WorldWideScience

Sample records for leg muscles based

  1. Volume estimation of extensor muscles of the lower leg based on MR imaging

    International Nuclear Information System (INIS)

    Lund, Hans; Christensen, Line; Savnik, Anette; Danneskiold-Samsoee, Bente; Bliddal, Henning; Boesen, Jens

    2002-01-01

    Magnetic resonance imaging can be used to measure the muscle volume of a given muscle or muscle group. The purpose of this study was to determine both the intra- and inter-observer variation of the manually outlined volume of the extensor muscles (tibialis anterior, extensor digitorum longus and extensor hallucis longus), to estimate the minimum number of slices needed for these calculations and to compare estimates of volume based on an assumed conic shape of the muscles with that of an assumed cylindrical shape, the calculation in both cases based on the Cavalieri principle. Eleven young and healthy subjects (4 women and 7 men, age range 24-40 years) participated. Magnetic resonance imaging of the left leg was obtained on a 1.5-T MR system using a knee coil (receive only). A total of 50 consecutive slices were obtained beginning 10 cm below the caput fibula sin. and proceeding distally with a slice thickness of 1.5 mm without gap. The intra-class correlation coefficient (ICC) was used to calculate the relative reliability (interval from 0 to 1.0). A high reliability for both intra- and inter-reliability was observed (ICC 0.98 and 1.0). The difference was only 0.004% between calculations based on measurement of all 50 slices with respect to 8 slices equally distributed along the muscle group. No difference was found between the two different volumetric assumptions in the Cavalieri principle. The manually outlining of extensor muscles volumes was reliable and only 8 slices of the calf were needed. No difference was seen between the two used mathematical calculations. (orig.)

  2. Volume estimation of extensor muscles of the lower leg based on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Hans; Christensen, Line; Savnik, Anette; Danneskiold-Samsoee, Bente; Bliddal, Henning [The Parker Institute, Frederiksberg Hospital, 2000 Frederiksberg (Denmark); Boesen, Jens [Department of Radiology, Frederiksberg Hospital, 2000 Frederiksberg (Denmark)

    2002-12-01

    Magnetic resonance imaging can be used to measure the muscle volume of a given muscle or muscle group. The purpose of this study was to determine both the intra- and inter-observer variation of the manually outlined volume of the extensor muscles (tibialis anterior, extensor digitorum longus and extensor hallucis longus), to estimate the minimum number of slices needed for these calculations and to compare estimates of volume based on an assumed conic shape of the muscles with that of an assumed cylindrical shape, the calculation in both cases based on the Cavalieri principle. Eleven young and healthy subjects (4 women and 7 men, age range 24-40 years) participated. Magnetic resonance imaging of the left leg was obtained on a 1.5-T MR system using a knee coil (receive only). A total of 50 consecutive slices were obtained beginning 10 cm below the caput fibula sin. and proceeding distally with a slice thickness of 1.5 mm without gap. The intra-class correlation coefficient (ICC) was used to calculate the relative reliability (interval from 0 to 1.0). A high reliability for both intra- and inter-reliability was observed (ICC 0.98 and 1.0). The difference was only 0.004% between calculations based on measurement of all 50 slices with respect to 8 slices equally distributed along the muscle group. No difference was found between the two different volumetric assumptions in the Cavalieri principle. The manually outlining of extensor muscles volumes was reliable and only 8 slices of the calf were needed. No difference was seen between the two used mathematical calculations. (orig.)

  3. Neural adjustment in the activation of the lower leg muscles through daily physical exercises in community-based elderly persons.

    Science.gov (United States)

    Maejima, Hiroshi; Murase, Azusa; Sunahori, Hitoshi; Kanetada, Yuji; Otani, Takuya; Yoshimura, Osamu; Tobimatsu, Yoshiko

    2007-02-01

    Reflecting the rapidly aging population, community-based interventions in the form of physical exercise have been introduced to promote the health of elderly persons. Many investigation studies have focused on muscle strength in the lower leg as a potent indicator of the effect of physical exercises. The objective of this study was to assess the effect of long-term daily exercises on neural command in lower leg muscle activations. Twenty-six community-based elderly persons (13 men and 13 women; 69.8 +/- 0.5 years old) participated in this study. Daily exercise was comprised of walking for more than 30 min, stretching, muscle strengthening and balance exercise, and was continued for three months. Muscle strength and surface electromyography of the tibia anterior, rectus femoris, and biceps femoris were measured in maximum isometric voluntary contraction both before and after the intervention. The mean frequency of the firing of motor units was calculated based on fast Fourier transformation of the electromyography. As the results of the intervention, muscle strength increased significantly only in biceps femoris, whereas the mean frequency of motor units decreased significantly in every muscle, indicating that motor unit firing in lower frequency efficiently induces the same or greater strength compared with before the intervention. Thus, synchronization of motor units compensates for the lower frequency of motor unit firing to maintain muscular strength. In conclusion, long-term physical exercises in the elderly can modulate the neural adjustment of lower leg muscles to promote efficient output of muscle strength.

  4. Effects of bodyweight-based exercise training on muscle functions of leg multi-joint movement in elderly individuals.

    Science.gov (United States)

    Yamauchi, Junichiro; Nakayama, Satoshi; Ishii, Naokata

    2009-09-01

    Because demands of functional exercise training with using own bodyweight for elderly individuals were increasing, the present study investigated the effects of bodyweight-based exercise training on muscle functions of leg multi-joint movements in elderly individuals. Twenty-seven untrained healthy elderly individuals (mean +/- standard deviation, 66.0 +/- 5.7 years) completed the training program for 10 months. The exercise program consisted mainly of exercises for large leg muscle groups without using external weight, performing 10-50 repetitions and 1-3 sets for each exercise. Before and after the training period, force-velocity relations of knee-hip extension movements were measured with a servo-controlled dynamometer and the maximum force (Fmax), velocity (Vmax) and power (Pmax) were determined. After the training, Fmax and Pmax increased and these increases represented 15% (P elderly individuals; however, the initial training status is important for progressive increases in muscle force.

  5. LEGS AND TRUNK MUSCLE HYPERTROPHY FOLLOWING WALK TRAINING WITH RESTRICTED LEG MUSCLE BLOOD FLOW

    Directory of Open Access Journals (Sweden)

    Mikako Sakamaki

    2011-06-01

    Full Text Available We examined the effect of walk training combined with blood flow restriction (BFR on the size of blood flow-restricted distal muscles, as well as, on the size of non-restricted muscles in the proximal limb and trunk. Nine men performed walk training with BFR and 8 men performed walk training alone. Training was conducted two times a day, 6 days/wk, for 3 wk using five sets of 2-min bouts (treadmill speed at 50 m/min, with a 1-min rest between bouts. After walk training with BFR, MRI-measured upper (3.8%, P < 0.05 and lower leg (3.2%, P < 0. 05 muscle volume increased significantly, whereas the muscle volume of the gluteus maximus (-0.6% and iliopsoas (1.8% and the muscle CSA of the lumber L4-L5 (-1.0 did not change. There was no significant change in muscle volume in the walk training alone. Our results suggest that the combination of leg muscle blood flow restriction with slow walk training elicits hypertrophy only in the distal blood flow restricted leg muscles. Exercise intensity may be too low during BFR walk training to increase muscle mass in the non- blood flow restricted muscles (gluteus maximus and other trunk muscles.

  6. Reconstruction of human swing leg motion with passive biarticular muscle models.

    Science.gov (United States)

    Ahmad Sharbafi, Maziar; Mohammadi Nejad Rashty, Aida; Rode, Christian; Seyfarth, Andre

    2017-04-01

    Template models, which are utilized to demonstrate general aspects in human locomotion, mostly investigate stance leg operation. The goal of this paper is presenting a new conceptual walking model benefiting from swing leg dynamics. Considering a double pendulum equipped with combinations of biarticular springs for the swing leg beside spring-mass (SLIP) model for the stance leg, a novel SLIP-based model, is proposed to explain human-like leg behavior in walking. The action of biarticular muscles in swing leg motion helps represent human walking features, like leg retraction, ground reaction force and generating symmetric walking patterns, in simulations. In order to stabilize the motion by the proposed passive structure, swing leg biarticular muscle parameters such as lever arm ratios, stiffnesses and rest lengths need to be properly adjusted. Comparison of simulation results with human experiments shows the ability of the proposed model in replicating kinematic and kinetic behavior of both stance and swing legs as well as biarticular thigh muscle force of the swing leg. This substantiates the important functional role of biarticular muscles in leg swing. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Leg Muscle Mass and Foot Symptoms, Structure, and Function: The Johnston County Osteoarthritis Project.

    Science.gov (United States)

    Golightly, Yvonne M; Dufour, Alyssa B; Hannan, Marian T; Hillstrom, Howard J; Katz, Patricia P; Jordan, Joanne M

    2016-03-01

    Loss of muscle mass occurs with aging and in lower limbs it may be accelerated by foot problems. In this cross-sectional analysis, we evaluated the relationship of leg muscle mass to foot symptoms (presence or absence of pain, aching, or stiffness), structure while standing (high arch or low arch), and function while walking (pronated or supinated) in a community-based study of Caucasian and African American men and women who were 50-95 years old. In the Johnston County Osteoarthritis Project, leg muscle mass was measured with whole body dual-energy x-ray absorptiometry, and plantar foot pressure data, using predetermined values, were used to classify foot structure and function. Sex-specific crude and adjusted (age, body mass index, and race) linear regression models examined associations of leg muscle mass index (Leg muscle mass [kg]/Height [m](2)) with foot symptoms, structure, and function. Complete data were available for 1,037 participants (mean age 68 years, mean body mass index 31 kg/m(2), 68% women, 29% African American). In women, pronated foot function was associated with lower leg muscle mass in crude (p = .02), but not adjusted (p = .22), models. A low arch was associated with a higher leg muscle mass in adjusted models for both men and women (p Leg muscle mass was associated with foot structure in our biracial sample, whereas relations between leg muscle mass and foot function were attenuated by age, body mass index, and race. Future longitudinal analyses are needed to explain the temporal relationship between these conditions and how they relate to other aspects of impairment and physical function. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Muscle hernias of the lower leg: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Mellado, J.M. [Radiology Department, Hospital Virgen de la Cinta, Tortosa, Tarragona (Spain)]|[IDI - Centre Tarragona, Ressonancia Magnetica, Hospital Joan XXIII, Tarragona (Spain); Perez del Palomar, L. [Radiology Department, Hospital Virgen de la Cinta, Tortosa, Tarragona (Spain)

    1999-08-01

    Muscle hernias of the lower leg involving the tibialis anterior, peroneus brevis, and lateral head of the gastrocnemius were found in three different patients. MRI findings allowed recognition of herniated muscle in all cases and identification of fascial defect in two of them. MR imaging findings and the value of dynamic MR imaging is emphasized. (orig.) With 3 figs., 10 refs.

  9. Interaction Between Leg Muscle Performance and Sprint Acceleration Kinematics

    Directory of Open Access Journals (Sweden)

    Lockie Robert G.

    2015-12-01

    Full Text Available This study investigated relationships between 10 m sprint acceleration, step kinematics (step length and frequency, contact and flight time, and leg muscle performance (power, stiffness, strength. Twenty-eight field sport athletes completed 10 m sprints that were timed and filmed. Velocity and step kinematics were measured for the 0-5, 5-10, and 0-10 m intervals to assess acceleration. Leg power was measured via countermovement jumps (CMJ, a fivebound test (5BT, and the reactive strength index (RSI defined by 40 cm drop jumps. Leg stiffness was measured by bilateral and unilateral hopping. A three-repetition maximum squat determined strength. Pearson’s correlations and stepwise regression (p ≤ 0.05 determined velocity, step kinematics, and leg muscle performance relationships. CMJ height correlated with and predicted velocity in all intervals (r = 0.40-0.54. The 5BT (5-10 and 0-10 m intervals and RSI (5-10 m interval also related to velocity (r = 0.37-0.47. Leg stiffness did not correlate with acceleration kinematics. Greater leg strength related to and predicted lower 0-5 m flight times (r = -0.46 to -0.51, and a longer 0-10 m step length (r = 0.38. Although results supported research emphasizing the value of leg power and strength for acceleration, the correlations and predictive relationships (r2 = 0.14-0.29 tended to be low, which highlights the complex interaction between sprint technique and leg muscle performance. Nonetheless, given the established relationships between speed, leg power and strength, strength and conditioning coaches should ensure these qualities are expressed during acceleration in field sport athletes.

  10. Interaction Between Leg Muscle Performance and Sprint Acceleration Kinematics.

    Science.gov (United States)

    Lockie, Robert G; Jalilvand, Farzad; Callaghan, Samuel J; Jeffriess, Matthew D; Murphy, Aron J

    2015-12-22

    This study investigated relationships between 10 m sprint acceleration, step kinematics (step length and frequency, contact and flight time), and leg muscle performance (power, stiffness, strength). Twenty-eight field sport athletes completed 10 m sprints that were timed and filmed. Velocity and step kinematics were measured for the 0-5, 5-10, and 0-10 m intervals to assess acceleration. Leg power was measured via countermovement jumps (CMJ), a five-bound test (5BT), and the reactive strength index (RSI) defined by 40 cm drop jumps. Leg stiffness was measured by bilateral and unilateral hopping. A three-repetition maximum squat determined strength. Pearson's correlations and stepwise regression (p ≤ 0.05) determined velocity, step kinematics, and leg muscle performance relationships. CMJ height correlated with and predicted velocity in all intervals (r = 0.40-0.54). The 5BT (5-10 and 0-10 m intervals) and RSI (5-10 m interval) also related to velocity (r = 0.37-0.47). Leg stiffness did not correlate with acceleration kinematics. Greater leg strength related to and predicted lower 0-5 m flight times (r = -0.46 to -0.51), and a longer 0-10 m step length (r = 0.38). Although results supported research emphasizing the value of leg power and strength for acceleration, the correlations and predictive relationships (r(2) = 0.14-0.29) tended to be low, which highlights the complex interaction between sprint technique and leg muscle performance. Nonetheless, given the established relationships between speed, leg power and strength, strength and conditioning coaches should ensure these qualities are expressed during acceleration in field sport athletes.

  11. Reliability of MR-Based Volumetric 3-D Analysis of Pelvic Muscles among Subjects with Low Back with Leg Pain and Healthy Volunteers

    Science.gov (United States)

    Skorupska, Elżbieta; Keczmer, Przemysław; Łochowski, Rafał M.; Tomal, Paulina; Rychlik, Michał; Samborski, Włodzimierz

    2016-01-01

    Aim Lately, the diagnostic value of magnetic resonance imaging, Lasègue sign and classic neurological signs have been considered not accurate enough to distinguish the radicular from non-radicular low back with leg pain (LBLP) and a calculation of the symptomatic side muscle volume has been indicated as a probable valuable marker. However, only the multifidus muscle volume has been calculated so far. The main objective of the study was to verify whether LBLP subjects presented symptomatic side pelvic muscle atrophy compared to healthy volunteers. The second aim was to assess the inter-rater reliability of 3-D manual method for segmenting and measuring the volume of the gluteus maximus, gluteus medius, gluteus minimus and piriformis muscles in both LBLP patients and healthy subjects. Method Two independent raters analyzed MR images of LBLP and healthy subjects towards muscle volume of four pelvic muscles, i.e. the piriformis, gluteus minimus, gluteus medius and gluteus maximus. For both sides, the MR images of the muscles without adipose tissue infiltration were manually segmented in 3-D medical images. Results Symptomatic muscle atrophy was confirmed in only over 50% of LBLP subjects (gluteus maximus (pgluteus minimus (pgluteus medius muscle in LBLP patients, which was equal to 0.848. Conclusion More than 50% of LBLP subjects presented symptomatic gluteus maximus, gluteus minimus and piriformis muscle atrophy. 3-D manual segmentation reliably measured muscle volume in all the measured pelvic muscles in both healthy and LBLP subjects. To answer the question of what kind of muscle atrophy is indicative of radicular or non-radicular pain further studies are required. PMID:27459688

  12. Reliability of MR-Based Volumetric 3-D Analysis of Pelvic Muscles among Subjects with Low Back with Leg Pain and Healthy Volunteers.

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorupska

    Full Text Available Lately, the diagnostic value of magnetic resonance imaging, Lasègue sign and classic neurological signs have been considered not accurate enough to distinguish the radicular from non-radicular low back with leg pain (LBLP and a calculation of the symptomatic side muscle volume has been indicated as a probable valuable marker. However, only the multifidus muscle volume has been calculated so far. The main objective of the study was to verify whether LBLP subjects presented symptomatic side pelvic muscle atrophy compared to healthy volunteers. The second aim was to assess the inter-rater reliability of 3-D manual method for segmenting and measuring the volume of the gluteus maximus, gluteus medius, gluteus minimus and piriformis muscles in both LBLP patients and healthy subjects.Two independent raters analyzed MR images of LBLP and healthy subjects towards muscle volume of four pelvic muscles, i.e. the piriformis, gluteus minimus, gluteus medius and gluteus maximus. For both sides, the MR images of the muscles without adipose tissue infiltration were manually segmented in 3-D medical images.Symptomatic muscle atrophy was confirmed in only over 50% of LBLP subjects (gluteus maximus (p<0.001, gluteus minimus (p<0.01 and piriformis (p<0.05. The ICC values indicated that the inter-rater reproducibility was greater than 0.90 for all measurements (LBLP and healthy subjects, except for the measurement of the right gluteus medius muscle in LBLP patients, which was equal to 0.848.More than 50% of LBLP subjects presented symptomatic gluteus maximus, gluteus minimus and piriformis muscle atrophy. 3-D manual segmentation reliably measured muscle volume in all the measured pelvic muscles in both healthy and LBLP subjects. To answer the question of what kind of muscle atrophy is indicative of radicular or non-radicular pain further studies are required.

  13. Muscle strategies for leg extensions on a "Reformer" apparatus.

    Science.gov (United States)

    Cantergi, Débora; Loss, Jefferson Fagundes; Jinha, Azim; Brodt, Guilherme Auler; Herzog, Walter

    2015-04-01

    Considering the kinematics of leg extensions performed on a Reformer apparatus, one would expect high activation of hip and knee extensor muscle groups. However, because of the bi-articular nature of some lower limb muscles, and the possibility to vary the direction of force application on the Reformer bar, muscles can be coordinated theoretically in a variety of ways and still achieve the desired outcome. Hence, the aim of this study was to determine the knee and hip moments during leg extensions performed on the Reformer apparatus and to estimate the forces in individual muscles crossing these joints using static optimization. Fifteen subjects performed leg extensions exercises on the Reformer apparatus using an individually chosen resistance. To our big surprise, we found that subjects performed the exercise using two conceptually different strategies (i) the first group used simultaneous hip and knee extension moments, (ii) while the second group used simultaneous hip flexion and knee extension moments to perform the exercise. These different strategies were achieved by changing the direction of the resultant force applied by the subject's feet on the Reformer bar. While leg extensions on the Reformer apparatus have been thought to strengthen the hip and knee extensors muscles, our results demonstrate that patients can perform the exercise in a different and unexpected way. In order to control the hip and knee moments and achieve the desired outcome of the exercise, the direction of force application on the Reformer bar must be controlled carefully. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Does EMG activation differ among fatigue-resistant leg muscles ...

    African Journals Online (AJOL)

    The participants (N=32) were divided into two groups according to the Fatigue Index value [Group I: Less Fatigue Resistant (LFR), n=17; Group II: More Fatigue Resistant (MFR), n=15]. The repeated EMG activities of four leg muscles [rectus femoris, biceps femoris, vastus lateralis and vastus medialis] were analysed during ...

  15. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    Directory of Open Access Journals (Sweden)

    Ulrich Lindemann

    Full Text Available The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628, leg push power (r = 0.550, isometric quadriceps strength (r = 0.442, hand grip strength (r = 0.367, fast gait speed (r = 0.291, habitual gait speed (r = 0.256, body mass index (r = 0.411 and age (r = -0.392. Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  16. Muscle recruitment patterns during the prone leg extension

    Directory of Open Access Journals (Sweden)

    Rayfield Ben

    2004-02-01

    Full Text Available Abstract Background The prone leg extension (PLE is a clinical test used to evaluate the function of the lumbopelvis. It has been theorized that a normal and consistent pattern of muscle activation exists. Previous research has found two contradictory patterns of muscle activation during PLE in normal individuals. One study shows an almost simultaneous activation of the lower erector spinae and hamstring muscle group with a delayed activation of the gluteus maximus, while the second describes the order of activation being ipsilateral erector spinae (to the leg being extended, hamstrings, contralateral erector spinae and gluteus maximus. Due to the different conclusions from these two studies and the lack of quantified muscle onset times, expressed in absolute time this study attempted to quantify the muscle onset times (in milliseconds during the prone leg extension, while noting if a consistent order of activation exists and whether a timing relationship also exists between the gluteus maximus and contralateral latissimus dorsi. Methods 10 asymptomatic males (Average height: 175.2 cm (SD 6.5, Average Weight 75.9 kg (SD 6.5, Average Age: 27.1(SD 1.28 and 4 asymptomatic females (Average height 164.5 (SD 2.9, weight: 56.2 (SD 8.9, Average Age: 25 (SD 1 performed the prone leg extension task while the myoelectric signal was recorded from the bilateral lower erector spinae, gluteus maximus and hamstring muscle groups. Activation onsets were determined from the rectified EMG signal relative to the onset of the hamstrings muscle group. Results No consistent recruitment patterns were detected for prone leg extension among the hamstring muscle group and the erector spinae. However, a consistent delay in the Gluteus Maximus firing of approximately 370 ms after the first muscle activated was found. Five out of 14 asymptomatic subjects showed a delay in gluteus maximus firing exceeding the average delay found in previous research of subjects considered to

  17. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    Science.gov (United States)

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Use of local muscle flaps to cover leg bone exposures

    Directory of Open Access Journals (Sweden)

    Francisco d'Avila

    Full Text Available Objective: To evaluate the use of the medial gastrocnemius muscle and/or soleus muscle flaps as surgical treatment of the leg bone exposure.Methods: We retrospectively analyzed the medical records of patients undergoing transposition of the medial gastrocnemius and / or soleus for treating exposed bone in the leg, from January 1976 to July 2009, gathering information on epidemiological data, the etiology the lesion, the time between the initial injury and muscle transposition, the muscle used to cover the lesion, the healing evolution of the skin coverage and the function of the gastrocnemius-soleus unit.Results: 53 patients were operated, the ages varying between nine and 84 years (mean age 41; 42 were male and 11 female. The main initial injury was trauma (84.8%, consisting of tibia and / or fibula fracture. The most frequently used muscle was the soleus, in 40 cases (75.5%. The rank of 49 patients (92.5% was excellent or good outcome, of three (5.6% as regular and of one (1.9% as unsatisfactory.Conclusion: the treatment of bone exposure with local muscle flaps (gastrocnemius and/or soleus enables obtaining satisfactory results in covering of exposed structures, favoring local vascularization and improving the initial injury. It offers the advantage of providing a treatment in only one surgical procedure, an earlier recovery and reduced hospital stay.

  19. Periodic leg movement, nasal CPAP, and expiratory muscles.

    Science.gov (United States)

    Seo, Won Hee; Guilleminault, Christian

    2012-07-01

    Periodic leg movements (PLMs) may appear during nasal CPAP titration, persisting despite the elimination of hypopneas. Systematic recordings of expiratory abdominal muscles on the right and left sides with surface electromyographic (EMG) electrodes lateral to navel, and close from the lateral side of abdomen, were added during nasal CPAP titration for treatment of obstructive sleep apnea (OSA). Positive airway pressure was titrated during nocturnal polysomnography, based on analysis of the flow curve derived from the CPAP equipment and EEG analysis, including persistence of phases A2 and A3 of the cyclic alternating pattern (CAP). The requirement was to eliminate American Association of Sleep Medicine (AASM)-defined hypopnea and also flow limitation and abnormal EEG patterns. When CPAP reached valid results, it was lowered at the time of awakening by 2 or 3 cm H(2)O, and titration was performed again. Data collected during a 7-month period on adults with a prior diagnosis of OSA who had received treatment with nasal CPAP regardless of age and sex were rendered anonymous and were retrospectively rescored by a blinded investigator. Eighty-one successively seen patients with PLMs during CPAP titration were investigated. Elimination of AASM-defined hypopnea was not sufficient to eliminate the PLMs observed during the titration; higher CPAP eliminated flow limitation and CAP phases A2 and A3 and persisting PLMs. PLMs were associated with simultaneous EMG bursts in expiratory abdominal muscles. The presence of PLMs during CPAP titration indicates the persistence of sleep-disordered breathing. PLMs during CPAP titration are related to the presence of abdominal expiratory muscle activity.

  20. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise

    Directory of Open Access Journals (Sweden)

    Kari eKalliokoski

    2011-10-01

    Full Text Available One-legged dynamic knee-extension exercise (DKE is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron emission tomography (PET determined uptake of [18F]-fluoro-deoxy-glucose (GU during DKE. Five healthy male subjects performed DKE at 25 W for 35 min and both the contracting and contralateral resting leg were scanned with PET from mid-thigh and distally. On average, exercise GU was the highest in the vastus intermedius (VI and lowest in the vastus lateralis (VL (VI vs VL, p<0.05, whereas the coefficient of variation was highest in VL (VL vs VI, p<0.05. Coefficient of variation between the mean values of the four QF muscles in the exercising leg was 35±9%. Compared to mean GU in QF (=100%, GU was on average 73% in VL, 84% in rectus femoris, 115% in vastus medialis, and 142% in VI. Variable activation of hamstring muscles and muscles of the lower leg was also observed. These results show that GU of different muscles of quadriceps muscle group as well as between individuals vary greatly during DKE, and suggests that muscle activity is not equal between quadriceps muscles in this exercise model. Furthermore, posterior thigh muscles and lower leg muscles are more active than hitherto thought even during this moderate exercise intensity.

  1. The Comparing the Leg Muscles Electromyography during Single Leg Drop Landing in Pesplanus and Normal Men

    Directory of Open Access Journals (Sweden)

    mostafa bazvand

    2016-03-01

    Full Text Available Objective: pesplanus is one of the changes that brings about changes in muscle activation patterns. Being aware of muscles activity changes in various standing positions among pesplanus patients provides insights into preventing lower extremity injuries in this population. The aim of this study was to compare leg muscles electromyography during various standing positions in pesplanus and normal subjects. Methods: 60 healthy male university students, 30 subjects with pesplanus deformity (with average age 23/54±3/57 year, average height 175/34±7/62 cm, average weight 74/87±10/72 kg and 30 normal subjects (with average age 22/97±2/38 year, average height 176/6±5/59 cm, average weight 73/58±8/36 kg participated in this comparative study. Deformity of pesplanus was assessed with navicular drop test. Each subject performed single-leg landing dropping from 30cm height onto a force platform where muscles activity was recorded with EMG device. For data analysis, Matlab and Spss softwares were used and independent sample t-test was used to compare the dependent variables at a significance level of P &le 0/05. Results: Significant differences were observed between the two groups for the activities of the longus peroneus and anterior tibialis muscles ( p&le0/05 while no significant differences were observed in other muscles. Conclusion: The changes in the normal structure of the foot might affect muscle activities during standing, which can cause changes in the injury patterns. Therefore, it is proposed that focusing on corrective exercises and therapy plan can reduce these risks.

  2. Elicitability of muscle cramps in different leg and foot muscles.

    Science.gov (United States)

    Minetto, Marco Alessandro; Botter, Alberto

    2009-10-01

    To explore the efficacy of muscle motor point stimulation in eliciting muscle cramps, 11 subjects underwent eight sessions of electrical stimulation of the following muscles bilaterally: abductor hallucis flexor hallucis brevis, and both heads of the gastrocnemius muscles. Bursts of 150 square wave stimuli (duration: 152 micros; current intensity: 30% supramaximal) were applied. The stimulation frequency was increased from 4 pulses per second (pps) at increments of 2 pps until a cramp was induced. The number of cramps that could be elicited was smaller in flexor hallucis brevis than in abductor hallucis (16 vs. 22 out of 22 trials each; P cramp susceptibility, and the intermuscle variability in the elicitability profile for electrically induced cramps supports the use of the proposed method for cramp research.

  3. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Boushel, Robert; Langberg, Henning

    2011-01-01

    to mean GU in QF (=100%), GU was on average 73% in VL, 84% in rectus femoris, 115% in vastus medialis, and 142% in VI. Variable activation of hamstring muscles and muscles of the lower leg was also observed. These results show that GU of different muscles of quadriceps muscle group as well as between......One-legged dynamic knee-extension exercise (DKE) is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron...... in the vastus intermedius (VI) and lowest in the vastus lateralis (VL; VI vs VL, p muscles in the exercising leg was 35 ± 9%. Compared...

  4. THE EFFECTS OF SINGLE LEG HOP PROGRESSION AND DOUBLE LEGS HOP PROGRESSION EXERCISE TO INCREASE SPEED AND EXPLOSIVE POWER OF LEG MUSCLE

    Directory of Open Access Journals (Sweden)

    Nining W. Kusnanik

    2015-05-01

    Full Text Available The main purpose of this study was to determine the effect of single leg hop progression and double legs hop progression exercise to increase speed and explosive power of leg muscles. Plyometric is one of the training methods that can increase explosive power. There are many models of plyometric training including single leg hop progression and double leg hop progression. This research was experimental using match subject design techniques. The subjects of this study were 39 students who joined basketball school club. There were 3 groups in this study: Group 1 were 13 students who given sin¬gle leg hop progression exercise, Group 2 were 13 students who given double legs hop progression exercise, Group 3 were 13 students who given conventional exercise. The data was collected during pre test and post test by testing 30m speed running and vertical jump. The data was analyzed using Analysis of Varians (Anova. It was found that there were significantly increased on speed and explosive power of leg muscles of Group 1 and Group 2. It can be stated that single leg hop progression exercise was more effective than double leg hop progression exercise. The recent findings supported the hypothesis that single leg hop progression and double legs hop progression exercise can increase speed and explosive power of leg muscles. These finding were supported by some previous studies (Singh, et al, 2011; Shallaby, H.K., 2010. The single leg hop progression is more effective than double legs hop progression. This finding was consistent with some previous evidences (McCurdy, et al, 2005; Makaruk et al, 2011.

  5. Effect of Ladder Drill Exercise on Speed, Surrounding, and Power Leg Muscle

    Directory of Open Access Journals (Sweden)

    Ketut Chandra Adinata Kusuma

    2017-10-01

    Full Text Available This study aimed at finding the effect of ladder drill training upon: (1 run speed, (2 agility, and (2 power of leg muscle. This study is an experimental research. This study utilized one group pre test-post test design. There were total people as the subject of this research. Data collection technique used 30-meter sprint test to measure run speed, Illinois agility test to measure agility, and vertical jump test to measure power of leg muscle. Data analysis technique which was used for normality test, homogeneity test/F-test, and T-test with significant level 5% by using SPSS 16.0.0. Based on the finding, there was effect of ladder drill training upon run speed with sig value=0.007, agility and power of leg muscle with sig value=0.000. Based on the data analysis, it could be concluded that there was significant effect of ladder drill training upon run speed, agility and power of leg muscle.

  6. Leg muscles activities during hyperventilation following a cycling exercise.

    Science.gov (United States)

    David, P; Mora, I; Terrien, J; Lelard, T; Petitjean, M

    2010-01-01

    The goal of this study was to establish how increased ventilation modifies postural stability, as characterized by body sway and leg muscle activities. Twelve healthy subjects had to perform six 30-second postural tests: one pre-exercise test while breathing gently and then one test every minute for the five minutes immediately following a maximum-intensity, incremental cycling exercise test. Subjects were asked to maintain an upright stance on a force plate for 30 s, with their eyes open. Movement of the centre of pressure in the sagittal plane was monitored in the time and spectral domains. Myoelectric activities of the soleus and tibialis anterior muscles were recorded using surface electromyography. Ventilatory parameters were measured with a portable, telemetric device. Postural changes related to respiratory variations were quantified by coherence analysis. The results showed that hyperventilation induced by exercise was accompanied by a significant increase in postural parameters, indicating a reduction in postural stability following a change in ventilatory drive. Coherence analysis confirmed the ventilatory origin of the postural oscillations. The results suggest that ventilation may be an important factor in postural disturbance during physical activity. The observed increases in leg muscle activities were most likely related to musculo-articular stiffening.

  7. Experience with peroneus brevis muscle flaps for reconstruction of distal leg and ankle defects

    Directory of Open Access Journals (Sweden)

    Babu Bajantri

    2013-01-01

    Full Text Available Objective: Peroneus brevis is a muscle in the leg which is expendable without much functional deficit. The objective of this study was to find out its usefulness in coverage of the defects of the lower leg and ankle. Patients and Methods: A retrospective analysis of the use of 39 pedicled peroneus brevis muscle flaps used for coverage of defects of the lower leg and ankle between November 2010 and December 2012 was carried out. The flaps were proximally based for defects of the lower third of the leg in 12 patients and distally based for reconstruction of defects of the ankle in 26 patients, with one patient having flaps on both ankles. Results: Partial flap loss in critical areas was found in four patients requiring further flap cover and in non-critical areas in two patients, which were managed with a skin graft. Three of the four critical losses occurred when we used it for covering defects over the medial malleolus. There was no complete flap loss in any of the patients. Conclusion: This flap has a unique vascular pattern and fails to fit into the classification of the vasculature of muscles by Mathes and Nahai. The unusual feature is an axial vessel system running down the deep aspect of the muscle and linking the perforators from the peroneal artery and anterior tibial artery, which allows it to be raised proximally or distally on a single perforator. The flap is simple to raise and safe for the reconstruction of small-to moderate-sized skin defects of the distal third of the tibia and all parts of the ankle except the medial malleolus, which is too far from the pedicle of the distally based flap. The donor site can be closed primarily to provide a linear scar. The muscle flap thins with time to provide a good result aesthetically at the primary defect.

  8. The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.

    Science.gov (United States)

    Guschlbauer, Christoph; Scharstein, Hans; Büschges, Ansgar

    2007-03-01

    We investigated the properties of the extensor tibiae muscle of the stick insect (Carausius morosus) middle leg. Muscle geometry of the middle leg was compared to that of the front and hind legs and to the flexor tibiae, respectively. The mean length of the extensor tibiae fibres is 1.41+/-0.23 mm and flexor fibres are 2.11+/-0.30 mm long. The change of fibre length with joint angle was measured and closely follows a cosine function. Its amplitude gives effective moment arm lengths of 0.28+/-0.02 mm for the extensor and 0.56+/-0.04 mm for the flexor. Resting extensor tibiae muscle passive tonic force increased from 2 to 5 mN in the maximum femur-tibia (FT)-joint working range when stretched by ramps. Active muscle properties were measured with simultaneous activation (up to 200 pulses s(-1)) of all three motoneurons innervating the extensor tibiae, because this reflects most closely physiological muscle activation during leg swing. The force-length relationship corresponds closely to the typical characteristic according to the sliding filament hypothesis: it has a plateau at medium fibre lengths, declines nearly linearly in force at both longer and shorter fibre lengths, and the muscle's working range lies in the short to medium fibre length range. Maximum contraction velocity showed a similar relationship. The force-velocity relationship was the traditional Hill curve hyperbola, but deviated from the hyperbolic shape in the region of maximum contraction force close to the isometric contraction. Step-like changes in muscle length induced by loaded release experiments characterised the non-linear series elasticity as a quadratic spring.

  9. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  10. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  11. Glucose Uptake Is Decreased in Affected Lower Leg Muscles of Hemiparetic Persons during Level Walking.

    Science.gov (United States)

    Oi, Naoyuki; Itoh, Masatoshi; Tobimatsu, Yoshiko; Konno, Shinichi; Kikuchi, Shinichi; Iwaya, Tsutomu

    2015-12-01

    Stroke patients suffer from gait disturbance due to altered leg muscle actions. Many kinesiological studies have investigated muscle actions, but the metabolic activity of muscles in stroke patients remains to be investigated. We therefore evaluated energy consumption in lower extremity muscles during level walking in hemiparetic individuals. Glucose uptake was measured by positron emission tomography (PET) using (18)F-fluorodeoxyglucose ((18)F-FDG) in eight hemiparetic (mean age: 56 years) and 11 healthy (mean age: 26 years) participants. Standardized uptake ratio (SUR) was computed in each muscle to express the (18)F-FDG-uptake level. SUR was compared across gluteal, thigh, and lower leg muscles and across individual muscles within each muscle group. For each muscle, SUR was compared among the paretic limb of hemiparetic participants, the non-paretic limb of hemiparetic participants, and the right limb of healthy participants. In paretic limbs, mean SUR did not differ between the three muscle groups, or between individual muscles within each muscle group. SURs of paretic lower leg muscles and gluteus minimus muscle were significantly smaller than those of non-paretic limb and healthy participants (p limb of hemiparetic participants, SUR of the lower leg muscles was larger than that of the thigh muscles (p muscles were larger in the non-paretic limb of hemiparetic participants, compared to the right limb of healthy participants (p lower extremity muscles during level walking in hemiparetic individuals.

  12. Arm and leg substrate utilization and muscle adaptation after prolonged low-intensity training

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff

    2010-01-01

    This review will focus on current data where substrate metabolism in arm and leg muscle is investigated and discuss the presence of higher carbohydrate oxidation and lactate release observed during arm compared with leg exercise. Furthermore, a basis for a possible difference in substrate...... partitioning between endogenous and exogenous substrate during arm and leg exercise will be debated. Moreover the review will probe if differences between arm and leg muscle are merely a result of different training status rather than a qualitative difference in limb substrate regulation. Along this line...... the review will address the available studies on low-intensity training performed separately with arm or legs or as whole-body training to evaluate if this leads to different adaptations in arm and leg muscle resulting in different substrate utilization patterns during separate arm or leg exercise...

  13. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review.

    Science.gov (United States)

    Ozaki, Hayao; Loenneke, Jeremy P; Thiebaud, Robert S; Stager, Joel M; Abe, Takashi

    2013-01-01

    It is known that ambulatory exercises such as brisk walking and jogging are potent stimuli for improving aerobic capacity, but it is less understood whether ambulatory exercise can increase leg muscle size and function. The purpose of this brief review is to discuss whether or not ambulatory exercise elicits leg muscle hypertrophy in older adults. Daily ambulatory activity with moderate (>3 metabolic equivalents [METs], which is defined as the ratio of the work metabolic rate to the resting metabolic rate) intensity estimated by accelerometer is positively correlated with lower body muscle size and function in older adults. Although there is conflicting data on the effects of short-term training, it is possible that relatively long periods of walking, jogging, or intermittent running for over half a year can increase leg muscle size among older adults. In addition, slow-walk training with a combination of leg muscle blood flow restriction elicits muscle hypertrophy only in the blood flow restricted leg muscles. Competitive marathon running and regular high intensity distance running in young and middle-aged adults may not produce leg muscle hypertrophy due to insufficient recovery from the damaging running bout, although there have been no studies that have investigated the effects of running on leg muscle morphology in older subjects. It is clear that skeletal muscle hypertrophy can occur independently of exercise mode and load.

  14. Leg muscle activation patterns during walking and leg lean mass are different in children with and without developmental coordination disorder.

    Science.gov (United States)

    Yam, Timothy T T; Fong, Shirley S M

    2018-02-01

    Previous studies have shown that children with developmental coordination disorder (DCD) have a higher body fat and greater gait variability. Little research has investigated the gait muscle activity and lean mass measures in children with DCD. To compare the leg muscle activation patterns of the gait cycle and leg lean mass between children with and without DCD. Fifty-one children were in the DCD group (38 males and 13 females; 7.95 ± 1.04 years) and fifty-two in the control group (34 males and 18 females; 8.02 ± 1.00 years). Peak muscle activation patterns of treadmill walking in the right leg for the eight-gait phases were measured by means of surface electromyography, an electrogoniometer, and foot contact switches. Leg lean mass measures were evaluated using a whole-body dual energy X-ray absorptiometry scan. Children with DCD had a lower leg lean mass and appendicular lean mass index compared to the control group. Furthermore, they exhibited a less-pronounced peak muscle activation during the heel strike (gastrocnemius medialis), early swing (biceps femoris) and late swing phases (gastrocnemius medialis) of gait. Although lower limb total mass was similar between groups, the DCD group displayed lower lean mass measures than controls. Furthermore, children with DCD illustrated a lower leg peak muscle activation during the heel strike, early swing and late swing phases of gait when walking on a treadmill. Our results emphasize the need to incorporate lower limb phasic muscle strengthening components into gait rehabilitation programs for children with DCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of shoes and foot orthoses on lower extremity muscle activation onset times in healthy subjects during the transition from double-leg stance to single-leg stance.

    Science.gov (United States)

    Dingenen, B; Peeraer, L; Deschamps, K; Fieuws, S; Janssens, L; Staes, F

    2015-01-01

    The aim of this study was to evaluate the influence of shoes and foot orthoses on lower extremity muscle activation patterns in healthy subjects during the transition from double-leg stance to single-leg stance. Eight male and seven female young asymptomatic adults who wear foot orthoses were recruited. Muscle activation onset times of 9 lower extremity muscles were recorded using surface electromyography during the transition from double-leg stance to single-leg stance, performed with eyes open and with eyes closed. This was tested in 4 experimental conditions: 1) barefoot (BF); 2) shoes only (SO); 3) shoes with standardized FO (SSFO); and 4) shoes with customized FO (SCFO). Based on a four-way (condition-region-leg-vision) linear model for repeated measures, we found a significant condition effect (P=0.025). Differences between conditions did not depend on the leg and/or the vision condition, but on the region (ankle-knee-hip). Based on a two-way (condition-muscle) linear model within each region, only significant differences between conditions for peroneus longus (P=0.003) were found. The onset times of peroneus longus were significantly earlier in SO (P=0.029) and SCFO (P=0.001) compared to BF. These results indicate that SO and SCFO can accelerate peroneus longus muscle activation onset times during the transition from double-leg stance to single-leg stance. Further research is required to determine how these adaptations may develop over time.

  16. Leg crossing with muscle tensing, a physical counter-manoeuvre to prevent syncope, enhances leg blood flow

    NARCIS (Netherlands)

    Groothuis, Jan T.; van Dijk, Nynke; ter Woerds, Walter; Wieling, Wouter; Hopman, Maria T. E.

    2007-01-01

    In patients with orthostatic intolerance, the mechanisms to maintain BP (blood pressure) fail. A physical counter-manoeuvre to postpone or even prevent orthostatic intolerance in these patients is leg crossing combined with muscle tensing. Although the central haemodynamic effects of physical

  17. Leg crossing with muscle tensing, a physical counter-manoeuvre to prevent syncope, enhances leg blood flow.

    NARCIS (Netherlands)

    Groothuis, J.T.; Dijk, N. van; Woerds, W. ter; Wieling, W.; Hopman, M.T.E.

    2007-01-01

    In patients with orthostatic intolerance, the mechanisms to maintain BP (blood pressure) fail. A physical counter-manoeuvre to postpone or even prevent orthostatic intolerance in these patients is leg crossing combined with muscle tensing. Although the central haemodynamic effects of physical

  18. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    Science.gov (United States)

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  19. Shaping leg muscles in Drosophila: role of ladybird, a conserved regulator of appendicular myogenesis.

    Directory of Open Access Journals (Sweden)

    Tariq Maqbool

    Full Text Available Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. Ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing

  20. Shaping leg muscles in Drosophila: role of ladybird, a conserved regulator of appendicular myogenesis.

    Science.gov (United States)

    Maqbool, Tariq; Soler, Cedric; Jagla, Teresa; Daczewska, Malgorzata; Lodha, Neha; Palliyil, Sudhir; VijayRaghavan, K; Jagla, Krzysztof

    2006-12-27

    Legs are locomotor appendages used by a variety of evolutionarily distant vertebrates and invertebrates. The primary biological leg function, locomotion, requires the formation of a specialised appendicular musculature. Here we report evidence that ladybird, an orthologue of the Lbx1 gene recognised as a hallmark of appendicular myogenesis in vertebrates, is expressed in leg myoblasts, and regulates the shape, ultrastructure and functional properties of leg muscles in Drosophila. Ladybird expression is progressively activated in myoblasts associated with the imaginal leg disc and precedes that of the founder cell marker dumbfounded. The RNAi-mediated attenuation of ladybird expression alters properties of developing myotubes, impairing their ability to grow and interact with the internal tendons and epithelial attachment sites. It also affects sarcomeric ultrastructure, resulting in reduced leg muscle performance and impaired mobility in surviving flies. The over-expression of ladybird also results in an abnormal pattern of dorsally located leg muscles, indicating different requirements for ladybird in dorsal versus ventral muscles. This differential effect is consistent with the higher level of Ladybird in ventrally located myoblasts and with positive ladybird regulation by extrinsic Wingless signalling from the ventral epithelium. In addition, ladybird expression correlates with that of FGF receptor Heartless and the read-out of FGF signalling downstream of FGF. FGF signals regulate the number of leg disc associated myoblasts and are able to accelerate myogenic differentiation by activating ladybird, leading to ectopic muscle fibre formation. A key role for ladybird in leg myogenesis is further supported by its capacity to repress vestigial and to down-regulate the vestigial-governed flight muscle developmental programme. Thus in Drosophila like in vertebrates, appendicular muscles develop from a specialised pool of myoblasts expressing ladybird/Lbx1. The

  1. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  2. Quantitative ultrasound of lower leg and foot muscles: feasibility and reference values

    NARCIS (Netherlands)

    Verhulst, F.V.; Leeuwesteijn, A.E.; Louwerens, J.W.; Geurts, A.C.H.; Alfen, N. van; Pillen, S.

    2011-01-01

    BACKGROUND: Ultrasound is a non-invasive method to quantitatively measure various muscle parameters. Purpose of this study was to assess the feasibility of ultrasound of lower leg and foot muscles and to obtain reference values for muscle thickness (MT) and echo intensity (EI). METHODS: Ultrasound

  3. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review

    Directory of Open Access Journals (Sweden)

    Ozaki H

    2013-03-01

    Full Text Available Hayao Ozaki,1 Jeremy P Loenneke,2 Robert S Thiebaud,2 Joel M Stager,3 Takashi Abe31Juntendo University, Inzai, Chiba, Japan; 2Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA; 3Department of Kinesiology, Indiana University, Bloomington, IN, USAAbstract: It is known that ambulatory exercises such as brisk walking and jogging are potent stimuli for improving aerobic capacity, but it is less understood whether ambulatory exercise can increase leg muscle size and function. The purpose of this brief review is to discuss whether or not ambulatory exercise elicits leg muscle hypertrophy in older adults. Daily ambulatory activity with moderate (>3 metabolic equivalents [METs], which is defined as the ratio of the work metabolic rate to the resting metabolic rate intensity estimated by accelerometer is positively correlated with lower body muscle size and function in older adults. Although there is conflicting data on the effects of short-term training, it is possible that relatively long periods of walking, jogging, or intermittent running for over half a year can increase leg muscle size among older adults. In addition, slow-walk training with a combination of leg muscle blood flow restriction elicits muscle hypertrophy only in the blood flow restricted leg muscles. Competitive marathon running and regular high intensity distance running in young and middle-aged adults may not produce leg muscle hypertrophy due to insufficient recovery from the damaging running bout, although there have been no studies that have investigated the effects of running on leg muscle morphology in older subjects. It is clear that skeletal muscle hypertrophy can occur independently of exercise mode and load.Keywords: aerobic exercise, muscle mass, aging, strength, sarcopenia

  4. Postmortem changes in physiochemical and sensory properties of red snow crab (Chionoecetes japonicus leg muscle during freeze storage

    Directory of Open Access Journals (Sweden)

    Joon-Young Jun

    2017-07-01

    Full Text Available Abstract In order to evaluate the maximal storable period of the raw crab for a non-thermal muscle separation, the quality changes of the leg meat of red snow crab (Chionoecetes japonicus during freeze storage were investigated. Fresh red snow crabs were stored at −20 °C for 7 weeks, and the leg muscle was separated by a no heating separation (NHS method every week. During the storage, considerable loss of the leg muscle did not occur and microbiological risk was very low. In contrast, discoloration appeared at 2-week storage on around carapace and the leg muscle turned yellow at storage 3-week. In physiochemical parameters, protein and free amino acids gradually decreased with storage time, expected that proteolytic enzymes still activated at −20 °C. At 4-week storage, the sensory acceptance dropped down below point 4 as low as inedible and notable inflection points in pH and acidity were observed. The volatile base nitrogen was low, though a little increase was recorded. These results suggested that the maximal storable period at −20 °C of the raw material was within 2 weeks and it was depended on external factor such as the discoloration. The present study might be referred as basic data for approaches to solve quality loss occurred in non-thermal muscle separation.

  5. Regulation of PDH in human arm and leg muscles at rest and during intense exercise

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Birk, Jesper Bratz; Damsgaard, Rasmus

    2008-01-01

    arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P

  6. Aberrant femoral torsion presenting with frog-leg squatting mimicking gluteal muscle contracture.

    Science.gov (United States)

    Chiang, Chia-Ling; Tsai, Meng-Yuan; Chang, Wei-Ning; Chen, Clement Kuen-Huang

    2012-04-01

    Patients with frog-leg squatting have restricted internal rotation and adduction of the affected hips during sitting or squatting. In the surgical literature, the cause generally has been presumed to arise from and be pathognomonic for gluteal muscle contracture. However, we have encountered patients with frog-leg squatting but without gluteal muscle contracture. We therefore raised the following questions: What are the imaging features of patients with frog-leg squatting? Do conditions other than gluteal muscle contracture manifest frog-leg squatting? We retrospectively reviewed the MR images of 67 patients presenting with frog-leg squatting from April 1998 to July 2010. There were four females and 63 males; their mean age was 22.2 years (range, 4-50 years). During MRI readout, we observed aberrant axes of some femoral necks and obtained additional CT to measure femoral torsion angles in 59 of the 67 patients. MR images of 27 (40%) patients had signs of gluteal muscle contracture. Twenty-two (33%) patients (40 femora) had aberrant femoral torsion, including diminished anteversion (range, 6°-0°; average, 3.9°) in 11 femora of eight patients and femoral retroversion (range, muscle contracture or aberrant femoral torsion. The observation of aberrant femoral torsion was not anticipated before imaging studies. In addition to gluteal muscle contracture, aberrant femoral torsion can be a cause of frog-leg squatting. Level II, diagnostic study. See the guidelines for Authors for a complete description of levels of evidence.

  7. Non-Discriminant Relationships between Leg Muscle Strength, Mass and Gait Performance in Healthy Young and Old Adults

    NARCIS (Netherlands)

    Muehlbauer, Thomas; Granacher, Urs; Borde, Ron; Hortobagyi, Tibor

    2018-01-01

    Background: Gait speed declines with increasing age, but it is unclear if gait speed preferentially correlates with leg muscle strength or mass.  Objective: We determined the relationship between gait speed and (1) leg muscle strength measured at 3 lower extremity joints and (2) leg lean tissue mass

  8. THE ROLE OF LEG AND TRUNK MUSCLES PROPRIOCEPTION ON STATIC AND DYNAMIC POSTURAL CONTROL

    Directory of Open Access Journals (Sweden)

    SEYED Hossein Hosseinimehr

    2010-04-01

    Full Text Available The proprioception information is a prerequisite for balance, body’s navigation system, and the movement coordinator. Due to changes between the angles of ankle, knee, and hip joints the aforementioned information are important in the coordination of the limbs and postural balance. The aim of this study was to investigate therole of leg and trunk muscles proprioception on static and dynamic postural control. Thirty males students of physical education and sport sciences (age =21.23 ± 2.95 years, height = 170.4 ± 5.1 cm, and weight = 70.7 ± 5.6 kg participated in this study volunteered. Vibration (100HZ was used to disturb of proprioception. Vibrationoperated on leg muscle (gasterocnemius and trunk muscles (erector spine muscle, at L1 level. Leg stance time and Star Excursion Balance Test were used for evaluation of static and dynamic postural control respectively.Subjects performed pre and post (with operated vibration leg stance time and star excursion balance test. Paired sample test used for investigation the effect of vibration on leg and trunk muscles in static and dynamic postural control. Result of this study showed in static postural control, there is no significant difference between pre and post test (operated vibration in leg and trunk muscles (p≤0.05. In contrast there is significant difference indynamic postural control between pre and post test in leg muscles in 8 directions of star excursion balance test (p≤0.05 while there is only significant difference in trunk muscle in antrolateral and lateral of star excursion balance test (p≤0.05. During physical training such conditions like fatigue and injury can disturbproprioceptions’ information. Thus, due to the importance of this information we recommend that coaches'additionally specific trainings any sport used specific exercises to enhance the proprioception information

  9. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  10. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  11. The role of eccentric regime of leg muscle work in alpine skiing

    Directory of Open Access Journals (Sweden)

    Ropret Robert

    2017-01-01

    Full Text Available Alpine skiing is characterized by a great number of leg movements with muscle contractions in eccentric regime. The role of these movements is to absorb gravitation and inertial forces, manage skis more precisely and maintain balance. Recent studies have determined the volume, duration and intenisty of eccentric contractions as well as the basic characteristics of movement amplitudes and velocities. Based on the previous findings the experiments involving eccentric training using a bicycle ergometer confirmed a positive impact that this kind of training has on increasing maximum power, strength, endurance, coordination, injury prevention, metabolic work efficiency, more efficient work with longer muscle length and its role in miming skiers' movements. This paper is an review of the studies so far in the field of kinematics, skiing dynamics and the effect of eccentric training on the development of athletes' performances.

  12. Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects.

    Science.gov (United States)

    Dingenen, Bart; Janssens, Luc; Claes, Steven; Bellemans, Johan; Staes, Filip F

    2016-06-01

    Previous studies mainly focused on muscles at the operated knee after anterior cruciate ligament reconstruction, less on muscles around other joints of the operated and non-operated leg. The aim of this study was to investigate muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects. Lower extremity muscle activation onset times of both legs of 20 fully returned to sport anterior cruciate ligament reconstructed subjects and 20 non-injured control subjects were measured during the transition from double-leg stance to single-leg stance in eyes open and eyes closed conditions. Analysis of covariance (ANCOVA) was used to evaluate differences between groups and differences between legs within both groups, while controlling for peak center of pressure velocity. Significantly delayed muscle activation onset times were found in the anterior cruciate ligament reconstructed group compared to the control group for gluteus maximus, gluteus medius, vastus medialis obliquus, medial hamstrings, lateral hamstrings and gastrocnemius in both eyes open and eyes closed conditions (Panterior cruciate ligament reconstructed group, no significant different muscle activation onset times were found between the operated and non-operated leg (P>.05). Despite completion of rehabilitation and full return to sport, the anterior cruciate ligament reconstructed group showed neuromuscular control deficits that were not limited to the operated knee joint. Clinicians should focus on relearning multi-segmental anticipatory neuromuscular control strategies after anterior cruciate ligament reconstruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Postnatal development of fiber type composition in rabbit jaw and leg muscles

    NARCIS (Netherlands)

    Korfage, J. A. M.; Helmers, R.; Matignon, M. de Goüyon; van Wessel, T.; Langenbach, G. E. J.; van Eijden, T. M. G. J.

    2009-01-01

    We examined the difference in fiber type composition and cross-sectional areas during postnatal development in male rabbit jaw muscles and compared these with changes in leg muscles. The myosin heavy chain (MyHC) content of the fibers was determined by immunohistochemistry. No fiber type difference

  14. Impact of Running Exercise Duration on Leg Muscle Strength among the people Joining Indorunners Bandung Community

    Directory of Open Access Journals (Sweden)

    Agaprita Eunike Sirait

    2017-03-01

    Full Text Available Background: Indorunners Bandung is a community for runners that has a routine exercise schedule for running around the city of Bandung. Exercise, like running, if is conducted in an accurate duration may improve physical fitness. One of the aspects of physical fitness is leg muscles strength. Many people fail to fathom the importance of exercise duration, so, they fail to get the benefit. The aim of this study was to discover the impact of running exercise duration on leg muscles strength among the people joining Indorunners Bandung community. Methods: A comparative study was conducted to 41 people, 31 males and 10 females, of Indorunners Bandung community from September to November 2015. Each participant filled a questionnaire about his/her personal data, and then was grouped by his/her duration of exercise per week, which were 150 minutes/week, 150–299 minutes/week, and 300 minutes/week or more. The respondents were measured for their leg muscles strength. The data collected were analyzed using ANOVA test. Results: There was significant difference of lower extremities muscle strength both in men (p<0.001 and women (p=0.029. These results showed that there was a difference in leg muscles strength among the people joining Indorunners Bandung community with different exercise duration per week. Conclusions: There is a difference in leg muscles strength among the people joining Indorunners Bandung community with different exercise duration per week.

  15. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    OpenAIRE

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, ...

  16. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans

    DEFF Research Database (Denmark)

    Ara, I; Larsen, S; Stallknecht, Bente Merete

    2011-01-01

    was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.Methods:Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus......, and plasma leptin was higher in O than in PO and C.Conclusions:In O subjects, maximal fat oxidation during exercise and the eliciting relative exercise intensity are increased. This is associated with higher intramuscular triglyceride levels and higher resting non esterified fatty acid (NEFA) concentrations...... deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.Results:During the graded exercise tests, peak fat oxidation during leg cycling...

  17. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP and NE concentrations to gain insight into the interstitial and intravascular mechanisms by which ATP causes muscle vasodilation and sympatholysis. Leg hemodynamics and muscle interstitial nucleotide and norepinephrine (NE) concentrations were measured during: 1) femoral arterial ATP infusion (0......, respectively (Pcontracting muscle (Pmuscle, whereas interstitial NE concentrations increased similarly in both active...... and inactive muscles. These results suggest that the vasodilatory and sympatholytic effects of intraluminal ATP are mainly mediated via endothelial prinergic receptors. Intraluminal ATP and muscle contractions appear to modulate sympathetic nerve activity by inhibiting the effect of NE rather than blunting its...

  18. Leg muscle power in 12-year-old black and white Tunisian football players.

    Science.gov (United States)

    Ben Ayed, Karim; Latiri, Imed; Dore, Eric; Tabka, Zouhair

    2011-04-01

    This study examined leg muscle power of young male Tunisian black and white football players and extended the analysis to determine whether there is a relationship between cycling peak power output (PPO) and some field tests. A total of 113 children (white group (WG) = n = 56; black group (BG) = n = 57) participated in this investigation. Anthropometric data included age, body mass (BM), height, leg length (LL), body mass index (BMI), and leg muscle volume (LMV). Cycling PPO was measured including a force-velocity test. Peak power output (PPO; W and W/kg), Fopt (optimal braking force), and Vopt (optimal velocity) were significantly higher in the WG compared with the BG (p force-velocity test as explanatory factors showed that 33% of the variance of PPO of BG was explained by qualitative factors that may be related to cycling skill, muscle composition, and socioeconomic and training status.

  19. Recovery of atrophic leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1988-01-01

    Thirty-five patients with hemiplegia due to cerebrovascular accidents were studied with regared to the muscle wastings before and after rehabilitation training. Hemiplegics were composed of 12 improved and 23 non-improved patients. The CT scan was carried out at the midportion of the thigh and largest-diameter section of the calf. Muscle size of each cross-sectional area was measured on CT image and the increase of size (ΔS) in each muscle after training was calculated. The ΔS of quadriceps femoris was correlated with that of whole cross-section of the thigh. The gracilis in non-affected side was not correlated with that of whole muscles. In both legs, there was an increase in leg muscle size after training. These changes were nost marked in the non-affected side of the improved patients. After training the difference between the two limbs remained unchanged. Recovery of muscle wasting in both legs was seen first in the quadriceps in thigh and flexors in calf. Gracilis was relatively unchanged in comparison with other muscles. Remarkable increase of muscle size in non-affected side was worthwhile to note. (author)

  20. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    Science.gov (United States)

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  1. Growth responses of breast and leg muscles to essential amino acids in broiler chicks.

    Science.gov (United States)

    Mehri, M; Bagherzadeh-Kasmani, F; Rokouei, M

    2016-03-01

    The first three essential amino acids (EAA) for broilers including methionine (Met), lysine (Lys) and threonine (Thr) may greatly influence the growth of chick muscles at early stages of life. In order to survey the potential effects of those EAA on growth muscles, a rotatable three-variable central composite design (CCD) was conducted to track the interrelationships of dietary digestible Met (dMet), Lys (dLys) and Thr (dThr) for optimization of processing yields in broiler chicks using response surface methodology. A total of 60 floor pens of six birds each were assigned to 15 dietary treatments based on CCD containing five levels of dMet (0.416% to 0.584% of diet), dLys (0.881% to 1.319% of diet) and dThr (0.532% to 0.868% of diet) from 3 to 16 days of age. Experimental treatments significantly affected breast mass (BM) and leg mass (LM) of the birds (Pdiet, and maximum LM point may be achieved with 0.58%, 1.09% and 0.70% of dMet, dLys and dThr, respectively, in diet. The resultant ideal ratios of dMet and dThr to dLys were 55% and 72% for BM; 53% and 64% for LM. Moreover, sensitivity analysis showed that the most important amino acids in BM and LM models were Lys and Thr, respectively. In conclusion, providing these three amino acid for BM optimization may warrant LM optimization and higher ideal ratios of dMet and dThr for breast muscle may indicate the higher importance of these EAA in this muscle than those in thigh muscle.

  2. Glucose clearance is higher in arm than leg muscle in type 2 diabetes

    DEFF Research Database (Denmark)

    Olsen, David B; Sacchetti, Massimo; Dela, Flemming

    2005-01-01

    and insulin resistance may not be evenly distributed. We measured basal and insulin-mediated (1 pmol min-1 kg-1) GC simultaneously in the arm and leg in type 2 diabetes patients (TYPE 2) and controls (CON) (n=6 for both). During the clamp arterio-venous glucose extraction was higher in CON versus TYPE 2...... in the arm (6.9+/-1.0 versus 4.7+/-0.8%; mean+/-s.e.m.; P=0.029), but not in the leg (4.2+/-0.8 versus 3.1+/-0.6%). Blood flow was not different between CON and TYPE 2 but was higher (Parm versus leg (CON: 74+/-8 versus 56+/-5; TYPE 2: 87+/-9 versus 43+/-6 ml min-1 kg-1 muscle, respectively......). At basal, CON had 84% higher arm GC (P=0.012) and 87% higher leg GC (P=0.016) compared with TYPE 2. During clamp, the difference between CON and TYPE 2 in arm GC was diminished to 54% but maintained at 80% in the leg. In conclusion, this study shows that glucose clearance is higher in arm than leg muscles...

  3. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    Science.gov (United States)

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    OpenAIRE

    Jingtao Lei; Jianmin Zhu

    2017-01-01

    Pneumatic artificial muscles (PAMs) have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and d...

  5. Tracking control of a leg rehabilitation machine driven by pneumatic artificial muscles using composite fuzzy theory.

    Science.gov (United States)

    Chang, Ming-Kun

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

  6. Quantitation of progressive muscle fatigue during dynamic leg exercise in humans

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1995-01-01

    , a product of a contraction rate (1 Hz), force measured at the ankle, and distance of ankle movement from 90 degrees to 150 degrees of KE, was precisely controlled. Lack of rise in myoelectric activity in biceps femoris of the active leg during DKE and MVC was consistent with restriction of muscle action...

  7. Effect of armor and carrying load on body balance and leg muscle function.

    Science.gov (United States)

    Park, Huiju; Branson, Donna; Kim, Seonyoung; Warren, Aric; Jacobson, Bert; Petrova, Adriana; Peksoz, Semra; Kamenidis, Panagiotis

    2014-01-01

    This study investigated the impact of weight and weight distribution of body armor and load carriage on static body balance and leg muscle function. A series of human performance tests were conducted with seven male, healthy, right-handed military students in seven garment conditions with varying weight and weight distributions. Static body balance was assessed by analyzing the trajectory of center of plantar pressure and symmetry of weight bearing in the feet. Leg muscle functions were assessed by analyzing the peak electromyography amplitude of four selected leg muscles during walking. Results of this study showed that uneven weight distribution of garment and load beyond an additional 9 kg impaired static body balance as evidenced by increased sway of center of plantar pressure and asymmetry of weight bearing in the feet. Added weight on non-dominant side of the body created greater impediment to static balance. Increased garment weight also elevated peak EMG amplitude in the rectus femoris to maintain body balance and in the medial gastrocnemius to increase propulsive force. Negative impacts on balance and leg muscle function with increased carrying loads, particularly with an uneven weight distribution, should be stressed to soldiers, designers, and sports enthusiasts. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Interleukin-6 release is higher across arm than leg muscles during whole-body exercise

    DEFF Research Database (Denmark)

    Helge, Jørn W; Klein, Ditte K; Andersen, Thor Munch

    2011-01-01

    ± 7 and 47 ± 7 µmol min(-1) (kg lean limb mass)(-1)) were lower, glucose uptake similar (51 ± 12 and 41 ± 8 mmol min(-1) (kg lean limb mass)(-1)) and lactate release higher (82 ± 32 and -2 ± 12 µmol min(-1) (kg lean limb mass)(-1)) in arms than legs, respectively, during exercise (P ....05). No correlations were present between IL-6 release and exogenous substrate uptakes. Muscle glycogen was similar in arms and legs before exercise (388 ± 22 and 428 ± 25 mmol (kg dry weight)(-1)), but after exercise it was only significantly lower in the leg (219 ± 29 mmol (kg dry weight)(-1)). The novel finding......Exercising muscle releases interleukin-6 (IL-6), but the mechanisms controlling this process are poorly understood. This study was performed to test the hypothesis that the IL-6 release differs in arm and leg muscle during whole-body exercise, owing to differences in muscle metabolism. Sixteen...

  9. Leg muscle activation during gait in Parkinson's disease : Adaptation and interlimb coordination

    NARCIS (Netherlands)

    Dietz, [No Value; Zijlstra, W; Prokop, T; Berger, W

    1995-01-01

    Adaptation in leg muscle activity and coordination between lower limbs were studied during walking on a treadmill with split belts in one group of parkinsonian patients and one of age-matched healthy subjects. Four different belt speeds (0.25/0.5/0.75/1.0 m/sec) were applied in selected combinations

  10. Coordinated development of muscles and tendon-like structures: early interactions in the Drosophila leg

    Directory of Open Access Journals (Sweden)

    cedric esoler

    2016-02-01

    Full Text Available The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates during the early steps of leg development, we affect the spatial localisation of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.

  11. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    NARCIS (Netherlands)

    Wong, J.D.; Bobbert, M.F.; van Soest, A.J.; Gribble, P.L.; Kistemaker, D.A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively

  12. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  13. Computed tomographic findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Kotera, Minoru; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1986-01-01

    The computed tomography (CT) scan was performed in 52 hemiplegics due to cerebrovascular accidents and 12 normal controls on the mid-portion of the thigh and the largest-diameter section of the calf. Muscle size and average CT density of the muscle were measured. The salient feature was hypertrophic gracilis muscle of the hemiplegic side. Other muscles were more atrophied with lower CT density compared with those of the contralateral side. The size of the quadriceps muscle was especially small. The ratio of the quadriceps to all the thigh muscles in cross section was significantly smaller in affected side of hemiplegics than that of normal controls. This was observed even in normal side of the hemiplegics but the ratios of adductor and flexor muscles of the thigh showed no difference. Hypertrophy of gracilis muscle with high CT density was observed only on hemiplegic side. Muscle atrophies were marked in non-ambulatory patients. The ratios of quadriceps and saltorius muscles of thigh in non-ambulatory patients were significantly smaller than those of ambulatory patients. It could not be detected that there is relationship of the sevirity of the muscle atrophy and parietal lobe dysfunction. This atrophy considered to be the result of disuse of the paralyzed leg and pyramidal tract dysfunction. (author)

  14. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain.

    Science.gov (United States)

    Klykken, Lindsey W; Pietrosimone, Brian G; Kim, Kyung-Min; Ingersoll, Christopher D; Hertel, Jay

    2011-01-01

    Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Case-control study. Laboratory. Ten individuals with acute ankle sprains (6 females, 4 males; age= 19.2 ± 3.8 years, height= 169.4 ± 8.5 cm, mass= 66.3 ± 11.6 kg) and 10 healthy individuals(6 females,4 males; age= 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass= 66.3 ± 10.2 kg) participated. The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (H(max)) and maximal muscle response (M(max)) and was then normalized using the H(max):M(max) ratio. The soleus MNPE in the ankle-sprain group was higher in the injured limb (H(max):M(max) = 0.63; 95% confidence interval [Cl],0.46, 0.80) than the uninjured limb (H(max):M(max) = 0.47; 95%Cl, 0.08, 0.93)(t(6) = 3.62,P =.01).In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (H(max):M(max) =0.06; 95% Cl, 0.01, 0.10) than in the uninjured ankle (H(max):M(max) =0.22; 95%Cl, 0.09, 0.35),but this finding was not different (t(9) =-2.01, P =.07). No differences were detected between injured (0.22; 95% Cl, 0.14, 0.29) and uninjured (0.25; 95%Cl, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t(9) =-0.739, P =.48). We found no side-to-side differences in any muscle among the healthy group. Facilitated MNPE was present in the involved soleus muscle of patients with acute

  15. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    Science.gov (United States)

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  16. Classification system for flexor digitorum accessorius longus muscle variants within the leg: clinical correlations.

    Science.gov (United States)

    Hur, Mi-Sun; Won, Hyung-Sun; Oh, Chang-Seok; Chung, In-Hyuk; Lee, Woo-Chun; Yoon, Young Cheol

    2014-10-01

    The flexor digitorum accessorius longus (FDAL), a variant leg muscle, can cause tarsal tunnel syndrome. This study was performed to classify the variants of the FDAL by dissection and to correlate the dissection results with clinical cases of tarsal tunnel syndrome caused by this muscle. Eighty lower limbs of embalmed Korean cadavers were dissected. MR images of two clinical cases of tarsal tunnel syndrome caused by the FDAL were correlated with the dissection results. The FDAL was observed in nine out of 80 specimens (11.3%) and it was classified into three types depending on its site of origin and its relationship to the posterior tibial neurovascular bundle (PTNV) in the leg. In Type I (6.3%), the FDAL originated in the leg and ran superficially along the PTNV, either not crossing (Type Ia, 3.8%) or crossing (Type Ib, 2.5%) the neurovascular bundle. In Type II (6.3%), it originated in the tarsal tunnel. Most FDALs followed a similar course in the tarsal tunnel and the plantar pedis. On correlating the MR images of the clinical cases with this classification, the FDAL corresponded to Types Ia and II. All three types of FDAL can compress the tibial nerve in the tarsal tunnel or the distal leg. Clarification of the topographical relationship between this muscle and the PTNV would help to improve the results of surgery for tarsal tunnel syndrome caused by the FDAL. © 2014 Wiley Periodicals, Inc.

  17. Anatomical description of the leg muscles of Procyon cancrivorus (Cuvier 1798

    Directory of Open Access Journals (Sweden)

    Firmino Cardoso Pereira

    2010-09-01

    Full Text Available The Procyon cancrivorus, as well as its entire family, is an endemic species of the Americas. It is widely found throughout the Brazilian territory and it inhabits all biomes, particularly the cerrado. This study used five adult specimens of P. cancrivorus for the characterization of the leg muscles. The animals were collected on roads (i. e. they had been killed by accident. The muscles were dissected, observing their proximal and distal insertions macroscopically, together with their topographic relationships to the arteries and nerves. The muscles studied are considered muscles of the tibia. The cranial tibial muscles, brevis, longus, long digital extensor and lateral extensor digitorum are craniolaterally distinct in the tibia, and the gastrocnemius muscles, lateral flexor of the fingers, popliteus, flexor digitorum, flexor digitorum and medial tibial flow are located in the caudal region of the tibia. The muscles of this group act as flexors and extensors of the hock joint and as flexors and extensors of the digital joints, except the popliteal muscle that acts as a flexor of the knee joint. The muscles studied were compared with their muscles in domestic carnivores, like the dog and cat, and great similarity was found.

  18. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer.

    Science.gov (United States)

    Alves-Pinto, Ana; Blumenstein, Tobias; Turova, Varvara; Lampe, Renée

    2016-01-01

    Cycling on a recumbent ergometer constitutes one of the most popular rehabilitation exercises in cerebral palsy (CP). However, no control is performed on how muscles are being used during training. Given that patients with CP present altered muscular activity patterns during cycling or walking, it is possible that an incorrect pattern of muscle activation is being promoted during rehabilitation cycling. This study investigated patterns of muscular activation during cycling on a recumbent ergometer in patients with CP and whether those patterns are determined by the degree of spasticity and of mobility. Electromyographic (EMG) recordings of lower leg muscle activation during cycling on a recumbent ergometer were performed in 14 adult patients diagnosed with CP and five adult healthy participants. EMG recordings were done with an eight-channel EMG system built in the laboratory. The activity of the following muscles was recorded: Musculus rectus femoris, Musculus biceps femoris, Musculus tibialis anterior, and Musculus gastrocnemius. The degree of muscle spasticity and mobility was assessed using the Modified Ashworth Scale and the Gross Motor Function Classification System, respectively. Muscle activation patterns were described in terms of onset and duration of activation as well as duration of cocontractions. Muscle activation in CP was characterized by earlier onsets, longer periods of activation, a higher occurrence of agonist-antagonist cocontractions, and a more variable cycling tempo in comparison to healthy participants. The degree of altered muscle activation pattern correlated significantly with the degree of spasticity. This study confirmed the occurrence of altered lower leg muscle activation patterns in patients with CP during cycling on a recumbent ergometer. There is a need to develop feedback systems that can inform patients and therapists of an incorrect muscle activation during cycling and support the training of a more physiological activation

  19. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    Science.gov (United States)

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padjactivities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Differential catabolism of muscle protein in garden warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration.

    Science.gov (United States)

    Bauchinger, U; Biebach, H

    2001-05-01

    Samples of flight and leg muscle tissue were taken from migratory garden warblers at three different stages of migration: (1) pre-flight: when birds face an extended flight phase within the next few days, (2) post-flight: when they have just completed an extended flight phase, and (3) recovery: when they are at the end of a stop-over period following an extended flight phase. The changes in body mass are closely related to the changes in flight (Pflight. From pre- to post-flight, the flight and the leg muscle masses decrease by about 22%, but are restored to about 12% above the pre-flight masses during the recovery period. Biochemical analyses show that following flight a selective reduction occurred in the myofibrillar (contractile) component of the flight muscle (Pflight and leg muscle act as a protein source during long-distance migration. As a loss of leg muscle mass is additionally observed besides the loss in flight muscle mass, mass change seems not to be strictly associated with the mechanical power output requirements during flight. Whereas the specific content of sarcoplasmic proteins in the flight muscle is nearly twice as high as that in the leg muscle (Pflight muscle is one of the highest observed in muscles of a vertebrate.

  1. Quantitation of progressive muscle fatigue during dynamic leg exercise in humans

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1995-01-01

    There is virtually no published information on muscle fatigue, defined as a gradual decline in force-generating capacity, during conventional dynamic (D) leg exercise. To quantitate progression of fatigue, we developed 1) a model featuring integration of maximal voluntary static contraction (MVC.......05) for matched DKE work rates. To track fatigue, MVC (90 degrees knee angle) was performed every 2 min of DKE. After 4 min of DKE at work rates corresponding to (mean +/- SE) 66 +/- 2, 78 +/- 2, and 100% of peak DKE O2 uptake, MVC fell to 95 +/- 3, 90 +/- 5, and 65 +/- 7%* of MVC of rested muscle, respectively...... (*P fatigue during D leg exercise provides a framework to study the effects of a variety...

  2. Effect of Locomotor Training on Exhaustion of Leg Muscle Activity in Chronic Complete Spinal Cord Injury.

    Science.gov (United States)

    Schrafl-Altermatt, Miriam; Dietz, Volker; Bolliger, Marc

    2017-08-01

    The aim of this study was to evaluate the effect of a continuous locomotor training on leg muscle electromyographic (EMG) exhaustion during assisted stepping movements in a patient with motor complete spinal cord injury (SCI). EMG exhaustion and loss of potentials starts to develop in untrained patients at ∼6 months after injury. In the trained patient examined in this study, exhaustion was also observed but occurred with a delay of several months. In contrast to an untrained patient, no more EMG exhaustion was observed in the very chronic stage. At this time (12 years after injury) a basic locomotor pattern of leg muscle activity of reduced amplitude could still be elicited, but it was resistant to exhaustion and unchanged in amplitude after 12 min of assisted stepping. It is suggested that fatigue-resistant motor units prevail at this stage and can still be activated during stepping as a result of the training.

  3. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Torriani, Martin [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Massachusetts General Hospital, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Townsend, Elise [MGH Institute of Health Professions and Massachusetts General Hospital, Boston, MA (United States); Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Tseng, Brian S. [Massachusetts General Hospital and Harvard Medical School, Pediatric Neuromuscular Clinic, Boston, MA (United States); Novartis Institute of Biomedical Research, Cambridge, MA (United States)

    2012-04-15

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)

  4. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    International Nuclear Information System (INIS)

    Torriani, Martin; Townsend, Elise; Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H.; Tseng, Brian S.

    2012-01-01

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)

  5. The effects of anthropometry and leg muscle power on drive and transition phase of acceleration

    DEFF Research Database (Denmark)

    Nikolaidis, Pantelis T.; Ingebrigtsen, Jørgen; Jeffreys, Ian

    2016-01-01

    Background: The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). METHODS: Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice, in the beginn...

  6. CT findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1987-01-01

    Muscle wastings in hemiplegics due to cerebrovascular accidents were studied with CT scanning in the mid-portion of the thigh and largest-diameter section of the calf bilaterally. Muscle size and average CT density of muscle were measured. The 80 patients were classified into one of the following three stages of disability, i.e. stage 1, severely disabled (wheel-chair-bound but capable of self care [20 patients]); stage 2, moderately disabled (poorly ambulatory [41 patients]); and stage 3, mildly disabled (well ambulatory [19 patients]). Muscle cross-sectional area and CT density in both legs of non-ambulatory patients were smaller and lower than those of other groups. The atrophic change was marked in the affected side, but it was also noticeable in the non-affected side. Gracilis muscle was relatively well spared in all 3 stages. These CT findings of hemiplegics were similar to those of disuse atropy in patients with knee or hip joint lesions. Atrophy was seen first in the quadriceps in thigh and flexor muscle group in calf. These findings were similar to the systemic myogenic or neurogenic atrophies. Although gracilis and sartorius muscles were spared in these systemic deseases, only gracilis muscle was spared in hemiplegics and in patients with disuse atrophy. The ratios of the size of quadriceps, adductor group and sartorius muscle of thigh in affected side to that of non-affected side were smaller in more severely disabled group. Those of the other muscles showed no differences among each stages. In stage 3, there was significant negative correlation between the ratio of quadriceps muscle and periods from the attack. There was no relationship between the severity of the muscle atrophy and parietal lobe lesion. The atrophy is considered to be the result of disuse from immobilization. (author)

  7. Changes in serum creatine kinase, leg muscle tightness, and delayed onset muscle soreness after a full marathon race.

    Science.gov (United States)

    Tojima, Michio; Noma, Kensuke; Torii, Suguru

    2016-06-01

    Muscle tightness (MT) is believed to be an important cause of injury for runners. This study evaluated the change of serum creatine kinase (CK), MT in the leg muscles, and delayed onset muscle soreness after running. We evaluated 11 college students who completed a full marathon race. Participants completed a questionnaire on the right quadriceps muscle soreness. The CK activity and MT (iliopsoas, rectus femoris, hamstrings, gastrocnemius, and soleus muscles) were measured. The time points for CK measurements were before; immediately after; and at 1, 2, and 5 days after the race. The time points for MT measurements were the same as for CK except MT was not measured one day after the race. The time points for muscle soreness analysis were before the race and then every morning and night for 5 days after the race. Long-distance running led to significant increases in CK, MT, and muscle soreness. The CK levels peaked day 1 after the race. MT of iliopsoas peaked on day 5; of rectus femoris immediately after the race; and of hamstrings, gastrocnemius, and soleus on day 2. muscle soreness peaked at night on day 1. MT did not decrease to the pre-race levels on day 5. There were no significant changes but CK tended to correlate with the peak of MT of the rectus femoris (r=0.55, P=0.082) and hamstrings (r=0.57, P=0.065). Long-distance running may cause muscle fiber microdamage that may consequently increase CK, MT, and muscle soreness.

  8. Template model inspired leg force feedback based control can assist human walking.

    Science.gov (United States)

    Zhao, Guoping; Sharbafi, Maziar; Vlutters, Mark; van Asseldonk, Edwin; Seyfarth, Andre

    2017-07-01

    We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template model is capable of stabilizing the trunk and reproduce a human-like hip torque during the stance phase of walking. With leg force and joint angle feedback inspired by the VPP template model, our controller provides hip and knee torque assistance during the stance phase. A pilot experiment was conducted with four healthy subjects. Joint kinematics, leg muscle electromyography (EMG), and metabolic cost were measured during walking with and without assistance. Results show that, for 0.6 m/s walking, our controller can reduce leg muscle activations, especially for the medial gastrocnemius (about 16.0%), while hip and knee joint kinematics remain similar to the condition without the controller. Besides, the controller also reduces 10% of the net metabolic cost during walking. This paper demonstrates walking assistance benefits of the VPP template model for the first time. The support of human walking is achieved by a force feedback of leg force applied to the control of hip and knee joints. It can help us to provide a framework for investigating walking assistance control in the future.

  9. Influence of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing.

    Science.gov (United States)

    Karimi, Zanyar; Allahyari, Teimour; Azghani, Mahmood Reza; Khalkhali, Hamidreza

    2016-03-01

    The present study was an attempt to investigate the effect of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. Ten healthy subjects were recruited to stand for 2 h in three footwear conditions: barefoot, flat-bottomed shoe and unstable shoe. During standing, lower leg discomfort and EMG activity of medial gastrocnemius (MG) and tibialis anterior (TA) muscles were continuously monitored. Changes in lower leg volume over standing time also were measured. Lower leg discomfort rating reduced significantly while subjects standing on unstable shoe compared to the flat-bottomed shoe and barefoot condition. For lower leg volume, less changes also were observed with unstable shoe. The activity level and variation of right MG muscle was greater with unstable shoe compared to the other footwear conditions; however regarding the left MG muscle, significant difference was found between unstable shoe and flat-bottomed shoe only for activity level. Furthermore no significant differences were observed for the activity level and variation of TA muscles (right/left) among all footwear conditions. The findings suggested that prolonged standing with unstable footwear produces changes in lower leg muscles activity and leads to less volume changes. Perceived discomfort also was lower for this type of footwear and this might mean that unstable footwear can be used as ergonomic solution for employees whose work requires prolonged standing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Leg movement tracking in automatic video-based one-leg stance evaluation.

    Science.gov (United States)

    Kawa, Jacek; Stępień, Paula; Kapko, Wojciech; Niedziela, Aleksandra; Derejczyk, Jarosław

    2018-04-01

    Falls are a major risk in elder population. Early diagnosis is therefore an important step towards increasing the safety of elders. One of the common diagnostic tests is the Berg Balance Scale (BBS), consisting of 14 exercises arranged from the easiest (sitting-to-standing) to the most demanding (one-leg stance). In this study a novel approach to the automatic assessment of the time in which the patient can remain in the one-leg stance position without loosing balance is introduced. The data is collected using a regular video camera. No markers, special garments, or system calibration are required. Two groups are examined. The first group consists of 16 students: healthy, young adults (12 female, 4 male, avg. 20yrs±1). The second group consists of 50 elders (39 female, 11 male, avg. 78.8yrs±5.9). Data (short, one minute recordings) are collected in a controlled environment using a digital video recorder (50fps, 1920×1080) fixed to a tripod. Data are processed off-line. First, the region of interest is determined. Next, the Kanade-Lucas-Tomasi tracking is performed. Best tracks are selected based on the registered vertical movement and two tracks are obtained corresponding to the left and right leg movements. Tracks are later subjected to the sparse signal baseline estimation, denoising and thresholding to detect the raised leg. Results are compared frame-wise to the ground truth reference obtained in the manual processing procedure. Both legs are evaluated in the elder group (in all cases several attempts featuring both legs were registered), resulting in 89.18%±11.27% DICE, 93.07%±5.43% sensitivity and 96.94%±6.11% specificity values for both legs. The signal of a single leg is evaluated in the student group (in all cases only one attempt was needed to perform the full examination) resulting in 98.96%±1.2% DICE, 98.78%±1.65% sensitivity and 98.73%±2.69% specificity values. This is the first step towards a video-based system enabling the automatic

  11. Night Leg Cramps

    Science.gov (United States)

    Symptoms Night leg cramps By Mayo Clinic Staff Night leg cramps, also called nocturnal leg cramps, are painful, involuntary contractions or spasms of muscles in your legs, usually occurring when you're in bed. Night ...

  12. Optimal Resistive Forces for Maximizing the Reliability of Leg Muscles' Capacities Tested on a Cycle Ergometer.

    Science.gov (United States)

    García-Ramos, Amador; Torrejón, Alejandro; Morales-Artacho, Antonio J; Pérez-Castilla, Alejandro; Jaric, Slobodan

    2018-02-01

    This study determined the optimal resistive forces for testing muscle capacities through the standard cycle ergometer test (1 resistive force applied) and a recently developed 2-point method (2 resistive forces used for force-velocity modelling). Twenty-six men were tested twice on maximal sprints performed on a leg cycle ergometer against 5 flywheel resistive forces (R1-R5). The reliability of the cadence and maximum power measured against the 5 individual resistive forces, as well as the reliability of the force-velocity relationship parameters obtained from the selected 2-point methods (R1-R2, R1-R3, R1-R4, and R1-R5), were compared. The reliability of outcomes obtained from individual resistive forces was high except for R5. As a consequence, the combination of R1 (≈175 rpm) and R4 (≈110 rpm) provided the most reliable 2-point method (CV: 1.46%-4.04%; ICC: 0.89-0.96). Although the reliability of power capacity was similar for the R1-R4 2-point method (CV: 3.18%; ICC: 0.96) and the standard test (CV: 3.31%; ICC: 0.95), the 2-point method should be recommended because it also reveals maximum force and velocity capacities. Finally, we conclude that the 2-point method in cycling should be based on 2 distant resistive forces, but avoiding cadences below 110 rpm.

  13. Mechanical Impedance of the non-loaded Lower Leg with Relaxed Muscles in the Transverse Plane

    Directory of Open Access Journals (Sweden)

    Evandro Maicon Ficanha

    2015-12-01

    Full Text Available This paper describes the protocols and results of the experiments for the estimation of the mechanical impedance of the humans’ lower leg in the External-Internal (EI direction in the transverse plane under non-load bearing condition and with relaxed muscles. The objectives of the estimation of the lower leg’s mechanical impedance are to facilitate the design of passive and active prostheses with mechanical characteristics similar to the humans’ lower leg, and to define a reference that can be compared to the values from the patients suffering from spasticity. The experiments were performed with 10 unimpaired male subjects using a lower extremity rehabilitation robot (Anklebot, Interactive Motion Technologies, Inc. capable of applying torque perturbations to the foot. The subjects were in a seated position, and the Anklebot recorded the applied torques and the resulting angular movement of the lower leg. In this configuration, the recorded dynamics are due mainly to the rotations of the ankle’s talocrural and the subtalar joints, and any contribution of the tibiofibular joints and knee joint. The dynamic mechanical impedance of the lower leg was estimated in the frequency domain with an average coherence of 0.92 within the frequency range of 0 to 30Hz, showing a linear correlation between the displacement and the torques within this frequency range under the conditions of the experiment. The mean magnitude of the quasi-static stiffness of the lower leg (the impedance magnitude averaged in the range of 0-1 Hz was determined as 4.9±0.74 Nm/rad. The direct estimation of the quasi-static stiffness of the lower leg results in the mean value of 5.8±0.81 Nm/rad. An analysis of variance (ANOVA shows that the estimated values for the quasi-static stiffness from the two experiments are not statistically different.

  14. Features interference EMG leg extensor muscles of skilled players in the context of the special exercises

    Directory of Open Access Journals (Sweden)

    Sirenko P.A.

    2013-06-01

    Full Text Available The article considers the problems of improvement of physical training of skilled players. The main instrumental method of the research is electromyography. The aim of the research is determination of the optimal angle of the provisions of legs on her hips for the appearance of a maximum of bioelectric activity of the muscles of the front panel hips in exercise unbending legs sitting on the mechanical simulator. In the course of research we have worked for electromyography 10 players of FC Metalist at the age of 19 – 30 years during the five-second of the submaximum contraction of these muscles as: musculus rectus femoris, musculus vastus medialis, musculus vastus lateralis. The results of the analysis of segments of electromyography allowed to make a conclusion, that we investigated the provisions of the angle of 140 degrees has the lowest preconditions for the appearance of muscle strength. We have obtained data testify to the fact that the angle of 90 degrees is the position of the greatest preconditions for the appearance of muscle strength.

  15. More gain less pain: balance control learning shifts the activation patterns of leg and neck muscles and increases muscular parsimony.

    Science.gov (United States)

    Iodice, Pierpaolo; Cesinaro, Stefano; Romani, Gian Luca; Pezzulo, Giovanni

    2015-07-01

    Athletes such as skaters or surfers maintain their balance on very unstable platforms. Remarkably, the most skilled athletes seem to execute these feats almost effortlessly. However, the dynamics that lead to the acquisition of a defined and efficient postural strategy are incompletely known. To understand the posture reorganization process due to learning and expertise, we trained twelve participants in a demanding balance/posture maintenance task for 4 months and measured their muscular activity before and after a (predictable) disturbance cued by an auditory signal. The balance training determined significant delays in the latency of participants' muscular activity: from largely anticipatory muscular activity (prior to training) to a mixed anticipatory-compensatory control strategy (after training). After training, the onset of activation was delayed for all muscles, and the sequence of activation systematically reflected the muscle position in the body from top to bottom: neck/upper body muscles were recruited first and in an anticipatory fashion, whereas leg muscles were recruited after the disturbance onset, producing compensatory adjustments. The resulting control strategy includes a mixture of anticipatory and compensatory postural adjustments, with a systematic sequence of muscular activation reflecting the different demands of neck and leg muscles. Our results suggest that subjects learned the precise timing of the disturbance onset and used this information to deploy postural adjustments just-in-time and to transfer at least part of the control of posture from anticipatory to less-demanding feedback-based strategies. In turn, this strategy shift increases the cost-efficiency of muscular activity, which is a key signature of skilled performance.

  16. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    Science.gov (United States)

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. Copyright © 2014 the American Physiological Society.

  17. Net joint moments and muscle activation in barbell squats without and with restricted anterior leg rotation.

    Science.gov (United States)

    Chiu, Loren Z F; vonGaza, Gabriella L; Jean, Liane M Y

    2017-01-01

    Muscle utilisation in squat exercise depends on technique. The purpose of this study was to compare net joint moments (NJMs) and muscle activation during squats without and with restricted leg dorsiflexion. Experienced men (n = 5) and women (n = 4) performed full squats at 80% one repetition maximum. 3D motion analysis, force platform and (EMG) data were collected. Restricting anterior leg rotation reduced anterior leg (P = 0.001) and posterior thigh (P  0.05), vastus medialis (P > 0.05) and rectus femoris (P > 0.05) EMG were not different between squat types. Unrestricted squats have higher ankle plantar flexor and knee extensor NJM than previously reported from jumping and landing. However, ankle plantar flexor and knee extensor NJM are lower in restricted squats than previous studies of jumping and landing. The high NJM in unrestricted squat exercise performed through a full range of motion suggests this squat type would be more effective to stimulate adaptations in the lower extremity musculature than restricted squats.

  18. Contribution of Leg Muscle Explosive Power and Eye-Hand Coordination to The Accuracy Smash of Athletes in Volleyball Club of Universitas Islam Riau

    Directory of Open Access Journals (Sweden)

    Mimi Yulianti

    2017-11-01

    Full Text Available The purpose of this study was to determine the contribution of leg muscle explosive power and eye-hand coordination. The type of research was correlational. The population in this study was all athletes who actively follow the training as many as 20 people and using total sampling technique. Thus the sample in this study amounted to 20 men athletes. The data were collected using the measurement test on the three variables: the leg muscle explosive power data was using vertical jump test, eyehand coordination was using ballwerfen und fangen test and smash accuracy was using smash accuracy test. The data were analyzed by product moment correlation and double correlation and then continued with contribution of the determinant formula. Based on data analysis found that there was contribution of leg muscle explosive power equal to 35,52%, eye-hand coordination equal to 20,79%, and both equal to 40,70% regarding to the accuracy smash of volleyball atletes of Universitas Islam Riau. It was concluded that there was contribution of leg muscle explosive power and eye-hand coordination to the smash accuracy of volleyball athlete of Universitas Islam Riau.

  19. The Effect of Intelligence, Leg Muscle Strength, and Balance Towards The Learning Outcomes of Pencak Silat with Empty-Handed Single Artistic

    Directory of Open Access Journals (Sweden)

    Aridhotul Haqiyah

    2017-10-01

    Full Text Available This study aims to Determine the effect of intelligence, leg muscle strength, as well as the balance towards the learning outcomes of pencak silat empty-handed single artistic on the Physical Education students of Islamic University 45 Bekasi. The research method is a survey, and the analysis technique is path analysis. This research held in Islamic University 45 Bekasi with 122 people of population. The sampling technique used is random sampling, then a sample of this research is 60 people. The instruments used are a rubric 4 scale (very good, good, enough and less of the learning outcomes of pencak silat emptyhanded single artistic, intelligence test with IST (Intelligent Structure Test, leg muscle strength with instrument squat test, and test of balance by using the modified bass test of dynamic balance. Based the result of the data processing and analysis, the Conclusions are: : (1 Intelligence directly effect on the learningoutcomes of pencak silat empty-handed single artistic with ρy1  = 0.359, (2 Leg muscles strength directlyeffect on the learning outcomes of pencak silat empty-handed single artistic with ρy2 = 0.228, (3 Balance directly effect on the learning outcomes of pencak silat empty-handed single artistic with ρy3 = 0.356, (4 Intelligence directly effects on the balance with ρ31 = 0.662, and (5 Leg muscle strength directly effectson the balance with ρ32 = 0.298.

  20. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    Science.gov (United States)

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. Copyright © 2016 the American Physiological Society.

  1. Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer

    Directory of Open Access Journals (Sweden)

    Alves-Pinto A

    2016-06-01

    Full Text Available Ana Alves-Pinto,1,* Tobias Blumenstein,1,* Varvara Turova,1 Renée Lampe1,2 1Research Unit of the Buhl-Strohmaier Foundation for Cerebral Palsy and Paediatric Neuroorthopaedics, Orthopaedic Department, Klinikum rechts der Isar, 2Markus Würth Professorship, Technical University of Munich, Munich, Germany *These authors contributed equally to this work Objective: Cycling on a recumbent ergometer constitutes one of the most popular rehabilitation exercises in cerebral palsy (CP. However, no control is performed on how muscles are being used during training. Given that patients with CP present altered muscular activity patterns during cycling or walking, it is possible that an incorrect pattern of muscle activation is being promoted during rehabilitation cycling. This study investigated patterns of muscular activation during cycling on a recumbent ergometer in patients with CP and whether those patterns are determined by the degree of spasticity and of mobility.Methods: Electromyographic (EMG recordings of lower leg muscle activation during cycling on a recumbent ergometer were performed in 14 adult patients diagnosed with CP and five adult healthy participants. EMG recordings were done with an eight-channel EMG system built in the laboratory. The activity of the following muscles was recorded: Musculus rectus femoris, Musculus biceps femoris, Musculus tibialis anterior, and Musculus gastrocnemius. The degree of muscle spasticity and mobility was assessed using the Modified Ashworth Scale and the Gross Motor Function Classification System, respectively. Muscle activation patterns were described in terms of onset and duration of activation as well as duration of cocontractions.Results: Muscle activation in CP was characterized by earlier onsets, longer periods of activation, a higher occurrence of agonist–antagonist cocontractions, and a more variable cycling tempo in comparison to healthy participants. The degree of altered muscle activation

  2. The Effect of Kick Type on the Relationship between Kicking Leg Muscle Activation and Ball Velocity

    Directory of Open Access Journals (Sweden)

    Ali Onur Cerrah

    2018-03-01

    Full Text Available This study aimed to identify the effects of different kick types on the relationship between kicking leg muscle activation and ball velocity. The muscle activation of selected knee extensor and flexor muscles of 10 amateur soccer players were measured using electromyography during the performance of six maximal soccer kick types. The highest ball velocity was achieved by the instep kick (96.2 km/hr-1, followed by the lofted kick, the inside curve kick, the outside kick, the outside curve kick, and finally the inside kick (81.3 km/hr-1. There were significant positive correlations between muscle activation and ball velocity for the vastus lateralis and lofted (0.765, inside curve (0.792 and instep kicks (0.788, and for the gastrocnemious with the outside kick (0.796. Non-significant correlations between muscle activation and ball velocity exhibited a trend such that they were positive for the vastus medialis and vastus lateralis but negative for the biceps femoris and gastrocnemious for inside-foot-dominated kicks, while this trend was reversed for outside-foot-dominated kicks. According to results, the noted trends can be explained by the change in muscle activation patterns required to orientate the foot for each type of kick; this has implications for players’ training activities.

  3. EFFECT OF MODERATE ALTITUDE ON PERIPHERAL MUSCLE OXYGENATION DURING LEG RESISTANCE EXERCISE IN YOUNG MALES

    Directory of Open Access Journals (Sweden)

    Toshio Matsuoka

    2004-09-01

    Full Text Available Training at moderate altitude (~1800m is often used by athletes to stimulate muscle hypoxia. However, limited date is available on peripheral muscle oxidative metabolism at this altitude (1800AL. The purpose of this study was to determine whether acute exposure to 1800AL alters muscle oxygenation in the vastus lateralis muscle during resistance exercise. Twenty young active male subjects (aged 16 - 21 yr performed up to 50 repetitions of the parallel squat at 1800AL and near sea level (SL. They performed the exercise protocol within 3 h after arrival at 1800 AL. During the exercise, the changes in oxygenated hemoglobin (OxyHb in the vastus lateralis muscle, arterial oxygen saturation (SpO2, and heart rate were measured using near infrared continuous wave spectroscopy (NIRcws and pulse oximetry, respectively. Changes in OxyHb were expressed by Deff defined as the relative index of the maximum change ratio (% from the resting level. OxyHb in the vastus lateralis muscle decreased dramatically from the resting level immediately after the start of exercise at both altitudes. The Deff during exercise was significantly (p < 0.001 lower at 1800AL (60.4 ± 6.2 % than at near SL (74.4 ± 7.6 %. SpO2 during exercise was significantly (p < 0.001 lower at 1800AL (92.0 ± 1.7 % than at near SL (96.7 ± 1.2 %. Differences (SL - 1800AL in Deff during exercise correlated fairly strongly with differences in SpO2 during exercise (r = 0.660. These results suggested that acute exposure to moderate altitude caused a more dramatical decrease in peripheral muscle oxygenation during leg resistance exercise. It is salient to note, therefore , that peripheral muscle oxygenation status at moderate altitude could be evaluated using NIRcws and that moderate altitudes might be effectively used to apply hypoxic stress on peripheral muscles.

  4. Age-related changes in the effects of strength training on lower leg muscles in healthy individuals measured using MRI

    OpenAIRE

    Psatha, Maria; Wu, Zhiqing; Gammie, Fiona; Ratkevicius, Aivaras; Wackerhage, Henning; Redpath, Thomas W; Gilbert, Fiona J; Meakin, Judith R; Aspden, Richard M

    2017-01-01

    Background We previously measured the rate of regaining muscle strength during rehabilitation of lower leg muscles in patients following lower leg casting. Our primary aim in this study was to measure the rate of gain of strength in healthy individuals undergoing a similar training regime. Our secondary aim was to test the ability of MRI to provide a biomarker for muscle function. Methods Men and women were recruited in three age groups: 20?30, 50?65 and over 70 years. Their response to resis...

  5. Reliability of a Novel High Intensity One Leg Dynamic Exercise Protocol to Measure Muscle Endurance.

    Directory of Open Access Journals (Sweden)

    Benjamin Pageaux

    Full Text Available We recently developed a high intensity one leg dynamic exercise (OLDE protocol to measure muscle endurance and investigate the central and peripheral mechanisms of muscle fatigue. The aims of the present study were to establish the reliability of this novel protocol and describe the isokinetic muscle fatigue induced by high intensity OLDE and its recovery. Eight subjects performed the OLDE protocol (time to exhaustion test of the right leg at 85% of peak power output three times over a week period. Isokinetic maximal voluntary contraction torque at 60 (MVC60, 100 (MVC100 and 140 (MVC140 deg/s was measured pre-exercise, shortly after exhaustion (13 ± 4 s, 20 s (P20 and 40 s (P40 post-exercise. Electromyographic (EMG signal was analyzed via the root mean square (RMS for all three superficial knee extensors. Mean time to exhaustion was 5.96 ± 1.40 min, coefficient of variation was 8.42 ± 6.24%, typical error of measurement was 0.30 min and intraclass correlation was 0.795. MVC torque decreased shortly after exhaustion for all angular velocities (all P < 0.001. MVC60 and MVC100 recovered between P20 (P < 0.05 and exhaustion and then plateaued. MVC140 recovered only at P40 (P < 0.05. High intensity OLDE did not alter maximal EMG RMS of the three superficial knee extensors during MVC. The results of this study demonstrate that this novel high intensity OLDE protocol could be reliably used to measure muscle endurance, and that muscle fatigue induced by high intensity OLDE should be examined within ~ 30 s following exhaustion.

  6. Alterations in Leg Extensor Muscle-Tendon Unit Biomechanical Properties With Ageing and Mechanical Loading

    Directory of Open Access Journals (Sweden)

    Christopher McCrum

    2018-02-01

    Full Text Available Tendons transfer forces produced by muscle to the skeletal system and can therefore have a large influence on movement effectiveness and safety. Tendons are mechanosensitive, meaning that they adapt their material, morphological and hence their mechanical properties in response to mechanical loading. Therefore, unloading due to immobilization or inactivity could lead to changes in tendon mechanical properties. Additionally, ageing may influence tendon biomechanical properties directly, as a result of biological changes in the tendon, and indirectly, due to reduced muscle strength and physical activity. This review aimed to examine age-related differences in human leg extensor (triceps surae and quadriceps femoris muscle-tendon unit biomechanical properties. Additionally, this review aimed to assess if, and to what extent mechanical loading interventions could counteract these changes in older adults. There appear to be consistent reductions in human triceps surae and quadriceps femoris muscle strength, accompanied by similar reductions in tendon stiffness and elastic modulus with ageing, whereas the effect on tendon cross sectional area is unclear. Therefore, the observed age-related changes in tendon stiffness are predominantly due to changes in tendon material rather than size with age. However, human tendons appear to retain their mechanosensitivity with age, as intervention studies report alterations in tendon biomechanical properties in older adults of similar magnitudes to younger adults over 12–14 weeks of training. Interventions should implement tendon strains corresponding to high mechanical loads (i.e., 80–90% MVC with repetitive loading for up to 3–4 months to successfully counteract age-related changes in leg extensor muscle-tendon unit biomechanical properties.

  7. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  8. Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle.

    Science.gov (United States)

    Roseguini, Bruno T; Mehmet Soylu, S; Whyte, Jeffrey J; Yang, H T; Newcomer, Sean; Laughlin, M Harold

    2010-06-01

    Application of intermittent pneumatic compressions (IPC) is an extensively used therapeutic strategy in vascular medicine, but the mechanisms by which this method works are unclear. We tested the hypothesis that acute application (150 min) of cyclic leg compressions in a rat model signals upregulation of angiogenic factors in skeletal muscle. To explore the impact of different pressures and frequency of compressions, we divided rats into four groups as follows: 120 mmHg (2 s inflation/2 s deflation), 200 mmHg (2 s/2 s), 120 mmHg (4 s/16 s), and control (no intervention). Blood flow and leg oxygenation (study 1) and the mRNA expression of angiogenic mediators in the rat tibialis anterior muscle (study 2) were assessed after a single session of IPC. In all three groups exposed to the intervention, a modest hyperemia (approximately 37% above baseline) between compressions and a slight, nonsignificant increase in leg oxygen consumption (approximately 30%) were observed during IPC. Compared with values in the control group, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) mRNA increased significantly (P < 0.05) only in rats exposed to the higher frequency of compressions (2 s on/2 s off). Endothelial nitric oxide synthase, matrix metalloproteinase-2, and hypoxia-inducible factor-1alpha mRNA did not change significantly following the intervention. These findings show that IPC application augments the mRNA content of key angiogenic factors in skeletal muscle. Importantly, the magnitude of changes in mRNA expression appeared to be modulated by the frequency of compressions such that a higher frequency (15 cycles/min) evoked more robust changes in VEGF and MCP-1 compared with a lower frequency (3 cycles/min).

  9. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.

    Science.gov (United States)

    Ewing, Katie A; Fernandez, Justin W; Begg, Rezaul K; Galea, Mary P; Lee, Peter V S

    2016-10-03

    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES

    Science.gov (United States)

    Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J.; Hakansson, Nils A.

    2017-01-01

    Background Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. Hypothesis/Purpose The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Study Design Cross-Sectional Methods Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects’ gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. Results A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p gluteus maximus and medius, respectively). Conclusion Modifying the traditional single-leg bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation

  11. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    Science.gov (United States)

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p  Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    Science.gov (United States)

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  13. Muscle activity during leg strengthening exercise using free weights and elastic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H

    2013-01-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG......) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG....... Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: low...

  14. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1996-01-01

    Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight...... healthy men performed exhaustive constant work rate knee extension (21 +/- 3 W, 79 +/- 2 and 87 +/- 2% of 1-leg knee extension O2 peak uptake for normoxia and hypobaria, respectively) from knee angles of 90-150 degrees at a rate of 1 Hz. MVC (90 degrees knee angle) was performed before dynamic exercise...... and during MVC force was 578 +/- 29 N in normoxia and 569 +/- 29 N in hypobaria before exercise and fell, at exhaustion, to similar levels (265 +/- 10 and 284 +/- 20 N for normoxia and hypobaria, respectively; P > 0.05) that were higher (P

  15. Lower leg muscle density is independently associated with fall status in community-dwelling older adults.

    Science.gov (United States)

    Frank-Wilson, A W; Farthing, J P; Chilibeck, P D; Arnold, C M; Davison, K S; Olszynski, W P; Kontulainen, S A

    2016-07-01

    Muscle density is a risk factor for fractures in older adults; however, its association with falls is not well described. After adjusting for biologically relevant confounding factors, a unit decrease in muscle density was associated with a 17 % increase in odds of reporting a fall, independent of functional mobility. Falls are the leading cause of injury, disability, and fractures in older adults. Low muscle density (i.e., caused by muscle adiposity) and functional mobility have been identified as risk factors for incident disability and fractures in older adults; however, it is not known if these are also independently associated with falls. The purpose of this study was to explore the associations of muscle density and functional mobility with fall status. Cross-sectional observational study of 183 men and women aged 60-98 years. Descriptive data, including a 12-month fall recall, Timed Up and Go (TUG) test performance, lower leg muscle area, and density. Odds ratio (OR) of being a faller were calculated, adjusted for age, sex, body mass index, general health status, diabetes, and comorbidities. Every mg/cm(3) increase in muscle density (mean 70.2, SD 2.6 mg/cm(3)) independently reduced the odds of being a faller by 19 % (OR 0.81 [95 % CI 0.67 to 0.97]), and every 1 s longer TUG test time (mean 9.8, SD 2.6 s) independently increased the odds by 17 % (OR 1.17 [95 % CI 1.01 to 1.37]). When both muscle density and TUG test time were included in the same model, only age (OR 0.93 [95 % CI 0.87 to 0.99]) and muscle density (OR 0.83 [95 % CI 0.69 to 0.99]) were independently associated with fall status. Muscle density was associated with fall status, independent of functional mobility. Muscle density may compliment functional mobility tests as a biometric outcome for assessing fall risk in well-functioning older adults.

  16. Different fatigue-resistant leg muscles and EMG response during whole-body vibration.

    Science.gov (United States)

    Simsek, Deniz

    2017-12-01

    The purpose of this study was to determine the effects of static whole-body vibration (WBV) on the Electromyograhic (EMG) responses of leg muscles, which are fatigue-resistant in different manner. The study population was divided into two groups according to the values obtained by the Fatigue Index [Group I: Less Fatigue Resistant (LFR), n=11; Group II: More Fatigue Resistant (MFR), n=11]. The repeated electromyographic (EMG) activities of four leg muscles were analyzed the following determinants: (1) frequency (30 Hz, 35 Hz and 40 Hz); (2) stance position (static squat position); (3) amplitude (2 mm and 4 mm) and (4) knee flexion angle (120°), (5) vertical vibration platform. Vibration data were analyzed using Minitab 16 (Minitab Ltd, State College, PA, USA). The significance level was set at pmuscle fatigue (pEMG activation at higher frequencies (max at 40 Hz) and amplitudes (4 mm) (p<.05). The present study can be used for the optimal prescription of vibration exercise and can serve to guide the development of training programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. ACTN3 R577X polymorphism and explosive leg-muscle power in elite basketball players.

    Science.gov (United States)

    Garatachea, Nuria; Verde, Zoraida; Santos-Lozano, Alejandro; Yvert, Thomas; Rodriguez-Romo, Gabriel; Sarasa, Francisco J; Hernández-Sánchez, Sonsoles; Santiago, Catalina; Lucia, Alejandro

    2014-03-01

    To determine the association of the ACTN3 R577X polymorphism with leg-muscle explosive power in Spanish (white) elite basketball players and controls. 100 (60 men) elite basketball players (cases) and 283 nonathletic controls. The authors assessed power performance by means of the vertical-squat and countermovement-jump tests. Genotype distributions did not differ between groups (cases: 37.0% [RR], 42.0% [RX], and 21.0% [XX]; controls: 31.8% [RR], 49.8% [RX], and 18.4% [XX]; P = .353). The authors did not observe any effect of the ACTN3 R577X polymorphism on study phenotypes in either group, including when they performed the analyses separately in men and women. They found no association between the ACTN3 R577X polymorphism and the likelihood of being an elite basketball player using the dominant or the recessive model, and the results remained unaltered when the analyses were adjusted for sex, weight, height, and age or when performed for men and women separately. Although the ACTN3 R577X is associated with explosive muscle performance and this phenotype is important in the sport of basketball (ie, during jumps), the authors found no association with leg explosive power in elite basket players or with the status of being this type of athlete.

  18. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    Science.gov (United States)

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation. 3.

  19. The Effects of Active Straight Leg Raising on Tonicity and Activity of Pelvic Stabilizer Muscles

    Directory of Open Access Journals (Sweden)

    Azadeh Shadmehr

    2011-01-01

    Full Text Available Objective: Active straight leg raising (SLR test is advocated as a valid diagnostic method in diagnosis of sacroiliac joint (SIJ dysfunction that can assess the quality of load transfer between trunk and lower limb. The aim of this study is Comparison of changes in tonicity and activity of pelvic stabilizer muscles during active SLR, between healthy individuals and patients with sacroiliac joint pain. Materials & Methods: A case – control study was designed in 26 women (19-50 years old. With use of simple sampling, surface electromyography from rectus abdominis, external oblique, internal oblique, adductor longus, erector spine, gluteus maximus and biceps femoris was recorded in 26 subjects (15 healthy females and 11 females with sacroiliac pain in resting position and during active SLR test. Resting muscle tonicity and rms during ramp time and hold time in active SLR test were assessed by non parametric-two independent sample test. Results: Biceps femoris activity in resting position was significantly larger in patients group (P<0.05. During the active SLR, the women with sacroiliac joint pain used much less activity in some pelvic stabilizer muscles compared to the healthy subjects (P<0.05. Conclusion: The increased resting tonicity of biceps femoris and decreased activity of pelvic stabilizer muscles in subjects with sacroiliac joint pain, suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.

  20. Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III.

    Science.gov (United States)

    Dhaliwal, Trilok S; Beillas, Philippe; Chou, Clifford C; Prasad, Priya; Yang, King H; King, Albert I

    2002-11-01

    Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.

  1. The Effect of Electrical Stimulation of the Calf Muscle on Leg Fluid Accumulation over a Long Period of Sitting.

    Science.gov (United States)

    Vena, Daniel; Rubianto, Jonathan; Popovic, Milos R; Fernie, Geoff R; Yadollahi, Azadeh

    2017-07-20

    Leg fluid accumulation during sedentary behaviours such as sitting can lead to leg edema and associated adverse health consequences. This study investigates the use calf muscle electrical stimulation (ES) to reduce seated leg fluid accumulation. Thirteen non-obese, normotensive men (mean age 51 yr.) with sleep apnea were enrolled in the study. Participants first lay supine for 30 minutes to equalize fluid distribution and then sat for 150 minutes. While seated, participants received either active or sham ES of the calf muscles, according to random assignment. Participants returned one-week later to cross over to the other study condition. Leg fluid was measured continuously while sitting using the bioelectrical impedance method. Fluid accumulation in the leg was reduced by more than 40% using active ES, compared to sham ES (∆ = 51.9 ± 8.8 ml vs. ∆ = 91.5 ± 8.9 ml, P calf muscle ES is an effective method for reducing accumulation of fluid during long sedentary periods and has potential use as a device for preventing leg edema to treat associated health consequences in at-risk groups and settings.

  2. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome.

    Science.gov (United States)

    Saeki, J; Nakamura, M; Nakao, S; Fujita, K; Yanase, K; Ichihashi, N

    2018-01-01

    Previous history of medial tibial stress syndrome (MTSS) is a risk factor for MTSS relapse, which suggests that there might be some physical factors that are related to MTSS development in runners with a history of MTSS. The relationship between MTSS and muscle stiffness can be assessed in a cross-sectional study that measures muscle stiffness in subjects with a history of MTSS, who do not have pain at the time of measurement, and in those without a history of MTSS. The purpose of this study was to compare the shear elastic modulus, which is an index of muscle stiffness, of all posterior lower leg muscles of subjects with a history of MTSS and those with no history and investigate which muscles could be related to MTSS. Twenty-four male collegiate runners (age, 20.0±1.7 years; height, 172.7±4.8 cm; weight, 57.3±3.7 kg) participated in this study; 14 had a history of MTSS, and 10 did not. The shear elastic moduli of the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and tibialis posterior were measured using shear wave elastography. The shear elastic moduli of the flexor digitorum longus and tibialis posterior were significantly higher in subjects with a history of MTSS than in those with no history. However, there was no significant difference in the shear elastic moduli of other muscles. The results of this study suggest that flexor digitorum longus and tibialis posterior stiffness could be related to MTSS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Lower limb muscle pre-motor time measures during a choice reaction task associate with knee abduction loads during dynamic single leg landings.

    Science.gov (United States)

    McLean, Scott G; Borotikar, Bhushan; Lucey, Sarah M

    2010-07-01

    Female neuromuscular control during dynamic landings is considered central to their increased ACL injury risk relative to males. There is limited insight, however, into the neuromuscular parameters governing this risk, which may hinder prevention success. This study targeted a new screenable and potentially trainable neuromuscular risk factor. Specifically, we examined whether lower limb muscle pre-motor times, being the time between stimulus presentation and initiation of the muscle EMG burst, elicited during a simple choice reaction task correlated with knee abduction loads during separate single leg landings. Twenty female NCAA athletes had muscle (n=8) pre-motor time and knee biomechanics data recorded bilaterally during a choice reaction task. Knee biomechanics were also quantified during anticipated and unanticipated single (dominant and non-dominant) leg landings. Mean peak knee abduction loads during landings were submitted to a two-way ANOVA to test for limb and decision effects. Individual regression coefficients were initially computed between-limb-based muscle pre-motor times and peak abduction moments elicited during both the choice reaction and landing tasks. Limb-based linear stepwise regression coefficients were also computed between muscle PMT's demonstrating significant (Pmuscle pre-motor times during a specific choice reaction task are associated with peak knee abduction loads during separate single leg landings. These muscles appear critical in stabilizing the knee against the extreme dynamic load states associated with such tasks. Targeted screening and training of supraspinal processes governing these muscle pre-motor times may ultimately enable external knee loads associated with landings to be more effectively countered by the overarching neuromuscular strategy. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle.

    Science.gov (United States)

    Liu, K; Chen, L E; Seaber, A V; Johnson, G W; Urbaniak, J R

    1999-01-01

    Intermittent pneumatic compression has been established as a method of clinically preventing deep vein thrombosis, but the mechanism has not been documented. This study observed the effects of intermittent pneumatic compression of legs on the microcirculation of distant skeletal muscle. The cremaster muscles of 80 male rats were exposed, a specially designed intermittent pneumatic-compression device was applied to both legs for 60 minutes, and the microcirculation of the muscles was assessed by measurement of the vessel diameter in three categories (10-20, 21-40, and 41-70 microm) for 120 minutes. The results showed significant vasodilation in arterial and venous vessels during the application of intermittent pneumatic compression, which disappeared after termination of the compression. The vasodilation reached a maximum 30 minutes after initiation of the compression and could be completely blocked by an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine (10 micromol/min). A 120-minute infusion of NG-monomethyl-L-arginine, beginning coincident with 60 minutes of intermittent pneumatic compression, resulted in a significant decrease in arterial diameter that remained at almost the same level after termination of the compression. The magnitude of the decrease in diameter in the group treated with intermittent pneumatic compression and NG-monomethyl-L-arginine was comparable with that in the group treated with NG-monomethyl-L-arginine alone. The results imply that the production of nitric oxide is involved in the positive influence of intermittent pneumatic compression on circulation. It is postulated that the rapid increase in venous velocity induced by intermittent pneumatic compression produces strong shear stress on the vascular endothelium, which stimulates an increased release of nitric oxide and thereby causes systemic vasodilation.

  5. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  6. Leg Injuries and Disorders

    Science.gov (United States)

    Your legs are made up of bones, blood vessels, muscles, and other connective tissue. They are important for motion ... falling, or having an accident can damage your legs. Common leg injuries include sprains and strains, joint ...

  7. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes.

    Science.gov (United States)

    Secomb, Josh L; Nimphius, Sophia; Farley, Oliver R L; Lundgren, Lina E; Tran, Tai T; Sheppard, Jeremy M

    2015-12-01

    The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key pointsGreater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes.Isometric strength underpinned performance in the CMJ and SJ in these athletes.Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit.

  8. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  9. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes?

    DEFF Research Database (Denmark)

    Larsen, Steen; Ara, I; Rabøl, R

    2009-01-01

    AIM/HYPOTHESIS: The aim of the study was to investigate mitochondrial function, fibre type distribution and substrate oxidation in arm and leg muscle during exercise in patients with type 2 diabetes and in obese and lean controls. METHODS: Indirect calorimetry was used to calculate fat and carboh...

  10. The minimum sit-to-stand height test: reliability, responsiveness and relationship to leg muscle strength.

    Science.gov (United States)

    Schurr, Karl; Sherrington, Catherine; Wallbank, Geraldine; Pamphlett, Patricia; Olivetti, Lynette

    2012-07-01

    To determine the reliability of the minimum sit-to-stand height test, its responsiveness and its relationship to leg muscle strength among rehabilitation unit inpatients and outpatients. Reliability study using two measurers and two test occasions. Secondary analysis of data from two clinical trials. Inpatient and outpatient rehabilitation services in three public hospitals. Eighteen hospital patients and five others participated in the reliability study. Seventy-two rehabilitation unit inpatients and 80 outpatients participated in the clinical trials. The minimum sit-to-stand height test was assessed using a standard procedure. For the reliability study, a second tester repeated the minimum sit-to-stand height test on the same day. In the inpatient clinical trial the measures were repeated two weeks later. In the outpatient trial the measures were repeated five weeks later. Knee extensor muscle strength was assessed in the clinical trials using a hand-held dynamometer. The reliability for the minimum sit-to-stand height test was excellent (intraclass correlation coefficient (ICC) 0.91, 95% confidence interval (CI) 0.81-0.96). The standard error of measurement was 34 mm. Responsiveness was moderate in the inpatient trial (effect size: 0.53) but small in the outpatient trial (effect size: 0.16). A small proportion (8-17%) of variability in minimum sit-to-stand height test was explained by knee extensor muscle strength. The minimum sit-to-stand height test has excellent reliability and moderate responsiveness in an inpatient rehabilitation setting. Responsiveness in an outpatient rehabilitation setting requires further investigation. Performance is influenced by factors other than knee extensor muscle strength.

  11. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly.

    Science.gov (United States)

    Toebes, Marcel J P; Hoozemans, Marco J M; Dekker, Joost; van Dieën, Jaap H

    2014-01-01

    This study assessed effects of unilateral leg muscle fatigue (ULMF) on balance control in gait during the stance and swing phases of the fatigued leg in healthy elderly, to test the assumption that leg muscle strength limits balance control during the stance-phase. Ten subjects (aged 63.4, SD 5.5 years) walked on a treadmill in 4 conditions: unperturbed unfatigued, unperturbed fatigued, perturbed unfatigued, and perturbed fatigued. The perturbations were lateral trunk pulls just before contralateral heel contact. ULMF was evoked by unilateral squat exercise until task failure. Isometric knee extension strength was measured to verify the presence of muscle fatigue. Between-stride standard deviations and Lyapunov exponents of trunk kinematics were used as indicators of balance control. Required perturbation force and the deviation of trunk kinematics from unperturbed gait were used to assess perturbation responses. Knee extension strength decreased considerably (17.3% SD 8.6%) as a result ULMF. ULMF did not affect steady-state gait balance. Less force was required to perturb subjects when the fatigued leg was in the stance-phase compared to the swing-phase. Subjects showed a faster return to the unperturbed gait pattern in the fatigued than in the unfatigued condition, after perturbations in swing and stance of the fatigued leg. The results of this study are not in line with the hypothesized effects of leg muscle fatigue on balance in gait. The healthy elderly subjects were able to cope with substantial ULMF during steady-state gait and demonstrated faster balance recovery after laterally directed mechanical perturbations in the fatigued than in the unfatigued condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Quantification of muscle oxygenation and flow of healthy volunteers during cuff occlusion of arm and leg flexor muscles and plantar flexion exercise

    Science.gov (United States)

    Durduran, Turgut; Yu, Guoqiang; Zhou, Chao; Lech, Gwen; Chance, Britton; Yodh, Arjun G.

    2003-07-01

    A hybrid instrument combining near infrared and diffuse correlation spectroscopies was used to measure muscle oxygenation and blood flow dynamics during cuff occlusion and ischemia. Measurements were done on six healthy subjects on their arm and leg flexor muscles. Hemodynamic response was characterized for blood oxygen saturation, total hemoglobin concenration and relative blood flow speed. The characterization allowed us to define the normal response range as well as showing the feasibility of using a hybrid instrument for dynamic measurements.

  13. Test-retest reliability of maximal leg muscle power and functional performance measures in patients with severe osteoarthritis (OA)

    DEFF Research Database (Denmark)

    Villadsen, Allan; Roos, Ewa M.; Overgaard, Søren

    Abstract : Purpose To evaluate the reliability of single-joint and multi-joint maximal leg muscle power and functional performance measures in patients with severe OA. Background Muscle power, taking both strength and velocity into account, is a more functional measure of lower extremity muscle...... and scheduled for unilateral total hip (n=9) or knee (n=11) replacement. Patients underwent a test battery on two occasions separated by approximately one week (range 7 to 11 days). Muscle power was measured using: 1. A linear encoder, unilateral lower limb isolated single-joint dynamic movement, e.g. knee...... activity compared with the traditionally used isometric and/or isokinetic muscle strength. More functional measures are preferred to determine muscle function and as outcomes in exercise studies in patients with OA. Methods Subjects: 20 patients (mean age 68.7±7.2, BMI 29.0±3.9) diagnosed with severe OA...

  14. Age-related changes in the effects of strength training on lower leg muscles in healthy individuals measured using MRI.

    Science.gov (United States)

    Psatha, Maria; Wu, Zhiqing; Gammie, Fiona; Ratkevicius, Aivaras; Wackerhage, Henning; Redpath, Thomas W; Gilbert, Fiona J; Meakin, Judith R; Aspden, Richard M

    2017-01-01

    We previously measured the rate of regaining muscle strength during rehabilitation of lower leg muscles in patients following lower leg casting. Our primary aim in this study was to measure the rate of gain of strength in healthy individuals undergoing a similar training regime. Our secondary aim was to test the ability of MRI to provide a biomarker for muscle function. Men and women were recruited in three age groups: 20-30, 50-65 and over 70 years. Their response to resistance training of the right lower leg twice a week for 8 weeks was monitored using a dynamometer and MRI of tibialis anterior, soleus and gastrocnemius muscles at 2 weekly intervals to measure muscle size (anatomical cross-sectional area ( ACSA )) and quality ( T 2 relaxation). Forty-four volunteers completed the study. Baseline strength declined with age. Training had no effect in middle-aged females or in elderly men in dorsiflexion. Other groups significantly increased both plantarflexion and dorsiflexion strength at rates up to 5.5 N m week -1 in young females in plantarflexion and 1.25 N m week -1 in young males in dorsiflexion. No changes were observed in ACSA or T 2 in any age group in any muscle. Exercise training improves muscle strength in males at all ages except the elderly in dorsiflexion. Responses in females were less clear with variation across age and muscle groups. These results were not reflected in simple MRI measures that do not, therefore, provide a good biomarker for muscle atrophy or the efficacy of rehabilitation.

  15. N-of-1 trials of quinine efficacy in skeletal muscle cramps of the leg

    Science.gov (United States)

    Woodfield, Rachel; Goodyear-Smith, Felicity; Arroll, Bruce

    2005-01-01

    Background Skeletal muscle cramps affect over a third of the ambulatory elderly population. Quinine is the established treatment, but there are safety concerns, and evidence for efficacy is conflicting. A recent meta-analysis established a small advantage for quinine, but identified the need for additional studies. N-of-1 trials compare two treatments, in a randomised, double-blind, multiple crossover study on a patient-by-patient basis. They have been used to compare treatments in osteoarthritis and may be suitable for determining the individual efficacy of quinine. Aim To establish efficacy and safety of quinine sulphate use for the treatment of leg-muscle cramp. Design of study Double-blind, randomised series of n-of-1 controlled trials of quinine versus placebo for muscle cramps. Setting New Zealand general practices. Method The participants were 13 general practice patients (six males; seven females; median age = 75 years) already prescribed quinine. Following a 2-week washout, each patient received three 4-week treatment blocks of quinine sulphate and matched placebo capsules with an individual, randomised crossover design. The main outcome measures were: patient diaries of cramp occurrence, duration and severity; capsule counts; and blood quinine levels in the final treatment block. Results Ten patients completed the trial. Three patients were identified for whom quinine was clearly beneficial (P<0.05), six showed non-significant benefit and one showed no benefit. All patients elected to continue quinine post-study. Conclusion Series of n-of-1 studies differentiated patients whom quinine had statistically significant effects; those with trend towards effectiveness; those for whom quinine was probably not effective. Ideally n-of-1 trial should be performed when a patient is commenced on quinine. More cycles in n-of-1 studies of quinine may address issues of statistical power. PMID:15808032

  16. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise?

    Science.gov (United States)

    Cochrane, D J; Booker, H R; Mundel, T; Barnes, M J

    2013-11-01

    Intermittent pneumatic compression (IPC) has gained rapid popularity as a post-exercise recovery modality. Despite its widespread use and anecdotal claims for enhancing muscle recovery there is no scientific evidence to support its use. 10 healthy, active males performed a strenuous bout of eccentric exercise (3 sets of 100 repetitions) followed by IPC treatment or control performed immediately after exercise and at 24 and 48 h post-exercise. Muscular performance measurements were taken prior to exercise and 24, 48 and 72 h post-exercise and included single-leg vertical jump (VJ) and peak and average isometric [knee angle 75º] (ISO), concentric (CON) and eccentric (ECC) contractions performed at slow (30° · s⁻¹) and fast (180° · s⁻¹) velocities. Plasma creatine kinase (CK) samples were taken at pre- and post-exercise 24, 48 and 72 h. Strenuous eccentric exercise resulted in a significant decrease in peak ISO, peak and average CON (30° · s⁻¹) at 24 h compared to pre-exercise for both IPC and control, however VJ performance remained unchanged. There were no significant differences between conditions (IPC and control) or condition-time interactions for any of the contraction types (ISO, CON, ECC) or velocities (CON, ECC 30° · s⁻¹ and 180° · s⁻¹). However, CK was significantly elevated at 24 h compared to pre-exercise in both conditions (IPC and control). IPC did not attenuate muscle force loss following a bout of strenuous eccentric exercise in comparison to a control. While IPC has been used in the clinical setting to treat pathologic conditions, the parameters used to treat muscle damage following strenuous exercise in healthy participants are likely to be very different than those used to treat pathologic conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Improved Ventilatory Efficiency with Locomotor Muscle Afferent Inhibition is Strongly Associated with Leg Composition in Heart Failure.

    Science.gov (United States)

    Keller-Ross, Manda L; Johnson, Bruce D; Carter, Rickey E; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Olson, Thomas P

    2016-01-01

    Skeletal muscle atrophy contributes to increased afferent feedback (group III and IV) and may influence ventilatory control (high VE/VCO2 slope) in heart failure (HF). This study examined the influence of muscle mass on the change in VE/VCO2 with afferent neural block during exercise in HF. 17 participants [9 HF (60±6 yrs) and 8 controls (CTL) (63±7 yrs, mean±SD)] completed 3 sessions. Session 1: dual energy x-ray absorptiometry and graded cycle exercise to volitional fatigue. Sessions 2 and 3: 5 min of constant-work cycle exercise (65% of peak power) randomized to lumbar intrathecal injection of fentanyl (afferent blockade) or placebo. Ventilation (VE) and gas exchange (oxygen consumption, VO2; carbon dioxide production, VCO2) were measured. Peak work and VO2 were lower in HF (pLeg fat was greater in HF (34.4±3.0 and 26.3±1.8%) and leg muscle mass was lower in HF (63.0±2.8 and 70.4±1.8%, respectively, pleg muscle mass (r2=0.58, pleg fat mass (r2=0.73, pleg muscle mass had the greatest improvement in VE/VCO2 with afferent blockade with leg fat mass being the only predictor for the improvement in VE/VCO2 slope. Both leg muscle mass and fat mass are important contributors to ventilatory abnormalities and strongly associated to improvements in VE/VCO2 slope with locomotor afferent inhibition in HF. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity

    DEFF Research Database (Denmark)

    Boushel, Robert; Gnaiger, E.; Larsen, F. J.

    2015-01-01

    of the vastus lateralis in healthy volunteers (7 male, 2 female) before and after 42 days of skiing at 60% HR max. Peak pulmonary VO2 (3.52 ± 0.18 L.min-1 pre vs 3.52 ± 0.19 post) and VO2 across the leg (2.8 ± 0.4L.min-1 pre vs 3.0 ± 0.2 post) were unchanged after the ski journey. Peak leg O2 delivery (3.6 ± 0...... at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand.......We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy...

  19. Foot muscle morphology is related to center of pressure sway and control mechanisms during single-leg standing.

    Science.gov (United States)

    Zhang, Xianyi; Schütte, Kurt Heinrich; Vanwanseele, Benedicte

    2017-09-01

    Maintaining balance is vitally important in everyday life. Investigating the effects of individual foot muscle morphology on balance may provide insights into neuromuscular balance control mechanisms. This study aimed to examine the correlation between the morphology of foot muscles and balance performance during single-leg standing. Twenty-eight recreational runners were recruited in this study. An ultrasound device was used to measure the thickness and cross-sectional area of three intrinsic foot muscles (abductor hallucis, flexor digitorum brevis and quadratus plantae) and peroneus muscles. Participants were required to perform 30s of single-leg standing for three trials on a force plate, which was used to record the center of pressure (COP). The standard deviation of the amplitude and ellipse area of the COP were calculated. In addition, stabilogram diffusion analysis (SDA) was performed on COP data. Pearson correlation coefficients were computed to examine the correlation between foot muscle morphology and traditional COP parameters as well as with SDA parameters. Our results showed that larger abductor hallucis correlated to smaller COP sway, while larger peroneus muscles correlated to larger COP sway during single-leg standing. Larger abductor hallucis also benefited open-loop dynamic stability, as well as supported a more efficient transfer from open-loop to closed loop control mechanisms. These results suggest that the morphology of foot muscles plays an important role in balance performance, and that strengthening the intrinsic foot muscles may be an effective way to improve balance. Copyright © 2017. Published by Elsevier B.V.

  20. Local heat application to the leg reduces muscle sympathetic nerve activity in human.

    Science.gov (United States)

    Takahashi, Noriyo; Nakamura, Takeshi; Kanno, Nami; Kimura, Kenichi; Toge, Yasushi; Lee, Kyu-Ha; Tajima, Fumihiro

    2011-09-01

    The study was designed to assess the effects of local heat (LH) application on postganglionic muscle sympathetic nerve activity (MSNA) measured by microneurography in healthy men. In the first protocol, MSNA of the left peroneal nerve, blood pressure (BP), heart rate (HR), and skin temperature of the shin (TSK) were recorded in nine men. In the second protocol, leg blood flow (LBF) was measured in the same subjects by strain-gauge plethysmography. In both protocols, after 10 min of rest in the supine position, a heated hydrocollator pack was applied to the shin and anterior foot for 15 min and recovery was monitored over a period of 20 min. TSK gradually increased from 31.7 ± 0.1 to 41.9 ± 0.5°C (mean ± SEM) during LH. No subject complained of pain, and BP and HR remained constant. The MSNA burst rate (16.1 ± 2.1 beats/min) during the control period decreased significantly (P < 0.05) to 72.0 ± 2.3% during LH. Total MSNA also decreased to 59.2 ± 2.6% (P < 0.05) during LH, but both immediately returned to baseline at recovery. In contrast, LBF in the left leg significantly and immediately increased (P < 0.05) after LH application and remained significantly elevated until the end of the recovery period. These results suggest that: (1) LH application significantly attenuates MSNA without any changes in HR and BP. (2) Other factors in addition to MSNA seem to control regional blood flow in the lower extremity during LH.

  1. Soft Legged Wheel-Based Robot with Terrestrial Locomotion Abilities

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi

    2016-12-01

    Full Text Available In recent years robotics has been influenced by a new approach, soft-robotics, bringing the idea that safe interaction with user and more adaptation to the environment can be achieved by exploiting easily deformable materials and flexible components in the structure of robots. In 2016, the soft-robotics community has promoted a new robotics challenge, named RoboSoft Grand Challenge, with the aim of bringing together different opinions on the usefulness and applicability of softness and compliancy in robotics. In this paper we describe the design and implementation of a terrestrial robot based on two soft legged wheels. The tasks predefined by the challenge were set as targets in the robot design, which finally succeeded to accomplish all the tasks. The wheels of the robot can passively climb over stairs and adapt to slippery grounds using two soft legs embedded in their structure. The soft legs, fabricated by integration of soft and rigid materials and mounted on the circumference of a conventional wheel, succeed to enhance its functionality and easily adapt to unknown grounds. The robot has a semi stiff tail that helps in the stabilization and climbing of stairs. An active wheel is embedded at the extremity of the tail in order to increase the robot maneuverability in narrow environments. Moreover two parallelogram linkages let the robot to reconfigure and shrink its size allowing entering inside gates smaller than its initial dimensions.

  2. The effects of performing a one-legged bridge with hip abduction and use of a sling on trunk and lower extremity muscle activation in healthy adults.

    Science.gov (United States)

    Choi, Kyuju; Bak, Jongwoo; Cho, Minkwon; Chung, Yijung

    2016-09-01

    [Purpose] This study investigated the changes in the muscle activities of the trunk and lower limbs of healthy adults during a one-legged bridge exercise using a sling, and with the addition of hip abduction. [Subjects and Methods] Twenty-seven healthy individuals participated in this study (14 males and 13 females). The participants were instructed to perform the bridge exercises under five different conditions. Trunk and lower limb muscle activation of the erector spinae (ES), external oblique (EO), gluteus maximus (GM), and biceps femoris (BF) was measured using surface electromyography. Data analysis was performed using the mean scores of three trials performed under each condition. [Results] There was a significant increase in bilateral EO and contralateral GM with the one-legged bridge compared with the one-legged bridge with sling exercise. Muscle activation of the ipsilateral GM and BF was significantly less during the one-legged bridge exercise compared to the one-legged bridge with sling exercise, and was significantly greater during the one-legged bridge with hip abduction compared to the one-legged bridge exercise. The muscle activation of the contralateral GM and BF was significantly greater with the one-legged bridge with hip abduction compared to the general bridge exercise. [Conclusion] With the one-legged bridge with hip abduction, the ipsilateral EO, GM and BF muscle activities were significantly greater than those of the one-legged bridge exercise. The muscle activation of all trunk and contralateral lower extremity muscles increased with the bridge with sling exercises compared with general bridge exercises.

  3. Placebo effect of an inert gel on experimentally induced leg muscle pain

    Directory of Open Access Journals (Sweden)

    James G Hopker

    2010-11-01

    Full Text Available James G Hopker1, Abigail J Foad2, Christopher J Beedie2, Damian A Coleman2, Geoffrey Leach11Centre for Sports Studies, University of Kent, Chatham, Kent, UK; 2Department of Sports Science, Tourism and Leisure, Canterbury Christ Church University, Canterbury, Kent, UKPurpose: This study examined the therapeutic effects of an inert placebo gel on experimentally induced muscle pain in a sports therapy setting. It aimed to investigate the degree to which conditioned analgesia, coupled with an expectation of intervention, was a factor in subsequent analgesia.Methods: Participants were sixteen male and eight female sports therapy students at a UK University. With institutional ethics board approval and following informed consent procedures, each was exposed to pain stimulus in the lower leg in five conditions, ie, conditioning, prebaseline, experimental (two placebo gel applications, and postbaseline. In conditioning trials, participants identified a level of pain stimulus equivalent to a perceived pain rating of 6/10. An inert placebo gel was then applied to the site with the explicit instruction that it was an analgesic. Participants were re-exposed to the pain stimulus, the level of which, without their knowledge, had been decreased, creating the impression of an analgesic effect resulting from the gel. In experimental conditions, the placebo gel was applied and the level of pain stimulus required to elicit a pain rating of 6/10 recorded.Results: Following application of the placebo gel, the level of pain stimulus required to elicit a pain rating of 6/10 increased by 8.2%. Application of the placebo gel significantly decreased participant’s perceptions of muscle pain (P = 0.001.Conclusion: Subjects’ experience and expectation of pain reduction may be major factors in the therapeutic process. These factors should be considered in the sports therapeutic environment.Keywords: conditioning, expectation, perception, positive belief, sports therapy

  4. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79 : the health, aging and body composition study

    NARCIS (Netherlands)

    Visser, Marjolein; Kritchevsky, Stephen B; Goodpaster, Bret H; Newman, Anne B; Nevitt, Michael; Stamm, Elizabeth; Harris, Tamara B

    OBJECTIVES: The loss of muscle mass with aging, or sarcopenia, is hypothesized to be associated with the deterioration of physical function. Our aim was to determine whether low leg muscle mass and greater fat infiltration in the muscle were associated with poor lower extremity performance (LEP).

  5. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes

    Directory of Open Access Journals (Sweden)

    Josh L. Secomb, Sophia Nimphius, Oliver R.L. Farley, Lina E. Lundgren, Tai T. Tran, Jeremy M. Sheppard

    2015-12-01

    Full Text Available The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ and squat jump (SJ, and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23 and female (n = 7 surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP. In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73 were identified between the thickness of the vastus lateralis (VL and lateral gastrocnemius (LG muscles, and VL pennation angle and; peak force (PF in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59 were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59 also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle.

  6. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command.

    Science.gov (United States)

    Doherty, Connor J; Incognito, Anthony V; Notay, Karambir; Burns, Matthew J; Slysz, Joshua T; Seed, Jeremy D; Nardone, Massimo; Burr, Jamie F; Millar, Philip J

    2018-01-01

    The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P cycling ( P 0.05). Reductions in total MSNA were attenuated during the first ( P cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.

  7. Near-Infrared Spectroscopic Measurement of the Effect of Leg Dominance on Muscle Oxygen Saturation During Cycling

    Science.gov (United States)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Paunescu, Lelia Adelina; Pereira, Chelsea; Smith, Charles P.; Soller, Babs R.

    2011-01-01

    The effect of leg dominance on the symmetry of the biomechanics during cycling remains uncertain -- asymmetries have been observed in kinematics and kinetics, while symmetries were found in muscle activation. No studies have yet investigated the symmetry of muscle metabolism during cycling. Near-infrared spectroscopy (NIRS) provides a non-invasive method to investigate the metabolic responses of specific muscles during cycling. PURPOSE: To determine whether there was an effect of leg dominance on thigh muscle oxygen saturation (SmO2) during incrementally loaded submaximal cycling using NIRS. METHODS: Eight right leg dominant, untrained subjects (5 men, 3 women; 31+/-2 yrs; 168.6+/-1.0 cm; 67.2+/-1.8 kg, mean +/- SE) volunteered to participate. Spectra were collected bilaterally from the vastus lateralis (VL) during supine rest and cycling. SmO2 was calculated using previously published methods. Subjects pedaled at 65 rpm while resistance to pedaling was increased in 0.5 kp increments from 0.5 kp every 3 min until the subject reached 80% of age-predicted maximal heart rate. SmO2 was averaged over 3 min for each completed stage. A two-way ANOVA was performed to test for leg differences. A priori contrasts were used to compare work levels to rest. RESULTS: VL SmO2 was not different between the dominant and non-dominant legs at rest and during exercise (p=0.57). How SmO2 changed with workload was also not different between legs (p=0.32). SmO2 at 0.5 kp (60.3+/-4.0, p=0.12) and 1.0 kp (59.5+/-4.0, p=0.10) was not different from rest (69.1+/-4.0). SmO2 at 1.5 kp (55.4 4.0, p=0.02), 2.0 kp (55.7+/-5.0, p=0.04), and 2.5 kp (43.4+/-7.9, p=0.01) was significantly lower than rest. CONCLUSION: VL SmO2 during cycling is not different between dominant and non-dominant legs and decreases with moderate workload in untrained cyclists. Assuming blood flow is directed equally to both legs, similar levels of oxygen extraction (as indicated by SmO2) suggests the metabolic load of

  8. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    Science.gov (United States)

    Vohra, Ravneet S; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2015-01-01

    The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  9. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    Directory of Open Access Journals (Sweden)

    Ravneet S Vohra

    Full Text Available The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD and determine the relationships between non-contractile content and functional abilities.Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus were assessed by magnetic resonance imaging (MRI. Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed.Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus was significantly greater than control group (p<0.05. Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84 and 30 feet walk (rs = 0.66-0.80. Dorsiflexor (DF and plantarflexor (PF specific torque was significantly different between the groups.Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  10. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes

    OpenAIRE

    Secomb, Josh L.; Nimphius, Sophia; Farley, Oliver R.L.; Lundgren, Lina E.; Tran, Tai T.; Sheppard, Jeremy M.

    2015-01-01

    The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isome...

  11. Consequences of simulated car driving at constant high speed on the sensorimotor control of leg muscles and the braking response.

    Science.gov (United States)

    Jammes, Yves; Behr, Michel; Weber, Jean P; Berdah, Stephane

    2017-11-01

    Due to the increase in time spent seated in cars, there is a risk of fatigue of the leg muscles which adjust the force exerted on the accelerator pedal. Any change in their sensorimotor control could lengthen the response to emergency braking. Fourteen healthy male subjects (mean age: 42 ± 4 years) were explored. Before and after a 1-h driving trial at 120 km h -1 , we measured the braking response, the maximal leg extension and foot inversion forces, the tonic vibratory response (TVR) in gastrocnemius medialis (GM) and tibialis anterior (TA) muscles to explore the myotatic reflex, and the Hoffmann reflex (H-reflex). During driving, surface electromyograms (EMGs) of GM and TA were recorded and the ratio between high (H) and low (L) EMG energies allowed to evaluate the recruitment of high- and low-frequency motor unit discharges. During driving, the H/L ratio decreased in TA, whereas modest and often no significant H/L changes occurred in GM muscle. After driving, the maximal foot inversion force decreased (-19%), while the leg extension force did not vary. Reduced TVR amplitude (-29%) was measured in TA, but no H-reflex changes were noted. The braking reaction time was not modified after the driving trial. Driving at constant elevated speed reduced the myotatic reflex and the recruitment of motor units in TA muscle. The corresponding changes were rarely present in the GM muscle that plays a key role in the braking response, and this could explain the absence of a reduced braking reaction time. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. Timing of muscle response to a sudden leg perturbation: comparison between adolescents and adults with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Maria Stella Valle

    Full Text Available Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test. In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.

  13. Leg muscle reflexes mediated by cutaneous A-beta fibres are normal during gait in reflex sympathetic dystrophy.

    Science.gov (United States)

    van der Laan, L; Boks, L M; van Wezel, B M; Goris, R J; Duysens, J E

    2000-04-01

    Reflex sympathetic dystrophy (RSD) is, from the onset, characterized by various neurological deficits such as an alteration of sensation and a decrease in muscle strength. We investigated if afferent A-beta fibre-mediated reflexes are changed in lower extremities affected by acute RSD. The involvement of these fibres was determined by analyzing reflex responses from the tibialis anterior (TA) and biceps femoris (BF) muscles after electrical stimulation of the sural nerve. The reflexes were studied during walking on a treadmill to investigate whether the abnormalities in gait of the patients were related either to abnormal amplitudes or deficient phase-dependent modulation of reflexes. In 5 patients with acute RSD of the leg and 5 healthy volunteers these reflex responses were determined during the early and late swing phase of the step cycle. No significant difference was found between the RSD and the volunteers. During early swing the mean amplitude of the facilitatory P2 responses in BF and TA increased as a function of stimulus intensity (1.5, 2 and 2.5 times the perception threshold) in both groups. At end swing the same stimuli induced suppressive responses in TA. This phase-dependent reflex reversal from facilitation in early swing to suppression in late swing occurred equally in both groups. In the acute phase of RSD of the lower extremity there is no evidence for abnormal A-beta fibre-mediated reflexes or for defective regulation of such reflexes. This finding has implications for both the theory on RSD pathophysiology and RSD models, which are based on abnormal functioning of A-beta fibres.

  14. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance

    LENUS (Irish Health Repository)

    McCreesh, Karen

    2011-09-13

    Abstract Background Knowledge of normal muscle characteristics is crucial in planning rehabilitation programmes for injured athletes. There is a high incidence of ankle and anterior tibial symptoms in football players, however little is known about the effect of limb dominance on the anterior tibial muscle group (ATMG). The purpose of this study was to assess the effect of limb dominance and sports-specific activity on ATMG thickness in Gaelic footballers and non-football playing controls using ultrasound measurements, and to compare results from transverse and longitudinal scans. Methods Bilateral ultrasound scans were taken to assess the ATMG size in 10 Gaelic footballers and 10 sedentary controls (age range 18-25 yrs), using a previously published protocol. Both transverse and longitudinal images were taken. Muscle thickness measurements were carried out blind to group and side of dominance, using the Image-J programme. Results Muscle thickness on the dominant leg was significantly greater than the non-dominant leg in the footballers with a mean difference of 7.3%, while there was no significant dominance effect in the controls (p < 0.05). There was no significant difference between the measurements from transverse or longitudinal scans. Conclusions A significant dominance effect exists in ATMG size in this group of Gaelic footballers, likely attributable to the kicking action involved in the sport. This should be taken into account when rehabilitating footballers with anterior tibial pathology. Ultrasound is a reliable tool to measure ATMG thickness, and measurement may be taken in transverse or longitudinal section.

  15. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    Science.gov (United States)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  16. Localization of nerve entry points as targets to block spasticity of the deep posterior compartment muscles of the leg.

    Science.gov (United States)

    Hu, Shuaiyu; Zhuo, Lifan; Zhang, Xiaoming; Yang, Shengbo

    2017-10-01

    To identify the optimal body surface puncture locations and the depths of nerve entry points (NEPs) in the deep posterior compartment muscles of the leg, 60 lower limbs of thirty adult cadavers were dissected in prone position. A curved line on the skin surface joining the lateral to the medial epicondyles of the femur was taken as a horizontal reference line (H). Another curved line joining the lateral epicondyle of the femur to the lateral malleolus was designated the longitudinal reference line (L). Following dissection, the NEPs were labeled with barium sulfate and then subjected to spiral computed tomography scanning. The projection point of the NEP on the posterior skin surface of the leg was designated P, and the projection in the opposite direction across the transverse plane was designated P'. The intersections of P on H and L were identified as P H and P L , and their positions and the depth of the NEP on PP' were measured using the Syngo system and expressed as percentages of H, L, and PP'. The P H points of the tibial posterior, flexor hallucis longus and flexor digitorum longus muscles were located at 38.10, 46.20, and 55.21% of H, respectively. The P L points were located at 25.35, 41.30, and 45.39% of L, respectively. The depths of the NEPs were 49.11, 54.64, and 55.95% of PP', respectively. The accurate location of these NEPs should improve the efficacy and efficiency of chemical neurolysis for treating spasticity of the deep posterior compartment muscles of the leg. Clin. Anat. 30:855-860, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Muscle timing in injured and non-injured leg of athletes with chronic ankle instability in response to a visual stimulus during forward jumping.

    Science.gov (United States)

    Fereydounnia, Sara; Shadmehr, Azadeh; Talebian Moghadam, Saeed; Olyaei, Gholamreza; Jalaie, Shohreh; Tahmasebi, Ali

    2016-01-01

    The aim of this study was to investigate premotor time, motor time and reaction time of the injured and non-injured leg muscles of athletes with chronic ankle instability in response to a visual stimulus during forward jumping. Surface electromyography was performed on injured and non-injured leg of eight athletes with chronic ankle instability during forward jumping. Results showed that premotor time of the peroneus longus was significantly longer in non-injured leg compared with injured leg (489.37 ± 220.22 ms vs. 306.46 ± 142.92 ms, P = 0.031); on the contrary, motor time of the peroneus longus was significantly shorter in non-injured leg compared with injured leg (569.04 ± 318.62 ms vs. 715.12 ± 328.72 ms, P = 0.022). No significant difference was noted in the timing of other calf muscles (P > 0.05). According to the results of this study, rehabilitation protocols, regarding ankle instability, need to put greater emphasis on tasks that require proper timing of muscles and muscle re-education so that protocols could reduce residual symptoms after sprain and prevent recurrent sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Restless Legs Syndrome and Cognitive Function: A Population-based Cross-sectional Study.

    Science.gov (United States)

    Rist, Pamela M; Elbaz, Alexis; Dufouil, Carole; Tzourio, Christophe; Kurth, Tobias

    2015-09-01

    Restless legs syndrome has been speculated to be linked to cognitive impairment through vascular risk factors or through its effect on sleep deprivation. Previous studies on the association between restless legs syndrome and cognitive function have been inconclusive. We performed a cross-sectional analysis of the association between restless legs syndrome and cognitive function using data from a large population-based study of elderly individuals residing in France. We used information from 2070 individuals from the Dijon, France center of the Three-City study who had available information on restless legs syndrome and cognitive functioning measures. Restless legs syndrome was assessed using the 4 minimal diagnostic criteria of the International Restless Legs Study Group. During the same wave in which restless legs syndrome status was assessed, cognitive functions also were assessed using 4 tests: Isaacs' test of verbal/category fluency, the Benton Visual Retention Test, the Trail Making Test B, and the Mini-Mental State Examination. We created a summary global cognitive score by summing the z scores for the 4 tests and used analysis of covariance to explore the association between restless legs syndrome and cognitive function. We did not observe any statistically significant differences in any cognitive z-score between those with restless legs syndrome and those without restless legs syndrome. The mean global z-score after multivariate adjustment was -0.003 (SE 0.173) for those with restless legs syndrome and -0.007 (SE 0.129) for those without restless legs syndrome (P-value = .98). Data from this large, population-based study do not suggest that restless legs syndrome is associated with prevalent cognitive deficits in elderly individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Hop performance and leg muscle power in athletes: Reliability of a test battery.

    Science.gov (United States)

    Kockum, Britta; Heijne, Annette I-L M

    2015-08-01

    To measure the absolute and relative reliability and the smallest real difference (SRD) in three commonly used hop tests, two leg-power tests and the single-leg squat jump. Methodological study. Clinical setting. Fourteen healthy athletes (seven women and seven men) were evaluated in a standardized test-retest design. The Intra-class correlation coefficient (ICC2.1), Standard Error of Measurement (SEM) and SRD were calculated for the vertical jump, one-leg hop for distance, side-hop, single-leg squat jump and knee-flexion and knee-extension power tests. All tests showed good to excellent ICC (0.84-0.98). The SEM (%) ranged between 3.4 and 11.1 for the four hop tests and between 8.1 and 12.4 for the leg-power tests. The SRD (%) for the hop tests ranged between 9.3 and 30.7 and for the three power tests between 22.4 and 34.3. The absolute reliability of this test protocol showed good to excellent ICC values and measurement errors of approximately 10%. This instrument can be recommended for determining function in terms of power in healthy athletes or late in the rehabilitation process. The tests' methodological errors must be considered and caution should be taken regarding the standardization procedure during testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults

    NARCIS (Netherlands)

    Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren

    Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS

  1. Balancing Control of AIT Leg Exoskeleton Using ZMP based FLC

    Directory of Open Access Journals (Sweden)

    Narong Aphiratsakun

    2009-12-01

    Full Text Available This paper is focused on the use of Zero Moment Point (ZMP concept for balancing control of the Asian Institute of Technology Leg EXoskeleton-I (ALEX-I. ALEX-I has been developed to assist patients who suffer from paraplegia or immobility due to the loss of power on lower limbs. The balanced posture set-points (joint trajectories under ZMP criterion are generated offline. The ZMP based set points are provided as the desired postures to ALEX-I. Fuzzy Logic Controller (FLC determines the modified set points based on postures balancing sensed by loadcells. Ground Contact Point (GCP is used to find the “ZMP-like in real time”. GCP data is obtained by placing 4 loadcells forming a force plate on each foot of ALEX-I. This GCP data is then compared with the reference ZMP. Uncertainties of the model parameters, backlash, and joint tolerance are considered as disturbance. The differences of ZMP and GCP on x-z plane are used as the inputs to the FLC. The 4 outputs from FLC are the compensated angles of left and right ankles joints in roll and pitch axes that make the actual ZMP locate in the convex hull of the supporting area.

  2. The Influence of Dual Pressure Biofeedback Units on Pelvic Rotation and Abdominal Muscle Activity during the Active Straight Leg Raise in Women with Chronic Lower Back Pain

    OpenAIRE

    Noh, Kyung-Hee; Kim, Ji-Won; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-01-01

    [Purpose] This study was performed to assess the influence of applying dual pressure biofeedback units (DPBUs) on the angle of pelvic rotation and abdominal muscle activity during the active straight leg raise (ASLR). [Subjects] Seventeen patients with low-back pain (LBP) participated in this study. [Methods] The subjects were asked to perform an active straight leg raise (ASLR) without a PBU, with a single PBU, and with DPBUs. The angles of pelvic rotation were measured using a three-dimensi...

  3. Straight-leg rasing in 'short hamstrings'. An experimental study of muscle elasticy and defense reactions.

    NARCIS (Netherlands)

    Göeken, Ludwig Nanno Hiltjo

    1988-01-01

    The central guestion asked in this thesis is whether an Experimental Straight-Leg Raising test (E.S.L.R.) can contribute to the solution of a diagnostical problem frequently encountered in rehabilitation medicine. It concerns the determination of the cause of the movement restriction in patients who

  4. Homologous muscle contraction during unilateral movement does not show a dominant effect on leg representation of the ipsilateral primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Shin-Yi Chiou

    Full Text Available Co-activation of homo- and heterotopic representations in the primary motor cortex (M1 ipsilateral to a unilateral motor task has been observed in neuroimaging studies. Further analysis showed that the ipsilateral M1 is involved in motor execution along with the contralateral M1 in humans. Additionally, transcranial magnetic stimulation (TMS studies have revealed that the size of the co-activation in the ipsilateral M1 has a muscle-dominant effect in the upper limbs, with a prominent decline of inhibition within the ipsilateral M1 occurring when a homologous muscle contracts. However, the homologous muscle-dominant effect in the ipsilateral M1 is less clear in the lower limbs. The present study investigates the response of corticospinal output and intracortical inhibition in the leg representation of the ipsilateral M1 during a unilateral motor task, with homo- or heterogeneous muscles. We assessed functional changes within the ipsilateral M1 and in corticospinal outputs associated with different contracting muscles in 15 right-handed healthy subjects. Motor tasks were performed with the right-side limb, including movements of the upper and lower limbs. TMS paradigms were measured, consisting of short-interval intracortical inhibition (SICI and recruitment curves (RCs of motor evoked potentials (MEPs in the right M1, and responses were recorded from the left rectus femoris (RF and left tibialis anterior (TA muscles. TMS results showed that significant declines in SICI and prominent increases in MEPs of the left TA and left RF during unilateral movements. Cortical activations were associated with the muscles contracting during the movements. The present data demonstrate that activation of the ipsilateral M1 on leg representation could be increased during unilateral movement. However, no homologous muscle-dominant effect was evident in the leg muscles. The results may reflect that functional coupling of bilateral leg muscles is a reciprocal

  5. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1996-01-01

    Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight...

  6. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles.

    Science.gov (United States)

    Senefeld, Jonathon; Yoon, Tejin; Bement, Marie Hoeger; Hunter, Sandra K

    2013-09-01

    Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). Power (from MVCCs) decreased similarly for men and women for both muscles (P > 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P muscle fatigue often observed during isometric tasks was diminished during fast dynamic contractions for upper and lower limb muscles. Copyright © Published 2013 by Wiley Periodicals, Inc. This article is a US Government wmusork and, as such, is in the public domain in the United States of America.

  7. Monitoring of color and pH in muscles of pork leg (m. adductor and m. semimembranosus

    Directory of Open Access Journals (Sweden)

    Martina Bednářová

    2014-02-01

    Full Text Available In order to identify PSE pork meat, pH and color testing was performed directly in a cutting plant (72 hours post mortem in this research. Specifically pork leg muscles musculi adductor (AD and semimembranosus (SM from five selected suppliers (A, B, C, D, E were examined. Twenty samples of meat for each muscle were examined from each supplier. The measured pH values ranged from 5.43 to 5.63, and the L* values from 46.13 to 57.18. No statistically significant differences in pH values and color were detected among the various suppliers with the exception of the a* and b* parameters for two suppliers, namely A and B (p<0.01. On the contrary, a statistically significant difference (p<0.5 was recorded between individual muscles (AD/SM across all the suppliers (A, B, C, D, E with the exception of a* parameter from suppliers B, C, D, E, and pH values for the E supplier. Our results revealed that individual muscles differ in values of pH and color. In comparison with literature, pH and lightness L* values in musculus adductor point to PSE (pale, soft and exudative meat, while the values of musculus semimebranosus to RFN (red, firm and non-exudative. Use of PSE meat in production of meat products can cause several problems. In particular, it causes light color, low water-holding capacity, poor fat emulsifying ability, lower yield, granular or crumbly texture and poor consistency of the finished product. Therefore classification of the meat directly cutting plant may be possible solution for this problem. The finished product pruduces from muscles of musculi semimembranosus can obtain better quality than the finished product from musculi adductor.

  8. The effects of kinesthetic illusory sensation induced by a visual stimulus on the corticomotor excitability of the leg muscles.

    Science.gov (United States)

    Aoyama, T; Kaneko, F; Hayami, T; Shibata, E

    2012-04-11

    A novel method of visual stimulus, reported by Kaneko et al. [14], induced a vivid kinesthetic illusion and increased the corticomotor excitability of the finger muscles without any overt movement. To explore the effect of this method on the lower limbs, motor evoked potentials (MEP) were recorded from the left tibialis anterior (TA) and soleus muscles using transcranial magnetic stimulation (TMS). A computer screen that showed the moving image of an ankle movement was placed over the subject's leg, and its position was modulated to induce an illusory sensation that the subject's own ankle was moving (illusion condition). TMS was delivered at rest and at two different times during the illusion condition (ankle dorsiflexion phase: illusion-DF; ankle plantarflexion phase: illusion-PF). The MEP amplitude of the TA, which is the agonist muscle for ankle dorsiflexion, was significantly increased during the illusion-DF condition. This indicated that the visual stimulus showing the moving image of an ankle movement could induce a kinesthetic illusion and selectively increase the corticomotor excitability in an agonist muscle for an illusion, as was previously reported for an upper limb. The MEP amplitude of the soleus, which is the agonist muscle for ankle plantarflexion, increased during the illusion-PF condition, but not significantly. Because of the vividness of the illusory sensation was significantly greater during the illusion-DF condition than the illusion-PF condition, we concluded that the vividness of the illusory sensation had a crucial role in increasing corticomotor excitability. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Measuring Clearance Mechanics Based on Dynamic Leg Length

    Science.gov (United States)

    Khamis, Sam; Danino, Barry; Hayek, Shlomo; Carmeli, Eli

    2018-01-01

    The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant…

  10. Divergent muscle sympathetic responses to dynamic leg exercise in heart failure and age-matched healthy subjects.

    Science.gov (United States)

    Notarius, Catherine F; Millar, Philip J; Murai, Hisayoshi; Morris, Beverley L; Marzolini, Susan; Oh, Paul; Floras, John S

    2015-02-01

    People with diminished ventricular contraction who develop heart failure have higher sympathetic nerve firing rates at rest compared with healthy individuals of a similar age and this is associated with less exercise capacity. During handgrip exercise, sympathetic nerve activity to muscle is higher in patients with heart failure but the response to leg exercise is unknown because its recording requires stillness. We measured sympathetic activity from one leg while the other leg cycled at a moderate level and observed a decrease in nerve firing rate in healthy subjects but an increase in subjects with heart failure. Because these nerves release noradrenaline, which can restrict muscle blood flow, this observation helps explain the limited exercise capacity of patients with heart failure. Lower nerve traffic during exercise was associated with greater peak oxygen uptake, suggesting that if exercise training attenuated sympathetic outflow functional capacity in heart failure would improve. The reflex fibular muscle sympathetic nerve (MSNA) response to dynamic handgrip exercise is elicited at a lower threshold in heart failure with reduced ejection fraction (HFrEF). The present aim was to test the hypothesis that the contralateral MSNA response to mild to moderate dynamic one-legged exercise is augmented in HFrEF relative to age- and sex-matched controls. Heart rate (HR), blood pressure and MSNA were recorded in 16 patients with HFrEF (left ventricular ejection fraction = 31 ± 2%; age 62 ± 3 years, mean ± SE) and 13 healthy control subjects (56 ± 2 years) before and during 2 min of upright one-legged unloaded cycling followed by 2 min at 50% of peak oxygen uptake (V̇O2,peak). Resting HR and blood pressure were similar between groups whereas MSNA burst frequency was higher (50.0 ± 2.0 vs. 42.3 ± 2.7 bursts min(-1), P = 0.03) and V̇O2,peak lower (18.0 ± 2.0 vs. 32.6 ± 2.8 ml kg(-1) min(-1), P Exercise increased HR (P exercise in the healthy controls but

  11. Age Differences in Dynamic Fatigability and Variability of Arm and Leg Muscles: Associations with Physical Function

    Science.gov (United States)

    Senefeld, Jonathon; Yoon, Tejin; Hunter, Sandra K.

    2016-01-01

    Introduction It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. Methods 35 young (16 males; 21.0±2.6 years) and 32 old (18 males; 71.3±6.2 years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3 s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. Results Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, Pmuscles was associated with greater walking endurance (r=−0.34, P=0.048) and balance (r=−0.41, P=0.014) among old adults. Conclusions An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance. PMID:27989926

  12. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis.

    Science.gov (United States)

    Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati

    2013-01-01

    BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (Pafter the HEP (PAfter the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.

  13. The effects of performing a one-legged bridge with hip abduction and use of a sling on trunk and lower extremity muscle activation in healthy adults

    OpenAIRE

    Choi, Kyuju; Bak, Jongwoo; Cho, Minkwon; Chung, Yijung

    2016-01-01

    [Purpose] This study investigated the changes in the muscle activities of the trunk and lower limbs of healthy adults during a one-legged bridge exercise using a sling, and with the addition of hip abduction. [Subjects and Methods] Twenty-seven healthy individuals participated in this study (14 males and 13 females). The participants were instructed to perform the bridge exercises under five different conditions. Trunk and lower limb muscle activation of the erector spinae (ES), external obli...

  14. Contribution of Leg-Muscle Forces to Paddle Force and Kayak Speed During Maximal-Effort Flat-Water Paddling.

    Science.gov (United States)

    Nilsson, Johnny E; Rosdahl, Hans G

    2016-01-01

    The purpose was to investigate the contribution of leg-muscle-generated forces to paddle force and kayak speed during maximal-effort flat-water paddling. Five elite male kayakers at national and international level participated. The participants warmed up at progressively increasing speeds and then performed a maximal-effort, nonrestricted paddling sequence. This was followed after 5 min rest by a maximal-effort paddling sequence with the leg action restricted--the knee joints "locked." Left- and right-side foot-bar and paddle forces were recorded with specially designed force devices. In addition, knee angular displacement of the right and left knees was recorded with electrogoniometric technique, and the kayak speed was calculated from GPS signals sampled at 5 Hz. The results showed that reduction in both push and pull foot-bar forces resulted in a reduction of 21% and 16% in mean paddle-stroke force and mean kayak speed, respectively. Thus, the contribution of foot-bar force from lower-limb action significantly contributes to kayakers' paddling performance.

  15. The effects of a weight belt on trunk and leg muscle activity and joint kinematics during the squat exercise.

    Science.gov (United States)

    Zink, A J; Whiting, W C; Vincent, W J; McLaine, A J

    2001-05-01

    Fourteen healthy men participated in a study designed to examine the effects of weight-belt use on trunk- and leg-muscle myoelectric activity (EMG) and joint kinematics during the squat exercise. Each subject performed the parallel back squat exercise at a self-selected speed according to his own technique with 90% of his IRM both without a weight belt (NWB) and with a weight belt (WB). Myoelectric activity of the right vastus lateralis, biceps femoris, adductor magnus, gluteus maximus, and erector spinae was recorded using surface electrodes. Subjects were videotaped from a sagittal plane view while standing on a force plate. WB trials were completed significantly faster (p squat exercise may affect the path of the barbell and speed of the lift without altering myoelectric activity. This suggests that the use of a weight belt may improve a lifter's explosive power by increasing the speed of the movement without compromising the joint range of motion or overall lifting technique.

  16. Comparison of Abdominal Muscle Activity During a Single-Legged Hold in the Hook-Lying Position on the Floor and on a Round Foam Roll

    Science.gov (United States)

    Kim, Su-Jung; Kwon, Oh-Yun; Yi, Chung-Hwi; Jeon, Hye-Seon; Oh, Jae-Seop; Cynn, Heon-Seock; Weon, Jong-Hyuck

    2011-01-01

    Context: To improve trunk stability or trunk muscle strength, many athletic trainers and physiotherapists use various types of unstable equipment for training. The round foam roll is one of those unstable pieces of equipment and may be useful for improving trunk stability. Objective: To assess the effect of the supporting surface (floor versus round foam roll) on the activity of abdominal muscles during a single-legged hold exercise performed in the hook-lying position on the floor and on a round foam roll. Design: Crossover study. Setting: University research laboratory. Patients or Other Participants: Nineteen healthy volunteers (11 men, 8 women) from a university population. Interventions : The participants were instructed to perform a single-legged hold exercise while in the hook-lying position on the floor (stable surface) and on a round foam roll (unstable surface). Main Outcome Measure(s): Surface electromyography (EMG) signals were recorded from the bilateral rectus abdominis, internal oblique, and external oblique muscles. Dependent variables were examined with a paired t test. Results: The EMG activities in all abdominal muscles were greater during the single-legged hold exercise performed on the round foam roll than on the stable surface. Conclusions: The single-legged hold exercise in the hook-lying position on an unstable supporting surface induced greater abdominal muscle EMG amplitude than the same exercise performed on a stable supporting surface. These results suggest that performing the single-legged hold exercise while in the hook-lying position on a round foam roll is useful for activating the abdominal muscles. PMID:21944072

  17. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  18. Leg blood flow is impaired during small muscle mass exercise in patients with COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2017-01-01

    -extensor exercise, and during arterial infusions of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively. Ten patients with moderate to severe COPD and eight age- and sex matched healthy controls were studied. During knee-extensor exercise (10 W), leg blood flow was lower in the patients compared...... the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response...

  19. Trunk and hip muscle recruitment patterns during the prone leg extension following a lateral ankle sprain: A prospective case study pre and post injury

    Directory of Open Access Journals (Sweden)

    Lehman Gregory J

    2006-02-01

    Full Text Available Abstract Background and case presentation The prone leg extension (PLE is commonly used to identify dysfunction of muscle recruitment patterns. The prone leg extension is theorized to identify proximal muscle disturbances which are a result of distal injury or dysfunction (i.e. an ankle sprain. This case study compares the trunk and hip muscle (bilateral lower erector spine, ipsilateral hamstring and ipsilateral gluteus maximus timing during a PLE of a 27 year old female runner during a healthy state (pre ankle sprain and 2 and 8 weeks post ankle sprain. Results and discussion The gluteus maximus muscle onsets at 8 weeks post injury appeared to occur earlier compared with 2 weeks post injury. The Right Erector Spinae at 8 weeks post injury was also active earlier compared with the participant's non-injured state. A large degree of variability can be noted within trials on the same day for all muscle groups. Conclusion An acute ankle injury did not result in a delay in gluteus maximus muscle activation. The utility of the prone leg extension as a clinical and functional test is questionable due to the normal variability seen during the test and our current inability to determine what is normal and what is dysfunctional.

  20. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis.

    Science.gov (United States)

    Xu, Zhe-rong; Tan, Zhong-ju; Zhang, Qin; Gui, Qi-feng; Yang, Yun-mei

    2015-01-14

    In the present study, we performed a meta-analysis to assess the ability of leucine supplementation to increase the muscle protein fraction synthetic rate and to augment lean body mass or leg lean mass in elderly patients. A literature search was conducted on Medline, Cochrane, EMBASE and Google Scholar databases up to 31 December 2013 for clinical trials that investigated the administration of leucine as a nutrient that affects muscle protein metabolism and muscle mass in elderly subjects. The included studies were randomised controlled trials. The primary outcome for the meta-analysis was the protein fractional synthetic rate. Secondary outcomes included lean body mass and leg lean mass. A total of nine studies were included in the meta-analysis. The results showed that the muscle protein fractional synthetic rate after intervention significantly increased in the leucine group compared with the control group (pooled standardised difference in mean changes 1·08, 95% CI 0·50, 1·67; Pmass (pooled standardised difference in mean changes 0·18, 95% CI - 0·18, 0·54; P= 0·318) or leg lean mass (pooled standardised difference in mean changes 0·006, 95% CI - 0·32, 0·44; P= 0·756). These findings suggest that leucine supplementation is useful to address the age-related decline in muscle mass in elderly individuals, as it increases the muscle protein fractional synthetic rate.

  1. Trunk and hip muscle recruitment patterns during the prone leg extension following a lateral ankle sprain: A prospective case study pre and post injury

    Science.gov (United States)

    Lehman, Gregory J

    2006-01-01

    Background and case presentation The prone leg extension (PLE) is commonly used to identify dysfunction of muscle recruitment patterns. The prone leg extension is theorized to identify proximal muscle disturbances which are a result of distal injury or dysfunction (i.e. an ankle sprain). This case study compares the trunk and hip muscle (bilateral lower erector spine, ipsilateral hamstring and ipsilateral gluteus maximus) timing during a PLE of a 27 year old female runner during a healthy state (pre ankle sprain) and 2 and 8 weeks post ankle sprain. Results and discussion The gluteus maximus muscle onsets at 8 weeks post injury appeared to occur earlier compared with 2 weeks post injury. The Right Erector Spinae at 8 weeks post injury was also active earlier compared with the participant's non-injured state. A large degree of variability can be noted within trials on the same day for all muscle groups. Conclusion An acute ankle injury did not result in a delay in gluteus maximus muscle activation. The utility of the prone leg extension as a clinical and functional test is questionable due to the normal variability seen during the test and our current inability to determine what is normal and what is dysfunctional. PMID:16504168

  2. Response of the muscles in the pelvic floor and the lower lateral abdominal wall during the Active Straight Leg Raise in women with and without pelvic girdle pain: An experimental study.

    Science.gov (United States)

    Sjödahl, Jenny; Gutke, Annelie; Ghaffari, Ghazaleh; Strömberg, Tomas; Öberg, Birgitta

    2016-06-01

    The relationship between activation of the stabilizing muscles of the lumbopelvic region during the Active Straight Leg Raise test and pelvic girdle pain remains unknown. Therefore, the aim was to examine automatic contractions in relation to pre-activation in the muscles of the pelvic floor and the lower lateral abdominal wall during leg lifts, performed as the Active Straight Leg Raise test, in women with and without persistent postpartum pelvic girdle pain. Sixteen women with pelvic girdle pain and eleven pain-free women performed contralateral and ipsilateral leg lifts, while surface electromyographic activity was recorded from the pelvic floor and unilaterally from the lower lateral abdominal wall. As participants performed leg lifts onset time was calculated as the time from increased muscle activity to leg lift initiation. No significant differences were observed between the groups during the contralateral leg lift. During the subsequent ipsilateral leg lift, pre-activation in the pelvic floor muscles was observed in 36% of women with pelvic girdle pain and in 91% of pain-free women (P=0.01). Compared to pain-free women, women with pelvic girdle pain also showed significantly later onset time in both the pelvic floor muscles (P=0.01) and the muscles of the lower lateral abdominal wall (Pactivation patterns influence women's ability to stabilize the pelvis during leg lifts. This could be linked to provocation of pain during repeated movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Leg for life? The use of sartorius muscle flap for the treatment of an infected vascular reconstructions after VA-ECMO use. A case report

    Directory of Open Access Journals (Sweden)

    George V. Patrut

    2015-01-01

    Conclusion: Although ischemic complications associated with VA-ECMO are accepted by intensivists under the slogan “leg for life”, for the repair of the femoral artery in the presence of groin infection the sartorius muscle remains an efficient solution for limb salvage.

  4. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking

    NARCIS (Netherlands)

    Hu, H.; Meijer, O.G.; van Dieen, J.H.; Hodges, P.W.; Bruijn, S.M.; Strijers, R.L.M.; Nanayakkara, P.W.B.; van Royen, B.J.; Wu, W.H.; Xia, C.

    2010-01-01

    Women with pregnancy-related pelvic girdle pain (PPP), or athletes with groin pain, may have trouble with the active straight leg raise (ASLR), for which a pelvic belt can be beneficial. How the problems emerge, or how the belt works, remains insufficiently understood. We assessed muscle activity

  5. Repair of a soft tissue defect of medial malleolus with cross-leg bridge free transfer of anterolateral thigh muscle flap: a case report

    Directory of Open Access Journals (Sweden)

    ZHANG Gong-lin

    2012-11-01

    Full Text Available 【Abstract】A 38-year-old man sustained a traffic accident injury to his right medial malleolus and leg. It was an open fracture of the right tibia and fibula accompanied by a large soft tissue defect of the right medial malleolus sized 12 cm×4 cm. Doppler examination revealed that the tibialis posterior vessel was occluded due to thrombosis. The anterior tibial artery was patent. Three weeks after injury, the left anterolateral thigh muscle flap was harvested and transplanted to the right medial malleolus defect area for repair of the soft tissue defect, and an end-to-side anasto-mosis was performed between the posterior tibial vessel of the contralateral leg and the muscle flap’s vascular pedicle. A split thickness free skin graft was used to cover the muscle flap and around the flap’s vascular pedicle. The vascular pedicle was cut off after 28 days and the muscle flap sur-vived completely. After 3-year follow-up postoperatively, the right tibia and fibula fractures were confirmed healing radiologically. The posterior tibial artery of contralateral leg was patent by clinical and Doppler examinations. This tech-nique can be used to preserve the flow and patency of re-cipient arteries. Key words: Surgical flaps; Soft tissue injuries; Leg injuries; Wound healing

  6. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Laughlin, M H

    2011-12-01

    Intermittent pneumatic leg compressions (IPC) have proven to be an effective noninvasive approach for treatment of patients with claudication, but the mechanisms underlying the clinical benefits remain elusive. In the present study, a rodent model of claudication produced by bilateral ligation of the femoral artery was used to investigate the acute impact of a single session of IPC (150 min) on hemodynamics, skeletal muscle (tibialis anterior), and isolated collateral artery (perforating artery) expression of a subset of genes associated with inflammation and vascular remodeling. In addition, the effect of compression frequency (15 vs. 3 compressions/min) on the expression of these factors was studied. In ligated animals, IPC evoked an increase of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CXCL1) mRNA (P < 0.01) and immunostaining (P < 0.05), as well as a minor increase in VEGF immunostaining in the muscle endomysium 150 min postintervention. Further, collateral arteries from these animals showed an increased expression of MCP-1 (approximately twofold, P = 0.02). These effects were most evident in the group exposed to the high-frequency protocol (15 compressions/min). In contrast, IPC in sham-operated control animals evoked a modest initial upregulation of VEGF (P = 0.01), MCP-1 (P = 0.02), and CXCL1 (P = 0.03) mRNA in the muscle without concomitant changes in protein levels. No changes in gene expression were observed in arteries isolated from sham animals. In conclusion, IPC acutely up-regulates the expression of important factors involved in vascular remodeling in the compressed muscle and collateral arteries in a model of hindlimb ischemia. These effects appear to be dependent on the compression frequency, such that a high compression frequency (15 compressions/min) evokes more consistent and robust effects compared with the frequency commonly employed clinically to treat patients with claudication (3

  7. Bilateral idiopathic calf muscle hypertrophy: an exceptional cause of unsightly leg curvature.

    Science.gov (United States)

    Herlin, C; Chaput, B; Rivier, F; Doucet, J C; Bigorre, M; Captier, G

    2015-04-01

    The authors present the management of a young female patient who presented with longstanding bilateral calf muscle hypertrophy, with no known cause. Taking into account the patient's wishes and the fact that the hypertrophy was mainly located in the posteromedial compartment, we chose to carry out a subtotal bilateral resection of medial gastrocnemius muscles. This procedure was performed with an harmonic scalpel, permitting a excellent cosmetic result while avoiding complications or functional impairment. After a reviewing of the commonly used techniques, the authors discuss the chosen surgical approach taking into account its clinical particularity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    Science.gov (United States)

    Tischler, M. E.

    1984-01-01

    Metabolic changes on hypokinetic rats were measured. Two groups of animals were studied: (1) weight bearing control which were tail casted but allowed to walk on all four limbs, and (2) hypokinetic with no load bearing of the hindlimbs. The control and hypokinetic rats gained weight at a steady and similar rate over 6 days. Hypokinesia for 6 days led to significantly lower relative weights of the soleus, gastrocnemius and plantaris muscles. Hypokinesia did not effect the relative mass of the anterior tibialis or extensor digitorum longus (EDL) muscles.

  9. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A suppressed during prolonged physical inactivity (sitting

    Directory of Open Access Journals (Sweden)

    Zderic Theodore W

    2012-10-01

    Full Text Available Abstract Background Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting. Methods Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests. Results These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A, a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions

  10. In the unloaded lower leg, vibration extrudes venous blood out of the calf muscles probably by direct acceleration and without arterial vasodilation.

    Science.gov (United States)

    Zange, Jochen; Molitor, Sven; Illbruck, Agnes; Müller, Klaus; Schönau, Eckhard; Kohl-Bareis, Matthias; Rittweger, Jörn

    2014-05-01

    During vibration of the whole unloaded lower leg, effects on capillary blood content and blood oxygenation were measured in the calf muscle. The hypotheses predicted extrusion of venous blood by a tonic reflex contraction and that reactive hyperaemia could be observed after vibration. Twelve male subjects sat in front of a vibration platform with their right foot affixed to the platform. In four intervals of 3-min duration vibration was applied with a peak-to-peak displacement of 5 mm at frequencies 15 or 25 Hz, and two foot positions, respectively. Near infrared spectroscopy was used for measuring haemoglobin oxygen saturation (SmO2) and the concentration of total haemoglobin (tHb) in the medial gastrocnemius muscle. Within 30 s of vibration SmO2 increased from 55 ± 1 to 66 ± 1 % (mean ± SE). Within 1.5 min afterwards SmO2 decreased to a steady state (62 ± 1 %). During the following 3 min of recovery SmO2 slowly decreased back to base line. THb decreased within the first 30 s of vibration, remained almost constant until the end of vibration, and slowly recovered to baseline afterwards. No significant differences were found for the two vibration frequencies and the two foot positions. The relaxed and unloaded calf muscles did not respond to vibration with a remarkable reflex contraction. The acceleration by vibration apparently ejected capillary venous blood from the muscle. Subsequent recovery did not match with a reactive hyperaemia indicating that the mere mechanical stress did not cause vasodilation.

  11. Bilateral motor unit synchronization of leg muscles during a simple dynamic balance task

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; Roerdink, M.; Flipse, I.; Groenewoud, K.; Beek, P.J.

    2009-01-01

    To handle the rich repertoire of behavioural goals, the CNS has to control the many degrees of freedom of the musculoskeletal system in a flexible manner. This problem can be drastically simplified if muscle synergies serve as the to-be-controlled building blocks of motor performance, instead of the

  12. Efficacy of Nintendo Wii Training on Mechanical Leg Muscle Function and Postural Balance in Community-Dwelling Older Adults

    DEFF Research Database (Denmark)

    Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten

    2013-01-01

    BACKGROUND: Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown....... METHODS: This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary...... end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. RESULTS: Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction...

  13. The influence of foot position on lower leg muscle activity during a heel raise exercise measured with fine-wire and surface EMG.

    Science.gov (United States)

    Akuzawa, Hiroshi; Imai, Atsushi; Iizuka, Satoshi; Matsunaga, Naoto; Kaneoka, Koji

    2017-11-01

    Exercises for lower leg muscles are important to improve function. To examine the influence of foot position on lower leg muscle activity during heel raises. Cross-sectional laboratory study. Laboratory. Fourteen healthy men participated in this study. The muscle activity levels of the tibialis posterior (TP), peroneus longus (PL), flexor digitorum longus (FDL) and medial gastrocnemius (MG) were measured. The heel raises consisted of three foot positions: 1) neutral, 2) 30° abduction, and 3) 30° adduction. The EMG data for five repetitions of each foot position were normalized to maximum voluntary contraction. One-way repeated measure ANOVA was employed for statistical analysis. The muscle activity level of TP, PL and FDL was significantly different between the three foot positions during the heel raises. TP and FDL showed the highest activity level in 30° foot adduction while PL demonstrated the highest activity level in 30° foot abduction. Heel raises with 30° foot adduction and abduction positions can change lower leg muscle activity; These findings suggest that altering foot posture during the heel raise exercise may benefit patients with impaired TP, PL or FDL function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Muscle activity and spine load during anterior chain whole body linkage exercises: the body saw, hanging leg raise and walkout from a push-up.

    Science.gov (United States)

    McGill, Stuart; Andersen, Jordan; Cannon, Jordan

    2015-01-01

    This study examined anterior chain whole body linkage exercises, namely the body saw, hanging leg raise and walkout from a push-up. Investigation of these exercises focused on which particular muscles were challenged and the magnitude of the resulting spine load. Fourteen males performed the exercises while muscle activity, external force and 3D body segment motion were recorded. A sophisticated and anatomically detailed 3D model used muscle activity and body segment kinematics to estimate muscle force, and thus sensitivity to each individual's choice of motor control for each task. Gradations of muscle activity and spine load characteristics were observed across tasks. On average, the hanging straight leg raise created approximately 3000 N of spine compression while the body saw created less than 2500 N. The hanging straight leg raise created the highest challenge to the abdominal wall (>130% MVC in rectus abdominis, 88% MVC in external oblique). The body saw resulted in almost 140% MVC activation of the serratus anterior. All other exercises produced substantial abdominal challenge, although the body saw did so in the most spine conserving way. These findings, along with consideration of an individual's injury history, training goals and current fitness level, should assist in exercise choice and programme design.

  15. T₂ mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Arpan, Ishu; Forbes, Sean C; Lott, Donovan J; Senesac, Claudia R; Daniels, Michael J; Triplett, William T; Deol, Jasjit K; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2013-03-01

    Skeletal muscles of children with Duchenne muscular dystrophy (DMD) show enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in the MR proton transverse relaxation time (T₂). Therefore, the examination of T₂ changes in individual muscles may be useful for the monitoring of disease progression in DMD. In this study, we used the mean T₂, percentage of elevated pixels and T₂ heterogeneity to assess changes in the composition of dystrophic muscles. In addition, we used fat saturation to distinguish T₂ changes caused by edema and inflammation from fat infiltration in muscles. Thirty subjects with DMD and 15 age-matched controls underwent T₂ -weighted imaging of their lower leg using a 3-T MR system. T₂ maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). The mean T₂ of the traced regions of interest, width of the T₂ histograms and percentage of elevated pixels were calculated. We found that, even in young children with DMD, lower leg muscles showed elevated mean T₂, were more heterogeneous and had a greater percentage of elevated pixels than in controls. T₂ measures decreased with fat saturation, but were still higher (P tissue in children with DMD, even in the early stages of the disease. Therefore, T₂ mapping may prove to be clinically useful in the monitoring of muscle changes caused by the disease process or by therapeutic interventions in DMD. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Twelve weeks' progressive resistance training combined with protein supplementation beyond habitual intakes increases upper leg lean tissue mass, muscle strength and extended gait speed in healthy older women.

    Science.gov (United States)

    Francis, Peter; Mc Cormack, William; Toomey, Clodagh; Norton, Catherine; Saunders, Jean; Kerin, Emmet; Lyons, Mark; Jakeman, Philip

    2017-12-01

    The age-related decline in functional capability is preceded by a reduction in muscle quality. The purpose of this study was to assess the combined effects of progressive resistance training (PRT) and protein supplementation beyond habitual intakes on upper leg lean tissue mass (LTM), muscle quality and functional capability in healthy 50-70 years women. In a single-blinded, randomized, controlled design, 57 healthy older women (age 61.1 ± 5.1 years, 1.61 ± 0.65 m, 65.3 ± 15.3 kg) consumed 0.33 g/kg body mass of a milk-based protein matrix (PRO) for 12 weeks. Of the 57 women, 29 also engaged in a PRT intervention (PRO + PRT). In comparison to the PRO group (n = 28), those in the PRO + PRT group had an increase in upper leg LTM [0.04 (95% CI -0.07 to 0.01) kg vs. 0.13 (95% CI 0.08-0.18) kg, P = 0.027], as measured by Dual-energy X-ray absorptiometry; an increase in knee extensor (KE) torque [-1.6 (95% CI -7.3 to 4.4 N m) vs. 10.2 (95% CI 4.3-15.8 N m), P = 0.007], as measured from a maximal voluntary isometric contraction (Con-Trex MJ; CMV AG); and an increase in extended gait speed [-0.01 (95% CI -0.52-0.04) m s -1 vs. 0.10 (95% CI 0.05-0.22) m s -1 , P = 0.001] as measured from a maximal 900 m effort. There was no difference between groups in the time taken to complete 5 chair rises or the number of chair rises performed in 30 s (P > 0.05). PRT in healthy older women ingesting a dietary protein supplement is an effective strategy to improve upper leg LTM, KE torque and extended gait speed in healthy older women.

  17. Intermittent pneumatic leg compressions enhance muscle performance and blood flow in a model of peripheral arterial insufficiency.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Yang, Hsiao T; Terjung, Ronald; Laughlin, M H

    2012-05-01

    Despite the escalating prevalence in the aging population, few therapeutic options exist to treat patients with peripheral arterial disease. Application of intermittent pneumatic leg compressions (IPC) is regarded as a promising noninvasive approach to treat this condition, but the clinical efficacy, as well the mechanistic basis of action of this therapy, remain poorly defined. We tested the hypothesis that 2 wk of daily application of IPC enhances exercise tolerance by improving blood flow and promoting angiogenesis in skeletal muscle in a model of peripheral arterial insufficiency. Male Sprague-Dawley rats were subjected to bilateral ligation of the femoral artery and randomly allocated to treatment or sham groups. Animals were anesthetized daily and exposed to 1-h sessions of bilateral IPC or sham treatment for 14-16 consecutive days. A third group of nonligated rats was also studied. Marked increases in treadmill exercise tolerance (∼33%, P < 0.05) and improved muscle performance in situ (∼10%, P < 0.05) were observed in IPC-treated animals. Compared with sham-treated controls, blood flow measured with isotope-labeled microspheres during in situ contractions tended to be higher in IPC-treated animals in muscles composed of predominantly fast-twitch white fibers, such as the plantaris (∼93%, P = 0.02). Capillary contacts per fiber and citrate synthase activity were not significantly altered by IPC treatment. Collectively, these data indicate that IPC improves exercise tolerance in a model of peripheral arterial insufficiency in part by enhancing blood flow to collateral-dependent tissues.

  18. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate‐intensity exercise in human skeletal muscle

    Science.gov (United States)

    Gram, M.; Dybboe, R.; Kuhlman, A. B.; Prats, C.; Greenhaff, P. L.; Constantin‐Teodosiu, D.; Birk, J. B.; Wojtaszewski, J. F. P.; Dela, F.; Helge, J. W.

    2016-01-01

    Key points This study aimed to provide molecular insight into the differential effects of age and physical inactivity on the regulation of substrate metabolism during moderate‐intensity exercise.Using the arteriovenous balance technique, we studied the effect of immobilization of one leg for 2 weeks on leg substrate utilization in young and older men during two‐legged dynamic knee‐extensor moderate‐intensity exercise, as well as changes in key proteins in muscle metabolism before and after exercise.Age and immobilization did not affect relative carbohydrate and fat utilization during exercise, but the older men had higher uptake of exogenous fatty acids, whereas the young men relied more on endogenous fatty acids during exercise.Using a combined whole‐leg and molecular approach, we provide evidence that both age and physical inactivity result in intramuscular lipid accumulation, but this occurs only in part through the same mechanisms. Abstract Age and inactivity have been associated with intramuscular triglyceride (IMTG) accumulation. Here, we attempt to disentangle these factors by studying the effect of 2 weeks of unilateral leg immobilization on substrate utilization across the legs during moderate‐intensity exercise in young (n = 17; 23 ± 1 years old) and older men (n = 15; 68 ± 1 years old), while the contralateral leg served as the control. After immobilization, the participants performed two‐legged isolated knee‐extensor exercise at 20 ± 1 W (∼50% maximal work capacity) for 45 min with catheters inserted in the brachial artery and both femoral veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (respiratory quotient) did not differ between groups or legs. Leg fatty acid uptake was greater in older than in young men, and although young men demonstrated net

  19. Community-dwelling female fallers have lower muscle density in their lower legs than non-fallers: evidence from the Saskatoon Canadian Multicentre Osteoporosis Study (CaMos) cohort.

    Science.gov (United States)

    Frank, A W; Farthing, J P; Chilibeck, P D; Arnold, C M; Olszynski, W P; Kontulainen, S A

    2015-01-01

    Our objectives were to determine whether peripheral quantitative computed tomography (pQCT)-derived lower leg muscle density and area, and basic functional mobility differ between community-dwelling older women who do and do not report recent falls. Matched case-control comparison. Academic biomedical imaging laboratory. 147 Women, 60 years or older (mean age 74.3 y, SD 7.7) recruited from a longitudinal, population-based cohort representing community-dwelling residents in the area of Saskatoon, Canada. A cross-sectional pQCT scan of the non-dominant lower leg was acquired to determine muscle density and area. Basic functional mobility (Timed Up and Go Test [TUG]) and SF36 health status were also measured. Fallers (one or more falls) and non-fallers (no falls) were grouped according to a 12-month retrospective survey and matched on measured covariates. The muscle density of fallers (n = 35) was a median of 2.1 mg/cm3 lower (P = 0.019, 95% C.I. -3.9 to -0.1) than non-fallers (n = 78) after matching and adjusting for age, body mass index, and SF36 general health scores. Muscle area and TUG did not differ between fallers and non-fallers. Muscle density may serve as a physiological marker in the assessment of lower leg muscular health and fall risk in community-dwelling elderly women. These results are limited to our study population who were mostly Caucasian. Prospective studies are required for verification.

  20. Muscle ion transporters and antioxidative proteins have different adaptive potential in arm than in leg skeletal muscle with exercise training

    DEFF Research Database (Denmark)

    Mohr, Magni; Nielsen, Tobias Schmidt; Weihe, Pál

    2017-01-01

    It was evaluated whether upper-body compared to lower-body musculature exhibits a different phenotype in relation to capacity for handling reactive oxygen species (ROS), H(+), La(-), Na(+), K(+) and also whether it differs in adaptive potential to exercise training. Eighty-three sedentary...... premenopausal women aged 45 ± 6 years (mean ± SD) were randomized into a high-intensity intermittent swimming group (HIS, n = 21), a moderate-intensity swimming group (MOS, n = 21), a soccer group (SOC, n = 21), or a control group (CON, n = 20). Intervention groups completed three weekly training sessions...... for 15 weeks, and pre- and postintervention biopsies were obtained from deltoideus and vastus lateralis muscle. Before training, monocarboxylate transporter 4 (MCT4), Na(+)/K(+) pump α2, and superoxide dismutase 2 (SOD2) expressions were lower (P

  1. Venogram - leg

    Science.gov (United States)

    Phlebogram - leg; Venography - leg; Angiogram - leg ... into a vein in the foot of the leg being looked at. An intravenous (IV) line is ... vein. A tourniquet may be placed on your leg so the dye flows into the deeper veins. ...

  2. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait

    DEFF Research Database (Denmark)

    Hvass Petersen, Tue; Kliim-Due, Mette; Farmer, Simon F.

    2010-01-01

    Corticospinal drive has been shown to contribute significantly to the control of walking in adult human subjects. It is unknown to what an extent functional change in this drive is important for maturation of gait in children. In adults, populations of motor units within a muscle show synchronized...... discharges during walking with pronounced coherence in the 15-50 Hz frequency band. This coherence has been shown to depend on cortical drive. Here, we investigated how this coherence changes with development. 44 healthy children aged 4 - 15 yrs participated in the study. Electromyographic activity (EMG...

  3. Does peroperative external pneumatic leg muscle compression prevent post-operative venous thrombosis in neurosurgery?

    Science.gov (United States)

    Bynke, O; Hillman, J; Lassvik, C

    1987-01-01

    Post-operative deep venous thrombosis (DVT) is a frequent and potentially life-threatening complication in neurosurgery. In this field of surgery, with its special demands for exact haemostasis, prophylaxis against deep venous thrombosis with anticoagulant drugs has been utilized only reluctantly. Postoperative pneumatic muscle compression (EPC) has been shown to be effective, although there are several practical considerations involved with this method which limit its clinical applicability. In the present study per-operative EPC was evaluated and was found to provide good protection against DVT in patients with increased risk from this complication. This method has the advantage of being effective, safe, inexpensive and readily practicable.

  4. Improvement in upper leg muscle strength underlies beneficial effects of exercise therapy in knee osteoarthritis: secondary analysis from a randomised controlled trial.

    Science.gov (United States)

    Knoop, J; Steultjens, M P M; Roorda, L D; Lems, W F; van der Esch, M; Thorstensson, C A; Twisk, J W R; Bierma-Zeinstra, S M A; van der Leeden, M; Dekker, J

    2015-06-01

    Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee proprioception) underlie the beneficial effects of exercise therapy in patients with knee OA. Secondary analyses from a randomised controlled trial, with measurements at baseline, 6 weeks, 12 weeks and 38 weeks. Rehabilitation centre. One hundred and fifty-nine patients diagnosed with knee OA. Exercise therapy. Changes in pain [numeric rating scale (NRS)] and activity limitations [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and get-up-and-go test] during the study period. Independent variables were changes in upper leg muscle strength and knee joint proprioception (i.e. motion sense) during the study period. Longitudinal regression analyses (generalised estimating equation) were performed to analyse associations between changes in upper leg muscle strength and knee proprioception with changes in pain and activity limitations. Improved muscle strength was significantly associated with reductions in NRS pain {B coefficient -2.5 [95% confidence interval (CI) -3.7 to -1.4], meaning that every change of 1 unit of strength was linked to a change of -2.5 units of pain}, WOMAC physical function (-8.8, 95% CI -13.4 to -4.2) and get-up-and-go test (-1.7, 95% CI -2.4 to -1.0). Improved proprioception was not significantly associated with better outcomes of exercise therapy (P>0.05). Upper leg muscle strengthening is one of the mechanisms underlying the beneficial effects of exercise therapy in patients with knee OA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  5. Effect of Feedback Corrective Exercise on Knee Valgus and Electromyographic Activity of Lower Limb Muscles in Single Leg Squat

    Directory of Open Access Journals (Sweden)

    Negar Koorosh-fard

    2015-07-01

    Full Text Available Objective: The aim of this study was assessing the effect of feedback correcting exercise in front of mirror during running on frontal plane knee and pelvic kinematic and electromyography activity of some lower extremity muscles in single leg squat (SLS. Materials & Methods: This study was quasi experimental. 23 active female subjects participated in two experimental and control groups with mean age (21.86± 2.43 years .experimental group contains subjects with knee valgus and pelvic drop angle more than a mean plus one standard deviation of the population in functional SLS. Muscular activity (RMS of gluteus maximus, Gluteus medius, rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus, angle of knee valgus and pelvic drop were register in end of SLS Pre and post of 8 training sessions. Comparing Variable has done with independent t statistical test between 2 groups and pair sample t test within each groups with significant level of 0.05. Results: Statistical analysis Before training showed no significant differences in pelvic drop between two groups (P&ge0.05, but knee valgus angle was significantly more than control group (P&le0.05. In spit that most muscle activities (% MVC except biceps femoris (P&le0.05, were greater in experimental group, no significant difference (P&ge0.05 has seen in two groups. Comparing pre and post test has showed no significant difference in knee valgus of experimental group, however it decreased around 2 degrees and although %MVC decreased in all muscles, just rectuse femoris has shown significant difference (P&le0.05. No significant difference has seen in control group in all variables (P&ge0.05. Conclusion: Findings showed poor neuromuscular control in experimental group which improved to some extent after training because lower muscle activity and energy consumption in specific movement with similar kinematic indicate improvement of motor control or cause learning. It seems that

  6. Chronic impairment of leg muscle blood flow following cardiac catheterization in childhood

    International Nuclear Information System (INIS)

    Skovranek, J.; Samanek, M.

    1979-01-01

    In 99 patients with congenital heart defects or chronic respiratory disease without clinical symptoms of disturbances in peripheral circulation, resting and maximal blood flow in the anterior tibial muscle of both extremities were investigated 2.7 yrs (average) after cardiac catheterization. The method used involved 133 Xe clearance. Resting blood flow was normal and no difference could be demonstrated between the extremity originally used for catheterization and the contralateral control extremity. No disturbance in maximal blood flow could be proved in the extremity used for catheterization by the venous route only. Maximal blood flow was significantly lower in that extremity where the femoral artery had been catheterized or cannulated for pressure measurement and blood sampling. The disturbance in maximal flow was shown regardless of whether the arterial catheterization involved the Seldinger percutaneous technique, arteriotomy, or mere cannulation of the femoral artery. The values in the involved extremity did not differ significantly from the values in a healthy population

  7. Excitability changes in the left primary motor cortex innervating the hand muscles induced during speech about hand or leg movements.

    Science.gov (United States)

    Onmyoji, Yusuke; Kubota, Shinji; Hirano, Masato; Tanaka, Megumi; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-05-06

    In the present study, we used transcranial magnetic stimulation (TMS) to investigate the changes in the excitability of the left primary motor cortex (M1) innervating the hand muscles and in short-interval intracortical inhibition (SICI) during speech describing hand or leg movements. In experiment 1, we investigated the effects of the contents of speech on the amplitude of the motor evoked potentials (MEPs) induced during reading aloud and silent reading. In experiment 2, we repeated experiment 1 with an additional condition, the non-vocal oral movement (No-Voc OM) condition, and investigated the change in SICI induced in each condition using the paired TMS paradigm. The MEP observed in the reading aloud and No-Voc OM conditions exhibited significantly greater amplitudes than those seen in the silent reading conditions, irrespective of the content of the sentences spoken by the subjects or the timing of the TMS. There were no significant differences in SICI between the experimental conditions. Our findings suggest that the increased excitability of the left M1 hand area detected during speech was mainly caused by speech-related oral movements and the activation of language processing-related brain functions. The increased left M1 excitability was probably also mediated by neural mechanisms other than reduced SICI; i.e., disinhibition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Block-step asymmetry 5 years after large-head metal-on-metal total hip arthroplasty is related to lower muscle mass and leg power on the implant side.

    Science.gov (United States)

    Hjorth, M H; Stilling, M; Lorenzen, N D; Jakobsen, S S; Soballe, K; Mechlenburg, I

    2014-06-01

    Metal-on-metal articulations mimic the human hip anatomy, presumably lower dislocation rates and increase the range-of-motion. This study aims to measure the muscle mass and power of both legs in patients with unilateral metal-on-metal total hip arthroplasty, and to investigate their effect on block-step test, spatio-temporal gait parameters and self-reported function. Twenty-eight patients (7 women), mean age 50 (28-68) years, participated in a 5-7 year follow-up. Patients had received one type unilateral large-head metal-on-metal total hip articulation, all of which were well-functioning at follow-up. Mean muscle mass was measured by the total-body Dual energy X-ray Absorption scans, and muscle power was measured in a leg extensor power rig. Block-step test and spatio-temporal gait parameters were measured with an inertial measurement unit. Self-reported function was assessed by the Hip Disability and Osteoarthritis Outcome Score. We found a significant difference between the mean muscle mass of the implant-side leg and the non-implant-side leg in hip, thigh and calf areas (Ppower (P=0.025). Correlations between mean muscle mass and mean muscle power were significant for both the implant-side leg (r=0.45, P=0.018) and the non-implant-side leg (r=0.51, P=0.007). The difference in mean muscle power between legs correlated with block-step test asymmetry during ascending (r=0.40, P=0.047) and descending (r=0.53, P=0.006). Correlations between self-reported function and power of the implant-side leg were not significant. Young patients have not fully regained muscle mass, muscle power and function 5-7 years after metal-on-metal total hip arthroplasty. Copyright © 2014. Published by Elsevier Ltd.

  9. Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans.

    Science.gov (United States)

    Sheldon, Ryan D; Roseguini, Bruno T; Thyfault, John P; Crist, Brett D; Laughlin, M H; Newcomer, Sean C

    2012-06-01

    The mechanisms by which intermittent pneumatic leg compression (IPC) treatment effectively treats symptoms associated with peripheral artery disease remain speculative. With the aim of gaining mechanistic insight into IPC treatment, the purpose of this study was to investigate the effect of IPC frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression. In this two study investigation, healthy male subjects underwent an hour of either high-frequency (HF; 2-s inflation/3-s deflation) or low-frequency (LF; 4-s inflation/16-s deflation) IPC treatment of the foot and calf. In study 1 (n = 11; 23.5 ± 4.7 yr), subjects underwent both HF and LF treatment on separate days. Doppler/ultrasonography was used to measure popliteal artery diameter and blood velocity at baseline and during IPC treatment. Flow-mediated dilation (FMD) and peak reactive hyperemia blood flow (RHBF) were determined before and after IPC treatment. In study 2 (n = 19; 22.0 ± 4.6 yr), skeletal muscle biopsies were taken from the lateral gastrocnemius of the treated and control limb at baseline and at 30- and 150-min posttreatment. Quantitative PCR was used to assess mRNA concentrations of genes associated with inflammation and vascular remodeling. No treatment effect on vascular function was observed. Cuff deflation resulted in increased blood flow (BF) and shear rate (SR) in both treatments at the onset of treatment compared with baseline (P < 0.01). BF and SR significantly diminished by 45 min of HF treatment only (P < 0.01). Both treatments reduced BF and SR and elevated oscillatory shear index compared with baseline (P < 0.01) during cuff inflation. IPC decreased the mRNA expression of cysteine-rich protein 61 from baseline and controls (P <0 .01) and connective tissue growth factor from baseline (P < 0.05) in a frequency-dependent manner. In conclusion, a single session of IPC acutely impacts limb hemodynamics and skeletal muscle gene expression in a frequency

  10. Twelve weeks’ progressive resistance training combined with protein supplementation beyond habitual intakes increases upper leg lean tissue mass, muscle strength and extended gait speed in healthy older women.

    OpenAIRE

    Francis, P

    2016-01-01

    The age-related decline in functional capability is preceded by a reduction in muscle quality. The purpose of this study was to assess the combined effects of progressive resistance training (PRT) and protein supplementation beyond habitual intakes on upper leg lean tissue mass (LTM), muscle quality and functional capability in healthy 50 – 70y women. In a single-blinded, randomized, controlled design, 57 healthy older women (age 61.1 ± 5.1 years, 1.61 ± 0.65 m, 65.3 ± 15.3 kg) consumed 0.33 ...

  11. Comparing the amount of EMG activity of the selected involved muscles in ankle strategy in female athletes while standing on one leg on shuttle balance and wobble board

    Directory of Open Access Journals (Sweden)

    Mansouri R

    2015-05-01

    Full Text Available Abstract Background: It seems that using shuttle balance which has recently been produced in Iran would be beneficial in exercise prescription for preventing sports injuries and recovery. The purpose of this study is comparing the amount of the electromyography activity of involved muscles in ankle strategy while standing on one leg on shuttle balance versus wobble board. Materials and Methods: this study is a functional and cause-compare study. 15 female students 20-22 years of age having the enterance standards were selected meaningfully. The amount of EMG activity of selected muscles (Tibialis Anterior, Gastrocnemius, Rectus Femoris and Hamstring was measured while standing on one leg on two devices. The difference in means of muscles activity in both of devices was estimated using multivariate analysis of variance. Results: The results showed a significant difference between the amount of EMG activity of involved muscles (p=0.001. Also, the results of the intragroup effects showed that the electromyography activity of Tibialis Anterior, Rectus Femoris and Hamstring while standing on shuttle balance was significantly more than the activity while standing on wobble board (p0/05. Conclusion: It seems that standing on shuttle balance can make higher electromyography activity in the muscles that are involved on ankle and thigh joints, i.e. Tibialis Anterior, Rectus Femoris and Hamstring. So it is recommended that shuttle balance can be used in balance training program.

  12. Pneumatic muscle actuator for resistive exercise in microgravity: test with a leg model.

    Science.gov (United States)

    Serres, Jennifer L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Repperger, Daniel W; Gerschutz, Maria J

    2010-02-01

    A proof-of-concept demonstration is described in which a DC servomotor (simulating the quadriceps of a human operator) rotated a pulley 90 degrees (simulating knee extension). A pneumatic muscle actuator (PMA) generated an opposing force (antagonist) to the rotating pulley. One application of such a device is for use in microgravity environments because the PMA is compact, simple, and of relatively small mass (283 g). In addition, the operator can set a computer-controlled force-level range in response to individual user changes in exercise conditioning over time. A PMA was used in this study and interacted with a DC servomotor. For each trial, the PMA contracted in response to internal pressure. An input voltage profile activated the DC servomotor, resulting in the following three phases: an isokinetic counterclockwise pulley rotation of 90 degrees over 5 s (Phase I), the position was held for 5 s (Phase II), and an isokinetic clockwise rotation of 90 degrees over 5 s (Phase III). Root mean square error (RMSE) values were used to evaluate the pulley rotation. For Phase I, when the PMA pressures (in kPa) were 300, 450, and 575, the percent RMSE, respectively, were 5.24, 6.23, and 4.59. For Phase II, the percent RMSE were 2.81, 2.57, and 5.63, respectively. For Phase III, the percent RMSE were 5.69, 2.63, and 3.30, respectively. This study presents a demonstration of a PMA device that can enhance exercise by providing a wide range of resistive loads.

  13. An evidence-based recommendation for a new definition of respiratory-related leg movements.

    Science.gov (United States)

    Manconi, Mauro; Zavalko, Irina; Fanfulla, Francesco; Winkelman, John W; Fulda, Stephany

    2015-02-01

    Current sleep scoring rules exclude leg movements that occur near respiratory events from being scored as periodic leg movements during sleep (PLMS) but differ in whether they exclude leg movements occurring at the end (WASM/ IRLSSG) or during a respiratory event (AASM). The aim of the present study was to describe the distribution of leg movements in relation to respiratory events and to contribute to an evidence-based rule for the identification and scoring of respiratory-related leg movements (RRLMs). Retrospective chart review and analysis of polysomnographic recordings. Clinical sleep laboratory. 64 patients with polysomnographic recordings between January 2010 and July 2011, aged 18 to 75 years, with AHI >20, ODI >10, more than 50% of apneas being obstructive, >15 leg movements of any type per hour of sleep, no more than 20% of total sleep time with artifacts and no medical condition or medication that could influence leg movements or respiratory disturbances. None. Back-averaging of leg movement activity (LMA) with respect to respiratory events revealed that LMA was present shortly before the end of the respiratory events, but occurred mostly following respiratory events with peak onset of LMA 2.5 s after respiratory event termination. Increased LMA before the beginning of the respiratory event consisted mainly of the tail of LMA after the end of the previous respiratory event. Change-point analysis indicated that LMA was increased over an interval of -2.0 s to +10.25 s around the end of respiratory events. Changing the definition of RRLMs had a significant influence on PLMS counts. The number of patients with obstructive sleep apnea (OSA) with PLMS index >15 was 80% when considering the WASM/ IRLSSG definition, 67% for the AASM criteria, and 41% when based on the interval identified by change-point analysis (-2.0 to 10.25 s). Leg movements are not augmented at the beginning or middle of respiratory events but are increased around the end of respiratory

  14. Novel Door-opening Method for Six-legged Robots Based on Only Force Sensing

    Science.gov (United States)

    Chen, Zhi-Jun; Gao, Feng; Pan, Yang

    2017-09-01

    Current door-opening methods are mainly developed on tracked, wheeled and biped robots by applying multi-DOF manipulators and vision systems. However, door-opening methods for six-legged robots are seldom studied, especially using 0-DOF tools to operate and only force sensing to detect. A novel door-opening method for six-legged robots is developed and implemented to the six-parallel-legged robot. The kinematic model of the six-parallel-legged robot is established and the model of measuring the positional relationship between the robot and the door is proposed. The measurement model is completely based on only force sensing. The real-time trajectory planning method and the control strategy are designed. The trajectory planning method allows the maximum angle between the sagittal axis of the robot body and the normal line of the door plane to be 45º. A 0-DOF tool mounted to the robot body is applied to operate. By integrating with the body, the tool has 6 DOFs and enough workspace to operate. The loose grasp achieved by the tool helps release the inner force in the tool. Experiments are carried out to validate the method. The results show that the method is effective and robust in opening doors wider than 1 m. This paper proposes a novel door-opening method for six-legged robots, which notably uses a 0-DOF tool and only force sensing to detect and open the door.

  15. Knee Joint Optimization Design of Intelligent Bionic Leg Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2014-09-01

    Full Text Available Intelligent bionic leg (IBL is an advanced prosthesis which can maximum functionally simulate and approach the motion trajectory of human leg. Knee joint is the most important bone of human leg and its bionic design has great significance to prosthesis performance. The structural components of IBL are introduced and virtual prototype is given. The advantages of 4-bar knee joint are analyzed and are adopted in IBL design. The kinematics model of 4-bar knee joint is established. The objective function, constraint condition, parameters selection and setting of genetic algorithm are discussed in detail. Based on genetic algorithm, the optimization design of IBL knee joint is done. The optimization results indicate that the 4-bar mechanism can achieve better anthropomorphic characteristics of human knee joint.

  16. The Influence of Dual Pressure Biofeedback Units on Pelvic Rotation and Abdominal Muscle Activity during the Active Straight Leg Raise in Women with Chronic Lower Back Pain.

    Science.gov (United States)

    Noh, Kyung-Hee; Kim, Ji-Won; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-05-01

    [Purpose] This study was performed to assess the influence of applying dual pressure biofeedback units (DPBUs) on the angle of pelvic rotation and abdominal muscle activity during the active straight leg raise (ASLR). [Subjects] Seventeen patients with low-back pain (LBP) participated in this study. [Methods] The subjects were asked to perform an active straight leg raise (ASLR) without a PBU, with a single PBU, and with DPBUs. The angles of pelvic rotation were measured using a three-dimensional motion-analysis system, and the muscle activity of the bilateral internal oblique abdominis (IO), external oblique abdominis (EO), and rectus abdominis (RA) was recorded using surface electromyography (EMG). One-way repeated-measures ANOVA was performed to determine the rotation angles and muscle activity under the three conditions. [Results] The EMG activity of the ipsilateral IO, contralateral EO, and bilateral RA was greater and pelvic rotation was lower with the DPBUs than with no PBU or a single PBU. [Conclusion] The results of this study suggest that applying DPBUs during ASLR is effective in decreasing unwanted pelvic rotation and increasing abdominal muscle activity in women with chronic low back pain.

  17. Home-Based Leg Strengthening Exercise Improves Function One Year After Hip Fracture: A Randomized Controlled Study

    Science.gov (United States)

    Mangione, Kathleen K.; Craik, Rebecca L.; Palombaro, Kerstin M.; Tomlinson, Susan S.; Hofmann, Mary T.

    2010-01-01

    Objectives Examine the effectiveness of a short term leg strengthening exercise program compared to attentional control on improving strength, walking abilities, and function one year after hip fracture. Design Randomized controlled pilot study. Setting Interventions occurred in patients’ homes. Participants Community-dwelling older adults (n=26) six months post hip fracture at baseline. Intervention Exercise and control participants received interventions by physical therapists twice weekly for 10 weeks. The exercise group received high intensity leg strengthening exercises. The control group received transcutaneous electrical nerve stimulation and mental imagery. Measurements Isometric force production of lower extremity muscles; usual and fast gait speed, six minute walk (6-MW) distance, modified physical performance test (mPPT), and SF-36 physical function. Results The primary endpoint was at one year post fracture. Isometric force production (pmPPT (pmPPT scores, 0.56 for gait speed, 0.49 for 6-MW, and 0.30 for SF-36 scores. More patients in the exercise group made meaningful changes in gait speed and 6-MW distance than control patients (χ2: p=.004). Conclusion A 10-week home-based progressive resistance exercise program was sufficient to achieve moderate to large effects on physical performance and quality of life and may offer an alternative intervention mode for hip fracture patients who are unable to leave home at 6 months after the fracture. The effects were maintained at 3 months after completion of the training program. PMID:20929467

  18. [Blood distribution in the human leg arteries during orthostasis: role of the hydrostatic factor and posturotonic straining of the anti-gravity muscles].

    Science.gov (United States)

    Modin, A Iu

    2004-01-01

    Ultrasonic visualization and dopplerography were used to study volumetric blood flows along the femoral artery, deep artery of the thigh, and the popliteal and sural arteries in normal volunteers. Active standing test resulted in significant blood redistribution among the arteries with prioritized blood supply to predominantly anti-g muscles but not to predominantly locomotor muscles. Elimination of static loading on the anti-g muscles by weight removal (transfer of the body mass on the other leg) was conducive to the opposite effect, i.e. absolute and relative decreases in the intensity of blood flow along the sural artery and a relatively more marked blood redistribution toward the deep artery of the thigh.

  19. A low arm and leg muscle mass to total body weight ratio is associated with an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2010-2011.

    Science.gov (United States)

    Kim, Yong Hwan; So, Wi-Young

    2016-09-14

    The aim of this study was to investigate the association between metabolic syndrome (MetS) and arm and leg muscle mass to total weight ratios in Korean adults. This was a randomized, controlled, cross-sectional study. Data from 2,383 adults (1,030 men and 1,353 women) were collected from the Korea National Health and Nutrition Examination Survey 2010-2011. Blood lipid profiles, blood pressure, and anthropometric characteristics, including weight, height, waist circumference, and muscle mass on dual energy X-ray absorptiometry (DXA), were evaluated in the participants. MetS was defined according to the criteria of the National Cholesterol Education Program Adult Treatment Panel III. The average mass of both arms and legs was determined using regional muscle analysis by DXA. Afterwards, the arm and leg muscle mass to total body weight ratio was determined and classified into 4 quartiles (i.e., quartile 1 [highest muscle ratio] to quartile 4 [lowest muscle ratio]). According to the arm muscle and leg muscle ratios, there was a higher prevalence of MetS in quartile 4 than in quartile 1 in both men and women. A low arm and leg muscle mass to body weight ratio was associated with a higher prevalence of MetS after adjusting for age, physical activity, frequency of smoking, and frequency of alcohol consumption. In conclusion, MetS patients demonstrated a lower arm and leg muscle mass to body weight ratio. Strength training for the lower and upper extremities is recommended because it can have a positive effect on MetS prevention.

  20. Voluntary enhanced cocontraction of hamstring muscles during open kinetic chain leg extension exercise: its potential unloading effect on the anterior cruciate ligament.

    Science.gov (United States)

    Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio M; Brunetti, Antonella; Brunetti, Orazio; Pettorossi, Vito E

    2014-09-01

    A number of research studies provide evidence that hamstring cocontraction during open kinetic chain knee extension exercises enhances tibiofemoral (TF) stability and reduces the strain on the anterior cruciate ligament. To determine the possible increase in hamstring muscle coactivation caused by a voluntary cocontraction effort during open kinetic chain leg-extension exercises, and to assess whether an intentional hamstring cocontraction can completely suppress the anterior TF shear force during these exercises. Descriptive laboratory study. Knee kinematics as well as electromyographic activity in the semitendinosus (ST), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris muscles were measured in 20 healthy men during isotonic leg extension exercises with resistance (R) ranging from 10% to 80% of the 1-repetition maximum (1RM). The same exercises were also performed while the participants attempted to enhance hamstring coactivation through a voluntary cocontraction effort. The data served as input parameters for a model to calculate the shear and compressive TF forces in leg extension exercises for any set of coactivation patterns of the different hamstring muscles. For R≤ 40% 1RM, the peak coactivation levels obtained with intentional cocontraction (l) were significantly higher (P hamstring muscle, maximum level l was reached at R = 30% 1RM, corresponding to 9.2%, 10.5%, and 24.5% maximum voluntary isometric contraction (MVIC) for the BF, ST, and SM, respectively, whereas the ratio l/l 0 reached its maximum at R = 20% 1RM and was approximately 2, 3, and 4 for the BF, SM, and ST, respectively. The voluntary enhanced coactivation level l obtained for R≤ 30% 1RM completely suppressed the anterior TF shear force developed by the quadriceps during the exercise. In leg extension exercises with resistance R≤ 40% 1RM, coactivation of the BF, SM, and ST can be significantly enhanced (up to 2, 3, and 4 times, respectively) by a voluntary hamstring

  1. A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure

    Directory of Open Access Journals (Sweden)

    A.C. Barroco

    2017-10-01

    Full Text Available Heart failure is characterized by the inability of the cardiovascular system to maintain oxygen (O2 delivery (i.e., muscle blood flow in non-hypoxemic patients to meet O2 demands. The resulting increase in fractional O2 extraction can be non-invasively tracked by deoxygenated hemoglobin concentration (deoxi-Hb as measured by near-infrared spectroscopy (NIRS. We aimed to establish a simplified approach to extract deoxi-Hb-based indices of impaired muscle O2 delivery during rapidly-incrementing exercise in heart failure. We continuously probed the right vastus lateralis muscle with continuous-wave NIRS during a ramp-incremental cardiopulmonary exercise test in 10 patients (left ventricular ejection fraction <35% and 10 age-matched healthy males. Deoxi-Hb is reported as % of total response (onset to peak exercise in relation to work rate. Patients showed lower maximum exercise capacity and O2 uptake-work rate than controls (P<0.05. The deoxi-Hb response profile as a function of work rate was S-shaped in all subjects, i.e., it presented three distinct phases. Increased muscle deoxygenation in patients compared to controls was demonstrated by: i a steeper mid-exercise deoxi-Hb-work rate slope (2.2±1.3 vs 1.0±0.3% peak/W, respectively; P<0.05, and ii late-exercise increase in deoxi-Hb, which contrasted with stable or decreasing deoxi-Hb in all controls. Steeper deoxi-Hb-work rate slope was associated with lower peak work rate in patients (r=–0.73; P=0.01. This simplified approach to deoxi-Hb interpretation might prove useful in clinical settings to quantify impairments in O2 delivery by NIRS during ramp-incremental exercise in individual heart failure patients.

  2. Effects of fatigue on lower limb, pelvis and trunk kinematics and lower limb muscle activity during single-leg landing after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Lessi, Giovanna Camparis; Serrão, Fábio Viadanna

    2017-08-01

    Because there are no studies that have evaluated the effects of fatigue on the kinematics of the trunk and pelvis or on muscle activation in subjects with ACL reconstruction, the aim of this study was to evaluate the effects of fatigue on the lower limb, pelvis and trunk kinematics and lower limb muscle activation in subjects with ACL reconstruction during a single-leg landing compared to a healthy control group. The participants included 20 subjects with ACL reconstruction (ACL reconstruction group-ACLRG) and 20 healthy subjects (control group-CG) who were aged between 18 and 35 years. Kinematic and electromyographic analyses were performed during a single-leg landing before and after fatigue. The fatigue protocol included a series of 10 squats, two vertical jumps, and 20 steps. The effects of fatigue were increased peak trunk flexion and increased activation of the vastus lateralis, biceps femoris (BF) and gluteus maximus (GMax) during the landing phase. After the fatigue protocol, an increase in peak trunk flexion and activation of the GMax and BF were observed, most likely as a strategy to reduce the load on the ACL. ACL injury prevention programs should include strength and endurance exercises for the hip and trunk extensor muscles so that they can efficiently control trunk flexion during landing. Prospective comparative study, Level II.

  3. Performance, carcass yield, and qualitative characteristics of breast and leg muscles of broilers fed diets supplemented with vitamin E at different ages

    Directory of Open Access Journals (Sweden)

    FR Leonel

    2007-06-01

    Full Text Available The effects of vitamin E supplementation (300 mg/kg diet in the diet of broiler chickens for different periods during rearing on the performance and qualitative traits of breast and leg muscles were evaluated. Seven hundred and twenty day-old chicks were distributed into six treatments: basal diet (25 mg vitamin E/kg diet, and diet supplemented with vitamin E from 1 to 15, 1 to 30, 1 to 45, 14 to 45 and 30 to 45 days of age. Vitamin E content, lipid percentage, TBARS (0 and 3 days of storage, color (*L, *a, *b, and pH were evaluated. There were no differences (p>0.05 among treatments in performance, carcass yield, and cut yields. Qualitative parameters (pH and color presented no differences, although vitamin E positively affected TBARS values at 3 days of storage, mainly in leg muscles. Vitamin E levels in both muscles were higher in the birds supplemented throughout the experiment.

  4. Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests

    Directory of Open Access Journals (Sweden)

    Ayanori Yorozu

    2015-09-01

    Full Text Available Falling is a common problem in the growing elderly population, and fall-risk assessment systems are needed for community-based fall prevention programs. In particular, the timed up and go test (TUG is the clinical test most often used to evaluate elderly individual ambulatory ability in many clinical institutions or local communities. This study presents an improved leg tracking method using a laser range sensor (LRS for a gait measurement system to evaluate the motor function in walk tests, such as the TUG. The system tracks both legs and measures the trajectory of both legs. However, both legs might be close to each other, and one leg might be hidden from the sensor. This is especially the case during the turning motion in the TUG, where the time that a leg is hidden from the LRS is longer than that during straight walking and the moving direction rapidly changes. These situations are likely to lead to false tracking and deteriorate the measurement accuracy of the leg positions. To solve these problems, a novel data association considering gait phase and a Catmull–Rom spline-based interpolation during the occlusion are proposed. From the experimental results with young people, we confirm   that the proposed methods can reduce the chances of false tracking. In addition, we verify the measurement accuracy of the leg trajectory compared to a three-dimensional motion analysis system (VICON.

  5. Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests

    Science.gov (United States)

    Yorozu, Ayanori; Moriguchi, Toshiki; Takahashi, Masaki

    2015-01-01

    Falling is a common problem in the growing elderly population, and fall-risk assessment systems are needed for community-based fall prevention programs. In particular, the timed up and go test (TUG) is the clinical test most often used to evaluate elderly individual ambulatory ability in many clinical institutions or local communities. This study presents an improved leg tracking method using a laser range sensor (LRS) for a gait measurement system to evaluate the motor function in walk tests, such as the TUG. The system tracks both legs and measures the trajectory of both legs. However, both legs might be close to each other, and one leg might be hidden from the sensor. This is especially the case during the turning motion in the TUG, where the time that a leg is hidden from the LRS is longer than that during straight walking and the moving direction rapidly changes. These situations are likely to lead to false tracking and deteriorate the measurement accuracy of the leg positions. To solve these problems, a novel data association considering gait phase and a Catmull–Rom spline-based interpolation during the occlusion are proposed. From the experimental results with young people, we confirm that the proposed methods can reduce the chances of false tracking. In addition, we verify the measurement accuracy of the leg trajectory compared to a three-dimensional motion analysis system (VICON). PMID:26404302

  6. The influence of foot arch on ankle joint torques andon sEMG signal amplitude in selected lower leg muscles

    Directory of Open Access Journals (Sweden)

    Żebrowska Kinga

    2016-09-01

    Full Text Available Introduction: This study sought to assess the influence of proper foot arch on electromyographic activity of selected lower limb muscles. The aim of this work was to evaluate the effects of foot arch on the activity of selected muscles and to determine whether electromyography might help to identify types of flat feet resulting from muscle- or ligament-related causes.

  7. The Versatility of Perforator-Based Propeller Flap for Reconstruction of Distal Leg and Ankle Defects

    Directory of Open Access Journals (Sweden)

    Durga Karki

    2012-01-01

    Full Text Available Introduction. Soft tissue coverage of distal leg and ankle region represents a challenge and such defect usually requires a free flap. However, this may lead to considerable donor site morbidity, is time consuming, and needs facility of microsurgery. With the introduction of perforator flap, management of small- and medium-size defects of distal leg and ankle region is convenient, less time consuming, and with minimal donor site morbidity. When local perforator flap is designed as propeller and rotated to 180 degree, donor site is closed primarily and increases reach of flap, thus increasing versatility. Material and Methods. From June 2008 to May 2011, 20 patients were treated with perforator-based propeller flap for distal leg and ankle defects. Flap was based on single perforator of posterior tibial and peroneal artery rotated to 180 degrees. Defect size was from 4 cm × 3.5 cm to 7 cm × 5 cm. Results. One patient developed partial flap necrosis, which was managed with skin grafting. Two patients developed venous congestion, which subsided spontaneously without complications. Small wound dehiscence was present in one patient. Donor site was closed primarily in all patients. Rest of the flaps survived well with good aesthetic results. Conclusion. The perforator-based propeller flap for distal leg and ankle defects is a good option. This flap design is safe and reliable in achieving goals of reconstruction. The technique is convenient, less time consuming, and with minimal donor site morbidity. It provides aesthetically good result.

  8. Multi-leg Seat Inventory Control Based on EMSU and Virtual Bucket

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2014-01-01

    Full Text Available Expected marginal seat revenue (EMSR is a well-known method for airline seat inventory control airlines. However, this method employs a static model to study the dynamic reservation process, and does not take into account the risk tolerance of policy makers. Expected marginal seat utility (EMSU replaces revenue by utility, which addresses the real situation of seat inventory control. However, there is still a lack of multi-leg seat control algorithms based on EMSU. Therefore, using EMSU and bucket algorithms, this paper applies the Markov decision-making process to simulate the flight reservation process and builds a dynamic multi-leg seat inventory control model. Experimental results validate the effectiveness of the proposed method.

  9. An Evidence-based Analysis of the Association between Periodic Leg Movements during Sleep and Arousals in Restless Legs Syndrome.

    Science.gov (United States)

    Ferri, Raffaele; Rundo, Francesco; Zucconi, Marco; Manconi, Mauro; Bruni, Oliviero; Ferini-Strambi, Luigi; Fulda, Stephany

    2015-06-01

    To analyze statistically the association between periodic leg movements during sleep (PLMS) and arousals, in order to eventually support or challenge the current scoring rules and to further understand their reciprocal influence. Sleep research center. Twenty untreated consecutive patients with restless legs syndrome (RLS) (13 women and 7 males, mean age 60.9 y). In each recording, we selected all PLMS/arousal pairs that met the following inclusion criteria: (a) PLMS events that were separated from another PLMS event (preceding or following) by at least 10 s of EMG inactivity; (b) arousal events separated from another arousal event (preceding or following) by at least 10 s of stable EEG baseline activity; (c) PLMS/arousal pairs were then selected among events identified according to the previous two criteria, when PLMS and arousals were separated (offset-to-onset) by no more than 10 s, regardless of which was first. We selected a mean of 46.1 (SD 25.55) PLMS/arousal pairs per subject; in these pairs, average PLMS duration was 3.2 s (0.65) and average arousal duration was 6.5 s (0.92). Within these event pairs, the great majority (on average 98.4%, SD 3.88) was separated by less than 0.5 s (i.e., between the end of one event and the onset of the other, regardless of which was first). Arousal onsets preceded PLMS onset in 41.2% of pairs, while the opposite was true for the remaining 58.8% of pairs. A significant correlation between PLMS duration and arousal duration was also found (r = 0.447, P definition of the association between periodic leg movements during sleep (PLMS) and arousals. The tight time relationship between PLMS and arousals and their correlated durations seem to indicate that both events might be regulated by a complex mechanism, rather than being connected by a simple reciprocal cause/effect relationship. © 2015 Associated Professional Sleep Societies, LLC.

  10. The effect of lumbar posture on abdominal muscle thickness during an isometric leg task in people with and without non-specific low back pain.

    Science.gov (United States)

    Pinto, Rafael Zambelli; Ferreira, Paulo Henrique; Franco, Marcia Rodrigues; Ferreira, Mariana Calais; Ferreira, Manuela Loureiro; Teixeira-Salmela, Luci Fuscaldi; Oliveira, Vinicius C; Maher, Christopher

    2011-12-01

    This study investigated the effect of lumbar posture on function of transversus abdominis (TrA) and obliquus internus (OI) in people with and without non-specific low back pain (LBP) during a lower limb task. Rehabilitative ultrasound was used to measure thickness change of TrA and OI during a lower limb task that challenged the stability of the spine. Measures were taken in supine in neutral and flexed lumbar postures in 30 patients and 30 healthy subjects. Data were analysed using a two-way (groups, postures) ANOVA. Our results showed that lumbar posture influenced percent thickness change of the TRA muscle but not for OI. An interaction between group and posture was found for TrA thickness change (F(1,56) = 6.818, p = 0.012). For this muscle, only healthy participants showed greater thickness change with neutral posture compared to flexed (mean difference = 6.2%; 95% CI: 3.1-9.3%; p posture can facilitate an increase in thickness of the TrA muscle while performing a leg task, however this effect was not observed for this muscle in patients with LBP. No significant difference in TrA and OI thickness change between people with and without non-specific LBP was found. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Home-based leg-strengthening exercise improves function 1 year after hip fracture: a randomized controlled study.

    Science.gov (United States)

    Mangione, Kathleen K; Craik, Rebecca L; Palombaro, Kerstin M; Tomlinson, Susan S; Hofmann, Mary T

    2010-10-01

    To compare the effectiveness of a short-term leg-strengthening exercise program with that of attentional control on improving strength, walking abilities, and function 1 year after hip fracture. Randomized controlled pilot study. Patients' homes. Community-dwelling older adults (n=26) 6 months after hip fracture at baseline. Exercise and control participants received interventions from physical therapists twice a week for 10 weeks. The exercise group received high-intensity leg-strengthening exercises. The control group received transcutaneous electrical nerve stimulation and mental imagery. Isometric force production of lower extremity muscles, usual and fast gait speed, 6-minute walk (6-MW) distance, modified Physical Performance Test (mPPT), and Medical Outcomes Study 36-item Short Form Survey (SF-36) physical function. The primary endpoint was 1 year after fracture. Isometric force production (P=.006), usual (P=.02) and fast (P=.03) gait speed, 6-MW distance (P=.005), and mPPT score (PmPPT score, 0.56 for gait speed, 0.49 for 6-MW, and 0.30 for SF-36 score. More patients in the exercise group made meaningful changes in gait speed and 6-MW distance than control patients (chi-square P=.004). A 10-week home-based progressive resistance exercise program was sufficient to achieve moderate to large effects on physical performance and quality of life and may offer an alternative intervention mode for patients with hip fracture who are unable to leave home by 6 months after the fracture. The effects were maintained at 3 months after completion of the training program. © 2010, Copyright the Authors. Journal compilation © 2010, The American Geriatrics Society.

  12. Diffusion Properties and 3D Architecture of Human Lower Leg Muscles Assessed with Ultra-High-Field-Strength Diffusion-Tensor MR Imaging and Tractography: Reproducibility and Sensitivity to Sex Difference and Intramuscular Variability.

    Science.gov (United States)

    Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David

    2018-05-01

    Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is

  13. Experimental Validation of Motor Primitive-Based Control for Leg Exoskeletons during Continuous Multi-Locomotion Tasks

    Science.gov (United States)

    Ruiz Garate, Virginia; Parri, Andrea; Yan, Tingfang; Munih, Marko; Molino Lova, Raffaele; Vitiello, Nicola; Ronsse, Renaud

    2017-01-01

    An emerging approach to design locomotion assistive devices deals with reproducing desirable biological principles of human locomotion. In this paper, we present a bio-inspired controller for locomotion assistive devices based on the concept of motor primitives. The weighted combination of artificial primitives results in a set of virtual muscle stimulations. These stimulations then activate a virtual musculoskeletal model producing reference assistive torque profiles for different locomotion tasks (i.e., walking, ascending stairs, and descending stairs). The paper reports the validation of the controller through a set of experiments conducted with healthy participants. The proposed controller was tested for the first time with a unilateral leg exoskeleton assisting hip, knee, and ankle joints by delivering a fraction of the computed reference torques. Importantly, subjects performed a track involving ground-level walking, ascending stairs, and descending stairs and several transitions between these tasks. These experiments highlighted the capability of the controller to provide relevant assistive torques and to effectively handle transitions between the tasks. Subjects displayed a natural interaction with the device. Moreover, they significantly decreased the time needed to complete the track when the assistance was provided, as compared to wearing the device with no assistance. PMID:28367121

  14. An extended steepness model for leg-size determination based on Dachsous/Fat trans-dimer system.

    Science.gov (United States)

    Yoshida, Hiroshi; Bando, Tetsuya; Mito, Taro; Ohuchi, Hideyo; Noji, Sumihare

    2014-03-11

    What determines organ size has been a long-standing biological question. Lawrence et al. (2008) proposed the steepness hypothesis suggesting that the protocadherin Dachsous/Fat (Ds/Ft) system may provide some measure of dimension to the cells in relation to the gradient. In this paper we extended the model as a means of interpreting experimental results in cricket leg regeneration. We assumed that (1) Ds/Ft trans-heterodimers or trans-homodimers are redistributed during cell division, and (2) growth would cease when a differential of the dimer across each cell decreases to a certain threshold. We applied our model to simulate the results obtained by leg regeneration experiments in a cricket model. The results were qualitatively consistent with the experimental data obtained for cricket legs by RNA interference methodology. Using our extended steepness model, we provided a molecular-based explanation for leg size determination even in intercalary regeneration and for organ size determination.

  15. Protein turnover in the breast muscle of broiler chicks and studies addressing chlorine dioxide sanitation of hatching eggs, poultry leg problems and wheat middling diets for laying hens

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, P.H.

    1988-01-01

    Developmental changes occurred in breast muscle Ks measured by {sup 14}C-tyrosine incorporation at 10, 16, 22 and 34 days of age. Protein synthesis rates decreased as the birds matures: 30 to 11.2%/d between 10 and 34 days of age. In a second study birds fed diets low in lysine or protein-energy had reduced fractional rates of protein synthesis and free tyrosine, branched chain and large neutral amino acid concentrations as compared to control birds the same body weight. Artificial weight loading and reduced dietary protein levels were used to study the effects of body weight on the severity of leg deformities in chicks and poults. Experiments investigating the practicality of wheat middlings as an alternate feedstuff for laying hens suggested that high levels in the diet will reduce egg production, feed conversion, hen livability and egg yolk color. Lastly, chlorine dioxide foam and dipping solutions were compared with formaldehyde fumigation for sanitizing hatching eggs.

  16. Protein turnover in the breast muscle of broiler chicks and studies addressing chlorine dioxide sanitation of hatching eggs, poultry leg problems and wheat middling diets for laying hens

    International Nuclear Information System (INIS)

    Patterson, P.H.

    1988-01-01

    Developmental changes occurred in breast muscle Ks measured by 14 C-tyrosine incorporation at 10, 16, 22 and 34 days of age. Protein synthesis rates decreased as the birds matures: 30 to 11.2%/d between 10 and 34 days of age. In a second study birds fed diets low in lysine or protein-energy had reduced fractional rates of protein synthesis and free tyrosine, branched chain and large neutral amino acid concentrations as compared to control birds the same body weight. Artificial weight loading and reduced dietary protein levels were used to study the effects of body weight on the severity of leg deformities in chicks and poults. Experiments investigating the practicality of wheat middlings as an alternate feedstuff for laying hens suggested that high levels in the diet will reduce egg production, feed conversion, hen livability and egg yolk color. Lastly, chlorine dioxide foam and dipping solutions were compared with formaldehyde fumigation for sanitizing hatching eggs

  17. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Egelund, Jon; Mandrup Jensen, Camilla Maria

    2017-01-01

    the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (3.1 ± 0.5 [mean ± SEM] years after final menstrual period) women only separated by 4 (50 ± 0 versus 54 ± 1......Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women due to the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined......) years of age were included. Before training, leg blood flow, O2 delivery, O2 uptake, and lactate release during knee-extensor exercise were similar in pre- and postmenopausal women. Exercise training reduced (P

  18. Effect of exercise-induced enhancement of the leg-extensor muscle-tendon unit capacities on ambulatory mechanics and knee osteoarthritis markers in the elderly.

    Directory of Open Access Journals (Sweden)

    Kiros Karamanidis

    Full Text Available Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS and quadriceps femoris (QF muscle-tendon unit (MTU capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly.Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry.Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention.This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly

  19. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men

    DEFF Research Database (Denmark)

    Gram, Martin; Vigelsø Hansen, Andreas; Yokota, Takashi

    2014-01-01

    Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative...... capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mt...... of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity...

  20. Dynamics of a novel robotic leg based on the Peaucellier–Lipkin mechanism on linear paths during the transfer phase

    Directory of Open Access Journals (Sweden)

    Diego Alfredo Núñez-Altamirano

    2016-07-01

    Full Text Available This article deals with the kinematics and dynamics of a novel leg based on the Peaucellier–Lipkin mechanism, which is better known as the straight path tracer. The basic Peaucellier–Lipkin linkage with 1 degree of freedom was transformed into a more skillful mechanism, through the addition of 4 more degrees of freedom. The resulting 5-degree-of-freedom leg enables the walking machine to move along paths that are straight lines and/or concave or convex curves. Three degrees of freedom transform the leg in relation to a reachable center of rotation that the machine walks around. Once the leg is transformed, the remaining 2 degrees of freedom position the foot at a desirable Cartesian point during the transfer or support phase. We analyzed the direct and inverse kinematics developed for the leg when the foot describes a straight line and found some interesting relationships among the motion parameters. The dynamic model equations of motion for the leg were derived from the Lagrangian dynamic formulation to calculate the required torques during a particular transfer phase.

  1. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai Baastrup; Connolly, Luke; Weihe, Pál

    2015-01-01

    =21) or a non-training control group (CON, n=20), the training groups completed three workouts per week for 15 weeks. Resting muscle biopsies were obtained from m. vastus lateralis and m. deltoideus before and after the intervention. After the training intervention, a larger (P

  2. Hemodynamic changes in rat leg muscles during tourniquet-induced ischemia-reperfusion injury observed by near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Kim, J G; Lee, J; Tromberg, B J; Brenner, M; Roe, J; Walters, T J

    2009-01-01

    In this study, we hypothesized that non-invasive continuous wave near-infrared spectroscopy (CWNIRS) can determine the severity or reversibility of muscle damage due to ischemia/reperfusion (I/R), and the results will be highly correlated with those from physical examination and histological analysis. To test this hypothesis, we performed CWNIRS measurements on two groups of male Sprague-Dawley rats (∼400 g) that underwent 2 h (n = 6) or 3 h (n = 7) of pneumatic tourniquet application (TKA). Tissue oxyhemoglobin [HbO 2 ] and deoxyhemoglobin [Hb] concentration changes were monitored during the 2 h or 3 h of 250 mmHg TKA and for an additional 2 h post-TKA. Rats were euthanized 24 h post-TKA and examined for injury, edema and viability of muscles. Contralateral muscles served as controls for each animal. In both groups, [HbO 2 ] dropped immediately, then gradually decreased further after TKA and then recovered once the tourniquet was released. However, releasing after 2 h of TKA caused [HbO 2 ] to overshoot above the baseline during reperfusion while the 3 h group continued to have lower [HbO 2 ] than baseline. We found a significant correlation between the elapsed time from tourniquet release to the first recovery peak of [HbO 2 ] and the muscle weight ratio between tourniquet and contralateral limb muscles (R = 0.86). Hemodynamic patterns from non-invasive CWNIRS demonstrated significant differences between 2 h and 3 h I/R. The results demonstrate that CWNIRS may be useful as a non-invasive prognostic tool for conditions involving vascular compromise such as extremity compartment syndrome

  3. High resolution unenhanced computed tomography in patients with swollen legs.

    Science.gov (United States)

    Monnin-Delhom, E D; Gallix, B P; Achard, C; Bruel, J M; Janbon, C

    2002-09-01

    To evaluate the accuracy of computed tomography (CT) scan imaging in distinguishing lymphedema from deep venous thrombosis (DVT) and lipodystrophy (lipedema) in patients with swollen legs. CT scans of the lower limbs were performed in 55 patients with 76 swollen legs (44 lymphedemas, 12 DVT and 20 lipedemas). Thirty-four normal contralateral legs were also similarly evaluated. Primary lymphedema was verified by lymphography or lymphoscintigraphy, whereas secondary lymphedema was documented by a typical clinical history. DVT was established by ultrasound Doppler imaging. The diagnosis of lipedema was made with bilateral swollen legs where lymphoscintigraphy and Doppler examination were both unremarkable. Qualitative CT analysis was based on skin thickening, subcutaneous edema accumulation with a honeycombed pattern, and muscle compartment enlargement. Sensitivity and specificity of CT scan for the diagnosis of lymphedema was 93 and 100%, respectively; for lipedema it was 95 and 100%, respectively; andfor DVT it was 91 and 99%, respectively. Skin thickening was found in 42 lymphedemas (95%), in 9 DVT (75%), and in 2 lipedemas (16%). Subcutaneous edema accumulation was demonstrated in 42 legs (95%) with lymphedema and in 5 (42%) with DVT but in none with lipedema. A honeycombed pattern was present only in lymphedema (18 legs or 41%); muscle enlargement was present in all patients with DVT, in no patient with lipedema, and in 4 (9%) with lymphedema. Edema accumulation is readily demonstrated with plain CT scan and is not present in lipedema. Specific CT features of the subcutaneous fat and muscle compartments allow accurate differentiation between lymphedema and DVT.

  4. Internet-based learning programme to increase nurses' knowledge level about venous leg ulcer care in home health care.

    Science.gov (United States)

    Ylönen, Minna; Viljamaa, Jaakko; Isoaho, Hannu; Junttila, Kristiina; Leino-Kilpi, Helena; Suhonen, Riitta

    2017-11-01

    To test the effectiveness of an Internet-based education programme about venous leg ulcer nursing care on perceived and theoretical knowledge levels and attitudes among nurses working in home health care. Nurses have been shown to have knowledge gaps in venous leg ulcer nursing care. Internet-based learning could offer a means for flexible continuing education for home healthcare environment. Quasi-experimental study with pre- and postmeasurements and nonequivalent intervention and comparison groups. Nurses (n = 946) in home health care in two Finnish municipalities were invited to participate in the study and divided into intervention and comparison groups. The intervention group received education programme about venous leg ulcer nursing care, while the comparison group did not. Data were collected at baseline, at six weeks and at 10 weeks to test the hypotheses: nurses using education programme about venous leg ulcer nursing care will have higher level of knowledge and more positive attitudes than those not using education programme about venous leg ulcer nursing care. An analysis of variance and mixed models with repeated measures were used to test differences in knowledge and attitudes between and within the groups. There were statistically significant increases in knowledge levels in the intervention group from baseline to the first and second follow-up measurements. In the comparison group, the knowledge levels remained unchanged during the study. Attitude levels remained unchanged in both groups. Nurses' perceived and theoretical knowledge levels of venous leg ulcer nursing care can be increased with Internet-based education. However, this increase in knowledge levels is short-lived, which emphasises the need for continuous education. Internet-based education about venous leg ulcer nursing care is recommended for home healthcare nurses. Education programme about venous leg ulcer nursing care provides flexible method for nurses' learning with feasible

  5. Anatomic and functional leg-length inequality: A review and recommendation for clinical decision-making. Part II, the functional or unloaded leg-length asymmetry

    Directory of Open Access Journals (Sweden)

    Knutson Gary A

    2005-07-01

    Full Text Available Abstract Background Part II of this review examines the functional "short leg" or unloaded leg length alignment asymmetry, including the relationship between an anatomic and functional leg-length inequality. Based on the reviewed evidence, an outline for clinical decision making regarding functional and anatomic leg-length inequality will be provided. Methods Online databases: Medline, CINAHL and Mantis. Plus library searches for the time frame of 1970–2005 were done using the term "leg-length inequality". Results and Discussion The evidence suggests that an unloaded leg-length asymmetry is a different phenomenon than an anatomic leg-length inequality, and may be due to suprapelvic muscle hypertonicity. Anatomic leg-length inequality and unloaded functional or leg-length alignment asymmetry may interact in a loaded (standing posture, but not in an unloaded (prone/supine posture. Conclusion The unloaded, functional leg-length alignment asymmetry is a likely phenomenon, although more research regarding reliability of the measurement procedure and validity relative to spinal dysfunction is needed. Functional leg-length alignment asymmetry should be eliminated before any necessary treatment of anatomic LLI.

  6. Venous leg ulcers.

    Science.gov (United States)

    Nelson, E Andrea; Adderley, Una

    2016-01-15

    Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0 in 1000 people have active leg ulcers. Prevalence increases with age to about 20 in 1000 people aged over 80 years. We conducted a systematic overview, aiming to answer the following clinical questions: What are the effects of treatments for venous leg ulcers? What are the effects of organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2014 (Clinical Evidence overviews are updated periodically; please check our website for the most up-to-date version of this overview). At this update, searching of electronic databases retrieved 116 studies. After deduplication and removal of conference abstracts, 63 records were screened for inclusion in the overview. Appraisal of titles and abstracts led to the exclusion of 43 studies and the further review of 20 full publications. Of the 20 full articles evaluated, four systematic reviews were updated and four RCTs were added at this update. We performed a GRADE evaluation for 23 PICO combinations. In this systematic overview, we categorised the efficacy for 13 interventions based on information about the effectiveness and safety of advice to elevate leg, advice to keep leg active, compression stockings for prevention of recurrence, compression bandages and stockings to treat venous leg ulcers, laser treatment (low level), leg ulcer clinics, pentoxifylline, skin grafting, superficial vein surgery for prevention of recurrence, superficial vein surgery to treat venous leg ulcers, therapeutic ultrasound, and topical negative pressure.

  7. Medium-latency stretch reflexes of foot and leg muscles analysed by cooling the lower limb in standing humans.

    Science.gov (United States)

    Schieppati, M; Nardone, A

    1997-09-15

    1. In standing subjects, an ankle-dorsiflexing perturbation of the supporting surface evokes a short-latency response (SLR) and a medium-latency response (MLR) to stretch in both soleus (Sol) and flexor digitorum brevis (FDB) muscles. The SLR is the counterpart of the monosynaptic reflex, whilst the MLR might be either mediated by Ia fibres, the delay being due to a long-loop central circuit, or by fibres of slower conduction velocity. Since small afferents are slowed more than large ones by low temperature, a greater latency increment for the MLR than the SLR induced by cooling of the limb would point to a peripheral origin of the MLR. 2. In nine subjects, one limb was cooled by circulating water in a tube wrapped around it for about 120 min. Perturbations were delivered to the same limb prior to and during cooling, and after rewarming. EMG was recorded by surface electrodes from the Sol and FDB muscles. 3. The mean increase in latency of MLRs was significantly greater than that of SLRs in both muscles. On average, the Sol SLR increased from 42.4 to 47.0 ms and the Sol MLR from 72.0 to 82.3 ms. The FDB SLR increased from 58.1 to 66.5 ms and the FDB MLR from 94.9 to 110.5 ms. The mean difference (MLR minus SLR) increased from 29.6 to 35.2 ms for Sol, and from 36.8 to 43.9 ms for FDB at the end of cooling. After 30 min of rewarming, the responses of both muscles recovered towards control values. 4. The greater latency increment of the MLRs than of the SLRs favours the hypothesis of a slower conduction velocity of the responsible afferent fibres. The most likely candidate fibres are the spindle group II afferents.

  8. Increased gain of vestibulospinal potentials evoked in neck and leg muscles when standing under height-induced postural threat.

    Science.gov (United States)

    Naranjo, E N; Allum, J H J; Inglis, J T; Carpenter, M G

    2015-05-07

    To measure changes in amplitudes of vestibular evoked myogenic potentials (VEMPs) elicited from neck, upper and lower limb muscles during a quiet standing task with increased postural threat achieved by manipulating surface height. Twenty eight subjects were tested while standing on a platform raised to 0.8 m and 3.2 m from the ground. Surface electromyography was recorded from the ipsilateral sternocleidomastoid (SCM), biceps brachii (BB), flexor carpi radialis (FCR), soleus (SOL) and medial gastrocnemius (MG) muscles. Stimulation was with air-conducted short tone bursts (4 ms). After controlling for background muscle activity, VEMP amplitudes were compared between heights and correlated with changes in state anxiety, fear and arousal. VEMP amplitude significantly increased in SCM (9%) and SOL (12.7%) with increased surface height (pgains. Results demonstrate that VEMPs can be used to test different VSR pathways simultaneously during stance. Since fear and anxiety are prevalent with vestibular disorders, they should be considered as potential contributing factors for clinical vestibular outcome measures. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery.

    Science.gov (United States)

    Zuj, K A; Prince, C N; Hughson, R L; Peterson, S D

    2018-02-01

    This study tested the hypothesis that intermittent compression of the lower limb would increase blood flow during exercise and postexercise recovery. Data were collected from 12 healthy individuals (8 men) who performed 3 min of standing plantar flexion exercise. The following three conditions were tested: no applied compression (NoComp), compression during the exercise period only (ExComp), and compression during 2 min of standing postexercise recovery. Doppler ultrasound was used to determine superficial femoral artery (SFA) blood flow responses. Mean arterial pressure (MAP) and cardiac stroke volume (SV) were assessed using finger photoplethysmography, with vascular conductance (VC) calculated as VC = SFA flow/MAP. Compared with the NoComp condition, compression resulted in increased MAP during exercise [+3.5 ± 4.1 mmHg (mean ± SD)] but not during postexercise recovery (+1.6 ± 5.9 mmHg). SV increased with compression during both exercise (+4.8 ± 5.1 ml) and recovery (+8.0 ± 6.6 ml) compared with NoComp. There was a greater increase in SFA flow with compression during exercise (+52.1 ± 57.2 ml/min) and during recovery (+58.6 ± 56.7 ml/min). VC immediately following exercise was also significantly greater in the ExComp condition compared with the NoComp condition (+0.57 ± 0.42 ml·min -1 ·mmHg -1 ), suggesting the observed increase in blood flow during exercise was in part because of changes in VC. Results from this study support the hypothesis that intermittent compression applied during exercise and recovery from exercise results in increased limb blood flow, potentially contributing to changes in exercise performance and recovery. NEW & NOTEWORTHY Blood flow to working skeletal muscle is achieved in part through the rhythmic actions of the skeletal muscle pump. This study demonstrated that the application of intermittent pneumatic compression during the diastolic phase of the cardiac cycle, to mimic the mechanical

  10. The effects of anthropometry and leg muscle power on drive and transition phase of acceleration: a longitudinal study on young soccer players.

    Science.gov (United States)

    Nikolaidis, Pantelis T; Ingebrigtsen, Jorgen; Jeffreys, Ian

    2016-10-01

    The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice, in the beginning and in the end of competitive season, for anthropometric characteristics, countermovement jump and 20-meter acceleration (split 0-10 meters and 10-20 meters, indices of drive and transition, respectively). The soccer players were grouped according to seasonal changes in 20-meter acceleration (Δacc) in responders (Δacc≤-0.10 s), control (-0.05≤Δacc≤0.08 s) and non-responders (Δacc≥0.10 s). Compared with the non-responders at baseline, the responders were younger (-2.0 years [-2.8;-1.1]), shorter (-10.1 cm [-19.4;-0.7]), with higher body fat percentage (7.7% [2.7%;12.6%]) and fat mass (4.1 kg [0.7;7.4]), and lower performance in the countermovement jump (-8.9 cm [-13.9;-4.0]) and 20 m acceleration (0.63 s [0.39;0.87]); during the season they had smaller body mass gain (-2.8 kg [-5.4;-0.1]), decreased Body Mass Index (BMI, -1.0 kg/m2 [-1.9;0]) and greater improvement in the 20-meter acceleration (-0.33 s [-0.38;-0.28]). The effect size for these between-group differences was large (η2≥0.18). The Δacc and Δ10-20 were moderately correlated with body mass difference (r=0.48 and r=0.53, P<0.01, respectively) and ΔBMI (r=0.50 and r=0.51, P<0.01, respectively), whereas the Δ0-10 was correlated with ΔBMI (r=0.34, P<0.05) and ΔCMJ (r=-0.34, P<0.05). The findings indicated that the changes in body mass had the largest effect on changes in accelerative ability and on both two phases (drive and transition). On the contrary, changes in leg muscle power had impact only on the drive phase of the acceleration.

  11. Structural adaptations of rat lateral gastrocnemius muscle-tendon complex to a chronic stretching program and their quantification based on ultrasound biomicroscopy and optical microscopic images.

    Science.gov (United States)

    Peixinho, Carolina Carneiro; Martins, Natália Santos Fonseca; de Oliveira, Liliam Fernandes; Machado, João Carlos

    2014-01-01

    A chronic regimen of flexibility training can increase range of motion, with the increase mechanisms believed to be a change in the muscle material properties or in the neural components associated with this type of training. This study followed chronic structural adaptations of lateral gastrocnemius muscle of rats submitted to stretching training (3 times a week during 8weeks), based on muscle architecture measurements including pennation angle, muscle thickness and tendon length obtained from ultrasound biomicroscopic images, in vivo. Fiber length and sarcomere number per 100μm were determined in 3 fibers of each muscle (ex vivo and in vitro, respectively), using conventional optical microscopy. Stretching training resulted in a significant pennation angle reduction of the stretched leg after 12 sessions (25%, P=0.002 to 0.024). Muscle thickness and tendon length presented no significant changes. Fiber length presented a significant increase for the stretched leg (8.5%, P=0.00006), with the simultaneous increase in sarcomere length (5%, P=0.041) since the stretched muscles presented less sarcomeres per 100μm. A stretching protocol with characteristics similar to those applied in humans was sufficient to modify muscle architecture of rats with absence of a sarcomerogenesis process. The results indicate that structural adaptations take place in skeletal muscle tissue submitted to moderate-intensity stretching training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Propeller Flap for Complex Distal Leg Reconstruction: A Versatile ...

    African Journals Online (AJOL)

    have been described in the axilla, periolecranon, forearm, lower extremity,[1] hand,[6] and trunk.[7] In spite of the versatility of perforator‑based flaps, literature search reveals ... Anatomy of distal leg perforators. Perforators are small diameter vessels that originate from a main pedicle and perforate the fascia or muscle to ...

  13. Impact Force Suppression for Redundant Legged Biped Robot Based on Unified Decoupling Control Method

    Science.gov (United States)

    Shibata, Masaaki; Tasaki, Go; Natori, Takeshi

    A swinging leg of a biped robot landing, impact force usually occurs between the sole and the ground, and then it causes instability of the gait. The paper describes the advantages of adopting redundant legs to the robot in order to conquer the difficulty, and proposes a novel way of the motion control for the redundant legged biped robot. In general, each leg of a conventional biped robot consists of 3 joints, namely, hip, knee and ankle in the sagittal plane. On the other hand, the proposed robot has been added extra joints, and thereby has redundancy in terms of degrees-of-freedom. Since the redundant leg can select its arbitrary posture, regardless of the tip position, the structure enables to move the position of the center of mass (COM) of the leg independently. The impact force is suppressed by controlling the COM acceleration of the landing leg. In order to achieve the decoupled motions between the tip and the COM, the unified decoupling controller is introduced. The controller includes three types of the disturbance observers together, and both desired motions are realized consequently. The validity of the proposed approach is confirmed in physical experimental results.

  14. Development and Physical Control Research on Prototype Artificial Leg

    Directory of Open Access Journals (Sweden)

    Fei Li

    2016-03-01

    Full Text Available To provide an ideal platform for research on intelligent bionic leg (IBL, this paper proposes a model of a biped robot with heterogeneous legs (BRHL. A prototype of an artificial leg is developed based on biological structure and motion principle analysis of human lower extremities. With regard to the driving sources, servomotors are chosen for the hip joint and ankle joint, while pneumatic muscle actuators (PMAs are chosen for the knee joint. The control system of the bionic artificial leg is designed and a physical experimental platform is established. The physical control experiments are done based on proportional-integral-derivative (PID control strategy. The experimental results show that such a system can realize the expected goals.

  15. The automatic pelvic floor muscle response to the active straight leg raise in cases with pelvic girdle pain and matched controls.

    Science.gov (United States)

    Stuge, Britt; Sætre, Kaja; Ingeborg Hoff, Brækken

    2013-08-01

    The active straight leg raise (ASLR) test has been proposed as a clinical test for the assessment of pelvic girdle pain (PGP). Little is known about the activation of the pelvic floor muscles (PFM) during ASLR. The main aim of this study was to examine the automatic PFM contraction during ASLR. Specific aims were to compare automatic contraction to rest and to voluntary contraction, to compare PFM contraction during ASLR with and without compression and to examine whether there were any differences in PFM contraction between women with and without clinically diagnosed PGP during ASLR. Forty-nine pairs of women participated in a cross-sectional study with individual, one-to-one matched cases and controls. PFM was assessed by reliable and valid 3D ultrasound at rest, during voluntary and automatic contraction. Test-retest data for the levator hiatus during ASLR showed good repeatability. Significantly automatic PFM contractions occurred when ASLR tests were performed. There was a strong positive correlation between voluntary and automatic PFM contractions. Manual compression reduced the automatic PFM contraction during ASLR by 62-66%. There were no significant differences between cases and controls in reduction of levator hiatus or muscle length from rest to automatic contractions during ASLR. Interestingly, a significantly smaller levator hiatus was found in women with PGP than in controls, at rest, during an automatic contraction with ASLR and during voluntary contraction. In conclusion, a significant automatic PFM contraction occurred during ASLR, both in cases and in controls. Women with PGP had a significantly smaller levator hiatus than controls. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The Acute Effects of Unilateral Ankle Plantar Flexors Static- Stretching on Postural Sway and Gastrocnemius Muscle Activity During Single-Leg Balance Tasks

    Directory of Open Access Journals (Sweden)

    Bráulio N. Lima, Paulo R.G. Lucareli, Willy A. Gomes, Josinaldo J. Silva, Andre S. Bley, Erin H. Hartigan, Paulo H. Marchetti

    2014-09-01

    Full Text Available The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG and the center of pressure (COP during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipodal quiet standing for 30s before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch a unilateral ankle plantar flexor static- stretching protocol [6 sets of 45s/15s, 70-90% point of discomfort (POD]. Postural sway was described using the COP area, COP speed (antero-posterior and medio-lateral directions and COP frequency (antero-posterior and medio-lateral directions. Surface EMG (EMG integral [IEMG] and Median frequency[FM] was used to describe the muscular activity of gastrocnemius lateralis. Ankle dorsiflexion passive range of motion increased in the stretched limb before and after the static-stretching protocol (mean ± SD: 15.0° ± 6.0 and 21.5° ± 7.0 [p < 0.001]. COP area and IEMG increased in the stretch limb between pre-stretching and immediately post-stretching (p = 0.015 and p = 0.036, respectively. In conclusion, our static- stretching protocol effectively increased passive ankle ROM. The increased ROM appears to increase postural sway and muscle activity; however these finding were only a temporary or transient effect.

  17. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players.

    Directory of Open Access Journals (Sweden)

    Alberto Mendez-Villanueva

    Full Text Available The present study examined site-specific hamstring muscles use with functional magnetic resonance imaging (MRI in elite soccer players during strength training. Thirty-six players were randomized into four groups, each performing either Nordic hamstring, flywheel leg-curl, Russian belt or the hip-extension conic-pulley exercise. The transverse relaxation time (T2 shift from pre- to post-MRI were calculated for the biceps femoris long (BFl and short (BFs heads, semitendinosus (ST and semimembranosus (SM muscles at proximal, middle and distal areas of the muscle length. T2 values increased substantially after flywheel leg-curl in all regions of the BFl (from 9±8 to 16±8%, BFs (41±6-71±11%, and ST (60±1-69±7%. Nordic hamstring induced a substantial T2 increase in all regions of the BFs (13±8-16±5% and ST (15±7-17±5%. T2 values after the Russian belt deadlift substantially increased in all regions of the BFl (6±4-7±5%, ST (8±3-11±2%, SM (6±4-10±4%, and proximal and distal regions of BFs (6±6-8±5%. T2 values substantially increased after hip-extension conic-pulley only in proximal and middle regions of BFl (11±5-7±5% and ST (7±3-12±4%. The relevance of such MRI-based inter- and intra-muscle use in designing more effective resistance training for improving hamstring function and preventing hamstring injuries in elite soccer players should be explored with more mechanistic studies.

  18. MRI-Based Regional Muscle Use during Hamstring Strengthening Exercises in Elite Soccer Players.

    Science.gov (United States)

    Mendez-Villanueva, Alberto; Suarez-Arrones, Luis; Rodas, Gil; Fernandez-Gonzalo, Rodrigo; Tesch, Per; Linnehan, Richard; Kreider, Richard; Di Salvo, Valter

    2016-01-01

    The present study examined site-specific hamstring muscles use with functional magnetic resonance imaging (MRI) in elite soccer players during strength training. Thirty-six players were randomized into four groups, each performing either Nordic hamstring, flywheel leg-curl, Russian belt or the hip-extension conic-pulley exercise. The transverse relaxation time (T2) shift from pre- to post-MRI were calculated for the biceps femoris long (BFl) and short (BFs) heads, semitendinosus (ST) and semimembranosus (SM) muscles at proximal, middle and distal areas of the muscle length. T2 values increased substantially after flywheel leg-curl in all regions of the BFl (from 9±8 to 16±8%), BFs (41±6-71±11%), and ST (60±1-69±7%). Nordic hamstring induced a substantial T2 increase in all regions of the BFs (13±8-16±5%) and ST (15±7-17±5%). T2 values after the Russian belt deadlift substantially increased in all regions of the BFl (6±4-7±5%), ST (8±3-11±2%), SM (6±4-10±4%), and proximal and distal regions of BFs (6±6-8±5%). T2 values substantially increased after hip-extension conic-pulley only in proximal and middle regions of BFl (11±5-7±5%) and ST (7±3-12±4%). The relevance of such MRI-based inter- and intra-muscle use in designing more effective resistance training for improving hamstring function and preventing hamstring injuries in elite soccer players should be explored with more mechanistic studies.

  19. Muscles of mastication model-based MR image segmentation

    International Nuclear Information System (INIS)

    Ng, H.P.; Agency for Science Technology and Research, Singapore; Ong, S.H.; National Univ. of Singapore; Hu, Q.; Nowinski, W.L.; Foong, K.W.C.; National Univ. of Singapore; Goh, P.S.

    2006-01-01

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  20. Muscles of mastication model-based MR image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.P. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Ong, S.H. [National Univ. of Singapore (Singapore). Dept. of Electrical and Computer Engineering; National Univ. of Singapore (Singapore). Div. of Bioengineering; Hu, Q.; Nowinski, W.L. [Agency for Science Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.; Foong, K.W.C. [NUS Graduate School for Integrative Sciences and Engineering, Singapore (Singapore); National Univ. of Singapore (Singapore). Dept. of Preventive Dentistry; Goh, P.S. [National Univ. of Singapore (Singapore). Dept. of Diagnostic Radiology

    2006-11-15

    Objective: The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods: Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results: The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (K) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion: A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations. (orig.)

  1. Behavior-based obstacle avoidance capability for biologically inspired eight-legged walking robot

    International Nuclear Information System (INIS)

    Izzeldin Ibrahim Mohd; Shamsudin M Amin; Adel Ali Syed Al-Jumaily

    1999-01-01

    Behavior-based approach has proven to be useful in making mobile robot working in real world situations. Since the behaviors are responsible for managing the interaction between the robots and its environment, observing their use can be exploited to model these interactions. A real-time obstacle avoidance algorithm has been developed and implemented. This algorithm permits the detection of unknown obstacle simultaneously with the steering of the mobile robot to avoid collisions and advance toward the target. In our approach the robot is initially given a set of behavior-producing modules to choose from, and the algorithm provides a memory-based approach to dynamically adapt the selection of the behaviors according to the history of their use. We developed a set of algorithms, which uses Subsumption Architecture (SA) for controlling an eight-legged walking robot operating in closed vicinity. This paper describes a successful application of these algorithms to Oct-Ib robot and experimental results of the robot navigating in complex environment. (Author)

  2. Control method of Three-phase Four-leg converter based on repetitive control

    Science.gov (United States)

    Hui, Wang

    2018-03-01

    The research chose the magnetic levitation force of wind power generation system as the object. In order to improve the power quality problem caused by unbalanced load in power supply system, we combined the characteristics and repetitive control principle of magnetic levitation wind power generation system, and then an independent control strategy for three-phase four-leg converter was proposed. In this paper, based on the symmetric component method, the second order generalized integrator was used to generate the positive and negative sequence of signals, and the decoupling control was carried out under the synchronous rotating reference frame, in which the positive and negative sequence voltage is PI double closed loop, and a PI regulator with repetitive control was introduced to eliminate the static error regarding the fundamental frequency fluctuation characteristic of zero sequence component. The simulation results based on Matlab/Simulink show that the proposed control project can effectively suppress the disturbance caused by unbalanced loads and maintain the load voltage balance. The project is easy to be achieved and remarkably improves the quality of the independent power supply system.

  3. Versatility of the distally based superficial sural flap for reconstruction of lower leg and foot in children.

    Science.gov (United States)

    Koladi, Jayakrishnan; Gang, Raj Kumar; Hamza, Abdul Aziz; George, Alexander; Bang, Rameshwar L; Rajacic, Nebojsa

    2003-01-01

    Twenty children are presented after undergoing a distally based superficial sural flap for coverage of defects at the lower leg and foot. The age of the patients was between 1 and 12 years. Fifteen patients had trauma to the lower leg, with eight of them having associated injuries. Three had postburn contracture and two had pressure sore. In 14 cases, the flap was used as a fasciocutaneous flap, whereas in six cases it was used as a fascial flap covered with a skin graft. The flaps were used to cover the defects from the dorsum of the foot distally up to the mid third of tibia proximally. The mean follow-up was for a period of 2 years. Even though free tissue transfer is reliable and safe for the reconstruction of major leg injuries in children, the distally based superficial sural flap has the advantage of being easy to perform, with short operating time, minimal donor side morbidity, and preservation of major arteries of the leg.

  4. Leg Swelling

    Science.gov (United States)

    ... ed. New York, N.Y.: The McGraw Hill Companies; 2016. http://www.accessmedicine.com. Accessed Dec. 31, ... http://www.mayoclinic.org/symptoms/leg-swelling/basics/definition/SYM-20050910 . Mayo Clinic Footer Legal Conditions and ...

  5. Bioinspired legged-robot based on large deformation of flexible skeleton

    International Nuclear Information System (INIS)

    Mayyas, Mohammad

    2014-01-01

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot’s leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot. (paper)

  6. Leg Problems

    Science.gov (United States)

    ... TEAR of the ACHILLES TENDON that attaches the calf muscle to the heel. This injury will cause pain and difficulty pointing the foot down. A TORN CALF MUSCLE will be painful and might produce bruises. Self ...

  7. Leg pain

    Science.gov (United States)

    ... to a muscle cramp (also called a charley horse ). Common causes of cramps include: Dehydration or low ... muscle ( strain ) Hairline crack in the bone (stress fracture) Inflamed tendon ( tendinitis ) Shin splints (pain in the ...

  8. Defining morphology of periodic leg movements in sleep: an evidence-based definition of a minimum window of sustained activity.

    Science.gov (United States)

    Skeba, Patrick; Fulda, Stephany; Hiranniramol, Kasidet; Earley, Christopher J; Allen, Richard P

    2016-12-01

    Current standard guidelines for scoring periodic leg movements (PLM) define the start and end of a movement but fail to explicitly specify the movement morphology necessary to classify an EMG event as a PLM, rather than some other muscle event. This is currently left to the expert visual scorer to determine. This study aimed to define this morphology to provide a consistent standard for visual scoring and to improve automatic periodic leg movements in sleep scoring. A review of expert PLM scoring produced a hypothesized morphology criterion: a window of high EMG activity within the movement lasting at least 0.5 s. Two diverse expert visual scorers were independently presented with images of EMG tracings from candidate leg movements (CLM) that either passed or failed this requirement (aka "full" or "empty" movements, respectively), and indicated whether each should be scored as CLM. The 0.5-s window was compared with alternatives of 0.25 and 0.75 windows. Expert scorers on average identified 94 % of "full" movements as CLM in contrast to only 8.5 % of "empty" movements. The proposed minimum window of 0.5 s also resulted in the highest agreement between visual scorers and between scorers and an automatic program. An added criterion requiring 0.5 s of high EMG activity within a valid CLM improves the accuracy of automatic scoring algorithms in relation to the gold standard of expert visual scorers. Our results suggest that this rule is an accurate representation of the morphology feature used by experts. This new rule has the potential to improve consistency and accuracy of visual and automatic scoring of PLM.

  9. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.

    Science.gov (United States)

    Krueger, Eddy; Popović-Maneski, Lana; Nohama, Percy

    2018-02-01

    A motor neural prosthesis based on surface functional electrical stimulation (sFES) can restore functional movement (e.g., standing, walking) in patients with a spinal cord injury (SCI). sFES generates muscle contractions in antigravity muscles and allows balance-assisted standing. This induced standing has several benefits, such as improved cardiovascular function, decreased incidence of urinary infections, reduced joint contractures, and muscle atrophy. The duration of sFES assisted standing is limited due to the quick onset of muscle fatigue. Currently, there is no method available to reliably estimate real-time muscle fatigue during sFES. Simply monitoring the M-wave changes is not suitable due to the high signal disturbances that arise during multi-channel electrical stimulation. Mechanomyography (MMG) is immune to electrical stimulation artifacts and can be used to detect subtle vibrations on the surface of the skin related to activation of the underlying muscle's motor units (MU). The aim of this study was to develop a method for detecting muscle fatigue brought on by sFES. The method was tested in three different heads of the quadriceps muscle in SCI patients during electrically elicited quasi-isometric contraction. Six spinal cord-injured male volunteers, with no voluntary control of the quadriceps muscle participated in the study. Electrical bursts of voltage-controlled monophasic square pulses at frequencies of 1 kHz (50% duty cycle) at 50 Hz (15% duty cycle) were used to generate thigh muscle contractions that controlled the knee joint in the sagittal plane. The pulse amplitudes were set to position the knee joint at a 5° angle from the horizontal plane and when the knee angle dropped to 20° (e.g., the quadriceps were unable to hold the lower leg in the desired position), the test was terminated. Two data segments lasting 10 s each, at the beginning and end of each test, were analyzed. The muscle contraction was assessed by MMG sensors positioned on

  10. Muscle fatigue based evaluation of bicycle design.

    Science.gov (United States)

    Balasubramanian, V; Jagannath, M; Adalarasu, K

    2014-03-01

    Bicycling posture leads to considerable discomfort and a variety of chronic injuries. This necessitates a proper bicycle design to avoid injuries and thereby enhance rider comfort. The objective of this study was to investigate the muscle activity during cycling on three different bicycle designs, i.e., rigid frame (RF), suspension (SU) and sports (SP) using surface electromyography (sEMG). Twelve male volunteers participated in this study. sEMG signals were acquired bilaterally from extensor carpi radialis (ECR), trapezius medial (TM), latissimus dorsi medial (LDM) and erector spinae (ES), during 30 min of cycling on each bicycle and after cycling. Time domain (RMS) and frequency domain (MPF) parameters were extracted from acquired sEMG signals. From the sEMG study, it was found that the fatigue in right LDM and ES were significantly (p bicycle. This was corroborated by a psychophysical assessment based on RBG pain scale. The study also showed that there was a significantly lesser fatigue with the SU bicycle than the RF and SP bicycles. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites

    OpenAIRE

    Lin, Shang-Chang; Hu, Chia-Jui; Shih, Wen-Pin; Lin, Pei-Chun

    2015-01-01

    We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic ...

  12. A laboratory grid simulator based on three-phase four-leg inverter

    DEFF Research Database (Denmark)

    Li, Fei; Wang, Xiongfei; Chen, Zhe

    2011-01-01

    This paper presents the design and implementation of a laboratory grid simulator which is used to test the grid-connected devices according to the strict standards. Three-phase four-leg inverter with direct voltage control in Natural Frame is adopted in this grid simulator, which significantly...... and power quality. Experimental results verify the functionality and performances of the designed grid simulator....

  13. Experience with Perforator Based Flaps for Wound Cover of the Leg ...

    African Journals Online (AJOL)

    Background: Open fractures of the distal third of the tibia and fibular offer a challenge to the orthopedic surgeon because of skin coverage. The reconstructive surgeon's help is often required in trying to achieve this. There are several options: - local flap, free flap or a cross leg flap. Local flaps have always had limitations ...

  14. Active and Inactive Leg Hemodynamics during Sequential Single-Leg Interval Cycling.

    Science.gov (United States)

    Gordon, Nicole; Abbiss, Chris R; Ihsan, Mohammed; Maiorana, Andrew J; Peiffer, Jeremiah J

    2018-01-11

    Leg order during sequential single-leg cycling (i.e. exercising both legs independently within a single session) may affect local muscular responses potentially influencing adaptations. This study examined the cardiovascular and skeletal muscle hemodynamic responses during double-leg and sequential single-leg cycling. Ten young healthy adults (28 ± 6 y) completed six 1-min double-leg intervals interspersed with one minute of passive recovery and, on a separate occasion, 12 (six with one leg followed by six with the other leg) 1-min single-leg intervals interspersed with one minute of passive recovery. Oxygen consumption, heart rate, blood pressure, muscle oxygenation, muscle blood volume and power output were measured throughout each session. Oxygen consumption, heart rate and power output were not different between sets of single-leg intervals but the average of both sets was lower than the double-leg intervals. Mean arterial pressure was higher during double-leg compared with sequential single-leg intervals (115 ± 9 mmHg vs. 104 ± 9 mmHg; p<0.05) and higher during the initial compared with second set of single-leg intervals (108 ± 10 mmHg vs. 101 ± 10 mmHg; p<0.05). The increase in muscle blood volume from baseline was similar between the active single-leg and double-leg (267 ± 150 μM[BULLET OPERATOR]cm vs. 214 ± 169 μM[BULLET OPERATOR]cm; p=0.26). The pattern of change in muscle blood volume from the initial to second set of intervals was significantly different (p<0.05) when the leg was active in the initial (-52.3 ± 111.6%) compared with second set (65.1 ± 152.9%). These data indicate that the order in which each leg performs sequential single-leg cycling influences the local hemodynamic responses, with the inactive muscle influencing the stimulus experienced by the contralateral leg.

  15. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J

    2008-01-01

    were analyzed for mRNA content of VEGF, endothelial nitric oxide synthase (eNOS), and matrix metalloproteinase-2 (MMP-2). The passive leg movement caused an increase (P ... to cultured endothelial cells revealed that dialysate obtained during leg movement induced a 3.2-fold higher proliferation rate (P MMP-2 mRNA levels were......The present study used passive limb movement as an experimental model to study the effect of increased blood flow and passive stretch, without enhanced metabolic demand, in young healthy male subjects. The model used was 90 min of passive movement of the leg leading to a 2.8-fold increase (P

  16. Six weeks' aerobic retraining after two weeks' immobilization restores leg lean mass and aerobic capacity but does not fully rehabilitate leg strenght in young and older men

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Gram, Martin; Wiuff, Caroline

    2015-01-01

    OBJECTIVE: To determine the effect of aerobic retraining as rehabilitation after short-term leg immobilization on leg strength, leg work capacity, leg lean mass, leg muscle fibre type composition and leg capillary supply, in young and older men. SUBJECTS AND DESIGN: Seventeen young (23 ± 1 years...... immobilization had marked effects on leg strength, and work capacity and 6 weeks' retraining was sufficient to increase, but not completely rehabilitate, muscle strength, and to rehabilitate aerobic work capacity and leg lean mass (in the young men)....

  17. Broken Leg

    Science.gov (United States)

    ... the leg, which can result in a fracture. Stress fractures outside of sport situations are more common in people who have: ... shoes. Choose the appropriate shoe for your favorite sports or activities. And ... can prevent stress fractures. Rotate running with swimming or biking. If ...

  18. PredyCLU: a prediction system for chronic leg ulcers based on fuzzy logic; part I - exploring the venous side.

    Science.gov (United States)

    de Franciscis, Stefano; Fregola, Salvatore; Gallo, Alessandro; Argirò, Giuseppe; Barbetta, Andrea; Buffone, Gianluca; Caliò, Francesco G; De Caridi, Giovanni; Amato, Bruno; Serra, Raffaele

    2016-12-01

    Chronic leg ulcers (CLUs) are a common occurrence in the western population and are associated with a negative impact on the quality of life of patients. They also cause a substantial burden on the health budget. The pathogenesis of leg ulceration is quite heterogeneous, and chronic venous ulceration (CVU) is the most common manifestation representing the main complication of chronic venous disease (CVD). Prevention strategies and early identification of the risk represent the best form of management. Fuzzy logic is a flexible mathematical system that has proved to be a powerful tool for decision-making systems and pattern classification systems in medicine. In this study, we have elaborated a computerised prediction system for chronic leg ulcers (PredyCLU) based on fuzzy logic, which was retrospectively applied on a multicentre population of 77 patients with CVD. This evaluation system produced reliable risk score patterns and served effectively as a stratification risk tool in patients with CVD who were at the risk of developing CVUs. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  19. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  20. Reliability of the one-repetition maximum test based on muscle group and gender.

    Science.gov (United States)

    Seo, Dong-Il; Kim, Eonho; Fahs, Christopher A; Rossow, Lindy; Young, Kaelin; Ferguson, Steven L; Thiebaud, Robert; Sherk, Vanessa D; Loenneke, Jeremy P; Kim, Daeyeol; Lee, Man-Ki; Choi, Kyung-Hoon; Bemben, Debra A; Bemben, Michael G; So, Wi-Young

    2012-01-01

    The purpose of the present study was to examine the influence of muscle group location and gender on the reliability of assessing the one-repetition maximum (1RM) test. Thirty healthy males (n = 15) and females (n = 15) who experienced at least 3 months of continuous resistance training during the last 2 years aged 18-35 years volunteered to participate in the study. The 1RM for the biceps curl, lat pull down, bench press, leg curl, hip flexion, triceps extension, shoulder press, low row, leg extension, hip extension, leg press and squat were measured twice by a trained professional using a standard published protocol. Biceps curl, lat pull down, bench press, leg curl, hip flexion, and squat 1RM's were measured on the first visit, then 48 hours later, subjects returned for their second visit. During their second visit, 1RM of triceps extension, shoulder press, low row, leg extension, hip extension, and leg press were measured. One week from the second visit, participants completed the 1 RM testing as previously done during the first and second visits. The third and fourth visits were separated by 48 hours as well. All four visits to the laboratory were at the same time of day. A high intraclass correlation coefficient (ICC > 0.91) was found for all exercises, independent of gender and muscle group size or location, however there was a significant interaction for muscle group location (upper body vs. lower body) in females (p technique to assess muscle strength changes regardless of muscle group location or gender.

  1. CT-based analysis of muscle volume and degeneration of gluteus medius in patients with unilateral hip osteoarthritis.

    Science.gov (United States)

    Momose, Takako; Inaba, Yutaka; Choe, Hyonmin; Kobayashi, Naomi; Tezuka, Taro; Saito, Tomoyuki

    2017-11-15

    The gluteus medius (GMED) affects hip function as an abductor. We evaluated muscle volume and degeneration of the GMED by using CT-based analysis and assessed factors that affect hip abductor strength in patients with unilateral hip osteoarthritis (OA). We examined clinical and imaging findings associated with hip abductor strength in consecutive 50 patients with unilateral hip OA. Hip abductor muscle strength and Harris hip score (HHS) were assessed. Leg length discrepancy (LLD) and femoral offset were assessed using X-ray; CT assessment was employed for volumetric and qualitative GMED analysis. Volumetric analysis involved measurement of cross sectional area (CSA) and three-dimensional (3D) muscle volume. CT density was measured for the qualitative assessment of GMED degeneration with or without adjustment using a bone mineral reference phantom. Hip abductor muscle strength on the affected side was significantly lower than that on the contralateral healthy side and positively correlated with overall score and score for limping of gait of HHS, demonstrating the importance of hip abductor strength for normal hip function. A significant correlation was found between CSA and 3D muscle volume, unadjusted CT density and adjusted CT density, and hip abductor strength and these CT measurements. Multiple linear regression analysis demonstrated that 3D muscle volume, adjusted CT density, and LLD are independent factors affecting hip abduction. 3D measurement of muscle volume and adjusted CT density more accurately reflect quantity and the GMED quality than do conventional assessments. Increase in muscle volume, recovery of muscle degeneration, and correction of LLD are important for improving limping in patients with hip OA.

  2. "Four legs instead of two"--perspectives on a Nordic walking-based walking programme among people with arthritis.

    Science.gov (United States)

    O'Donovan, Rhona; Kennedy, Norelee

    2015-01-01

    Nordic Walking (NW) is growing in popularity among people with arthritis. The aim of this study was to explore the perspectives of participants with arthritis on a NW-based walking programme including factors contributing to sustained participation in the programme. Three semi-structured focus groups were conducted with a total of 27 participants with various types of arthritis. The groups consisted of participants who completed a NW-based walking programme in the previous 4 years. Only participants who had sustained involvement in the walking group were included. Groups were audio-recorded, transcribed verbatim and thematic analysis was performed. Participants reported that the walking programme offered numerous benefits. Two distinct themes emerged: (1) "four legs instead of two legs" and (2) "a support group". Theme 1 incorporates the physical, psychological and educational benefits that stem from involvement in a walking group while Theme 2 incorporates the benefits of social support in group-based activity. Several benefits of a NW-based walking programme from the perspectives of individuals with arthritis who engage in group-based walking programmes were identified. The benefits may encourage sustained participation and justify the promotion of NW as an intervention for people with arthritis. Considering how to sustain exercise participation is important to ensure continued benefits from physical activity participation. A community-based Nordic walking-based walking programme for people with arthritis improved exercise knowledge and confidence to exercise. Group exercise is valuable in providing support and motivation to continue exercising.

  3. A Fast-Processing Modulation Strategy for Three-Phase Four-Leg Neutral-Point-Clamped Inverter Based on the Circuit-Level Decoupling Concept

    DEFF Research Database (Denmark)

    Ghoreishy, Hoda; Zhang, Zhe; Thomsen, Ole Cornelius

    2012-01-01

    In this paper, a modulation strategy based on the circuit-level decoupling concept is proposed and investigated for the three-level four-leg neutral-point-clamped (NPC) inverter,with the aim of delivering power to all sorts of loads, linear/nonlinear and balanced/unbalanced. By applying...... the proposed modulation strategy, the four-leg NPC inverter can be decoupled into three three-level Buck converters in each defined operating section. This makes the controller design much simpler compared to the conventional four-leg NPC inverter controllers. Also, this technique can be implemented...

  4. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with (99m)Tc-methylene diphosphonate single photon emission computed tomography/computed tomography.

    Science.gov (United States)

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. (99m)Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis.

  5. Does the urethral angle change with leg position? Implications for urethral-based CT-planned transperineal prostate implants

    International Nuclear Information System (INIS)

    Bednarz, Greg; Ning, Yue; Waterman, Frank M.; Corn, Benjamin W.; Dicker, Adam P.

    1997-01-01

    Purpose: CT based treatment planning for transperineal prostate implants allows for angulation of transperineal needles to avoid the pubic bones by changing the template angle. It requires fluoroscopic guidance and utilizes identification of the urethra by radiopaque markers inside the Foley catheter at the time of the implant. The needle trajectory is relative to the urethral angle as visualized by lateral fluoroscopic views. Patients who have a treatment planning CT in preparation for a transperineal prostate implant are typically scanned in the leg-down/straight position. However, the implant is done in the lithotomy position and changes in the template angle to adapt to the new urethral angle are often required. We have evaluated the relationship between leg position and the position of the prostatic urethra to predict the change in the planned template angle. Material and Methods: To duplicate the lithotomy position a custom designed foot holder was constructed that attached to a flatbed CT scanner. A Foley catheter was inserted with radio-opaque contrast placed in the balloon. Bladder contrast was also utilized. A catheter with 1 cm spaced dummy seeds was placed inside the Foley catheter. A radio-opaque catheter was inserted into the rectum. Fifteen patients had pre-implant scans performed in the leg-down/straight and lithotomy position. The prostate, urethra, bladder and rectum were contoured utilizing a 3D-brachytherapy software system and analyzed. Results: Fourteen of the patients (93%) had changes in urethral angle when evaluated in the lithotomy relative to the led-down/straight position. The mean angle change was - 9.8 degrees (Std. Error 1.47 degrees; p < 0.0001) when in the lithotomy position. The changes were not correlated with prostatic volume or clinical stage. All patients who had urethral angle changes would have required adjustments in the template angle. Conclusions: 1) The objective of treatment planning for prostate implants is to

  6. Variation of the Surface of the Longissimus Dorsi (LD Muscle and the Section of the Leg of Mutton at Young Sheep of Different Breed Structures

    Directory of Open Access Journals (Sweden)

    Elena Ilişiu

    2010-10-01

    Full Text Available The research was done on carcasses from the slaughter of young male sheep intensively fattened belonging to the local Tsigai race of mountain ecotype and its half-breeds with Suffolk and German blackface (GCCN. The purpose of the research was to determine Logissimus dorsi (LD and leg of moutton area, because these parts provide information on Ist meat quality. Research results have noted that lots of half-breeds achieved higher Longissimus dorsi (LD and leg of moutton area, compared with the pure breed batch. Compared with Tsigai breed, Longissimus dorsi (LD area deterrmined was higher with 10,75% to Suffolk x Tsigai half-breeds, and 0,07% respectively to German Blackface x Tsigai half-breeds. Leg of moutton area was higher with 17,27% to Suffolk x Tsigai halfbreeds, and 2,75% respectively to German Blackface x Tsigai half-breeds. Research carried out special information on Ist meat quality on carcass.

  7. Design of Ski Boots for Alpine Ski Racing Based on Leg Frame of the Skier

    Science.gov (United States)

    Suzuki, Soichiro; Hayashi, Sueyoshi

    A ski boot is important to make progress in ski turning technique as an interface between a skier and a ski. Especially in alpine ski races, suitability of design of the boots for racers becomes more important to achieve accurate and quick lean of the leg in ski turns. This study is aimed at building a new design concept of a ski boot that can improve the results of alpine ski races. In this paper, new design of an upper shell of a ski boot that was adjusted to the features of the frame of alpine ski racers was experimentally examined. As a result, it was demonstrated that a front and a rear part of the upper shell of a ski boot should be separately adjusted to the length of a shank of each player for well-balanced quick lean of the leg in the ski turn. Finally, the effect of new design of an upper shell was examined in giant slalom and slalom tests by Japanese alpine ski racers of the first rank. Consequently, the results showed that lean angle during turns was increased and finish time was shortened when the skiers wore the newly designed boots.

  8. Why adductor magnus muscle is large: the function based on muscle morphology in cadavers.

    Science.gov (United States)

    Takizawa, M; Suzuki, D; Ito, H; Fujimiya, M; Uchiyama, E

    2014-02-01

    The aim of this study was to examine anatomical properties of the adductor magnus through a detailed classification, and to hypothesize its function and size to gather enough information about morphology. Ten cadaveric specimens of the adductor magnus were used. The muscle was separated into four portios (AM1-AM4) based on the courses of the corresponding perforating arteries, and its volume, muscle length, muscle fiber length and physiological cross-sectional area were assessed. The architectural characteristics of these four portions of the adductor magnus were then classified with the aid of principal component analysis. The results led us into demarcating the most proximal part of the adductor magnus (AM1) from the remaining parts (AM2, AM3, and AM4). Classification of the adductor magnus in terms of architectural characteristics differed from the more traditional anatomical distinction. The AM2, AM3, and AM4, having longer muscle fiber lengths than the AM1, appear to be designed as displacers for moving the thigh through a large range of motion. The AM1 appears instead to be oriented principally toward stabilizing the hip joint. The large mass of the adductor magnus should thus be regarded as a complex of functionally differentiable muscle portions. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. PELATIHAN PLIOMETRIK ALTERNATE LEG BOUND DAN DOUBLE LEG BOUND MENINGKATKAN DAYA LEDAK OTOT TUNGKAI PADA SISWA PUTRA KELAS VII SMP NEGERI 3 SUKAWATI TAHUN PELAJARAN 2012/2013

    Directory of Open Access Journals (Sweden)

    Komang Ayu Tri Widhiyanti

    2013-11-01

    Full Text Available This study was conducted to know the improvement the explosive power of leg muscle. It was done through 5 set 12 repetitions during 6 weeks in the field of SMP Negeri 3 Sukawati started from 4 p.m. until 6 p.m. There were 3 groups applied in this study such as group 1 (control group that was instructed to kick a ball, group 2 (plyometric training of alternate leg bound, and group 3 (plyometric training of double leg bound. The sample was 14 male students who were in the seventh grade class of SMP Negeri 3 Sukawati in the academic year 2012/2013. The data was gained by doing the movement of alternate leg bound and double leg bound that each movement was done three times before and after the training. The hypothesis was examined by using independent t-test with the result 0.05 (p<0.05. Based on the different result of analysis test in each group, the gain score of the group 2 with the group 1 about 0,51 that shows the significant differences p = 0,00, the gain score of the group 2 with the group 3 about 0,31 that shows the significant differences p = 0,00, the gain score of the group 3 with the group 1 about 0,20 that shows the significant differences p = 0,00. Thus, alternate leg bound plyometric training is more effective than double leg bound. It is expected that the coach and the gym teacher to apply alternate leg bound plyometric training as an alternative to improve the explosive power of leg muscle.

  10. Electromyogram refinement using muscle synergy based regulation of uncertain information.

    Science.gov (United States)

    Min, Kyuengbo; Shin, Duk; Lee, Jongho; Kakei, Shinji

    2018-04-27

    Electromyogram signal (EMG) measurement frequently experiences uncertainty attributed to issues caused by technical constraints such as cross talk and maximum voluntary contraction. Due to these problems, individual EMGs exhibit uncertainty in representing their corresponding muscle activations. To regulate this uncertainty, we proposed an EMG refinement, which refines EMGs with regulating the contribution redundancy of the signals from EMGs to approximating torques through EMG-driven torque estimation (EDTE) using the muscular skeletal forward dynamic model. To regulate this redundancy, we must consider the synergistic contribution redundancy of muscles, including "unmeasured" muscles, to approximating torques, which primarily causes redundancy of EDTE. To suppress this redundancy, we used the concept of muscle synergy, which is a key concept of analyzing the neurophysiological regulation of contribution redundancy of muscles to exerting torques. Based on this concept, we designed a muscle-synergy-based EDTE as a framework for EMG refinement, which regulates the abovementioned uncertainty of individual EMGs in consideration of unmeasured muscles. In achieving the proposed EMG refinement, the most considerable point is to suppress a large change such as overestimation attributed to enhancement of the contribution of particular muscles to estimating torques. Therefore it is reasonable to refine EMGs by minimizing the change in EMGs. To evaluate this model, we used a Bland-Altman plot, which quantitatively evaluates the proportional bias of refined signals to EMGs. Through this evaluation, we showed that the proposed EDTE minimizes the bias while approximating torques. Therefore this minimization optimally regulates the uncertainty of EMGs and thereby leads to optimal EMG refinement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. One-legged endurance training: leg blood flow and oxygen extraction during cycling exercise

    DEFF Research Database (Denmark)

    Rud, B; Foss, O; Krustrup, Peter

    2012-01-01

    Aim: As a consequence of enhanced local vascular conductance, perfusion of muscles increases with exercise intensity to suffice the oxygen demand. However, when maximal oxygen uptake (VO(2) max) and cardiac output are approached, the increase in conductance is blunted. Endurance training increases...... muscle metabolic capacity, but to what extent that affects the regulation of muscle vascular conductance during exercise is unknown. Methods: Seven weeks of one-legged endurance training was carried out by twelve subjects. Pulmonary VO(2) during cycling and one-legged cycling was tested before and after...... training, while VO(2) of the trained leg (TL) and control leg (CL) during cycling was determined after training. Results: VO(2) max for cycling was unaffected by training, although one-legged VO(2) max became 6.7 (2.3)% (mean ± SE) larger with TL than with CL. Also TL citrate synthase activity was higher...

  12. Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites

    Directory of Open Access Journals (Sweden)

    Shang-Chang Lin

    2015-01-01

    Full Text Available We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors.

  13. Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic restless legs syndrome patients.

    Science.gov (United States)

    Rizzo, G; Manners, D; Vetrugno, R; Tonon, C; Malucelli, E; Plazzi, G; Marconi, S; Pizza, F; Testa, C; Provini, F; Montagna, P; Lodi, R

    2012-07-01

      The aim of this study was to evaluate the presence of abnormalities in the brain of patients with restless legs syndrome (RLS) using voxel-based morphometry and diffusion tensor imaging (DTI).   Twenty patients and twenty controls were studied. Voxel-based morphometry analysis was performed using statistical parametric mapping (SPM8) and FSL-VBM software tools. For voxel-wise analysis of DTI, tract-based spatial statistics (TBSS) and SPM8 were used.   Applying an appropriate threshold of probability, no significant results were found either in comparison or in correlation analyses.   Our data argue against clear structural or microstructural abnormalities in the brain of patients with idiopathic RLS, suggesting a prevalent role of functional or metabolic impairment. © 2011 The Author(s) European Journal of Neurology © 2011 EFNS.

  14. Nonlinear Disturbance Observer Based Robust Tracking Control of Pneumatic Muscle

    Directory of Open Access Journals (Sweden)

    Youssif Mohamed Toum Elobaid

    2014-01-01

    Full Text Available Presently pneumatic muscles (PMs are used in various applications due to their simple construction, lightweight, and high force-to-weight ratio. However, pneumatic muscles are facing various problems due to their nonlinear characteristics and various uncertainties in real applications. To cope with the uncertainties and strong nonlinearity of a PM model, a nonlinear disturbance observer (NDO is designed to estimate the lumped disturbance. Based on the disturbance observer, the tracking control of PM is studied. Stability analysis based on Lyapunov method with respect to our proposed control law is discussed. The simulation results show the validity, effectiveness, and enhancing robustness of the proposed methods.

  15. Home-based Functional Electrical Stimulation for long-term denervated human muscle: History, basics, results and perspectives of the Vienna Rehabilitation Strategy

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2014-03-01

    Full Text Available We will here discuss the following points related to Home-based Functional Electrical Stimulation (h-b FES as treatment for patients with permanently denervated muscles in their legs: 1. Upper (UMN and lower motor neuron (LMN damage to the lower spinal cord; 2. Muscle atrophy/hypertrophy versus processes of degeneration, regeneration, and recovery; 3. Recovery of twitch- and tetanic-contractility by h-b FES; 4. Clinical effects of h-b FES using the protocol of the “Vienna School”; 5. Limitations and perspectives. Arguments in favor of using the Vienna protocol include: 1. Increased muscle size in both legs; 2. Improved tetanic force production after 3-5 months of percutaneous stimulation using long stimulus pulses (> 100 msec of high amplitude (> 80 mAmp, tolerated only in patients with no pain sensibility; 3. Histological and electron microscopic evidence that two years of h-b FES return muscle fibers to a state typical of two weeks denervated muscles with respect to atrophy, disrupted myofibrillar structure, and disorganized Excitation-Contraction Coupling (E-CC structures; 4. The excitability never recovers to that typical of normal or reinnervated muscles where pulses less than 1 msec in duration and 25 mAmp in intensity excite axons and thereby muscle fibres. It is important to motivate these patients for chronic stimulation throughout life, preferably standing up against the load of the body weight rather than sitting. Only younger and low weight patients can expect to be able to stand-up and do some steps more or less independently. Some patients like to maintain the h-b FES training for decades. Limitations of the procedure are obvious, in part related to the use of multiple, large surface electrodes and the amount of time patients are willing to use for such muscle training.

  16. Home-Based Functional Electrical Stimulation for Long-Term Denervated Human Muscle: History, Basics, Results and Perspectives of the Vienna Rehabilitation Strategy.

    Science.gov (United States)

    Kern, Helmut; Carraro, Ugo

    2014-03-31

    We will here discuss the following points related to Home-based Functional Electrical Stimulation (h-b FES) as treatment for patients with permanently denervated muscles in their legs: 1. Upper (UMN) and lower motor neuron (LMN) damage to the lower spinal cord; 2. Muscle atrophy/hypertrophy versus processes of degeneration, regeneration, and recovery; 3. Recovery of twitch- and tetanic-contractility by h-b FES; 4. Clinical effects of h-b FES using the protocol of the "Vienna School"; 5. Limitations and perspectives. Arguments in favor of using the Vienna protocol include: 1. Increased muscle size in both legs; 2. Improved tetanic force production after 3-5 months of percutaneous stimulation using long stimulus pulses (> 100 msec) of high amplitude (> 80 mAmp), tolerated only in patients with no pain sensibility; 3. Histological and electron microscopic evidence that two years of h-b FES return muscle fibers to a state typical of two weeks denervated muscles with respect to atrophy, disrupted myofibrillar structure, and disorganized Excitation-Contraction Coupling (E-CC) structures; 4. The excitability never recovers to that typical of normal or reinnervated muscles where pulses less than 1 msec in duration and 25 mAmp in intensity excite axons and thereby muscle fibres. It is important to motivate these patients for chronic stimulation throughout life, preferably standing up against the load of the body weight rather than sitting. Only younger and low weight patients can expect to be able to stand-up and do some steps more or less independently. Some patients like to maintain the h-b FES training for decades. Limitations of the procedure are obvious, in part related to the use of multiple, large surface electrodes and the amount of time patients are willing to use for such muscle training.

  17. Effects of handicraft sitting postures on lower trunk muscle fatigue.

    Science.gov (United States)

    Areeudomwong, Pattanasin; Puntumetakul, Rungthip; Kaber, David B; Wanpen, Sawitri; Leelayuwat, Naruemon; Chatchawan, Uraiwan

    2012-01-01

    The purpose of this study was to assess trunk muscle fatigue in seated handicraft tasks using surface electromyography (sEMG) and visual analogue scale (VAS) ratings for trunk discomfort, and to assess the relationship of these responses. Twenty-three participants were randomly assigned to assumed crossed-leg and heel sitting postures for 30 min. Normalised median frequency (NMF) slopes for lumbar multifidus (LM) and internal oblique (IO) muscles and VAS ratings were recorded. Results revealed that the crossed-leg posture produced significantly steeper NMF slopes for both sides of the LM and IO muscles than heel sitting. Greater VAS ratings were found in crossed-leg sitting posture than the heel sitting posture. The NMF slopes and the VAS ratings had significant negative correlations for both postures. Findings support heel sitting in handicraft tasks over crossed-leg sitting due to greater trunk muscle fatigue and discomfort during the latter posture. Results support VAS ratings as a complementary method to sEMG for identifying trunk muscle fatigue. Practitioner Summary: Trunk muscle fatigue in handicraft work is a potential risk for low back pain. Based on EMG and discomfort analyses, heel sitting is preferred to crossed-leg posture. Discomfort ratings are consistent with EMG measures in identifying trunk muscle fatigue in such postures.

  18. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Directory of Open Access Journals (Sweden)

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  19. Leg blood flow during static exercise.

    Science.gov (United States)

    Kilbom, A; Persson, J

    1982-01-01

    Leg blood flow was studied with the constant infusion dye technique during static exercise of the thigh muscles (quadriceps) and during hand-grips at 15 and 25-30% of MVC. Blood flow and oxygen uptake in the leg increased in quadriceps exercise and reached their highest values (around 1.21/min and 165 ml/min respectively) at 25-30% of MVC, whereas leg vascular resistance decreased. Regional circulatory adaptations and the oxygen uptake - leg blood flow relationship were in close agreement with the responses found in dynamic leg exercise. In view of the marked rise in intramuscular pressure previously observed during quadriceps contractions, a restriction of blood flow and an increased vascular resistance had been expected. Involuntary activation of leg muscles other than the quadriceps may explain the finding. Contractions of the contralateral quadriceps induced a slight increase in leg blood flow, whereas hand-grips had no influence on blood flow or vascular resistance in the leg. The distribution of the cardiac output during static contractions is discussed, and it is concluded that during hand-grips the increase in blood flow is predominantly distributed to the upper part of the body.

  20. Peripheral artery disease - legs

    Science.gov (United States)

    Peripheral vascular disease; PVD; PAD; Arteriosclerosis obliterans; Blockage of leg arteries; Claudication; Intermittent claudication; Vaso-occlusive disease of the legs; Arterial insufficiency of ...

  1. Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester

    Science.gov (United States)

    Dhote, Sharvari; Yang, Zhengbao; Zu, Jean

    2018-01-01

    This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.

  2. Automated Management of Exercise Intervention at the Point of Care: Application of a Web-Based Leg Training System.

    Science.gov (United States)

    Dedov, Vadim N; Dedova, Irina V

    2015-11-23

    Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants' heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with

  3. A Behavioral Mechanism of How Increases in Leg Strength Improve Old Adults' Gait Speed

    NARCIS (Netherlands)

    Uematsu, Azusa; Tsuchiya, Kazushi; Kadono, Norio; Kobayashi, Hirofumi; Kaetsu, Takamasa; Hortobagyi, Tibor; Suzuki, Shuji

    2014-01-01

    We examined a behavioral mechanism of how increases in leg strength improve healthy old adults' gait speed. Leg press strength training improved maximal leg press load 40% (p = 0.001) and isometric strength in 5 group of leg muscles 32% (p = 0.001) in a randomly allocated intervention group of

  4. On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations.

    Science.gov (United States)

    Pourazadi, Shahram; Ahmadi, Sadegh; Menon, Carlo

    2015-11-05

    One of the recommended treatments for disorders associated with the lower extremity venous insufficiency is the application of external mechanical compression. Compression stockings and elastic bandages are widely used for the purpose of compression therapy and are usually designed to exert a specified value or range of compression on the leg. However, the leg deforms under external compression, which can lead to undesirable variations in the amount of compression applied by the compression bandages. In this paper, the use of an active compression bandage (ACB), whose compression can be regulated through an electrical signal, is investigated. The ACB is based on the use of dielectric elastomer actuators. This paper specifically investigates, via both analytical and non-linear numerical simulations, the potential pressure the ACB can apply when the compliancy of the human leg is taken into account. The work underpins the need to account for the compressibility of the leg when designing compression garments for lower extremity venous insufficiency. A mathematical model is used to simulate the volumetric change of a calf when compressed. Suitable parameters for this calf model are selected from the literature where the calf, from ankle to knee, is divided into six different regions. An analytical electromechanical model of the ACB, which considers its compliancy as a function of its pre-stretch and electricity applied, is used to predict the ACB's behavior. Based on these calf and ACB analytical models, a simulation is performed to investigate the interaction between the ACB and the human calf with and without an electrical stimulus applied to the ACB. This simulation is validated by non-linear analysis performed using a software based on the finite element method (FEM). In all simulations, the ACB's elastomer is stretched to a value in the range between 140 and 220 % of its initial length. Using data from the literature, the human calf model, which is examined in

  5. Relative contribution of different muscle energy consumption processes in an energy-based muscle load sharing cost function

    NARCIS (Netherlands)

    Nikooyan, A.A.; Veeger, H.E.J.; Westerhoff, P.; Bergmann, G.; van der Helm, F.C.T.

    2013-01-01

    The aim of this study is to quantify the relative contributions of two muscle energy consumption processes (the detachment of cross-bridges and calcium-pumping) incorporated in a recently developed muscle load sharing cost function, namely the energy-based criterion, by using in vivo measured

  6. MMG-based classification of muscle activity for prosthesis control.

    Science.gov (United States)

    Silva, J; Heim, W; Chau, T

    2004-01-01

    We have previously proposed the use of "muscle sounds" or mechanomyography (MMG) as a reliable alternative measure of muscle activity with the main objective of facilitating the use of more comfortable and functional soft silicone sockets with below-elbow externally powered prosthesis. This work describes an integrated strategy where data and sensor fusion algorithms are combined to provide MMG-based detection, estimation and classification of muscle activity. The proposed strategy represents the first ever attempt to generate multiple output signals for practical prosthesis control using a MMG multisensor array embedded distally within a silicon soft socket. This multisensor fusion strategy consists of two stages. The first is the detection stage which determines the presence or absence of muscle contractions in the acquired signals. Upon detection of a contraction, the second stage, that of classification, specifies the nature of the contraction and determines the corresponding control output. Tests with real amputees indicate that with the simple detection and classification algorithms proposed, MMG is indeed comparable to and may exceed EMG functionally.

  7. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.

    Science.gov (United States)

    Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-10-01

    To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  8. Leg length, skull circumference, and the incidence of dementia in Latin America and China: A 10/66 population-based cohort study.

    Science.gov (United States)

    Prince, Martin J; Acosta, Daisy; Guerra, Mariella; Huang, Yueqin; Jimenez-Velazquez, Ivonne Z; Llibre Rodriguez, Juan J; Salas, Aquiles; Sosa, Ana Luisa; Dewey, Michael E; Guerchet, Maelenn M; Liu, Zhaorui; Llibre Guerra, Jorge J; Prina, A Matthew

    2018-01-01

    Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. Cross-sectional studies indicate inverse associations with dementia risk, but there have been few prospective studies. Population-based cohort studies in urban sites in Cuba, Dominican Republic Puerto Rico and Venezuela, and rural and urban sites in Peru, Mexico and China. Sociodemographic and risk factor questionnaires were administered to all participants, and anthropometric measures taken, with ascertainment of incident dementia, and mortality, three to five years later. Of the original at risk cohort of 13,587 persons aged 65 years and over, 2,443 (18.0%) were lost to follow-up; 10,540 persons with skull circumference assessments were followed up for 40,466 person years, and 10,400 with leg length assessments were followed up for 39,954 person years. There were 1,009 cases of incident dementia, and 1,605 dementia free deaths. The fixed effect pooled meta-analysed adjusted subhazard ratio (ASHR) for leg length (highest vs. lowest quarter) was 0.80 (95% CI, 0.66-0.97) and for skull circumference was 1.02 (95% CI, 0.84-1.25), with no heterogeneity of effect between sites (I2 = 0%). Leg length measurements tended to be shorter at follow-up, particularly for those with baseline cognitive impairment and dementia. However, leg length change was not associated with dementia incidence (ASHR, per cm 1.006, 95% CI 0.992-1.020), and the effect of leg length was little altered after adjusting for baseline frailty (ASHR 0.82, 95% CI 0.67-0.99). A priori hypotheses regarding effect modification by gender or educational level were not supported. However, the effect of skull circumference was modified by gender (M vs F ASHR 0.86, 95% CI 0.75-0.98), but in the opposite direction to that hypothesized with a greater protective effect of larger skull dimensions in men. Consistent findings across settings provide quite strong support for an

  9. Evaluation of upper limb muscle fatigue based on surface electromyography.

    Science.gov (United States)

    Zhou, Qianxiang; Chen, Yuhong; Ma, Chao; Zheng, Xiaohui

    2011-10-01

    Fatigue is believed to be a major contributory factor to occupational injuries in machine operators. The development of accurate and usable techniques to measure operator fatigue is therefore important. In this study, we used a novel method based on surface electromyography (sEMG) of the biceps brachii and the Borg scale to evaluate local muscle fatigue in the upper limb after isometric muscle action. Thirteen young males performed isometric actions with the upper limb at different force levels. sEMG activities of the biceps brachii were recorded during the actions. Borg scales were used to evaluate the subjective sensation of local fatigue of the biceps brachii after the actions. sEMG activities were analyzed using the one-third band octave method, and an equation to determine the degree of fatigue was derived based on the relationship between the variable and the Borg scale. The results showed that the relationship could be expressed by a conic curve, and could be used to evaluate muscle fatigue during machine operation.

  10. ANATOMICAL VARIATIONS OF THE GASTROCNEMIUS MUSCLE- A DISSECTION-BASED STUDY

    Directory of Open Access Journals (Sweden)

    Rajat Dutta Roy

    2017-11-01

    Full Text Available BACKGROUND In human, the bulk of the posterior compartment of the leg is formed by the gastrocnemius and the soleus muscle. The superficially-placed gastrocnemius is a bipennate muscle, but according to available literature, it exhibits numerous anatomical variations. The aim of the present study is to find out the anatomical variations of the gastrocnemius muscle in this part of Assam. MATERIALS AND METHODS The present study undertaken in the Department of Anatomy, Jorhat Medical College, from August 2014 to August 2017 included 30 lower limbs from 15 embalmed cadavers of known sexes. These cadavers were provided to the first year MBBS students for routine dissection procedure. After carrying out the dissection as per Cunningham’s Manual of Practical Anatomy, the gastrocnemius muscle was examined for its two heads of origin. Any accessory heads found were noted and recorded. RESULTS Out of the 30 lower limb specimens, 28 (93.33% limbs presented with the normal two-headed gastrocnemius muscle, while 2 (6.66% limbs (1 right and 1 left, presented with four-headed gastrocnemius muscle. Both these limbs belonged to male cadavers. CONCLUSION The precise knowledge of occurrence of multi-headed gastrocnemius muscle should be kept in mind, while performing myocutaneous flaps around the knee joint and also during limb salvage procedures or limb sparing surgery.

  11. Promise of a low power mobile CPU based embedded system in artificial leg control.

    Science.gov (United States)

    Hernandez, Robert; Zhang, Fan; Zhang, Xiaorong; Huang, He; Yang, Qing

    2012-01-01

    This paper presents the design and implementation of a low power embedded system using mobile processor technology (Intel Atom™ Z530 Processor) specifically tailored for a neural-machine interface (NMI) for artificial limbs. This embedded system effectively performs our previously developed NMI algorithm based on neuromuscular-mechanical fusion and phase-dependent pattern classification. The analysis shows that NMI embedded system can meet real-time constraints with high accuracies for recognizing the user's locomotion mode. Our implementation utilizes the mobile processor efficiently to allow a power consumption of 2.2 watts and low CPU utilization (less than 4.3%) while executing the complex NMI algorithm. Our experiments have shown that the highly optimized C program implementation on the embedded system has superb advantages over existing PC implementations on MATLAB. The study results suggest that mobile-CPU-based embedded system is promising for implementing advanced control for powered lower limb prostheses.

  12. Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views.

    Science.gov (United States)

    Taghanaki, Saeid Asgari; Liu, Yonghuai; Miles, Brandon; Hamarneh, Ghassan

    2017-11-01

    Computer-aided diagnosis systems (CADx) play a major role in the early diagnosis of breast cancer. Extracting the breast region precisely from a mammogram is an essential component of CADx for mammography. The appearance of the pectoral muscle on medio-lateral oblique (MLO) views increases the false positive rate in CADx. Therefore, the pectoral muscle should be identified and removed from the breast region in an MLO image before further analysis. None of the previous pectoral muscle segmentation methods address all breast types based on the breast imaging-reporting and data system tissue density classes. In this paper, we deal with this deficiency by introducing a new simple yet effective method that combines geometric rules with a region growing algorithm to support the segmentation of all types of pectoral muscles (normal, convex, concave, and combinatorial). Experimental segmentation accuracy results were reported for four tissue density classes on 872 MLO images from three publicly available datasets. An average Jaccard index and Dice similarity coefficient of 0.972 ± 0.003 and 0.985 ± 0.001 were obtained, respectively. The mean Hausdorff distance between the contours detected by our method and the ground truth is below 5 mm for all datasets. An average acceptable segmentation rate of ∼95% was achieved outperforming several state-of-the-art competing methods. Excellent results were obtained even for the most challenging class of extremely dense breasts.Computer-aided diagnosis systems (CADx) play a major role in the early diagnosis of breast cancer. Extracting the breast region precisely from a mammogram is an essential component of CADx for mammography. The appearance of the pectoral muscle on medio-lateral oblique (MLO) views increases the false positive rate in CADx. Therefore, the pectoral muscle should be identified and removed from the breast region in an MLO image before further analysis. None of the previous pectoral muscle segmentation

  13. Feasible Muscle Activation Ranges Based on Inverse Dynamics Analyses of Human Walking

    Science.gov (United States)

    Simpson, Cole S.; Sohn, M. Hongchul; Allen, Jessica L.; Ting, Lena H.

    2015-01-01

    Although it is possible to produce the same movement using an infinite number of different muscle activation patterns owing to musculoskeletal redundancy, the degree to which observed variations in muscle activity can deviate from optimal solutions computed from biomechanical models is not known. Here, we examined the range of biomechanically permitted activation levels in individual muscles during human walking using a detailed musculoskeletal model and experimentally-measured kinetics and kinematics. Feasible muscle activation ranges define the minimum and maximum possible level of each muscle’s activation that satisfy inverse dynamics joint torques assuming that all other muscles can vary their activation as needed. During walking, 73% of the muscles had feasible muscle activation ranges that were greater than 95% of the total muscle activation range over more than 95% of the gait cycle, indicating that, individually, most muscles could be fully active or fully inactive while still satisfying inverse dynamics joint torques. Moreover, the shapes of the feasible muscle activation ranges did not resemble previously-reported muscle activation patterns nor optimal solutions, i.e. static optimization and computed muscle control, that are based on the same biomechanical constraints. Our results demonstrate that joint torque requirements from standard inverse dynamics calculations are insufficient to define the activation of individual muscles during walking in healthy individuals. Identifying feasible muscle activation ranges may be an effective way to evaluate the impact of additional biomechanical and/or neural constraints on possible versus actual muscle activity in both normal and impaired movements. PMID:26300401

  14. Interventions for leg cramps in pregnancy.

    Science.gov (United States)

    Zhou, Kunyan; West, Helen M; Zhang, Jing; Xu, Liangzhi; Li, Wenjuan

    2015-08-11

    included trial. According to a composite outcome (frequency and intensity), more women receiving vitamin B fully recovered compared with those receiving no treatment (RR 7.50, 95% CI 1.95 to 28.81). Those women receiving no treatment were more likely to experience a partial improvement in the intensity and frequency of leg cramps than those taking vitamin B (RR 0.29, 95% CI 0.11 to 0.73, one trial, 42 women), or to see no change in their condition. However, these results are based on one small study with design limitations.Other secondary outcomes, including side effects, were not reported. Oral calcium versus oral vitamin CThere was no difference in the frequency of leg cramps after treatment with calcium versus vitamin C (RR 1.33, 95% CI 0.53 to 3.38, one study, 60 women, evidence graded very low). Other outcomes, includingside effects, were not reported. It is unclear from the evidence reviewed whether any of the interventions (oral magnesium, oral calcium, oral vitamin B or oral vitamin C) provide an effective treatment for leg cramps. This is primarily due to outcomes being measured and reported in different, incomparable ways, and design limitations compromising the quality of the evidence (the level of evidence was graded low or very low). This was mainly due to poor study design and trials being too small to address the question satisfactorily.Adverse outcomes were not reported, other than side effects for magnesium versus placebo/no treatment. It is therefore not possible to assess the safety of these interventions.The inconsistency in the measurement and reporting of outcomes, meant that data could not be pooled, meta-analyses could not be carried out, and comparisons between studies are difficult.The review only identified trials of oral interventions (magnesium, calcium, vitamin B or vitamin C) to treat leg cramps in pregnancy. None of the trials considered non-drug therapies, for example, muscle stretching, massage, relaxation, heat therapy, and dorsiflexion

  15. Economic benefit of a polyacrylate-based hydrogel compared to an amorphous hydrogel in wound bed preparation of venous leg ulcers

    Directory of Open Access Journals (Sweden)

    Kaspar D

    2015-04-01

    Full Text Available Daniela Kaspar,1 Jörg Linder,1 Petra Zöllner,1 Ulrich Simon,2 Hans Smola1,31Medical Competence Centre, Paul Hartmann AG, Heidenheim, Germany; 2Scientific Computing Centre, Ulm University, Ulm, Germany; 3Department of Dermatology, University of Cologne, Cologne, GermanyObjective: To assess the cost-effectiveness of a polyacrylate (PA-based hydrogel compared to an amorphous hydrogel in wound bed preparation for venous leg ulcers.Method: A cost-effectiveness analysis was undertaken alongside a multicenter, randomized controlled trial performed in France. A total of 75 patients with venous leg ulcers extensively covered with fibrin and necrotic tissue were randomized to a PA-containing hydrogel or an amorphous hydrogel. Wounds were treated for 14 days and costs were estimated from the German payer's perspective. Medical costs included study treatment, wound treatment supply, and labor time. The clinical benefit was expressed as the number of patients with wounds >50% covered with granulation tissue within 14 days. The incremental cost-effectiveness ratio (ICER was expressed as the additional cost spent with >50% granulation tissue per day per patient within 14 days of leg ulcer care.Results: Because of individual pricing of wound dressings in hospitals, cost data were derived from the outpatient sector. A total of 33 patients were treated using the PA-based hydrogel and 37 patients using the amorphous hydrogel. The estimated total direct costs per patient and per 14 days of therapy were €306 for both treatment groups. However, with the PA-based hydrogel, 2.5 additional days with wounds covered >50% with granulation tissues were gained within 14 days of leg ulcer care compared to the comparator. The ICER was €0 per additional day spent with >50% granulation tissue.Conclusion: Although there were a greater number of dressing changes in the PA-based hydrogel treatment, the total treatment cost for 14 days of leg ulcer care was the same for both

  16. Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty

    DEFF Research Database (Denmark)

    Aalund, Peter K; Larsen, Kristian; Hansen, Torben Bæk

    2013-01-01

    : Cross-sectional, exploratory study. SETTING: Laboratory at a regional hospital. PARTICIPANTS: Thirty-nine individuals with an average age of 65.5±10.3 yrs, who all had unilateral TKA 28 days prior. INTERVENTIONS: None. MAIN OUTCOME MEASURES: The patients performed maximal isometric knee extensions......OBJECTIVE: (s): To investigate which of the two muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, is more closely associated to performance-based and self-reported measures of function shortly following total knee arthroplasty (TKA). DESIGN...... and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-m fast speed walking and 30-s chair stand tests were used to determine performance-based function, while the Western Ontario McMaster University Osteoarthritis Index (WOMAC...

  17. ANN based controller for three phase four leg shunt active filter for power quality improvement

    Directory of Open Access Journals (Sweden)

    J. Jayachandran

    2016-03-01

    Full Text Available In this paper, an artificial neural network (ANN based one cycle control (OCC strategy is proposed for the DSTATCOM shunted across the load in three phase four wire distribution system. The proposed control strategy mitigates harmonic/reactive currents, ensures balanced and sinusoidal source current from the supply mains that are nearly in phase with the supply voltage and compensates neutral current under varying source and load conditions. The proposed control strategy is superior over conventional methods as it eliminates, the sensors needed for sensing load current and coupling inductor current, in addition to the multipliers and the calculation of reference currents. ANN controllers are implemented to maintain voltage across the capacitor and as a compensator to compensate neutral current. The DSTATCOM performance is validated for all possible conditions of source and load by simulation using MATLAB software and simulation results prove the efficacy of the proposed control over conventional control strategy.

  18. Mechanisms-based classifications of musculoskeletal pain: part 3 of 3: symptoms and signs of nociceptive pain in patients with low back (± leg) pain.

    LENUS (Irish Health Repository)

    Smart, Keith M

    2012-08-01

    As a mechanisms-based classification of pain \\'nociceptive pain\\' (NP) refers to pain attributable to the activation of the peripheral receptive terminals of primary afferent neurones in response to noxious chemical, mechanical or thermal stimuli. The symptoms and signs associated with clinical classifications of NP have not been extensively studied. The purpose of this study was to identify symptoms and signs associated with a clinical classification of NP in patients with low back (± leg) pain. Using a cross-sectional, between-subjects design; four hundred and sixty-four patients with low back (± leg) pain were assessed using a standardised assessment protocol after which their pain was assigned a mechanisms-based classification based on experienced clinical judgement. Clinicians then completed a clinical criteria checklist indicating the presence\\/absence of various symptoms and signs. A regression analysis identified a cluster of seven clinical criteria predictive of NP, including: \\'Pain localised to the area of injury\\/dysfunction\\

  19. Mechanisms-based classifications of musculoskeletal pain: part 2 of 3: symptoms and signs of peripheral neuropathic pain in patients with low back (± leg) pain.

    LENUS (Irish Health Repository)

    Smart, Keith M

    2012-08-01

    As a mechanisms-based classification of pain \\'peripheral neuropathic pain\\' (PNP) refers to pain arising from a primary lesion or dysfunction in the peripheral nervous system. Symptoms and signs associated with an assumed dominance of PNP in patients attending for physiotherapy have not been extensively studied. The purpose of this study was to identify symptoms and signs associated with a clinical classification of PNP in patients with low back (± leg) pain. Using a cross-sectional, between-subjects design; four hundred and sixty-four patients with low back (± leg) pain were assessed using a standardised assessment protocol. Patients\\' pain was assigned a mechanisms-based classification based on experienced clinical judgement. Clinicians then completed a clinical criteria checklist specifying the presence or absence of various clinical criteria. A binary logistic regression analysis with Bayesian model averaging identified a cluster of two symptoms and one sign predictive of PNP, including: \\'Pain referred in a dermatomal or cutaneous distribution\\

  20. Leg lengthening - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100127.htm Leg lengthening - series—Indications To use the sharing features ... with lengthening procedures are the bones of the leg, the tibia and the femur. Surgical treatment may ...

  1. Arterial bypass leg - slideshow

    Science.gov (United States)

    ... medlineplus.gov/ency/presentations/100155.htm Arterial bypass leg - series—Normal anatomy To use the sharing features ... Overview The arteries which supply blood to the leg originate from the aorta and iliac vessels. Review ...

  2. Leg lengthening and shortening

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002965.htm Leg lengthening and shortening To use the sharing features on this page, please enable JavaScript. Leg lengthening and shortening are types of surgery to ...

  3. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee

    2016-06-01

    Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (ptraining at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. [Swollen leg with blisters].

    Science.gov (United States)

    Rafeiner, Ph; Templeton, A J; Vonesch, H J

    2005-10-05

    We report the case of a 84-year-old woman suffering from strong pain in her right leg initially resembling thrombosis of deep veins. Eight hours after admission a superficial blister developed at the calf with following hemorrhagic aspect and spontanous eruption of clear yellowish fluid. Later on a new blister appeared at the thigh. The patient died 33 hours after admission of streptococcal toxic shock syndrome. The latter was based on a necrotizing fasciitis. Streptoccus pyogenes (group A) could be cultivated from the blood and fluid of the blister. We discuss the clinical presentation of necrotizing fasciitis with "pain out of proportion" as characteristic complaint and the appropriate management.

  5. Dissociation between lactate and proton exchange in muscle during intense exercise in man

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Juel, Carsten; Hellsten, Ylva

    1997-01-01

    1. Transport of lactate, H+ and fluid across muscle sarcolemma was studied in contracting muscles under varying blood acid-base conditions. 2. Subjects performed two-legged submaximal knee-extensor exercise for 29-35 min consisting of warming up for 5 min followed by 10 min of leg exercise (L1......), leg and arm exercise for 6-10 min (L2 + A) and leg exercise for 10 min (L3). The experimental protocol was performed on two occasions; inspiring air (normoxia, N) or breathing 14% O2 in N2 (hypoxia, H). Leg blood flow was measured and femoral arterial and venous blood was sampled before and during...... each phase of exercise. 3. Arterial blood lactate concentration increased progressively during exercise to 5.9 +/- 0.8 (N) and 8.2 +/- 0.8 mmol l-1 (H) (P

  6. Adolescent muscle dysmorphia and family-based treatment: a case report.

    Science.gov (United States)

    Murray, Stuart B; Griffiths, Scott

    2015-04-01

    A growing body of evidence suggests that the prevalence of male body dissatisfaction and muscle dysmorphia is rising. To date, however, there is no published evidence on the efficacy of treatments for muscle dysmorphia. We present the case of a 15-year-old boy who met full diagnostic criteria for muscle dysmorphia, whose symptoms were treated into remission with eating disorder-focused, family-based treatment. The age of this patient fell within the time period in which symptoms of muscle dysmorphia are most likely to develop and this case represents the first published case report of family-based treatment for muscle dysmorphia in this age group. Thus, this case report has important implications for clinicians considering treatment options for presentations of muscle dysmorphia when first presenting in adolescence. Implications for the development of treatment guidelines for muscle dysmorphia and for the diagnostic debate surrounding muscle dysmorphia are also discussed. © The Author(s) 2014.

  7. Muscle-Activation Onset Times With Shoes and Foot Orthoses in Participants With Chronic Ankle Instability.

    Science.gov (United States)

    Dingenen, Bart; Peeraer, Louis; Deschamps, Kevin; Fieuws, Steffen; Janssens, Luc; Staes, Filip

    2015-07-01

    Participants with chronic ankle instability (CAI) use an altered neuromuscular strategy to shift weight from double-legged to single-legged stance. Shoes and foot orthoses may influence these muscle-activation patterns. To evaluate the influence of shoes and foot orthoses on onset times of lower extremity muscle activity in participants with CAI during the transition from double-legged to single-legged stance. Cross-sectional study. Musculoskeletal laboratory. A total of 15 people (9 men, 6 women; age = 21.8 ± 3.0 years, height = 177.7 ± 9.6 cm, mass = 72.0 ± 14.6 kg) who had CAI and wore foot orthoses were recruited. A transition task from double-legged to single-legged stance was performed with eyes open and with eyes closed. Both limbs were tested in 4 experimental conditions: (1) barefoot (BF), (2) shoes only, (3) shoes with standard foot orthoses, and (4) shoes with custom foot orthoses (SCFO). The onset of activity of 9 lower extremity muscles was recorded using surface electromyography and a single force plate. Based on a full-factorial (condition, region, limb, vision) linear model for repeated measures, we found a condition effect (F(3,91.8) = 9.39, P shoes-only (P = .02) and shoes-with-standard-foot-orthoses (P = .03) conditions than in the BF condition. No differences were observed for the hip muscles. Earlier onset of muscle activity was most apparent in the SCFO condition for ankle and knee muscles but not for hip muscles during the transition from double-legged to single-legged stance. These findings might help clinicians understand how shoes and foot orthoses can influence neuromuscular control in participants with CAI.

  8. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  9. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J. S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J. P. K.; Geertzen, J. H. B.

    2004-01-01

    This paper describes a new automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients, fitted

  10. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J.S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J.P.K.; Geertzen, J.H.B.

    This paper describes a new, automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients,

  11. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Femur (Upper Leg) KidsHealth / For Parents / X- ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  12. The restless legs syndrome (Ekbom's syndrome)

    African Journals Online (AJOL)

    1983-04-30

    Apr 30, 1983 ... same distribution as the paraesthesiae; and (v) anxiety, tension or mild depression. Paraesthesiae or creeping sensations are usually confined to the calves. They are extremely unpleasant and deep-seated in muscles or bones rather than in the skin, mostly affecting the legs between the knee and ankle.

  13. Effectiveness of an Internet-based learning program on venous leg ulcer nursing care in home health care--study protocol.

    Science.gov (United States)

    Ylönen, Minna; Viljamaa, Jaakko; Isoaho, Hannu; Junttila, Kristiina; Leino-Kilpi, Helena; Suhonen, Riitta

    2015-10-01

    To describe the study protocol for a study of the effectiveness of an internet-based learning program on venous leg ulcer nursing care (eVLU) in home health care. The prevalence of venous leg ulcers is increasing as population age. The majority of these patients are treated in a municipal home healthcare setting. However, studies show nurses' lack of knowledge of ulcer nursing care. Quasi-experimental study with pre- and postmeasurements and non-equivalent intervention and comparison groups. During the study, nurses taking care of patients with a chronic leg ulcer in home health care in one Finnish municipality will use the eVLU. Nurses working in home health care in another Finnish municipality will not use it providing standard care. Nurses will complete three questionnaires during the study and they will also be observed three times at patients' homes. Nurses' perceived and theoretical knowledge is the primary outcome of the study. Funding for this study was received from the Finnish Foundation for Nursing Education in 2014. Data from this study will provide information about the effectiveness of an internet-based educational program. After completing the program nurses will be accustomed to using internet-based resources that can aid them in the nursing care of patients with a VLU. Nurses will also have better knowledge of VLU nursing care. This study is registered with the International Clinical Trials Registry, identifier NCT02224300. © 2015 John Wiley & Sons Ltd.

  14. X-pod: a small footprint multi-legged piezoelectric single-crystal unimorph-based actuator concept

    Science.gov (United States)

    Shukla, Rahul; Lim, Leong-Chew; Gandhi, Prasanna

    2012-06-01

    Multi-legged piezoelectric single-crystal actuators with small footprints using an X-pod approach, namely, the Tripod and Tetrapod, have been conceptualized, each leg being a unimorph driven by Pb(Zn1/3Nb2/3)O3-(6-7)%PbTiO3 (PZN-(6-7)%PT) single crystals of [110]L × [001]T cut. Both finite-element analysis and experimental investigations are carried out to evaluate the performance of the Tripod and Tetrapod actuators. When operated at 0.57 kV mm-1, both actuators exhibit an axial displacement of nearly 60 µm. Blocking forces of about 10 N and 14 N are observed for the Tripod and the Tetrapod, respectively. The blocking forces are roughly doubled if the perfectly clamped condition is imposed for the legs at the pedestal end while the axial displacement is lowered marginally by 12%. In addition to small footprints, other attractive features of the actuators include greater flexibility to modify the leg geometry and their inclination to suit the application.

  15. Systems-based Discovery of Tomatidine as a Natural Small Molecule Inhibitor of Skeletal Muscle Atrophy*

    Science.gov (United States)

    Dyle, Michael C.; Ebert, Scott M.; Cook, Daniel P.; Kunkel, Steven D.; Fox, Daniel K.; Bongers, Kale S.; Bullard, Steven A.; Dierdorff, Jason M.; Adams, Christopher M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy. PMID:24719321

  16. Nocturnal leg cramps in children: incidence and clinical characteristics.

    Science.gov (United States)

    Leung, A. K.; Wong, B. E.; Chan, P. Y.; Cho, H. Y.

    1999-01-01

    The records of 2527 healthy children seen in an ambulatory care clinic were evaluated for nocturnal leg cramps in the preceding 12 months, frequency and duration of the cramps, whether the cramps affected one leg or both legs at a time, whether there was associated muscle cramps in feet, whether the cramps occurred when the child was awake or asleep, and whether there was residual tenderness in the affected muscles. Nocturnal leg cramps were present in 185 children for an overall incidence of 7.3%. Leg cramps were noted only in children aged > or = 8 years. The incidence increased at 12 years and peaked at 16 to 18 years of age. A majority (81.6%) of the affected children had nocturnal leg cramps 1 to 4 times per year. The mean duration of episodes was 1.7 minutes. Leg cramps were unilateral in 98.9% of cases and the ipsilateral foot also was involved in 18.9% of cases. One hundred thirty-five (73%) children had leg cramps while asleep, and the remaining 23 (12.4%) children had leg cramps in either state. Fifty-seven (30.8%) children had residual tenderness in the affected muscles. The mean duration of residual tenderness was 33.2 minutes (range: 2 minutes-1 day). We conclude that nocturnal leg cramps are common in children aged > 12 years. A majority of the affected children have leg cramps 1 to 4 times per year. The cramps are usually unilateral and occur when the children are asleep. Normal duration of the leg cramp is < 2 minutes. Residual tenderness is present in approximately 30% of the affected children. Residual tenderness, if present, usually lasts for half an hour. PMID:10388258

  17. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...... solving the coupling problem introduced by the common switching leg. The modulation method is similar to the well-known space vector modulation widely used with three-phase voltage source converters, which thus brings extra flexibility to the TL-UPQC system. Two optimized modulation modes with either...... reduced switching loss or harmonic distortion are derived, evaluated, and discussed, in order to demonstrate the flexibility brought by the space vector modulated TL-UPQC. Simulations and experimental results are presented to verify the feasibility and effectiveness of the proposed space vector modulation...

  18. Research on the Obstacle Negotiation Strategy for the Heavy-duty Six-legged Robot based on Force Control

    Directory of Open Access Journals (Sweden)

    Li Mantian

    2017-01-01

    Full Text Available To make heavy-duty six-legged robots without environment reconstruction system negotiate obstacles after the earthquake successfully, an obstacle negotiation strategy is described in this paper. The reflection strategy is generated by the information of plantar force sensors and Bezier Curve is used to plan trajectory. As the heavy-duty six-legged robot has a large inertia, force controller is necessary to ensure the robot not to lose stability while negotiating obstacles. Impedance control is applied to reduce the impact of collision and active force control is applied to adjust the pose of the robot. The robot can walk through zones that are filled with obstacles automatically because of force control. Finally, the algorithm is verified in a simulation environment.

  19. Automatic, electrocardiographic-based detection of autonomic arousals and their association with cortical arousals, leg movements, and respiratory events in sleep.

    Science.gov (United States)

    Olsen, Mads; Schneider, Logan Douglas; Cheung, Joseph; Peppard, Paul E; Jennum, Poul J; Mignot, Emmanuel; Sorensen, Helge Bjarup Dissing

    2018-03-01

    The current definition of sleep arousals neglects to address the diversity of arousals and their systemic cohesion. Autonomic arousals (AA) are autonomic activations often associated with cortical arousals (CA), but they may also occur in relation to a respiratory event, a leg movement event or spontaneously, without any other physiological associations. AA should be acknowledged as essential events to understand and explore the systemic implications of arousals. We developed an automatic AA detection algorithm based on intelligent feature selection and advanced machine learning using the electrocardiogram. The model was trained and tested with respect to CA systematically scored in 258 (181 training size/77 test size) polysomnographic recordings from the Wisconsin Sleep Cohort. A precision value of 0.72 and a sensitivity of 0.63 were achieved when evaluated with respect to CA. Further analysis indicated that 81% of the non-CA-associated AAs were associated with leg movement (38%) or respiratory (43%) events. The presented algorithm shows good performance when considering that more than 80% of the false positives (FP) found by the detection algorithm appeared in relation to either leg movement or respiratory events. This indicates that most FP constitute autonomic activations that are indistinguishable from those with cortical cohesion. The proposed algorithm provides an automatic system trained in a clinical environment, which can be utilized to analyze the systemic and clinical impacts of arousals.

  20. Effects of wearing lower leg compression sleeves on locomotion economy.

    Science.gov (United States)

    Kurz, Eduard; Anders, Christoph

    2018-02-15

    The purpose of this investigation was to assess the effect of compression sleeves on muscle activation cost during locomotion. Twenty-two recreationally active men (age: 25 ± 3 years) ran on a treadmill at four different speeds (ordered sequence of 2.8, 3.3, 2.2, and 3.9 m/s). The tests were performed without (control situation, CON) and while wearing specially designed lower leg compression sleeves (SL). Myoelectric activity of five lower leg muscles (tibialis anterior, fibularis longus, lateral and medial head of gastrocnemius, and soleus) was captured using Surface EMG. To assess muscle activation cost, the cumulative muscle activity per distance travelled (CMAPD) of the CON and SL situations was determined. Repeated measures analyses of variance were performed separately for each muscle. The analyses revealed a reduced lower leg muscle activation cost with respect to test situation for SL for all muscles (p  0.18). The respective significant reductions of CMAPD values during SL ranged between 4% and 16% and were largest at 2.8 m/s. The findings presented point towards an improved muscle activation cost while wearing lower leg compression sleeves during locomotion that have potential to postpone muscle fatigue.

  1. A new anti-tumor strategy based on in vivo tumstatin overexpression after plasmid electrotransfer in muscle

    International Nuclear Information System (INIS)

    Thevenard, Jessica; Ramont, Laurent; Mir, Lluis M.; Dupont-Deshorgue, Aurélie; Maquart, François-Xavier; Monboisse, Jean-Claude; Brassart-Pasco, Sylvie

    2013-01-01

    Highlights: ► A new therapeutic strategy based on tumstatin in vivo overexpression is proposed. ► pVAX1©–tumstatin electrotransfer in muscle mediates protein expression in muscle. ► A substantial expression of tumstatin is detected in the serum of electrotransfected mice. ► Tumstatin overexpression decreases tumor growth and increases mouse survival. -- Abstract: The NC1 domains from the different α(IV) collagen chains were found to exert anti-tumorigenic and/or anti-angiogenic activities. A limitation to the therapeutic use of these matrikines is the large amount of purified recombinant proteins, in the milligram range in mice that should be administered daily throughout the experimental procedures. In the current study, we developed a new therapeutic approach based on tumstatin (NC1α3(IV)) overexpression in vivo in a mouse melanoma model. Gene electrotransfer of naked plasmid DNA (pDNA) is particularly attractive because of its simplicity, its lack of immune responsiveness and its safety. The pDNA electrotransfer in muscle mediates a substantial gene expression that lasts several months. A pVAX1© vector containing the tumstatin cDNA was injected into the legs of C57BL/6 mice and submitted to electrotranfer. Sera were collected at different times and tumstatin was quantified by ELISA. Tumstatin secretion reached a plateau at day 21 with an expression level of 12 μg/mL. For testing the effects of tumstatin expression on tumor growth in vivo, B16F1 melanoma cells were subcutaneously injected in mice 7 days after empty pVAX1© (Mock) or pVAX1©–tumstatin electrotransfer. Tumstatin expression triggered a large decrease in tumor growth and an increase in mouse survival. This new therapeutic approach seems promising to inhibit tumor progression in vivo

  2. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    Science.gov (United States)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  3. A physiologically based, multi-scale model of skeletal muscle structure and function

    Directory of Open Access Journals (Sweden)

    Oliver eRöhrle

    2012-09-01

    Full Text Available Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modelling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modelling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibres and their grouping. Together with a well-established model of motor unit recruitment, the electro-physiological behaviour of single muscle fibres within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenisation. The effect of homogenisation has been investigated by varying the number of embedded skeletal muscle fibres and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the Tibialis Anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modelling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behaviour ranging from motor unit recruitment to force generation and fatigue.

  4. A single bout of whole-leg, peristaltic pulse external pneumatic compression upregulates PGC-1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue.

    Science.gov (United States)

    Kephart, Wesley C; Mobley, C Brooks; Fox, Carlton D; Pascoe, David D; Sefton, JoEllen M; Wilson, Trent J; Goodlett, Michael D; Kavazis, Andreas N; Roberts, Michael D; Martin, Jeffrey S

    2015-07-01

    What is the central question of this study? Does 60 min of peristaltic pulse external pneumatic compression (EPC) alter gene and protein expression patterns related to metabolism, vascular biology, redox balance and inflammation in vastus lateralis biopsy samples? What is the main finding and its importance? A single bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating endothelial nitric oxide synthase protein and nitric oxide metabolite concentrations in vastus lateralis biopsy samples. We investigated whether a single 60 min bout of whole-leg, lower pressure external pneumatic compression (EPC) altered select vascular, metabolic, antioxidant and inflammation-related mRNAs. Ten participants (eight male, two female; aged 22.0 ± 0.4 years) reported to the laboratory 4 h postprandial, and vastus lateralis muscle biopsies were obtained before (PRE) and 1 and 4 h after EPC treatment. Messenger RNA expression was analysed using real-time RT-PCR, and significant mRNA findings were investigated further by Western blot analysis of respective protein concentrations. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA increased by 77% 1 h following EPC compared with PRE levels (P = 0.005), but no change in protein concentration 1 or 4 h post-EPC was observed. Increases in endothelial nitric oxide sythase (eNOS) mRNA (+44%) and superoxide dismutase 2 (SOD2) mRNA (+57%) 1 h post-EPC as well as an increase in interleukin-10 mRNA (+132%) 4 h post-EPC compared with PRE levels were observed, but only approached significance (P = 0.076, 0.077 and 0.074, respectively). Interestingly, eNOS protein (+40%, P = 0.025) and nitrate and nitrite (NOx) concentrations (+69%, P = 0.025) increased 1-4 h post-EPC. Moreover, SOD2 protein tended to increase from PRE to 4 h post-EPC (+43%, P = 0.074), although no changes in tissue 4-hydroxnonenal levels was observed. An acute bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating e

  5. Relative strengths of the calf muscles based on MRI volume measurements.

    Science.gov (United States)

    Jeng, Clifford L; Thawait, Gaurav K; Kwon, John Y; Machado, Antonio; Boyle, James W; Campbell, John; Carrino, John A

    2012-05-01

    In 1985, Silver et al. published a cadaver study which determined the relative order of strength of the muscles in the calf. Muscle strength, which is proportional to volume, was obtained by dissecting out the individual muscles, weighing them, and then multiplying by the specific gravity. No similar studies have been performed using {\\it in vivo} measurements of muscle volume. Ten normal subjects underwent 3-Tesla MRI's of both lower extremities using non-fat-saturated T2 SPACE sequences. The volume for each muscle was determined by tracing the muscle contour on sequential axial images and then interpolating the volume using imaging software. The results from this study differ from Silver's original article. The lateral head of the gastrocnemius was found to be stronger than the tibialis anterior muscle. The FHL and EDL muscles were both stronger than the peroneus longus. There was no significant difference in strength between the peroneus longus and brevis muscles. This revised order of muscle strengths in the calf based on in vivo MRI findings may assist surgeons in determining the optimal tendons to transfer in order to address muscle weakness and deformity.

  6. Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking.

    Science.gov (United States)

    Hsu, Chao-Jung; Kim, Janis; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-12-01

    Individuals with stroke usually show reduced muscle activities of the paretic leg and asymmetrical gait pattern during walking. To determine whether applying a resistance force to the nonparetic leg would enhance the muscle activities of the paretic leg and improve the symmetry of spatiotemporal gait parameters in individuals with poststroke hemiparesis. Fifteen individuals with chronic poststroke hemiparesis participated in this study. A controlled resistance force was applied to the nonparetic leg using a customized cable-driven robotic system while subjects walked on a treadmill. Subjects completed 2 test sections with the resistance force applied at different phases of gait (ie, early and late swing phases) and different magnitudes (10%, 20%, and 30% of maximum voluntary contraction [MVC] of nonparetic leg hip flexors). Electromyographic (EMG) activity of the muscles of the paretic leg and spatiotemporal gait parameters were collected. Significant increases in integrated EMG of medial gastrocnemius, medial hamstrings, vastus medialis, and tibialis anterior of the paretic leg were observed when the resistance was applied during the early swing phase of the nonparetic leg, compared with baseline. Additionally, resistance with 30% of MVC induced the greatest level of muscle activity than that with 10% or 20% of MVC. The symmetry index of gait parameters also improved with resistance applied during the early swing phase. Applying a controlled resistance force to the nonparetic leg during early swing phase may induce forced use on the paretic leg and improve the spatiotemporal symmetry of gait in individuals with poststroke hemiparesis.

  7. A motor unit-based model of muscle fatigue

    Science.gov (United States)

    2017-01-01

    Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981

  8. A motor unit-based model of muscle fatigue.

    Directory of Open Access Journals (Sweden)

    Jim R Potvin

    2017-06-01

    Full Text Available Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU, it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches.

  9. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  10. Restless legs syndrome and nocturnal leg cramps: a review and guide to diagnosis and treatment.

    Science.gov (United States)

    Tipton, Philip W; Wszołek, Zbigniew K

    2017-12-22

    Restless legs syndrome (RLS) and nocturnal leg cramps (NLCs) are common disorders affecting 7.0% and 24.1% of the population in some European countries, respectively. Patients suffering from RLS experience uncomfortable nocturnal sensations in the legs with the urge to move that dissipates while moving. NLC is characterized by abrupt muscle contraction, most often in the gastrocnemius or foot muscles, which occurs at night and may result in significant sleep disturbances. The diagnosis of these disorders has presented a challenge to health care providers because of symptom overlap with other sensory and motor disturbances with nocturnal predominance. Treatment options and approaches are lacking, partially because of our currently incomplete understanding of the pathophysiological mechanisms underlying these conditions. We reviewed the medical literature to provide a comprehensive assessment of RLS and NLC with a focus on improved diagnostic accuracy and treatment approaches.

  11. An extended steepness model for leg-size determination based on Dachsous/Fat trans-dimer system

    OpenAIRE

    Hiroshi Yoshida; Tetsuya Bando; Taro Mito; Hideyo Ohuchi; Sumihare Noji

    2014-01-01

    What determines organ size has been a long-standing biological question. Lawrence et al. (2008) proposed the steepness hypothesis suggesting that the protocadherin Dachsous/Fat (Ds/Ft) system may provide some measure of dimension to the cells in relation to the gradient. In this paper we extended the model as a means of interpreting experimental results in cricket leg regeneration. We assumed that (1) Ds/Ft trans-heterodimers or trans-homodimers are redistributed during cell division, and (2)...

  12. Dynamically Stable Legged Locomotion.

    Science.gov (United States)

    1983-01-27

    balanced itself in 31) using a tabular ctontrol sclwnme. With only thUiee actuated degrees it used a shuffling gait to balance that reminds one of Charlie ... Chaplin . * The present study explores the control of a physical one-legged hopping machine. The objective of using a machine with only one leg was to

  13. Lyden-af-Leg

    DEFF Research Database (Denmark)

    Toft, Herdis

    Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform.......Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform....

  14. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... muscle protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  15. Physical Exercise in Aging: Nine Weeks of Leg Press or Electrical Stimulation Training in 70 Years Old Sedentary Elderly People

    Science.gov (United States)

    Mosole, Simone; Löfler, Stefan; Fruhmann, Hannah; Burggraf, Samantha; Cvečka, Ján; Hamar, Dušan; Sedliak, Milan; Tirptakova, Veronica; Šarabon, Nejc; Mayr, Winfried; Kern, Helmut

    2015-01-01

    Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type) which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling). Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients’ quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP) exercise or electrical stimulation (ES). Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (pimprove the functional performances of aging muscles. Here ES is demonstrated to be a safe home-based method to counteract fast type fiber atrophy, typically associated with aging skeletal muscle. PMID:26913162

  16. Simulating Muscle-Reflex Dynamics in a Simple Hopping Robot

    Science.gov (United States)

    Seyfarth, Andre; Kalveram, Karl Theodor; Geyer, Hartmut

    In legged systems, springy legs facilitate gaits with subsequent contact and flight phases. Here, we test whether electrical motors can generate leg behaviors suitable for stable hopping. We built a vertically operating sledge actuated by a motor-driven leg. The motor torque simulates either a linear leg spring or a muscle-reflex system. For stable hopping significant energy supply was required after midstance. This was achieved by enhancing leg stiffness or by continuously applying positive force feedback to the simulated muscle. The muscle properties combined with positive force feedback result in spring-like behavior which enables stable hopping with adjustable hopping height.

  17. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity.

    Science.gov (United States)

    Pellikaan, P; van der Krogt, M M; Carbone, V; Fluit, R; Vigneron, L M; Van Deun, J; Verdonschot, N; Koopman, H F J M

    2014-03-21

    To generate subject-specific musculoskeletal models for clinical use, the location of muscle attachment sites needs to be estimated with accurate, fast and preferably automated tools. For this purpose, an automatic method was used to estimate the muscle attachment sites of the lower extremity, based on the assumption of a relation between the bone geometry and the location of muscle attachment sites. The aim of this study was to evaluate the accuracy of this morphing based method. Two cadaver dissections were performed to measure the contours of 72 muscle attachment sites on the pelvis, femur, tibia and calcaneus. The geometry of the bones including the muscle attachment sites was morphed from one cadaver to the other and vice versa. For 69% of the muscle attachment sites, the mean distance between the measured and morphed muscle attachment sites was smaller than 15 mm. Furthermore, the muscle attachment sites that had relatively large distances had shown low sensitivity to these deviations. Therefore, this morphing based method is a promising tool for estimating subject-specific muscle attachment sites in the lower extremity in a fast and automated manner. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The hyperaemic response to passive leg movement is dependent on nitric oxide

    DEFF Research Database (Denmark)

    Mortensen, Stefan Peter; Askew, Christopher D; Walker, Meegan

    2012-01-01

    interstitial space. Inhibition of NO synthesis lowered the vasodilatory response to passive leg movement by ~90%. The increase in leg blood flow was lower in elderly subjects compared to young subjects and leg blood flow did not increase when passive leg movement was performed by elderly with peripheral artery...... disease. The results suggest that the hyperaemia induced by passive leg movement is NO dependent. The hyperaemic response to passive leg movement and to ACh was also assessed in elderly subjects and patients with peripheral artery disease.......Key points Passive leg movement is associated with a ~3-fold increase in blood flow to the leg, but the underlying mechanisms remain unknown. Passive leg movement increased venous levels of metabolites of nitric oxide (NO) in young subjects, whereas they remained unaltered in the muscle...

  19. Unusual extended fibular origin of the human soleus muscle: possible morpho-physiologic significance based on comparative anatomy.

    Science.gov (United States)

    Barberini, F; Bucciarelli-Ducci, C; Zani, A; Cerasoli, D

    2003-09-01

    A bilateral anomalous extended origin of the soleus muscle was observed in a 73-year-old female cadaver. It arose from the head, neck, and proximal two-thirds of the medial crest of the fibula and ran through the posterior intermuscular septum of the leg, from the lateral border of the fibula. The soleus muscle formed the vault of a muscular tunnel, overcoming the deep flexor muscles of the leg that was about 15 cm in length and directed inferiorly and laterally. The extended fibular origin delimited a blind recess lateral to the muscular tunnel and parallel to the posterior surface of the fibula. This recess measured 6.5 cm in length and extended 3.5 cm above the inferior opening of the muscular tunnel; the superior portion of the flexor hallucis longus was housed within it between the portions of the extended origin from the medial crest of the fibula and posterior intermuscular septum. The neurovascular bundle of the posterior leg coursed in the muscular tunnel. The tibial origin and calcaneal insertion of the soleus muscle were normal. Phylogenetic studies of the muscles of the lower limbs in mammals indicate that the fibular origin of soleus is more constant than the tibial origin and, in primates, the fibular origin is the only one observed in most monkeys. The case reported might be considered a conspicuous enlargement of the fibular origin observed in primates. This large fibular origin of the soleus muscle may prove to be a difficulty during surgery when accessing the proximal two-thirds of the fibula for ligation of the peroneal artery. Copyright 2003 Wiley-Liss, Inc.

  20. Mechanisms-based classifications of musculoskeletal pain: part 1 of 3: symptoms and signs of central sensitisation in patients with low back (± leg) pain.

    LENUS (Irish Health Repository)

    Smart, Keith M

    2012-08-01

    As a mechanisms-based classification of pain \\'central sensitisation pain\\' (CSP) refers to pain arising from a dominance of neurophysiological dysfunction within the central nervous system. Symptoms and signs associated with an assumed dominance of CSP in patients attending for physiotherapy have not been extensively studied. The purpose of this study was to identify symptoms and signs associated with a clinical classification of CSP in patients with low back (± leg) pain. Using a cross-sectional, between-subjects design; four hundred and sixty-four patients with low back (± leg) pain were assessed using a standardised assessment protocol. Patients\\' pain was assigned a mechanisms-based classification based on experienced clinical judgement. Clinicians then completed a clinical criteria checklist specifying the presence or absence of various clinical criteria. A binary logistic regression analysis with Bayesian model averaging identified a cluster of three symptoms and one sign predictive of CSP, including: \\'Disproportionate, non-mechanical, unpredictable pattern of pain provocation in response to multiple\\/non-specific aggravating\\/easing factors\\

  1. Viscoelasticity-based MR elastography of skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Klatt, Dieter; Papazoglou, Sebastian; Sack, Ingolf [Department of Radiology, Charite-Universitaetsmedizin, Berlin (Germany); Braun, Juergen, E-mail: ingolf.sack@charite.d [Institute of Medical Informatics, Charite-Universitaetsmedizin, Berlin (Germany)

    2010-11-07

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, {mu} and {alpha}, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, {mu} increased in all volunteers upon contraction from 2.68 {+-} 0.23 kPa to 3.87 {+-} 0.50 kPa. Also {alpha} varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation ({alpha} = 0.253 {+-} 0.009) to contraction ({alpha} = 0.270 {+-} 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  2. Viscoelasticity-based MR elastography of skeletal muscle

    International Nuclear Information System (INIS)

    Klatt, Dieter; Papazoglou, Sebastian; Sack, Ingolf; Braun, Juergen

    2010-01-01

    An in vivo multifrequency magnetic resonance elastography (MRE) protocol was developed for studying the viscoelastic properties of human skeletal muscle in different states of contraction. Low-frequency shear vibrations in the range of 25-62.5 Hz were synchronously induced into the femoral muscles of seven volunteers and measured in a cross-sectional view by encoding the fast-transverse shear wave component parallel to the muscle fibers. The so-called springpot model was used for deriving two viscoelastic constants, μ and α, from the dispersion functions of the complex shear modulus in relaxed and in loaded muscle. Representing the shear elasticity parallel to the muscle fibers, μ increased in all volunteers upon contraction from 2.68 ± 0.23 kPa to 3.87 ± 0.50 kPa. Also α varied with load, indicating a change in the geometry of the mechanical network of muscle from relaxation (α = 0.253 ± 0.009) to contraction (α = 0.270 ± 0.009). These results provide a reference for a future assessment of muscular dysfunction using rheological parameters.

  3. A Three-Phase Four-Leg Inverter-Based Active Power Filter for Unbalanced Current Compensation Using a Petri Probabilistic Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Kuang-Hsiung Tan

    2017-12-01

    Full Text Available A three-phase four-leg inverter-based shunt active power filter (APF is proposed to compensate three-phase unbalanced currents under unbalanced load conditions in grid-connected operation in this study. Since a DC-link capacitor is required on the DC side of the APF to release or absorb the instantaneous apparent power, the regulation control of the DC-link voltage of the APF is important especially under load variation. In order to improve the regulation control of the DC-link voltage of the shunt APF under variation of three-phase unbalanced load and to compensate the three-phase unbalanced currents effectively, a novel Petri probabilistic fuzzy neural network (PPFNN controller is proposed to replace the traditional proportional-integral (PI controller in this study. Furthermore, the network structure and online learning algorithms of the proposed PPFNN are represented in detail. Finally, the effectiveness of the three-phase four-leg inverter-based shunt APF with the proposed PPFNN controller for the regulation of the DC-link voltage and compensation of the three-phase unbalanced current has been demonstrated by some experimental results.

  4. Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity

    NARCIS (Netherlands)

    Pellikaan, P.; van der Krogt, Marjolein; Carbone, Vincenzo; Fluit, René; Vigneron, L.M.; van Deun, J.; Verdonschot, Nicolaas Jacobus Joseph; Koopman, Hubertus F.J.M.

    2014-01-01

    To generate subject-specific musculoskeletal models for clinical use, the location of muscle attachment sites needs to be estimated with accurate, fast and preferably automated tools. For this purpose, an automatic method was used to estimate the muscle attachment sites of the lower extremity, based

  5. Comparison of trunk electromyographic muscle activity depends on sitting postures.

    Science.gov (United States)

    Lee, DongGeon; Yu, SeoJeong; Song, SunHae; Lee, Se-Han; An, SeungHeon; Cho, Hwi-Young; Cho, Ki-Hun; Lee, GyuChang

    2017-01-01

    Different postural positions can be characterized by the activation and relative contributions of different postural muscles, and may variously contribute to the recovery from or worsening of chronic lower back pain. The present study aimed to investigates trunk muscle activities in four types of seated postures: cross-legged, long, side, and W-shaped. Eight healthy adults participated in the study. Trunk muscle activities of the external oblique (EO), rectus abdominis (RA), latissimus dorsi (LD), and erector spinae (ES) muscles in each of the sitting postures including cross-legged, long, side, and W-shaped were collected utilizing surface electromyography (sEMG). The mean sEMG signals in each of the sitting postures were used for statistical comparisons. There were no significant differences in electromyographic muscle activity of EO, RA, LD, and ES in the four postures (p > 0.05). However, in the W-shape sitting posture, the left LD showed the greatest electromyographic muscle activity, followed by the right LD and left EO, respectively. The right and left LD in the long sitting posture and left ES in the side sitting posture showed greater electromyographic muscle activity than that of other muscles. Based on the results, trunk muscle activity did not significantly differ between the four types of sitting postures. However, our study is limited by its experimental method and sample size. Thus, in the Future, further study will be needed.

  6. Relationships among serum testosterone levels, body fat and muscle mass distribution in women with polycystic ovary syndrome.

    Science.gov (United States)

    Douchi, T; Yoshimitsu, N; Nagata, Y

    2001-12-01

    We investigated the relationships among serum testosterone levels, body fat and muscle mass distribution in women with polycystic ovary syndrome (PCOS). Subjects were 67 women with PCOS (mean age +/- standard deviation, 28.8 +/- 6.6 years). Baseline characteristics included age and height. Trunk-leg fat ratio and trunk-leg muscle ratio were assessed with dual-energy x-ray absorptiometry. Serum testosterone and dehydroepiandrosterone sulfate levels were measured with radioimmunoassays. Relationships among serum testosterone levels, body fat and muscle mass distribution were investigated using Pearson and partial correlation tests. Serum testosterone levels were positively correlated with trunk-leg fat ratio (r = 0.398, P fat ratio (r = -0.360, P testosterone levels were still correlated with trunk-leg fat ratio (r = 0.500, P fat ratio was still correlated with trunk-leg muscle ratio, after adjusting for age, height, and serum testosterone levels. Based on these results, we concluded that higher serum testosterone levels may contribute to the upper body fat distribution and peripheral muscle mass distribution. In addition, peripheral muscle mass distribution may also contribute to the upper body fat distribution.

  7. RESTLESS LEGS SYNDROME

    Directory of Open Access Journals (Sweden)

    Dmitriy Valer'evich Artem'ev

    2009-01-01

    Full Text Available The paper describes the epidemiology, etiology, pathogenesis, clinical picture, diagnosis, differential diagnosis, and treatment of restless legs syndrome. Recommendations are given how to choose therapeutic modalities and drugs in relation to different factors.

  8. Restless legs syndrome.

    Science.gov (United States)

    Venkateshiah, Saiprakash B; Ioachimescu, Octavian C

    2015-07-01

    Restless legs syndrome is a common sensorimotor disorder characterized by an urge to move, and associated with uncomfortable sensations in the legs (limbs). Restless legs syndrome can lead to sleep-onset or sleep-maintenance insomnia, and occasionally excessive daytime sleepiness, all leading to significant morbidity. Brain iron deficiency and dopaminergic neurotransmission abnormalities play a central role in the pathogenesis of this disorder, along with other nondopaminergic systems, although the exact mechanisms are still. Intensive care unit patients are especially vulnerable to have unmasking or exacerbation of restless legs syndrome because of sleep deprivation, circadian rhythm disturbance, immobilization, iron deficiency, and use of multiple medications that can antagonize dopamine. Published by Elsevier Inc.

  9. Dynamic Leg Exercise Improves Tolerance to Lower Body Negative Pressure

    Science.gov (United States)

    Watenpaugh, D. E.; Ballard, R. E.; Stout, M. S.; Murthy, G.; Whalen, R. T.; Hargens, A. R.

    1994-01-01

    These results clearly demonstrate that dynamic leg exercise against the footward force produced by LBNP substantially improves tolerance to LBNP, and that even cyclic ankle flexion without load bearing also increases tolerance. This exercise-induced increase of tolerance was actually an underestimate, because subjects who completed the tolerance test while exercising could have continued for longer periods. Exercise probably increases LBNP tolerance by multiple mechanisms. Tolerance was increased in part by skeletal muscle pumping venous blood from the legs. Rosenhamer and Linnarsson and Rosenhamer also deduced this for subjects cycling during centrifugation, although no measurements of leg volume were made in those studies: they found that male subjects cycling at 98 W could endure 3 Gz centrifugation longer than when they remained relaxed during centrifugation. Skeletal muscle pumping helps maintain cardiac filling pressure by opposing gravity-, centrifugation-, or LBNP-induced accumulation of blood and extravascular fluid in the legs.

  10. Leg and arm lactate and substrate kinetics during exercise

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Jensen-Urstad, M; Rosdahl, H

    2003-01-01

    To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed...... by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate...... release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate...

  11. Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS).

    Science.gov (United States)

    Nicol, Lesley M; Rowlands, David S; Fazakerly, Ruth; Kellett, John

    2015-08-01

    Oral curcumin decreases inflammatory cytokines and increases muscle regeneration in mice. To determine effects of curcumin on muscle damage, inflammation and delayed onset muscle soreness (DOMS) in humans. Seventeen men completed a double-blind randomized-controlled crossover trial to estimate the effects of oral curcumin supplementation (2.5 g twice daily) versus placebo on single-leg jump performance and DOMS following unaccustomed heavy eccentric exercise. Curcumin or placebo was taken 2 d before to 3 d after eccentric single-leg press exercise, separated by 14-d washout. Measurements were made at baseline, and 0, 24 and 48-h post-exercise comprising: (a) limb pain (1-10 cm visual analogue scale; VAS), (b) muscle swelling, (c) single-leg jump height, and (d) serum markers of muscle damage and inflammation. Standardized magnitude-based inference was used to define outcomes. At 24 and 48-h post-exercise, curcumin caused moderate-large reductions in pain during single-leg squat (VAS scale -1.4 to -1.7; 90 %CL: ±1.0), gluteal stretch (-1.0 to -1.9; ±0.9), squat jump (-1.5 to -1.1; ± 1.2) and small reductions in creatine kinase activity (-22-29 %; ±21-22 %). Associated with the pain reduction was a small increase in single-leg jump performance (15 %; 90 %CL ± 12 %). Curcumin increased interleukin-6 concentrations at 0-h (31 %; ±29 %) and 48-h (32 %; ±29 %) relative to baseline, but decreased IL-6 at 24-h relative to post-exercise (-20 %; ±18 %). Oral curcumin likely reduces pain associated with DOMS with some evidence for enhanced recovery of muscle performance. Further study is required on mechanisms and translational effects on sport or vocational performance.

  12. Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy

    Science.gov (United States)

    Martin, Kyle S.; Peirce, Shayn M.

    2015-01-01

    Skeletal muscle is highly responsive to use. In particular, muscle atrophy attributable to decreased activity is a common problem among the elderly and injured/immobile. However, each muscle does not respond the same way. We developed an agent-based model that generates a tissue-level skeletal muscle response to disuse/immobilization. The model incorporates tissue-specific muscle fiber architecture parameters and simulates changes in muscle fiber size as a result of disuse-induced atrophy that are consistent with published experiments. We created simulations of 49 forelimb and hindlimb muscles of the rat by incorporating eight fiber-type and size parameters to explore how these parameters, which vary widely across muscles, influence sensitivity to disuse-induced atrophy. Of the 49 muscles modeled, the soleus exhibited the greatest atrophy after 14 days of simulated immobilization (51% decrease in fiber size), whereas the extensor digitorum communis atrophied the least (32%). Analysis of these simulations revealed that both fiber-type distribution and fiber-size distribution influence the sensitivity to disuse atrophy even though no single tissue architecture parameter correlated with atrophy rate. Additionally, software agents representing fibroblasts were incorporated into the model to investigate cellular interactions during atrophy. Sensitivity analyses revealed that fibroblast agents have the potential to affect disuse-induced atrophy, albeit with a lesser effect than fiber type and size. In particular, muscle atrophy elevated slightly with increased initial fibroblast population and increased production of TNF-α. Overall, the agent-based model provides a novel framework for investigating both tissue adaptations and cellular interactions in skeletal muscle during atrophy. PMID:25722379

  13. An artificial flexible robot arm based on pneumatic muscle actuators

    Directory of Open Access Journals (Sweden)

    Renn Jyh-Chyang

    2017-01-01

    Full Text Available The purpose of this paper is to develop a novel human-friendly artificial flexible robot arm using four parallel-connected pneumatic muscle actuators (PMAs. The PMA is a flexible silicone rubber actuator which has some behaviors nearest to the real biological muscle including translational and rotational motions. An inverse kinematic model for the motion control is also developed. Finally, from experiment results, it is proved that not only the axial contraction control of a single PMA but also the attitude control of the whole pneumatic flexible robot arm using PID controller are satisfactory.

  14. Single leg stance control in individuals with symptomatic gluteal tendinopathy.

    Science.gov (United States)

    Allison, Kim; Bennell, Kim L; Grimaldi, Alison; Vicenzino, Bill; Wrigley, Tim V; Hodges, Paul W

    2016-09-01

    Lateral hip pain during single leg loading, and hip abductor muscle weakness, are associated with gluteal tendinopathy, but it has not been shown how or whether kinematics in single leg stance differ in those with gluteal tendinopathy. To compare kinematics in preparation for, and during, single leg stance between individuals with and without gluteal tendinopathy, and the effect of hip abductor muscle strength on kinematics. Twenty individuals with gluteal tendinopathy and 20 age-matched pain-free controls underwent three-dimensional kinematic analysis of single leg stance and maximum isometric hip abductor strength testing. Maximum values of hip adduction, pelvic obliquity (contralateral pelvis rise/drop), lateral pelvic translation (ipsilateral/contralateral shift) and ipsilateral trunk lean during preparation for leg lift and average values in steady single leg stance, were compared between groups using an analysis of covariance, with and without anthropometric characteristics and strength as covariates. Individuals with gluteal tendinopathy demonstrated greater hip adduction (standardized mean difference (SMD)=0.70, P=0.04) and ipsilateral pelvic shift (SMD=1.1, P=0.002) in preparation for leg lift, and greater hip adduction (SMD=1.2, P=0.002) and less contralateral pelvic rise (SMD=0.86, P=0.02) in steady single leg stance than controls. When including strength as a covariate, only between-group differences in lateral pelvic shift persisted (SMD=1.7, P=0.01). Individuals with gluteal tendinopathy use different frontal plane kinematics of the hip and pelvis during single leg stance than pain-free controls. This finding is not influenced by pelvic dimension or the potentially modifiable factor of body mass index, but is by hip abductor muscle weakness. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Quinine for Nocturnal Leg Cramps

    Science.gov (United States)

    Man-Son-Hing, Malcolm; Wells, George; Lau, Anita

    1998-01-01

    OBJECTIVE With respect to the use of quinine for the treatment of nocturnal leg cramps, to determine whether the findings of a previously performed meta-analysis of published data are altered with the addition of unpublished data, and whether publication bias is present in this area. DESIGN A meta-analysis of eight (four published and four unpublished) randomized, double-blind, placebo-controlled trials, seven of which had a crossover design. SETTING Randomized trials that were available as of July 1997. SUBJECTS Ambulatory patients (659) who suffered from regular nocturnal leg cramps. MAIN RESULTS When individual patient data from all crossover studies were pooled, persons had 3.60 (95% confidence interval [CI] 2.15, 5.05) fewer cramps in a 4-week period when taking quinine compared with placebo. This compared with an estimate of 8.83 fewer cramps (95% CI 4.16, 13.49) from pooling published studies alone. The corresponding relative risk reductions were 21% (95% CI 12%, 30%) and 43% (95% CI 21%, 65%), respectively. Compared with placebo, the use of quinine was associated with an increased incidence of side effects, particularly tinnitus. Publication bias is present in the reporting of the efficacy of quinine for this indication, as almost all published studies reported larger estimates of its efficacy than did unpublished studies. CONCLUSIONS This study confirms that quinine is efficacious in the prevention of nocturnal leg cramps. However, its benefit may not be as large as reported from the pooling of published studies alone. Given the side effect profile of quinine, nonpharmacologic therapy (e.g., regular passive stretching of the affected muscle) is the best first-line treatment. For persons who find this ineffective and whose quality of life is significantly affected, a trial of quinine is warranted. Prescribing physicians must closely monitor the risks and benefits in individual patients. Publication bias is present in this area even though there is

  16. Evaluation of the effectiveness of a home-based inspiratory muscle training programme in patients with chronic obstructive pulmonary disease using multiple inspiratory muscle tests.

    Science.gov (United States)

    Nikoletou, Dimitra; Man, William D-C; Mustfa, Naveed; Moore, Julie; Rafferty, Gerrard; Grant, Robert L; Johnson, Lorna; Moxham, John

    2016-01-01

    To evaluate the effectiveness of a home-based inspiratory muscle training (IMT) programme using multiple inspiratory muscle tests. Sixty-eight patients (37 M) with moderate to severe chronic obstructive pulmonary disease (COPD) (Mean [SD], FEV1 36.1 [13.6]% pred.; FEV1/FVC 35.7 [11.2]%) were randomised into an experimental or control group and trained with a threshold loading device at intensity >30% maximum inspiratory pressure (PImax) or inspiratory nasal pressure (SNIP), diaphragm contractility (Pdi,tw), incremental shuttle walk test (ISWT), respiratory muscle endurance (RME), chronic respiratory disease questionnaire (CRDQ), the hospital anxiety and depression scale (HADS) and the SF-36. Between-group changes were assessed using one-way analysis of variance (ANOVA). PImax and perception of well-being improved significantly post-IMT [p = 0.04 and muscle function post-IMT. A seven-week, home-based inspiratory muscle training programme improves maximal inspiratory pressure and perception of well-being in patients with moderate to severe COPD but not sniff nasal inspiratory pressure or diaphragm contractility, respiratory muscle endurance and exercise capacity. Multiple tests are recommended for a more comprehensive assessment of changes in muscle function following inspiratory muscle training programmes. Therapists need to explore different community-based inspiratory muscle training regimes for COPD patients and identify the optimal exercise protocol that is likely to lead to improvements in diaphragm contractility and exercise capacity.

  17. Protection against high intravascular pressure in giraffe legs.

    Science.gov (United States)

    Petersen, Karin K; Hørlyck, Arne; Ostergaard, Kristine H; Andresen, Joergen; Broegger, Torbjoern; Skovgaard, Nini; Telinius, Niklas; Laher, Ismael; Bertelsen, Mads F; Grøndahl, Carsten; Smerup, Morten; Secher, Niels H; Brøndum, Emil; Hasenkam, John M; Wang, Tobias; Baandrup, Ulrik; Aalkjaer, Christian

    2013-11-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along the artery. Histology of the isolated median artery confirmed dense sympathetic innervation at the narrowing. Structure and contractility of small arteries from muscular beds in the leg and neck were compared. The arteries from the legs demonstrated an increased media thickness-to-lumen diameter ratio, increased media volume, and increased numbers of smooth muscle cells per segment length and furthermore, they contracted more strongly than arteries from the neck (500 ± 49 vs. 318 ± 43 mmHg; n = 6 legs and neck, respectively). Finally, the transient increase in interstitial fluid pressure following injection of saline was 5.5 ± 1.7 times larger (n = 8) in the leg than in the neck. We conclude that 1) tissue compliance in the legs is low; 2) large arteries of the legs function as resistance arteries; and 3) structural adaptation of small muscle arteries allows them to develop an extraordinary tension. All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure.

  18. Restless legs syndrome

    Directory of Open Access Journals (Sweden)

    Ovallath S

    2012-10-01

    Full Text Available Sujith Ovallath, P DeepaJames Parkinson's Movement Disorder Research Centre, Kannur Medical College, Kerala, IndiaBackground: Restless legs syndrome (RLS is a common sleep-related disorder characterized by abnormal sensation and an urge to move the lower limbs. Symptoms occur at rest in the evening or at night, and they are alleviated by moving the affected extremity or by walking. Although the exact etiopathogenesis of RLS remains elusive, the rapid improvement of symptoms with dopaminergic agents suggests that dopaminergic system dysfunction may be a basic mechanism. Dopaminergic agents are the best-studied agents, and are considered first-line treatment of RLS.Objective: To review the diagnostic criteria, clinical features, etiopathogenesis, and the treatment options of RLS.Methods: The suggestions are based on evidence from studies published in peer-reviewed journals, or upon a comprehensive review of the medical literature.Results/conclusion: Extensive data are available for proving the link between the dopaminergic system and RLS. A possible genetic link also has been studied extensively. Dopamine agonists, especially pramipexole and ropinirole, are particularly useful in the treatment of RLS. Pharmacological treatment should however be limited to those patients who suffer from clinically relevant RLS with impaired sleep quality or quality of life.Keywords: dopamine, levodopa, pramipexole

  19. Onset Time of Nerve Block: A Comparison of Two Injection Locations in Patients Having Lower Leg/ Foot Surgery

    Science.gov (United States)

    2014-03-20

    Strain of Muscle and/or Tendon of Lower Leg; Fracture of Lower Leg; Crushing Injury of Lower Leg; Fracture Malunion - Ankle and/or Foot; Disorder of Joint of Ankle and/or Foot; Complete Tear, Ankle and/or Foot Ligament; Pathological Fracture - Ankle and/or Foot; Loose Body in Joint of Ankle and/or Foot

  20. Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy.

    Science.gov (United States)

    Dyle, Michael C; Ebert, Scott M; Cook, Daniel P; Kunkel, Steven D; Fox, Daniel K; Bongers, Kale S; Bullard, Steven A; Dierdorff, Jason M; Adams, Christopher M

    2014-05-23

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

    Science.gov (United States)

    Qazi, Taimoor H; Mooney, David J; Pumberger, Matthias; Geissler, Sven; Duda, Georg N

    2015-01-01

    Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions

  2. Venous leg ulcers.

    Science.gov (United States)

    Nelson, E Andrea

    2011-12-21

    Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 101 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide

  3. Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode

    Science.gov (United States)

    Yang, S. B.; Han, X. Y.; Qiu, J.

    As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.

  4. Automatic, ECG-based detection of autonomic arousals and their association with cortical arousals, leg movements, and respiratory events in sleep

    DEFF Research Database (Denmark)

    Olsen, Mads; Schneider, Logan Douglas; Cheung, Joseph

    2018-01-01

    The current definition of sleep arousals neglects to address the diversity of arousals and their systemic cohesion. Autonomic arousals (AA) are autonomic activations often associated with cortical arousals (CA), but they may also occur in isolation in relation to a respiratory event, a leg movement...... or respiratory events. This indicates that most FP constitute autonomic activations that are indistinguishable from those with cortical cohesion. The proposed algorithm provides an automatic system trained in a clinical environment, which can be utilized to analyse the systemic and clinical impacts of arousals....... event or spontaneously, without any other physiological associations. AA should be acknowledged as essential events to understand and explore the systemic implications of arousals. We developed an automatic AA detection algorithm based on intelligent feature selection and advanced machine learning using...

  5. Automatic, ECG-based detection of autonomic arousals and their association with cortical arousals, leg movements, and respiratory events in sleep

    DEFF Research Database (Denmark)

    Olsen, Mads; Schneider, Logan Douglas; Cheung, Joseph

    2018-01-01

    The current definition of sleep arousals neglects to address the diversity of arousals and their systemic cohesion. Autonomic arousals (AA) are autonomic activations often associated with cortical arousals (CA), but they may also occur in isolation in relation to a respiratory event, a leg movement...... event or spontaneously, without any other physiological associations. AA should be acknowledged as essential events to understand and explore the systemic implications of arousals. We developed an automatic AA detection algorithm based on intelligent feature selection and advanced machine learning using...... the electrocardiogram. The model was trained and tested with respect to CA systematically scored in 258 (181 training size/77 test size) polysomnographic recordings from the Wisconsin Sleep Cohort. A precision value of 0.72 and a sensitivity of 0.63 were achieved when evaluated with respect to CA. Further analysis...

  6. Leg tissue composition of goat kids according to racial group, weight and gender

    Directory of Open Access Journals (Sweden)

    Brenda Batista Lemos Medeiros

    2011-01-01

    Full Text Available To evaluate the effect of breed group, slaughter weight and sex on tissue proportion of the leg and muscle, bone and fat ratio in confined kids, seventy-four goats of both sex were used and divided among breed groups: Alpine (A, ½ Nubian + ½ Alpine (½ ANA, ½ Boer + ½ Alpine (½ BA, ¾ Boer + ¼ Alpine (¾ BA and ½ Nubian + ¼ Alpine + ¼ Boer, (Three cross - TC, at three slaughter weights (25, 30 and 35 kg. Leg represented 31.01% of half carcass, where 62.29% was total muscle, 21.45% total bone and 8.35% total fat. Alpine animals had higher bone weight than other groups. Male kids had higher muscle and bone proportion, whereas females had higher subcutaneous and intramuscular fat in leg. The percentage of total weight of the muscle, five muscles, adductor muscle, quadriceps muscle and femur were higher in the slaughter weights of 25 and 30 kg.

  7. Thick legs - not always lipedema.

    Science.gov (United States)

    Reich-Schupke, Stefanie; Altmeyer, Peter; Stücker, Markus

    2013-03-01

    Due to its increased presence in the press and on television, the diagnosis of lipedema is on the way to becoming a trendy diagnosis for those with thick legs. Despite this, one must recognize that lipedema is a very rare disease. It is characterized by disproportional obesity of the extremities, especially in the region of the hip and the legs, hematoma development after minimal trauma, and increased pressure-induced or spontaneous pain. Aids for making the correct diagnosis are (duplex) sonography, the waist-hip index or the waist-height index and lymphoscintigraphy. Important differential diagnoses are constitutional variability of the legs, lipohypertrophy in obesity, edema in immobility, edema in chronic venous insufficiency and rheumatic diseases. The symptom-based therapy of lipedema consists of conservative (compression, manual lymphatic drainage, exercise) and surgical treatments (liposuction). Until now there is no curative therapy. Obesity is an important risk factor for the severity and prognosis of lipedema. Further studies for a better understanding of the pathogenesis of lipedema and in the end possible curative treatments are urgently needed. © The Authors | Journal compilation © Blackwell Verlag GmbH, Berlin.

  8. CT based muscle density predicts muscle function and health-related quality of life in patients with idiopathic inflammatory myopathies

    Science.gov (United States)

    Cleary, Laura C.; Crofford, Leslie J.; Long, Douglas; Charnigo, Richard; Clasey, Jody; Beaman, Francesca; Jenkins, Kirk A.; Fraser, Natasha; Srinivas, Archana; Dhaon, Nicole; Hanaoka, Beatriz Y.

    2016-01-01

    Objective To investigate the association of low-density (lipid-rich) muscle measured by computed tomography (CT) with skeletal muscle function and health-related quality of life in idiopathic inflammatory myopathies (IIMs). Methods Seventeen patients and ten healthy controls underwent CT of the mid-thigh to quantify high (30-100HU) and low density (0-29HU) skeletal muscle areas. Anthropometric measures, body composition, physical activity level, health-related quality of life, skeletal muscle strength, endurance and fatigue were assessed. Patients were compared against controls. The relationship of anthropometric, body composition and disease variables with measures of muscle function were examined using Spearman’s test on the patient group. Linear regression was used to assess the age-and disease-adjusted relationship of muscle quality to physical function and muscle strength. Results Patients had higher body fat% (p=0.042), trunk fat mass (p=0.042), android/gynoid fat (p=0.033) and mid-thigh low density muscle/total muscle area (p<0.001) compared to controls. Mid-thigh low density muscle/total muscle area was negatively correlated with self-reported physical function, strength and endurance; the SF-36 physical functioning (p=0.004), manual muscle testing (p=0.020), knee maximal voluntary isometric contraction/thigh mineral free lean mass (p<0.001) and the endurance step test (p<0.001), suggesting that muscle quality impacts function in IIM. Using multiple linear regression adjusted for age, global disease damage, and total fat mass, poor muscle quality as measured by mid-thigh low density muscle/total muscle area was negatively associated with SF-36 physical functioning (p= 0.009). Conclusion Mid-thigh low density muscle/ total muscle area is a good predictor of muscle strength, endurance and health-related quality of life as it pertains to physical functioning in patients with IIMs. PMID:25623494

  9. Effect of stretching-based rehabilitation on pain, flexibility and muscle strength in dancers with hamstring injury: a single-blind, prospective, randomized clinical trial.

    Science.gov (United States)

    Kim, Giwon; Kim, Hyangsun; Kim, Woo K; Kim, Junesun

    2017-10-24

    Hamstring injuries commonly occur in mainstream sports and occupations that involve physical activity. We evaluated the effect of a stretching-based rehabilitation program on pain, flexibility, and strength in dancers with hamstring injuries. Sixteen Korean traditional dancers with unilateral hamstring injuries were included and randomly assigned to a rehabilitation or control group. The rehabilitation group received stretching-based rehabilitation for 8 weeks, which comprised simple static stretches and basic range of motion (ROM) exercises, such as static and active stretching, concentric and eccentric ROM training, and trunk stabilization exercises. The control group received conventional treatment with analgesics and physical therapy. Outcomes were assessed before and after the interventions in both groups by comparing the visual analog scale (VAS) score for pain, straight leg raise ROM test for hamstring muscle flexibility, and isometric strength test for hamstring muscle strength. Subjects who underwent rehabilitation showed significant improvements in VAS score for pain (p = 0.017) and ROM for flexibility (p flexibility and strength in patients with hamstring injury. The data indicate that a stretching-based rehabilitation program can help promote functional recovery from hamstring injury.

  10. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  11. Evaluation of Cardiovascular Risk Factors and Restless Legs Syndrome in Women and Men: A Preliminary Population-Based Study in China.

    Science.gov (United States)

    Liu, Yuqiong; Liu, Gangqiong; Li, Ling; Yang, Jing; Ma, Shengli

    2018-03-15

    Many studies have investigated the association between restless legs syndrome (RLS) and cardiovascular risk factors, leading to conflicting results. Therefore, the aim of the current study was to determine whether RLS is associated with cardiovascular risk factors and disease. This cross-sectional study included 5,324 consecutive subjects who visited the Physical Examination Center of The First Affiliated Hospital of Zhengzhou University for their yearly routine physical examination. Participants underwent a face-to-face interview with a neurologist for the assessment of RLS, based on the International Restless Legs Study Group criteria. They also completed a questionnaire related to cardiovascular risk factors and other health-related and demographic information. Logistic regression was used to assess which of the demographic and cardiovascular risk factors increased the odds of RLS. Then, unadjusted and adjusted models were designed to determine whether RLS was associated with increased odds of cardiovascular disease, coronary artery disease, or hypertension. RLS was observed in 9.2% of the participants. Multivariable logistic regression models, which included the covariates age, sex, body mass index, smoking status, hypercholesterolemia, and Pittsburgh Sleep Quality Index score (dichotomized at 5), demonstrated that female sex (odds ratio [OR]: 2.42, 95% confidence interval [CI]: 1.99-2.95), smoking (OR: 1.96, 95% CI: 1.31-2.92), high cholesterol (OR: 1.30, 95% CI: 1.03-1.64), and PSQI score > 5 (OR: 5.61, 95% CI: 2.14-14.69) are significantly associated with RLS. Additionally, RLS was associated with hypertension, after adjusting for age, sex, body mass index, smoking, hypercholesterolemia, Pittsburgh Sleep Quality Index score > 5, diabetes, anemia, and decreased renal function. RLS is associated with the prevalence of hypertension but not with that of cardiovascular disease or coronary artery disease. © 2018 American Academy of Sleep Medicine.

  12. Muscle activity in sprinting: a review.

    Science.gov (United States)

    Howard, Róisín M; Conway, Richard; Harrison, Andrew J

    2018-03-01

    The use of electromyography (EMG) is widely recognised as a valuable tool for enhancing the understanding of performance drivers and potential injury risk in sprinting. The timings of muscle activations relative to running gait cycle phases and the technology used to obtain muscle activation data during sprinting are of particular interest to scientists and coaches. This review examined the main muscles being analysed by surface EMG (sEMG), their activations and timing, and the technologies used to gather sEMG during sprinting. Electronic databases were searched using 'Electromyography' OR 'EMG' AND 'running' OR 'sprinting'. Based on inclusion criteria, 18 articles were selected for review. While sEMG is widely used in biomechanics, relatively few studies have used sEMG in sprinting due to system constraints. The results demonstrated a focus on the leg muscles, with over 70% of the muscles analysed in the upper leg. This is consistent with the use of tethered and data logging EMG systems and many sprints being performed on treadmills. Through the recent advances in wireless EMG technology, an increase in the studies on high velocity movements such as sprinting is expected and this should allow practitioners to perform the analysis in an ecologically valid environment.

  13. Analysis of Aerobic Respiration in Intact Skeletal Muscle Tissue by Microplate-Based Respirometry.

    Science.gov (United States)

    Shintaku, Jonathan; Guttridge, Denis C

    2016-01-01

    Mitochondrial function is a key component of skeletal muscle health, and its dysfunction has been associated with a wide variety of diseases. Microplate-based respirometry measures aerobic respiration of live cells through extracellular changes in oxygen concentration. Here, we describe a methodology to measure aerobic respiration of intact murine skeletal muscle tissue. The tissues are not cultured, permeabilized, or enzymatically dissociated to single fibers, so there is minimal experimental manipulation affecting the samples prior to acquiring measurements.

  14. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila

    Science.gov (United States)

    Gowda, Swetha B. M.; Paranjpe, Pushkar D.; Reddy, O. Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich

    2018-01-01

    Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila. PMID:29440493

  15. The Effectiveness of a Leg-Kicking Training Program on Performance and Physiological Measures of Competitive Swimmers

    OpenAIRE

    Konstantaki, Maria; Winter, Edward M.

    2007-01-01

    This study investigated the adaptations in leg muscle metabolism of swimmers following a six-week, leg-kicking swimming training program Fifteen male competitive swimmers were randomly assigned to an experimental group (E; n=8) and a control group (C; n=7). E swimmers performed normal leg-kicking training three times per week, whereas C swimmers performed reduced leg-kicking training (20% and 4% of weekly training distance, respectively). Before and after the training program, all swimmers pe...

  16. Self directed home based electrical muscle stimulation training improves exercise tolerance and strength in healthy elderly.

    Science.gov (United States)

    Caulfield, Brian; Prendergast, Ann; Rainsford, Gary; Minogue, Conor

    2013-01-01

    Advancing age is associated with a gradual decline in muscle strength, exercise tolerance and subsequent capacity for activities of daily living. It is important that we develop effective strategies to halt this process of gradual decline in order to enhance functional ability and capacity for independent living. To achieve this, we must overcome the challenge of sustaining ongoing engagement in physical exercise programmes in the sedentary elderly population, particularly those who experience barriers to exercise participation. Recent developments in electrical muscle stimulation technology could provide a potential solution. In this pilot case-control study we investigated the effects of a self-directed home based programme of electrical muscle stimulation training on muscle strength and exercise tolerance in a group of 16 healthy elderly volunteers (10f, 6m). Study participants completed 30 separate 1-hour electrical muscle stimulation sessions at home over a 6-week period. We observed significant improvements in quadriceps muscle strength and 6-minute walk distance, suggesting that this form of electrical muscle stimulation training has promise as an exercise modality in the elderly population.

  17. Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Zhou Yongjin

    2012-09-01

    Full Text Available Abstract Background Muscle fascicle pennation angle (PA is an important parameter related to musculoskeletal functions, and ultrasound imaging has been widely used for measuring PA, but manually and frame by frame in most cases. We have earlier reported an automatic method to estimate aponeurosis orientation based on Gabor transform and Revoting Hough Transform (RVHT. Methods In this paper, we proposed a method to estimate the overall orientation of muscle fascicles in a region of interest, in order to complete computing the orientation of the other side of the pennation angle, but the side found by RVHT. The measurements for orientations of both fascicles and aponeurosis were conducted in each frame of ultrasound images, and then the dynamic change of pennation angle during muscle contraction was obtained automatically. The method for fascicle orientation estimation was evaluated using synthetic images with different noise levels and later on 500 ultrasound images of human gastrocnemius muscles during isometric plantarflexion. Results The muscle fascicle orientations were also estimated manually by two operators. From the results it’s found that the proposed automatic method demonstrated a comparable performance to the manual method. Conclusions With the proposed methods, ultrasound measurement for muscle pennation angles can be more widely used for functional assessment of muscles.

  18. Statistical analysis of muscle contraction based on MR images

    International Nuclear Information System (INIS)

    Horio, Hideyuki; Kuroda, Yoshihiro; Imura, Masataka; Oshiro, Osamu

    2011-01-01

    The purpose of this study was to distinguish the changes of MR signals during relaxation and contraction of muscles. First, MR images were acquired in relaxation and contraction states. The subject clasped his hands in relaxation state and unclasped in contraction state. Next, the images were segmented using mixture Gaussian distributions and expectation-maximization (EM) algorithm. Finally, we evaluated statistical values gotten from mixture Gaussian distributions. As a result, mixing coefficients were different during relaxation and contraction. The experimental results indicated that the proposed analysis has the potential to discriminate between two states. (author)

  19. Compensation of the effects of muscle fatigue on EMG-based control using fuzzy rules based scheme.

    Science.gov (United States)

    Lalitharatne, Thilina Dulantha; Hayashi, Yoshiaki; Teramoto, Kenbu; Kiguchi, Kazuo

    2013-01-01

    Estimation of the correct motion intention of the user is very important for most of the Electromyography (EMG) based control applications such as prosthetics, power-assist exoskeletons, rehabilitation and teleoperation robots. On the other hand, safety and long term reliability are also vital for those applications, as they interact with human users. By considering these requirements, many EMG-based control applications have been proposed and developed. However, there are still many challenges to be addressed in the case of EMG based control systems. One of the challenges that had not been considered in such EMG-based control in common is the muscle fatigue. The muscle fatiguing effects of the user can deteriorate the effectiveness of the EMG-based control in the long run, which makes the EMG-based control to produce less accurate results. Therefore, in this study we attempted to develop a fuzzy rule based scheme to compensate the effects of muscle fatigues on EMG based control. Fuzzy rule based weights have been estimated based on time and frequency domain features of the EMG signals. Eventually, these weights have been used to modify the controller output according with the muscle fatigue condition in the muscles. The effectiveness of the proposed method has been evaluated by experiments.

  20. Quantifying Learning in Young Infants: Tracking Leg Actions During a Discovery-learning Task.

    Science.gov (United States)

    Sargent, Barbara; Reimann, Hendrik; Kubo, Masayoshi; Fetters, Linda

    2015-06-01

    Task-specific actions emerge from spontaneous movement during infancy. It has been proposed that task-specific actions emerge through a discovery-learning process. Here a method is described in which 3-4 month old infants learn a task by discovery and their leg movements are captured to quantify the learning process. This discovery-learning task uses an infant activated mobile that rotates and plays music based on specified leg action of infants. Supine infants activate the mobile by moving their feet vertically across a virtual threshold. This paradigm is unique in that as infants independently discover that their leg actions activate the mobile, the infants' leg movements are tracked using a motion capture system allowing for the quantification of the learning process. Specifically, learning is quantified in terms of the duration of mobile activation, the position variance of the end effectors (feet) that activate the mobile, changes in hip-knee coordination patterns, and changes in hip and knee muscle torque. This information describes infant exploration and exploitation at the interplay of person and environmental constraints that support task-specific action. Subsequent research using this method can investigate how specific impairments of different populations of infants at risk for movement disorders influence the discovery-learning process for task-specific action.

  1. Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    Science.gov (United States)

    Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka

    2017-01-01

    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.

  2. Knee function and knee muscle strength in middle-aged patients with degenerative meniscal tears eligible for arthroscopic partial meniscectomy

    DEFF Research Database (Denmark)

    Stensrud, Silje; Risberg, May Arna; Roos, Ewa M.

    2014-01-01

    -sectional study. METHODS: Eighty-two participants with MRI verified degenerative meniscal tear (35% women, mean age 49 years) answered the Knee injury and Osteoarthritis Outcome Score (KOOS) and were tested for isokinetic knee muscle strength and lower extremity performance (one-leg hop for distance, 6 m timed...... hop and maximum number of knee-bends in 30 s). Limb Symmetry Index (LSI) was used to express side-to-side differences in per cent using the non-injured leg as the control. An LSI ≥90% was considered normal. RESULTS: Mean scores of the five subscales of the KOOS were from 13 to 36 points lower compared...... with a population-based reference group and similar to patients prior to anterior cruciate ligament reconstruction. Quadriceps strength and lower-extremity performance were impaired for the injured leg compared with the non-injured leg (p10% differences between the injured and the non-injured leg....

  3. Leg tissue composition and physico-chemical parameters of sheep meat fed annatto coproduct

    Directory of Open Access Journals (Sweden)

    Dorgival Morais de Lima Júnior

    2017-10-01

    Full Text Available Our objective was to evaluate leg tissue composition and physico-chemical quality parameters of sheep meat fed with increasing levels of annatto coproduct. 32 male uncastrated animals without a defined breed were randomized in four treatments (0, 100, 200 and 300 g kg-1 of annatto coproduct in the DM diet. After 78 days of confinement, the animals were slaughtered and body components were recorded. Reconstituted leg weight, total muscle weight, biceps weight and semitendinosus weight showed a negative linear behavior (P 0.05 were found for leg tissue composition (%, muscle:bone ratio, relative fat or leg muscle. Meat physico-chemical parameters (color, shear force, water retention capacity and cooking losses were not affected by the inclusion of the annatto coproduct in the diet. The annatto coproduct can be included in up to 300 g kg-1 of dietary dry matter without negative effects to the leg tissue composition (% and physical parameters of confined sheep meat.

  4. Petri net-based prediction of therapeutic targets that recover abnormally phosphorylated proteins in muscle atrophy.

    Science.gov (United States)

    Jung, Jinmyung; Kwon, Mijin; Bae, Sunghwa; Yim, Soorin; Lee, Doheon

    2018-03-05

    Muscle atrophy, an involuntary loss of muscle mass, is involved in various diseases and sometimes leads to mortality. However, therapeutics for muscle atrophy thus far have had limited effects. Here, we present a new approach for therapeutic target prediction using Petri net simulation of the status of phosphorylation, with a reasonable assumption that the recovery of abnormally phosphorylated proteins can be a treatment for muscle atrophy. The Petri net model was employed to simulate phosphorylation status in three states, i.e. reference, atrophic and each gene-inhibited state based on the myocyte-specific phosphorylation network. Here, we newly devised a phosphorylation specific Petri net that involves two types of transitions (phosphorylation or de-phosphorylation) and two types of places (activation with or without phosphorylation). Before predicting therapeutic targets, the simulation results in reference and atrophic states were validated by Western blotting experiments detecting five marker proteins, i.e. RELA, SMAD2, SMAD3, FOXO1 and FOXO3. Finally, we determined 37 potential therapeutic targets whose inhibition recovers the phosphorylation status from an atrophic state as indicated by the five validated marker proteins. In the evaluation, we confirmed that the 37 potential targets were enriched for muscle atrophy-related terms such as actin and muscle contraction processes, and they were also significantly overlapping with the genes associated with muscle atrophy reported in the Comparative Toxicogenomics Database (p-value net. We generated a list of the potential therapeutic targets whose inhibition recovers abnormally phosphorylated proteins in an atrophic state. They were evaluated by various approaches, such as Western blotting, GO terms, literature, known muscle atrophy-related genes and shortest path analysis. We expect the new proposed strategy to provide an understanding of phosphorylation status in muscle atrophy and to provide assistance towards

  5. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.

    Science.gov (United States)

    Le Troter, Arnaud; Fouré, Alexandre; Guye, Maxime; Confort-Gouny, Sylviane; Mattei, Jean-Pierre; Gondin, Julien; Salort-Campana, Emmanuelle; Bendahan, David

    2016-04-01

    Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD

  6. Pathobiochemical Changes in Diabetic Skeletal Muscle as Revealed by Mass-Spectrometry-Based Proteomics

    Directory of Open Access Journals (Sweden)

    Kay Ohlendieck

    2012-01-01

    Full Text Available Insulin resistance in skeletal muscle tissues and diabetes-related muscle weakness are serious pathophysiological problems of increasing medical importance. In order to determine global changes in the protein complement of contractile tissues due to diabetes mellitus, mass-spectrometry-based proteomics has been applied to the investigation of diabetic muscle. This review summarizes the findings from recent proteomic surveys of muscle preparations from patients and established animal models of type 2 diabetes. The potential impact of novel biomarkers of diabetes, such as metabolic enzymes and molecular chaperones, is critically examined. Disease-specific signature molecules may be useful for increasing our understanding of the molecular and cellular mechanisms of insulin resistance and possibly identify new therapeutic options that counteract diabetic abnormalities in peripheral organ systems. Importantly, the biomedical establishment of biomarkers promises to accelerate the development of improved diagnostic procedures for characterizing individual stages of diabetic disease progression, including the early detection of prediabetic complications.

  7. Association between Lameness and Indicators of Dairy Cow Welfare Based on Locomotion Scoring, Body and Hock Condition, Leg Hygiene and Lying Behavior

    Science.gov (United States)

    Ramanoon, Siti Z.; Shaik Mossadeq, Wan Mastura; Mansor, Rozaihan; Syed-Hussain, Sharifah Salmah

    2017-01-01

    Simple Summary Lameness is a major welfare issue in dairy cows. Locomotion scoring (LS) is mostly used in identifying lame cows based on gait and postural changes. However, lameness shares some important associations with body condition, hock condition, leg hygiene and behavioral changes such as lying behavior. These measures are considered animal-based indicators in assessing welfare in dairy cows. This review discusses lameness as a welfare problem, the use of LS, and the relationship with the aforementioned welfare assessment protocols. Such information could be useful in depicting the impact on cow welfare as well as in reducing the occurrence of lameness in dairy herds. Abstract Dairy cow welfare is an important consideration for optimal production in the dairy industry. Lameness affects the welfare of dairy herds by limiting productivity. Whilst the application of LS systems helps in identifying lame cows, the technique meets with certain constraints, ranging from the detection of mild gait changes to on-farm practical applications. Recent studies have shown that certain animal-based measures considered in welfare assessment, such as body condition, hock condition and leg hygiene, are associated with lameness in dairy cows. Furthermore, behavioural changes inherent in lame cows, especially the comfort in resting and lying down, have been shown to be vital indicators of cow welfare. Highlighting the relationship between lameness and these welfare indicators could assist in better understanding their role, either as risk factors or as consequences of lameness. Nevertheless, since the conditions predisposing a cow to lameness are multifaceted, it is vital to cite the factors that could influence the on-farm practical application of such welfare indicators in lameness studies. This review begins with the welfare consequences of lameness by comparing normal and abnormal gait as well as the use of LS system in detecting lame cows. Animal-based measures related to

  8. Time Course and Association of Functional and Biochemical Markers in Severe Semitendinosus Damage Following Intensive Eccentric Leg Curls: Differences between and within Subjects

    Directory of Open Access Journals (Sweden)

    Gerard Carmona

    2018-02-01

    Full Text Available Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs by (1 assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC, functional magnetic resonance (fMRI, and serum muscle enzyme levels and (2 analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison.Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC. Serum enzyme levels, fMRI transverse relaxation time (T2 and perceived muscle soreness were also assessed and compared against the FGC.Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders (n = 10, severe muscle damage and moderate responders (n = 3, moderate muscle damage. In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST muscle suffered severe damage in the three regions measured (proximal, middle, and distal. The biceps femoris short head (BFsh muscle was also damaged and there were significant differences in the FGC within subjects in the high responders.Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders. fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an

  9. Time Course and Association of Functional and Biochemical Markers in Severe Semitendinosus Damage Following Intensive Eccentric Leg Curls: Differences between and within Subjects

    Science.gov (United States)

    Carmona, Gerard; Mendiguchía, Jurdan; Alomar, Xavier; Padullés, Josep M.; Serrano, David; Nescolarde, Lexa; Rodas, Gil; Cussó, Roser; Balius, Ramón; Cadefau, Joan A.

    2018-01-01

    Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders (n = 10, severe muscle damage) and moderate responders (n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an

  10. Plantarflexor muscle function in healthy and chronic Achilles tendon pain subjects evaluated by the use of EMG and PET imaging

    DEFF Research Database (Denmark)

    Masood, Tahir; Kalliokoski, Kari; Bojsen-Møller, Jens

    2014-01-01

    BACKGROUND: Achilles tendon pathologies may alter the coordinative strategies of synergistic calf muscles. We hypothesized that both surface electromyography and positron emission tomography would reveal differences between symptomatic and asymptomatic legs in Achilles tendinopathy patients...... and between healthy controls. METHODS: Eleven subjects with unilateral chronic Achilles tendon pain (28 years) and eleven matched controls (28 years) were studied for triceps surae and flexor hallucis longus muscle activity in response to repetitive isometric plantarflexion tasks performed at 30% of maximal...... the electromyography showed greater relative amplitude in the symptomatic leg, the results based on muscle glucose uptake suggested relatively similar behavior of both legs in the patient group. Higher glucose uptake in the symptomatic Achilles tendon suggests a higher metabolic demand....

  11. On the biomimetic design of agile-robot legs.

    Science.gov (United States)

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.

  12. On the Biomimetic Design of Agile-Robot Legs

    Directory of Open Access Journals (Sweden)

    Pablo Gonzalez-de-Santos

    2011-11-01

    Full Text Available The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.

  13. On the Biomimetic Design of Agile-Robot Legs

    Science.gov (United States)

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented. PMID:22247667

  14. Work economy following strength training in elderly : alterations in muscle strength, muscle thickness and lean mass upon work economy in elderly men following 12 weeks of strength training

    OpenAIRE

    Salvesen, Svein

    2013-01-01

    Masteroppgave i idrettsvitenskap - Universitetet i Agder 2013 AIM: To investigate if alterations in muscle strength, muscle mass and muscle thickness were followed by changes in work economy. METHODS: Fifty elderly men (60 – 81 years) followed a 12 week undulating periodized strength training program: Lean mass (Muscle mass; Dual-energy X-ray absorptiometry), muscle strength (1RM; one repetition maximum, in leg press and leg extension), and muscle thickness (ultrasound; vastus lateralis a...

  15. X-Ray Exam: Lower Leg (Tibia and Fibula)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Lower Leg (Tibia and Fibula) KidsHealth / For ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  16. Analysis and control of a parallel lower limb based on pneumatic artificial muscles

    Directory of Open Access Journals (Sweden)

    Feilong Jiang

    2016-12-01

    Full Text Available Most robots that are actuated by antagonistic pneumatic artificial muscles are controlled by various control algorithms that cannot adequately imitate the actual muscle distribution of human limbs. Other robots in which the distribution of pneumatic artificial muscle is similar to that of human limbs can only analyze the position of the robot using perceptual data instead of rational knowledge. In order to better imitate the movement of a human limb, the article proposes a humanoid lower limb in the form of a parallel mechanism where muscle is unevenly distributed. Next, the kinematic and dynamic movements of bionic hip joint are analyzed, where the joint movement is controlled by an observer-based fuzzy adaptive control algorithm as a whole rather than each individual pneumatic artificial muscle and parameters that are optimized by a neural network. Finally, experimental results are provided to confirm the effectiveness of the proposed method. We also document the role of muscle in trajectory tracking for the piriformis and musculi obturator internus in isobaric processes.

  17. Predicting muscle fatigue: a response surface approximation based on proper generalized decomposition technique.

    Science.gov (United States)

    Sierra, M; Grasa, J; Muñoz, M J; Miana-Mena, F J; González, D

    2017-04-01

    A novel technique is proposed to predict force reduction in skeletal muscle due to fatigue under the influence of electrical stimulus parameters and muscle physiological characteristics. Twelve New Zealand white rabbits were divided in four groups ([Formula: see text]) to obtain the active force evolution of in vitro Extensor Digitorum Longus muscles for an hour of repeated contractions under different electrical stimulation patterns. Left and right muscles were tested, and a total of 24 samples were used to construct a response surface based in the proper generalized decomposition. After the response surface development, one additional rabbit was used to check the predictive potential of the technique. This multidimensional surface takes into account not only the decay of the maximum repeated peak force, but also the shape evolution of each contraction, muscle weight, electrical input signal and stimulation protocol. This new approach of the fatigue simulation challenge allows to predict, inside the multispace surface generated, the muscle response considering other stimulation patterns, different tissue weight, etc.

  18. Differential diagnosis of unpleasant sensations in the legs: prevalence of restless legs syndrome in a primary care population.

    Science.gov (United States)

    Möller, Caroline; Wetter, Thomas C; Köster, Jürgen; Stiasny-Kolster, Karin

    2010-02-01

    Restless legs syndrome (RLS) is a common neurological condition. We investigated the prevalence of RLS in patients suffering from unpleasant sensations in the legs. We included 16,543 patients consulting one of 312 primary care practices in Germany on November 8, 2007. All patients filled out a self-assessment questionnaire. Patients who reported suffering from unpleasant sensations in the legs were then assessed by the physician. Main outcome measures were the overall prevalence of unpleasant sensations in the legs and the prevalence of RLS; the most common differential diagnoses in the subpopulation suffered from unpleasant leg sensations. Out of all participating patients 7704 (46.6%) suffered from unpleasant sensations in the legs and 1758 (10.6%) were diagnosed with RLS according to the four essential clinical criteria. Among patients with unpleasant leg sensations, the prevalence of RLS was considerably higher (22.7%) than in the total population. The most common differential diagnoses were osteoarthritis (21.5%), disc lesion (19.2%), varicose veins (18.8%) and muscle cramps (14.6%). Of the patients with RLS 53.4% had already consulted their physician about their leg problems in the past. Still, only 20.1% of the RLS patients had received the correct diagnosis. Comorbidity rates were significantly increased in RLS patients compared to patients suffering from leg symptoms of other origin. This study showed a high prevalence of RLS in primary care patients with unpleasant sensations in the legs. Thus, in patients presenting with these symptoms the diagnosis of RLS should routinely be considered. 2009 Elsevier B.V. All rights reserved.

  19. ORTHOPEDIC LEG BRACE

    Science.gov (United States)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  20. Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury

    OpenAIRE

    Onushko, Tanya; Hyngstrom, Allison; Schmit, Brian D.

    2013-01-01

    Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conv...

  1. Skeletal muscle signaling and the heart rate and blood pressure response to exercise

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Svendsen, Jesper H; Ersbøll, Mads

    2013-01-01

    Endurance training lowers heart rate and blood pressure responses to exercise, but the mechanisms and consequences remain unclear. To determine the role of skeletal muscle for the cardioventilatory response to exercise, 8 healthy young men were studied before and after 5 weeks of 1-legged knee......-extensor training and 2 weeks of deconditioning of the other leg (leg cast). Hemodynamics and muscle interstitial nucleotides were determined during exercise with the (1) deconditioned leg, (2) trained leg, and (3) trained leg with atrial pacing to the heart rate obtained with the deconditioned leg. Heart rate...

  2. Legāti

    OpenAIRE

    Segliņa, Aiga

    2010-01-01

    Autore teorētiski analizē legāta jēdzienu testamentārās mantošanas ietvaros un atspoguļo praktiska pētījuma rezultātus. Teorētiskā daļa apskata legāta nodibināšanas formu un spēkā esamību, tā iegūšanu un atraidīšanu, izpildi un zaudēšanu, novēlējuma robežas un aprobežojumus. Pētījums veikts aptaujas veidā ar mērķi noskaidrot, cik liela Latvijas iedzīvotāju daļa apzinās legāta nodrošinātās priekšrocības testamentārajā mantošanā. Apskatīts notāra neitralitātes jautājums attiecībā pret mantošana...

  3. Discriminant musculo-skeletal leg characteristics between sprint and endurance elite Caucasian runners.

    Science.gov (United States)

    Bex, T; Iannaccone, F; Stautemas, J; Baguet, A; De Beule, M; Verhegghe, B; Aerts, P; De Clercq, D; Derave, W

    2017-03-01

    Excellence in either sprinting or endurance running requires specific musculo-skeletal characteristics of the legs. This study aims to investigate the morphology of the leg of sprinters and endurance runners of Caucasian ethnicity. Eight male sprinters and 11 male endurance runners volunteered to participate in this cross-sectional study. They underwent magnetic resonance imaging and after data collection, digital reconstruction was done to calculate muscle volumes and bone lengths. Sprinters have a higher total upper leg volume compared to endurance runners (7340 vs 6265 cm 3 ). Specifically, the rectus femoris, vastus lateralis, and hamstrings showed significantly higher muscle volumes in the sprint group. For the lower leg, only a higher muscle volume was found in the gastrocnemius lateralis for the sprinters. No differences were found in muscle volume distribution, center of mass in the different muscles, or relative bone lengths. There was a significant positive correlation between ratio hamstrings/quadriceps volume and best running performance in the sprint group. Sprinters and endurance runners of Caucasian ethnicity showed the greatest distinctions in muscle volumes, rather than in muscle distributions or skeletal measures. Sprinters show higher volumes in mainly the proximal and lateral leg muscles than endurance runners. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  5. Immobilization tests and periodic leg movements in sleep for the diagnosis of restless leg syndrome.

    Science.gov (United States)

    Montplaisir, J; Boucher, S; Nicolas, A; Lesperance, P; Gosselin, A; Rompré, P; Lavigne, G

    1998-03-01

    Patients with restless leg syndrome (RLS) complain of motor restlessness, usually occurring while they rest in the evening. Two immobilization tests have been described to assess leg restlessness in these patients. In the first test, the patient sits in bed with his or her legs outstretched while electromyograms are recorded from right and left anterior tibialis muscles for an hour (Suggested Immobilization Test [SIT]); in the second test, the legs are immobilized in a stretcher (Forced Immobilization Test [FIT]). In the current study, the SIT and the FIT were compared in patients with RLS and normal control subjects matched for age and sex. More leg movements were seen in patients than in controls during immobilization tests, especially the SIT. These movements were periodic, occurring at a frequency of approximately one every 12 seconds. The SIT (index > 40) was found to discriminate between RLS and control subjects better than the FIT (index > 25). Patients were also recorded during two consecutive nights to measure periodic leg movements in sleep (PLMS). A SIT index greater than 40 and a PLMS index greater than 11 (highest PLMS index of 2 consecutive nights) were found to discriminate patients with RLS from control subjects with similar power. With each of these two measures, the clinical diagnosis was correctly predicted in 81% of patients and 81% of the control subjects. The SIT has several advantages over the measure of the PLMS index; it does not require an all-night polygraphic recording and can be administered several times a day to measure circadian fluctuation of motor restlessness.

  6. [Distal perforator-based gluteus maximus muscle V-Y flap for treatment of sacral ulcers].

    Science.gov (United States)

    Tong, Renlian; Huang, Jun; Zhong, Xiaomin

    2006-12-01

    To explore the method of the distal perforator-based gluteus maximus muscle V-Y flap to treat the sacral ulcer and to simplify the operative procedures. From March 2002 to March 2005, 11 cases of sacral ulcer were repaired by distal perforator-based gluteus maximus muscle flaps. The area of sacral ulcer ranged from 13 cmX 11 cm to 18 cmX 14 cm. Of 11 cases, 7 were female and 4 were male, whose age ranged from 21 to 69 years, and the disease course was 8 months to 3 years. A triangular flap was designed to create a V-Y advancement flap. The length of the base was made almost equal to the diameter of the defect. The apex of the triangle was located near the great trochanter. The medial part of the flap was elevated as a fasciocutaneous flap by dissecting the layer between the fascia and the muscle. The distal part of the flap was elevated by dissecting the layer between the gluteus maximus muscle and the fascia of the deeper muscle group. The flap was advanced to the defect. All the flaps survived. After a follow-up of 5 months to 3 years, the bilateral buttocks were symmetry and whose appearance was satisfactory. Except for 1 case dying of other disease, no recurrence of ulcer was observed. All the flaps survived. The distal perforator-based fasciocutaneous V-Y flap for treatment of sacral ulcers is a simple and reliable technique, which has several advantages over the conventional V-Y flap technique,such as excellent excursion, viable coverage.with the fasciocutaneous component, high flap reliability, preservation of the contralateral buttock, and preservation of the gluteus maximus muscle function.

  7. Leg length, skull circumference, and the prevalence of dementia in low and middle income countries: a 10/66 population-based cross sectional survey.

    Science.gov (United States)

    Prince, Martin; Acosta, Daisy; Dangour, Alan D; Uauy, Ricardo; Guerra, Mariella; Huang, Yueqin; Jacob, K S; Rodriguez, Juan J Llibre; Salas, Aquiles; Sosa, Ana Luisa; Williams, Joseph D; Acosta, Isaac; Albanese, Emiliano; Dewey, Michael E; Ferri, Cleusa P; Stewart, Robert; Gaona, Ciro; Jotheeswaran, A T; Kumar, P Senthil; Li, Shuran; Guerra, Juan C Llibre; Rodriguez, Diana; Rodriguez, Guillermina

    2011-03-01

    Adult leg length is influenced by nutrition in the first few years of life. Adult head circumference is an indicator of brain growth. There is a limited literature linking short legs and small skulls to an increased risk for cognitive impairment and dementia in late life. One phase cross-sectional surveys were carried out of all residents aged over 65 years in 11 catchment areas in China, India, Cuba, Dominican Republic, Venezuela, Mexico and Peru (n = 14,960). The cross-culturally validated 10/66 dementia diagnosis, and a sociodemographic and risk factor questionnaire were administered to all participants, and anthropometric measures taken. Poisson regression was used to calculate prevalence ratios for the effect of leg length and skull circumference upon 10/66 dementia, controlling for age, gender, education and family history of dementia. The pooled meta-analyzed fixed effect for leg length (highest vs. lowest quarter) was 0.82 (95% CI, 0.68-0.98) and for skull circumference 0.75 (95% CI, 0.63-0.89). While point estimates varied between sites, the proportion of the variability attributable to heterogeneity between studies as opposed to sampling error (I2) was 0% for leg length and 22% for skull circumference. The effects were independent and not mediated by family history of dementia. The effect of skull circumference was not modified by educational level or gender, and the effect of leg length was not modified by gender. Since leg length and skull circumference are said to remain stable throughout adulthood into old age, reverse causality is an unlikely explanation for the findings. Early life nutritional programming, as well as neurodevelopment may protect against neurodegeneration.

  8. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    Energy Technology Data Exchange (ETDEWEB)

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okolo, A.A.

    1986-01-01

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.).

  9. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    International Nuclear Information System (INIS)

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okolo, A.A.

    1986-01-01

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.)

  10. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy.

    Science.gov (United States)

    Rowland, Leslie A; Bal, Naresh C; Periasamy, Muthu

    2015-11-01

    Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non-shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT-centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle-based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT-mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in

  11. Sleep board review question: restless legs

    Directory of Open Access Journals (Sweden)

    Omobomi O

    2018-02-01

    Full Text Available No abstract available. Article truncated after 150 words. Ms. Jones (not her real name is a 63-year-old woman who states that she gets very fidgety when sitting in a theater, watching a movie or when flying long distances on a plane. She is unable to find words to describe the sensation but she states that moving her legs make them feel better. Lately, she has been getting this feeling almost every night. She reports no leg discomfort in the daytime. She denies muscle cramps her legs. She had some recent investigations done by her primary care physician because of complaints of fatigue. Which of the following will be helpful in the diagnosis and management in this patient? 1. An overnight polysomnogram showing apnea hypopnea index of 1.6 events per hour and no periodic limb movements (PLMs 2. Ferritin level of 18 ng/ml (normal range 20-200 ng/ml 3. Serum Bicarbonate of 29 mEq/L (normal range 23-29 mEq/L 4. Thyroid …

  12. G-LOC Warning Algorithms Based on EMG Features of the Gastrocnemius Muscle.

    Science.gov (United States)

    Kim, Sungho; Cho, Taehwan; Lee, Yongkyun; Koo, Hyojin; Choi, Booyong; Kim, Dongsoo

    2017-08-01

    G-induced loss of consciousness (G-LOC) is mainly caused by failure to sustain an oxygenated blood supply to the pilot's brain because of the sudden acceleration in the direction of the +Gz axis, and is considered a critical safety issue. The purpose of this study was to develop G-LOC warning algorithms based on monitoring electromyograms (EMG) of the gastrocnemius muscle on the calf. EMG data was retrieved from a total of 67 pilots and pilot trainees of the Korean Air Force during high-G training on a human centrifugal simulator. Seven EMG features were obtained from root mean square (RMS), integrated absolute value (IAV), and mean absolute value (MAV) for muscle contraction, slope sign changes (SSC), waveform length (WL), zero crossing (ZC), and median frequency (MF) for muscle contraction and fatigue. Out of seven EMG features, IAV and WL showed a rapid decay before G-LOC. Based on these findings, this study developed two algorithms which can detect G-LOC during flight and provide warning signals to the pilots. The probability of G-LOC occurrence was detected through monitoring the decay trend for representing muscle endurance and climb rate of the IAV and WL value during sudden acceleration above 6 G, representing muscle power. The sensitivity of the algorithms using IAV and WL features was 100% and the specificity was 66.7%. This study suggests that a G-LOC detecting and warning system may be a customized, real-time countermeasure by improving the accuracy of detecting G-LOC.Kim S, Cho T, Lee Y, Koo H, Choi B, Kim D. G-LOC warning algorithms based on EMG features of the gastrocnemius muscle. Aerosp Med Hum Perform. 2017; 88(8):737-742.

  13. Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury.

    Directory of Open Access Journals (Sweden)

    Stephen M Goldman

    Full Text Available Minced muscle autografting mediates de novo myofiber regeneration and promotes partial recovery of neuromuscular strength after volumetric muscle loss injury (VML. A major limitation of this approach is the availability of sufficient donor tissue for the treatment of relatively large VMLs without inducing donor site morbidity. This study evaluated a laminin-111 supplemented hyaluronic acid based hydrogel (HA+LMN as a putative myoconductive scaffolding to be co-delivered with minced muscle grafts. In a rat tibialis anterior muscle VML model, delivery of a reduced dose of minced muscle graft (50% of VML defect within HA+LMN resulted in a 42% improvement of peak tetanic torque production over unrepaired VML affected limbs. However, the improvement in strength was not improved compared to a 50% minced graft-only control group. Moreover, histological analysis revealed that the improvement in in vivo functional capacity mediated by minced grafts in HA+LMN was not accompanied by a particularly robust graft mediated regenerative response as determined through donor cell tracking of the GFP+ grafting material. Characterization of the spatial distribution and density of macrophage and satellite cell populations indicated that the combination therapy damps the heightened macrophage response while re-establishing satellite content 14 days after VML to a level consistent with an endogenously healing ischemia-reperfusion induced muscle injury. Moreover, regional analysis revealed that the combination therapy increased satellite cell density mostly in the remaining musculature, as opposed to the defect area. Based on the results, the following salient conclusions were drawn: 1 functional recovery mediated by the combination therapy is likely due to a superposition of de novo muscle fiber regeneration and augmented repair of muscle fibers within the remaining musculature, and 2 The capacity for VML therapies to augment regeneration and repair within the

  14. Impact of a Behavioral-Based Intervention on Inspiratory Muscle Training Prescription by a Multidisciplinary Team

    Science.gov (United States)

    Simms, Alanna M.; Li, Linda C.; Geddes, E. Lynne; Brooks, Dina; Hoens, Alison M.; Reid, W. Darlene

    2012-01-01

    Introduction: Our goal was to compare behavioral- and information-based interventions aimed at increasing prescription of inspiratory muscle training (IMT) for people with chronic obstructive pulmonary disease (COPD) by interdisciplinary teams during pulmonary rehabilitation (PR). Methods: Six hospital PR programs were randomly assigned to a…

  15. Evaluation of a Hill based muscle model for the energy cost and efficiency of muscular contraction

    NARCIS (Netherlands)

    Houdijk, J.H.P.; Bobbert, M.F.; de Haan, A.

    2006-01-01

    The purpose of this study was to evaluate a Hill-based mathematical model of muscle energetics and to disclose inconsistencies in existing experimental data. For this purpose, we simulated iso-velocity contractions of mouse fast twitch EDL and slow twitch SOL fibers, and we compared the outcome to

  16. Leg Rejuvenation: A Combination Approach: A Review and Our Experience.

    Science.gov (United States)

    Weiss, Margaret; Mahoney, Anne M; Gold, Michael; Lawrence, Naomi

    2016-05-01

    Patients increasingly seek to enhance the appearance of their legs. Elimination of unwanted leg veins, reduction of epidermal photo-aging changes such as solar lentigines and keratoses, tightening of skin laxity and reduction of adipose tissue are among the most commonly requested goals. Many patients require a combination approach to address their concerns. It is important for dermatologists to be aware of the multitude of procedures that can be performed, often in combination, to rejuvenate the leg. The purpose of this review article was to discuss procedures for improving the appearance of the leg and to share the authors experience, especially in the combination approach to leg rejuvenation. A literature search was performed to investigate cosmetic procedures being performed on the leg, with an emphasis on controlled or randomized studies. In addition, the authors contributed their personal experience. Our discussion of the literature review highlights the treatments for leg veins, unwanted fat, cellulite, and photodamage of the legs that are most supported in peer-reviewed publications. A synergistic, combination approach to leg rejuvenation works best. This includes the use of injectable agents, energy-based devices, and more invasive surgical procedures.

  17. Leg cramps and restless legs syndrome during pregnancy.

    Science.gov (United States)

    Hensley, Jennifer G

    2009-01-01

    Sleep disturbance during pregnancy can result in excessive daytime sleepiness, diminished daytime performance, inability to concentrate, irritability, and the potential for an increased length of labor and increased risk of operative birth. Sleep disturbance may be the result of a sleep disorder, such as leg cramps, a common yet benign disorder, or restless legs syndrome, a sensorimotor disorder. Both disrupt sleep, are distressing to the pregnant woman, and mimic one another and other serious disorders. During pregnancy, up to 30% of women can be affected by leg cramps, and up to 26% can be affected by restless legs syndrome.

  18. Muscle activity and masticatory efficiency with bilateral extension base removable partial dentures with different cusp angles.

    Science.gov (United States)

    Al-Omiri, Mahmoud K

    2018-03-01

    Whether masticatory efficiency and electromyographic activity are influenced by type of artificial teeth and food is unclear. The purpose of this clinical study was to evaluate the influence of extension base removable partial dentures (RPDs) with different cusp angles: anatomic (33 degrees), semianatomic (20 degrees), and nonanatomic (0 degrees) teeth on masticatory efficiency and muscle activity during the mastication of test foods with different textures. Twelve participants with RPDs were selected to perform masticatory efficiency and electromyographic tests. Surface electromyograms (EMGs) were used to record the activities of the masseter and temporalis muscles during the mastication of different types of test foods. The maximal voltage and duration were measured on the integrated EMG signal in each muscle during food mastication, and the mean reading of both sides was then recorded. Analysis of variance and the Tukey post hoc test were used to perform statistical analyses (α=.05). The masticatory efficiency of RPDs with nonanatomic teeth was significantly inferior to that of RPDs with anatomic and semianatomic teeth (P.05). Also, muscle activity (according to EMG) with RPDs with NA teeth was significantly higher than that with anatomic and semianatomic teeth (P<.05). RPDs with NA teeth were associated with higher EMG muscle activity and reduced masticatory efficiency than anatomic or semianatomic teeth. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Textiloma in the leg

    Directory of Open Access Journals (Sweden)

    Patel Amol

    2007-01-01

    Full Text Available Textiloma is defined as a tumor formed due to retained gauze. It is rarely reported in the musculoskeletal system. We are presenting a case with a soft tissue swelling over the lateral aspect of the lower third of the leg, come for implant removal of the distal tibia and fibular fracture. We removed the soft tissue mass enbloc thinking it to be a benign tumor. On cutting the mass on the operation table, a gauze piece encased by fibrous tissue was found. Textiloma can present as tumoral forms and can mimic as a pseudo-tumor.

  20. Secondary hyperparathyroidism: Uncommon cause of a leg ulcer

    NARCIS (Netherlands)

    van Rijssen, L. B.; Brenninkmeijer, E. E. A.; Nieveen van Dijkum, E. J. M.

    2012-01-01

    Most leg ulcers are vascular based. Only if vascular therapy fails other causes are considered. We report the case of a female with incapacitating leg ulcers caused by a rare condition which was only diagnosed after failing treatment. PRESENTATION OF CASE: The female had an extensive previous

  1. Design of Structure of Tension Leg Platform for 6 MW Offshore Wind Turbine Based On Fem Analysis

    Directory of Open Access Journals (Sweden)

    Żywicki Jędrzej

    2017-04-01

    Full Text Available The article presents the calculation and design stages of the TLP platform serving as a supporting construction of a 6 MW offshore wind turbine. This platform is designed to anchor at sea at a depth of 60 m. The authors presented the method of parameterization and optimization of the hull geometry. For the two selected geometry variants, the load and motion calculations of the platform subjected to wind, wave and current under 50-year storm conditions were performed. The maximum load on the structure was determined in these extreme storm conditions. For these loads, the MES calculation of the designed platform was performed for the selected variant. Authors have presented a method for calculating maximum wind, wave and current stresses on the structure during the worst storm in the past 50 years. For these loads the MES endurance calculations of the designed platform were made. Based on the results of these calculations, the required structural changes and recalculations have been made in succession to the structural design of the platform, which meets the design requirements and has the required ad hoc strength. The article contains stress analysis in „difficult“ nodes of constructions and discusses ways of solving their problems. The work is part of the WIND-TU-PLA project from the NCBR Research Agreement (Agreement No. MARTECII / 1/2014.

  2. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals

    Directory of Open Access Journals (Sweden)

    Cribb Paul J

    2010-09-01

    Full Text Available Abstract Background We examined the effects of short-term consumption of whey protein isolate on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. Methods Seventeen untrained male participants (23 ± 5 yr, 180 ± 6 cm, 80 ± 11 kg were randomly separated into two supplement groups: i whey protein isolate (WPH; n = 9; or ii carbohydrate (CHO; n = 8. Participants consumed 1.5 g/kg.bw/day supplement (~30 g consumed immediately, and then once with breakfast, lunch, in the afternoon and after the evening meal for a period of 14 days following a unilateral eccentric contraction-based resistance exercise session, consisting of 4 sets of 10 repetitions at 120% of maximum voluntary contraction on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase and lactate dehydrogenase (LDH levels were assessed as blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. Results Isometric knee extension strength was significantly higher following WPH supplementation 3 (P Conclusions The major finding of this investigation was that whey protein isolate supplementation attenuated the impairment in isometric and isokinetic muscle forces during recovery from exercise-induced muscle injury.

  3. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle.

    Science.gov (United States)

    Popuri, Karteek; Cobzas, Dana; Esfandiari, Nina; Baracos, Vickie; Jägersand, Martin

    2016-02-01

    The proportions of muscle and fat tissues in the human body, referred to as body composition is a vital measurement for cancer patients. Body composition has been recently linked to patient survival and the onset/recurrence of several types of cancers in numerous cancer research studies. This paper introduces a fully automatic framework for the segmentation of muscle and fat tissues from CT images to estimate body composition. We developed a novel finite element method (FEM) deformable model that incorporates a priori shape information via a statistical deformation model (SDM) within the template-based segmentation framework. The proposed method was validated on 1000 abdominal and 530 thoracic CT images and we obtained very good segmentation results with Jaccard scores in excess of 90% for both the muscle and fat regions.

  4. A View of the Therapy for Bell's Palsy Based on Molecular Biological Analyses of Facial Muscles.

    Science.gov (United States)

    Moriyama, Hiroshi; Mitsukawa, Nobuyuki; Itoh, Masahiro; Otsuka, Naruhito

    2017-12-01

    Details regarding the molecular biological features of Bell's palsy have not been widely reported in textbooks. We genetically analyzed facial muscles and clarified these points. We performed genetic analysis of facial muscle specimens from Japanese patients with severe (House-Brackmann facial nerve grading system V) and moderate (House-Brackmann facial nerve grading system III) dysfunction due to Bell's palsy. Microarray analysis of gene expression was performed using specimens from the healthy and affected sides, and gene expression was compared. Changes in gene expression were defined as an affected side/healthy side ratio of >1.5 or Bell's palsy changes with the degree of facial nerve palsy. Especially, muscle, neuron, and energy category genes tended to fluctuate with the degree of facial nerve palsy. It is expected that this study will aid in the development of new treatments and diagnostic/prognostic markers based on the severity of facial nerve palsy.

  5. [The Activation of Interlimb Interactions Increase the Motor Output in Legs in Healthy Subjects under the Conditions of Arm and Leg Unloading].

    Science.gov (United States)

    Selionov, V A; Solopova, I A; Zhvansky, D S

    2016-01-01

    We studied the effect of arm movements and movements of separate arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements under the conditions of horizontal support of upper and lower limbs. The horizontal support of arms provided a significantly increase in the rate of activation of locomotor automatism by non-invasive impact on tonic sensory inputs. The addition of active arm movements during involuntary rhytmic stepping-like leg movements led to an increase in EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of the knee and hip joints. At the same time, the movement of forearms. and wrists had similar facilitating effect on electrophysiological and kinematic characteristics of rhytmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of sub-threshold vibration of leg muscles, voluntary arm movements led to the activation of involuntary rhytmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhytmic stepping than during involuntary leg movements. Thus, the simultaneous movements of upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries

  6. Three-Dimensional Path Planning and Guidance of Leg Vascular Based on Improved Ant Colony Algorithm in Augmented Reality.

    Science.gov (United States)

    Gao, Ming-ke; Chen, Yi-min; Liu, Quan; Huang, Chen; Li, Ze-yu; Zhang, Dian-hua

    2015-11-01

    Preoperative path planning plays a critical role in vascular access surgery. Vascular access surgery has superior difficulties and requires long training periods as well as precise operation. Yet doctors are on different leves, thus bulky size of blood vessels is usually chosen to undergo surgery and other possible optimal path is not considered. Moreover, patients and surgeons will suffer from X-ray radiation during the surgical procedure. The study proposed an improved ant colony algorithm to plan a vascular optimal three-dimensional path with overall consideration of factors such as catheter diameter, vascular length, diameter as well as the curvature and torsion. To protect the doctor and patient from exposing to X-ray long-term, the paper adopted augmented reality technology to register the reconstructed vascular model and physical model meanwhile, locate catheter by the electromagnetic tracking system and used Head Mounted Display to show the planning path in real time and monitor catheter push procedure. The experiment manifests reasonableness of preoperative path planning and proves the reliability of the algorithm. The augmented reality experiment real time and accurately displays the vascular phantom model, planning path and the catheter trajectory and proves the feasibility of this method. The paper presented a useful and feasible surgical scheme which was based on the improved ant colony algorithm to plan vascular three-dimensional path in augmented reality. The study possessed practical guiding significance in preoperative path planning, intraoperative catheter guiding and surgical training, which provided a theoretical method of path planning for vascular access surgery. It was a safe and reliable path planning approach and possessed practical reference value.

  7. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  8. Comparison of algorithms to quantify muscle fatigue in upper limb muscles based on sEMG signals.

    Science.gov (United States)

    Kahl, Lorenz; Hofmann, Ulrich G

    2016-11-01

    This work compared the performance of six different fatigue detection algorithms quantifying muscle fatigue based on electromyographic signals. Surface electromyography (sEMG) was obtained by an experiment from upper arm contractions at three different load levels from twelve volunteers. Fatigue detection algorithms mean frequency (MNF), spectral moments ratio (SMR), the wavelet method WIRM1551, sample entropy (SampEn), fuzzy approximate entropy (fApEn) and recurrence quantification analysis (RQA%DET) were calculated. The resulting fatigue signals were compared considering the disturbances incorporated in fatiguing situations as well as according to the possibility to differentiate the load levels based on the fatigue signals. Furthermore we investigated the influence of the electrode locations on the fatigue detection quality and whether an optimized channel set is reasonable. The results of the MNF, SMR, WIRM1551 and fApEn algorithms fell close together. Due to the small amount of subjects in this study significant differences could not be found. In terms of disturbances the SMR algorithm showed a slight tendency to out-perform the others. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Parallel kinematics robot with five legs

    NARCIS (Netherlands)

    Lambert, P.

    2011-01-01

    Robot with multiple degrees of freedom comprising five legs (2) linked at a first of their ends to a base ( 3), and at a second of their ends opposite to the first ends to a mobile platform (4), which platform carries at least one tool (5, 6, 121, 12 "), and wherein the robot further comprises an

  10. Multidimensional control using a mobile-phone based brain-muscle-computer interface.

    Science.gov (United States)

    Vernon, Scott; Joshi, Sanjay S

    2011-01-01

    Many well-known brain-computer interfaces measure signals at the brain, and then rely on the brain's ability to learn via operant conditioning in order to control objects in the environment. In our lab, we have been developing brain-muscle-computer interfaces, which measure signals at a single muscle and then rely on the brain's ability to learn neuromuscular skills via operant conditioning. Here, we report a new mobile-phone based brain-muscle-computer interface prototype for severely paralyzed persons, based on previous results from our group showing that humans may actively create specified power levels in two separate frequency bands of a single sEMG signal. Electromyographic activity on the surface of a single face muscle (Auricularis superior) is recorded with a standard electrode. This analog electrical signal is imported into an Android-based mobile phone. User-modulated power in two separate frequency band serves as two separate and simultaneous control channels for machine control. After signal processing, the Android phone sends commands to external devices via Bluetooth. Users are trained to use the device via biofeedback, with simple cursor-to-target activities on the phone screen.

  11. Bio-Inspired Design and Kinematic Analysis of Dung Beetle-Like Legs

    DEFF Research Database (Denmark)

    Aditya, Sai Krishna Venkata; Ignasov, Jevgeni; Filonenko, Konstantin

    The African dung beetle Scarabaeus galenus can use its front legs to walk and manipulate or form a dung ball. The interesting multifunctional legs have not been fully investigated or even used as inspiration for robot leg design. Thus, in this paper, we present the development of real dung beetle......-like front legs based on biological investigation. As a result, each leg consists of three main segments which were built using 3D printing. The segments were combined with in total four active DOFs in order to mimic locomotion and object manipulation of the beetle. Kinematics analysis of the leg was also...

  12. Assessment of the validity of the Biering-Sørensen test for measuring back muscle fatigue based on EMG median frequency characteristics of back and hip muscles.

    Science.gov (United States)

    Coorevits, Pascal; Danneels, Lieven; Cambier, Dirk; Ramon, Herman; Vanderstraeten, Guy

    2008-12-01

    The aims of the present study were (1) to investigate the differences in median frequency characteristics between back and hip muscles of healthy subjects during a Biering-Sørensen test, (2) to determine if the Biering-Sørensen test is a valid test for measuring back muscle fatigue, and (3) to standardise the Biering-Sørensen test by using objective movement analysis when defining endurance time, and compare this to the original method based on tactile feedback. Twenty healthy subjects participated in this experiment. The electromyographic activity of eight back and hip muscles was bilaterally measured. In addition three-dimensional data of the lumbar region were collected with an ultrasound movement analysis system. Median frequencies were computed from the EMG power spectra. Two methods of determining the endurance time of the Biering-Sørensen test yielded highly correlated but significantly different normalized median frequency slope values (NMF(slope)). Significant differences in NMF(slope) values between several back and hip muscles could be demonstrated. Low to moderate correlation coefficients were shown between NMF(slope) values and endurance time. Multiple stepwise linear regression analyses revealed that only NMF(slope) of the thoracic part of the iliocostalis lumborum muscle could significantly predict the test endurance time. The findings of the present study support the validity of the Biering-Sørensen test for measuring back muscle fatigue.

  13. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions

    Directory of Open Access Journals (Sweden)

    Jose eGonzalez-Vargas

    2015-09-01

    Full Text Available Humans can efficiently walk across a large variety of terrains and locomotion conditions with little or no mental effort. It has been hypothesized that the nervous system simplifies neuromuscular control by using muscle synergies, thus organizing multi-muscle activity into a small number of coordinative co-activation modules. In the present study we investigated how muscle modularity is structured across a large repertoire of locomotion conditions including five different speeds and five different ground elevations. For this we have used the non-negative matrix factorization technique in order to explain EMG experimental data with a low-dimensional set of four motor components. In this context each motor components is composed of a non-negative factor and the associated muscle weightings. Furthermore, we have investigated if the proposed descriptive analysis of muscle modularity could be translated into a predictive model that could: 1 Estimate how motor components modulate across locomotion speeds and ground elevations. This implies not only estimating the non-negative factors temporal characteristics, but also the associated muscle weighting variations. 2 Estimate how the resulting muscle excitations modulate across novel locomotion conditions and subjects.The results showed three major distinctive features of muscle modularity: 1 the number of motor components was preserved across all locomotion conditions, 2 the non-negative factors were consistent in shape and timing across all locomotion conditions, and 3 the muscle weightings were modulated as distinctive functions of locomotion speed and ground elevation. Results also showed that the developed predictive model was able to reproduce well the muscle modularity of un-modeled data, i.e. novel subjects and conditions. Muscle weightings were reconstructed with a cross-correlation factor greater than 70% and a root mean square error less than 0.10. Furthermore, the generated muscle excitations

  14. Criteria in diagnosing nocturnal leg cramps: a systematic review.

    Science.gov (United States)

    Hallegraeff, Joannes; de Greef, Mathieu; Krijnen, Wim; van der Schans, Cees

    2017-02-28

    Up to 33% of the general population over 50 years of age are affected by nocturnal leg cramps. Currently there are no generally accepted clinical characteristics, which identify nocturnal leg cramps. This study aims to identify these clinical characteristics and to differentiate between them and the characteristics of restless leg syndrome and periodic limb disorder. A systematic literature study was executed from December 2015 to May 2016. This study comprised of a systematic literature review of randomized clinical trials, observational studies on nocturnal and rest cramps of legs and other muscles, and other systematic and narrative reviews. Two researchers independently extracted literature data and analyzed this using a standardized reviewing protocol. Modified versions of the Cochrane Collaboration tools assessed the risk of bias. A Delphi study was conducted to assess agreement on the characteristics of nocturnal leg cramps. After systematic and manual searches, eight randomized trials and ten observational studies were included. On the basis of these we identified seven diagnostic characteristics of nocturnal leg cramps: intense pain, period of duration from seconds to maximum 10 minutes, location in calf or foot, location seldom in thigh or hamstrings, persistent subsequent pain, sleep disruption and distress. The seven above characteristics will enhance recognition of the condition, and help clinicians make a clear distinction between NLC and other sleep-related musculoskeletal disorder among older adults.

  15. Prevalence and associated comorbidities of restless legs syndrome (RLS): Data from a large population-based door-to-door survey on 19176 adults in Tehran, Iran.

    Science.gov (United States)

    Fereshtehnejad, Seyed-Mohammad; Rahmani, Arash; Shafieesabet, Mahdiyeh; Soori, Mahshid; Delbari, Ahmad; Motamed, Mohammad Reza; Lökk, Johan

    2017-01-01

    Discrepancies have been reported in the prevalence rate of restless legs syndrome (RLS) among different ethnic groups and geographic populations. Furthermore, there are disagreements on determinant factors and associated comorbidities of RLS. We aimed to estimate prevalence of RLS and investigate its associated comorbid conditions and risk factors in a large population-based door-to-door survey. Following a multistage random sampling from the households lived in 22 urban districts of Tehran, Iran, 19176 participants with ≥30 years of age were recruited. Trained surveyors filled study checklist consisting of baseline characteristics, risk factors and comorbidity profile and the International RLS Study Group (IRLSSG) diagnostic criteria through face-to-face interviews. In total, 1580 individuals were positively screened for RLS resulting in a standardized prevalence rate of 60.0/1000. There was a gradual increase in RLS prevalence by advancing age, however, sex difference disappeared after adjustment. Parkinsonism [adjusted odds' ratio (adj-OR) = 7.4 (95% CI: 5.3-10.4)], peripheral neuropathy [adj-OR = 3.7 (95% CI: 3.3-4.1)], subjective cognitive impairment (SCI) [adj-OR = 3.1 (95% CI: 2.7-3.4)], acting out dreams [adj-OR = 2.8 (95% CI: 2.5-3.2)], hyposmia [adj-OR = 2.5 (95% CI: 2.2-2.9)], active smoking [adj-OR = 1.5 (95% CI: 1.3-1.9)] and additional number of cardiometabolic diseases associated with higher risk of RLS [adj-OR = 1.6 (95% CI: 1.2-2.3)]. Our findings showed that neuro-cognitive co-morbidities such as parkinsonism, peripheral neuropathy, SCI, acting out dreams and hyposmia as well as cardio-metabolic risk factors and diseases were independent determinants of RLS. It is recommended to screen individuals with either these comorbid conditions for RLS or the ones with RLS for the accompanying diseases.

  16. A greigite-based magnetostratigraphic time frame for the Late Miocene to Recent DSDP Leg 42B cores from the Black Sea

    Directory of Open Access Journals (Sweden)

    Christiaan Gijsbert Cornelis Van Baak

    2016-05-01

    Full Text Available Throughout the Late Neogene, the Black Sea experienced large paleoenvironmental changes, switching between (anoxic marine conditions when connected to the Mediterranean Sea and (oxic freshwater conditions at times of isolation. We create a magnetostratigraphic time frame for three sites drilled during Deep Sea Drilling Project (DSDP Leg 42B to the Black Sea (drilled in 1975. At the time, magnetostratigraphic dating was impossible because of the presence of the little understood iron sulfide mineral greigite (in sediments a precursor to pyrite as magnetic carrier. Our rock-magnetic results indicate that only anoxic conditions result in poor magnetic signal, likely as a result of pyrite formation in the water column rather than in the sediment. The magnetostratigraphic results indicate that Hole 379A, drilled in the basin center, has a continuous sedimentary record dating back to 1.3 Ma. Hole 380/380A is subdivided into three consistent intervals, 0-700 mbsf, 700-860 mbsf and 860-1075 mbsf. The top unit covers the Pleistocene but the magnetostratigraphy is likely compromised by the presence of mass transport deposits. The middle unit spans between 4.3 and 6.1 Ma and records continuous deposition at ~10 cm/kyr. The lower unit lacks the independent age constraints to correlate the obtained magnetostratigraphy. Hole 381 is drilled on the Bosporus slope and as a result, hiatuses are common. A correlation to the nearby Hole 380/380A is proposed, but indicates deposits cannot straightforwardly be traced across the slope. Our improved age model does not support the original interpretation based on these cores of a desiccation of the Black Sea during the Messinian salinity crisis.

  17. Prevalence and associated comorbidities of restless legs syndrome (RLS: Data from a large population-based door-to-door survey on 19176 adults in Tehran, Iran.

    Directory of Open Access Journals (Sweden)

    Seyed-Mohammad Fereshtehnejad

    Full Text Available Discrepancies have been reported in the prevalence rate of restless legs syndrome (RLS among different ethnic groups and geographic populations. Furthermore, there are disagreements on determinant factors and associated comorbidities of RLS. We aimed to estimate prevalence of RLS and investigate its associated comorbid conditions and risk factors in a large population-based door-to-door survey.Following a multistage random sampling from the households lived in 22 urban districts of Tehran, Iran, 19176 participants with ≥30 years of age were recruited. Trained surveyors filled study checklist consisting of baseline characteristics, risk factors and comorbidity profile and the International RLS Study Group (IRLSSG diagnostic criteria through face-to-face interviews.In total, 1580 individuals were positively screened for RLS resulting in a standardized prevalence rate of 60.0/1000. There was a gradual increase in RLS prevalence by advancing age, however, sex difference disappeared after adjustment. Parkinsonism [adjusted odds' ratio (adj-OR = 7.4 (95% CI: 5.3-10.4], peripheral neuropathy [adj-OR = 3.7 (95% CI: 3.3-4.1], subjective cognitive impairment (SCI [adj-OR = 3.1 (95% CI: 2.7-3.4], acting out dreams [adj-OR = 2.8 (95% CI: 2.5-3.2], hyposmia [adj-OR = 2.5 (95% CI: 2.2-2.9], active smoking [adj-OR = 1.5 (95% CI: 1.3-1.9] and additional number of cardiometabolic diseases associated with higher risk of RLS [adj-OR = 1.6 (95% CI: 1.2-2.3].Our findings showed that neuro-cognitive co-morbidities such as parkinsonism, peripheral neuropathy, SCI, acting out dreams and hyposmia as well as cardio-metabolic risk factors and diseases were independent determinants of RLS. It is recommended to screen individuals with either these comorbid conditions for RLS or the ones with RLS for the accompanying diseases.

  18. Physical Exercise in Aging: Nine Weeks of Leg Press or Electrical Stimulation Training in 70 Years Old Sedentary Elderly People.

    Science.gov (United States)

    Zampieri, Sandra; Mosole, Simone; Löfler, Stefan; Fruhmann, Hannah; Burggraf, Samantha; Cvečka, Ján; Hamar, Dušan; Sedliak, Milan; Tirptakova, Veronica; Šarabon, Nejc; Mayr, Winfried; Kern, Helmut

    2015-08-24

    Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type) which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling). Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients' quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP) exercise or electrical stimulation (ES). Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (p<0.001), together with a significant increase in the number of Pax7 and NCAM positive satellite cells (p<0.005). A significant decrease of slow type fiber diameter was observed in both ES and LP trained subjects (p<0.001). Altogether these results demonstrate the effectiveness of physical exercise either voluntary (LP) or passive (ES) to improve the functional performances of aging muscles. Here ES is

  19. Physical exercise in Aging: Nine weeks of leg press or electrical stimulation training in 70 years old sedentary elderly people

    Directory of Open Access Journals (Sweden)

    Sandra Zampieri

    2015-08-01

    Full Text Available Sarcopenia is the age-related loss of muscle mass and function, reducing force generation and mobility in the elderlies. Contributing factors include a severe decrease in both myofiber size and number as well as a decrease in the number of motor neurons innervating muscle fibers (mainly of fast type which is sometimes accompanied by reinnervation of surviving slow type motor neurons (motor unit remodeling. Reduced mobility and functional limitations characterizing aging can promote a more sedentary lifestyle for older individuals, leading to a vicious circle further worsening muscle performance and the patients' quality of life, predisposing them to an increased risk of disability, and mortality. Several longitudinal studies have shown that regular exercise may extend life expectancy and reduce morbidity in aging people. Based on these findings, the Interreg IVa project aimed to recruit sedentary seniors with a normal life style and to train them for 9 weeks with either leg press (LP exercise or electrical stimulation (ES. Before and at the end of both training periods, all the subjects were submitted to mobility functional tests and muscle biopsies from the Vastus Lateralis muscles of both legs. No signs of muscle damage and/or of inflammation were observed in muscle biopsies after the training. Functional tests showed that both LP and ES induced improvements of force and mobility of the trained subjects. Morphometrical and immunofluorescent analyses performed on muscle biopsies showed that ES significantly increased the size of fast type muscle fibers (p<0.001, together with a significant increase in the number of Pax7 and NCAM positive satellite cells (p<0.005. A significant decrease of slow type fiber diameter was observed in both ES and LP trained subjects (p<0.001. Altogether these results demonstrate the effectiveness of physical exercise either voluntary (LP or passive (ES to improve the functional performances of aging muscles. Here ES

  20. 3D MRI analysis of the lower legs of treated idiopathic congenital talipes equinovarus (clubfoot.

    Directory of Open Access Journals (Sweden)

    Suzanne L Duce

    Full Text Available BACKGROUND: Idiopathic congenital talipes equinovarus (CTEV is the commonest form of clubfoot. Its exact cause is unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle, subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic resonance imaging (MRI, and thus to investigate the anatomical differences between CTEV participants and controls. METHODOLOGY/PRINCIPAL FINDINGS: The lower legs of six CTEV (2 bilateral, 4 unilateral and five control young adults (age 12-28 were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA images were acquired. Segmentation software was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed. CONCLUSIONS/SIGNIFICANCE: Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy. Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification. These measures could be useful for clinical care and guiding treatment pathways, as

  1. Norepinephrine spillover from skeletal muscle during exercise in humans

    DEFF Research Database (Denmark)

    Savard, G K; Richter, Erik; Strange, S

    1989-01-01

    -legged knee extension either alone or in combination with the knee extensors of the other leg and/or with the arms. The range of work intensities varied between 24 and 71% (mean) of subjects' maximal aerobic capacity (% VO2max). Leg blood flow, measured in the femoral vein by thermodilution, was determined...... legs, with a steeper rise occurring approximately 70% VO2max. These increases were not associated with any significant changes in leg blood flow or leg vascular conductance at the exercise intensities examined. These results suggest that, as the total active muscle mass increases, the rise...

  2. Differentiating nocturnal leg cramps and restless legs syndrome.

    Science.gov (United States)

    Rana, Abdul Qayyum; Khan, Fatima; Mosabbir, Abdullah; Ondo, William

    2014-07-01

    Leg pain and discomfort are common complaints in any primary physician's clinic. Two common causes of pain or discomfort in legs are nocturnal leg cramps (NLC) and restless leg syndrome (RLS). NLC present as painful and sudden contractions mostly in part of the calf. Diagnosis of NLC is mainly clinical and sometimes involves investigations to rule out other mimics. RLS is a condition characterized by the discomfort or urge to move the lower limbs, which occurs at rest or in the evening/night. The similarity of RLS and leg cramps poses the issue of errors in diagnosing and differentiating the two. In this paper we review the pathopysiology of each entity and their diagnosis as well as treatment. The two conditions are then compared to appreciate the differences and similarities. Finally, suggestions are recommended for complete assessment.

  3. ODYSSEUS autonomous walking robot: The leg/arm design

    Science.gov (United States)

    Bourbakis, N. G.; Maas, M.; Tascillo, A.; Vandewinckel, C.

    1994-01-01

    ODYSSEUS is an autonomous walking robot, which makes use of three wheels and three legs for its movement in the free navigation space. More specifically, it makes use of its autonomous wheels to move around in an environment where the surface is smooth and not uneven. However, in the case that there are small height obstacles, stairs, or small height unevenness in the navigation environment, the robot makes use of both wheels and legs to travel efficiently. In this paper we present the detailed hardware design and the simulated behavior of the extended leg/arm part of the robot, since it plays a very significant role in the robot actions (movements, selection of objects, etc.). In particular, the leg/arm consists of three major parts: The first part is a pipe attached to the robot base with a flexible 3-D joint. This pipe has a rotated bar as an extended part, which terminates in a 3-D flexible joint. The second part of the leg/arm is also a pipe similar to the first. The extended bar of the second part ends at a 2-D joint. The last part of the leg/arm is a clip-hand. It is used for selecting several small weight and size objects, and when it is in a 'closed' mode, it is used as a supporting part of the robot leg. The entire leg/arm part is controlled and synchronized by a microcontroller (68CH11) attached to the robot base.

  4. Assessment of skeletal muscle fatigue of road maintenance workers based on heart rate monitoring and myotonometry

    Directory of Open Access Journals (Sweden)

    Kalkis Henrijs

    2006-07-01

    Full Text Available Abstract Objective This research work is dedicated to occupational health problems caused by ergonomic risks. The research object was road building industry, where workers have to work very intensively, have long work hours, are working in forced/constrained work postures and overstrain during the work specific parts of their bodies. The aim of this study was to evaluate the work heaviness degree and to estimate the muscle fatigue of workers after one week work cycle. The study group consisted of 10 road construction and maintenance workers and 10 pavers aged between 20 and 60 years. Methods Physical load were analyzed by measuring heart rate (HR, work postures (OWAS and perceived exertion (RPE. Assessments of the muscles strain and functional state (tone were carried out using myotonometric (MYO measurements. The reliability of the statistical processing of heart rate monitoring and myotonometry data was determined using correlating analysis. Results This study showed that that road construction and repairing works should be considered as a hard work according to average metabolic energy consumption 8.1 ± 1.5 kcal/min; paving, in its turn, was a moderately hard work according to 7.2 ± 1.1 kcal/min. Several muscle tone levels were identified allowing subdivision of workers into three conditional categories basing on muscle tone and fatigue: I – absolute muscle relaxation and ability to relax; II – a state of equilibrium, when muscles are able to adapt to the work load and are partly able to relax; and III – muscle fatigue and increased tone. It was also found out that the increase of muscle tone and fatigue mainly depend on workers physical preparedness and length of service, and less – on their age. Conclusion We have concluded that a complex ergonomic analysis consisting of heart rate monitoring, assessment of compulsive working postures and myotonometry is appropriate to assess the work heaviness degree and can provide prognosis of

  5. Klinefelter Syndrome With Leg Ulcers