalization, (2 normalization to the maximum value across the gait cycle, or (3 normalization to maximal M-wave. Three co-contraction indices were calculated across each agonist/antagonist muscle pair (MG/TA and SOL/TA to assess the effect of using various metrics to quantify co-contraction. Two factor ANOVAs were used to compare effects of group and normalization for each metric. Co-contraction during the terminal stance (TSt phase of gait is not different between healthy controls and the paretic leg of individuals post-stroke, regardless of the metric used to quantify co-contraction. Interestingly, co-contraction was similar between M-max and non-normalized EMG; however, normalization does not impact the ability to resolve group differences. While a modest correlation is revealed between the amount of TSt co-contraction and walking speed, the relationship is not sufficiently strong to motivate further exploration of a causal link between co-contraction and walking function after stroke. Co-contraction does not appear to be a common strategy employed by individuals after stroke. We recommend exploration of alternative EMG analysis approaches in an effort to learn more about the causal

  18. Altered muscle coordination when pedalling with independent cranks

    Directory of Open Access Journals (Sweden)

    François eHug

    2013-08-01

    Full Text Available Pedalling with independent cranks ensures each leg cycles independently of the other, and thus eliminates the contribution of the contralateral leg during the upstroke phase. Consequently the subject is required to actively pull-up the pedal to complete the cycle. The present study aimed to determine the acute effect of the use of independent cranks on muscle coordination during a submaximal pedalling exercise. Ten healthy males were asked to perform submaximal pedaling exercises at 100 Watts with normal fixed cranks (control condition or independent cranks. Both 2-D pedal forces and electromyographic (EMG patterns of 10 lower limb muscles were recorded. When the mean EMG activity across the cycle was considered, the use of independent cranks significantly increased the activity level compared to control for Tibialis anterior (P=0.0017; +336±302%, Gastrocnemius medialis (P=0.0005; +47±25%, Rectus femoris (P=0.005; +123±153%, Biceps femoris – long head (P=0.0001; +162±97%, Semimembranosus (P=0.0001; +304±192%, and Tensor fascia latae (P=0.0001; +586±262%. The analysis of the four pedalling sectors revealed that the increased activity of hip and knee flexors mainly occurred during the top dead center and the upstroke phase. In addition, a high inter-individual variability was found in the way the participants adapted to pedalling with independent cranks. The present results showed that the enforced pull-up action required when using independent cranks was achieved by increasing the activation of hip and knee flexors. Further studies are needed to determine whether training with independent cranks has the potential to induce long-term changes in muscle coordination, and, if so, whether these changes are beneficial for cycling performance.

  19. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship

    Directory of Open Access Journals (Sweden)

    Filiz Ateş

    2018-01-01

    Full Text Available Intramuscular pressure (IMP is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA activity at different ankle positions. We hypothesized that (1 the TA IMP and the surface EMG (sEMG and fine-wire EMG (fwEMG correlate to ankle joint torque, (2 the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3 the electromechanical delay (EMD is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean (SD age = 26.9 (4.2 years old with 25.9 (5.5 kg/m2 body mass index] performed (i three isometric dorsiflexion (DF maximum voluntary contraction (MVC and (ii three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.

  20. Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles.

    Science.gov (United States)

    Tan, Xiangling; Qi, Wen-Ning; Gu, Xiaosong; Urbaniak, James R; Chen, Long-En

    2006-01-01

    This study investigated the effects of intermittent pneumatic compression (IPC) on expression of nitric oxide synthase (NOS) isoforms in compressed (anterior tibialis, AT) and uncompressed (cremaster muscles, CM) skeletal muscles. Following IPC application of 0.5, 1, and 5h on both legs of rats, the endothelial NOS (eNOS) mRNA expression was significantly up-regulated to 1.2-, 1.8, and 2.7-fold from normal, respectively, in both AT and CM, and protein expression increased more than 1.5-fold of normal at each time point. Similarly, neuronal NOS expression was up-regulated, but to a lesser degree. In contrast, inducible NOS expression was significantly and time-dependently down-regulated in both muscles. After IPC cessation, eNOS levels returned to normal in both AT and CM. The results confirm our hypothesis that IPC-induced vasodilation is mediated by regulating expression of NOS isoforms, in particular eNOS, in both compressed and uncompressed skeletal muscles. The results also suggest the importance of precisely characterizing expression of each NOS isoform in tissue pathophysiology.

  1. The Effect of the Weight of Equipment on Muscle Activity of the Lower Extremity in Soldiers

    Directory of Open Access Journals (Sweden)

    Tobias Lindner

    2012-01-01

    Full Text Available Due to their profession and the tasks it entails, soldiers are exposed to high levels of physical activity and strain. This can result in overexertion and pain in the locomotor system, partly caused by carrying items of equipment. The aim of this study was to analyse the extent of muscle activity in the lower extremities caused by carrying specific items of equipment. For this purpose, the activity of selected groups of muscles caused by different items of equipment (helmet, carrying strap, backpack, and rifle in the upper and lower leg was measured by recording dynamic surface electromyograms. Electrogoniometers were also used to measure the angle of the knee over the entire gait cycle. In addition to measuring muscle activity, the study also aimed to determine out what influence increasing weight load has on the range of motion (ROM of the knee joint during walking. The activity of recorded muscles of the lower extremity, that is, the tibialis anterior, peroneus longus, gastrocnemius lateralis, gastrocnemius medialis, rectus femoris, and biceps femoris, was found to depend on the weight of the items of equipment. There was no evidence, however, that items of equipment weighing a maximum of 34% of their carrier’s body weight had an effect on the ROM of the knee joint.

  2. Effects of slackline training on balance, jump performance & muscle activity in young children.

    Science.gov (United States)

    Donath, L; Roth, R; Rueegge, A; Groppa, M; Zahner, L; Faude, O

    2013-12-01

    The study investigated the effects of slackline training (rope balancing) on balance, jump performance and muscle activity in children. Two primary-school classes (intervention, n=21, INT: age: 10.1 (SD 0.4) y, weight: 33.1 (4.5) kg; control, n=13, CON: age: 10.0 (SD 0.4) y, weight: 34.7 (7.4) kg) participated. Training was performed within 6 weeks, 5 times per week for 10 min each day. Balance (static and dynamic stance), countermovement jumps, reverse balancing on beams (3, 4.5 and 6 cm width), slackline standing (single- and double-limb) and electromyographic activity (soleus, gastrocnemius, tibialis anterior) were examined. INT significantly improved single- and double-limb slackline standing (double limb: 5.1 (3.4) s-17.2 (14.4) s; right leg: 8.2 (5.8) s-38.3 (36.0) s; left leg: 10.6 (5.8) s-49.0 (56.3) s; pslackline standing for the mm. soleus (-23%, p=0.10, ηp²=0.18) and tibialis anterior (-26%, p=0.15, ηp²=0.14) was observed for INT. Jump performance remained unchanged (p=0.28, ηp²=0.04). In conclusion, daily slackline training results in large slackline-specific balance improvements. Transfer effects to static and dynamic stance, reverse balancing or jumping performance seemed to be restricted. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Leg lengthening - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100127.htm Leg lengthening - series—Indications To use the sharing features ... with lengthening procedures are the bones of the leg, the tibia and the femur. Surgical treatment may ...

  4. Arterial bypass leg - slideshow

    Science.gov (United States)

    ... medlineplus.gov/ency/presentations/100155.htm Arterial bypass leg - series—Normal anatomy To use the sharing features ... Overview The arteries which supply blood to the leg originate from the aorta and iliac vessels. Review ...

  5. Leg lengthening and shortening

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002965.htm Leg lengthening and shortening To use the sharing features on this page, please enable JavaScript. Leg lengthening and shortening are types of surgery to ...

  6. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee

    2016-06-01

    Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (ptraining at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Lower Extremity Muscle Activity During a Women's Overhand Lacrosse Shot

    Directory of Open Access Journals (Sweden)

    Millard Brianna M.

    2014-07-01

    Full Text Available The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG leads to measure muscle activity of the rectus femoris (RF, biceps femoris (BF, tibialis anterior (TA, and medial gastrocnemius (GA. Participants completed five trials of a warm-up speed shot (Slow and a game speed shot (Fast. Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration. Average EMG per muscle was analyzed using a 4 (Phase x 2 (Speed ANOVA. BF was greater during Fast vs. Slow for all phases (p0.05. RF and GA were each influenced by the interaction of Phase and Speed (p<0.05 with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05 but only tended to be greater during Stick Acceleration (p=0.076 for Fast vs. Slow. The greater muscle activity (BF, RF, GA during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements.

  8. Endoscopic adhesiolysis for extensive tibialis posterior tendon and Achilles tendon adhesions following compound tendon rupture

    OpenAIRE

    Lui, Tun Hing

    2013-01-01

    Tendon adhesion is one of the most common causes of disability following tendon surgery. A case of extensive peritendinous adhesions of the Achilles tendon and tibialis posterior tendon after compound rupture of the tendons was reported. This was managed by endoscopic adhesiolysis of both tendons. The endoscopic approach allows early postoperative mobilisation which can relieve the tendon adhesion.

  9. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  10. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J. S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J. P. K.; Geertzen, J. H. B.

    2004-01-01

    This paper describes a new automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients, fitted

  11. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J.S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J.P.K.; Geertzen, J.H.B.

    This paper describes a new, automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients,

  12. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Femur (Upper Leg) KidsHealth / For Parents / X- ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  13. The restless legs syndrome (Ekbom's syndrome)

    African Journals Online (AJOL)

    1983-04-30

    Apr 30, 1983 ... same distribution as the paraesthesiae; and (v) anxiety, tension or mild depression. Paraesthesiae or creeping sensations are usually confined to the calves. They are extremely unpleasant and deep-seated in muscles or bones rather than in the skin, mostly affecting the legs between the knee and ankle.

  14. An Autologous Muscle Tissue Expansion Approach for the Treatment of Volumetric Muscle Loss

    Science.gov (United States)

    2015-07-01

    DOI: 10.1089/ biores.2015.0009. Abbreviations Used ANOVA¼ analysis of variance ECM¼ extracellular matrix EDL¼ extensor digitorum longus TA¼ tibialis...muscle VML injury VML was surgically created in similar fashion to that previously reported.2,13,17 The TA and underlying ex- tensor digitorum longus ...made at the antero-lateral aspect of the ankle and the distal EDL muscle tendon and extensor hallicus longus muscle was isolated and severed above the

  15. Predictive simulation of diabetic gait: Individual contribution of ankle stiffness and muscle weakening.

    Science.gov (United States)

    Santos, Gilmar F; Gomes, Aline A; Sacco, Isabel C N; Ackermann, Marko

    2017-10-01

    Diabetic neuropathic individuals present massive muscle strength reduction at the ankle plantar- and dorsiflexors and increased joint stiffness. Our aim is to investigate the adaptation strategies to these musculoskeletal alterations during walking by means of predictive simulations. We used a seven segment planar musculoskeletal model actuated by eight Hill-type muscles in each leg. The effect of all passive tissue in muscles and other joint structures was modeled by net passive joint moment curves. The predictive simulations were generated by solving an optimal control problem that minimized a cost function, including effort and tracking terms, using direct collocation and a commercial optimal control package. We simulate four conditions to represent the weakening of the distal muscles triceps sural (TS) and tibialis anterior (TA), and five conditions to represent the effect of increasing nonlinear ankle stiffness in flexion. The weakening of the distal muscles leads to a delayed action of the TS and a progressive decrease of the gastrocnemius peak force in the push-off phase. This distal deficit is compensated by a larger hip flexion moment resulting from an increase in the iliopsoas muscle force in this phase, known as the hip strategy. The adaptation mechanisms observed in response to an increase in ankle stiffness include the hip strategy and the exploitation of the passive joint structures as springs, which store energy during midstance and release it during push-off, reducing TS force and power in this phase and leading to a consistent decrease in the overall muscle force levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Long-term follow-up after tibialis anterior tendon shortening in combination with Achilles tendon lengthening in spastic equinus in cerebral palsy.

    Science.gov (United States)

    Kläusler, Michèle; Speth, Bernhard Maria; Brunner, Reinald; Tirosh, Oren; Camathias, Carlo; Rutz, Erich

    2017-10-01

    Using Tibialis Anterior Shortening (TATS) in combination with Achilles Tendon Lengthening (TAL) to treat spastic equinus in children with cerebral palsy (CP) was described in 2011. Short-term results have indicated a good outcome, especially an improvement of the drop foot in swing phase and the correction of equinus in stance phase. The aim of this study was to analyse the results of the long-term follow-up and to determine the relapse rate of TATS and TAL. The kinematics of the sagittal, frontal and transversal planes were measured by using instrumented 3D gait analysis at three defined time points and then described using the Gait Profile Score (GPS) and Movement Analysis Profile (MAP). The data was exported into Gaitabase and then the preoperative (T0), short- term (T1) and long-term (T2) follow-up data was statistically compared. 23 patients (mean age at index-surgery=14.9years) were included, there was a mean follow-up time of 5.8 years. 3 children (13%) have shown a relapse. The data of 12 children with spastic hemiplegia (12 legs), as well as 8 children with spastic diplegia (10 legs) has been analysed. There has been a significant (pchildren with CP. Postoperatively all subjects were able to walk without an AFO. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nocturnal leg cramps in children: incidence and clinical characteristics.

    Science.gov (United States)

    Leung, A. K.; Wong, B. E.; Chan, P. Y.; Cho, H. Y.

    1999-01-01

    The records of 2527 healthy children seen in an ambulatory care clinic were evaluated for nocturnal leg cramps in the preceding 12 months, frequency and duration of the cramps, whether the cramps affected one leg or both legs at a time, whether there was associated muscle cramps in feet, whether the cramps occurred when the child was awake or asleep, and whether there was residual tenderness in the affected muscles. Nocturnal leg cramps were present in 185 children for an overall incidence of 7.3%. Leg cramps were noted only in children aged > or = 8 years. The incidence increased at 12 years and peaked at 16 to 18 years of age. A majority (81.6%) of the affected children had nocturnal leg cramps 1 to 4 times per year. The mean duration of episodes was 1.7 minutes. Leg cramps were unilateral in 98.9% of cases and the ipsilateral foot also was involved in 18.9% of cases. One hundred thirty-five (73%) children had leg cramps while asleep, and the remaining 23 (12.4%) children had leg cramps in either state. Fifty-seven (30.8%) children had residual tenderness in the affected muscles. The mean duration of residual tenderness was 33.2 minutes (range: 2 minutes-1 day). We conclude that nocturnal leg cramps are common in children aged > 12 years. A majority of the affected children have leg cramps 1 to 4 times per year. The cramps are usually unilateral and occur when the children are asleep. Normal duration of the leg cramp is < 2 minutes. Residual tenderness is present in approximately 30% of the affected children. Residual tenderness, if present, usually lasts for half an hour. PMID:10388258

  18. Tibialis anterior stretch reflex in early stance is suppressed by repetitive transcranial magnetic stimulation

    DEFF Research Database (Denmark)

    Zuur, Abraham T; Christensen, Mark Schram; Sinkjær, Thomas

    2009-01-01

    Abstract A rapid plantar flexion perturbation in the early stance phase of walking elicits a large stretch reflex in tibialis anterior (TA). In this study we use repetitive Transcranial Magnetic Stimulation (rTMS) to test if this response is mediated through a transcortical pathway. TA stretch...... reflexes were elicited in the early stance phase of the step cycle during treadmill walking. 20 minutes of 1 Hz rTMS at 115% resting motor threshold (MTr) significantly decreased (p

  19. Venous leg ulcers.

    Science.gov (United States)

    Nelson, E Andrea; Adderley, Una

    2016-01-15

    Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0 in 1000 people have active leg ulcers. Prevalence increases with age to about 20 in 1000 people aged over 80 years. We conducted a systematic overview, aiming to answer the following clinical questions: What are the effects of treatments for venous leg ulcers? What are the effects of organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2014 (Clinical Evidence overviews are updated periodically; please check our website for the most up-to-date version of this overview). At this update, searching of electronic databases retrieved 116 studies. After deduplication and removal of conference abstracts, 63 records were screened for inclusion in the overview. Appraisal of titles and abstracts led to the exclusion of 43 studies and the further review of 20 full publications. Of the 20 full articles evaluated, four systematic reviews were updated and four RCTs were added at this update. We performed a GRADE evaluation for 23 PICO combinations. In this systematic overview, we categorised the efficacy for 13 interventions based on information about the effectiveness and safety of advice to elevate leg, advice to keep leg active, compression stockings for prevention of recurrence, compression bandages and stockings to treat venous leg ulcers, laser treatment (low level), leg ulcer clinics, pentoxifylline, skin grafting, superficial vein surgery for prevention of recurrence, superficial vein surgery to treat venous leg ulcers, therapeutic ultrasound, and topical negative pressure.

  20. A single bout of whole-leg, peristaltic pulse external pneumatic compression upregulates PGC-1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue.

    Science.gov (United States)

    Kephart, Wesley C; Mobley, C Brooks; Fox, Carlton D; Pascoe, David D; Sefton, JoEllen M; Wilson, Trent J; Goodlett, Michael D; Kavazis, Andreas N; Roberts, Michael D; Martin, Jeffrey S

    2015-07-01

    What is the central question of this study? Does 60 min of peristaltic pulse external pneumatic compression (EPC) alter gene and protein expression patterns related to metabolism, vascular biology, redox balance and inflammation in vastus lateralis biopsy samples? What is the main finding and its importance? A single bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating endothelial nitric oxide synthase protein and nitric oxide metabolite concentrations in vastus lateralis biopsy samples. We investigated whether a single 60 min bout of whole-leg, lower pressure external pneumatic compression (EPC) altered select vascular, metabolic, antioxidant and inflammation-related mRNAs. Ten participants (eight male, two female; aged 22.0 ± 0.4 years) reported to the laboratory 4 h postprandial, and vastus lateralis muscle biopsies were obtained before (PRE) and 1 and 4 h after EPC treatment. Messenger RNA expression was analysed using real-time RT-PCR, and significant mRNA findings were investigated further by Western blot analysis of respective protein concentrations. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA increased by 77% 1 h following EPC compared with PRE levels (P = 0.005), but no change in protein concentration 1 or 4 h post-EPC was observed. Increases in endothelial nitric oxide sythase (eNOS) mRNA (+44%) and superoxide dismutase 2 (SOD2) mRNA (+57%) 1 h post-EPC as well as an increase in interleukin-10 mRNA (+132%) 4 h post-EPC compared with PRE levels were observed, but only approached significance (P = 0.076, 0.077 and 0.074, respectively). Interestingly, eNOS protein (+40%, P = 0.025) and nitrate and nitrite (NOx) concentrations (+69%, P = 0.025) increased 1-4 h post-EPC. Moreover, SOD2 protein tended to increase from PRE to 4 h post-EPC (+43%, P = 0.074), although no changes in tissue 4-hydroxnonenal levels was observed. An acute bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating e

  1. Restless legs syndrome and nocturnal leg cramps: a review and guide to diagnosis and treatment.

    Science.gov (United States)

    Tipton, Philip W; Wszołek, Zbigniew K

    2017-12-22

    Restless legs syndrome (RLS) and nocturnal leg cramps (NLCs) are common disorders affecting 7.0% and 24.1% of the population in some European countries, respectively. Patients suffering from RLS experience uncomfortable nocturnal sensations in the legs with the urge to move that dissipates while moving. NLC is characterized by abrupt muscle contraction, most often in the gastrocnemius or foot muscles, which occurs at night and may result in significant sleep disturbances. The diagnosis of these disorders has presented a challenge to health care providers because of symptom overlap with other sensory and motor disturbances with nocturnal predominance. Treatment options and approaches are lacking, partially because of our currently incomplete understanding of the pathophysiological mechanisms underlying these conditions. We reviewed the medical literature to provide a comprehensive assessment of RLS and NLC with a focus on improved diagnostic accuracy and treatment approaches.

  2. Dynamically Stable Legged Locomotion.

    Science.gov (United States)

    1983-01-27

    balanced itself in 31) using a tabular ctontrol sclwnme. With only thUiee actuated degrees it used a shuffling gait to balance that reminds one of Charlie ... Chaplin . * The present study explores the control of a physical one-legged hopping machine. The objective of using a machine with only one leg was to

  3. Lyden-af-Leg

    DEFF Research Database (Denmark)

    Toft, Herdis

    Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform.......Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform....

  4. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... muscle protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  5. Simulating Muscle-Reflex Dynamics in a Simple Hopping Robot

    Science.gov (United States)

    Seyfarth, Andre; Kalveram, Karl Theodor; Geyer, Hartmut

    In legged systems, springy legs facilitate gaits with subsequent contact and flight phases. Here, we test whether electrical motors can generate leg behaviors suitable for stable hopping. We built a vertically operating sledge actuated by a motor-driven leg. The motor torque simulates either a linear leg spring or a muscle-reflex system. For stable hopping significant energy supply was required after midstance. This was achieved by enhancing leg stiffness or by continuously applying positive force feedback to the simulated muscle. The muscle properties combined with positive force feedback result in spring-like behavior which enables stable hopping with adjustable hopping height.

  6. Effects of Preventative Ankle Taping on Planned Change-of-Direction and Reactive Agility Performance and Ankle Muscle Activity in Basketballers

    Directory of Open Access Journals (Sweden)

    Matthew D. Jeffriess, Adrian B. Schultz, Tye S. McGann, Samuel J. Callaghan, Robert G. Lockie

    2015-12-01

    Full Text Available This study investigated the effects of preventative ankle taping on planned change-of-direction and reactive agility performance and peak ankle muscle activity in basketballers. Twenty male basketballers (age = 22.30 ± 3.97 years; height = 1.84 ± 0.09 meters; body mass = 85.96 ± 11.88 kilograms with no ankle pathologies attended two testing sessions. Within each session, subjects completed six planned and six reactive randomized trials (three to the left and three to the right for each condition of the Y-shaped agility test, which was recorded by timing lights. In one session, subjects had both ankles un-taped. In the other, both ankles were taped using a modified subtalar sling. Peak tibialis anterior, peroneus longus (PL, peroneus brevis (PB, and soleus muscle activity was recorded for both the inside and outside legs across stance phase during the directional change, which was normalized against 10-meter sprint muscle activity (nEMG. Both the inside and outside cut legs during the change-of-direction step were investigated. Repeated measures ANOVA determined performance time and nEMG differences between un-taped and taped conditions. There were no differences in planned change-of-direction or reactive agility times between the conditions. Inside cut leg PL nEMG decreased when taped for the planned left, reactive left, and reactive right cuts (p = 0.01. Outside leg PB and soleus nEMG increased during the taped planned left cut (p = 0.02. There were no other nEMG changes during the cuts with taping. Taping did not affect change-of-direction or agility performance. Inside leg PL activity was decreased, possibly due to the tape following the line of muscle action. This may reduce the kinetic demand for the PL during cuts. In conclusion, ankle taping did not significantly affect planned change-of-direction or reactive agility performance, and did not demonstrate large changes in activity of the muscle complex in healthy basketballers.

  7. The hyperaemic response to passive leg movement is dependent on nitric oxide

    DEFF Research Database (Denmark)

    Mortensen, Stefan Peter; Askew, Christopher D; Walker, Meegan

    2012-01-01

    interstitial space. Inhibition of NO synthesis lowered the vasodilatory response to passive leg movement by ~90%. The increase in leg blood flow was lower in elderly subjects compared to young subjects and leg blood flow did not increase when passive leg movement was performed by elderly with peripheral artery...... disease. The results suggest that the hyperaemia induced by passive leg movement is NO dependent. The hyperaemic response to passive leg movement and to ACh was also assessed in elderly subjects and patients with peripheral artery disease.......Key points Passive leg movement is associated with a ~3-fold increase in blood flow to the leg, but the underlying mechanisms remain unknown. Passive leg movement increased venous levels of metabolites of nitric oxide (NO) in young subjects, whereas they remained unaltered in the muscle...

  8. Myofascial force transmission causes interaction between adjacent muscles and connective tissue: Effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle

    NARCIS (Netherlands)

    Huijing, P.A.J.B.M.; Baan, G.C.

    2001-01-01

    Muscles within the anterior tibial compartment (extensor digitorum longus: EDL. tibialis anterior: TA, and extensor hallucis longus muscles: EHL) and within the peroneal compartment were excited simultaneously and maximally. The ankle joint was fixed kept at 90°. For EDL length force characteristics

  9. Compartmental fasciotomy and isolating a muscle from neighbouring muscles interfere with extramuscular myofascial force transmission within the rat anterior tibial compartment.

    NARCIS (Netherlands)

    Huijing, P.A.J.B.M.; Maas, H.; Baan, G.C.

    2003-01-01

    Muscles within the anterior crural compartment (extensor digitorum longus, EDL; tibialis anterior, TA; and extensor hallucis longus, EHL) and within the peroneal compartment were excited simultaneously and maximally. All muscles were kept at constant length with the exception of EDL, for which

  10. Descending pain modulation and its interaction with peripheral sensitization following sustained isometric muscle contraction in fibromyalgia

    DEFF Research Database (Denmark)

    Ge, H-Y; Nie, Hongling; Graven-Nielsen, Thomas

    2012-01-01

    OBJECTIVE: Sustained isometric muscle contraction (fatiguing contraction) recruits segmental and/or extrasegmental descending inhibition in healthy subjects but not in fibromyalgia (FM). We hypothesized that fatiguing contraction may shift descending pain modulation from inhibition towards...... facilitation and that the effect of descending pain modulation be dependent on peripheral muscle pain sensitivity. METHODS: Pressure pain thresholds (PPT) were measured from 13 points bilaterally in the upper trapezius muscle and from the mid-point bilaterally in the tibialis anterior before-, immediately......) than healthy control groups (286.2±24.1s) (P0.05). Following the contraction, PPTs were increased significantly and heterogeneously in the upper trapezius over time, but not, in the tibialis anterior muscle in healthy controls. However, PPT were significantly decreased over time in the tibialis...

  11. RESTLESS LEGS SYNDROME

    Directory of Open Access Journals (Sweden)

    Dmitriy Valer'evich Artem'ev

    2009-01-01

    Full Text Available The paper describes the epidemiology, etiology, pathogenesis, clinical picture, diagnosis, differential diagnosis, and treatment of restless legs syndrome. Recommendations are given how to choose therapeutic modalities and drugs in relation to different factors.

  12. Restless legs syndrome.

    Science.gov (United States)

    Venkateshiah, Saiprakash B; Ioachimescu, Octavian C

    2015-07-01

    Restless legs syndrome is a common sensorimotor disorder characterized by an urge to move, and associated with uncomfortable sensations in the legs (limbs). Restless legs syndrome can lead to sleep-onset or sleep-maintenance insomnia, and occasionally excessive daytime sleepiness, all leading to significant morbidity. Brain iron deficiency and dopaminergic neurotransmission abnormalities play a central role in the pathogenesis of this disorder, along with other nondopaminergic systems, although the exact mechanisms are still. Intensive care unit patients are especially vulnerable to have unmasking or exacerbation of restless legs syndrome because of sleep deprivation, circadian rhythm disturbance, immobilization, iron deficiency, and use of multiple medications that can antagonize dopamine. Published by Elsevier Inc.

  13. Dynamic Leg Exercise Improves Tolerance to Lower Body Negative Pressure

    Science.gov (United States)

    Watenpaugh, D. E.; Ballard, R. E.; Stout, M. S.; Murthy, G.; Whalen, R. T.; Hargens, A. R.

    1994-01-01

    These results clearly demonstrate that dynamic leg exercise against the footward force produced by LBNP substantially improves tolerance to LBNP, and that even cyclic ankle flexion without load bearing also increases tolerance. This exercise-induced increase of tolerance was actually an underestimate, because subjects who completed the tolerance test while exercising could have continued for longer periods. Exercise probably increases LBNP tolerance by multiple mechanisms. Tolerance was increased in part by skeletal muscle pumping venous blood from the legs. Rosenhamer and Linnarsson and Rosenhamer also deduced this for subjects cycling during centrifugation, although no measurements of leg volume were made in those studies: they found that male subjects cycling at 98 W could endure 3 Gz centrifugation longer than when they remained relaxed during centrifugation. Skeletal muscle pumping helps maintain cardiac filling pressure by opposing gravity-, centrifugation-, or LBNP-induced accumulation of blood and extravascular fluid in the legs.

  14. Leg and arm lactate and substrate kinetics during exercise

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Jensen-Urstad, M; Rosdahl, H

    2003-01-01

    To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed...... by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate...... release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate...

  15. Single leg stance control in individuals with symptomatic gluteal tendinopathy.

    Science.gov (United States)

    Allison, Kim; Bennell, Kim L; Grimaldi, Alison; Vicenzino, Bill; Wrigley, Tim V; Hodges, Paul W

    2016-09-01

    Lateral hip pain during single leg loading, and hip abductor muscle weakness, are associated with gluteal tendinopathy, but it has not been shown how or whether kinematics in single leg stance differ in those with gluteal tendinopathy. To compare kinematics in preparation for, and during, single leg stance between individuals with and without gluteal tendinopathy, and the effect of hip abductor muscle strength on kinematics. Twenty individuals with gluteal tendinopathy and 20 age-matched pain-free controls underwent three-dimensional kinematic analysis of single leg stance and maximum isometric hip abductor strength testing. Maximum values of hip adduction, pelvic obliquity (contralateral pelvis rise/drop), lateral pelvic translation (ipsilateral/contralateral shift) and ipsilateral trunk lean during preparation for leg lift and average values in steady single leg stance, were compared between groups using an analysis of covariance, with and without anthropometric characteristics and strength as covariates. Individuals with gluteal tendinopathy demonstrated greater hip adduction (standardized mean difference (SMD)=0.70, P=0.04) and ipsilateral pelvic shift (SMD=1.1, P=0.002) in preparation for leg lift, and greater hip adduction (SMD=1.2, P=0.002) and less contralateral pelvic rise (SMD=0.86, P=0.02) in steady single leg stance than controls. When including strength as a covariate, only between-group differences in lateral pelvic shift persisted (SMD=1.7, P=0.01). Individuals with gluteal tendinopathy use different frontal plane kinematics of the hip and pelvis during single leg stance than pain-free controls. This finding is not influenced by pelvic dimension or the potentially modifiable factor of body mass index, but is by hip abductor muscle weakness. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Anatomical Footprint of the Tibialis Anterior Tendon: Surgical Implications for Foot and Ankle Reconstructions

    Directory of Open Access Journals (Sweden)

    Madeleine Willegger

    2017-01-01

    Full Text Available This study aimed to analyze precisely the dimensions, shapes, and variations of the insertional footprints of the tibialis anterior tendon (TAT at the medial cuneiform (MC and first metatarsal (MT1 base. Forty-one formalin-fixed human cadaveric specimens were dissected. After preparation of the TAT footprint, standardized photographs were made and the following parameters were evaluated: the footprint length, width, area of insertion, dorsoplantar location, shape, and additional tendon slips. Twenty feet (48.8% showed an equal insertion at the MC and MT1, another 20 feet (48.8% had a wide insertion at the MC and a narrow insertion at the MT1, and 1 foot (2.4% demonstrated a narrow insertion at the MC and a wide insertion at the MT1. Additional tendon slips inserting at the metatarsal shaft were found in two feet (4.8%. Regarding the dorsoplantar orientation, the footprints were located medial in 29 feet (70.7% and medioplantar in 12 feet (29.3%. The most common shape at the MT1 base was the crescent type (75.6% and the oval type at the MC (58.5%. The present study provided more detailed data on the dimensions and morphologic types of the tibialis anterior tendon footprint. The established anatomical data may allow for a safer surgical preparation and a more anatomical reconstruction.

  17. Quinine for Nocturnal Leg Cramps

    Science.gov (United States)

    Man-Son-Hing, Malcolm; Wells, George; Lau, Anita

    1998-01-01

    OBJECTIVE With respect to the use of quinine for the treatment of nocturnal leg cramps, to determine whether the findings of a previously performed meta-analysis of published data are altered with the addition of unpublished data, and whether publication bias is present in this area. DESIGN A meta-analysis of eight (four published and four unpublished) randomized, double-blind, placebo-controlled trials, seven of which had a crossover design. SETTING Randomized trials that were available as of July 1997. SUBJECTS Ambulatory patients (659) who suffered from regular nocturnal leg cramps. MAIN RESULTS When individual patient data from all crossover studies were pooled, persons had 3.60 (95% confidence interval [CI] 2.15, 5.05) fewer cramps in a 4-week period when taking quinine compared with placebo. This compared with an estimate of 8.83 fewer cramps (95% CI 4.16, 13.49) from pooling published studies alone. The corresponding relative risk reductions were 21% (95% CI 12%, 30%) and 43% (95% CI 21%, 65%), respectively. Compared with placebo, the use of quinine was associated with an increased incidence of side effects, particularly tinnitus. Publication bias is present in the reporting of the efficacy of quinine for this indication, as almost all published studies reported larger estimates of its efficacy than did unpublished studies. CONCLUSIONS This study confirms that quinine is efficacious in the prevention of nocturnal leg cramps. However, its benefit may not be as large as reported from the pooling of published studies alone. Given the side effect profile of quinine, nonpharmacologic therapy (e.g., regular passive stretching of the affected muscle) is the best first-line treatment. For persons who find this ineffective and whose quality of life is significantly affected, a trial of quinine is warranted. Prescribing physicians must closely monitor the risks and benefits in individual patients. Publication bias is present in this area even though there is

  18. A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies

    Science.gov (United States)

    2012-12-01

    Fig. 1D). Then, at the demarcated middle third the TA muscle, the TA and extensor digitorum longus (EDL) mus- cles were bluntly separated and the medial...0.05). VML, volumetric muscle loss; BW, body weight; MW, muscle weight; TA, tibialis anterior; EDL, extensor digitorum longus ; Po, peak iso- metric...tenotomy of the extensor digito- rum longus muscle (Ablation). abcLetters indicate that the value is significantly different from any different letter

  19. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    . A clinical grade calcium solution (20 μl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...

  20. High resolution unenhanced computed tomography in patients with swollen legs.

    Science.gov (United States)

    Monnin-Delhom, E D; Gallix, B P; Achard, C; Bruel, J M; Janbon, C

    2002-09-01

    To evaluate the accuracy of computed tomography (CT) scan imaging in distinguishing lymphedema from deep venous thrombosis (DVT) and lipodystrophy (lipedema) in patients with swollen legs. CT scans of the lower limbs were performed in 55 patients with 76 swollen legs (44 lymphedemas, 12 DVT and 20 lipedemas). Thirty-four normal contralateral legs were also similarly evaluated. Primary lymphedema was verified by lymphography or lymphoscintigraphy, whereas secondary lymphedema was documented by a typical clinical history. DVT was established by ultrasound Doppler imaging. The diagnosis of lipedema was made with bilateral swollen legs where lymphoscintigraphy and Doppler examination were both unremarkable. Qualitative CT analysis was based on skin thickening, subcutaneous edema accumulation with a honeycombed pattern, and muscle compartment enlargement. Sensitivity and specificity of CT scan for the diagnosis of lymphedema was 93 and 100%, respectively; for lipedema it was 95 and 100%, respectively; andfor DVT it was 91 and 99%, respectively. Skin thickening was found in 42 lymphedemas (95%), in 9 DVT (75%), and in 2 lipedemas (16%). Subcutaneous edema accumulation was demonstrated in 42 legs (95%) with lymphedema and in 5 (42%) with DVT but in none with lipedema. A honeycombed pattern was present only in lymphedema (18 legs or 41%); muscle enlargement was present in all patients with DVT, in no patient with lipedema, and in 4 (9%) with lymphedema. Edema accumulation is readily demonstrated with plain CT scan and is not present in lipedema. Specific CT features of the subcutaneous fat and muscle compartments allow accurate differentiation between lymphedema and DVT.

  1. Protection against high intravascular pressure in giraffe legs.

    Science.gov (United States)

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure.

  2. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  3. Onset Time of Nerve Block: A Comparison of Two Injection Locations in Patients Having Lower Leg/ Foot Surgery

    Science.gov (United States)

    2014-03-20

    Strain of Muscle and/or Tendon of Lower Leg; Fracture of Lower Leg; Crushing Injury of Lower Leg; Fracture Malunion - Ankle and/or Foot; Disorder of Joint of Ankle and/or Foot; Complete Tear, Ankle and/or Foot Ligament; Pathological Fracture - Ankle and/or Foot; Loose Body in Joint of Ankle and/or Foot

  4. Venous leg ulcers.

    Science.gov (United States)

    Nelson, E Andrea

    2011-12-21

    Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 101 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide

  5. Leg tissue composition of goat kids according to racial group, weight and gender

    Directory of Open Access Journals (Sweden)

    Brenda Batista Lemos Medeiros

    2011-01-01

    Full Text Available To evaluate the effect of breed group, slaughter weight and sex on tissue proportion of the leg and muscle, bone and fat ratio in confined kids, seventy-four goats of both sex were used and divided among breed groups: Alpine (A, ½ Nubian + ½ Alpine (½ ANA, ½ Boer + ½ Alpine (½ BA, ¾ Boer + ¼ Alpine (¾ BA and ½ Nubian + ¼ Alpine + ¼ Boer, (Three cross - TC, at three slaughter weights (25, 30 and 35 kg. Leg represented 31.01% of half carcass, where 62.29% was total muscle, 21.45% total bone and 8.35% total fat. Alpine animals had higher bone weight than other groups. Male kids had higher muscle and bone proportion, whereas females had higher subcutaneous and intramuscular fat in leg. The percentage of total weight of the muscle, five muscles, adductor muscle, quadriceps muscle and femur were higher in the slaughter weights of 25 and 30 kg.

  6. Exercise system for eccentric tibialis anterior contraction to improve ambulatory function.

    Science.gov (United States)

    Itoh, Shota; Kubota, Keisuke; Ogata, Kunihiro; Tsuji, Toshiaki

    2016-08-01

    This study has developed a device and system for the exercise of eccentric contraction of the tibialis anterior, with the objective of maintaining ambulatory function. A system was built that allows for exercises of appropriate load and speed, by providing the trainee with force data in the form of visual feedback. An experimental verification with two healthy participants shows small variation in the Myoelectric data during the repetitive exercise. The result suggest the possibility of higher reproducibility of the proposed exercise in comparison with manual exercise. As a clinical test, elderly ambulatory participants who frequented a day care facility performed exercises for one month (twice weekly) using the proposed device and exercise system. To verify the exercise results, a TUG test was performed, which is an assessment index for functional mobilization capacity. Shorter TUG in the majority of the participants suggests a possible beneficial effect in ambulatory function.

  7. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila

    Science.gov (United States)

    Gowda, Swetha B. M.; Paranjpe, Pushkar D.; Reddy, O. Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich

    2018-01-01

    Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila. PMID:29440493

  8. The Effectiveness of a Leg-Kicking Training Program on Performance and Physiological Measures of Competitive Swimmers

    OpenAIRE

    Konstantaki, Maria; Winter, Edward M.

    2007-01-01

    This study investigated the adaptations in leg muscle metabolism of swimmers following a six-week, leg-kicking swimming training program Fifteen male competitive swimmers were randomly assigned to an experimental group (E; n=8) and a control group (C; n=7). E swimmers performed normal leg-kicking training three times per week, whereas C swimmers performed reduced leg-kicking training (20% and 4% of weekly training distance, respectively). Before and after the training program, all swimmers pe...

  9. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    Science.gov (United States)

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  10. Leg tissue composition and physico-chemical parameters of sheep meat fed annatto coproduct

    Directory of Open Access Journals (Sweden)

    Dorgival Morais de Lima Júnior

    2017-10-01

    Full Text Available Our objective was to evaluate leg tissue composition and physico-chemical quality parameters of sheep meat fed with increasing levels of annatto coproduct. 32 male uncastrated animals without a defined breed were randomized in four treatments (0, 100, 200 and 300 g kg-1 of annatto coproduct in the DM diet. After 78 days of confinement, the animals were slaughtered and body components were recorded. Reconstituted leg weight, total muscle weight, biceps weight and semitendinosus weight showed a negative linear behavior (P 0.05 were found for leg tissue composition (%, muscle:bone ratio, relative fat or leg muscle. Meat physico-chemical parameters (color, shear force, water retention capacity and cooking losses were not affected by the inclusion of the annatto coproduct in the diet. The annatto coproduct can be included in up to 300 g kg-1 of dietary dry matter without negative effects to the leg tissue composition (% and physical parameters of confined sheep meat.

  11. Disturbances of the sarcoplasmic reticulum and transverse tubular system in 24-h electrostimulated fast-twitch skeletal muscle

    DEFF Research Database (Denmark)

    Frías, J A; Cadefau, J A; Prats, C

    2005-01-01

    Chronic low-frequency stimulation of rabbit tibialis anterior muscle over a 24-h period induces a conspicuous loss of isometric tension that is unrelated to muscle energy metabolism (J.A. Cadefau, J. Parra, R. Cusso, G. Heine, D. Pette, Responses of fatigable and fatigue-resistant fibres of rabbit...

  12. Variability in myosteatosis and insulin resistance induced by high-fat diet in mouse skeletal muscles.

    Science.gov (United States)

    Collino, Massimo; Mastrocola, Raffaella; Nigro, Debora; Chiazza, Fausto; Aragno, Manuela; D'Antona, Giuseppe; Minetto, Marco A

    2014-01-01

    Nutrient overload leads to impaired muscle oxidative capacity and insulin sensitivity. However, comparative analyses of the effects of dietary manipulation on skeletal muscles with different fiber composition are lacking. This study aimed to investigate the selective adaptations in the soleus and tibialis anterior muscles evoked by administration of high-fat diet for 12 weeks in 10 mice (HFD mice) compared to 10 animals fed with a normal chow diet (control mice). Mice fed with the HFD diet exhibited hyperlipidemia, hyperinsulinemia, hyperglycemia, and lower exercise capacity in comparison to control mice. In control mice, soleus fibers showed higher lipid content than tibialis anterior fibers. In contrast, the lipid content was similar between the two muscles in HFD mice. Significant differences in markers of muscle mitochondrial production and/or activity as well as of lipid synthesis were detected between HFD mice and control mice, especially in the tibialis anterior. Moreover, translocation of GLUT-4 transporter to the plasma membrane and activation of the insulin signaling pathway were markedly inhibited in the tibialis and slightly reduced in the soleus of HFD mice compared to control mice. Overall, these results show that adaptive responses to dietary manipulation occur in a muscle-specific pattern.

  13. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry

    Directory of Open Access Journals (Sweden)

    Knutson Gary A

    2005-07-01

    Full Text Available Abstract Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing posture, but not in an unloaded (prone/supine posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI.

  14. Side-alternating vibration training for balance and ankle muscle strength in untrained women.

    Science.gov (United States)

    Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia

    2013-01-01

    Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P training could enhance ankle muscle strength and reduce postural sway during static balance

  15. Development and Physical Control Research on Prototype Artificial Leg

    Directory of Open Access Journals (Sweden)

    Fei Li

    2016-03-01

    Full Text Available To provide an ideal platform for research on intelligent bionic leg (IBL, this paper proposes a model of a biped robot with heterogeneous legs (BRHL. A prototype of an artificial leg is developed based on biological structure and motion principle analysis of human lower extremities. With regard to the driving sources, servomotors are chosen for the hip joint and ankle joint, while pneumatic muscle actuators (PMAs are chosen for the knee joint. The control system of the bionic artificial leg is designed and a physical experimental platform is established. The physical control experiments are done based on proportional-integral-derivative (PID control strategy. The experimental results show that such a system can realize the expected goals.

  16. Work economy following strength training in elderly : alterations in muscle strength, muscle thickness and lean mass upon work economy in elderly men following 12 weeks of strength training

    OpenAIRE

    Salvesen, Svein

    2013-01-01

    Masteroppgave i idrettsvitenskap - Universitetet i Agder 2013 AIM: To investigate if alterations in muscle strength, muscle mass and muscle thickness were followed by changes in work economy. METHODS: Fifty elderly men (60 – 81 years) followed a 12 week undulating periodized strength training program: Lean mass (Muscle mass; Dual-energy X-ray absorptiometry), muscle strength (1RM; one repetition maximum, in leg press and leg extension), and muscle thickness (ultrasound; vastus lateralis a...

  17. Propeller Flap for Complex Distal Leg Reconstruction: A Versatile ...

    African Journals Online (AJOL)

    have been described in the axilla, periolecranon, forearm, lower extremity,[1] hand,[6] and trunk.[7] In spite of the versatility of perforator‑based flaps, literature search reveals ... Anatomy of distal leg perforators. Perforators are small diameter vessels that originate from a main pedicle and perforate the fascia or muscle to ...

  18. X-Ray Exam: Lower Leg (Tibia and Fibula)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Lower Leg (Tibia and Fibula) KidsHealth / For ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  19. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24-month follow-up.

    Science.gov (United States)

    Hooijmans, M T; Doorenweerd, N; Baligand, C; Verschuuren, J J G M; Ronen, I; Niks, E H; Webb, A G; Kan, H E

    2017-01-01

    To assess the changes in phosphodiester (PDE)-levels, detected by 31P magnetic resonance spectroscopy (MRS), over 24-months to determine the potential of PDE as marker for muscle tissue changes in Duchenne Muscular Dystrophy (DMD) patients. Spatially resolved phosphorous datasets were acquired in the right lower leg of 18 DMD patients (range: 5-15.4 years) and 12 age-matched healthy controls (range: 5-14 years) at three time-points (baseline, 12-months, and 24-months) using a 7T MR-System (Philips Achieva). 3-point Dixon images were acquired at 3T (Philips Ingenia) to determine muscle fat fraction. Analyses were done for six muscles that represent different stages of muscle wasting. Differences between groups and time-points were assessed with non-parametric tests with correction for multiple comparisons. Coefficient of variance (CV) were determined for PDE in four healthy adult volunteers in high and low signal-to-noise ratio (SNR) datasets. PDE-levels were significantly higher (two-fold) in DMD patients compared to controls in all analyzed muscles at almost every time point and did not change over the study period. Fat fraction was significantly elevated in all muscles at all time points compared to healthy controls, and increased significantly over time, except in the tibialis posterior muscle. The mean within subject CV for PDE-levels was 4.3% in datasets with high SNR (>10:1) and 5.7% in datasets with low SNR. The stable two-fold increase in PDE-levels found in DMD patients in muscles with different levels of muscle wasting over 2-year time, including DMD patients as young as 5.5 years-old, suggests that PDE-levels may increase very rapidly early in the disease process and remain elevated thereafter. The low CV values in high and low SNR datasets show that PDE-levels can be accurately and reproducibly quantified in all conditions. Our data confirms the great potential of PDE as a marker for muscle tissue changes in DMD patients.

  20. Differential diagnosis of unpleasant sensations in the legs: prevalence of restless legs syndrome in a primary care population.

    Science.gov (United States)

    Möller, Caroline; Wetter, Thomas C; Köster, Jürgen; Stiasny-Kolster, Karin

    2010-02-01

    Restless legs syndrome (RLS) is a common neurological condition. We investigated the prevalence of RLS in patients suffering from unpleasant sensations in the legs. We included 16,543 patients consulting one of 312 primary care practices in Germany on November 8, 2007. All patients filled out a self-assessment questionnaire. Patients who reported suffering from unpleasant sensations in the legs were then assessed by the physician. Main outcome measures were the overall prevalence of unpleasant sensations in the legs and the prevalence of RLS; the most common differential diagnoses in the subpopulation suffered from unpleasant leg sensations. Out of all participating patients 7704 (46.6%) suffered from unpleasant sensations in the legs and 1758 (10.6%) were diagnosed with RLS according to the four essential clinical criteria. Among patients with unpleasant leg sensations, the prevalence of RLS was considerably higher (22.7%) than in the total population. The most common differential diagnoses were osteoarthritis (21.5%), disc lesion (19.2%), varicose veins (18.8%) and muscle cramps (14.6%). Of the patients with RLS 53.4% had already consulted their physician about their leg problems in the past. Still, only 20.1% of the RLS patients had received the correct diagnosis. Comorbidity rates were significantly increased in RLS patients compared to patients suffering from leg symptoms of other origin. This study showed a high prevalence of RLS in primary care patients with unpleasant sensations in the legs. Thus, in patients presenting with these symptoms the diagnosis of RLS should routinely be considered. 2009 Elsevier B.V. All rights reserved.

  1. ORTHOPEDIC LEG BRACE

    Science.gov (United States)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  2. The Compact Mutation of Myostatin Causes a Glycolytic Shift in the Phenotype of Fast Skeletal Muscles

    OpenAIRE

    Baán, Júlia Aliz; Kocsis, Tamás; Keller-Pintér, Anikó; Müller, Géza; Zádor, Ernö; Dux, László; Mendler, Luca

    2013-01-01

    Myostatin is an important negative regulator of skeletal muscle growth. The hypermuscular Compact (Cmpt) mice carry a 12-bp natural mutation in the myostatin propeptide, with additional modifier genes being responsible for the phenotype. Muscle cellularity of the fast-type tibialis anterior (TA) and extensor digitorum longus (EDL) as well as the mixed-type soleus (SOL) muscles of Cmpt and wild-type mice was examined by immunohistochemical staining of the myosin heavy chain (MHC) proteins. In ...

  3. Variability in Myosteatosis and Insulin Resistance Induced by High-Fat Diet in Mouse Skeletal Muscles

    OpenAIRE

    Collino, Massimo; Mastrocola, Raffaella; Nigro, Debora; Chiazza, Fausto; Aragno, Manuela; D’Antona, Giuseppe; Minetto, Marco A.

    2014-01-01

    Nutrient overload leads to impaired muscle oxidative capacity and insulin sensitivity. However, comparative analyses of the effects of dietary manipulation on skeletal muscles with different fiber composition are lacking. This study aimed to investigate the selective adaptations in the soleus and tibialis anterior muscles evoked by administration of high-fat diet for 12 weeks in 10 mice (HFD mice) compared to 10 animals fed with a normal chow diet (control mice). Mice fed with the HFD diet ex...

  4. Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury

    OpenAIRE

    Onushko, Tanya; Hyngstrom, Allison; Schmit, Brian D.

    2013-01-01

    Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conv...

  5. Effects of Preventative Ankle Taping on Planned Change-of-Direction and Reactive Agility Performance and Ankle Muscle Activity in Basketballers.

    Science.gov (United States)

    Jeffriess, Matthew D; Schultz, Adrian B; McGann, Tye S; Callaghan, Samuel J; Lockie, Robert G

    2015-12-01

    This study investigated the effects of preventative ankle taping on planned change-of-direction and reactive agility performance and peak ankle muscle activity in basketballers. Twenty male basketballers (age = 22.30 ± 3.97 years; height = 1.84 ± 0.09 meters; body mass = 85.96 ± 11.88 kilograms) with no ankle pathologies attended two testing sessions. Within each session, subjects completed six planned and six reactive randomized trials (three to the left and three to the right for each condition) of the Y-shaped agility test, which was recorded by timing lights. In one session, subjects had both ankles un-taped. In the other, both ankles were taped using a modified subtalar sling. Peak tibialis anterior, peroneus longus (PL), peroneus brevis (PB), and soleus muscle activity was recorded for both the inside and outside legs across stance phase during the directional change, which was normalized against 10-meter sprint muscle activity (nEMG). Both the inside and outside cut legs during the change-of-direction step were investigated. Repeated measures ANOVA determined performance time and nEMG differences between un-taped and taped conditions. There were no differences in planned change-of-direction or reactive agility times between the conditions. Inside cut leg PL nEMG decreased when taped for the planned left, reactive left, and reactive right cuts (p = 0.01). Outside leg PB and soleus nEMG increased during the taped planned left cut (p = 0.02). There were no other nEMG changes during the cuts with taping. Taping did not affect change-of-direction or agility performance. Inside leg PL activity was decreased, possibly due to the tape following the line of muscle action. This may reduce the kinetic demand for the PL during cuts. In conclusion, ankle taping did not significantly affect planned change-of-direction or reactive agility performance, and did not demonstrate large changes in activity of the muscle complex in healthy basketballers. Key pointsAnkle taping

  6. Skeletal muscle signaling and the heart rate and blood pressure response to exercise

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Svendsen, Jesper H; Ersbøll, Mads

    2013-01-01

    Endurance training lowers heart rate and blood pressure responses to exercise, but the mechanisms and consequences remain unclear. To determine the role of skeletal muscle for the cardioventilatory response to exercise, 8 healthy young men were studied before and after 5 weeks of 1-legged knee......-extensor training and 2 weeks of deconditioning of the other leg (leg cast). Hemodynamics and muscle interstitial nucleotides were determined during exercise with the (1) deconditioned leg, (2) trained leg, and (3) trained leg with atrial pacing to the heart rate obtained with the deconditioned leg. Heart rate...

  7. Legāti

    OpenAIRE

    Segliņa, Aiga

    2010-01-01

    Autore teorētiski analizē legāta jēdzienu testamentārās mantošanas ietvaros un atspoguļo praktiska pētījuma rezultātus. Teorētiskā daļa apskata legāta nodibināšanas formu un spēkā esamību, tā iegūšanu un atraidīšanu, izpildi un zaudēšanu, novēlējuma robežas un aprobežojumus. Pētījums veikts aptaujas veidā ar mērķi noskaidrot, cik liela Latvijas iedzīvotāju daļa apzinās legāta nodrošinātās priekšrocības testamentārajā mantošanā. Apskatīts notāra neitralitātes jautājums attiecībā pret mantošana...

  8. Discriminant musculo-skeletal leg characteristics between sprint and endurance elite Caucasian runners.

    Science.gov (United States)

    Bex, T; Iannaccone, F; Stautemas, J; Baguet, A; De Beule, M; Verhegghe, B; Aerts, P; De Clercq, D; Derave, W

    2017-03-01

    Excellence in either sprinting or endurance running requires specific musculo-skeletal characteristics of the legs. This study aims to investigate the morphology of the leg of sprinters and endurance runners of Caucasian ethnicity. Eight male sprinters and 11 male endurance runners volunteered to participate in this cross-sectional study. They underwent magnetic resonance imaging and after data collection, digital reconstruction was done to calculate muscle volumes and bone lengths. Sprinters have a higher total upper leg volume compared to endurance runners (7340 vs 6265 cm 3 ). Specifically, the rectus femoris, vastus lateralis, and hamstrings showed significantly higher muscle volumes in the sprint group. For the lower leg, only a higher muscle volume was found in the gastrocnemius lateralis for the sprinters. No differences were found in muscle volume distribution, center of mass in the different muscles, or relative bone lengths. There was a significant positive correlation between ratio hamstrings/quadriceps volume and best running performance in the sprint group. Sprinters and endurance runners of Caucasian ethnicity showed the greatest distinctions in muscle volumes, rather than in muscle distributions or skeletal measures. Sprinters show higher volumes in mainly the proximal and lateral leg muscles than endurance runners. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    Science.gov (United States)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  10. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  11. The age related slow and fast contributions to the overall changes in tibialis anterior contractile features disclosed by maximal single twitch scan.

    Science.gov (United States)

    Orizio, Claudio; Cogliati, Marta; Bissolotti, Luciano; Diemont, Bertrand; Gobbo, Massimiliano; Celichowski, Jan

    2016-01-01

    This work aimed to verify if maximal electrically evoked single twitch (STmax) scan discloses the relative functional weight of fast and slow small bundles of fibres (SBF) in determining the contractile features of tibialis anterior (TA) with ageing. SBFs were recruited by TA main motor point stimulation through 60 increasing levels of stimulation (LS): 20 stimuli at 2Hz for each LS. The lowest and highest LS provided the least ST and STmax, respectively. The scanned STmax was decomposed into individual SBF STs. They were identified when twitches from adjacent LS were significantly different and then subtracted from each other. Nine young (Y) and eleven old (O) subjects were investigated. Contraction time (CT) and STarea/STpeak (A/PT) were calculated per each SBF ST. 143 and 155 SBF STs were obtained in Y and O, respectively. Y: CT and A/PT range: 45-105ms and 67-183mNs/mN, respectively. Literature data set TA fast fibres at 34% so, from the arrays of CT and A/PT, 65ms and 100mNs/mN were identified as the upper limit for SBF fast ST classification. O: no SBF ST could be classified as fast. STmax scan reveals age-related changes in the relative contribution of fast and slow SBFs to the overall muscle mechanics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    Energy Technology Data Exchange (ETDEWEB)

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okolo, A.A.

    1986-01-01

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.).

  13. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    International Nuclear Information System (INIS)

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okolo, A.A.

    1986-01-01

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.)

  14. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    Science.gov (United States)

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P parallel imaging results in higher acceleration can remarkably reduce acquisition time in DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  15. Sleep board review question: restless legs

    Directory of Open Access Journals (Sweden)

    Omobomi O

    2018-02-01

    Full Text Available No abstract available. Article truncated after 150 words. Ms. Jones (not her real name is a 63-year-old woman who states that she gets very fidgety when sitting in a theater, watching a movie or when flying long distances on a plane. She is unable to find words to describe the sensation but she states that moving her legs make them feel better. Lately, she has been getting this feeling almost every night. She reports no leg discomfort in the daytime. She denies muscle cramps her legs. She had some recent investigations done by her primary care physician because of complaints of fatigue. Which of the following will be helpful in the diagnosis and management in this patient? 1. An overnight polysomnogram showing apnea hypopnea index of 1.6 events per hour and no periodic limb movements (PLMs 2. Ferritin level of 18 ng/ml (normal range 20-200 ng/ml 3. Serum Bicarbonate of 29 mEq/L (normal range 23-29 mEq/L 4. Thyroid …

  16. Leg cramps and restless legs syndrome during pregnancy.

    Science.gov (United States)

    Hensley, Jennifer G

    2009-01-01

    Sleep disturbance during pregnancy can result in excessive daytime sleepiness, diminished daytime performance, inability to concentrate, irritability, and the potential for an increased length of labor and increased risk of operative birth. Sleep disturbance may be the result of a sleep disorder, such as leg cramps, a common yet benign disorder, or restless legs syndrome, a sensorimotor disorder. Both disrupt sleep, are distressing to the pregnant woman, and mimic one another and other serious disorders. During pregnancy, up to 30% of women can be affected by leg cramps, and up to 26% can be affected by restless legs syndrome.

  17. [Swollen leg with blisters].

    Science.gov (United States)

    Rafeiner, Ph; Templeton, A J; Vonesch, H J

    2005-10-05

    We report the case of a 84-year-old woman suffering from strong pain in her right leg initially resembling thrombosis of deep veins. Eight hours after admission a superficial blister developed at the calf with following hemorrhagic aspect and spontanous eruption of clear yellowish fluid. Later on a new blister appeared at the thigh. The patient died 33 hours after admission of streptococcal toxic shock syndrome. The latter was based on a necrotizing fasciitis. Streptoccus pyogenes (group A) could be cultivated from the blood and fluid of the blister. We discuss the clinical presentation of necrotizing fasciitis with "pain out of proportion" as characteristic complaint and the appropriate management.

  18. Textiloma in the leg

    Directory of Open Access Journals (Sweden)

    Patel Amol

    2007-01-01

    Full Text Available Textiloma is defined as a tumor formed due to retained gauze. It is rarely reported in the musculoskeletal system. We are presenting a case with a soft tissue swelling over the lateral aspect of the lower third of the leg, come for implant removal of the distal tibia and fibular fracture. We removed the soft tissue mass enbloc thinking it to be a benign tumor. On cutting the mass on the operation table, a gauze piece encased by fibrous tissue was found. Textiloma can present as tumoral forms and can mimic as a pseudo-tumor.

  19. Rodent Research-1 (RR1) NASA Validation Flight: Mouse tibialis anterior muscle transcriptomic proteomic and epigenomic data

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA s Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the...

  20. Traumatic tibialis anterior tendon rupture: treatment with a two-stage silicone tube and an interposition hamstring tendons graft protocol.

    Science.gov (United States)

    Kontogeorgakos, Vasileios; Koutalos, Antonios; Hantes, Michael; Manoudis, Gregory; Badras, Leonidas; Malizos, Konstantinos

    2015-03-01

    A novel technique for managing ruptured tibialis anterior tendon complicated by infection and tendon substance loss in a young adult is described. A two-stage reconstruction technique with a silicon tube and tendon autograft was performed. At first, after local control of the infection, scar excision and placement of a silicone tube was performed. Ten weeks later, ipsilateral hamstrings tendons were harvested and bridged the 7 cm tendon gap. Eighteen months later, the patient has excellent clinical and functional outcome.

  1. [The Activation of Interlimb Interactions Increase the Motor Output in Legs in Healthy Subjects under the Conditions of Arm and Leg Unloading].

    Science.gov (United States)

    Selionov, V A; Solopova, I A; Zhvansky, D S

    2016-01-01

    We studied the effect of arm movements and movements of separate arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements under the conditions of horizontal support of upper and lower limbs. The horizontal support of arms provided a significantly increase in the rate of activation of locomotor automatism by non-invasive impact on tonic sensory inputs. The addition of active arm movements during involuntary rhytmic stepping-like leg movements led to an increase in EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of the knee and hip joints. At the same time, the movement of forearms. and wrists had similar facilitating effect on electrophysiological and kinematic characteristics of rhytmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of sub-threshold vibration of leg muscles, voluntary arm movements led to the activation of involuntary rhytmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhytmic stepping than during involuntary leg movements. Thus, the simultaneous movements of upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries

  2. The Activities of the Muscles around the Ankle Joint during Foot-gripping are Affected by the Angle of the Ankle

    OpenAIRE

    Soma, Masayuki; Murata, Shin; Kai, Yoshihiro; Nakae, Hideyuki; Satou, Yosuke

    2014-01-01

    [Purpose] The purpose of this study was to determine the activities of the muscles around the ankle joint during foot gripping. [Subjects] The subjects of this study were 17 healthy females. [Methods] We measured the maximum voluntary contraction (MVC) activities of the soleus muscle, the medial head of the gastrocnemius muscle, and the tibialis anterior muscle, and calculated %IEMG during foot gripping in 3 different ankle joint positions: 10° of plantar flexion, 0°, and 10° of dorsiflexion....

  3. Criteria in diagnosing nocturnal leg cramps: a systematic review.

    Science.gov (United States)

    Hallegraeff, Joannes; de Greef, Mathieu; Krijnen, Wim; van der Schans, Cees

    2017-02-28

    Up to 33% of the general population over 50 years of age are affected by nocturnal leg cramps. Currently there are no generally accepted clinical characteristics, which identify nocturnal leg cramps. This study aims to identify these clinical characteristics and to differentiate between them and the characteristics of restless leg syndrome and periodic limb disorder. A systematic literature study was executed from December 2015 to May 2016. This study comprised of a systematic literature review of randomized clinical trials, observational studies on nocturnal and rest cramps of legs and other muscles, and other systematic and narrative reviews. Two researchers independently extracted literature data and analyzed this using a standardized reviewing protocol. Modified versions of the Cochrane Collaboration tools assessed the risk of bias. A Delphi study was conducted to assess agreement on the characteristics of nocturnal leg cramps. After systematic and manual searches, eight randomized trials and ten observational studies were included. On the basis of these we identified seven diagnostic characteristics of nocturnal leg cramps: intense pain, period of duration from seconds to maximum 10 minutes, location in calf or foot, location seldom in thigh or hamstrings, persistent subsequent pain, sleep disruption and distress. The seven above characteristics will enhance recognition of the condition, and help clinicians make a clear distinction between NLC and other sleep-related musculoskeletal disorder among older adults.

  4. Complex distal insertions of the tibialis posterior tendon: detailed anatomic and MR imaging investigation in cadavers

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, Daniel; Cerri, Giovanni G. [University of Sao Paulo, Department of Radiology, Sao Paulo, Sao Paulo (Brazil); VA Medical Center, University of California, Department of Radiology, San Diego, CA (United States); Dirim, Berna; Wangwinyuvirat, Mani; Belentani, Clarissa L.; Trudell, Debra J.; Resnick, Donald L. [VA Medical Center, University of California, Department of Radiology, San Diego, CA (United States); Haghighi, Parviz [VA Medical Center, University of California, Department of Radiology, San Diego, CA (United States); VA Medical Center, University of California, Department of Histology, San Diego, CA (United States)

    2008-09-15

    The purpose of this report was to demonstrate the normal complex insertional anatomy of the tibialis posterior tendon (TPT) in cadavers using magnetic resonance (MR) imaging with anatomic and histologic correlation. Ten cadaveric ankles were used according to institutional guidelines. MR T1-weighted spin echo imaging was performed to demonstrate aspects of the complex anatomic distal insertions of the TPT in cadaveric specimens. Findings on MR imaging were correlated with those derived from anatomic and histologic study. Generally, the TPT revealed a low signal in all MR images, except near the level of the medial malleolus, where the TPT suddenly changed direction and ''magic angle'' artifact could be observed. In five out of ten specimens (50%), a type I accessory navicular bone was found in the TPT. In all cases with a type I accessory navicular bone, the TPT had an altered signal in this area. Axial and coronal planes on MR imaging were the best in identifying the distal insertions of the TPT. A normal division of the TPT was observed just proximal to the insertion into the navicular bone in five specimens (100%) occurring at a maximum proximal distance from its attachment to the navicular bone of approximately 1.5 to 2 cm. In the other five specimens, in which a type I accessory navicular bone was present, the TPT directly inserted into the accessory bone and a slip less than 1.5 mm in thickness could be observed attaching to the medial aspect of the navicular bone (100%). Anatomic inspection confirmed the sites of the distal insertions of the components of the TPT. MR imaging enabled detailed analysis of the complex distal insertions of the TPT as well as a better understanding of those features of its insertion that can simulate a lesion. (orig.)

  5. 3D MRI analysis of the lower legs of treated idiopathic congenital talipes equinovarus (clubfoot.

    Directory of Open Access Journals (Sweden)

    Suzanne L Duce

    Full Text Available BACKGROUND: Idiopathic congenital talipes equinovarus (CTEV is the commonest form of clubfoot. Its exact cause is unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle, subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic resonance imaging (MRI, and thus to investigate the anatomical differences between CTEV participants and controls. METHODOLOGY/PRINCIPAL FINDINGS: The lower legs of six CTEV (2 bilateral, 4 unilateral and five control young adults (age 12-28 were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA images were acquired. Segmentation software was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed. CONCLUSIONS/SIGNIFICANCE: Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy. Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification. These measures could be useful for clinical care and guiding treatment pathways, as

  6. Norepinephrine spillover from skeletal muscle during exercise in humans

    DEFF Research Database (Denmark)

    Savard, G K; Richter, Erik; Strange, S

    1989-01-01

    -legged knee extension either alone or in combination with the knee extensors of the other leg and/or with the arms. The range of work intensities varied between 24 and 71% (mean) of subjects' maximal aerobic capacity (% VO2max). Leg blood flow, measured in the femoral vein by thermodilution, was determined...... legs, with a steeper rise occurring approximately 70% VO2max. These increases were not associated with any significant changes in leg blood flow or leg vascular conductance at the exercise intensities examined. These results suggest that, as the total active muscle mass increases, the rise...

  7. Differentiating nocturnal leg cramps and restless legs syndrome.

    Science.gov (United States)

    Rana, Abdul Qayyum; Khan, Fatima; Mosabbir, Abdullah; Ondo, William

    2014-07-01

    Leg pain and discomfort are common complaints in any primary physician's clinic. Two common causes of pain or discomfort in legs are nocturnal leg cramps (NLC) and restless leg syndrome (RLS). NLC present as painful and sudden contractions mostly in part of the calf. Diagnosis of NLC is mainly clinical and sometimes involves investigations to rule out other mimics. RLS is a condition characterized by the discomfort or urge to move the lower limbs, which occurs at rest or in the evening/night. The similarity of RLS and leg cramps poses the issue of errors in diagnosing and differentiating the two. In this paper we review the pathopysiology of each entity and their diagnosis as well as treatment. The two conditions are then compared to appreciate the differences and similarities. Finally, suggestions are recommended for complete assessment.

  8. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.

    Science.gov (United States)

    Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi

    2010-10-01

    It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.

  9. Klinefelter Syndrome With Leg Ulcers

    Directory of Open Access Journals (Sweden)

    Narendra G

    1999-01-01

    Full Text Available Leg ulcers are frequently caused by venous insufficiency, arterial insufficiency, neuropathy, or a combination of these factors. Klinefelter syndrome in association with chronic leg ulcers have been reported earlier. We report a case of Klinefelter syndrome with non- healing ulcer. The diagnosis of the Klinefelter syndrome was confirmed by karyotyping.

  10. The Prevalence of Latent Trigger Points in Lower Limb Muscles in Asymptomatic Subjects.

    Science.gov (United States)

    Zuil-Escobar, Juan Carlos; Martínez-Cepa, Carmen Belén; Martín-Urrialde, Jose Antonio; Gómez-Conesa, Antonia

    2016-11-01

    Latent trigger points (LTrPs) are prevalent in persons with musculoskeletal pain. Because they could be present in healthy persons, it is necessary to evaluate the prevalence of LTrPs in asymptomatic subjects. To assess the prevalence of LTrPs in lower limb muscles, to evaluate the relationship between LTrP prevalence, gender, and leg dominance, and to determine intra-rater reliability for the diagnosis of LTrPs. Cross-sectional study. University community. A total of 206 asymptomatic subjects (113 women and 93 men, aged 23.2 ± 5.2 years). Not applicable. The prevalence of the LTrPs located in the gastrocnemius, soleus, peroneus longus, peroneus brevis, tibialis anterior, extensor digitorum longus, flexor digitorum longus, rectus femoris, vastus medialis, and vastus lateralis was studied, using the diagnosis criteria recommended by Simons, Travell, and Simons. The pressure pain threshold was also evaluated. Of the 206 subjects evaluated, 166 (77.7%; 95% confidence interval [CI], 72-83.4) were found to have at least one LTrP in the lower limb muscles. The average number of LTrPs found per individual was 7.5 ± 7.7. The prevalence in each muscle group ranged from 19.9% (95% CI, 14.4-25.4) to 37.4% (95% CI, 30.8-44), with gastrocnemius LTrPs being the most prevalent. Women had more LTrPs (9.6 ± 7.8) than did men (4.9 ± 6.6) (P .05). The most prevalent diagnosis criteria were the presence of a taut band and a tender spot (98%-100%); the local twitch response was the least prevalent diagnosis criteria (0%-3.5%). Intra-rater reliability was excellent for all the diagnosis criteria in all the muscles evaluated (κ = 0.762-1), except for the jump sign and the referred pain in several LTrPs. LTrPs were prevalent in the lower limb muscles of asymptomatic subjects. Women have more LTrPs than do men. No differences in LTrP prevalence were found between sides. The presence of the taut band and the tender spot were the most prevalent and reliable diagnosis criteria. It is

  11. A REVIEW OF THE RELATIONSHIP BETWEEN LEG POWER AND SELECTED CHRONIC DISEASE IN OLDER ADULTS

    Science.gov (United States)

    STROLLO, S.E.; CASEROTTI, P.; WARD, R.E.; GLYNN, N.W.; GOODPASTER, B.H.; STROTMEYER, E.S.

    2016-01-01

    Objective This review investigates the relationship between leg muscle power and the chronic conditions of osteoarthritis, diabetes mellitus, and cardiovascular disease among older adults. Current literature assessing the impact of chronic disease on leg power has not yet been comprehensively characterized. Importantly, individuals with these conditions have shown improved leg power with training. Methods A search was performed using PubMed to identify original studies published in English from January 1998 to August 2013. Leg power studies, among older adults ≥ 50 years of age, which assessed associations with osteoarthritis, diabetes mellitus, and/or cardiovascular disease were selected. Studies concerning post-surgery rehabilitation, case studies, and articles that did not measure primary results were excluded. Results Sixteen studies met inclusion criteria, addressing osteoarthritis (n=5), diabetes mellitus (n=5), and cardiovascular disease (n=6). Studies generally supported associations of lower leg power among older adults with chronic disease, although small sample sizes, cross-sectional data, homogenous populations, varied disease definitions, and inconsistent leg power methods limited conclusions. Conclusions Studies suggest that osteoarthritis, diabetes mellitus, and cardiovascular disease are associated with lower leg power compared to older adults without these conditions. These studies are limited, however, by the heterogeneity in study populations and a lack of standardized measurements of leg power. Future larger studies of more diverse older adults with well-defined chronic disease using standard measures of leg power and interventions to improve leg power in these older adults with chronic disease are needed. PMID:25651453

  12. Calf muscle volume estimates: Implications for Botulinum toxin treatment?

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Sonne-Holm, Stig; Thomsen, Carsten

    2007-01-01

    An optimal botulinum toxin dose may be related to the volume of the targeted muscle. We investigated the suitability of using ultrasound and anthropometry to estimate gastrocnemius and soleus muscle volume. Gastrocnemius and soleus muscle thickness was measured in 11 cadaveric human legs, using...... the volume of individual plantar flexor muscles using ultrasound and anthropometry. This possibility should be investigated further in living humans....

  13. Interventions for leg cramps in pregnancy.

    Science.gov (United States)

    Zhou, Kunyan; West, Helen M; Zhang, Jing; Xu, Liangzhi; Li, Wenjuan

    2015-08-11

    included trial. According to a composite outcome (frequency and intensity), more women receiving vitamin B fully recovered compared with those receiving no treatment (RR 7.50, 95% CI 1.95 to 28.81). Those women receiving no treatment were more likely to experience a partial improvement in the intensity and frequency of leg cramps than those taking vitamin B (RR 0.29, 95% CI 0.11 to 0.73, one trial, 42 women), or to see no change in their condition. However, these results are based on one small study with design limitations.Other secondary outcomes, including side effects, were not reported. Oral calcium versus oral vitamin CThere was no difference in the frequency of leg cramps after treatment with calcium versus vitamin C (RR 1.33, 95% CI 0.53 to 3.38, one study, 60 women, evidence graded very low). Other outcomes, includingside effects, were not reported. It is unclear from the evidence reviewed whether any of the interventions (oral magnesium, oral calcium, oral vitamin B or oral vitamin C) provide an effective treatment for leg cramps. This is primarily due to outcomes being measured and reported in different, incomparable ways, and design limitations compromising the quality of the evidence (the level of evidence was graded low or very low). This was mainly due to poor study design and trials being too small to address the question satisfactorily.Adverse outcomes were not reported, other than side effects for magnesium versus placebo/no treatment. It is therefore not possible to assess the safety of these interventions.The inconsistency in the measurement and reporting of outcomes, meant that data could not be pooled, meta-analyses could not be carried out, and comparisons between studies are difficult.The review only identified trials of oral interventions (magnesium, calcium, vitamin B or vitamin C) to treat leg cramps in pregnancy. None of the trials considered non-drug therapies, for example, muscle stretching, massage, relaxation, heat therapy, and dorsiflexion

  14. Intra-articular intervention by hyaluronic acid for knee osteoarthritis can modify locomotor pattern of muscle activity.

    Science.gov (United States)

    Tang, Alice Chu-Wen; Hong, Wei-Hsien; Chen, Hsieh-Ching; Tang, Simon Fuk-Tan

    2015-02-01

    To evaluate the muscle activation pattern of lower extremities can be modified by intraarticular injection of hyaluronic acid( IAHA). Twenty-three subjects with knee OA and 14 age-matched non-knee OA control subjects were recruited from an outpatient clinic. Three-dimensional gait analysis with using the MA- 100 EMG system was applied to measure the muscles activities. The quadriceps (QUA), hamstrings (HAM), tibialis anterior (TA), and medial gastrocnemius (MG) muscles were selected for this study. For the knee OA group, bilateral IA knee joint injections with HA were performed. During the stance phase of gait cycle, the quadriceps, hamstring, and tibialis anterior muscles had longer muscle contraction duration in the knee OA patients as compared with the control group. The muscle activities of quadriceps, hamstrings, tibialis anterior, and medial gastrocnemius muscles recovered to a pattern similar to the control group after the completion of IA HA injections in knee OA patients. The H/Q ratio improved significantly after the IA HA injections, and also lasted up to a period of six months (p<0.01). IA HA is an available treatment option as it effectively decreases co-contraction and improves motor activity of the lower extremity muscles. The improved muscle activities lasted up to a period up to six months. © 2015 Elsevier B.V. All rights reserved.

  15. Eletroestimulação seletiva mantem estrutura e função do tibial anterior desnervado de ratos Structure and function of denervated tibialis anteriores are maintained by electrical stimulation in rats

    Directory of Open Access Journals (Sweden)

    Juliana de Tillio Polônio

    2010-01-01

    Full Text Available OBJETIVO: A eletroestimulação para tratamento de músculos desnervados deve ser aplicada através do tratamento seletivo. Este estudo avaliou o efeito da eletroestimulação seletiva do músculo desnervado sobre sua estrutura e função. MÉTODOS: Foram utilizados cinqüenta ratos Wistar distribuídos em controle, desnervado estimulado e desnervado não-estimulado. Após avaliação eletrodiagnóstica de estímulo pré-desnervação, os animais sofreram desnervação proximal completa do músculo tibial anterior unilateral. Houve reavaliação semanal para adaptação dos parâmetros de tratamento seletivo, aplicado três vezes por semana. Os animais foram mortos após 7, 14, 28 e 56 dias do pós-cirúrgico. Foram realizados procedimentos histoquímicos e estudos morfológicos e morfométricos. RESULTADOS: Os animais desnervados estimulados não apresentaram contratura da articulação do tornozelo e não houve automutilações nas patas. Alterações significativas nas áreas das fibras musculares tipo IIB (desnervados estimulados aos 7 dias e tipo IIA e híbridas (desnervados estimulados 28 e 56 dias indicaram menor atrofia. Transição do tipos de fibras musculares foi significativa, indicando uma manutenção do padrão funcional do músculo tibial anterior nos períodos de 7 e 14 dias. CONCLUSÃO: Conclui-se que houve manutenção temporária da estrutura e função do músculo tibial anterior desnervado através da eletroestimulação seletiva.OBJECTIVE: Electrical stimulation for treatment of denervated muscles should be implemented by selective treatment. This study evaluated the effect of selective electrical stimulation on the structure and function of denervated muscle. METHODS: Fifty Wistar mice were allocated to control, stimulated denervated and non-stimulated denervated groups. Following an electrodiagnostic evaluation, the animals underwent complete unilateral denervation of the proximal anterior tibialis muscle. Weekly re

  16. Muscle specific changes in length-force characteristics of the calf muscles in the spastic Han-Wistar rat

    DEFF Research Database (Denmark)

    Olesen, Annesofie Thorup; Jensen, Bente Rona; Uhlendorf, Toni L

    2014-01-01

    , the extent of this interaction was not different in the spastic rats. In conclusion, the effects of spasticity on length-force characteristics were muscle specific. The changes seen for GA and PL muscles are consistent with the changes in limb mechanics reported for human patients. Our results indicate...... and normally-developed Han-Wistar rats. In addition, the extent of epimuscular myofascial force transmission between synergistic GA, SO and PL, as well as between the calf muscles and antagonistic tibialis anterior (TA) was investigated. Active length-force characteristics of spastic GA and PL were narrower...

  17. Why do arms extract less oxygen than legs during exercise?

    DEFF Research Database (Denmark)

    Calbet, J A L; Holmberg, H-C; Rosdahl, H

    2005-01-01

    To determine whether conditions for O2 utilization and O2 off-loading from the hemoglobin are different in exercising arms and legs, six cross-country skiers participated in this study. Femoral and subclavian vein blood flow and gases were determined during skiing on a treadmill at approximately 76...... exercise (diagonal stride), the corresponding mean values were 93 and 85% (n = 3; P hemoglobin to be 50% saturated (P50: r = 0.93, P ...Hg, respectively. Because conditions for O2 off-loading from the hemoglobin are similar in leg and arm muscles, the observed differences in maximal arm and leg O2 extraction should be attributed to other factors, such as a higher heterogeneity in blood flow distribution, shorter mean transit time, smaller...

  18. Muscle Moment Arms and Sensitivity Analysis of a Mouse Hindlimb Musculoskeletal Model

    Science.gov (United States)

    2016-05-12

    anterior TA Leg 0.0007 0.0025 0.0001 Pedal 0.0008 0.0000 0.0006 Extensor digitorum longus EDL Leg 0.0005 0.0029 0.0016 Pedal 0.0135 0.0019 0.0001...0.00 Tibialis anterior TA Ankle dorsiflexors 2.422 0.00490 0.01180 16.58 Extensor digitorum longus EDL Ankle dorsiflexors 0.368 0.00635 0.02378 12.39...moment arm (0.88 mm at 14 o), with TA and M. extensor digitorum longus (EDL) showing similarly shaped curves but lower peaks. M. medial gastrocnemius (MG

  19. EVALUATING THE INFLUENCE OF MASSAGE ON LEG STRENGTH, SWELLING, AND PAIN FOLLOWING A HALF-MARATHON

    Directory of Open Access Journals (Sweden)

    Peter M. Tiidus

    2004-11-01

    Full Text Available Massage therapy is commonly used following endurance running races with the expectation that it will enhance post-run recovery of muscle function and reduce soreness. A limited number of studies have reported little or no influence of massage therapy on post-exercise muscle recovery. However, no studies have been conducted in a field setting to assess the potential for massage to influence muscle recovery following an actual endurance running race. To evaluate the potential for repeated massage therapy interventions to influence recovery of quadriceps and hamstring muscle soreness, recovery of quadriceps and hamstring muscle strength and reduction of upper leg muscle swelling over a two week recovery period following an actual road running race. Twelve adult recreational runners (8 male, 4 female completed a half marathon (21.1 km road race. On days 1,4, 8, and 11 post-race, subjects received 30 minutes of standardized massage therapy performed by a registered massage therapist on a randomly assigned massage treatment leg, while the other (control leg received no massage treatment. Two days prior to the race (baseline and preceding the treatments on post-race days 1, 4, 8, and 11 the following measures were conducted on each of the massage and control legs: strength of quadriceps and hamstring muscles, leg swelling, and soreness perception. At day 1, post-race quadriceps peak torque was significantly reduced (p 0.05. All measures had returned to baseline at day 11. Massage did not affect the recovery of muscles in terms of physiological measures of strength, swelling, or soreness. However, questionnaires revealed that 7 of the 12 participants perceived that the massaged leg felt better upon recovery.

  20. Computed tomography of muscles in neuromuscular disease

    International Nuclear Information System (INIS)

    Serratrice, G.

    1986-01-01

    137 patients with neuromuscular diseases were studied by CT scan. Four levels were chosen: mid-calf, mid-thigh, pelvic girdle, and spinal muscles. The scans were compared with normal control scans taken from the same sites. The patients were divided into those with myogenic diseases and those with neurogenic diseases. Of the 102 patients with myogenic changes, 17 had X-linked dystrophy, 13 had facio-scapulo-humeral dystrophy, 22 had limb girdle dystrophy, 19 had myotonic dystrophy, 14 had inflammatory muscle diseases, and 17 had miscellaneous muscular diseases. Of the 35 patients with neurogenic changes, 8 had amyotrophic lateral sclerosis (ALS), 16 had chronic spinal amyotrophies, 9 had peripheral neuropathies, and 2 had Friedreich's disease. The analysis of muscles changes (volume, outline, density) was established on the following muscles: tibialis anterior, peroneus, soleus, gastrocnemius mediale, gastrocnemius laterale, quadriceps, semitendinosus, semimembranosus, sartorius, adductor, gracilis, gluteus, spine extensors, and psoas

  1. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Science.gov (United States)

    Sloot, Lizeth H; van den Noort, Josien C; van der Krogt, Marjolein M; Bruijn, Sjoerd M; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  2. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  3. Magnetic resonance imaging of skeletal muscle in patients with Duchenne muscular dystrophy

    International Nuclear Information System (INIS)

    Nagao, Hideo; Morimoto, Takehiko; Sano, Nozomi; Takahashi, Mitsugi; Nagai, Hironao; Tawa, Ritsuko; Yoshimatsu, Makoto; Woo Young-Jong; Matsuda, Hiroshi.

    1991-01-01

    Magnetic resonance imaging of skeletal muscles in thirteen patients with Duchenne muscular dystrophy was performed to estimate pathological changes. Serial axial and sagittal sections of the right lower extremity were recorded. In the early stage, the T 1 values of gastrocnemius and soleus muscles were slightly lower than the control values, and in the late stage, the values were much lower in all muscles examined. In sagittal sections, the gastrocnemius muscle in the early stage showed a high density area at the distal region adjacent to soleus muscle, and the soleus muscle showed a high density area adjacent to the gestrocnemius muscle. In serial axial sections, high density areas of the anterior and posterior tibialis muscles appeared first at their proximal and peripheral regions. It was concluded that the sequence of appearance of pathological changes was different not only among individual muscles but also among various regions of each muscle; the high density changes appeared first at myotendon junctions. (author)

  4. Restless legs syndrome

    Directory of Open Access Journals (Sweden)

    Ovallath S

    2012-10-01

    Full Text Available Sujith Ovallath, P DeepaJames Parkinson's Movement Disorder Research Centre, Kannur Medical College, Kerala, IndiaBackground: Restless legs syndrome (RLS is a common sleep-related disorder characterized by abnormal sensation and an urge to move the lower limbs. Symptoms occur at rest in the evening or at night, and they are alleviated by moving the affected extremity or by walking. Although the exact etiopathogenesis of RLS remains elusive, the rapid improvement of symptoms with dopaminergic agents suggests that dopaminergic system dysfunction may be a basic mechanism. Dopaminergic agents are the best-studied agents, and are considered first-line treatment of RLS.Objective: To review the diagnostic criteria, clinical features, etiopathogenesis, and the treatment options of RLS.Methods: The suggestions are based on evidence from studies published in peer-reviewed journals, or upon a comprehensive review of the medical literature.Results/conclusion: Extensive data are available for proving the link between the dopaminergic system and RLS. A possible genetic link also has been studied extensively. Dopamine agonists, especially pramipexole and ropinirole, are particularly useful in the treatment of RLS. Pharmacological treatment should however be limited to those patients who suffer from clinically relevant RLS with impaired sleep quality or quality of life.Keywords: dopamine, levodopa, pramipexole

  5. Restless legs syndrome: literature review

    Directory of Open Access Journals (Sweden)

    Emmanouil Symvoulakis

    Full Text Available Restless legs syndrome is a distressing condition, with negative effects on sleep and daytime activities that affect personal, family and occupational life. The overall impact of restless legs syndrome on quality of life is comparable to that of chronic and frustrating conditions such as depression and diabetes. Misdiagnosis and inappropriate treatment may increase patients' suffering in terms of uncertainty, overuse or misuse of care services and lack of trust. Presenting a synthesis of the main topics in the literature on restless legs syndrome facilitates for a better understanding and its management in primary care settings.

  6. Measurement of body fat using leg to leg bioimpedance

    OpenAIRE

    Sung, R; Lau, P; Yu, C; Lam, P; Nelson, E

    2001-01-01

    AIMS—(1) To validate a leg to leg bioimpedance analysis (BIA) device in the measurement of body composition in children by assessment of its agreement with dual energy x ray absorptiometry (DXA) and its repeatability. (2) To establish a reference range of percentage body fat in Hong Kong Chinese children.
METHODS—Sequential BIA and DXA methods were used to determine body composition in 49 children aged 7-18 years; agreement between the two methods was calculated. Repea...

  7. Do isolated leg exercises improve dyspnea during exercise in chronic obstructive pulmonary disease?

    Science.gov (United States)

    Molgat-Seon, Yannick; Road, Jeremy D; Sheel, A William

    2013-09-01

    Dyspnea, the subjective feeling of shortness of breath, is a hallmark feature of chronic obstructive pulmonary disease (COPD). Pulmonary rehabilitation (PR) programs aim to improve dyspnea, thereby increasing exercise tolerance and health-related quality of life in patients with COPD. Exercise training is proven to be an essential component of PR; however, there is no consensus regarding which training modality confers the greatest therapeutic benefit. Secondary to pulmonary impairment, many COPD patients develop limb muscle dysfunction (LMD), particularly in the leg muscles. Mounting evidence suggests that peripheral limitation to exercise as a result of LMD is frequent in patients with COPD. LMD of the legs, or lower limb muscle dysfunction, has been shown to markedly influence ventilatory and dyspnea responses to exercise. Accordingly, isolated training of leg muscles may contribute to reducing dyspnea and increase exercise tolerance in patients with COPD. Indeed, relative to the largely irreversible impairment of the pulmonary system, the leg muscles are an important site by which to improve patients' level of function and quality of life. Isolated leg exercises have been shown to improve LMD and may constitute an effective training modality to improve dyspnea and exercise tolerance in COPD within the context of PR.

  8. Anatomy and vascularization of the flexor hallucis longus muscle and its implication in free fibula flap transfer: an anatomical study.

    Science.gov (United States)

    Sassu, Paolo; Acland, Robert D; Salgado, Christopher John; Mardini, Samir; Ozyurekoglu, Tuna

    2010-02-01

    Contracture as well as weakness of the flexor hallucis longus (FHL) are possible complications following free fibula flap harvest. Possible causes have been related to fibrotic change of the muscle either due to devascularization or compartment-like syndrome after a tight wound closure. This study elucidates the vascularization and nerve supply of the FHL muscle after fibula flap harvest in a fresh cadaver model.A fibula bone flap was harvested through a lateral approach in 20 fresh limbs. The popliteal artery was isolated and injected with a silicone compound, the muscle isolated, and its neurovascular supply visualized.The distal third and fourth portion of the FHL muscle was always found to be located in a more compressed and deeper compartment. The peroneal artery was entirely filled by the silicone compound in 17 fresh cadaver limbs with at least one branch supplying the distal fourth of the FHL. The posterior tibialis artery was filled in all limbs and an average of 2 branches was found to supply the muscle. In all dissections, the nerve supplying the FHL originated from the tibialis nerve with an average of three branches perforating the muscle.Following fibula harvest, the FHL muscle will maintain vascular supply through the distal portion of the peroneal artery and the posterior tibialis artery. Nerve injury to the FHL muscle is unlikely during flap harvest.

  9. Leg pain and gynecologic malignancy.

    Science.gov (United States)

    Singh, Lilly; Stevens, Erin E

    2013-09-01

    Gynecologic malignancies affect more than 83 000 women in the United States, each year. Because the disease involves the pelvis, many patients have side effects distal to this area in their lower extremities. The differential diagnosis of leg pain can be divided into vascular, neurologic, and musculoskeletal causes. In this review article, we address numerous etiologies of leg pain, reviewing the prevalence of disease, physical examination findings, diagnostic as well as treatment modalities.

  10. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    Directory of Open Access Journals (Sweden)

    Kouki Nakagawa

    2017-01-01

    Full Text Available The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON, denervation (DN, and denervation with direct ES (DN + ES. Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA, and capillary-to-fiber (C/F ratio of the tibialis anterior (TA muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs.

  11. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    Science.gov (United States)

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial...... O(2) kg(-1) min(-1), exceeding the in-vivo leg VO(2) max (5.0±0.2 mmol O(2) kg(-1) min(-1)) during leg cycling with 20 kg muscle (P...... respiration. High resolution respirometry was used to quantify mitochondrial respiration from the biopsies of arm and leg muscles while in-vivo arm and leg VO(2) were determined by the Fick method during leg cycling and arm cranking. We hypothesized that muscle mitochondrial respiratory rate exceeds...

  13. Norepinephrine spillover from skeletal muscle during exercise in humans: role of muscle mass.

    Science.gov (United States)

    Savard, G K; Richter, E A; Strange, S; Kiens, B; Christensen, N J; Saltin, B

    1989-12-01

    The purpose of this study was to determine the effect of increasing muscle mass involvement in dynamic exercise on both sympathetic nervous activation and local hemodynamic variables of individual active and inactive skeletal muscle groups. Six male subjects performed 15-min bouts of one-legged knee extension either alone or in combination with the knee extensors of the other leg and/or with the arms. The range of work intensities varied between 24 and 71% (mean) of subjects' maximal aerobic capacity (% VO2max). Leg blood flow, measured in the femoral vein by thermodilution, was determined in both legs. Arterial and venous plasma concentrations of norepinephrine (NE) and epinephrine were analyzed, and the calculated NE spillover was used as an index of sympathetic nervous activity to the limb. NE spillover increased gradually both in the resting, and to a larger extent in the exercising legs, with a steeper rise occurring approximately 70% VO2max. These increases were not associated with any significant changes in leg blood flow or leg vascular conductance at the exercise intensities examined. These results suggest that, as the total active muscle mass increases, the rise in sympathetic nervous activity to skeletal muscle, either resting or working at a constant load, is not associated with any significant neurogenic vasoconstriction and reduction in flow or conductance through the muscle vascular bed, during whole body exercise demanding up to 71% VO2max.

  14. PELATIHAN PLIOMETRIK ALTERNATE LEG BOUND DAN DOUBLE LEG BOUND MENINGKATKAN DAYA LEDAK OTOT TUNGKAI PADA SISWA PUTRA KELAS VII SMP NEGERI 3 SUKAWATI TAHUN PELAJARAN 2012/2013

    Directory of Open Access Journals (Sweden)

    Komang Ayu Tri Widhiyanti

    2013-11-01

    Full Text Available This study was conducted to know the improvement the explosive power of leg muscle. It was done through 5 set 12 repetitions during 6 weeks in the field of SMP Negeri 3 Sukawati started from 4 p.m. until 6 p.m. There were 3 groups applied in this study such as group 1 (control group that was instructed to kick a ball, group 2 (plyometric training of alternate leg bound, and group 3 (plyometric training of double leg bound. The sample was 14 male students who were in the seventh grade class of SMP Negeri 3 Sukawati in the academic year 2012/2013. The data was gained by doing the movement of alternate leg bound and double leg bound that each movement was done three times before and after the training. The hypothesis was examined by using independent t-test with the result 0.05 (p<0.05. Based on the different result of analysis test in each group, the gain score of the group 2 with the group 1 about 0,51 that shows the significant differences p = 0,00, the gain score of the group 2 with the group 3 about 0,31 that shows the significant differences p = 0,00, the gain score of the group 3 with the group 1 about 0,20 that shows the significant differences p = 0,00. Thus, alternate leg bound plyometric training is more effective than double leg bound. It is expected that the coach and the gym teacher to apply alternate leg bound plyometric training as an alternative to improve the explosive power of leg muscle.

  15. Comparison of hamstring tendon autograft and tibialis anterior allograft in arthroscopic transtibial single-bundle posterior cruciate ligament reconstruction.

    Science.gov (United States)

    Li, Bin; Wang, Jia-Shi; He, Ming; Wang, Guang-Bin; Shen, Peng; Bai,