WorldWideScience

Sample records for leg motor responses

  1. A bipedal DNA Brownian motor with coordinated legs.

    Science.gov (United States)

    Omabegho, Tosan; Sha, Ruojie; Seeman, Nadrian C

    2009-04-03

    A substantial challenge in engineering molecular motors is designing mechanisms to coordinate the motion between multiple domains of the motor so as to bias random thermal motion. For bipedal motors, this challenge takes the form of coordinating the movement of the biped's legs so that they can move in a synchronized fashion. To address this problem, we have constructed an autonomous DNA bipedal walker that coordinates the action of its two legs by cyclically catalyzing the hybridization of metastable DNA fuel strands. This process leads to a chemically ratcheted walk along a directionally polar DNA track. By covalently cross-linking aliquots of the walker to its track in successive walking states, we demonstrate that this Brownian motor can complete a full walking cycle on a track whose length could be extended for longer walks. We believe that this study helps to uncover principles behind the design of unidirectional devices that can function without intervention. This device should be able to fulfill roles that entail the performance of useful mechanical work on the nanometer scale.

  2. Motor control patterns during an active straight leg raise in pain-free subjects.

    Science.gov (United States)

    Beales, Darren John; O'Sullivan, Peter Bruce; Briffa, N Kathryn

    2009-01-01

    Repeated measures. To investigate motor control (MC) patterns of normal subjects during the low level physical load of the active straight leg raise (ASLR). Aberrant MC patterns, as observed with the ASLR test, are considered to be a mechanism for ongoing pain and disability in subjects with chronic musculoskeletal pelvic girdle pain. These patterns may not only affect the provision of lumbopelvic stability, but also respiration and the control of continence. Greater understanding of MC patterns in pain-free subjects may improve the management of pelvic girdle pain. METHODS.: Fourteen pain-free nulliparous women were examined during the ASLR. Electromyography of the anterior abdominal wall, right chest wall and the anterior scaleni, intraabdominal pressure (IAP), intrathoracic pressure (ITP), respiratory rate, pelvic floor kinematics, and downward leg pressure of the nonlifted leg were compared between a left and right ASLR. There was greater activation of obliquus internus abdominis and obliquus externus abdominis on the side of the ASLR. The predominant pattern of activation for the chest wall was tonic activation during an ipsilateral ASLR, and phasic respiratory activation lifting the contralateral leg. Respiratory fluctuation of both IAP and ITP did not differ lifting either leg. The baseline shifts of these pressure variables in response to the physical demand of lifting the leg was also the same either side. There was no difference in respiratory rate, pelvic floor kinematics, or downward leg pressure. Pain-free subjects demonstrate a predominant pattern of greater ipsilateral tonic activation of the abdominal wall and chest wall on the side of the ASLR. This was achieved with minimal apparent disruption to IAP and ITP. The findings of this study demonstrate the plastic nature of the abdominal cylinder and the flexibility of the neuromuscular system in controlling load transference during an ASLR.

  3. Design of a Single Motor Based Leg Structure with the Consideration of Inherent Mechanical Stability

    Science.gov (United States)

    Taha Manzoor, Muhammad; Sohail, Umer; Noor-e-Mustafa; Nizami, Muhammad Hamza Asif; Ayaz, Yasar

    2017-07-01

    The fundamental aspect of designing a legged robot is constructing a leg design that is robust and presents a simple control problem. In this paper, we have successfully designed a robotic leg based on a unique four bar mechanism with only one motor per leg. The leg design parameters used in our platform are extracted from design principles used in biological systems, multiple iterations and previous research findings. These principles guide a robotic leg to have minimal mechanical passive impedance, low leg mass and inertia, a suitable foot trajectory utilizing a practical balance between leg kinematics and robot usage, and the resultant inherent mechanical stability. The designed platform also exhibits the key feature of self-locking. Theoretical tools and software iterations were used to derive these practical features and yield an intuitive sense of the required leg design parameters.

  4. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  5. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction.

    Science.gov (United States)

    Jeong, Jeong-Won; Lee, Jessica; Kamson, David O; Chugani, Harry T; Juhász, Csaba

    2015-09-01

    To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called "normalized streamline volume ratio (NSVR)" to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain

  6. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    Science.gov (United States)

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  7. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain.

    Science.gov (United States)

    Klykken, Lindsey W; Pietrosimone, Brian G; Kim, Kyung-Min; Ingersoll, Christopher D; Hertel, Jay

    2011-01-01

    Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Case-control study. Laboratory. Ten individuals with acute ankle sprains (6 females, 4 males; age= 19.2 ± 3.8 years, height= 169.4 ± 8.5 cm, mass= 66.3 ± 11.6 kg) and 10 healthy individuals(6 females,4 males; age= 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass= 66.3 ± 10.2 kg) participated. The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (H(max)) and maximal muscle response (M(max)) and was then normalized using the H(max):M(max) ratio. The soleus MNPE in the ankle-sprain group was higher in the injured limb (H(max):M(max) = 0.63; 95% confidence interval [Cl],0.46, 0.80) than the uninjured limb (H(max):M(max) = 0.47; 95%Cl, 0.08, 0.93)(t(6) = 3.62,P =.01).In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (H(max):M(max) =0.06; 95% Cl, 0.01, 0.10) than in the uninjured ankle (H(max):M(max) =0.22; 95%Cl, 0.09, 0.35),but this finding was not different (t(9) =-2.01, P =.07). No differences were detected between injured (0.22; 95% Cl, 0.14, 0.29) and uninjured (0.25; 95%Cl, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t(9) =-0.739, P =.48). We found no side-to-side differences in any muscle among the healthy group. Facilitated MNPE was present in the involved soleus muscle of patients with acute

  8. Seismic response analysis for hinged-leg type port crane

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwazaki, A.; Kanayama, T.; Arai, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2000-04-01

    Container cranes and unloaders in Kobe Pont were severely damaged during the Southern Hyogo Prefecture Earthquake in 1995. Notably, some of the hinged-leg type of cranes with hinges at the end of sea-or land-side of legs were overturned. These damages were derived from the uplifting of their legs. To explain the uplifting and overturning behavior, we carried out nonlinear analyses and shaking table tests using a 1/8-scale model of the container crane. The results of nonlinear response analyses of hinged-leg type of crane, which are in an agreement with the state of damages in the Southern Hyogo Prefecture Earthquake and the result of shaking table tests, are described. (author)

  9. A Decoupled Control of 5-Legs PWM Inverter Feeding a two Induction Motors-based Electric Vehicle Powertrain

    Directory of Open Access Journals (Sweden)

    Bekheïra Tabbache

    2016-06-01

    Full Text Available This paper proposes a traction drive system for electric vehicles (EVs with two separate induction motor drive-based wheels. In this context, two three-phase induction motors are associated to five legs power inverter which one leg is shared by two phases of the motors. The independent control of the two induction motors allows replacing the mechanical differential speeds by an equivalent electrical module called electric differential (ED. In the proposed EV powertrain based on 5-leg inverter, the challenge is to achieve a decoupled control of the induction motors to ensure the EV stability while cornering or under slippery road condition. For this, the proposed independent control uses Indirect Field Oriented Control to ensure speed and rotor flux control of each induction motor , a Pulse Width Modulation to provide the command sequences to the 5-leg inverter and electric differential to generate the an appropriate reference when the two induction motors should be controlled at different speeds. For this, a numerical implementation of the independent controls on an embedded board (TMS 320F2812 to ensure a separate control of induction motor fed by the 5-leg inverter. Moreover, the proposed control takes into account the EV context such as the EV dynamic and uses European and American normalized driving cycles. EV-specific experimental tests on a digital signal processor TMS320LF2812 are carried-out to show the effectiveness of the proposed independent control for ED in terms of robustness and stability.

  10. Universal Linear Motor Driven Leg Press Dynamometer and Concept of Serial Stretch Loading.

    Science.gov (United States)

    Hamar, Dušan

    2015-08-24

    Paper deals with backgrounds and principles of universal linear motor driven leg press dynamometer and concept of serial stretch loading. The device is based on two computer controlled linear motors mounted to the horizontal rails. As the motors can keep either constant resistance force in selected position or velocity in both directions, the system allows simulation of any mode of muscle contraction. In addition, it also can generate defined serial stretch stimuli in a form of repeated force peaks. This is achieved by short segments of reversed velocity (in concentric phase) or acceleration (in eccentric phase). Such stimuli, generated at the rate of 10 Hz, have proven to be a more efficient means for the improvement of rate of the force development. This capability not only affects performance in many sports, but also plays a substantial role in prevention of falls and their consequences. Universal linear motor driven and computer controlled dynamometer with its unique feature to generate serial stretch stimuli seems to be an efficient and useful tool for enhancing strength training effects on neuromuscular function not only in athletes, but as well as in senior population and rehabilitation patients.

  11. Muscle response to leg lengthening during distraction osteogenesis.

    Science.gov (United States)

    Thorey, Fritz; Bruenger, Jens; Windhagen, Henning; Witte, Frank

    2009-04-01

    Continuous lengthening of intact muscles during distraction osteogenesis leads to an increase of sarcomeres and enhances the regeneration of tendons and blood vessels. A high distraction rate leads to an excessive leg and muscle lengthening and might cause damages of muscle fibers with fibrosis, necrosis, and muscle weakness. Complications like muscle contractures or atrophy after postoperative immobilization emphazize the importance of muscles and their function in the clinical outcome. In an animal model of distraction osteogenesis, 18 sheep were operated with an external fixator followed by 4 days latency, 21 days distraction (1.25 mm per day) and 51 days consolidation. The anatomical location (gastrocnemius, peroneus tertius, and first flexor digitorum longus muscle), dimension and occurrence of muscular defects were characterized histologically. The callus formation and leg axis was monitored by weekly X-rays. Additionally, serum creatine kinase was analyzed during a distraction and consolidation period. Significant signs of muscle lesions in all three observed muscles can be found postoperatively, whereas normal callus formation and regular leg axis was observed radiologically. The peroneus tertius and first flexor digitorum longus muscles were found to have significantly more signs of fibrosis, inflammatory, and necrosis. Creatine kinase showed two peaks: 4 and 39 days postoperative as an indication of muscle damage and regeneration. The study implicates that muscle damages should be considered when a long-distance distraction osteogenesis is planned. The surgeon should consider these muscle responses and individually discuss a two-stage treatment or additional muscle tendon releases to minimize the risk of muscle damages.

  12. Physiological aspects of legged terrestrial locomotion the motor and the machine

    CERN Document Server

    Cavagna, Giovanni

    2017-01-01

    This book offers a succinct but comprehensive description of the mechanics of muscle contraction and legged terrestrial locomotion. It describes on the one hand how the fundamental properties of muscle tissue affect the mechanics of locomotion, and on the other, how the mechanics of locomotion modify the mechanism of muscle operation under different conditions. Further, the book reports on the design and results of experiments conducted with two goals. The first was to describe the physiological function of muscle tissue (which may be considered as the “motor”) contracting at a constant length, during shortening, during lengthening, and under a condition that occurs most frequently in the back-and-forth movement of the limbs during locomotion, namely the stretch-shortening cycle of the active muscle. The second objective was to analyze the interaction between the motor and the “machine” (the skeletal lever system) during walking and running in different scenarios with respect to speed, step frequency,...

  13. Motor responses to experimental Achilles tendon pain

    DEFF Research Database (Denmark)

    Henriksen, Marius; Aaboe, Jens; Graven-Nielsen, Thomas

    2011-01-01

    of the exercise are affected by Achilles tendon pain. Objective The authors aimed to determine the effects of experimental Achilles tendon pain on motor function during one-legged weight bearing ankle plantar and dorsal flexion exercises. Methods In a crossover study, with 16 healthy subjects tested on two......Background Achilles tendinopathies are characterised by pain and reduced function, and heavy-load exercises have been shown to be effective in the treatment of painful chronic Achilles tendinopathies. However, basic information is needed on how the biomechanics and neuromuscular control...... different days separated by 1 week, three-dimensional ground reaction forces, ankle joint kinematics and surface electromyography (EMG) of the lower leg muscles were recorded during one-legged full weight-bearing ankle plantar (concentric) and dorsal (eccentric) flexion exercises. Measurements were done...

  14. Effects of immobility on sensory and motor symptoms of restless legs syndrome.

    Science.gov (United States)

    Michaud, Martin; Lavigne, Gilles; Desautels, Alex; Poirier, Gaétan; Montplaisir, Jacques

    2002-01-01

    Restless legs syndrome (RLS) is defined by an irresistible need to move associated with leg paresthesia. Two additional features are essential for diagnosis: (1) worsening of symptoms at rest with temporary relief by activity, and (2) worsening of symptoms during the evening and/or during the night. The suggested immobilization test (SIT) has been developed to evaluate the presence of these criteria. This test quantifies leg movements and leg discomfort during a 1-hour period of immobility prior to bedtime. We used the SIT to evaluate the effects of immobility on leg discomfort and leg movements experienced by 19 patients with RLS and 19 control subjects. Results show that immobility significantly worsens both leg discomfort and periodic leg movements (PLM) in patients with RLS but not in controls. Patients with RLS showed a higher leg discomfort score (32.6 +/- 15.1 mm vs. 5.7 +/- 7.9 mm; P < 0.00001), a greater maximum leg discomfort value (63.4 +/- 27.4 mm vs. 13.7 +/- 23.0 mm; P < 0.00001) and a greater PLM index (88.4 +/- 62.6 vs. 10.4 +/- 20.6; P < 0.00004) than control subjects. These results further validate the use of the SIT as a diagnostic and research tool for RLS and confirm the contention of the International RLS study group that RLS symptoms worsen at rest. Copyright 2001 Movement Disorder Society.

  15. Age-Related Differences in Motor Coordination during Simultaneous Leg Flexion and Finger Extension: Influence of Temporal Pressure

    OpenAIRE

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference b...

  16. Novel diffusion tensor imaging technique reveals developmental streamline volume changes in the corticospinal tract associated with leg motor control.

    Science.gov (United States)

    Kamson, David O; Juhász, Csaba; Chugani, Harry T; Jeong, Jeong-Won

    2015-04-01

    Diffusion tensor imaging (DTI) has expanded our knowledge of corticospinal tract (CST) anatomy and development. However, previous developmental DTI studies assessed the CST as a whole, overlooking potential differences in development of its components related to control of the upper and lower extremities. The present cross-sectional study investigated age-related changes, side and gender differences in streamline volume of the leg- and hand-related segments of the CST in children. DTI data of 31 children (1-14 years; mean age: 6±4 years; 17 girls) with normal conventional MRI were analyzed. Leg- and hand-related CST streamline volumes were quantified separately, using a recently validated novel tractography approach. CST streamline volumes on both sides were compared between genders and correlated with age. Higher absolute streamline volumes were found in the left leg-related CST compared to the right (p=0.001) without a gender effect (p=0.4), whereas no differences were found in the absolute hand-related CST volumes (p>0.4). CST leg-related streamline volumes, normalized to hemispheric white matter volumes, declined with age in the right hemisphere only (R=-.51; p=0.004). Absolute leg-related CST streamline volumes showed similar, but slightly weaker correlations. Hand-related absolute or normalized CST streamline volumes showed no age-related variations on either side. These results suggest differential development of CST segments controlling hand vs. leg movements. Asymmetric volume changes in the lower limb motor pathway may be secondary to gradually strengthening left hemispheric dominance and is consistent with previous data suggesting that footedness is a better predictor of hemispheric lateralization than handedness. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Commercial Building Motor Protection Response Report

    Energy Technology Data Exchange (ETDEWEB)

    James, Daniel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kueck, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-17

    When voltages recover, motors may immediately reenergize and reaccelerate, or delay for a few minutes, or stay stalled. The estimated motor response is given for both the voltage sag magnitude and voltage sag duration. These response estimates are based on experience and available test data. Good data is available for voltage sag response for many components such as relays and contactors, but little data is available for both voltage sag and recovery response. The tables in Appendix A include data from recent voltage sag and recovery tests performed by SCE and BPA on air conditioners and energy management systems. The response of the motor can vary greatly depending on the type of protection and control. The time duration for the voltage sag consists of those times that are of interest for bulk power system modelers.

  18. Sympathetic Vasoconstrictor Responsiveness of the Leg Vasculature During Experimental Endotoxemia and Hypoxia in Humans

    DEFF Research Database (Denmark)

    Brassard, Patrice; Zaar, Morten; Thaning, Pia

    2016-01-01

    . DESIGN: Prospective descriptive study. SETTING: Hospital research laboratory. SUBJECTS: Ten healthy young men (age [mean ± SD], 31 ± 8 yr; body weight, 83 ± 10 kg) participated in the study. INTERVENTIONS: Leg blood flow and mean arterial pressure were determined, whereas leg vascular conductance...... was calculated during 1) adenosine infusion (vasodilator control), 2) hypoxia (FIO2 = 10%), 3) endotoxemia, and 4) endotoxemia + hypoxia. Leg sympathetic vasoconstrictor responsiveness (reduction in leg vascular conductance) was evaluated by femoral artery tyramine infusion. MEASUREMENTS AND MAIN RESULTS......: Endotoxemia increased body temperature from 36.9 ± 0.4°C to 38.6 ± 0.5°C (p necrosis factor-α from 6 pg/mL (3-8 pg/mL) to 391 pg/mL (128-2258 pg/mL) (p

  19. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  20. Response inhibition in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Ekanayake, Vindhya; Wiggs, Edythe; Kranick, Sarah; Ameli, Rezvan; Harrison, Neil A; Hallett, Mark

    2013-05-01

    Conversion disorders (CDs) are unexplained neurological symptoms presumed to be related to a psychological issue. Studies focusing on conversion paralysis have suggested potential impairments in motor initiation or execution. Here we studied CD patients with aberrant or excessive motor movements and focused on motor response inhibition. We also assessed cognitive measures in multiple domains. We compared 30 CD patients and 30 age-, sex-, and education-matched healthy volunteers on a motor response inhibition task (go/no go), along with verbal motor response inhibition (color-word interference) and measures of attention, sustained attention, processing speed, language, memory, visuospatial processing, and executive function including planning and verbal fluency. CD patients had greater impairments in commission errors on the go/no go task (P conversion. Patients with nonepileptic seizures, a different form of conversion disorder, are commonly reported to have lower IQ and multiple cognitive deficits. Our results point toward potential differences between conversion disorder subgroups. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  1. Comparison of thermoregulatory responses to heat between Malaysian and Japanese males during leg immersion

    Science.gov (United States)

    Wijayanto, Titis; Wakabayashi, Hitoshi; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2011-07-01

    The objective of this study was to investigate thermoregulatory responses to heat in tropical (Malaysian) and temperate (Japanese) natives, during 60 min of passive heating. Ten Japanese (mean ages: 20.8 ± 0.9 years) and ten Malaysian males (mean ages: 22.3 ± 1.6 years) with matched morphological characteristics and physical fitness participated in this study. Passive heating was induced through leg immersion in hot water (42°C) for 60 min under conditions of 28°C air temperature and 50% RH. Local sweat rate on the forehead and thigh were significantly lower in Malaysians during leg immersion, but no significant differences in total sweat rate were observed between Malaysians (86.3 ± 11.8 g m-2 h-1) and Japanese (83.2 ± 6.4 g m-2 h-1) after leg immersion. In addition, Malaysians displayed a smaller rise in rectal temperature (0.3 ± 0.1°C) than Japanese (0.7 ± 0.1°C) during leg immersion, with a greater increase in hand skin temperature. Skin blood flow was significantly lower on the forehead and forearm in Malaysians during leg immersion. No significant different in mean skin temperature during leg immersion was observed between the two groups. These findings indicated that regional differences in body sweating distribution might exist between Malaysians and Japanese during heat exposure, with more uniform distribution of local sweat rate over the whole body among tropical Malaysians. Altogether, Malaysians appear to display enhanced efficiency of thermal sweating and thermoregulatory responses in dissipating heat loss during heat loading. Thermoregulatory differences between tropical and temperate natives in this study can be interpreted as a result of heat adaptations to physiological function.

  2. In pursuit of vehicle landmine occupant protection: Evaluating the dynamic response characteristic of the military lower extremity leg (MiL-Lx) compared to the Hybrid III (HIII) lower leg

    CSIR Research Space (South Africa)

    Pandelani, T

    2010-09-01

    Full Text Available typical mine-protected vehicle landmine blast load conditions. Tests were performed using the Lower Limb Impactor (LLI) on both the MiL-Lx leg and the Hybrid III leg, and the relative responses compared. The results show that the MiL-Lx leg appears...

  3. Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure.

    Directory of Open Access Journals (Sweden)

    Tarek Hussein

    Full Text Available Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]. Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML anticipatory postural adjustment duration in RT (high temporal pressure than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of

  4. Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure.

    Science.gov (United States)

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal

  5. Age-Related Differences in Motor Coordination during Simultaneous Leg Flexion and Finger Extension: Influence of Temporal Pressure

    Science.gov (United States)

    Hussein, Tarek; Yiou, Eric; Larue, Jacques

    2013-01-01

    Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to

  6. Single-leg drop landing motor control strategies following acute ankle sprain injury.

    Science.gov (United States)

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2015-08-01

    No research currently exists investigating the effect of acute injury on single-limb landing strategies. The aim of the current study was to analyze the coordination strategies of participants in the acute phase of lateral ankle sprain (LAS) injury. Thirty-seven participants with acute, first-time LAS and 19 uninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment-of-force) data were acquired for the joints of the lower extremity from 200 ms pre-initial contact (IC) to 200 ms post-IC. The peak magnitude of the vertical component of the ground reaction force (GRF) was also computed. Injured participants displayed a bilateral increase in hip flexion, with altered transverse plane kinematic profiles at the knee and ankle for both limbs (P < 0.05). This coincided with a reduction in the net-supporting flexor moment of the lower extremity (P < 0.05) and magnitude of the peak vertical GRF for the injured limb (21.82 ± 2.44 N/kg vs 24.09 ± 2.77 N/kg; P = 0.013) in injured participants compared to control participants. These results demonstrate that compensatory movement strategies are utilized by participants with acute LAS to successfully reduce the impact forces of landing. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Immediate Effects of Smoking on Cardiorespiratory Responses During Dynamic Exercise: Arm Vs. Leg Ergometry.

    Science.gov (United States)

    Chen, Chien-Liang; Tang, Jing-Shia; Li, Ping-Chia; Chou, Pi-Ling

    2015-01-01

    This study compared the immediate effects of smoking on cardiorespiratory responses to dynamic arm and leg exercises. This randomized crossover study recruited 14 college students. Each participant underwent two sets of arm-cranking (AC) and leg-cycling (LC) exercise tests. The testing sequences of the control trial (participants refrained from smoking for 8 h before testing) and the experimental trial (participants smoked two cigarettes immediately before testing) were randomly chosen. We observed immediate changes in pulmonary function and heart rate variability after smoking and before the exercise test. The participants then underwent graded exercise tests of their arms and legs until reaching exhaustion. We compared the peak work achieved and time to exhaustion during the exercise tests with various cardiorespiratory indices [i.e., heart rate, oxygen consumption (VO2), minute ventilation (VE)]. The differences between the smoking and control trials were calculated using paired t-tests. For the exercise test periods, VO2, heart rate, and VE values were calculated at every 10% increment of the maximal effort time. The main effects of the time and trial, as well as their trial-by-time (4 × 10) interaction effects on the outcome measures, were investigated using repeated measure ANOVA with trend analysis. 5 min after smoking, the participants exhibited reduced forced vital capacities and forced expiratory volumes in the first second (P exercise test periods, smoking reduced the time to exhaustion (P = 0.005) and the ventilatory threshold (P exercise test (all P exercise response of the smoking trial than in those of the control LC trials, whereas no discernable inter-trial difference was observed in the AC trials. Moreover, the differences in heart rate and VE response between the LC and AC exercises were significantly smaller after the participants smoked. This study verified that smoking significantly decreased performance and cardiorespiratory responses to leg

  8. Similar acute physiological responses from effort and duration matched leg press and recumbent cycling tasks

    Directory of Open Access Journals (Sweden)

    James Steele

    2018-02-01

    Full Text Available The present study examined the effects of exercise utilising traditional resistance training (leg press or ‘cardio’ exercise (recumbent cycle ergometry modalities upon acute physiological responses. Nine healthy males underwent a within session randomised crossover design where they completed both the leg press and recumbent cycle ergometer conditions. Conditions were approximately matched for effort and duration (leg press: 4 × 12RM using a 2 s concentric and 3 s eccentric repetition duration controlled with a metronome, thus each set lasted  60 s; recumbent cycle ergometer: 4 × 60 s bouts using a resistance level permitting 80–100 rpm but culminating with being unable to sustain the minimum cadence for the final 5–10 s. Measurements included VO2, respiratory exchange ratio (RER, blood lactate, energy expenditure, muscle swelling, and electromyography. Perceived effort was similar between conditions and thus both were well matched with respect to effort. There were no significant effects by ‘condition’ in any of the physiological responses examined (all p > 0.05. The present study shows that, when both effort and duration are matched, resistance training (leg press and ‘cardio’ exercise (recumbent cycle ergometry may produce largely similar responses in VO2, RER, blood lactate, energy expenditure, muscle swelling, and electromyography. It therefore seems reasonable to suggest that both may offer a similar stimulus to produce chronic physiological adaptations in outcomes such as cardiorespiratory fitness, strength, and hypertrophy. Future work should look to both replicate the study conducted here with respect to the same, and additional physiological measures, and rigorously test the comparative efficacy of effort and duration matched exercise of differing modalities with respect to chronic improvements in physiological fitness.

  9. Early neonatal loss of inhibitory synaptic input to the spinal motor neurons confers spina bifida-like leg dysfunction in a chicken model

    Directory of Open Access Journals (Sweden)

    Md. Sakirul Islam Khan

    2017-12-01

    Full Text Available Spina bifida aperta (SBA, one of the most common congenital malformations, causes lifelong neurological complications, particularly in terms of motor dysfunction. Fetuses with SBA exhibit voluntary leg movements in utero and during early neonatal life, but these disappear within the first few weeks after birth. However, the pathophysiological sequence underlying such motor dysfunction remains unclear. Additionally, because important insights have yet to be obtained from human cases, an appropriate animal model is essential. Here, we investigated the neuropathological mechanisms of progression of SBA-like motor dysfunctions in a neural tube surgery-induced chicken model of SBA at different pathogenesis points ranging from embryonic to posthatch ages. We found that chicks with SBA-like features lose voluntary leg movements and subsequently exhibit lower-limb paralysis within the first 2 weeks after hatching, coinciding with the synaptic change-induced disruption of spinal motor networks at the site of the SBA lesion in the lumbosacral region. Such synaptic changes reduced the ratio of inhibitory-to-excitatory inputs to motor neurons and were associated with a drastic loss of γ-aminobutyric acid (GABAergic inputs and upregulation of the cholinergic activities of motor neurons. Furthermore, most of the neurons in ventral horns, which appeared to be suffering from excitotoxicity during the early postnatal days, underwent apoptosis. However, the triggers of cellular abnormalization and neurodegenerative signaling were evident in the middle- to late-gestational stages, probably attributable to the amniotic fluid-induced in ovo milieu. In conclusion, we found that early neonatal loss of neurons in the ventral horn of exposed spinal cord affords novel insights into the pathophysiology of SBA-like leg dysfunction.

  10. Performance Evaluation and Slip Regulation Control of an Asymmetrical Parameter Type Two-Phase Induction Motor Drive Using a Three-Leg Voltage Source Inverter

    Science.gov (United States)

    Piyarat, Wekin; Kinnares, Vijit

    This paper presents a performance evaluation and a simple speed control method of an asymmetrical parameter type two-phase induction motor drive using a three-leg VSI (Voltage Source Inverter). The two-phase induction motor is adapted from an existing single-phase induction motor resulting in impedance unbalance between main and auxiliary windings. The unbalanced two-phase inverter outputs with orthogonal displacement based on a SPWM (Sinusoidal Pulse Width Modulation) method are controlled with appropriate amplitudes for improving the motor performance. Dynamic simulation of the proposed drive system is given. A simple speed controller based on a slip regulation method is designed. The overall system is implemented on a DSP (Digital Signal Processor) board. The validity of the proposed system is verified by simulation and experimental results.

  11. The effect of starting or stopping skin cooling on the thermoregulatory responses during leg exercise in humans.

    Science.gov (United States)

    Demachi, K; Yoshida, T; Kume, M; Tsuneoka, H

    2012-07-01

    To assess the effects of starting or stopping leg cooling on the thermoregulatory responses during exercise, 60 min of cycling exercise at 30% of maximal oxygen uptake was performed under 4 conditions using tube trouser perfused with water at 10 °C; no leg cooling (NC), starting of leg cooling after 30 min of exercise (delayed cooling, DC), continuous leg cooling (CC), and stopping of continuous leg cooling after 30 min of exercise (SC) at an environmental temperature of 28.5 °C. During exercise under the DC conditions, an instantaneous increase in the esophageal temperature (Tes), a suppression of the cutaneous vascular conductance at the forearm (%CVC), and a decrease in the mean skin temperature (Tsk) were observed after leg cooling. The total sweat loss (Δm sw,tot) was lower under the DC than the NC condition. In the SC study, however, the Tes remained constant, while the %CVC increased gradually after leg cooling was stopped, and the Δm sw,tot was greater than that under the CC condition. These results suggest that during exercise, rapid skin cooling of the leg may cause an increase in core temperature, while also enhancing thermal stress. However, stopping skin cooling did not significantly affect the core temperature long-term, because the skin blood flow and sweat rate subsequently increased. © Georg Thieme Verlag KG Stuttgart · New York.

  12. 49 CFR 397.67 - Motor carrier responsibility for routing.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Motor carrier responsibility for routing. 397.67 Section 397.67 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS...

  13. Immediate Effects of Smoking on Cardiorespiratory Responses During Dynamic Exercise: Arm Versus Leg Ergometry

    Directory of Open Access Journals (Sweden)

    Chien-Liang eChen

    2015-12-01

    Full Text Available Purpose: This study compared the immediate effects of smoking on cardiorespiratory responses to dynamic arm and leg exercises. Methods: This randomized crossover study recruited 14 college students. Each participant underwent 2 sets of arm-cranking (AC and leg-cycling (LC exercise tests. The testing sequences of the control trial (participants refrained from smoking for 8 hours before testing and the experimental trial (participants smoked 2 cigarettes were randomly chosen. We observed immediate changes in pulmonary function and heart rate variability after smoking and before the exercise test. The participants then underwent graded exercise tests of their arms and legs, respectively, until reaching exhaustion. We compared the peak work achieved and the time to exhaustion during the exercise tests with various cardiorespiratory indices [i.e., heart rate, oxygen consumption (VO2, minute ventilation (VE]. The main effects of the time and the trial, as well as their interaction effects on outcome measures, were investigated using repeated measure ANOVA.Results: Five minutes after smoking, the participants exhibited reduced forced vital capacities and forced expiratory volumes in the first second (P < .05, in addition to elevated resting heart rates (P < .001. The high-frequency, low-frequency, and the total power of the heart rate variability were also reduced (P < .05 at rest. For the exercise test periods, smoking reduced the time to exhaustion (P = .005 and the ventilatory threshold (P < .05 in the LC tests, whereas there were no significant effects in the AC tests. A trend analysis revealed a significant (P < .001 trial-by-time interaction effect for heart rate, VO2, and VE during the graded exercise test. Lower VO2 and VE levels were exhibited in the exercise response of the smoking trial than in that of the control LC trials, whereas there was no discernable inter-trial difference in the AC trials. Moreover, the differences in heart rate

  14. Chemosensitivity of walking legs of the lobster Homarus americanus: neurophysiological response spectrum and thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Derby, C D; Atema, J

    1982-01-01

    Responses of chemoreceptors in the walking legs of the lobster Homarus americanus to 35 individual compounds and 3 mixtures (prey odours and extracts) were studied using extracellular recording techniques. Compared against a standard mussel (Mytilus edulis) extract, these receptors were most sensitive to the amino acids L-glutamate, hydroxy-L-proline, L-aspartate, L-arginine, glycine, taurine, and L-alanine, as well as such other compounds as ammonium chloride, betaine, and the tripeptide glutathione. Most of these excitants are among those compounds most prevalent in the prey of lobsters.

  15. DC Motor Parameter Identification Using Speed Step Responses

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2012-01-01

    Full Text Available Based on the DC motor speed response measurement under a step voltage input, important motor parameters such as the electrical time constant, the mechanical time constant, and the friction can be estimated. A power series expansion of the motor speed response is presented, whose coefficients are related to the motor parameters. These coefficients can be easily computed using existing curve fitting methods. Experimental results are presented to demonstrate the application of this approach. In these experiments, the approach was readily implemented and gave more accurate estimates than conventional methods.

  16. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command.

    Science.gov (United States)

    Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana

    2016-11-01

    When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.

  17. Human thermal responses during leg-only exercise in cold water.

    Science.gov (United States)

    Golden, F S; Tipton, M J

    1987-10-01

    1. Exercise during immersion in cold water has been reported by several authors to accelerate the rate of fall of core temperature when compared with rates seen during static immersion. The nature of the exercise performed, however, has always been whole-body in nature. 2. In the present investigation fifteen subjects performed leg exercise throughout a 40 min head-out immersion in water at 15 degrees C. The responses obtained were compared with those seen when the subjects performed an identical static immersion. 3. Aural and rectal temperatures were found to fall by greater amounts during static immersion. 4. It is concluded that 'the type of exercise performed' should be included in the list of factors which affect core temperature during cold water immersion.

  18. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory–motor network in patients with restless legs syndrome

    Science.gov (United States)

    Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele

    2018-01-01

    Background: Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. Methods: A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Results: Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. Conclusions: rTMS on S1-M1 connectivity alleviated the sensory–motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome. PMID:29511386

  19. Clinical and electrophysiological impact of repetitive low-frequency transcranial magnetic stimulation on the sensory-motor network in patients with restless legs syndrome.

    Science.gov (United States)

    Lanza, Giuseppe; Cantone, Mariagiovanna; Aricò, Debora; Lanuzza, Bartolo; Cosentino, Filomena Irene Ilaria; Paci, Domenico; Papotto, Maurizio; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Paulus, Walter; Ferri, Raffaele

    2018-01-01

    Based on the hyperexcitability and disinhibition observed in patients with restless legs syndrome (RLS) following transcranial magnetic stimulation (TMS), we conducted a study with low-frequency repetitive TMS (rTMS) over the primary motor (M1) and somatosensory cortical areas (S1) in patients with RLS. A total of 13 right-handed patients and 10 age-matched controls were studied using clinical scales and TMS. Measurements included resting motor threshold (rMT), motor-evoked potentials (MEPs), cortical silent period (CSP), and central motor conduction time (CMCT). A single evening session of rTMS (1 Hz, 20 trains, 50 stimuli each) was administered over the left M1, left S1, and sham stimulation over M1 in a random order. Clinical and TMS measures were repeated after each stimulation modality. Baseline CSP was shorter in patients than in controls and remained shorter in patients for both motor and somatosensory stimulation. The patients reported a subjective improvement of both initiating and maintaining sleep the night after the rTMS over S1. Patients exhibited a decrease in rMT after rTMS of S1 only, although the effect was smaller than in controls. MEP latency and CMCT changed only in controls after stimulation. Sham stimulation was without effect on the observed variables. rTMS on S1-M1 connectivity alleviated the sensory-motor complaints of RLS patients. The TMS indexes of excitation and inhibition indicate an intracortical and corticospinal imbalance, mainly involving gamma-aminobutyric acid (GABA)ergic and glutamatergic circuitries, as well as an impairment of the short-term mechanisms of cortical plasticity. The rTMS-induced activation of the dorsal striatum with the consequent increase of dopamine release may have contributed to the clinical and neurophysiological outcome.

  20. Transcranial Direct Current Stimulation of the Leg Motor Cortex Enhances Coordinated Motor Output During Walking With a Large Inter-Individual Variability

    NARCIS (Netherlands)

    van Asseldonk, Edwin H.F.; Boonstra, Tjitske

    2016-01-01

    Background Transcranial direct current stimulation (tDCS) can augment force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking and whether

  1. Comparing passive leg raising and suprasystolic ankle occlusion responses to quantify age-related microcirculatory status

    Directory of Open Access Journals (Sweden)

    Henrique Silva

    2015-12-01

    Full Text Available The skin provides an easy accessible vascular network to assess microcirculation by laser Doppler flowmetry (LDF, and transcutaneous (tc gasometry, widely known techniques used for this purpose. the objective of this study was to assess and compare the microcirculation status of different age subjects, knowing that the ageing process progressively affects macro and microcirculatory vessels. We’ve chosen to compare dynamical responses to two provocation tests – passive leg raising (PLR and ankle occlusion - in 59 healthy subjects, 35 young (22.1 ± 3.7 years old. in Group 1, and 24 older (50.8 ± 7.6 years old. in Group 2, selected after informed consent. Local blood flow, tcpO2 and transepidermal water loss (TEWL were measured in distal locations of the lower limb. PLR and ankle occlusion significantly reduced blood flow and tcpO2 in both groups, while no changes were found for TEWL. While the magnitude of the hyperemic response was found to be significantly reduced in group 2, no differences were found during ankle occlusion. tcpO2-dependent parameters were also significantly different between groups. These results seem to confirm the usefulness of these experimental models to distinguish the microcirculatory function of subjects with different ages, with PLR being more sensible in detecting age-related changes.

  2. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    Science.gov (United States)

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.

  3. The minimum sit-to-stand height test: reliability, responsiveness and relationship to leg muscle strength.

    Science.gov (United States)

    Schurr, Karl; Sherrington, Catherine; Wallbank, Geraldine; Pamphlett, Patricia; Olivetti, Lynette

    2012-07-01

    To determine the reliability of the minimum sit-to-stand height test, its responsiveness and its relationship to leg muscle strength among rehabilitation unit inpatients and outpatients. Reliability study using two measurers and two test occasions. Secondary analysis of data from two clinical trials. Inpatient and outpatient rehabilitation services in three public hospitals. Eighteen hospital patients and five others participated in the reliability study. Seventy-two rehabilitation unit inpatients and 80 outpatients participated in the clinical trials. The minimum sit-to-stand height test was assessed using a standard procedure. For the reliability study, a second tester repeated the minimum sit-to-stand height test on the same day. In the inpatient clinical trial the measures were repeated two weeks later. In the outpatient trial the measures were repeated five weeks later. Knee extensor muscle strength was assessed in the clinical trials using a hand-held dynamometer. The reliability for the minimum sit-to-stand height test was excellent (intraclass correlation coefficient (ICC) 0.91, 95% confidence interval (CI) 0.81-0.96). The standard error of measurement was 34 mm. Responsiveness was moderate in the inpatient trial (effect size: 0.53) but small in the outpatient trial (effect size: 0.16). A small proportion (8-17%) of variability in minimum sit-to-stand height test was explained by knee extensor muscle strength. The minimum sit-to-stand height test has excellent reliability and moderate responsiveness in an inpatient rehabilitation setting. Responsiveness in an outpatient rehabilitation setting requires further investigation. Performance is influenced by factors other than knee extensor muscle strength.

  4. Brachial cuff measurements of blood pressure during passive leg raising for fluid responsiveness prediction.

    Science.gov (United States)

    Lakhal, K; Ehrmann, S; Benzekri-Lefèvre, D; Runge, I; Legras, A; Dequin, P-F; Mercier, E; Wolff, M; Régnier, B; Boulain, T

    2012-05-01

    The passive leg raising maneuver (PLR) for fluid responsiveness testing relies on cardiac output (CO) measurements or invasive measurements of arterial pressure (AP) whereas the initial hemodynamic management during shock is often based solely on brachial cuff measurements. We assessed PLR-induced changes in noninvasive oscillometric readings to predict fluid responsiveness. Multicentre interventional study. In ICU sedated patients with circulatory failure, AP (invasive and noninvasive readings) and CO measurements were performed before, during PLR (trunk supine, not modified) and after 500-mL volume expansion. Areas under the ROC curves (AUC) were determined for fluid responsiveness (>10% volume expansion-induced increase in CO) prediction. In 112 patients (19% with arrhythmia), changes in noninvasive systolic AP during PLR (noninvasiveΔ(PLR)SAP) only predicted fluid responsiveness (cutoff 17%, n=21, positive likelihood ratio [LR] of 26 [18-38]), not unresponsiveness. If PLR-induced change in central venous pressure (CVP) was at least of 2 mm Hg (n=60), suggesting that PLR succeeded in altering cardiac preload, noninvasiveΔ(PLR)SAP performance was good: AUC of 0.94 [0.85-0.98], positive and negative LRs of 5.7 [4.6-6.8] and 0.07 [0.009-0.5], respectively, for a cutoff of 9%. Of note, invasive AP-derived indices did not outperform noninvasiveΔ(PLR)SAP. Regardless of CVP (i.e., during "blind PLR"), noninvasiveΔ(PLR)SAP more than 17% reliably identified fluid responders. During "CVP-guided PLR", in case of sufficient change in CVP, noninvasiveΔ(PLR)SAP performed better (cutoff of 9%). These findings, in sedated patients who had already undergone volume expansion and/or catecholamines, have to be verified during the early phase of circulatory failure (before an arterial line and/or a CO measuring device is placed). Copyright © 2012 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  5. Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III.

    Science.gov (United States)

    Dhaliwal, Trilok S; Beillas, Philippe; Chou, Clifford C; Prasad, Priya; Yang, King H; King, Albert I

    2002-11-01

    Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.

  6. Priming With 1-Hz Repetitive Transcranial Magnetic Stimulation Over Contralesional Leg Motor Cortex Does Not Increase the Rate of Regaining Ambulation Within 3 Months of Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    Huang, Ying-Zu; Lin, Li-Fong; Chang, Kwang-Hwa; Hu, Chaur-Jong; Liou, Tsan-Hon; Lin, Yen-Nung

    2018-05-01

    The potential benefits of repetitive transcranial magnetic stimulation (rTMS), applied either alone or as a combination treatment, on recovery of lower limbs after stroke have been insufficiently studied. The aim of the study was to evaluate the effect of priming with 1-Hz repetitive transcranial magnetic stimulation over contralesional leg motor area with a double-cone coil before physical therapy on regaining ambulation. Thirty-eight subacute stroke patients with significant leg disabilities were randomly assigned into the experimental group or control group to receive a 15-min real or sham 1-Hz repetitive transcranial magnetic stimulation, respectively, over the contralesional motor cortex representing the quadriceps muscle followed by 45-min physical therapy for 15 sessions for 3 wks. Functional measures, motor evoked potentials, and quality of life were assessed. There was no significant difference between experimental group and control group regarding the recovery in ambulation, balance, motor functions, and activity of daily living. No significant difference was found in other functional measures and the quality of life. Only the control group displayed significantly increased cortical excitability of the contralesional hemisphere after the intervention. The present study found that insufficient evidence that contralesional priming with 1-Hz repetitive transcranial magnetic stimulation improves ambulatory and other motor functions among patients with a severe leg dysfunction in subacute stroke.

  7. 41 CFR 109-38.301-1.53 - Responsibilities of motor vehicle operators.

    Science.gov (United States)

    2010-07-01

    ... motor vehicle operators. 109-38.301-1.53 Section 109-38.301-1.53 Public Contracts and Property... MANAGEMENT REGULATIONS AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.3-Official Use of Government Motor Vehicles § 109-38.301-1.53 Responsibilities of motor vehicle operators...

  8. RELATION BETWEEN THE LATENT MOTOR DIMENSIONS RESPONSIBLE FOR MOVEMENTS OF STUDENTS IN ACQUIRING THE MOTOR TESTS

    Directory of Open Access Journals (Sweden)

    Viktor Mitrevski

    2012-09-01

    Full Text Available The research has been carried out on a sample defined by the population of students who attended regularly their training classes in primary school in the Republic of Macedonia (from the region of Prespa and Pelagonia and the Republic of Serbia (from the region of Banat, municipality Kikinda. The total number of entities is 179, of which 124 are from Macedonia, and 55 – from Serbia who are eight-grade students, aged 14-15 (± 3 months. The aim of the study is to establish the relation between the results and obtained marks in motor tests with the latent motor dimensions responsible for the movements of students. By using factor analysis – varimax rotation, there is determined the effect and relation between the marks obtained in acquiring the motor tests for estimating the explosive power, start speed, and precisity of students.

  9. a-Adrenergic vasoconstrictor responsiveness is preserved in the heated human leg

    DEFF Research Database (Denmark)

    Keller, David M; Sander, Mikael; Stallknecht, Bente Merete

    2010-01-01

    This study tested the hypothesis that passive leg heating attenuates a-adrenergic vasoconstriction within that limb. Femoral blood flow (FBF, femoral artery ultrasound Doppler) and femoral vascular conductance (FVC, FBF/mean arterial blood pressure), as well as calf muscle blood flow (Calf...

  10. Exercise promotes IL-6 release from legs in older men with minor response to unilateral immobilization

    DEFF Research Database (Denmark)

    Reihmane, Dace; Gram, Martin; Vigelsø Hansen, Andreas

    2016-01-01

    Physical inactivity is a major contributor to low-grade systemic inflammation. Most of the studies characterizing interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) release from exercising legs have been done in young, healthy men, but studies on inactivity in older people are lacking....... The impact of 14 days of one-leg immobilization (IM) on IL-6 and TNF-α release during exercise in comparison to the contralateral control (CON) leg was investigated. Fifteen healthy men (age 68.1 ± 1.1 year (mean ± SEM); BMI 27.0 ± 0.4 kg·m(2); VO2max 33.3 ± 1.6 ml·kg(‒1)·min(‒1)) performed 45 min of two......). There was no release of TNF-α in either leg and arterial concentrations remained unchanged during exercise (p > .05). In conclusion, exercise induces more pronounced IL-6 secretion in healthy older men. Two weeks of unilateral immobilization on the other hand had only a minor influence on IL-6 release. Neither...

  11. Stabilometric response during single-leg stance after lower limb muscle fatigue

    Directory of Open Access Journals (Sweden)

    Carlos A. V. Bruniera

    2013-10-01

    Full Text Available OBJECTIVE: This study sought to analyze the effect of muscle fatigue induced by active isotonic resistance training at a moderate intensity by measuring the knee extension motion during the stabilometric response in a single-leg stance among healthy university students who perform resistance training on a regular basis. METHOD: Eleven healthy university students were subjected to a one-repetition maximum (1RM test. In addition, stabilometric assessment was performed before and after the intervention and consisted of a muscle fatiguing protocol, in which knee extension was selected as the fatiguing task. The Shapiro-Wilk test was used to investigate the normality of the data, and the Wilcoxon test was used to compare the stabilometric parameters before and after induction of muscle fatigue, at a significance level of p≤0.05. Descriptive statistics were used in the analysis of the volunteers' age, height, body mass, and body mass index (BMI. RESULTS: The sample population was 23.1±2.7 years of age, averaged 1.79.2±0.07 m in height and 75.6±8.0 Kg in weight, and had a BMI of 23.27±3.71 Kg.m-2. The volunteers performed exercises 3.36±1.12 days/week and achieved a load of 124.54±22.07 Kg on 1RM and 74.72±13.24 Kg on 60% 1RM. The center of pressure (CoP oscillation on the mediolateral plane before and after fatigue induction was 2.89±0.89 mm and 4.09±0.59 mm, respectively, while the corresponding values on the anteroposterior plane were 2.5±2.2 mm and 4.09±2.26 mm, respectively. The CoP oscillation amplitude on the anteroposterior and mediolateral planes exhibited a significant difference before and after fatigue induction (p=0.04 and p=0.05, respectively. CONCLUSIONS: The present study showed that muscle fatigue affects postural control, particularly with the mediolateral and anteroposterior CoP excursion.

  12. A Bioengineered Living Cell Construct Activates an Acute Wound Healing Response in Venous Leg Ulcers

    OpenAIRE

    Stone, Rivka C.; Stojadinovic, Olivera; Rosa, Ashley M.; Ramirez, Horacio A.; Badiavas, Evangelos; Blumenberg, Miroslav; Tomic-Canic, Marjana

    2017-01-01

    Chronic non-healing venous leg ulcers (VLUs) are widespread and debilitating, with high morbidity and associated costs; approximately $15 billion is spent annually on the care of VLUs in the US. Despite this, there is a paucity of treatments for VLUs, due to the lack of pathophysiologic insight into ulcer development as well as the lack of knowledge regarding biologic actions of existing VLU-targeted therapies. The bioengineered bilayered living cellular construct (BLCC) skin substitute is an...

  13. A dynamic model of liquid containers (tanks) with legs and probability analysis of response to simulated earthquake

    International Nuclear Information System (INIS)

    Fujita, Takafumi; Shimosaka, Haruo

    1980-01-01

    This paper is described on the results of analysis of the response of liquid containers (tanks) to earthquakes. Sine wave oscillation was applied experimentally to model tanks with legs. A model with one degree of freedom is good enough for the analysis. To investigate the reason of this fact, the response multiplication factor of tank displacement was analysed. The shapes of the model tanks were rectangular and cylindrical. Analyses were made by a potential theory. The experimental studies show that the characteristics of attenuation of oscillation was non-linear. The model analysis of this non-linear attenuation was also performed. Good agreement between the experimental and the analytical results was recognized. The probability analysis of the response to earthquake with simulated shock waves was performed, using the above mentioned model, and good agreement between the experiment and the analysis was obtained. (Kato, T.)

  14. Fully Coupled Three-Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær

    2014-01-01

    , which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11...... for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency-and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison's equation, the aerodynamic loads are modeled by means of unsteady blade-element-momentum (BEM) theory...

  15. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Science.gov (United States)

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  16. Motor execution detection based on autonomic nervous system responses

    International Nuclear Information System (INIS)

    Marchal-Crespo, Laura; Riener, Robert; Zimmermann, Raphael; Lambercy, Olivier; Edelmann, Janis; Fluet, Marie-Christine; Gassert, Roger; Wolf, Martin

    2013-01-01

    Triggered assistance has been shown to be a successful robotic strategy for provoking motor plasticity, probably because it requires neurologic patients’ active participation to initiate a movement involving their impaired limb. Triggered assistance, however, requires sufficient residual motor control to activate the trigger and, thus, is not applicable to individuals with severe neurologic injuries. In these situations, brain and body–computer interfaces have emerged as promising solutions to control robotic devices. In this paper, we investigate the feasibility of a body–machine interface to detect motion execution only monitoring the autonomic nervous system (ANS) response. Four physiological signals were measured (blood pressure, breathing rate, skin conductance response and heart rate) during an isometric pinching task and used to train a classifier based on hidden Markov models. We performed an experiment with six healthy subjects to test the effectiveness of the classifier to detect rest and active pinching periods. The results showed that the movement execution can be accurately classified based only on peripheral autonomic signals, with an accuracy level of 84.5%, sensitivity of 83.8% and specificity of 85.2%. These results are encouraging to perform further research on the use of the ANS response in body–machine interfaces. (paper)

  17. Transient lower esophageal sphincter relaxation and esophageal motor response.

    Science.gov (United States)

    Schneider, Joachim H; Küper, Markus A; Königsrainer, Alfred; Brücher, Björn L D M

    2010-04-01

    Gastroesophageal reflux is caused by transient lower esophageal sphincter relaxations (TLESRs) in healthy individuals and in most patients with gastroesophageal reflux disease (GERD). Refluxate is normally propelled by pharyngeally induced swallowing events, but TLESRs may also be accompanied by retrograde esophageal motor responses (EMRs). These contractions have not previously been investigated and their effect on esophageal clearance is not known. The aim of this study was to assess the frequency of EMRs after TLESR in healthy individuals and GERD patients and to develop an animal model for further investigation of EMRs. The frequency of TLESRs and esophageal body contractions after TLESRs was assessed using ambulatory manometry in five healthy individuals and five GERD patients. An animal model was developed for reproducible provocation of TLESRs and subsequent EMRs. Patients with GERD have significantly more TLESRs than healthy individuals. However, post-TLESR EMRs were not more frequent in the GERD group. All post-TLESR EMRs presented as simultaneous contractions of the esophagus. The feline model allowed reproducible initiation of the esophageal motor response after TLESR, showing that EMRs can be induced by external mechanoreceptor stimulation simultaneously with LES relaxation. This experimental design imitates the conditions after fundoplication in humans. The study demonstrated that GERD patients have significantly more TLESRs in comparison with healthy individuals, but these were only incidental to EMRs. Further research is needed to improve our understanding of esophageal motility disorders. The animal model presented offers a feasible tool for investigating TLESR-induced esophageal motility.

  18. Behavioral and physiological responses to male handicap in chick-rearing black-legged kittiwakes

    Science.gov (United States)

    Leclaire, S.; Bourret, V.; Wagner, R.H.; Hatch, Shyla A.; Helfenstein, F.; Chastel, O.; Danchin, E.

    2011-01-01

    Parental investment entails a trade-off between the benefits of effort in current offspring and the costs to future reproduction. Long-lived species are predicted to be reluctant to increase parental effort to avoid affecting their survival. We tested this hypothesis in black-legged kittiwakes Rissa tridactyla by clipping flight feathers of experimental males at the beginning of the chick-rearing period. We analyzed the consequences of this handicap on feeding and attendance behavior, body condition, integument coloration, and circulating levels of corticosterone and prolactin in handicapped males and their mates in comparison to unmanipulated controls. Chicks in both groups were compared in terms of aggressive behavior, growth, and mortality. Handicapped males lost more mass, had less bright integuments, and attended the nest less often than controls. Nevertheless, they fed their chicks at the same rate and had similar corticosterone and prolactin levels. Compared with control females, females mated with handicapped males showed a lower provisioning rate and higher nest attendance in the first days after manipulation. Their lower feeding rate probably triggered the increased sibling aggression and mortality observed in experimental broods. Our findings suggest that experimental females adaptively adjusted their effort to their mate's perceived quality or that their provisioning was constrained by their higher nest attendance. Overall, our results suggest that kittiwake males can decrease their condition for the sake of their chicks, which seems to contradict the hypothesis that kittiwakes should be reluctant to increase parental effort to avoid affecting their survival. ?? 2011 The Author. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved.

  19. Dynamic Response Analysis of Linear Pulse Motor with Closed Loop Control

    OpenAIRE

    山本, 行雄; 山田, 一

    1989-01-01

    A linear pulse motor can translate digital signals into linear positions without a gear system. It is important to predict a dynamic response in order to the motor that has the good performance. In this report the maximum pulse rate and the maximum speed on the linear pulse motor are obtained by using the sampling theory.

  20. Responsiveness of the Test of Basic Motor Skills of Children with Down Syndrome

    Science.gov (United States)

    van den Heuvel, Marieke E.; de Jong, Inge; Lauteslager, Peter E. M.; Volman, M. J. M.

    2009-01-01

    The aim of this study was to examine the responsiveness of the Test of Basic Motor Skills for Children with Down Syndrome (BMS). Forty-one children with Down Syndrome, 3 to 36 months of age, participated in the study. Gross motor skills were assessed three times using the BMS and the Gross Motor Function Measure (GMFM) before and after a baseline…

  1. Leg pain

    Science.gov (United States)

    ... in the blood Medicines (such as diuretics and statins) Muscle fatigue or strain from overuse, too much exercise, or holding a muscle in the same position for a long time An injury can also cause leg pain from: A torn or overstretched muscle ( strain ) Hairline ...

  2. Broken Leg

    Science.gov (United States)

    ... the leg, which can result in a fracture. Stress fractures outside of sport situations are more common in people who have: ... shoes. Choose the appropriate shoe for your favorite sports or activities. And ... can prevent stress fractures. Rotate running with swimming or biking. If ...

  3. The reliability and validity of passive leg raise and fluid bolus to assess fluid responsiveness in spontaneously breathing emergency department patients

    DEFF Research Database (Denmark)

    Duus, Nicolaj; Shogilev, Daniel J; Skibsted, Simon

    2015-01-01

    PURPOSE: We investigated the reproducibility of passive leg raise (PLR) and fluid bolus (BOLUS) using the Non-Invasive Cardiac Output Monitor (NICOM; Cheetah Medical, Tel Aviv, Israel) for assessment of fluid responsiveness (FR) in spontaneously breathing emergency department (ED) patients. METHODS...

  4. An assessment of the response of Military lower extremity and Hybrid III leg during typical blast impact using the Hybrid III and EUROSID-2 ATD.

    CSIR Research Space (South Africa)

    Pandelani, T

    2014-09-01

    Full Text Available An assessment of the response of Military lower extremity and Hybrid III leg during typical blast impact using the Hybrid III and EUROSID-2 ATD Thanyani Pandelani, David Reinecke, Tleyane Sono, Frans Beetge and Phumlane Nkosi Abstract: This paper...

  5. Proliferation and mitogenic response to PDGF-BB of fibroblasts isolated from chronic venous leg ulcers is ulcer-age dependent

    DEFF Research Database (Denmark)

    Agren, M S; Steenfos, H H; Dabelsteen, S

    1999-01-01

    Several pathophysiologic mechanisms have been proposed to explain slow-healing leg ulcers, but little is known about the growth behavior of cells in these wounds. Platelet-derived growth factor-BB applied topically to chronic wounds has shown beneficial effects, although the effects have been less...... pronounced than would have been expected based on studies on acute wounds. The objective of this study was to compare fibroblasts in culture obtained from chronic wounds (non-healing chronic venous leg ulcers), acute wounds and normal dermis regarding growth, mitogenic response to platelet-derived growth...... chronic wounds have approached or even reached the end of their lifespan (phase III). This might provide one explanation for the non-healing state and therapy resistance to topical platelet-derived growth factor-BB of some venous leg ulcers....

  6. Motor deficits, impaired response inhibition, and blunted response to methylphenidate following neonatal exposure to decabromodiphenyl ether.

    Science.gov (United States)

    Markowski, Vincent P; Miller-Rhodes, Patrick; Cheung, Randy; Goeke, Calla; Pecoraro, Vincent; Cohen, Gideon; Small, Deena J

    2017-09-01

    Decabromodiphenyl ether (decaBDE) is an applied brominated flame retardant that is widely-used in electronic equipment. After decades of use, decaBDE and other members of its polybrominated diphenyl ether class have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Although it has been banned in Europe and voluntarily withdrawn from the U.S. market, it is still used in Asian countries. Evidence from epidemiological and animal studies indicate that decaBDE exposure targets brain development and produces behavioral impairments. The current study examined an array of motor and learning behaviors in a C57BL6/J mouse model to determine the breadth of the developmental neurotoxicity produced by decaBDE. Mouse pups were given a single daily oral dose of 0 or 20mg/kg decaBDE from postnatal day 1 to 21 and were tested in adulthood. Exposed male mice had impaired forelimb grip strength, altered motor output in a circadian wheel-running procedure, increased response errors during an operant differential reinforcement of low rates (DRL) procedure and a blunted response to an acute methylphenidate challenge administered before DRL testing. With the exception of altered wheel-running output, exposed females were not affected. Neither sex had altered somatic growth, motor coordination impairments on the Rotarod, gross learning deficits during operant lever-press acquisition, or impaired food motivation. The overall pattern of effects suggests that males are more sensitive to developmental decaBDE exposure, especially when performing behaviors that require effortful motor output or when learning tasks that require sufficient response inhibition for their successful completion. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dietary restriction causes chronic elevation of corticosterone and enhances stress response in red-legged kittiwake chicks

    Science.gov (United States)

    Kitaysky, A.S.; Kitaiskaia, E.V.; Wingfield, J.C.; Piatt, John F.

    2001-01-01

    Release of corticosterone in hungry kittiwake chicks facilitates begging and allows them to restore depleted energy reserves by increasing parental food provisioning. However, in order to avoid detrimental effects of chronic elevation of corticosterone, chicks might suppress adrenocortical activity in response to prolonged food shortages. In this study we examined temporal dynamics of corticosterone release in red-legged kittiwake (Rissa brevirostris) chicks exposed to prolonged restrictions in energy content and/or nutritional quality (low versus high lipid content) of their food. Starting at the age of 15 days, chicks were fed either high- or low-lipid fish at 40%, 65%, and 100% of ad libitum energy intake. Body mass measurements and baseline plasma samples were taken on a weekly basis after beginning of the treatment. After 3 weeks of treatment, chicks were exposed to a standardized acute handling and restraint stress protocol, where in addition to a baseline sample, three plasma samples were taken at intervals up to 50 min. We found that food-restricted chicks had lower body mass, chronically (during 2-3 weeks) elevated baseline and higher acute stress-induced levels of corticosterone compared to chicks fed ad libitum. Low lipid content of food further exacerbated these effects. An increase in baseline levels of corticosterone was observed within a week after energy requirements of food-restricted chicks exceeded their daily energy intake. A tendency for suppression of adrenocortical activity was observed in treatments fed low-lipid diets only at the end of the experiment. We suggest that nest-bound chicks, if food-stressed, might suffer deleterious effects of chronic elevation of corticosterone.

  8. Motor Control Test Responses to Balance Perturbations in Adults with an Intellectual Disability

    Science.gov (United States)

    Hale, Leigh; Miller, Rebekah; Barach, Alice; Skinner, Margot; Gray, Andrew

    2009-01-01

    Background: The aims of this small exploratory study were to determine (1) whether adults with intellectual disability who had a recent history of falling had slower motor responses to postural perturbations than a sample of adults without disability when measured with the Motor Control Test (MCT) and (2) to identify any learning effects…

  9. 75 FR 38423 - Minimum Levels of Financial Responsibility for Motor Carriers

    Science.gov (United States)

    2010-07-02

    ... Canada-domiciled motor carriers and freight forwarders to maintain, as acceptable evidence of financial... Superintendent of Financial Institutions PAU--Power of Attorney and Undertaking PACICC--Property and Casualty... subject to FMCSA's current Federal motor carrier financial responsibility rules. Canada requested that...

  10. Reflex responses in the lower leg following landing impact on an inverting and non-inverting platform.

    NARCIS (Netherlands)

    Grüneberg, C.; Nieuwenhuijzen, P.H.J.A.; Duysens, J.E.J.

    2003-01-01

    In the lower leg, landing after a jump induces reflexes, the role of which is not well understood. This is even more so for reflexes following landing on inverting surfaces. The latter condition is of special interest since ankle inversion traumata are one of the most common injuries during sport.

  11. Differential Effects of Motor Efference Copies and Proprioceptive Information on Response Evaluation Processes

    Science.gov (United States)

    Stock, Ann-Kathrin; Wascher, Edmund; Beste, Christian

    2013-01-01

    It is well-kown that sensory information influences the way we execute motor responses. However, less is known about if and how sensory and motor information are integrated in the subsequent process of response evaluation. We used a modified Simon Task to investigate how these streams of information are integrated in response evaluation processes, applying an in-depth neurophysiological analysis of event-related potentials (ERPs), time-frequency decomposition and sLORETA. The results show that response evaluation processes are differentially modulated by afferent proprioceptive information and efference copies. While the influence of proprioceptive information is mediated via oscillations in different frequency bands, efference copy based information about the motor execution is specifically mediated via oscillations in the theta frequency band. Stages of visual perception and attention were not modulated by the interaction of proprioception and motor efference copies. Brain areas modulated by the interactive effects of proprioceptive and efference copy based information included the middle frontal gyrus and the supplementary motor area (SMA), suggesting that these areas integrate sensory information for the purpose of response evaluation. The results show how motor response evaluation processes are modulated by information about both the execution and the location of a response. PMID:23658624

  12. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    Science.gov (United States)

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.

  13. Speed response of brushless DC motor using fuzzy PID controller under varying load condition

    Directory of Open Access Journals (Sweden)

    Akash Varshney

    2017-09-01

    Full Text Available The increasing trend towards usage of precisely controlled, high torque, efficient and low noise motors for dedicated applications has attracted the attention of researcher in Brushless DC (BLDC motors. BLDC motors can act as an acceptable alternative to the conventional motors like Induction Motors, Switched Reluctance Motors etc. This paper presents a detailed study on the performance of a BLDC motor supplying different types of loads, and at the same time, deploying different control techniques. An advance Fuzzy PID controller is compared with the commonly used PID controller. The load variations considered are of the most common types, generally encountered in practice. A comparison has been carried out in this paper by observing the dynamic speed response of motor at the time of application as well as at the time of removal of the load. The BLDC motors suffer from a major drawback of having jerky behaviour at the time of load removal. The study reveals that irrespective of the type of controller used, the gradual load variation produces better results as against sudden load variations. It is further observed that in addition to other dynamic features, the jerks produced at the time of load removal also get improved to a large extent with Fuzzy PID controller.The speed torque characteristics unraveled the fact that the jerks are minimum at the time of gradual load removal with Fuzzy PID controller in place. An attempt has been made to define these jerks by ‘Perturbation Window’.

  14. Spontaneous regression of primary cutaneous diffuse large B-cell lymphoma, leg type with significant T-cell immune response

    Directory of Open Access Journals (Sweden)

    Paul M. Graham, DO

    2018-05-01

    Full Text Available We report a case of histologically confirmed primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL-LT that subsequently underwent spontaneous regression in the absence of systemic treatment. The case showed an atypical lymphoid infiltrate that was CD20+ and MUM-1+ and CD10–. A subsequent biopsy of the spontaneously regressed lesion showed fibrosis associated with a lymphocytic infiltrate comprising reactive T cells. PCDLBCL-LT is a cutaneous B-cell lymphoma with a poor prognosis, which is usually treated with chemotherapy. We describe a case of clinical and histologic spontaneous regression in a patient with PCDLBCL-LT who had a negative systemic workup but a recurrence over a year after his initial presentation. Key words: B cell, lymphoma, primary cutaneous diffuse large B-cell lymphoma, leg type, regression

  15. Timing of muscle response to a sudden leg perturbation: comparison between adolescents and adults with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Maria Stella Valle

    Full Text Available Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test. In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.

  16. Evidence for an early innate immune response in the motor cortex of ALS.

    Science.gov (United States)

    Jara, Javier H; Genç, Barış; Stanford, Macdonell J; Pytel, Peter; Roos, Raymond P; Weintraub, Sandra; Mesulam, M Marsel; Bigio, Eileen H; Miller, Richard J; Özdinler, P Hande

    2017-06-26

    Recent evidence indicates the importance of innate immunity and neuroinflammation with microgliosis in amyotrophic lateral sclerosis (ALS) pathology. The MCP1 (monocyte chemoattractant protein-1) and CCR2 (CC chemokine receptor 2) signaling system has been strongly associated with the innate immune responses observed in ALS patients, but the motor cortex has not been studied in detail. After revealing the presence of MCP1 and CCR2 in the motor cortex of ALS patients, to elucidate, visualize, and define the timing, location and the extent of immune response in relation to upper motor neuron vulnerability and progressive degeneration in ALS, we developed MCP1-CCR2-hSOD1 G93A mice, an ALS reporter line, in which cells expressing MCP1 and CCR2 are genetically labeled by monomeric red fluorescent protein-1 and enhanced green fluorescent protein, respectively. In the motor cortex of MCP1-CCR2-hSOD1 G93A mice, unlike in the spinal cord, there was an early increase in the numbers of MCP1+ cells, which displayed microglial morphology and selectively expressed microglia markers. Even though fewer CCR2+ cells were present throughout the motor cortex, they were mainly infiltrating monocytes. Interestingly, MCP1+ cells were found in close proximity to the apical dendrites and cell bodies of corticospinal motor neurons (CSMN), further implicating the importance of their cellular interaction to neuronal pathology. Similar findings were observed in the motor cortex of ALS patients, where MCP1+ microglia were especially in close proximity to the degenerating apical dendrites of Betz cells. Our findings reveal that the intricate cellular interplay between immune cells and upper motor neurons observed in the motor cortex of ALS mice is indeed recapitulated in ALS patients. We generated and characterized a novel model system, to study the cellular and molecular basis of this close cellular interaction and how that relates to motor neuron vulnerability and progressive degeneration in

  17. Atrophy of spared grey matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke

    Science.gov (United States)

    Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra

    2011-01-01

    Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036

  18. Physiologic Responses to Motorized and Non-Motorized Locomotion Utilizing the International Space Station Treadmill

    Science.gov (United States)

    Smith, Cassie; Lee, Stuart MC; Laughlin, Mitzi; Loehr, James; Norcross, Jason; DeWitt, John; Hagan, R. D.

    2006-01-01

    Treadmill locomotion is used onboard the International Space Station (ISS) as a countermeasure to the effects of prolonged weightlessness. The treadmill operates in two modes: motorized (T-M) and non-motorized (T-NM). Little is known about the potential physiologic differences between modes which may affect countermeasure exercise prescription. PURPOSE: To quantify heart rate (HR), oxygen consumption (VO2), perceived exertion (RPE), and blood lactate (BLa) during T-M and T-NM locomotion at 2 and 4 mph in normal ambulatory subjects. METHODS: Twenty subjects (10 men, 10 women; 31+/-5 yr, 172+/-10 cm, 68+/-13 kg, mean SD) with a treadmill peakVO2 of 45.5+/-5.4 ml/kg/min (mean+/-SD) exercised on the ground-based ISS treadmill. Following a familiarization session in each mode, subjects completed two data collection sessions, T-M and T-NM in random order, at 2 and 4 mph. Subjects attempted to complete 5 min of exercise at each speed; if they could not maintain the speed, the trial was discontinued. At least 5 minutes of rest separated each speed trial, and at least 48 hrs separated each session. VO2 was measured continuously (metabolic gas analysis), while HR (HR monitor) and RPE (Borg Chart, 6-20 scale) were recorded each min. Not all subjects completed 5 min during each condition, therefore the mean of the min 3 and 4 was taken as representative of steady-state. BLa was measured (finger stick) within 2 min post-exercise. Paired t-tests were used to test for differences (p<0.05) between treadmill modes within the same speed. RESULTS: All twenty subjects completed at least 4 min of exercise during all conditions, except T-NM 4 mph when only 11 subjects completed the minimum exercise duration. VO2, HR, RPE and BLa were significantly higher during T-NM locomotion at both speeds.

  19. BDNF genotype interacts with motor-function to influence rehabilitation responsiveness post-stroke

    Directory of Open Access Journals (Sweden)

    Christine T Shiner

    2016-05-01

    Full Text Available Background. Persistent motor impairment is common but highly heterogeneous post-stroke. Genetic polymorphisms, including those identified on the brain derived neurotrophic factor (BDNF and apolipoprotein E (APOE genes, may contribute to this variability by limiting the capacity for use-dependent neuroplasticity, and hence rehabilitation responsiveness.Objective. To determine whether BDNF and APOE genotypes influence motor improvement facilitated by post-stroke upper-limb rehabilitation. Methods. BDNF Val66Met and APOE isoform genotypes were determined using leukocyte DNA for 55 community-dwelling patients 2-123 months post-stroke. All patients completed a dose-matched upper-limb rehabilitation program of either Wii-based Movement Therapy or Constraint-induced Movement Therapy. Upper-limb motor-function was assessed pre- and post-therapy using a suite of functional measures. Results. Motor-function improved for all patients post-therapy, with no difference between therapy groups. In the pooled data, there was no significant effect of BDNF or APOE genotype on motor-function at baseline, or following the intervention. However, a significant interaction between the level of residual motor-function and BDNF genotype was identified (p=0.029, whereby post-therapy improvement was significantly less for Met allele carriers with moderate and high, but not low motor-function. There was no significant association between APOE genotype and therapy outcomes. Conclusions. This study identified a novel interaction between the BDNF Val66Met polymorphism, motor-function status and the magnitude of improvement with rehabilitation in chronic stroke. This polymorphism does not preclude, but may reduce, the magnitude of motor improvement with therapy, particularly for patients with higher but not lower residual motor-function. BDNF genotype should be considered in the design and interpretation of clinical trials.

  20. Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson's disease

    NARCIS (Netherlands)

    van den Wildenberg, Wery P. M.; van Boxtel, Geert J. M.; van der Molen, Maurits W.; Bosch, D. Andries; Speelman, Johannes D.; Brunia, Cornelis H. M.

    2006-01-01

    The aim of the present study was to specify the involvement of the basal ganglia in motor response selection and response inhibition. Two samples were studied. The first sample consisted of patients diagnosed with Parkinson's disease (PD) who received deep-brain stimulation (DBS) of the subthalamic

  1. Overriding actions in Parkinson’s disease : Impaired stopping and changing of motor responses

    NARCIS (Netherlands)

    van den Wildenberg, W.P.M.; Ridderinkhof, K.R.; van Wouwe, N.C.; Neimat, J.S.; Bashore, T.R.; Wylie, S.A.

    2017-01-01

    We administered a stop-change paradigm, an extended version of the stop task that requires (a) stopping an ongoing motor response and (b) changing to an alternative (change) response. Performance of a group of patients diagnosed with Parkinson's disease (PD) and taking dopaminergic medication was

  2. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  3. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    International Nuclear Information System (INIS)

    Phelps, M.E.; Mazziotta, J.C.

    1984-01-01

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders

  4. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  5. Frequency response function of motors for switching noise energy with a new experimental approach

    International Nuclear Information System (INIS)

    Kim, Hyunsu; Yoon, Jong-Yun

    2017-01-01

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor

  6. Frequency response function of motors for switching noise energy with a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsu [Ensemble Center for Automotive Research, Seoul (Korea, Republic of); Yoon, Jong-Yun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor.

  7. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System

    Science.gov (United States)

    Shadmehr, Reza

    2016-01-01

    When we experience an error during a movement, we update our motor commands to partially correct for this error on the next trial. How does experience of error produce the improvement in the subsequent motor commands? During the course of an erroneous reaching movement, proprioceptive and visual sensory pathways not only sense the error, but also engage feedback mechanisms, resulting in corrective motor responses that continue until the hand arrives at its goal. One possibility is that this feedback response is co-opted by the learning system and used as a template to improve performance on the next attempt. Here we used electromyography (EMG) to compare neural correlates of learning and feedback to test the hypothesis that the feedback response to error acts as a template for learning. We designed a task in which mixtures of error-clamp and force-field perturbation trials were used to deconstruct EMG time courses into error-feedback and learning components. We observed that the error-feedback response was composed of excitation of some muscles, and inhibition of others, producing a complex activation/deactivation pattern during the reach. Despite this complexity, across muscles the learning response was consistently a scaled version of the error-feedback response, but shifted 125 ms earlier in time. Across people, individuals who produced a greater feedback response to error, also learned more from error. This suggests that the feedback response to error serves as a teaching signal for the brain. Individuals who learn faster have a better teacher in their feedback control system. SIGNIFICANCE STATEMENT Our sensory organs transduce errors in behavior. To improve performance, we must generate better motor commands. How does the nervous system transform an error in sensory coordinates into better motor commands in muscle coordinates? Here we show that when an error occurs during a movement, the reflexes transform the sensory representation of error into motor

  8. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients

    Directory of Open Access Journals (Sweden)

    Svenja Diekhoff-Krebs

    2017-01-01

    Full Text Available Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1 excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients (n = 14 and healthy controls (n = 12 were scanned with functional magnetic resonance imaging (fMRI while performing a simple hand motor task. Dynamic causal modeling (DCM was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that

  9. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients.

    Science.gov (United States)

    Diekhoff-Krebs, Svenja; Pool, Eva-Maria; Sarfeld, Anna-Sophia; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2017-01-01

    Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients ( n  = 14) and healthy controls ( n  = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA) and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the

  10. Configural Response Learning: The Acquisition of a Nonpredictive Motor Skill

    Science.gov (United States)

    Hazeltine, Eliot; Aparicio, Paul; Weinstein, Andrea; Ivry, Richard B.

    2007-01-01

    This study examined the representational nature of configural response learning using a task that required simultaneous keypresses with 2 or 3 fingers, similar to the production of chords on the piano. If the benefits of learning are related to the retrieval of individual stimulus-response mappings, performance should depend on the frequencies of…

  11. Leg Injuries and Disorders

    Science.gov (United States)

    ... are important for motion and standing. Playing sports, running, falling, or having an accident can damage your legs. Common leg injuries include sprains and strains, joint dislocations, and fractures. ...

  12. Pharmacological enhancement of leg and muscle microvascular blood flow does not augment anabolic responses in skeletal muscle of young men under fed conditions.

    Science.gov (United States)

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Wilkinson, Daniel J; Limb, Marie; Selby, Anna L; Rennie, Michael J; Smith, Kenneth; Williams, John P

    2014-01-15

    Skeletal muscle anabolism associated with postprandial plasma aminoacidemia and insulinemia is contingent upon amino acids (AA) and insulin crossing the microcirculation-myocyte interface. In this study, we hypothesized that increasing muscle microvascular blood volume (flow) would enhance fed-state anabolic responses in muscle protein turnover. We studied 10 young men (23.2 ± 2.1 yr) under postabsorptive and fed [iv Glamin (∼10 g AA), glucose ∼7.5 mmol/l] conditions. Methacholine was infused into the femoral artery of one leg to determine, via bilateral comparison, the effects of feeding alone vs. feeding plus pharmacological vasodilation. We measured leg blood flow (LBF; femoral artery) by Doppler ultrasound, muscle microvascular blood volume (MBV) by contrast-enhanced ultrasound (CEUS), muscle protein synthesis (MPS) and breakdown (MPB; a-v balance modeling), and net protein balance (NPB) using [1,2-(13)C2]leucine and [(2)H5]phenylalanine tracers via gas chromatography-mass spectrometry (GC-MS). Indexes of anabolic signaling/endothelial activation (e.g., Akt/mTORC1/NOS) were assessed using immunoblotting techniques. Under fed conditions, LBF (+12 ± 5%, P anabolism.

  13. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  14. Aversive pavlovian responses affect human instrumental motor performance.

    Science.gov (United States)

    Rigoli, Francesco; Pavone, Enea Francesco; Pezzulo, Giovanni

    2012-01-01

    IN NEUROSCIENCE AND PSYCHOLOGY, AN INFLUENTIAL PERSPECTIVE DISTINGUISHES BETWEEN TWO KINDS OF BEHAVIORAL CONTROL: instrumental (habitual and goal-directed) and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm), have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioral experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behavior, and psychopathology.

  15. Aversive Pavlovian responses affect human instrumental motor performance

    Directory of Open Access Journals (Sweden)

    Francesco eRigoli

    2012-10-01

    Full Text Available In neuroscience and psychology, an influential perspective distinguishes between two kinds of behavioural control: instrumental (habitual and goal-directed and Pavlovian. Understanding the instrumental-Pavlovian interaction is fundamental for the comprehension of decision-making. Animal studies (as those using the negative auto-maintenance paradigm, have demonstrated that Pavlovian mechanisms can have maladaptive effects on instrumental performance. However, evidence for a similar effect in humans is scarce. In addition, the mechanisms modulating the impact of Pavlovian responses on instrumental performance are largely unknown, both in human and non-human animals. The present paper describes a behavioural experiment investigating the effects of Pavlovian conditioned responses on performance in humans, focusing on the aversive domain. Results showed that Pavlovian responses influenced human performance, and, similar to animal studies, could have maladaptive effects. In particular, Pavlovian responses either impaired or increased performance depending on modulator variables such as threat distance, task controllability, punishment history, amount of training, and explicit punishment expectancy. Overall, these findings help elucidating the computational mechanisms underlying the instrumental-Pavlovian interaction, which might be at the base of apparently irrational phenomena in economics, social behaviour, and psychopathology.

  16. Comparing Features for Classification of MEG Responses to Motor Imagery.

    Directory of Open Access Journals (Sweden)

    Hanna-Leena Halme

    Full Text Available Motor imagery (MI with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest.MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD, Morlet wavelets, short-time Fourier transform (STFT, common spatial patterns (CSP, filter-bank common spatial patterns (FBCSP, spatio-spectral decomposition (SSD, and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject.The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7% and MI-vs-rest (mean 81.3% classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%. There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results.We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction

  17. Relationships between the mechanomyographic amplitude patterns of response and concentric isokinetic fatiguing tasks of the leg extensors

    International Nuclear Information System (INIS)

    Cooper, Michael A; Herda, Trent J; Fry, Andrew C; Vardiman, John P; Gallagher, Phillip M

    2013-01-01

    The purpose of the present study was to examine possible correlations between the b terms (slopes) form the log-transformed mechanomyographic amplitude (MMG RMS )–force relationships and the fatigue index calculated from 50 maximal concentric contractions. Forty healthy subjects (age = 21 ± 2 yr) performed isometric ramp contractions from 5% to 85% of their maximal voluntary contraction followed by a 50-repetition concentric fatigue protocol of the leg extensors, fatigue index (%) was calculated from the 50-repetitions. MMG was recorded during the ramp contractions from the vastus lateralis (VL) and rectus femoris (RF). The b terms (slopes) were calculated from the log-transformed MMG RMS –force relationships. Correlations were performed comparing the b terms from the MMG RMS –force relationships for the VL and RF with the fatigue index. Significant positive correlations were found among the b terms from the MMG RMS –force relationships for the VL (p = 0.007, r = 0.417) and RF (p = 0.014, r = 0.386) with the fatigue index. The b terms from the log-transformed MMG RMS –force relationships for the VL and RF may have reflected muscle fiber type composition and, thus, correlated with the fatigue index. This adds further support that the MMG RMS –force relationships may reflect muscle fiber type composition. (paper)

  18. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  19. Toward a more sophisticated response representation in theories of medial frontal performance monitoring: The effects of motor similarity and motor asymmetries.

    Science.gov (United States)

    Hochman, Eldad Yitzhak; Orr, Joseph M; Gehring, William J

    2014-02-01

    Cognitive control in the posterior medial frontal cortex (pMFC) is formulated in models that emphasize adaptive behavior driven by a computation evaluating the degree of difference between 2 conflicting responses. These functions are manifested by an event-related brain potential component coined the error-related negativity (ERN). We hypothesized that the ERN represents a regulative rather than evaluative pMFC process, exerted over the error motor representation, expediting the execution of a corrective response. We manipulated the motor representations of the error and the correct response to varying degrees. The ERN was greater when 1) the error response was more potent than when the correct response was more potent, 2) more errors were committed, 3) fewer and slower corrections were observed, and 4) the error response shared fewer motor features with the correct response. In their current forms, several prominent models of the pMFC cannot be reconciled with these findings. We suggest that a prepotent, unintended error is prone to reach the manual motor processor responsible for response execution before a nonpotent, intended correct response. In this case, the correct response is a correction and its execution must wait until the error is aborted. The ERN may reflect pMFC activity that aimed to suppress the error.

  20. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid

    OpenAIRE

    Drewes, Asbjorn Mohr; Reddy, Hariprasad; Staahl, Camilla; Pedersen, Jan; Funch-Jensen, Peter; Arendt-Nielsen, Lars; Gregersen, Hans

    2005-01-01

    AIM: Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus. The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization.

  1. Human duodenal motor activity in response to acid and different nutrients

    NARCIS (Netherlands)

    Schwartz, M. P.; Samsom, M.; Smout, A. J.

    2001-01-01

    Duodenal motor activity in response to intraduodenal infusion of small volumes of acid and nutrients of different chemical composition was studied in 10 healthy humans, using a water-perfused catheter incorporating 20 antropyloroduodenal sideholes. Saline and dextrose did not affect motility. Acid

  2. Motor Asymmetry and Substantia Nigra Volume Are Related to Spatial Delayed Response Performance in Parkinson Disease

    Science.gov (United States)

    Foster, Erin R.; Black, Kevin J.; Antenor-Dorsey, Jo Ann V.; Perlmutter, Joel S.; Hershey, Tamara

    2008-01-01

    Studies suggest motor deficit asymmetry may help predict the pattern of cognitive impairment in individuals with Parkinson disease (PD). We tested this hypothesis using a highly validated and sensitive spatial memory task, spatial delayed response (SDR), and clinical and neuroimaging measures of PD asymmetry. We predicted SDR performance would be…

  3. The effect of ACTH analogues on motor behavior and visual evoked responses in rats

    NARCIS (Netherlands)

    Wolthuis, O.L.; Wied, D. de

    1976-01-01

    Averaged visual evoked responses (VER) in cortical area 17 were recorded one hour after the administration of 7-l-phe ACTH(4-10) or 7-d-phe ACTH(4-10) to artificially ventilated rats, paralysed with gallamine. In addition, the effects of these peptides on spontaneous motor behavior were analyzed.

  4. Anxiety-related biases in visual orienting and spatial motor response selection independently assessed by a probe-classification task

    NARCIS (Netherlands)

    Schrooten, M.G.S.; Smulders, F.T.Y.; Mogg, K.; Bradley, B.P.

    2012-01-01

    This dot-probe study assessed anxiety-related biases in visual attentional orienting and spatial motor response selection (motor attention) in high- and low-trait-anxious adults, and whether anxiety-related biases depend on response speed. Emotional-neutral word pairs appeared for 14 or 500 ms, with

  5. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    OpenAIRE

    S. Saha; D. Chakraborty

    2016-01-01

    Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations ...

  6. Foraging responses of black-legged kittiwakes to prolonged food-shortages around colonies on the Bering Sea shelf.

    Directory of Open Access Journals (Sweden)

    Rosana Paredes

    Full Text Available We hypothesized that changes in southeastern Bering Sea foraging conditions for black-legged kittiwakes (Rissa tridactyla have caused shifts in habitat use with direct implications for population trends. To test this, we compared at-sea distribution, breeding performance, and nutritional stress of kittiwakes in three years (2008-2010 at two sites in the Pribilof Islands, where the population has either declined (St. Paul or remained stable (St. George. Foraging conditions were assessed from changes in (1 bird diets, (2 the biomass and distribution of juvenile pollock (Theragra chalcogramma in 2008 and 2009, and (3 eddy kinetic energy (EKE; considered to be a proxy for oceanic prey availability. In years when biomass of juvenile pollock was low and patchily distributed in shelf regions, kittiwake diets included little or no neritic prey and a much higher occurrence of oceanic prey (e.g. myctophids. Birds from both islands foraged on the nearby shelves, or made substantially longer-distance trips overnight to the basin. Here, feeding was more nocturnal and crepuscular than on the shelf, and often occurred near anticyclonic, or inside cyclonic eddies. As expected from colony location, birds from St. Paul used neritic waters more frequently, whereas birds from St. George typically foraged in oceanic waters. Despite these distinctive foraging patterns, there were no significant differences between colonies in chick feeding rates or fledging success. High EKE in 2010 coincided with a 63% increase in use of the basin by birds from St. Paul compared with 2008 when EKE was low. Nonetheless, adult nutritional stress, which was relatively high across years at both colonies, peaked in birds from St. Paul in 2010. Diminishing food resources in nearby shelf habitats may have contributed to kittiwake population declines at St Paul, possibly driven by increased adult mortality or breeding desertion due to high foraging effort and nutritional stress.

  7. [Effects of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation in rats].

    Science.gov (United States)

    Li, Ting; Wang, Wei; Kong, De-lei; Su, Jiao; Kang, Jian

    2012-04-01

    To explore the influence of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation. Male Sprague-Dawley rats were randomly divided into a control group and a chronic intermittent hypoxia group. Transcranial magnetic stimulation was applied in genioglossus motor cortex of the 2 groups. The responses of transcranial magnetic stimulation were recorded and analyzed by single factor analysis of variance. The anterolateral area provided an optimal motor evoked potential response to transcranial magnetic stimulation in the genioglossus motor cortex of the rats. Genioglossus motor evoked potential latency and amplitude were significantly modified by intermittent hypoxic exposure, with a significant decrease in latency (F = 3.294, P motor cortex in rats.

  8. Reduced firing rates of high threshold motor units in response to eccentric overload.

    Science.gov (United States)

    Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M

    2017-01-01

    Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Transcranial magnetic stimulation (TMS): compared sensitivity of different motor response parameters in ALS.

    Science.gov (United States)

    Pouget, J; Trefouret, S; Attarian, S

    2000-06-01

    Owing to the low sensitivity of clinical signs in assessing upper motor neuron (UMN) involvement in ALS, there is a need for investigative tools capable of detecting abnormal function of the pyramidal tract. Transcranial magnetic stimulation (TMS) may contribute to the diagnosis by reflecting a UMN dysfunction that is not clinically detectable. Several parameters for the motor responses to TMS can be evaluated with different levels of significance in healthy subjects compared with ALS patients. The central motor conduction time, however, is not sensitive in detecting subclinical UMN defects in individual ALS patients. The amplitude of the motor evoked potential (MEP), expressed as the percentage of the maximum wave, also has a low sensitivity. In some cases, the corticomotor threshold is decreased early in the disease course as a result of corticomotor neuron hyperexcitability induced by glutamate. Later, the threshold increases, indicating a loss of UMN. In our experience, a decreased silent period duration appears to be the most sensitive parameter when using motor TMS in ALS. TMS is also a sensitive technique for investigating the corticobulbar tract, which is difficult to study by other methods. TMS is a widely available, painless and safe technique with a good sensitivity that can visualize both corticospinal and corticobulbar tract abnormalities. The sensitivity can be improved further by taking into account the several MEP parameters, including latency and cortical silent period decreased duration.

  10. Network connectivity and individual responses to brain stimulation in the human motor system.

    Science.gov (United States)

    Cárdenas-Morales, Lizbeth; Volz, Lukas J; Michely, Jochen; Rehme, Anne K; Pool, Eva-Maria; Nettekoven, Charlotte; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2014-07-01

    The mechanisms driving cortical plasticity in response to brain stimulation are still incompletely understood. We here explored whether neural activity and connectivity in the motor system relate to the magnitude of cortical plasticity induced by repetitive transcranial magnetic stimulation (rTMS). Twelve right-handed volunteers underwent functional magnetic resonance imaging during rest and while performing a simple hand motor task. Resting-state functional connectivity, task-induced activation, and task-related effective connectivity were assessed for a network of key motor areas. We then investigated the effects of intermittent theta-burst stimulation (iTBS) on motor-evoked potentials (MEP) for up to 25 min after stimulation over left primary motor cortex (M1) or parieto-occipital vertex (for control). ITBS-induced increases in MEP amplitudes correlated negatively with movement-related fMRI activity in left M1. Control iTBS had no effect on M1 excitability. Subjects with better response to M1-iTBS featured stronger preinterventional effective connectivity between left premotor areas and left M1. In contrast, resting-state connectivity did not predict iTBS aftereffects. Plasticity-related changes in M1 following brain stimulation seem to depend not only on local factors but also on interconnected brain regions. Predominantly activity-dependent properties of the cortical motor system are indicative of excitability changes following induction of cortical plasticity with rTMS. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Fast Response Three Phase Induction Motor Using Indirect Field Oriented Control (IFOC Based On Fuzzy-Backstepping

    Directory of Open Access Journals (Sweden)

    Rizana Fauzi

    2015-06-01

    Full Text Available Induction Motor in Electrical drive system at a accelleration speed for example in electric cars have a hard speed setting is set on a wide range, causing an inconvenience for motorists and a fast response is required any change of speed. It is necessary for good system performance in control motor speed and torque at low speed or fast speed response, which is operated by Indirect Field Oriented Control (IFOC. Speed control on IFOC methods should be better to improving the performance of rapid response in the induction motor. In this paper presented a method of incorporation of Fuzzy Logic Controller and Backstepping (Fuzzy-Backstepping to improve the dynamically response speed and torque in Induction Motor on electric car, so we get smoothness at any speed change and braking as well as maximum torque of induction motor. Test results showed that Fuzzy-Backstepping can increase the response to changes speed in electric car. System testing is done with variations of the reference point setting speed control system, the simulation results of the research showed that the IFOC method is not perfect in terms of induction motor speed regulation if it’s not use speed control. Fuzzy-Backstepping control is needed which can improve the response of output, so that the induction motor has a good performance, small oscillations when start working up to speed reference. Keywords: Fuzzy-Backstepping, IFOC, induction motor

  12. Brushless DC motor control system responsive to control signals generated by a computer or the like

    Science.gov (United States)

    Packard, Douglas T. (Inventor); Schmitt, Donald E. (Inventor)

    1987-01-01

    A control system for a brushless DC motor responsive to digital control signals is disclosed. The motor includes a multiphase wound stator and a permanent magnet rotor. The rotor is arranged so that each phase winding, when energized from a DC source, will drive the rotor through a predetermined angular position or step. A commutation signal generator responsive to the shaft position provides a commutation signal for each winding. A programmable control signal generator such as a computer or microprocessor produces individual digital control signals for each phase winding. The control signals and commutation signals associated with each winding are applied to an AND gate for that phase winding. Each gate controls a switch connected in series with the associated phase winding and the DC source so that each phase winding is energized only when the commutation signal and the control signal associated with that phase winding are present. The motor shaft may be advanced one step at a time to a desired position by applying a predetermined number of control signals in the proper sequence to the AND gates and the torque generated by the motor may be regulated by applying a separate control signal to each AND gate which is pulse width modulated to control the total time that each switch connects its associated winding to the DC source during each commutation period.

  13. Stepping responses to treadmill perturbations vary with severity of motor deficits in human SCI.

    Science.gov (United States)

    Chu, Virginia Way Tong; Hornby, T George; Schmit, Brian D

    2018-04-18

    In this study, we investigated the responses to tread perturbations during human stepping on a treadmill. Our approach was to test the effects of perturbations to a single leg using a split-belt treadmill in healthy participants and in participants with varying severity of spinal cord injury (SCI). We recruited 11 people with incomplete SCI and 5 noninjured participants. As participants walked on an instrumented treadmill, the belt on one side was stopped or accelerated briefly during mid to late stance. A majority of participants initiated an unnecessary swing when the treadmill was stopped in mid stance, although the likelihood of initiating a step was decreased in participants with more severe SCI. Accelerating or decelerating one belt of the treadmill during stance altered the characteristics of swing. We observed delayed swing initiation when the belt was decelerated (i.e. the hip was in a more flexed position at time of swing) and advanced swing initiation with acceleration (i.e. hip extended at swing initiation). Further, the timing and leg posture of heel strike appeared to remain constant, reflected by a sagittal plane hip angle at heel strike that remained the same regardless of the perturbation. In summary, our results supported the current understanding of the role of sensory feedback and central drive in the control of stepping in participants with incomplete SCI and noninjured participants. In particular, the observation of unnecessary swing during a stop perturbation highlights the interdependence of central and sensory drive in walking control.

  14. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.

    Science.gov (United States)

    Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B

    2017-11-15

    Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology

  15. Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease.

    Science.gov (United States)

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2012-09-01

    The neural substrates that enable individuals to achieve their fastest and strongest motor responses have long been enigmatic. Importantly, characterization of such activities may inform novel therapeutic strategies for patients with hypokinetic disorders, such as Parkinson's disease. Here, we ask whether the basal ganglia may play an important role, not only in the attainment of maximal motor responses under standard conditions but also in the setting of the performance enhancements known to be engendered by delivery of intense stimuli. To this end, we recorded local field potentials from deep brain stimulation electrodes implanted bilaterally in the subthalamic nuclei of 10 patients with Parkinson's disease, as they executed their fastest and strongest handgrips in response to a visual cue, which was accompanied by a brief 96-dB auditory tone on random trials. We identified a striking correlation between both theta/alpha (5-12 Hz) and high-gamma/high-frequency (55-375 Hz) subthalamic nucleus activity and force measures, which explained close to 70% of interindividual variance in maximal motor responses to the visual cue alone, when patients were ON their usual dopaminergic medication. Loud auditory stimuli were found to enhance reaction time and peak rate of development of force still further, independent of whether patients were ON or OFF l-DOPA, and were associated with increases in subthalamic nucleus power over a broad gamma range. However, the contribution of this broad gamma activity to the performance enhancements observed was only modest (≤13%). The results implicate frequency-specific subthalamic nucleus activities as substantial factors in optimizing an individual's peak motor responses at maximal effort of will, but much less so in the performance increments engendered by intense auditory stimuli.

  16. The Role of Common Motor Responses in Stimulus Categorization by Preschool Children

    Science.gov (United States)

    Mahoney, Amanda M; Miguel, Caio F; Ahearn, William H; Bell, Julianne

    2011-01-01

    The purpose of this study was to assess the role of common motor responses as the “speaker” behavior on stimulus class formation, and the emergence of functional classes. Experiment 1 examined whether training one motor response to a set of three stimuli and a second motor response to another set of three stimuli would result in correct category-sort responses for 5 typically developing preschool children. Three of the children passed the categorization tests. Experiment 2 examined whether the classes formed in Experiment 1 were functional classes, and whether participants who did not pass categorization tests in Experiment 1 would do so following common vocal tact training. The 2 participants who failed categorization tests in Experiment 1 passed these tests in Experiment 2, although none of the participants passed the tests for functional classes. The results of the current study did not unequivocally support the naming hypothesis. Future research should therefore evaluate other possible sources of control that aid in stimulus categorization. PMID:21541124

  17. How Do Parameters of Motor Response Influence Selective Inhibition? Evidence from the Stop-Signal Paradigm

    Directory of Open Access Journals (Sweden)

    Chien Hui Tang

    2011-05-01

    Full Text Available The ability to selectively inhibit the execution of an action while performing other ones is crucial in humans' multitasking daily life. The current study aims to compare selective inhibition for choice reaction involving two effectors or response directions. We adopted a variation of the stop-signal paradigm to examine how selective inhibition is modulated by the way potential motor responses are combined and inhibited. Experiment 1 investigated selective inhibition under different combinations of effectors, namely “index and middle fingers” versus “hand and foot”. The results showed SSRT of the index finger was longer when the other response option was the foot than the middle finger. Experiment 2 examined how selective inhibition differs between selective stopping of effectors and movement directions, and that for most of the situations SSRT is longer for stopping a response based on its direction than effector. After equating complexity of response mapping between direction and effector conditions in Experiment 2, Experiment 3 still showed that SSRT differs between selecting direction or effectors. To summarize, SSRT varies depending on the way response effectors are paired and selectively stopped. Selective inhibition is thus likely not amodal and may involve different inhibitory mechanisms depending on parameters specifying the motor response.

  18. Does the brake response time of the right leg change after left total knee arthroplasty? A prospective study.

    Science.gov (United States)

    Marques, Carlos J; Barreiros, João; Cabri, Jan; Carita, Ana I; Friesecke, Christian; Loehr, Jochen F

    2008-08-01

    Patients undergoing total knee arthroplasty often ask when they can safely resume car driving. There is little evidence available on which physicians can rely when advising patients on this issue. In a prospective study we assessed the brake response time of 24 patients admitted to the clinic for left total knee arthroplasty preoperatively and then 10 days after surgery. On each measurement day the patients performed two tasks, a simple and a complex brake response time task in a car simulator. Ten days after left TKA the brake response time for the simple task had decreased by 3.6% (p=0.24), the reaction time by 3.1% (p=0.34) and the movement time by 6.6% (p=0.07). However, the performance improvement was not statistically significant. Task complexity increased brake response time at both time points. A 5.8% increase was significant (p=0.01) at 10 days after surgery. Based on our results, we suggest that patients who have undergone left total knee arthroplasty may resume car driving 10 days after surgery as long as they drive a car with automatic transmission.

  19. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

    1999-01-01

    Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

  20. Lyden-af-Leg

    DEFF Research Database (Denmark)

    Toft, Herdis

    Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform.......Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform....

  1. Development of Vestibular Stochastic Resonance as a Sensorimotor Countermeasure: Improving Otolith Ocular and Motor Task Responses

    Science.gov (United States)

    Mulavara, Ajitkumar; Fiedler, Matthew; DeDios,Yiri E.; Galvan, Raquel; Bloomberg, Jacob; Wood, Scott

    2011-01-01

    Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. The goal of our present study is to develop a countermeasure based on vestibular SR that could improve central interpretation of vestibular input and improve motor task responses to mitigate associated risks.

  2. Dynamic response characteristics evaluation of hydrostatic bearing in hydraulic piston pump/motor

    International Nuclear Information System (INIS)

    Ham, Young Bog; Yun, So Nam; Kim, Dong Soo; Choi, Byoung Oh; Kim, Sung Dong

    2001-01-01

    In swash plate type axial piston hydraulic pump and motor, the piston shoe is periodically pressurized with square function shape by supply pressure load as rotation of cylinder barrel. Therefore the recess pressure ono bottom part of piston shoe is suddenly increase through orifice in the piston shoe. In this study, we simulated that the frequency response of the recess pressure against with change of supply pressure with analysis tool. Also, we evaluate the dynamic response characteristics of overbalanced hydrostatic bearing with change of the orifice diameter

  3. Effects of metal exposure on motor neuron development, neuromasts and the escape response of zebrafish embryos.

    Science.gov (United States)

    Sonnack, Laura; Kampe, Sebastian; Muth-Köhne, Elke; Erdinger, Lothar; Henny, Nicole; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2015-01-01

    Low level metal contaminations are a prevalent issue with often unknown consequences for health and the environment. Effect-based, multifactorial test systems with zebrafish embryos to assess in particular developmental toxicity are beneficial but rarely used in this context. We therefore exposed wild-type embryos to the metals copper (CuSO4), cadmium (CdCl2) and cobalt (CoSO4) for 72 h to determine lethal as well as sublethal morphological effects. Motor neuron damage was investigated by immunofluorescence staining of primary motor neurons (PMNs) and secondary motor neurons (SMNs). In vivo stainings using the vital dye DASPEI were used to quantify neuromast development and damage. The consequences of metal toxicity were also assessed functionally, by testing fish behavior following tactile stimulation. The median effective concentration (EC50) values for morphological effects 72 h post fertilization (hpf) were 14.6 mg/L for cadmium and 0.018 mg/L for copper, whereas embryos exposed up to 45.8 mg/L cobalt showed no morphological effects. All three metals caused a concentration-dependent reduction in the numbers of normal PMNs and SMNs, and in the fluorescence intensity of neuromasts. The results for motor neuron damage and behavior were coincident for all three metals. Even the lowest metal concentrations (cadmium 2mg/L, copper 0.01 mg/L and cobalt 0.8 mg/L) resulted in neuromast damage. The results demonstrate that the neuromast cells were more sensitive to metal exposure than morphological traits or the response to tactile stimulation and motor neuron damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  5. Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units.

    Science.gov (United States)

    Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J

    2018-03-02

    Soldiers´ training and experience can influence the outcome of the missions, as well as their own physical integrity. The objective of this research was to analyze the psycho-physiological response and specific motor skills in an urban combat simulation with two units of infantry with different training and experience. psychophysiological parameters -Heart Rate, blood oxygen saturation, glucose and blood lactate, cortical activation, anxiety and heart rate variability-, as well as fine motor skills were analyzed in 31 male soldiers of the Spanish Army, 19 belonging to the Light Infantry Brigade, and 12 to the Heavy Forces Infantry Brigade, before and after an urban combat simulation. A combat simulation provokes an alteration of the psycho-physiological basal state in soldiers and a great unbalance in the sympathetic-vagal interaction. The specific training of Light Infantry unit involves lower metabolic, cardiovascular, and anxiogenic response not only previous, but mainly after a combat maneuver, than Heavy Infantry unit's. No differences were found in relation with fine motor skills, improving in both cases after the maneuver. This fact should be taken into account for betterment units´ deployment preparation in current theaters of operations.

  6. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    Science.gov (United States)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  7. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation during Head-Up Tilt.

    Science.gov (United States)

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2016-01-01

    Introduction: Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization (i.e., head-up tilt) depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) at different angles of verticalization in a healthy population. Methods: Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP, and dBP were measured: (1) head-up tilt to 60° and 71° without PE; (2) PE at 20°, 40°, and 60° of head-up tilt; (3) PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4) PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. Results: The models show that: (1) head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2) PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters). Neither adding (3) FES at constant intensity to PE nor (4) variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters. Conclusion: The effect of PE on the cardiovascular system during

  8. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation During Head-up Tilt

    Directory of Open Access Journals (Sweden)

    Amirehsan Sarabadani Tafreshi

    2016-12-01

    Full Text Available Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE that can be enhanced with functional electrical stimulation (FES to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influence of PE on the cardiovascular system during verticalization depends on the verticalization angle, and FES strengthens the PE influence. To test our hypotheses, we investigated the PE effects on the cardiovascular parameters heart rate (HR, and systolic and diastolic blood pressures (sBP, dBP at different angles of verticalization in a healthy population. Ten healthy subjects on a robot-assisted tilt table underwent four different study protocols while HR, sBP and dBP were measured: (1 head-up tilt to 60° and 71° without PE; (2 PE at 20°, 40°, and 60° of head-up tilt; (3 PE while constant FES intensity was applied to the leg muscles, at 20°, 40°, and 60° of head-up tilt; (4 PE with variation of the applied FES intensity at 0°, 20°, 40°, and 60° of head-up tilt. Linear mixed models were used to model changes in HR, sBP, and dBP responses. The models show that: (1 head-up tilt alone resulted in statistically significant increases in HR and dBP, but no change in sBP. (2 PE during head-up tilt resulted in statistically significant changes in HR, sBP, and dBP, but not at each angle and not always in the same direction (i.e., increase or decrease of cardiovascular parameters. Neither adding (3 FES at constant intensity to PE nor (4 variation of FES intensity during PE had any statistically significant effects on the cardiovascular parameters.The effect of PE on the cardiovascular system during head-up tilt is strongly dependent on the verticalization

  9. Influence of cueing on the preparation and execution of untrained and trained complex motor responses

    Directory of Open Access Journals (Sweden)

    S.R. Alouche

    2012-05-01

    Full Text Available This study investigated the influence of cueing on the performance of untrained and trained complex motor responses. Healthy adults responded to a visual target by performing four sequential movements (complex response or a single movement (simple response of their middle finger. A visual cue preceded the target by an interval of 300, 1000, or 2000 ms. In Experiment 1, the complex and simple responses were not previously trained. During the testing session, the complex response pattern varied on a trial-by-trial basis following the indication provided by the visual cue. In Experiment 2, the complex response and the simple response were extensively trained beforehand. During the testing session, the trained complex response pattern was performed in all trials. The latency of the untrained and trained complex responses decreased from the short to the medium and long cue-target intervals. The latency of the complex response was longer than that of the simple response, except in the case of the trained responses and the long cue-target interval. These results suggest that the preparation of untrained complex responses cannot be completed in advance, this being possible, however, for trained complex responses when enough time is available. The duration of the 1st submovement, 1st pause and 2nd submovement of the untrained and the trained complex responses increased from the short to the long cue-target interval, suggesting that there is an increase of online programming of the response possibly related to the degree of certainty about the moment of target appearance.

  10. RESTLESS LEGS SYNDROME

    Directory of Open Access Journals (Sweden)

    Dmitriy Valer'evich Artem'ev

    2009-01-01

    Full Text Available The paper describes the epidemiology, etiology, pathogenesis, clinical picture, diagnosis, differential diagnosis, and treatment of restless legs syndrome. Recommendations are given how to choose therapeutic modalities and drugs in relation to different factors.

  11. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system.

    Science.gov (United States)

    Deslandes, A C; Veiga, H; Cagy, M; Piedade, R; Pompeu, F; Ribeiro, P

    2005-07-01

    Caffeine is the most consumed psychoactive substance in the world. The effects of caffeine have been studied using cognitive and motor measures, quantitative electroencephalography (qEEG) and event-related potentials. However, these methods are not usually employed in combination, a fact that impairs the interpretation of the results. The objective of the present study was to analyze changes in electrophysiological, cognitive and motor variables with the ingestion of caffeine, and to relate central to peripheral responses. For this purpose we recorded event-related potentials and eyes-closed, resting EEG, applied the Stroop test, and measured reaction time. Fifteen volunteers took caffeine (400 mg) or placebo in a randomized, crossover, double-blind design. A significant reduction of alpha absolute power over the entire scalp and of P300 latency at the Fz electrode were observed after caffeine ingestion. These results are consistent with a stimulatory effect of caffeine, although there was no change in the attention (Stroop) test or in reaction time. The qEEG seems to be the most sensitive index of the changes produced by caffeine in the central nervous system since it proved to be capable of detecting changes that were not evident in the tests of cognitive or motor performance.

  12. Viewing photos and reading nouns of natural graspable objects similarly modulate motor responses

    Directory of Open Access Journals (Sweden)

    Barbara FM Marino

    2014-12-01

    Full Text Available It is well known that the observation of graspable objects recruits the same motor representations involved in their actual manipulation. Recent evidence suggests that the presentation of nouns referring to graspable objects may exert similar effects. So far, however, it is not clear to what extent the modulation of the motor system during object observation overlaps with that related to noun processing. To address this issue, 2 behavioral experiments were carried out using a go-no go paradigm. Healthy participants were presented with photos and nouns of graspable and non-graspable natural objects. Also scrambled images and pseudowords obtained from the original stimuli were used. At a go-signal onset (150 ms after stimulus presentation participants had to press a key when the stimulus referred to a real object, using their right (Experiment 1 or left (Experiment 2 hand, and refrain from responding when a scrambled image or a pseudoword was presented. Slower responses were found for both photos and nouns of graspable objects as compared to non-graspable objects, independent of the responding hand. These findings suggest that processing seen graspable objects and written nouns referring to graspable objects similarly modulates the motor system.

  13. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system

    Directory of Open Access Journals (Sweden)

    Deslandes A.C.

    2005-01-01

    Full Text Available Caffeine is the most consumed psychoactive substance in the world. The effects of caffeine have been studied using cognitive and motor measures, quantitative electroencephalography (qEEG and event-related potentials. However, these methods are not usually employed in combination, a fact that impairs the interpretation of the results. The objective of the present study was to analyze changes in electrophysiological, cognitive and motor variables with the ingestion of caffeine, and to relate central to peripheral responses. For this purpose we recorded event-related potentials and eyes-closed, resting EEG, applied the Stroop test, and measured reaction time. Fifteen volunteers took caffeine (400 mg or placebo in a randomized, crossover, double-blind design. A significant reduction of alpha absolute power over the entire scalp and of P300 latency at the Fz electrode were observed after caffeine ingestion. These results are consistent with a stimulatory effect of caffeine, although there was no change in the attention (Stroop test or in reaction time. The qEEG seems to be the most sensitive index of the changes produced by caffeine in the central nervous system since it proved to be capable of detecting changes that were not evident in the tests of cognitive or motor performance.

  14. Thermo-Structural Response Caused by Structure Gap and Gap Design for Solid Rocket Motor Nozzles

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2016-06-01

    Full Text Available The thermo-structural response of solid rocket motor nozzles is widely investigated in the design of modern rockets, and many factors related to the material properties have been considered. However, little work has been done to evaluate the effects of structure gaps on the generation of flame leaks. In this paper, a numerical simulation was performed by the finite element method to study the thermo-structural response of a typical nozzle with consideration of the structure gap. Initial boundary conditions for thermo-structural simulation were defined by a quasi-1D model, and then coupled simulations of different gap size matching modes were conducted. It was found that frictional interface treatment could efficiently reduce the stress level. Based on the defined flame leak criteria, gap size optimization was carried out, and the best gap matching mode was determined for designing the nozzle. Testing experiment indicated that the simulation results from the proposed method agreed well with the experimental results. It is believed that the simulation method is effective for investigating thermo-structural responses, as well as designing proper gaps for solid rocket motor nozzles.

  15. Transcriptomic Characterization of Innate and Acquired Immune Responses in Red-Legged Partridges (Alectoris rufa: A Resource for Immunoecology and Robustness Selection.

    Directory of Open Access Journals (Sweden)

    Natalia Sevane

    Full Text Available Present and future challenges for wild partridge populations include the resistance against possible disease transmission after restocking with captive-reared individuals, and the need to cope with the stress prompted by new dynamic and challenging scenarios. Selection of individuals with the best immune ability may be a good strategy to improve general immunity, and hence adaptation to stress. In this study, non-infectious challenges with phytohemagglutinin (PHA and sheep red blood cells allowed the classification of red-legged partridges (Alectoris rufa according to their overall immune responses (IR. Skin from the area of injection of PHA and spleen, both from animals showing extreme high and low IR, were selected to investigate the transcriptional profiles underlying the different ability to cope with pathogens and external aggressions. RNA-seq yielded 97 million raw reads from eight sequencing libraries and approximately 84% of the processed reads were mapped to the reference chicken genome. Differential expression analysis identified 1488 up- and 107 down-regulated loci in individuals with high IR versus low IR. Partridges displaying higher innate IR show an enhanced activation of host defence gene pathways complemented with a tightly controlled desensitization that facilitates the return to cellular homeostasis. These findings indicate that the immune system ability to respond to aggressions (either diseases or stress produced by environmental changes involves extensive transcriptional and post-transcriptional regulations, and expand our understanding on the molecular mechanisms of the avian immune system, opening the possibility of improving disease resistance or robustness using genome assisted selection (GAS approaches for increased IR in partridges by using genes such as AVN or BF2 as markers. This study provides the first transcriptome sequencing data of the Alectoris genus, a resource for molecular ecology that enables integration

  16. 41 CFR 102-34.230 - How am I responsible for protecting Government motor vehicles?

    Science.gov (United States)

    2010-07-01

    ... theft or damage; and (b) Lock the unattended Government motor vehicle. (The only exception to this... protecting Government motor vehicles? 102-34.230 Section 102-34.230 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Official Use of Government Motor Vehicles § 102-34.230 How am I...

  17. Dissociation between unconscious motor response facilitation and conflict in medial frontal areas.

    Science.gov (United States)

    D'Ostilio, Kevin; Garraux, Gaëtan

    2012-01-01

    Masked prime tasks have shown that sensory information that has not been consciously perceived can nevertheless modulate behavior. The neuronal correlates of behavioral manifestations of visuomotor priming remain debated, particularly with respect to the distribution and direction (i.e. increase or decrease) of activity changes in medial frontal areas. Here, we predicted that these discrepant results could be accounted for by two automatic and unconscious processes embedded in this task: response conflict and facilitation. We used event-related functional magnetic resonance imaging (fMRI), as 24 healthy participants had to respond, as fast as possible, to a target arrow presented immediately after a subliminal masked prime arrow. There were three experimental conditions defined by the prime-target relationship: compatible, incompatible, and neutral. The classical visuomotor priming effect was reproduced, with relatively longer reaction times (RTs) in incompatible trials. Longer RTs in incompatible than in neutral trials were specifically associated with stronger blood oxygen level-dependent (BOLD) activity in a conflict-related network comprising the anterior cingulate cortex and right frontal associative areas. Motor response facilitation as shown by shorter RTs in compatible than in neutral trials was associated with reduced activation in a motor preparation network including the medial and lateral premotor cortices, as a result of the repetition suppression of the fMRI BOLD signal. The present results provide new insights into automatic and unconscious visuomotor priming processes, suggesting an involvement of either a cognitive or motor network, depending on the prime-target relationship. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  18. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  19. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI. Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT and dopamine receptor D(1 (D1R levels were reduced and dopamine receptor D(2 (D2R levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.

  20. Approach to leg edema

    Directory of Open Access Journals (Sweden)

    Fulvio Pomero

    2017-09-01

    Full Text Available Edema is defined as a palpable swelling caused by an increase in interstitial fluid volume. Leg edema is a common problem with a wide range of possible causes and is the result of an imbalance in the filtration system between the capillary and interstitial spaces. Major causes of edema include venous obstruction, increased capillary permeability and increased plasma volume secondary to sodium and water retention. In both hospital and general practice, the patient with a swollen leg presents a common dilemma in diagnosis and treatment. The cause may be trivial or life-threatening and it is often difficult to determine the clinical pathway. The diagnosis can be narrowed by categorizing the edema according to its duration, distribution (unilateral or bilateral and accompanying symptoms. This work provides clinically oriented recommendations for the management of leg edema in adults.

  1. Leg som ustyrlig deltagelseskultur

    DEFF Research Database (Denmark)

    Toft, Herdis

    2017-01-01

    - og spilteoretikere Johan Huizinga og Roger Caillois. Deres teorier og begrebsdannelser har været brugt til at påpege leg dels som et æstetisk baseret betydningssystem, dels som et affektivt og stemningsbaseret oplevelsessystem samt endelig som et socialt baseret relationssystem. I artiklen vælger vi...... at fokusere på leg som et socialt baseret relationssystem og yderligere zoome ind på et af legens systemiske væsenstræk, nemlig brugen af regulerbare regelsæt, som legerne uden ’politi’ forhandler sig frem til før, under og efter legen. Fælles for Huizinga og Caillois er, at de knytter leg uløseligt sammen...

  2. Leg og dannelse

    DEFF Research Database (Denmark)

    Skovbjerg, Helle Marie

    2017-01-01

    lederen i det pædagogiske tidskrift Asterisk: ”Leg i skolen, leg i klasserummet, ja legende læring i skolen udgør derimod en enorm, seriøs og ubrugt læringsressource – ikke alene med effekter på kreativiteten, men også på den faglige læring” (Holm, 2015, p. 2). Legens værdi gøres altså først og fremmest...

  3. Venous leg ulcers

    Science.gov (United States)

    2008-01-01

    Introduction Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2007 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 80 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide, thromboxane alpha2 antagonists, zinc), peri

  4. Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid.

    Science.gov (United States)

    Drewes, Asbjørn-Mohr; Reddy, Hariprasad; Staahl, Camilla; Pedersen, Jan; Funch-Jensen, Peter; Arendt-Nielsen, Lars; Gregersen, Hans

    2005-07-28

    Sensitization most likely plays an important role in chronic pain disorders, and such sensitization can be mimicked by experimental acid perfusion of the esophagus. The current study systematically investigated the sensory and motor responses of the esophagus to controlled mechanical stimuli before and after sensitization. Thirty healthy subjects were included. Distension of the distal esophagus with a balloon was performed before and after perfusion with 0.1 mol/L hydrochloric acid for 30 min. An impedance planimetry system was used to measure cross-sectional area, volume, pressure, and tension during the distensions. A new model allowed evaluation of the phasic contractions by the tension during contractions as a function of the initial muscle length before the contraction (comparable to the Frank-Starling law for the heart). Length-tension diagrams were used to evaluate the muscle tone before and after relaxation of the smooth muscle with butylscopolamine. The sensitization resulted in allodynia and hyperalgesia to the distension volumes, and the degree of sensitization was related to the infused volume of acid. Furthermore, a nearly 50% increase in the evoked referred pain was seen after sensitization. The mechanical analysis demonstrated hyper-reactivity of the esophagus following acid perfusion, with an increased number and force of the phasic contractions, but the muscle tone did not change. Acid perfusion of the esophagus sensitizes the sensory pathways and facilitates secondary contractions. The new model can be used to study abnormal sensory-motor mechanisms in visceral organs.

  5. Motor and sensory responses after percutaneous tibial nerve stimulation in multiple sclerosis patients with lower urinary tract symptoms treated in daily practice.

    Science.gov (United States)

    Zecca, C; Digesu, G A; Robshaw, P; Puccini, F; Khullar, V; Tubaro, A; Gobbi, C

    2014-03-01

    Posterior tibial nerve stimulation (PTNS) is an effective treatment option for lower urinary tract symptoms (LUTS) in multiple sclerosis (MS) patients. Patients with MS and LUTS unresponsive to medical treatment received PTNS for 12 weeks after saline urodynamics to evaluate the prevalence of motor, sensory and combined responses during PTNS and to determine whether the type of response can predict treatment outcome. LUTS were also assessed using a 3-day bladder diary, patient perception of bladder condition (PPBC) questionnaire, patient perception of intensity of urgency scale (PPIUS), Kings Health QOL questionnaire (KHQ) and Overactive Bladder Questionnaire (OAB-q) before and after treatment. Patients were considered as "responders" if they reported an improvement >50% in their LUTS according to the PPBC. Sensory, motor and combined sensory/motor responses were compared between responders and non-responders. Eighty-three patients were included. 61% (51/83) of patients were responders. Sensory, motor and combined sensory/motor responses were found in 64% (53/83), 6% (5/83) and 30% (25/83) of patients respectively. A sensory response alone, or in combination with a motor response, was better associated with a successful outcome than the presence of a motor response alone (P = 0.001). A sensory response, either alone or in combination with a motor response, is more frequent and seems to be better associated with a successful outcome of PTNS than motor response alone. © 2014 The Author(s) European Journal of Neurology © 2014 EFNS.

  6. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise during Head-Up Tilt: A Pilot Study in Neurological Patients

    Directory of Open Access Journals (Sweden)

    Amirehsan Sarabadani Tafreshi

    2017-06-01

    Full Text Available Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b whether changing the PE frequency (i.e., stepping speed influences the PE effect on the cardiovascular system, (c whether PE could prevent orthostatic hypotension, and finally, (d whether PE effect is consistent from day to day.Methods: Heart rate (HR, and systolic and diastolic blood pressures (sBP, dBP in response to PE at two different tilt angles (α = 20°, 60° with three different PE frequencies (i.e., 0, 24, and 48 steps per minute of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements.Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b The effect of PE was not influenced by its speed. (c Neither during head-up tilt alone nor in combination with PE did

  7. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise during Head-Up Tilt: A Pilot Study in Neurological Patients.

    Science.gov (United States)

    Sarabadani Tafreshi, Amirehsan; Riener, Robert; Klamroth-Marganska, Verena

    2017-01-01

    Introduction: Robot-assisted tilt table therapy was proposed for early rehabilitation and mobilization of patients after diseases such as stroke. A robot-assisted tilt table with integrated passive robotic leg exercise (PE) mechanism has the potential to prevent orthostatic hypotension usually provoked by verticalization. In a previous study with rather young healthy subjects [average age: 25.1 ± 2.6 years (standard deviation)], we found that PE effect on the cardiovascular system depends on the verticalization angle of the robot-assisted tilt table. In the current study, we investigated in an older population of neurological patients (a) whether they show the same PE effects as younger healthy population on the cardiovascular system at different tilt angles, (b) whether changing the PE frequency (i.e., stepping speed) influences the PE effect on the cardiovascular system, (c) whether PE could prevent orthostatic hypotension, and finally, (d) whether PE effect is consistent from day to day. Methods: Heart rate (HR), and systolic and diastolic blood pressures (sBP, dBP) in response to PE at two different tilt angles (α = 20°, 60°) with three different PE frequencies (i.e., 0, 24, and 48 steps per minute) of 10 neurological patients [average age: 68.4 ± 13.5 years (standard deviation)] were measured on 2 consecutive days. Linear mixed models were used to develop statistical models and analyze the repeated measurements. Results: The models show that: PE significantly increased sBP and dBP but had no significant effect on HR. (a) Similar to healthy subjects the effect of PE on sBP was dependent on the tilt angle with higher tilt angles resulting in a higher increase. Head-up tilting alone significantly increased HR and dBP but resulted in a non-significant drop in sBP. PE, in general, had a more additive effect on increasing BP. (b) The effect of PE was not influenced by its speed. (c) Neither during head-up tilt alone nor in combination with PE did participants

  8. Restless Legs Syndrome

    Science.gov (United States)

    ... disorder, particularly if they experience onset at an early age; many years may pass before symptoms occur regularly. top What causes restless legs syndrome? In most cases, the cause of RLS is unknown (called primary RLS). However, RLS has a genetic component and ...

  9. The mangled lower leg

    NARCIS (Netherlands)

    Hoogendoorn, Jochem Maarten

    2002-01-01

    A surgeon faced with a patient presenting with an open tibial/fibular fracture in combination with severe damage of the surrounding soft tissues, has to make the difficult decision whether to attempt salvage or to perform an immediate amputation of the leg. Until late in the nineteenth century the

  10. Time response model of ER fluids for precision control of motors

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Ken' ichi [Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama (Japan)], E-mail: koyanagi@pu-toyama.ac.jp

    2009-02-01

    For improvement of control performance or new control demands of mechatronics devices using particle type ER fluids, it will be needed to further investigate a response time of the fluids. It is commonly said around 5-mili seconds, however, the formula structure of that delay has not been clear. This study aims to develop a functional damper (attenuators), that can control its viscous characteristics in real time using ER fluids as its working fluid. ER dampers are useful to accomplish high precision positioning not to prevent high speed movement of the motor. To realize the functional damper that can be manipulated according to situations or tasks, the modeling and control of ER fluids are necessary. This paper investigates time delay affects of ER fluids and makes an in-depth dynamic model of the fluid by utilizing simulation and experiment. The mathematical model has a dead-time and first ordered delays of the fluid and the high voltage amplifier for the fluid.

  11. The effect of stimulus duration and motor response in hemispatial neglect during a visual search task.

    Directory of Open Access Journals (Sweden)

    Laura M Jelsone-Swain

    Full Text Available Patients with hemispatial neglect exhibit a myriad of profound deficits. A hallmark of this syndrome is the patients' absence of awareness of items located in their contralesional space. Many studies, however, have demonstrated that neglect patients exhibit some level of processing of these neglected items. It has been suggested that unconscious processing of neglected information may manifest as a fast denial. This theory of fast denial proposes that neglected stimuli are detected in the same way as non-neglected stimuli, but without overt awareness. We evaluated the fast denial theory by conducting two separate visual search task experiments, each differing by the duration of stimulus presentation. Specifically, in Experiment 1 each stimulus remained in the participants' visual field until a response was made. In Experiment 2 each stimulus was presented for only a brief duration. We further evaluated the fast denial theory by comparing verbal to motor task responses in each experiment. Overall, our results from both experiments and tasks showed no evidence for the presence of implicit knowledge of neglected stimuli. Instead, patients with neglect responded the same when they neglected stimuli as when they correctly reported stimulus absence. These findings thus cast doubt on the concept of the fast denial theory and its consequent implications for non-conscious processing. Importantly, our study demonstrated that the only behavior affected was during conscious detection of ipsilesional stimuli. Specifically, patients were slower to detect stimuli in Experiment 1 compared to Experiment 2, suggesting a duration effect occurred during conscious processing of information. Additionally, reaction time and accuracy were similar when reporting verbally versus motorically. These results provide new insights into the perceptual deficits associated with neglect and further support other work that falsifies the fast denial account of non

  12. Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation During Head-up Tilt

    OpenAIRE

    Amirehsan Sarabadani Tafreshi; Amirehsan Sarabadani Tafreshi; Robert Riener; Robert Riener; Verena Klamroth-Marganska; Verena Klamroth-Marganska

    2016-01-01

    Tilt tables enable early mobilization of patients by providing verticalization. But there is a high risk of orthostatic hypotension provoked by verticalization, especially after neurological diseases such as spinal cord injury. Robot-assisted tilt tables might be an alternative as they add passive robotic leg exercise (PE) that can be enhanced with functional electrical stimulation (FES) to the verticalization, thus reducing the risk of orthostatic hypotension. We hypothesized that the influe...

  13. Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation.

    Directory of Open Access Journals (Sweden)

    Shanqing Cai

    Full Text Available Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking functions abnormally in the speech motor systems of persons who stutter (PWS. Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (∼150 ms, but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05. Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.

  14. Age-related differences in the response of leg muscle cross-sectional area and water diffusivity measures to a period of supine rest.

    Science.gov (United States)

    Lorbergs, Amanda L; Noseworthy, Michael D; MacIntyre, Norma J

    2015-06-01

    The object was to assess whether cross-sectional area (CSA) and water diffusion properties of leg muscles in young and older women change with increased time spent in supine rest. Healthy young (n = 9, aged 20-30 years) and older (n = 9, aged 65-75 years) women underwent MRI scanning of the right leg at baseline, 30 and 60 min of supine rest. Muscle CSA was derived from proton density images. Water diffusion properties [apparent diffusion coefficient (ADC) and fractional anisotropy (FA)] of the tibialis anterior and posterior, soleus, and medial and lateral heads of the gastrocnemius were derived from diffusion tensor imaging (DTI). Repeated measures ANOVAs and Bonferroni post hoc tests determined the effects of time and group on each muscle outcome. In both groups, muscle CSA and FA did not significantly change over time, whereas ADC significantly decreased. A greater decline at 30 min for young women was only observed for ADC in the medial gastrocnemius. Regardless of age, ADC values decreased with fluid shift associated with time spent supine, whereas CSA and FA were not affected. For leg muscle assessment in young and older women, DTI scanning protocols should consider the amount of time spent in a recumbent position.

  15. Motor preparation is modulated by the resolution of the response timing information.

    Science.gov (United States)

    Carlsen, Anthony N; Mackinnon, Colum D

    2010-03-31

    In the present experiment, the temporal predictability of response time was systematically manipulated to examine its effect on the time course of motor pre-programming and release of the intended movement by an acoustic startle stimulus. Participants performed a ballistic right wrist extension task in four different temporal conditions: 1) a variable foreperiod simple RT task, 2) a fixed foreperiod simple RT task, 3) a low resolution countdown anticipation-timing task, and 4) a high resolution anticipation-timing task. For each task, a startling acoustic stimulus (124dB) was presented at several intervals prior to the "go" signal ("go" -150ms, -500ms, and -1500ms). Results from the startle trials showed that the time course of movement pre-programming was affected by the temporal uncertainty of the imperative "go" cue. These findings demonstrate that the resolution of the timing information regarding the response cue has a marked effect on the timing of movement preparation such that under conditions of low temporal resolution, participants plan the movement well in advance in accordance with the anticipated probability of onset of the cue, whereas movement preparation is delayed until less than 500ms prior to response time when continuous temporal information is provided. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Motor response programming and movement time in children with heavy prenatal alcohol exposure.

    Science.gov (United States)

    Simmons, Roger W; Thomas, Jennifer D; Levy, Susan S; Riley, Edward P

    2010-06-01

    The present experiment assessed motor response programming and movement time in children with histories of heavy prenatal alcohol exposure (PEA). Alcohol-exposed children between the ages of 7 and 17 years were classified into two groups: Fetal Alcohol Syndrome (FAS: n=9) and children with PEA (PEA: n=19) but who did not have the defining characteristics of FAS. The FAS and PEA children were compared with non-alcohol-exposed children (NC: n=23) when completing two tasks: a simple reaction time task (RT alone condition) and a reaction plus movement task (RT+Move condition). The movement involved responding to an imperative stimulus signal and depressing three target buttons in a set sequence. Participants completed 24 trials each for the RT alone and RT+Move response conditions. Results indicated no significant differences in performance among FAS, PEA, and NC groups during the RT alone condition. However, during the RT+Move condition, the FAS group produced significantly longer and more variable RTs than the PEA and NC groups, which produced comparable RTs. The FAS group also produced significantly slower movement times when moving to all three targets, whereas movement time variability did not significantly differ as a function of group. The observed results indicate children with FAS experience deficits in response programming and movement time production. 2010 Elsevier Inc. All rights reserved.

  17. Protection against high intravascular pressure in giraffe legs

    DEFF Research Database (Denmark)

    Petersen, Karin K; Hørlyck, Arne; Østergaard, Kristine Hovkjær

    2013-01-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination....... All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure....... revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along...

  18. RSRM Nozzle-to-Case Joint J-leg Development

    Science.gov (United States)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  19. The Speed of Visual Attention and Motor-Response Decisions in Adult Attention-Deficit/Hyperactivity Disorder

    DEFF Research Database (Denmark)

    Cross-Villasana, Fernando; Finke, Kathrin; Hennig-Fast, Kristina

    2015-01-01

    Abstract Background: Adults with Attention Deficit/Hyperactivity Disorder (ADHD) exhibit slowed reaction times (RTs) in various attention tasks. The exact origins of this slowing, however, have not been yet established. Potential candidates are early sensory processes mediating the deployment...... of focal-attention, stimulus-response translation processes deciding upon the appropriate motor-response, and motor processes generating the response. Methods: We combined mental chronometry (RT) measures of adult ADHD (n = 15) and healthy control (n = 15) participants with their lateralized event...... (sLRP) and response events (rLRP) were used to index the times taken for response selection and production, respectively. To assess the clinical relevance of ERPs, a correlation analysis between neural measures and subjective current and retrospective ADHD symptom ratings was performed. Results: ADHD...

  20. Motor cortex stimulation suppresses cortical responses to noxious hindpaw stimulation after spinal cord lesion in rats.

    Science.gov (United States)

    Jiang, Li; Ji, Yadong; Voulalas, Pamela J; Keaser, Michael; Xu, Su; Gullapalli, Rao P; Greenspan, Joel; Masri, Radi

    2014-01-01

    Motor cortex stimulation (MCS) is a potentially effective treatment for chronic neuropathic pain. The neural mechanisms underlying the reduction of hyperalgesia and allodynia after MCS are not completely understood. To investigate the neural mechanisms responsible for analgesic effects after MCS. We test the hypothesis that MCS attenuates evoked blood oxygen-level dependent signals in cortical areas involved in nociceptive processing in an animal model of chronic neuropathic pain. We used adult female Sprague-Dawley rats (n = 10) that received unilateral electrolytic lesions of the right spinal cord at the level of C6 (SCL animals). In these animals, we performed magnetic resonance imaging (fMRI) experiments to study the analgesic effects of MCS. On the day of fMRI experiment, 14 days after spinal cord lesion, the animals were anesthetized and epidural bipolar platinum electrodes were placed above the left primary motor cortex. Two 10-min sessions of fMRI were performed before and after a session of MCS (50 μA, 50 Hz, 300 μs, for 30 min). During each fMRI session, the right hindpaw was electrically stimulated (noxious stimulation: 5 mA, 5 Hz, 3 ms) using a block design of 20 s stimulation off and 20 s stimulation on. A general linear model-based statistical parametric analysis was used to analyze whole brain activation maps. Region of interest (ROI) analysis and paired t-test were used to compare changes in activation before and after MCS in these ROI. MCS suppressed evoked blood oxygen dependent signals significantly (Family-wise error corrected P cortex and the prefrontal cortex. These findings suggest that, in animals with SCL, MCS attenuates hypersensitivity by suppressing activity in the primary somatosensory cortex and prefrontal cortex. Copyright © 2014. Published by Elsevier Inc.

  1. Leg Preference and Interlateral Asymmetry of Balance Stability in Soccer Players

    Science.gov (United States)

    Teixeira, Luis Augusto; de Oliveira, Dalton Lustosa; Romano, Rosangela Guimaraes; Correa, Sonia Cavalcanti

    2011-01-01

    To examine the effect of long lasting practice on pedal behavior in sport, we compared experienced adult soccer players and nonsoccer players on leg preference in motor tasks requiring general mobilization, soccer related mobilization, and body balance stabilization. We also evaluated performance asymmetry between the right and left legs in static…

  2. Treatment of vasovagal syncope: pacemaker or crossing legs?

    NARCIS (Netherlands)

    van Dijk, N.; Harms, M. P.; Linzer, M.; Wieling, W.

    2000-01-01

    A 50-year-old male patient continued to experience syncope after implantation of a pacemaker. During cardiovascular examination, the patient showed a typical vasovagal response, with normal pacemaker function. Leg crossing, which prohibits the pooling of blood in the legs and abdomen, at the onset

  3. Motor Responses and Weight Gaining in Neonates through Use of Two Methods of Earmuff and Receiving Silence in NICU

    Directory of Open Access Journals (Sweden)

    Z. Abdeyazdan

    2014-01-01

    Full Text Available Background and Aims. With technological advances in NICUs the survival rate of preterm infants has been increased. Because NICU environment is a potent source of stress for infants, its modification is an essential measure to decrease infants’ morbidity. The purposes of this study were to compare the effects of wearing earmuff and provision silence for infants on their motor responses and gaining weight. Methods. In a randomized clinical trial 96 preterm infants were enrolled. Their motor responses were evaluated for two consecutive days in the morning and afternoon shifts, in the groups of earmuff and silence, and at similar time points in the control group. Also their weight was measured at days 1 and 10. Results. In the two intervention groups, means of motor responses in infants were significantly less than in the control group, and weight gain of infants was more than the control group. However weight gain was more pronounced in the earmuff group. Conclusion. Both interventions led to decreasing number of motor responses and improvement of weight gain pattern, but these effects were more pronounced in earmuff group; thus because implementation of silence in NICUs has many barriers, it is suggested to use earmuff for preterm infants in these units. This trial obtained IRCT registration number IRCT2012092010812N2.

  4. Motor responses and weight gaining in neonates through use of two methods of earmuff and receiving silence in NICU.

    Science.gov (United States)

    Abdeyazdan, Z; Ghasemi, S; Marofi, M; Berjis, N

    2014-01-01

    With technological advances in NICUs the survival rate of preterm infants has been increased. Because NICU environment is a potent source of stress for infants, its modification is an essential measure to decrease infants' morbidity. The purposes of this study were to compare the effects of wearing earmuff and provision silence for infants on their motor responses and gaining weight. In a randomized clinical trial 96 preterm infants were enrolled. Their motor responses were evaluated for two consecutive days in the morning and afternoon shifts, in the groups of earmuff and silence, and at similar time points in the control group. Also their weight was measured at days 1 and 10. In the two intervention groups, means of motor responses in infants were significantly less than in the control group, and weight gain of infants was more than the control group. However weight gain was more pronounced in the earmuff group. Both interventions led to decreasing number of motor responses and improvement of weight gain pattern, but these effects were more pronounced in earmuff group; thus because implementation of silence in NICUs has many barriers, it is suggested to use earmuff for preterm infants in these units. This trial obtained IRCT registration number IRCT2012092010812N2.

  5. Dynamically Stable Legged Locomotion.

    Science.gov (United States)

    1983-01-27

    digitai~y thro)ugh a ribbon cable. lhe dcsign effort required to mount power sources and computing u(m board would hive distracted us fiorn our main...angular momentum. "The model used in this paper, shown in Fig. 6-1, has 3 single springy leg that articular •s ,ith respect to a body about a simple hince

  6. Two Legged Walking Robot

    OpenAIRE

    Kraus, V.

    2015-01-01

    The aim of this work is to construct a two-legged wirelessly controlled walking robot. This paper describes the construction of the robot, its control electronics, and the solution of the wireless control. The article also includes a description of the application to control the robot. The control electronics of the walking robot are built using the development kit Arduino Mega, which is enhanced with WiFi module allowing the wireless control, a set of ultrasonic sensors for detecting obstacl...

  7. Dynamically Stable Legged Locomotion

    Science.gov (United States)

    1981-11-30

    the laboratory. Harry Asada, Wayne Book, Nancy Cornelius, Sesh Murthy and Ivan Sutherland read various drafts of this report, for which we are...particularly helpful in providing an atmosphere where things could get started. Craig Fields and Clint Kelly deserve special credit for letting the idea of...legged technology capture their imaginations, even before we could show them tangible results. We are especially indebted to Ivan Sutherland for his

  8. The behavioural response of Australian fur seals to motor boat noise.

    Directory of Open Access Journals (Sweden)

    Joy S Tripovich

    Full Text Available Australian fur seals breed on thirteen islands located in the Bass Strait, Australia. Land access to these islands is restricted, minimising human presence but boat access is still permissible with limitations on approach distances. Thirty-two controlled noise exposure experiments were conducted on breeding Australian fur seals to determine their behavioural response to controlled in-air motor boat noise on Kanowna Island (39°10'S, 146°18'E. Our results show there were significant differences in the seals' behaviour at low (64-70 dB versus high (75-85 dB sound levels, with seals orientating themselves towards or physically moving away from the louder boat noise at three different sound levels. Furthermore, seals responded more aggressively with one another and were more alert when they heard louder boat noise. Australian fur seals demonstrated plasticity in their vocal responses to boat noise with calls being significantly different between the various sound intensities and barks tending to get faster as the boat noise got louder. These results suggest that Australian fur seals on Kanowna Island show behavioural disturbance to high level boat noise. Consequently, it is recommended that an appropriate level of received boat sound emissions at breeding fur seal colonies be below 74 dB and that these findings be taken into account when evaluating appropriate approach distances and speed limits for boats.

  9. Legāti

    OpenAIRE

    Segliņa, Aiga

    2010-01-01

    Autore teorētiski analizē legāta jēdzienu testamentārās mantošanas ietvaros un atspoguļo praktiska pētījuma rezultātus. Teorētiskā daļa apskata legāta nodibināšanas formu un spēkā esamību, tā iegūšanu un atraidīšanu, izpildi un zaudēšanu, novēlējuma robežas un aprobežojumus. Pētījums veikts aptaujas veidā ar mērķi noskaidrot, cik liela Latvijas iedzīvotāju daļa apzinās legāta nodrošinātās priekšrocības testamentārajā mantošanā. Apskatīts notāra neitralitātes jautājums attiecībā pret mantošana...

  10. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  11. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    Science.gov (United States)

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  12. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    Directory of Open Access Journals (Sweden)

    Mikkel Wallentin

    2016-01-01

    Full Text Available Klinefelter syndrome (47, XXY (KS is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49 responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors. One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  13. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration.

    Directory of Open Access Journals (Sweden)

    Meghan Watson

    Full Text Available Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100-200 Hz or pulse duration from 0.18-0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.

  14. Voluntary Modulation of Hemodynamic Responses in Swallowing Related Motor Areas: A Near-Infrared Spectroscopy-Based Neurofeedback Study.

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    Full Text Available In the present study, we show for the first time that motor imagery of swallowing, which is defined as the mental imagination of a specific motor act without overt movements by muscular activity, can be successfully used as mental strategy in a neurofeedback training paradigm. Furthermore, we demonstrate its effects on cortical correlates of swallowing function. Therefore, N = 20 healthy young adults were trained to voluntarily increase their hemodynamic response in swallowing related brain areas as assessed with near-infrared spectroscopy (NIRS. During seven training sessions, participants received either feedback of concentration changes in oxygenated hemoglobin (oxy-Hb group, N = 10 or deoxygenated hemoglobin (deoxy-Hb group, N = 10 over the inferior frontal gyrus (IFG during motor imagery of swallowing. Before and after the training, we assessed cortical activation patterns during motor execution and imagery of swallowing. The deoxy-Hb group was able to voluntarily increase deoxy-Hb over the IFG during imagery of swallowing. Furthermore, swallowing related cortical activation patterns were more pronounced during motor execution and imagery after the training compared to the pre-test, indicating cortical reorganization due to neurofeedback training. The oxy-Hb group could neither control oxy-Hb during neurofeedback training nor showed any cortical changes. Hence, successful modulation of deoxy-Hb over swallowing related brain areas led to cortical reorganization and might be useful for future treatments of swallowing dysfunction.

  15. Reducing the motor response in haptic parallel matching eliminates the typically observed gender difference.

    Science.gov (United States)

    van Mier, Hanneke I

    2016-01-01

    When making two bars haptically parallel to each other, large deviations have been observed, most likely caused by the bias of a hand-centered egocentric reference frame. A consistent finding is that women show significantly larger deviations than men when performing this task. It has been suggested that this difference might be due to the fact that women are more egocentrically oriented than men or are less efficient in overcoming the egocentric bias of the hand. If this is indeed the case, reducing the bias of the egocentric reference frame should eliminate the above-mentioned gender difference. This was investigated in the current study. Sixty participants (30 men, 30 women) were instructed to haptically match (task HP) the orientation of a test bar with the dominant hand to the orientation of a reference bar that was perceived with the non-dominant hand. In a haptic visual task (task HV), in which only the reference bar and exploring hand were out of view, no motor response was required, but participants had to "match" the perceived orientation by verbally naming the parallel orientation that was read out on a test protractor. Both females and males performed better in the HV task than in the HP task. Significant gender effects were only found in the haptic parallelity task (HP), corroborating the idea that women perform at the same level as men when the egocentric bias of the hand is reduced.

  16. LEGS data acquisition facility

    International Nuclear Information System (INIS)

    LeVine, M.J.

    1985-01-01

    The data acquisition facility for the LEGS medium energy photonuclear beam line is composed of an auxiliary crate controller (ACC) acting as a front-end processor, loosely coupled to a time-sharing host computer based on a UNIX-like environment. The ACC services all real-time demands in the CAMAC crate: it responds to LAMs generated by data acquisition modules, to keyboard commands, and it refreshes the graphics display at frequent intervals. The host processor is needed only for printing histograms and recording event buffers on magnetic tape. The host also provides the environment for software development. The CAMAC crate is interfaced by a VERSAbus CAMAC branch driver

  17. Motor cortical representation of the pelvic floor muscles.

    Science.gov (United States)

    Schrum, A; Wolff, S; van der Horst, C; Kuhtz-Buschbeck, J P

    2011-07-01

    Pelvic floor muscle training involves rhythmical voluntary contractions of the external urethral sphincter and ancillary pelvic floor muscles. The representation of these muscles in the motor cortex has not been located precisely and unambiguously. We used functional magnetic resonance imaging to determine brain activity during slow and fast pelvic floor contractions. Cerebral responses were recorded in 17 healthy male volunteers, 21 to 47 years old, with normal bladder control. Functional magnetic resonance imaging was performed during metronome paced slow (0.25 Hertz) and fast (0.7 Hertz) contractions of the pelvic floor that mimicked the interruption of voiding. To study the somatotopy of the cortical representations, flexion-extension movements of the right toes were performed as a control task. Functional magnetic resonance imaging during pelvic floor contractions detected activity of the supplementary motor area in the medial wall and of the midcingulate cortex, insula, posterior parietal cortex, putamen, thalamus, cerebellar vermis and upper ventral pons. There were no significant differences in activation between slow and fast contractions. Toe movements involved significantly stronger activity of the paracentral lobule (ie the medial primary motor cortex) than did the pelvic floor contractions. Otherwise the areas active during pelvic floor and leg muscle contractions overlapped considerably. The motor cortical representation of pelvic floor muscles is located mostly in the supplementary motor area. It extends further ventrally and anteriorly than the representation of distal leg muscles. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    International Nuclear Information System (INIS)

    Gao Qing; Chen Huafu; Gong Qiyong

    2009-01-01

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  19. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    Energy Technology Data Exchange (ETDEWEB)

    Gao Qing [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen Huafu [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: Chenhf@uestc.edu.cn; Gong Qiyong [Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2009-10-30

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  20. Clinically Relevant Levels of 4-Aminopyridine Strengthen Physiological Responses in Intact Motor Circuits in Rats, Especially After Pyramidal Tract Injury.

    Science.gov (United States)

    Sindhurakar, Anil; Mishra, Asht M; Gupta, Disha; Iaci, Jennifer F; Parry, Tom J; Carmel, Jason B

    2017-04-01

    4-Aminopyridine (4-AP) is a Food and Drug Administration-approved drug to improve motor function in people with multiple sclerosis. Preliminary results suggest the drug may act on intact neural circuits and not just on demyelinated ones. To determine if 4-AP at clinically relevant levels alters the excitability of intact motor circuits. In anesthetized rats, electrodes were placed over motor cortex and the dorsal cervical spinal cord for electrical stimulation, and electromyogram electrodes were inserted into biceps muscle to measure responses. The motor responses to brain and spinal cord stimulation were measured before and for 5 hours after 4-AP administration both in uninjured rats and rats with a cut lesion of the pyramidal tract. Blood was collected at the same time as electrophysiology to determine drug plasma concentration with a goal of 20 to 100 ng/mL. We first determined that a bolus infusion of 0.32 mg/kg 4-AP was optimal: it produced on average 61.5 ± 1.8 ng/mL over the 5 hours after infusion. This dose of 4-AP increased responses to spinal cord stimulation by 1.3-fold in uninjured rats and 3-fold in rats with pyramidal tract lesion. Responses to cortical stimulation also increased by 2-fold in uninjured rats and up to 4-fold in the injured. Clinically relevant levels of 4-AP strongly augment physiological responses in intact circuits, an effect that was more robust after partial injury, demonstrating its broad potential in treating central nervous system injuries.

  1. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses

    NARCIS (Netherlands)

    Journee, H. -L.; Polak, H. E.; De Kleuver, M.

    2007-01-01

    Introduction. - In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded

  2. The Speed of Visual Attention and Motor-Response Decisions in Adult Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Cross-Villasana, Fernando; Finke, Kathrin; Hennig-Fast, Kristina; Kilian, Beate; Wiegand, Iris; Müller, Hermann Joseph; Möller, Hans-Jürgen; Töllner, Thomas

    2015-07-15

    Adults with attention-deficit/hyperactivity disorder (ADHD) exhibit slowed reaction times (RTs) in various attention tasks. The exact origins of this slowing, however, have not been established. Potential candidates are early sensory processes mediating the deployment of focal attention, stimulus response translation processes deciding upon the appropriate motor response, and motor processes generating the response. We combined mental chronometry (RT) measures of adult ADHD (n = 15) and healthy control (n = 15) participants with their lateralized event-related potentials during the performance of a visual search task to differentiate potential sources of slowing at separable levels of processing: the posterior contralateral negativity (PCN) was used to index focal-attentional selection times, while the lateralized readiness potentials synchronized to stimulus and response events were used to index the times taken for response selection and production, respectively. To assess the clinical relevance of event-related potentials, a correlation analysis between neural measures and subjective current and retrospective ADHD symptom ratings was performed. ADHD patients exhibited slower RTs than control participants, which were accompanied by prolonged PCN and lateralized readiness potentials synchronized to stimulus, but not lateralized readiness potentials synchronized to response events, latencies. Moreover, the PCN timing was positively correlated with ADHD symptom ratings. The behavioral RT slowing of adult ADHD patients was based on a summation of internal processing delays arising at perceptual and response selection stages; motor response production, by contrast, was not impaired. The correlation between PCN times and ADHD symptom ratings suggests that this brain signal may serve as a potential candidate for a neurocognitive endophenotype of ADHD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Adaptive leg coordination with a biologically inspired neurocontroller

    Science.gov (United States)

    Braught, Grant; Thomopoulos, Stelios C.

    1996-10-01

    Natural selection is responsible for the creation of robust and adaptive control systems. Nature's control systems are created only from primitive building blocks. Using insect neurophysiology as a guide, a neural architecture for leg coordination in a hexapod robot has been developed. Reflex chains and sensory feedback mechanisms from various insects and crustacea form the basis of a pattern generator for intra-leg coordination. The pattern generator contains neural oscillators which learn from sensory feedback to produce stepping patterns. Using sensory feedback as the source of learning information allows the pattern generator to adapt to changes in the leg dynamics due to internal or external causes. A coupling between six of the single leg pattern generators is used to produce the inter-leg coordination necessary to establish stable gaits.

  4. Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates.

    Science.gov (United States)

    Singh, Arun; Jenkins, Meagan A; Burke, Kenneth J; Beck, Goichi; Jenkins, Andrew; Scimemi, Annalisa; Traynelis, Stephen F; Papa, Stella M

    2018-01-23

    Dopamine (DA) loss in Parkinson's disease (PD) alters the function of striatal projection neurons (SPNs) and causes motor deficits, but DA replacement can induce further abnormalities. A key pathological change in animal models and patients is SPN hyperactivity; however, the role of glutamate in altered DA responses remains elusive. We tested the effect of locally applied AMPAR or NMDAR antagonists on glutamatergic signaling in SPNs of parkinsonian primates. Following a reduction in basal hyperactivity by antagonists at either receptor, DA inputs induced SPN firing changes that were stable during the entire motor response, in clear contrast with the typically unstable effects. The SPN activity reduction over an extended putamenal area controlled the release of involuntary movements in the "on" state and therefore improved motor responses to DA replacement. These results demonstrate the pathophysiological role of upregulated SPN activity and support strategies to reduce striatal glutamate signaling for PD therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Feedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons.

    Science.gov (United States)

    Khateb, Mohamed; Schiller, Jackie; Schiller, Yitzhak

    2017-01-06

    The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independently passively stimulated principal vibrissae. Optogenetic activation of vM1 supra-linearly amplified the response of vS1 neurons to passive vibrissa stimulation in all cortical layers measured. Maximal amplification occurred when onset of vM1 optogenetic activation preceded vibrissa stimulation by 20 ms. In addition to amplification, vM1 activation also sharpened angular tuning of vS1 neurons in all cortical layers measured. Our findings indicated that in addition to output motor signals, vM1 also sends preparatory signals to vS1 that serve to amplify and sharpen the response of neurons in the barrel cortex to incoming sensory input signals.

  6. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents.

    Science.gov (United States)

    Revill, Ann L; Fuglevand, Andrew J

    2017-01-01

    Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing

  7. Ubx regulates differential enlargement and diversification of insect hind legs.

    Directory of Open Access Journals (Sweden)

    Najmus Mahfooz

    2007-09-01

    Full Text Available Differential enlargement of hind (T3 legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug and Acheta domesticus (house cricket. In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs.

  8. Recruitment of prefrontal-striatal circuit in response to skilled motor challenge.

    Science.gov (United States)

    Guo, Yumei; Wang, Zhuo; Prathap, Sandhya; Holschneider, Daniel P

    2017-12-13

    A variety of physical fitness regimens have been shown to improve cognition, including executive function, yet our understanding of which parameters of motor training are important in optimizing outcomes remains limited. We used functional brain mapping to compare the ability of two motor challenges to acutely recruit the prefrontal-striatal circuit. The two motor tasks - walking in a complex running wheel with irregularly spaced rungs or walking in a running wheel with a smooth internal surface - differed only in the extent of skill required for their execution. Cerebral perfusion was mapped in rats by intravenous injection of [C]-iodoantipyrine during walking in either a motorized complex wheel or in a simple wheel. Regional cerebral blood flow (rCBF) was quantified by whole-brain autoradiography and analyzed in three-dimensional reconstructed brains by statistical parametric mapping and seed-based functional connectivity. Skilled or simple walking compared with rest, increased rCBF in regions of the motor circuit, somatosensory and visual cortex, as well as the hippocampus. Significantly greater rCBF increases were noted during skilled walking than for simple walking. Skilled walking, unlike simple walking or the resting condition, was associated with a significant positive functional connectivity in the prefrontal-striatal circuit (prelimbic cortex-dorsomedial striatum) and greater negative functional connectivity in the prefrontal-hippocampal circuit. Our findings suggest that the level of skill of a motor training task determines the extent of functional recruitment of the prefrontal-corticostriatal circuit, with implications for a new approach in neurorehabilitation that uses circuit-specific neuroplasticity to improve motor and cognitive functions.

  9. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Science.gov (United States)

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  10. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    Science.gov (United States)

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  11. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Estes, Patricia S; Daniel, Scott G; McCallum, Abigail P; Boehringer, Ashley V; Sukhina, Alona S; Zwick, Rebecca A; Zarnescu, Daniela C

    2013-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.

  12. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Patricia S. Estes

    2013-05-01

    Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.

  13. Efficacy of tricaine methanesulfonate (MS-222 as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles.

    Directory of Open Access Journals (Sweden)

    Carlana Ramlochansingh

    Full Text Available Anesthetics are drugs that reversibly relieve pain, decrease body movements and suppress neuronal activity. Most drugs only cover one of these effects; for instance, analgesics relieve pain but fail to block primary fiber responses to noxious stimuli. Alternately, paralytic drugs block synaptic transmission at neuromuscular junctions, thereby effectively paralyzing skeletal muscles. Thus, both analgesics and paralytics each accomplish one effect, but fail to singularly account for all three. Tricaine methanesulfonate (MS-222 is structurally similar to benzocaine, a typical anesthetic for anamniote vertebrates, but contains a sulfate moiety rendering this drug more hydrophilic. MS-222 is used as anesthetic in poikilothermic animals such as fish and amphibians. However, it is often argued that MS-222 is only a hypnotic drug and its ability to block neural activity has been questioned. This prompted us to evaluate the potency and dynamics of MS-222-induced effects on neuronal firing of sensory and motor nerves alongside a defined motor behavior in semi-intact in vitro preparations of Xenopus laevis tadpoles. Electrophysiological recordings of extraocular motor discharge and both spontaneous and evoked mechanosensory nerve activity were measured before, during and after administration of MS-222, then compared to benzocaine and a known paralytic, pancuronium. Both MS-222 and benzocaine, but not pancuronium caused a dose-dependent, reversible blockade of extraocular motor and sensory nerve activity. These results indicate that MS-222 as benzocaine blocks the activity of both sensory and motor nerves compatible with the mechanistic action of effective anesthetics, indicating that both caine-derivates are effective as single-drug anesthetics for surgical interventions in anamniotes.

  14. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study

    Science.gov (United States)

    Harrison, Neil R.; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.’s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation. PMID:26858621

  15. Effect anticipation affects perceptual, cognitive, and motor phases of response preparation: evidence from an event-related potential (ERP study

    Directory of Open Access Journals (Sweden)

    Neil Richard Harrison

    2016-01-01

    Full Text Available The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler, Nattkemper and Vogt’s (2012 experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here we repeated the experiment using event-related potentials (ERPs, and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioural data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long SOAs between imperative stimulus and Go-stimulus, i.e. when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked LRPs occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e. perceptual, cognitive, and motor phases of response preparation.

  16. Effect Anticipation Affects Perceptual, Cognitive, and Motor Phases of Response Preparation: Evidence from an Event-Related Potential (ERP) Study.

    Science.gov (United States)

    Harrison, Neil R; Ziessler, Michael

    2016-01-01

    The anticipation of action effects is a basic process that can be observed even for key-pressing responses in a stimulus-response paradigm. In Ziessler et al.'s (2012) experiments participants first learned arbitrary effects of key-pressing responses. In the test phase an imperative stimulus determined the response, but participants withheld the response until a Go-stimulus appeared. Reaction times (RTs) were shorter if the Go-stimulus was compatible with the learned response effect. This is strong evidence that effect representations were activated during response planning. Here, we repeated the experiment using event-related potentials (ERPs), and we found that Go-stimulus locked ERPs depended on the compatibility relationship between the Go-stimulus and the response effect. In general, this supports the interpretation of the behavioral data. More specifically, differences in the ERPs between compatible and incompatible Go-stimuli were found for the early perceptual P1 component and the later frontal P2 component. P1 differences were found only in the second half of the experiment and for long stimulus onset asynchronies (SOAs) between imperative stimulus and Go-stimulus, i.e., when the effect was fully anticipated and the perceptual system was prepared for the effect-compatible Go-stimulus. P2 amplitudes, likely associated with evaluation and conflict detection, were larger when Go-stimulus and effect were incompatible; presumably, incompatibility increased the difficulty of effect anticipation. Onset of response-locked lateralized readiness potentials (R-LRPs) occurred earlier under incompatible conditions indicating extended motor processing. Together, these results strongly suggest that effect anticipation affects all (i.e., perceptual, cognitive, and motor) phases of response preparation.

  17. Motor unit recruitment in human genioglossus muscle in response to hypercapnia.

    Science.gov (United States)

    Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John

    2010-11-01

    single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.

  18. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    Science.gov (United States)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  19. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Thornton, Siobhan; Bray, Signe; Langevin, Lisa Marie; Dewey, Deborah

    2018-06-01

    Motor impairment is associated with developmental coordination disorder (DCD), and to a lesser extent with attention-deficit/hyperactivity disorder (ADHD). Previous functional imaging studies investigated children with DCD or ADHD only; however, these two disorders co-occur in up to 50% of cases, suggesting that similar neural correlates are associated with these disorders. This study compared functional brain activation in children and adolescents (age range 8-17, M = 11.73, SD = 2.88) with DCD (n = 9), ADHD (n = 20), co-occurring DCD and ADHD (n = 18) and typically developing (TD) controls (n = 20). When compared to TD controls, children with co-occurring DCD/ADHD showed decreased activation during response inhibition in primary motor and sensory cortices. These findings suggest that children with co-occurring DCD and ADHD display significant functional changes in brain activation that could interfere with inhibition of erroneous motor responses. In contrast to previous studies, significant alterations in brain activation relative to TD controls, were not found in children with isolated DCD or ADHD. These findings highlight the importance of considering co-occurring disorders when investigating brain function in children with neurodevelopmental disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Not letting the left leg know what the right leg is doing: limb-specific locomotor adaptation to sensory-cue conflict.

    Science.gov (United States)

    Durgin, Frank H; Fox, Laura F; Hoon Kim, Dong

    2003-11-01

    We investigated the phenomenon of limb-specific locomotor adaptation in order to adjudicate between sensory-cue-conflict theory and motor-adaptation theory. The results were consistent with cue-conflict theory in demonstrating that two different leg-specific hopping aftereffects are modulated by the presence of conflicting estimates of self-motion from visual and nonvisual sources. Experiment 1 shows that leg-specific increases in forward drift during attempts to hop in place on one leg while blindfolded vary according to the relationship between visual information and motor activity during an adaptation to outdoor forward hopping. Experiment 2 shows that leg-specific changes in performance on a blindfolded hopping-to-target task are similarly modulated by the presence of cue conflict during adaptation to hopping on a treadmill. Experiment 3 shows that leg-specific aftereffects from hopping additionally produce inadvertent turning during running in place while blindfolded. The results of these experiments suggest that these leg-specific locomotor aftereffects are produced by sensory-cue conflict rather than simple motor adaptation.

  1. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  2. The automatic pelvic floor muscle response to the active straight leg raise in cases with pelvic girdle pain and matched controls.

    Science.gov (United States)

    Stuge, Britt; Sætre, Kaja; Ingeborg Hoff, Brækken

    2013-08-01

    The active straight leg raise (ASLR) test has been proposed as a clinical test for the assessment of pelvic girdle pain (PGP). Little is known about the activation of the pelvic floor muscles (PFM) during ASLR. The main aim of this study was to examine the automatic PFM contraction during ASLR. Specific aims were to compare automatic contraction to rest and to voluntary contraction, to compare PFM contraction during ASLR with and without compression and to examine whether there were any differences in PFM contraction between women with and without clinically diagnosed PGP during ASLR. Forty-nine pairs of women participated in a cross-sectional study with individual, one-to-one matched cases and controls. PFM was assessed by reliable and valid 3D ultrasound at rest, during voluntary and automatic contraction. Test-retest data for the levator hiatus during ASLR showed good repeatability. Significantly automatic PFM contractions occurred when ASLR tests were performed. There was a strong positive correlation between voluntary and automatic PFM contractions. Manual compression reduced the automatic PFM contraction during ASLR by 62-66%. There were no significant differences between cases and controls in reduction of levator hiatus or muscle length from rest to automatic contractions during ASLR. Interestingly, a significantly smaller levator hiatus was found in women with PGP than in controls, at rest, during an automatic contraction with ASLR and during voluntary contraction. In conclusion, a significant automatic PFM contraction occurred during ASLR, both in cases and in controls. Women with PGP had a significantly smaller levator hiatus than controls. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The dynamic response of a linear brushless D.C. motor

    Energy Technology Data Exchange (ETDEWEB)

    Moghani, J.S.; Eastham, J.F. [Univ. of Bath (United Kingdom). School of Electrical and Electronic Engineering

    1995-12-31

    The paper describes the use of the Matlab Analogue Simulation Toolbox SIMULINK for the closed loop dynamic modeling of a linear brushless dc motor which is supplied from a delta-modulated inverter. The work is validated by experimental results taken from a large test rig. Linear version of all rotating machines are possible; a rotating machine can be notionally cut along a radial plane and unrolled to yield a linear version. The most popular form of linear machine, as judged by the quantities that have been produced is the linear induction motor. This has the advantage of first an inexpensive secondary that is often a simple iron backed conducting plate, and secondly the possibility of simple voltage control. The linear brushless synchronous motor is potentially more expensive to produce than its induction counterpart because of the permanent magnets which provide the excitation mmf and the necessity of an inverter supply. However the machine has a power factor efficiency product which can be double that of an induction motor together with about twice the tractive force per pole area.

  4. A trial of dextromethorphan in parkinsonian patients with motor response complications

    NARCIS (Netherlands)

    Verhagen Metman, L.; Blanchet, P. J.; van den Munckhof, P.; del Dotto, P.; Natté, R.; Chase, T. N.

    1998-01-01

    The effects of the NMDA antagonist dextromethorphan (DM) on levodopa-associated dyskinesias and motor fluctuations were studied in patients with advanced Parkinson's disease. During initial open-label dose escalation, 6 of 18 patients reported a beneficial effect at their individually determined

  5. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.

    Science.gov (United States)

    Gauthier, Cindy; Grangeon, Murielle; Ananos, Ludivine; Brosseau, Rachel; Gagnon, Dany H

    2017-09-01

    Cardiorespiratory fitness assessment and training among manual wheelchair (MW) users are predominantly done with an arm-crank ergometer. However, arm-crank ergometer biomechanics differ substantially from MW propulsion biomechanics. This study aimed to quantify cardiorespiratory responses resulting from speed and slope increments during MW propulsion on a motorized treadmill and to calculate a predictive equation based on speed and slope for estimating peak oxygen uptake (VO 2peak ) in MW users. In total, 17 long-term MW users completed 12 MW propulsion periods (PP), each lasting 2min, on a motorized treadmill, in a random order. Each PP was separated by a 2-min rest. PPs were characterized by a combination of 3 speeds (0.6, 0.8 and 1.0m/s) and 4 slopes (0°, 2.7°, 3.6° and 4.8°). Six key cardiorespiratory outcome measures (VO 2 , heart rate, respiratory rate, minute ventilation and tidal volume) were recorded by using a gas-exchange analysis system. Rate of perceived exertion (RPE) was measured by using the modified 10-point Borg scale after each PP. For the 14 participants who completed the test, cardiorespiratory responses increased in response to speed and/or slope increments, except those recorded between the 3.6 o and 4.8 o slope, for which most outcome measures were comparable. The RPE was positively associated with cardiorespiratory response (r s ≥0.85). A VO 2 predictive equation (R 2 =99.7%) based on speed and slope for each PP was computed. This equation informed the development of a future testing protocol to linearly increase VO 2 via 1-min stages during treadmill MW propulsion. Increasing speed and slope while propelling a MW on a motorized treadmill increases cardiorespiratory response along with RPE. RPE can be used to easily and accurately monitor cardiorespiratory responses during MW exercise. The VO 2 can be predicted to some extent by speed and slope during MW propulsion. A testing protocol is proposed to assess cardiorespiratory fitness

  6. Defense through sensory inactivation: sea hare ink reduces sensory and motor responses of spiny lobsters to food odors.

    Science.gov (United States)

    Love-Chezem, Tiffany; Aggio, Juan F; Derby, Charles D

    2013-04-15

    Antipredator defenses are ubiquitous and diverse. Ink secretion of sea hares (Aplysia) is an antipredator defense acting through the chemical senses of predators by different mechanisms. The most common mechanism is ink acting as an unpalatable repellent. Less common is ink secretion acting as a decoy (phagomimic) that misdirects predators' attacks. In this study, we tested another possible mechanism--sensory inactivation--in which ink inactivates the predator's reception of food odors associated with would-be prey. We tested this hypothesis using spiny lobsters, Panulirus argus, as model predators. Ink secretion is composed of two glandular products, one being opaline, a viscous substance containing concentrations of hundreds of millimolar of total free amino acids. Opaline sticks to antennules, mouthparts and other chemosensory appendages of lobsters, physically blocking access of food odors to the predator's chemosensors, or over-stimulating (short term) and adapting (long term) the chemosensors. We tested the sensory inactivation hypotheses by treating the antennules with opaline and mimics of its physical and/or chemical properties. We compared the effects of these treatments on responses to a food odor for chemoreceptor neurons in isolated antennules, as a measure of effect on chemosensory input, and for antennular motor responses of intact lobsters, as a measure of effect on chemically driven motor behavior. Our results indicate that opaline reduces the output of chemosensors by physically blocking reception of and response to food odors, and this has an impact on motor responses of lobsters. This is the first experimental demonstration of inactivation of peripheral sensors as an antipredatory defense.

  7. Fluoxetine Maintains a State of Heightened Responsiveness to Motor Training Early After Stroke in a Mouse Model.

    Science.gov (United States)

    Ng, Kwan L; Gibson, Ellen M; Hubbard, Robert; Yang, Juemin; Caffo, Brian; O'Brien, Richard J; Krakauer, John W; Zeiler, Steven R

    2015-10-01

    Data from both humans and animal models suggest that most recovery from motor impairment after stroke occurs in a sensitive period that lasts only weeks and is mediated, in part, by an increased responsiveness to training. Here, we used a mouse model of focal cortical stroke to test 2 hypotheses. First, we investigated whether responsiveness to training decreases over time after stroke. Second, we tested whether fluoxetine, which can influence synaptic plasticity and stroke recovery, can prolong the period over which large training-related gains can be elicited after stroke. Mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent stroke induction in the caudal forelimb area. The mice were then retrained after a 1- or 7-day delay with and without fluoxetine. Recovery of prehension after a caudal forelimb area stroke was complete if training was initiated 1 day after stroke but incomplete if it was delayed by 7 days. In contrast, if fluoxetine was administered at 24 hours after stroke, then complete recovery of prehension was observed even with the 7-day training delay. Fluoxetine seemed to mediate its beneficial effect by reducing inhibitory interneuron expression in intact premotor cortex rather than through effects on infarct volume or cell death. There is a gradient of diminishing responsiveness to motor training over the first week after stroke. Fluoxetine can overcome this gradient and maintain maximal levels of responsiveness to training even 7 days after stroke. © 2015 American Heart Association, Inc.

  8. Intermittent whole-body cold immersion induces similar thermal stress but different motor and cognitive responses between males and females.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Mickevičienė, Dalia; Brazaitis, Marius

    2014-10-01

    The main aim of this study was to compare the thermal responses and the responses of cognitive and motor functions to intermittent cold stress between males and females. The intermittent cold stress continued until rectal temperature (TRE) reached 35.5°C or for a maximum of 170 min. Thermal response and motor and cognitive performance were monitored. During intermittent cold stress, body temperature variables decreased in all subjects (P cold strain index did not differ between sexes. Maximal voluntary contraction (MVC) decreased after intermittent cold exposure only in males (P cold stress on electrically evoked muscle properties, spinal (H-reflex), and supraspinal (V-waves) reflexes did not differ between sexes. Intermittent cold-induced cognitive perturbation of attention and memory task performance was greater in males (P whole-body cold immersion. Although no sex-specific differences were observed in muscle EMG activity, involuntary muscle properties, spinal and supraspinal reflexes, some of the sex differences observed (e.g., lower isometric MVC and greater cognitive perturbation in males) support the view of sex-specific physiological responses to core temperature decrease. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Sex-specific automatic responses to infant cries: TMS reveals greater excitability in females than males in motor evoked potentials

    Directory of Open Access Journals (Sweden)

    Irene eMessina

    2016-01-01

    Full Text Available Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS. Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs from the biceps brachii (BB and interosseus dorsalis primus (ID1 muscles as produced by TMS delivered from 0 to 250 ms from sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of the infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was delayed, attenuated to stimuli increasingly different from natural cry, and was absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this modulation is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation. This effect may reflect the greater and longstanding burden on females in caregiving infants.

  10. Responsiveness of rat fetuses to sibling motor activity: Communication in utero?

    Science.gov (United States)

    Brumley, Michele R; Hoagland, Riana; Truong, Melissa; Robinson, Scott R

    2018-04-01

    Previous research has revealed that fetuses detect and respond to extrauterine stimuli such as maternal movement and speech, but little attention has been cast on how fetuses may directly influence and respond to each other in the womb. This study investigated whether motor activity of E20 rat fetuses influenced the behavior of siblings in utero. Three experiments showed that; (a) contiguous siblings expressed a higher frequency of synchronized movement than noncontiguous siblings; (b) fetuses that lay between two siblings immobilized with curare showed less movement relative to fetuses between saline or uninjected controls; and (c) fetuses between two siblings behaviorally activated by the opioid agonist U50,488 also showed less activity and specific behavioral changes compared to controls. Our findings suggest that rat fetuses are directly impacted by sibling motor activity, and thus that a rudimentary form of communication between siblings may influence the development of fetuses in utero. © 2018 Wiley Periodicals, Inc.

  11. Medication Responsiveness of Motor Symptoms in a Population-Based Study of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Yvette M. Bordelon

    2011-01-01

    Full Text Available We assessed degree of Parkinson disease motor symptom improvement with medication among subjects enrolled in an ongoing, population-based study in Central California. The motor section of the unified Parkinson disease rating scale (UPDRS was performed on subjects in both OFF and ON medication states, and difference between these scores was used as an indicator of symptomatic benefit. Higher OFF minus ON scores correlated with more severe baseline symptoms. There was equivalent improvement on the motor UPDRS scale for subjects divided according to medication classes used: levodopa alone 7.3 points, levodopa plus other medications 8.5 points, and dopamine agonists but not levodopa 6.1 points. In addition, there was no difference in the magnitude of improvement when subjects were divided according to Parkinson disease subtype, defined as tremor dominant, akinetic-rigid, or mixed. In this community-based sample, these values are within the range of a clinically important difference as defined by previous studies.

  12. Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores

    Science.gov (United States)

    Tuma, M. Carolina; Zill, Andrew; Le Bot, Nathalie; Vernos, Isabelle; Gelfand, Vladimir

    1998-01-01

    Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles. PMID:9852150

  13. Assessing Children's Legs and Feet

    OpenAIRE

    Wedge, John H.

    1985-01-01

    Shoes are necessary for protection and warmth. Normal children do not require shoes for support. There is no scientific evidence that shoes—‘orthopedic’ or otherwise—influence or alter the growth or shape of the normal child's foot except, perhaps, adversely if they fit poorly. Family physicians must understand common variations of normal foot and leg development if they are to effectively advise and reassure parents about appropriate footwear. Flat feet, knock knees, bow legs, in-toeing, and...

  14. Improving venous leg ulcer management

    OpenAIRE

    Weller, Carolina Dragica

    2017-01-01

    This thesis reports several different methods to develop and evaluate complex interventions designed to improve venous leg ulcer management. Chronic venous leg ulcers (VLU) are the most common chronic wound problem in the community. Its health and economic burden is predicted to increase due to ageing of the community and increase in prevalence of diabetes and obesity. Although many patients seek health care for VLU, most do not receive the most effective management. Patients with this condi...

  15. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children's Emotional Responses Using Face and Sound Topology.

    Science.gov (United States)

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce "StorySense", an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children's motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage "low-motor" interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child's gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism.

  16. Linear and nonlinear auditory response properties of interneurons in a high-order avian vocal motor nucleus during wakefulness.

    Science.gov (United States)

    Raksin, Jonathan N; Glaze, Christopher M; Smith, Sarah; Schmidt, Marc F

    2012-04-01

    Motor-related forebrain areas in higher vertebrates also show responses to passively presented sensory stimuli. However, sensory tuning properties in these areas, especially during wakefulness, and their relation to perception, are poorly understood. In the avian song system, HVC (proper name) is a vocal-motor structure with auditory responses well defined under anesthesia but poorly characterized during wakefulness. We used a large set of stimuli including the bird's own song (BOS) and many conspecific songs (CON) to characterize auditory tuning properties in putative interneurons (HVC(IN)) during wakefulness. Our findings suggest that HVC contains a diversity of responses that vary in overall excitability to auditory stimuli, as well as bias in spike rate increases to BOS over CON. We used statistical tests to classify cells in order to further probe auditory responses, yielding one-third of neurons that were either unresponsive or suppressed and two-thirds with excitatory responses to one or more stimuli. A subset of excitatory neurons were tuned exclusively to BOS and showed very low linearity as measured by spectrotemporal receptive field analysis (STRF). The remaining excitatory neurons responded well to CON stimuli, although many cells still expressed a bias toward BOS. These findings suggest the concurrent presence of a nonlinear and a linear component to responses in HVC, even within the same neuron. These characteristics are consistent with perceptual deficits in distinguishing BOS from CON stimuli following lesions of HVC and other song nuclei and suggest mirror neuronlike qualities in which "self" (here BOS) is used as a referent to judge "other" (here CON).

  17. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals

    OpenAIRE

    Quintero, Hugo A.; Farris, Ryan J.; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to comm...

  18. Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control

    Science.gov (United States)

    Geyer, Hartmut

    2016-01-01

    Objective Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a non-amputee user. Results In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to mid-swing disturbances neither replicates human responses nor averts falls. Conclusions The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance This work provides a potential avenue for future development of control policies that help improve amputee balance recovery. PMID:26315935

  19. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  20. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    Science.gov (United States)

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  1. A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals.

    Science.gov (United States)

    Quintero, Hugo A; Farris, Ryan J; Hartigan, Clare; Clesson, Ismari; Goldfarb, Michael

    2011-01-01

    This paper presents preliminary results on the development of a powered lower limb orthosis intended to provide legged mobility (with the use of a stability aid, such as forearm crutches) to paraplegic individuals. The orthosis contains electric motors at both hip and both knee joints, which in conjunction with ankle-foot orthoses, provides appropriate joint kinematics for legged locomotion. The paper describes the orthosis and the nature of the controller that enables the SCI patient to command the device, and presents data from preliminary trials that indicate the efficacy of the orthosis and controller in providing legged mobility.

  2. On how the motor cortices resolve an inter-hemispheric response conflict: an event-related EEG potential-guided TMS study of the flankers task

    DEFF Research Database (Denmark)

    Verleger, Rolf; Kuniecki, Michal; Möller, Friderike

    2009-01-01

    in the contralateral first dorsal interosseus muscle was taken as an index of corticospinal excitability. Guided by the previous LRP measurement, magnetic stimuli were applied 0-90 ms after the individual LRP peak, to cover the epoch of conflict resolution. When flankers were incompatible with the target, excitability......An important aspect of human motor control is the ability to resolve conflicting response tendencies. Here we used single-pulse transcranial magnetic stimulation (TMS) to track the time course of excitability changes in the primary motor hand areas (M1(HAND)) while the motor system resolved...... response conflicts. Healthy volunteers had to respond fast with their right and left index fingers to right- and left-pointing arrows. These central target stimuli were preceded by flanking arrows, inducing premature response tendencies which competed with correct response activation. The time point...

  3. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  4. P2X1 receptors localized in lipid rafts mediate ATP motor responses in the human vas deferens longitudinal muscles.

    Science.gov (United States)

    Donoso, María Verónica; Norambuena, Andrés; Navarrete, Camilo; Poblete, Inés; Velasco, Alfredo; Huidobro-Toro, Juan Pablo

    2014-02-01

    To assess the role of the P2X1 receptors (P2X1R) in the longitudinal and circular layers of the human vas deferens, ex vivo-isolated strips or rings were prepared from tissue biopsies to record isometric contractions. To ascertain its membrane distribution, tissue extracts were analyzed by immunoblotting following sucrose gradient ultracentrifugation. ATP, alpha,beta-methylene ATP, or electrical field stimulation elicited robust contractions of the longitudinal layer but not of the circular layer which demonstrated inconsistent responses. Alpha,beta-methylene ATP generated stronger and more robust contractions than ATP. In parallel, prostatic segments of the rat vas deferens were examined. The motor responses in both species were not sustained but decayed within the first minute, showing desensitization to additional applications. Cross-desensitization was established between alpha,beta-methylene ATP or ATP-evoked contractions and electrical field stimulation-induced contractions. Full recovery of the desensitized motor responses required more than 30 min and showed a similar pattern in human and rat tissues. Immunoblot analysis of the human vas deferens extracts revealed a P2X1R oligomer of approximately 200 kDa under nonreducing conditions, whereas dithiothreitol-treated extracts showed a single band of approximately 70 kDa. The P2X1R was identified in ultracentrifugation fractions containing 15%-29% sucrose; the receptor localized in the same fractions as flotillin-1, indicating that it regionalized into smooth muscle lipid rafts. In conclusion, ATP plays a key role in human vas deferens contractile responses of the longitudinal smooth muscle layer, an effect mediated through P2X1Rs.

  5. Pipe crawler with extendable legs

    International Nuclear Information System (INIS)

    Zollinger, W.T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs

  6. Pipe crawler with extendable legs

    Science.gov (United States)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  7. Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis

    Science.gov (United States)

    Tseng, Shih-Chiao

    2010-01-01

    Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199

  8. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  9. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  10. Muscular responses appear to be associated with existence of kinesthetic perception during combination of tendon co-vibration and motor imagery.

    Science.gov (United States)

    Shibata, Eriko; Kaneko, Fuminari; Katayose, Masaki

    2017-11-01

    The afferent inputs from peripheral sensory receptors and efferent signals from the central nervous system that underlie intentional movement can contribute to kinesthetic perception. Previous studies have revealed that tendon vibration to wrist muscles elicits an excitatory response-known as the antagonist vibratory response-in muscles antagonistic to the vibrated muscles. Therefore, the present study aimed to further investigate the effect of tendon vibration combined with motor imagery on kinesthetic perception and muscular activation. Two vibrators were applied to the tendons of the left flexor carpi radialis and extensor carpi radialis. When the vibration frequency was the same between flexors and extensors, no participant perceived movement and no muscle activity was induced. When participants imagined flexing their wrists during tendon vibration, the velocity of perceptual flexion movement increased. Furthermore, muscle activity of the flexor increased only during motor imagery. These results demonstrate that kinesthetic perception can be induced during the combination of motor imagery and co-vibration, even with no experience of kinesthetic perception from an afferent input with co-vibration at the same frequency. Although motor responses were observed during combined co-vibration and motor imagery, no such motor responses were recorded during either co-vibration alone or motor imagery alone, suggesting that muscular responses during the combined condition are associated with kinesthetic perception. Thus, the present findings indicate that kinesthetic perception is influenced by the interaction between afferent input from muscle spindles and the efferent signals that underlie intentional movement. We propose that the physiological behavior resulting from kinesthetic perception affects the process of modifying agonist muscle activity, which will be investigated in a future study.

  11. Arm to leg coordination in elite butterfly swimmers.

    Science.gov (United States)

    Chollet, D; Seifert, L; Boulesteix, L; Carter, M

    2006-04-01

    This study proposed the use of four time gaps to assess arm-to-leg coordination in the butterfly stroke at increasing race paces. Fourteen elite male swimmers swam at four velocities corresponding to the appropriate paces for, respectively, the 400-m, 200-m, 100-m, and 50-m events. The different stroke phases of the arm and leg were identified by video analysis and then used to calculate four time gaps (T1: time gap between entry of the hands in the water and the high break-even point of the first undulation; T2: time gap between the beginning of the hands' backward movement and the low break-even point of the first undulation; T3: time gap between the hands' arrival in a vertical plane to the shoulders and the high break-even point of the second undulation; T4: time gap between the hands' release from the water and the low break-even point of the second undulation), the values of which described the changing relationship of arm to leg movements over an entire stroke cycle. With increases in pace, elite swimmers increased the stroke rate, the relative duration of the arm pull, the recovery and the first downward movement of the legs, and decreased the stroke length, the relative duration of the arm catch phase and the body glide with arms forward (measured by T2), until continuity in the propulsive actions was achieved. Whatever the paces, the T1, T3, and T4 values were close to zero and revealed a high degree of synchronisation at key motor points of the arm and leg actions. This new method to assess butterfly coordination could facilitate learning and coaching by situating the place of the leg undulation in relation with the arm stroke.

  12. Magnetic motor threshold and response to TMS in major depressive disorder.

    Science.gov (United States)

    Dolberg, O T; Dannon, P N; Schreiber, S; Grunhaus, L

    2002-09-01

    The aim of this study was to examine motor threshold (MT) during treatment with transcranial magnetic stimulation (TMS). The TMS was administered to 46 patients with depression and 13 controls. TMS was performed at 90% power of measured MT. The stimulation frequency was 10 Hz for 6 s, for 20 trains, with 30 s inter-train intervals. The trial included 20 sessions. Patients and controls were assessed on various outcome measures. The MT values were comparable between patients and controls. Neither demographic nor clinical variables were factors in determining MT. MT was not shown to have any predictive value regarding outcome of treatment. In this study, MT at baseline or changes in MT during the treatment period were not able to discriminate between patients and controls and were not found to have any predictive value with regard to treatment outcome. Copyright Blackwell Munksgaard 2002.

  13. A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish.

    Science.gov (United States)

    Candelier, Raphaël; Murmu, Meena Sriti; Romano, Sebastián Alejo; Jouary, Adrien; Debrégeas, Georges; Sumbre, Germán

    2015-07-21

    Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.

  14. Leg ulcers due to hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Krupa Shankar D

    2006-01-01

    Full Text Available Chronic leg ulcers are rare in young adults and generally indicate a vascular cause. We report a case of a 26-year-old man with leg ulcers of eight months duration. Doppler study indicated venous incompetence and a postphlebitic limb. However, as the distribution and number of ulcers was not consistent with stasis alone and no features of collagen vascular disease were noted, a hyperviscosity state was considered and confirmed with significantly elevated homocysteine level in the serum. Administration of vitamins B1, B2, B6 and B12, trimethyl-glycine, mecobalamine, folic acid and povidone iodine dressings with culture-directed antibiotic therapy led to a satisfactory healing of ulcers over a period of one month. Hyperhomocysteinemia must be considered in the differential diagnosis of leg ulcers in young individuals.

  15. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  16. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia

    Directory of Open Access Journals (Sweden)

    Alkomiet eHasan

    2013-10-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive stimulation technique that can be applied to modulate cortical activity through induction of cortical plasticity. Since various neuropsychiatric disorders are characterised by fluctuations in cortical activity levels (e.g. schizophrenia, tDCS is increasingly investigated as a treatment tool. Several studies have shown that the induction of cortical plasticity following classical, unilateral tDCS is reduced or impaired in the stimulated and non-stimulated primary motor cortices (M1 of schizophrenia patients. Moreover, an alternative, bilateral tDCS setup has recently been shown to modulate cortical plasticity in both hemispheres in healthy subjects, highlighting another potential treatment approach. Here we present the first study comparing the efficacy of unilateral tDCS (cathode left M1, anode right supraorbital with simultaneous bilateral tDCS (cathode left M1, anode right M1 in schizophrenia patients. tDCS-induced cortical plasticity was monitored by investigating motor-evoked potentials induced by single-pulse transcranial magnetic stimulation applied to both hemispheres. Healthy subjects showed a reduction of left M1 excitability following unilateral tDCS on the stimulated left hemisphere and an increase in right M1 excitability following bilateral tDCS. In schizophrenia, no plasticity was induced following both stimulation paradigms. The pattern of these results indicates a complex interplay between plasticity and connectivity that is impaired in schizophrenia patients. Further studies are needed to clarify the biological underpinnings and clinical impact of these findings.

  17. Modeling posture-dependent leg actuation in sagittal plane locomotion

    International Nuclear Information System (INIS)

    Schmitt, J; Clark, J

    2009-01-01

    The spring loaded inverted pendulum template has been shown to accurately model the steady locomotion dynamics of a variety of running animals, and has served as the inspiration for an entire class of dynamic running robots. While the template models the leg dynamics by an energy-conserving spring, insects and animals have structures that dissipate, store and produce energy during a stance phase. Recent investigations into the spring-like properties of limbs, as well as animal response to drop-step perturbations, suggest that animals use their legs to manage energy storage and dissipation, and that this management is important for gait stability. In this paper, we extend our previous analysis of control of the spring loaded inverted pendulum template via changes in the leg touch-down angle to include energy variations during the stance phase. Energy variations are incorporated through leg actuation that varies the force-free leg length during the stance phase, yet maintains qualitatively correct force and velocity profiles. In contrast to the partially asymptotically stable gaits identified in previous analyses, incorporating energy and leg angle variations in this manner produces complete asymptotic stability. Drop-step perturbation simulations reveal that the control strategy is rather robust, with gaits recovering from drops of up to 30% of the nominal hip height.

  18. Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex.

    Science.gov (United States)

    Litvak, Vladimir; Komssi, Soile; Scherg, Michael; Hoechstetter, Karsten; Classen, Joseph; Zaaroor, Menashe; Pratt, Hillel; Kahkonen, Seppo

    2007-08-01

    Analyzing the brain responses to transcranial magnetic stimulation (TMS) using electroencephalography (EEG) is a promising method for the assessment of functional cortical connectivity and excitability of areas accessible to this stimulation. However, until now it has been difficult to analyze the EEG responses during the several tens of milliseconds immediately following the stimulus due to TMS-induced artifacts. In the present study we show that by combining a specially adapted recording system with software artifact correction it is possible to remove a major part of the artifact and analyze the cortical responses as early as 10 ms after TMS. We used this methodology to examine responses of left and right primary motor cortex (M1) to TMS at different intensities. Based on the artifact-corrected data we propose a model for the cortical activation following M1 stimulation. The model revealed the same basic response sequence for both hemispheres. A large part of the response could be accounted for by two sources: a source close to the stimulation site (peaking approximately 15 ms after the stimulus) and a midline frontal source ipsilateral to the stimulus (peaking approximately 25 ms). In addition the model suggests responses in ipsilateral temporo-parietal junction areas (approximately 35 ms) and ipsilateral (approximately 30 ms) and middle (approximately 50 ms) cerebellum. Statistical analysis revealed significant dependence on stimulation intensity for the ipsilateral midline frontal source. The methodology developed in the present study paves the way for the detailed study of early responses to TMS in a wide variety of brain areas.

  19. Chronic repetitive reaching and grasping results in decreased motor performance and widespread tissue responses in a rat model of MSD.

    Science.gov (United States)

    Barbe, Mary F; Barr, Ann E; Gorzelany, Irene; Amin, Mamta; Gaughan, John P; Safadi, Fayez F

    2003-01-01

    This study investigated changes in motor skills and tissues of the upper extremity (UE) with regard to injury and inflammatory reactions resulting from performance of a voluntary forelimb repetitive reaching and grasping task in rats. Rats reached for food at a rate of 4 reaches/min, 2 h/day, and 3 days/week for up to 8 weeks during which reach rate, task duration and movement strategies were observed. UE tissues were collected bilaterally at weekly time points of 3-8 weeks and examined for morphological changes. Serum was tested for levels of interleukin-1alpha (IL-1) protein. The macrophage-specific antibody, ED1, was used to identify infiltrating macrophages and the ED2 antibody was used to identify resident macrophages. Rats were unable to maintain baseline reach rate in weeks 5 and 6 of task performance. Alternative patterns of movement emerged. Fraying of tendon fibrils was observed after 6 weeks in the mid-forelimb. After 4 weeks, a general elevation of ED1-IR macrophages were seen in all tissues examined bilaterally including the contralateral, uninvolved forelimb and hindlimbs. Significantly more resident macrophages were seen at 6 and 8 weeks in the reach limb. At 8 weeks, serum levels of IL-1alpha increased significantly above week 0. Our results demonstrate that performance of repetitive tasks elicits motor decrements, signs of injury and a cellular and tissue responses associated with inflammation.

  20. Motor control and cardiovascular responses during isoelectric contractions of the upper trapezius muscle: evidence for individual adaptation strategies.

    Science.gov (United States)

    Mathiassen, S E; Aminoff, T

    1997-01-01

    Ten females (25-50 years of age) performed isometric shoulder flexions, holding the right arm straight and in a horizontal position. The subjects were able to see the rectified surface electromyogram (EMG) from either one of two electrode pairs above the upper trapezius muscle and were instructed to keep its amplitude constant for 15 min while gradually unloading the arm against a support. The EMG electrodes were placed at positions representing a "cranial" and a "caudal" region of the muscle suggested previously to possess different functional properties. During the two contractions, recordings were made of: (1) EMG root mean square-amplitude and zero crossing (ZC) frequency from both electrode pairs on the trapezius as well as from the anterior part of the deltoideus, (2) supportive force, (3) heart rate (HR) and mean arterial blood pressure (MAP), and (4) perceived fatigue. The median responses during the cranial isoelectric contraction were small as compared to those reported previously in the literature: changes in exerted glenohumeral torque and ZC rate of the isoelectric EMG signal of -2.81% x min(-1) (P = 0.003) and 0.03% x min(-1) (P = 0.54), respectively, and increases in HR and MAP of 0.14 beats x min(-2) (P = 0.10) and 0.06 mmHg x min(-1) (P = 0.33), respectively. During the contraction with constant caudal EMG amplitude, the corresponding median responses were -2.51% x min(-1) (torque), 0.01% x min(-1) (ZC rate), 0.31 beats x min(-2) (HR), and 0.93 mmHg x min(-1) (MAP); P = 0.001, 0.69, 0.005, and 0.003, respectively. Considerable deviations from the "isoelectric" target amplitude were common for both contractions. Individuals differed markedly in response, and three distinct subgroups of subjects were identified using cluster analysis. These groups are suggested to represent different motor control scenarios, including differential engagement of subdivisions of the upper trapezius, alternating motor unit recruitment and, in one group, a gradual

  1. La mirada de los porteros de fútbol sala ante diferentes tipos de respuesta motriz. [Futsal goalkeepers’ gaze behavior with different type of motor response].

    Directory of Open Access Journals (Sweden)

    José Luis Graupera Sanz

    2013-07-01

    Full Text Available En este estudio se exploró y analizó el comportamiento visual de un grupo de porteros expertos de fútbol sala con el objetivo de comprobar cómo el tipo de respuesta motriz solicitada influía en su comportamiento visual. Participaron 4 porteros a los que se les presentó un total de 48 clips de vídeo en una pantalla a tamaño real, bajo dos condiciones de respuesta: con movimiento de parada y sin movimiento de parada. Se registró su mirada con el pupilómetro ASL Mobile Eye durante dos condiciones de tiro de penalti. Se analizó la mirada en el intervalo de -250 a 205 ms en torno al disparo. Los resultados mostraron que cuando respondían con la acción habitual de parada, solo se encontraron fijaciones en la mitad de los casos, estas fijaciones eran de corta duración y localizadas principalmente en la zona del suelo justo enfrente del balón. Por el contrario, cuando se mantenían en posición estática, su mirada se dirigía hacia la zona entre el balón y la pierna de apoyo, empleando fijaciones de una duración más larga. Se puede concluir que el comportamiento visual fue diferente entre las dos condiciones como resultado de la adaptación a las demandas espacio-temporales específicas de cada condición, ya que el grado de movimiento en la respuesta solicitada tuvo influencia en el comportamiento visual asociado.AbstractThis study explored and analyzed the visual behavior of a group of experts from futsal goalkeepers in order to check on if the type of requested motor response influenced their visual behavior. Four goalkeepers were presented with a total of 48 video clips on a real-size screen, under two response conditions: with and without movement. Gaze was recorded with the ASL Mobile Eye eyetracker, and was analyzed in the range of -250 to 205 ms around the penalty kick. The results showed that when responding with the usual stoping action, fixations were found only in the half of the cases, being of short duration, and

  2. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila.

    Science.gov (United States)

    Gowda, Swetha B M; Paranjpe, Pushkar D; Reddy, O Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich; VijayRaghavan, K

    2018-02-27

    Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila Our findings indicate that targeted down-regulation of the GABA A receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila . Copyright © 2018 the Author(s). Published by PNAS.

  3. Dynamically Stable Legged Locomotion

    Science.gov (United States)

    1989-09-01

    length during overground locomotion: task-specific modulation of the locomotor synergy. Journal of Experimental Psychology, 15(3). Raibert, M. I. 1986...energy conversions that intermediates between combus- tion of a fluid fuel such as gasoline , and the controlled delivery of force and power to the...question of this study: Can the extremely high energy density and rapid response of combustible fluid fuels such as gasoline be harnessed to produce

  4. Modification and Actuator Minimization of the Hip Leg Joint in a Bipedal Robot: A Proposed Design

    Directory of Open Access Journals (Sweden)

    Nirmalya Tripathi

    2014-12-01

    Full Text Available In recent times, there have been numeric applications of Biped Robots. In this paper, a proposed upper leg hip design of a biped was developed taking cost reduction and optimization as factors for consideration. The proposed system introduces a novel method which consists of a vibration reduction (VR DC stepper motor, microcontroller, microprocessor and gearing arrangement. The program in the microprocessor is so designed that it gives a fixed number of cycles/steps to the VR DC stepper motor in clockwise and thereafter in anti-clockwise direction. This turning movement can then be transmitted to the gearing system which precisely moves one upper leg when the VR DC stepper motor moves in clockwise direction, while the other upper leg remains static, and vice-versa. It has been observed that this new proposed system may reduce the cost overhead, weight and the energy consumption incurred by working on a single VR DC stepper motor while conventionally two stepper motors are used to give the motion of the two upper legs in a biped.

  5. The one-leg standing radiograph

    OpenAIRE

    Pinsornsak, P.; Naratrikun, K.; Kanitnate, S.; Sangkomkamhang, T.

    2016-01-01

    Objectives The purpose of this study was to compare the joint space width between one-leg and both-legs standing radiographs in order to diagnose a primary osteoarthritis of the knee. Methods Digital radiographs of 100 medial osteoarthritic knees in 50 patients were performed. The patients had undergone one-leg standing anteroposterior (AP) views by standing on the affected leg while a both-legs standing AP view was undertaken while standing on both legs. The severity of the osteoarthritis wa...

  6. Assessment of abdominal muscle function in individuals with motor-complete spinal cord injury above T6 in response to transcranial magnetic stimulation.

    Science.gov (United States)

    Bjerkefors, Anna; Squair, Jordan W; Chua, Romeo; Lam, Tania; Chen, Zhen; Carpenter, Mark G

    2015-02-01

    To use transcranial magnetic stimulation and electromyography to assess the potential for preserved function in the abdominal muscles in individuals classified with motor-complete spinal cord injury above T6. Five individuals with spinal cord injury (C5-T3) and 5 able-bodied individuals. Transcranial magnetic stimulation was delivered over the abdominal region of primary motor cortex during resting and sub-maximal (or attempted) contractions. Surface electromyography was used to record motor-evoked potentials as well as maximal voluntary (or attempted) contractions in the abdominal muscles and the diaphragm. Responses to transcranial magnetic stimulation in the abdominal muscles occurred in all spinal cord injury subjects. Latencies of muscle response onsets were similar in both groups; however, peak-to-peak amplitudes were smaller in the spinal cord injury group. During maximal voluntary (or attempted) contractions all spinal cord injury subjects were able to elicit electromyography activity above resting levels in more than one abdominal muscle across tasks. Individuals with motor-complete spinal cord injury above T6 were able to activate abdominal muscles in response to transcranial magnetic stimulation and during maximal voluntary (or attempted) contractions. The activation was induced directly through corticospinal pathways, and not indirectly by stretch reflex activations of the diaphragm. Transcranial magnetic stimulation and electromyography measurements provide a useful method to assess motor preservation of abdominal muscles in persons with spinal cord injury.

  7. Pain, opioids, and sleep: implications for restless legs syndrome treatment.

    Science.gov (United States)

    Trenkwalder, Claudia; Zieglgänsberger, Walter; Ahmedzai, Sam H; Högl, Birgit

    2017-03-01

    Opioid receptor agonists are known to relieve restless legs syndrome (RLS) symptoms, including both sensory and motor events, as well as improving sleep. The mechanisms of action of opioids in RLS are still a matter of speculation. The mechanisms by which endogenous opioids contribute to the pathophysiology of this polygenetic disorder, in which there are a number of variants, including developmental factors, remains unknown. A summary of the cellular mode of action of morphine and its (partial) antagonist naloxone via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the involvement of dendritic spine activation is described. By targeting pain and its consequences, opioids are the first-line treatment in many diseases and conditions with both acute and chronic pain and have thus been used in both acute and chronic pain conditions over the last 40 years. Addiction, dependence, and tolerability of opioids show a wide variability interindividually, as the response to opioids is influenced by a complex combination of genetic, molecular, and phenotypic factors. Although several trials have now addressed opioid treatment in RLS, hyperalgesia as a complication of long-term opioid treatment, or opioid-opioid interaction have not received much attention so far. Therapeutic opioids may act not only on opioid receptors but also via histamine or N-methyl-d-aspartate (NMDA) receptors. In patients with RLS, one of the few studies investigating opioid bindings found that possible brain regions involved in the severity of RLS symptoms are similar to those known to be involved in chronic pain, such as the medial pain system (medial thalamus, amygdala, caudate nucleus, anterior cingulate gyrus, insular cortex, and orbitofrontal cortex). The results of this diprenorphine positron emission tomography study suggested that the more severe the RLS, the greater the release of endogenous opioids. Since 1993, when the first small controlled study was performed with

  8. Training motor responses to food: A novel treatment for obesity targeting implicit processes

    NARCIS (Netherlands)

    Stice, E.; Lawrence, N.S.; Kemps, E.; Veling, H.P.

    2016-01-01

    The present review first summarizes results from prospective brain imaging studies focused on identifying neural vulnerability factors that predict excessive weight gain. Next, findings from cognitive psychology experiments evaluating various interventions involving food response inhibition training

  9. Epidemiology of leg amputation

    DEFF Research Database (Denmark)

    Ebskov, L B; Schroeder, T V; Holstein, P E

    1994-01-01

    The number of amputations performed for vascular disease in Denmark has decreased from 1777 (34.5 per 100,000 population) in 1983 to 1288 (25.0 per 100,000) in 1990, a reduction of 28 per cent. This decline coincided with an increase in vascular surgical activity of up to 100 per cent, including...... a marked rise in the rate of femorodistal reconstruction. Moreover, regional variation in vascular surgical activity correlated with percentage reduction in amputation rate (rS = 0.65, P amputations also decreased in favour of more distal levels during the period...... studied. These findings suggest that vascular surgery may be responsible for the lower amputation rate....

  10. Doppler ultrasound exam of an arm or leg

    Science.gov (United States)

    Peripheral vascular disease - Doppler; PVD - Doppler; PAD - Doppler; Blockage of leg arteries - Doppler; Intermittent claudication - Doppler; Arterial insufficiency of the legs - Doppler; Leg pain and ...

  11. Training motor responses to food: A novel treatment for obesity targeting implicit processes.

    Science.gov (United States)

    Stice, Eric; Lawrence, Natalia S; Kemps, Eva; Veling, Harm

    2016-11-01

    The present review first summarizes results from prospective brain imaging studies focused on identifying neural vulnerability factors that predict excessive weight gain. Next, findings from cognitive psychology experiments evaluating various interventions involving food response inhibition training or food response facilitation training are reviewed that appear to target these neural vulnerability factors and that have produced encouraging weight loss effects. Findings from both of these reviewed research fields suggest that interventions that reduce reward and attention region responses to high calorie food cues and increase inhibitory region responses to high calorie food cues could prove useful in the treatment of obesity. Based on this review, a new conceptual model is presented to describe how different cognitive training procedures may contribute to modifying eating behavior and important directions for future research are offered. It is concluded that there is a need for evaluating the effectiveness of more intensive food response training interventions and testing whether adding such training to extant weight loss interventions increases their efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Two strategies for response to 14 °C cold-water immersion: is there a difference in the response of motor, cognitive, immune and stress markers?

    Directory of Open Access Journals (Sweden)

    Marius Brazaitis

    Full Text Available Here, we address the question of why some people have a greater chance of surviving and/or better resistance to cold-related-injuries in prolonged exposure to acute cold environments than do others, despite similar physical characteristics. The main aim of this study was to compare physiological and psychological reactions between people who exhibited fast cooling (FC; n = 20 or slow cooling (SC; n = 20 responses to cold water immersion. Individuals in whom the T(re decreased to a set point of 35.5 °C before the end of the 170-min cooling time were indicated as the FC group; individuals in whom the T(re did not decrease to the set point of 35.5 °C before the end of the 170-min cooling time were classified as the SC group. Cold stress was induced using intermittent immersion in bath water at 14 °C. Motor (spinal and supraspinal reflexes, voluntary and electrically induced skeletal muscle contraction force and cognitive (executive function, short term memory, short term spatial recognition performance, immune variables (neutrophils, leucocytes, lymphocytes, monocytes, IL-6, TNF-α, markers of hypothalamic-pituitary-adrenal axis activity (cortisol, corticosterone and autonomic nervous system activity (epinephrine, norepinephrine were monitored. The data obtained in this study suggest that the response of the FC group to cooling vs the SC group response was more likely an insulative-hypothermic response and that the SC vs the FC group displayed a metabolic-insulative response. The observations that an exposure time to 14 °C cold water--which was nearly twice as short (96-min vs 170-min with a greater rectal temperature decrease (35.5 °C vs 36.2 °C in the FC group compared with the SC group--induces similar responses of motor, cognitive, and blood stress markers were novel. The most important finding is that subjects with a lower cold-strain-index (SC group showed stimulation of some markers of innate immunity and suppression of markers of

  13. Two Pilot Studies of the Effect of Bicycling on Balance and Leg Strength among Older Adults

    OpenAIRE

    Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna

    2013-01-01

    Objectives. Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Methods. Study 1: a cross-sectional survey of 43 adults aged 44–79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49–72 were recruited...

  14. Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex.

    Science.gov (United States)

    Lehner, Rea; Meesen, Raf; Wenderoth, Nicole

    2017-07-01

    Observing another person experiencing exogenously inflicted pain (e.g. by a sharp object penetrating a finger) modulates the excitability of the observer' primary motor cortex (M1). By contrast, far less is known about the response to endogenously evoked pain such as sudden back pain provoked by lifting a heavy object. Here, participants (n=26) observed the lifting of a heavy object. During this action the actor (1) flexed and extended the legs (LEG), (2) flexed and extended the back (BACK) or (3) flexed and extended the back which caused visible pain (BACKPAIN). Corticomotor excitability was measured by applying a single transcranial magnetic stimulation pulse to the M1 representation of the muscle erector spinae and participants scored their perception of the actor's pain on the numeric pain rating scale (NPRS). The participants scored vicarious pain as highest during the BACKPAIN condition and lowest during the LEG condition. MEP size was significantly lower for the LEG than the BACK and BACKPAIN condition. Although we found no statistical difference in the motor-evoked potential (MEP) size between the conditions BACK and BACKPAIN, there was a significant correlation between the difference in NPRS scores between the conditions BACKPAIN and BACK and the difference in MEP size between these conditions. Participants who believed the vicarious pain to be much stronger in the BACKPAIN than in the BACK condition also exhibited higher MEPs for the BACKPAIN than the BACK condition. Our results indicate that observing how others lift heavy objects facilitates motor representations of back muscles in the observer. Modulation occurs in a movement-specific manner and is additionally modulated by the extent to which the participants perceived the actor's pain. Our findings suggest that movement observation might be a promising paradigm to study the brain's response to back pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Drummond, J. C.

    1997-01-01

    We have compared the effects of 50% nitrous oxide and propofol, each administered concurrently with sufentanil, on the amplitudes and latencies of the compound muscle action potential (CMAP) response to transcranial electrical stimulation. Using a crossover design, 12 patients undergoing spinal

  16. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm2

    International Nuclear Information System (INIS)

    Pillon, Mario; Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo; Carta, Mario; Fiorani, Orlando; Santagata, Alfonso

    2015-01-01

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm 2 . • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10 17 n/cm 2 . Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted for the

  17. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Science.gov (United States)

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  18. The Influence of Matching and Motor-Imitation Abilities on Rapid Acquisition of Manual Signs and Exchange-Based Communicative Responses

    Science.gov (United States)

    Gregory, Meagan K.; DeLeon, Iser G.; Richman, David M.

    2009-01-01

    Establishing a relation between existing skills and acquisition of communicative responses may be useful in guiding selection of alternative communication systems. Matching and motor-imitation skills were assessed for 6 children with developmental disabilities, followed by training to request the same set of preferred items using exchange-based…

  19. Emotions predictably modify response times in the initiation of human motor actions: A meta-analytic review.

    Science.gov (United States)

    Beatty, Garrett F; Cranley, Nicole M; Carnaby, Giselle; Janelle, Christopher M

    2016-03-01

    Emotions motivate individuals to attain appetitive goals and avoid aversive consequences. Empirical investigations have detailed how broad approach and avoidance orientations are reflected in fundamental movement attributes such as the speed, accuracy, and variability of motor actions. Several theoretical perspectives propose explanations for how emotional states influence the speed with which goal directed movements are initiated. These perspectives include biological predisposition, muscle activation, distance regulation, cognitive evaluation, and evaluative response coding accounts. A comprehensive review of literature and meta-analysis were undertaken to quantify empirical support for these theoretical perspectives. The systematic review yielded 34 studies that contained 53 independent experiments producing 128 effect sizes used to evaluate the predictions of existing theories. The central tenets of the biological predisposition (Hedges' g = -0.356), distance regulation (g = -0.293; g = 0.243), and cognitive evaluation (g = -0.249; g = -0.405; g = -0.174) accounts were supported. Partial support was also identified for the evaluative response coding (g = -0.255) framework. Our findings provide quantitative evidence that substantiate existing theoretical perspectives, and provide potential direction for conceptual integration of these independent perspectives. Recommendations for future empirical work in this area are discussed. (c) 2016 APA, all rights reserved).

  20. [Etiological diagnosis of leg ulcers].

    Science.gov (United States)

    Debure, Clélia

    2010-09-20

    Etiological diagnosis of leg ulcers must be the first step of treatment, even if we know that veinous disease is often present. We can build a clinical decisional diagram, which helps us to understand and not forget the other causes of chronic wounds and choose some basic examination, like ultrasound and histological findings. This diagnosis helps to choose the right treatment in order to cure even the oldest venous ulcers. Educational programs should be improved to prevent recurrence.

  1. Aesthetic refinements in reconstructive microsurgery of the lower leg.

    Science.gov (United States)

    Rainer, Christian; Schwabegger, Anton H; Gardetto, Alexander; Schoeller, Thomas; Hussl, Heribert; Ninkovic, Milomir M

    2004-02-01

    Even if a surgical procedure is performed for reconstructive and functional reasons, a plastic surgeon must be responsible for the visible result of the work and for the social reintegration of the patient; therefore, the aesthetic appearance of a microsurgically reconstructed lower leg must be considered. Based on the experience of 124 free-tissue transfers to the lower leg performed in 112 patients between January 1994 and March 2001 (110 [88.7 percent] were transferred successfully), three cases are presented. Considerations concerning flap selection and technical refinements in designing and tailoring microvascular flaps to improve the quality of reconstruction, also according to the aesthetic appearance, are discussed.

  2. A new biarticular actuator design facilitates control of leg function in BioBiped3.

    Science.gov (United States)

    Sharbafi, Maziar Ahmad; Rode, Christian; Kurowski, Stefan; Scholz, Dorian; Möckel, Rico; Radkhah, Katayon; Zhao, Guoping; Rashty, Aida Mohammadinejad; Stryk, Oskar von; Seyfarth, Andre

    2016-07-01

    Bioinspired legged locomotion comprises different aspects, such as (i) benefiting from reduced complexity control approaches as observed in humans/animals, (ii) combining embodiment with the controllers and (iii) reflecting neural control mechanisms. One of the most important lessons learned from nature is the significant role of compliance in simplifying control, enhancing energy efficiency and robustness against perturbations for legged locomotion. In this research, we investigate how body morphology in combination with actuator design may facilitate motor control of leg function. Inspired by the human leg muscular system, we show that biarticular muscles have a key role in balancing the upper body, joint coordination and swing leg control. Appropriate adjustment of biarticular spring rest length and stiffness can simplify the control and also reduce energy consumption. In order to test these findings, the BioBiped3 robot was developed as a new version of BioBiped series of biologically inspired, compliant musculoskeletal robots. In this robot, three-segmented legs actuated by mono- and biarticular series elastic actuators mimic the nine major human leg muscle groups. With the new biarticular actuators in BioBiped3, novel simplified control concepts for postural balance and for joint coordination in rebounding movements (drop jumps) were demonstrated and approved.

  3. Military boot attenuates axial loading to the lower leg.

    Science.gov (United States)

    Yoganandan, Narayan; Schlick, Michael; Arun, Mike W J; Pintar, Frank A

    2014-01-01

    Biomechanical tests to understand injury mechanisms and derive injury tolerance information using Post-Mortem Human Subjects (PMHS) have not used foot protection and they have primarily focused on civilian environments such as automotive and athletic- and sports-related events. As military personnel use boots, tests with the boot are required to understand their effect on attenuating lower leg loads. The purpose of this study was therefore, to determine the modulation of human lower leg kinematics with boot compressions and share of the force absorbed by the boot from underbody blast loading. Axial impacts were delivered to the Hybrid III dummy lower leg in the neutral position. The dummy leg was instrumented with its internal upper and lower tibia load cells, and in addition, a knee load cell was attached to the proximal end. Tests were conducted at 4.4 to 8.9 m/s, with and without boots, and repeat tests were done. Morphologies of the force-time responses were similar at the three load cell locations and for all input combinations and booted and unbooted conditions. However, booted tests resulted in considerably lower maximum forces (approximately two-third reduction) than unbooted tests. These results clearly show that boots can absorb a considerable share of the impact energy and decrease impact loads transmitted to the lower leg under vertical loading, thus necessitating the generation of tolerance data using PMHS for this environment.

  4. The role of precues in the preparation of motor responses in humans.

    Science.gov (United States)

    Eversheim, Udo; Bock, Otmar

    2002-09-01

    The authors investigated how precues about the location of an upcoming target are used by the sensorimotor system to reduce manual reaction time. In 4 experiments, participants (N = 12 in each experiment) pressed a response key as fast as possible when a precued or a nonprecued visual target appeared. Precues remained effective when a visual mask was interposed between the display of the precue and the target (Experiment 1), which suggests that precues act downstream from visual sensory memory. The precue effect was abolished when precues were presented along with a task requiring attention and a verbal response (Experiment 2) but not when presented with a task that required verbal output but had no attention demands (Experiment 3). Those findings indicate that precues must be processed attentively to become effective. When the attention-demanding task was interposed between precue and target display, the precue effect was still abolished (Experiment 4), which suggests that individuals' attention must remain in the precued area until target appearance.

  5. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Ágatha Oliveira-Giacomelli

    2018-04-01

    Full Text Available Since proving adenosine triphosphate (ATP functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD, motor neuron diseases (MND, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington's Disease (HD, restless leg syndrome (RLS, and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.

  6. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Boushel, Robert; Langberg, Henning

    2011-01-01

    One-legged dynamic knee-extension exercise (DKE) is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron...... emission tomography (PET) determined uptake of [18F]-fluoro-deoxy-glucose (GU) during DKE. Five healthy male subjects performed DKE at 25 W for 35 min and both the contracting and contralateral resting leg were scanned with PET from mid-thigh and distally. On average, exercise GU was the highest...

  7. Effects of age and gender on neural networks of motor response inhibition: from adolescence to mid-adulthood.

    Science.gov (United States)

    Rubia, Katya; Lim, Lena; Ecker, Christine; Halari, Rozmin; Giampietro, Vincent; Simmons, Andrew; Brammer, Michael; Smith, Anna

    2013-12-01

    Functional inhibitory neural networks mature progressively with age. However, nothing is known about the impact of gender on their development. This study employed functional magnetic resonance imaging (fMRI) to investigate the effects of age, sex, and sex by age interactions on the brain activation of 63 healthy males and females, between 13 and 38 years, performing a Stop task. Increasing age was associated with progressively increased activation in typical response inhibition areas of right inferior and dorsolateral prefrontal and temporo-parietal regions. Females showed significantly enhanced activation in left inferior and superior frontal and striatal regions relative to males, while males showed increased activation relative to females in right inferior and superior parietal areas. Importantly, left frontal and striatal areas that showed increased activation in females, also showed significantly increased functional maturation in females relative to males, while the right inferior parietal activation that was increased in males showed significantly increased functional maturation relative to females. The findings demonstrate for the first time that sex-dimorphic activation patterns of enhanced left fronto-striatal activation in females and enhanced right parietal activation in males during motor inhibition appear to be the result of underlying gender differences in the functional maturation of these brain regions. © 2013. Published by Elsevier Inc. All rights reserved.

  8. No effect of anodal transcranial direct current stimulation over the motor cortex on response-related ERPs during a conflict task.

    Directory of Open Access Journals (Sweden)

    Alexander Christian Conley

    2016-08-01

    Full Text Available Anodal transcranial direct current stimulation (tDCS over the motor cortex is considered a potential treatment for motor rehabilitation following stroke and other neurological pathologies. However, both the context under which this stimulation is effective and the underlying mechanisms remain to be determined. In this study, we examined the mechanisms by which anodal tDCS may affect motor performance by recording event-related potentials (ERPs during a cued go/nogo task after anodal tDCS over dominant M1 in young adults (Experiment 1 and both dominant and non-dominant M1 in old adults (Experiment 2. In both experiments, anodal tDCS had no effect on either response time or response-related ERPs, including the cue-locked contingent negative variation (CNV and both target-locked and response-locked lateralised readiness potentials (LRP. Bayesian model selection analyses showed that, for all measures, the null effects model was stronger than a model including anodal tDCS vs. sham. We conclude that anodal tDCS has no effect on response time or response-related ERPs during a cued go/nogo task in either young or old adults.

  9. A direct examination of the effect of intranasal administration of oxytocin on approach-avoidance motor responses to emotional stimuli.

    Directory of Open Access Journals (Sweden)

    Angeliki Theodoridou

    Full Text Available Oxytocin has been shown to promote a host of social behaviors in humans but the exact mechanisms by which it exerts its effects are unspecified. One prominent theory suggests that oxytocin increases approach and decreases avoidance to social stimuli. Another dominant theory posits that oxytocin increases the salience of social stimuli. Herein, we report a direct test of these hypotheses. In a double-blind, placebo-controlled study we examined approach-avoidance motor responses to social and non-social emotional stimuli. One hundred and twenty participants self-administered either 24 IU oxytocin or placebo and moved a lever toward or away from pictures of faces depicting emotional expressions or from natural scenes appearing before them on a computer screen. Lever movements toward stimuli decreased and movements away increased stimuli size producing the illusion that stimuli moved away from or approached participants. Reaction time data were recorded. The task produced the effects that were anticipated on the basis of the approach-avoidance literature in relation to emotional stimuli, yet the anticipated speeded approach and slowed avoidance responses to emotional faces by the oxytocin group were not observed. Interestingly, the oxytocin treatment group was faster to approach and avoid faces depicting disgust relative to the placebo group, suggesting a salience of disgust for the former group. Results also showed that within the oxytocin group women's reaction times to all emotional faces were faster than those of men, suggesting sex specific effects of oxytocin. The present findings provide the first direct evidence that intranasal oxytocin administration does not enhance approach/avoidance to social stimuli and does not exert a stronger effect on social vs. non-social stimuli in the context of processing of emotional expressions and scenes. Instead, our data suggest that oxytocin administration increases the salience of certain social stimuli

  10. Effects of 2-day calorie restriction on cardiovascular autonomic response, mood, and cognitive and motor functions in obese young adult women.

    Science.gov (United States)

    Solianik, Rima; Sujeta, Artūras; Čekanauskaitė, Agnė

    2018-06-02

    Although long-term energy restriction has been widely investigated and has consistently induced improvements in health and cognitive and motor functions, the responses to short-duration calorie restriction are not completely understood. The purpose of this study was to investigate the effects of a 2-day very low-calorie diet on evoked stress, mood, and cognitive and motor functions in obese women. Nine obese women (body fatness > 32%) aged 22-31 years were tested under two randomly allocated conditions: 2-day very low-calorie diet (511 kcal) and 2-day usual diet. The perceived stressfulness of the diet, cardiovascular autonomic response, and cognitive and motor performances were evaluated before and after each diet. The subjective stress rating of the calorie-restricted diet was 41.5 ± 23.3. Calorie restriction had no detectable effects on the heart rate variability indices, mood, grip strength, or psychomotor functions. By contrast, calorie restriction increased (p restriction evoked moderate stress in obese women, cardiovascular autonomic function was not affected. Calorie restriction had complex effects on cognition: it declined cognitive flexibility, and improved spatial processing and visuospatial working memory, but did not affect mood or motor behavior.

  11. Sensitivity of sensor-based sit-to-stand peak power to the effects of training leg strength, leg power and balance in older adults.

    Science.gov (United States)

    Regterschot, G Ruben H; Folkersma, Marjanne; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren

    2014-01-01

    Increasing leg strength, leg power and overall balance can improve mobility and reduce fall risk. Sensor-based assessment of peak power during the sit-to-stand (STS) transfer may be useful for detecting changes in mobility and fall risk. Therefore, this study investigated whether sensor-based STS peak power and related measures are sensitive to the effects of increasing leg strength, leg power and overall balance in older adults. A further aim was to compare sensitivity between sensor-based STS measures and standard clinical measures of leg strength, leg power, balance, mobility and fall risk, following an exercise-based intervention. To achieve these aims, 26 older adults (age: 70-84 years) participated in an eight-week exercise program aimed at improving leg strength, leg power and balance. Before and after the intervention, performance on normal and fast STS transfers was evaluated with a hybrid motion sensor worn on the hip. In addition, standard clinical tests (isometric quadriceps strength, Timed Up and Go test, Berg Balance Scale) were performed. Standard clinical tests as well as sensor-based measures of peak power, maximal velocity and duration of normal and fast STS showed significant improvements. Sensor-based measurement of peak power, maximal velocity and duration of normal STS demonstrated a higher sensitivity (absolute standardized response mean (SRM): ≥ 0.69) to the effects of training leg strength, leg power and balance than standard clinical measures (absolute SRM: ≤ 0.61). Therefore, the presented sensor-based method appears to be useful for detecting changes in mobility and fall risk. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The single-leg-stance test in Parkinson's disease.

    Science.gov (United States)

    Chomiak, Taylor; Pereira, Fernando Vieira; Hu, Bin

    2015-03-01

    Timed single-leg-stance test (SLST) is widely used to assess postural control in the elderly. In Parkinson's disease (PD), it has been shown that an SLST around 10 seconds or below may be a sensitive indicator of future falls. However, despite its role in fall risk, whether SLST times around 10 seconds marks a clinically important stage of disease progression has largely remained unexplored. A cross-sectional study where 27 people with PD were recruited and instructed to undertake timed SLST for both legs was conducted. Disease motor impairment was assessed with the Unified Parkinson's Disease Rating Scale Part 3 (UPDRS-III). This study found that: 1) the SLST in people with PD shows good test-retest reliability; 2) SLST values can be attributed to two non-overlapping clusters: a low (10.4 ± 6.3 seconds) and a high (47.6 ± 11.7 seconds) value SLST group; 3) only the low value SLST group can be considered abnormal when age-matched normative SLST data are taken into account for comparison; and 4) lower UPDRS-III motor performance, and the bradykinesia sub-score in particular, are only associated with the low SLST group. These results lend further support that a low SLST time around 10 seconds marks a clinically important stage of disease progression with significant worsening of postural stability in PD.

  13. Respiratory, cardiovascular and metabolic responses during different modes of overground bionic ambulation in persons with motor-incomplete spinal cord injury: A case series

    Directory of Open Access Journals (Sweden)

    Jochen Kressler

    2017-09-01

    Full Text Available Objective: To investigate the effects of overground bionic ambulation with variable assistance on cardiorespiratory and metabolic responses in persons with motor-incomplete spinal cord injury. Design: Case series. Subjects: Four participants with chronic, motor-incomplete spinal cord injury. Methods: Subjects completed a maximal graded exercise test on an arm-ergometer and 3 6-min bouts of overground bionic ambulation using different modes of assistance, i.e. Maximal, Adaptive, Fixed. Cardiorespiratory (oxygen consumption and metabolic (caloric expenditure and substrate utilization measures were taken using a mobile metabolic cart at each overground bionic ambulation assistance. Results: Cardiorespiratory responses ranged from low (24% VO2peak for the least impaired and fittest individual to supramaximal (124% VO2peak for the participant with the largest impairments and the lowest level of fitness. Different overground bionic ambulation assistive modes elicited small (3–8% VO2peak differences in cardiorespiratory responses for 3 participants. One participant had a large (28% VO2peak difference in cardiorespiratory responses to different modes of overground bionic ambulation. Metabolic responses mostly tracked closely with cardiorespiratory responses. Total energy expenditure ranged from 1.39 to 7.17 kcal/min. Fat oxidation ranged from 0.00 to 0.17 g/min across participants and different overground bionic ambulation modes. Conclusion: Overground bionic ambulation with variable assistance can substantially increase cardiorespiratory and metabolic responses; however, these responses vary widely across participants and overground bionic ambulation modes.

  14. A Hydroxyurea-induced Leg Ulcer

    OpenAIRE

    Hwang, Seon-Wook; Hong, Soon-Kwon; Kim, Sang-Hyun; Seo, Jong-Keun; Lee, Deborah; Sung, Ho-Suk

    2009-01-01

    Hydroxyurea is a cytostatic agent that has recently become the drug of choice in the treatment of various myeloproliferative diseases. The cutaneous side effects of hydroxyurea include xerosis, hyperpigmentation, nail discoloration, and scaling. Leg ulcers have only rarely been reported in association with hydroxyurea treatment. A 75-year-old woman presented with leg ulcers, nail discoloration, and xerosis. The leg ulcers were refractory to conventional treatment. She had been taking oral hyd...

  15. Fast response Antiwindup PI speed controller of Brushless DC motor drive: Modeling, simulation and implementation on DSP

    Directory of Open Access Journals (Sweden)

    Mohd Tariq

    2016-05-01

    Full Text Available Most of the Brushless DC (BLDC motors drive adopts proportional, integral and derivative (PID controller and pulse width modulation (PWM scheme for speed control. Hence, BLDC motor drive has strong saturation characteristics. The saturation results in a typical windup phenomenon. The paper presents an Antiwindup drive for BLDC motor. An Antiwindup controller (AWC has been used in the paper. AWC has been modeled in MATLAB/Simulink and comparison has been done between conventional PI controller and AWC at different starting loads. Dynamic characteristics of the BLDC motor drive have been examined and results are presented and discussed in detail in this paper. Details of DSP based experimental validation of the simulated results are also presented here.

  16. The role of the medial caudate nucleus, but not the hippocampus, in a matching-to sample task for a motor response.

    Science.gov (United States)

    Kesner, Raymond P; Gilbert, Paul E

    2006-04-01

    A delayed-match-to-sample task was used to assess memory for motor responses in rats with control, hippocampus, or medial caudate nucleus (MCN) lesions. All testing was conducted on a cheeseboard maze in complete darkness using an infrared camera. A start box was positioned in the centre of the maze facing a randomly determined direction on each trial. On the sample phase, a phosphorescent object was randomly positioned to cover a baited food well in one of five equally spaced positions around the circumference of the maze forming a 180-degree arc 60 cm from the box. The rat had to displace the object to receive food and return to the start box. The box was then rotated to face a different direction. An identical baited phosphorescent object was placed in the same position relative to the start box. A second identical object was positioned to cover a different unbaited well. On the choice phase, the rat must remember the motor response made on the sample phase and make the same motor response on the choice phase to receive a reward. Hippocampus lesioned and control rats improved as a function of increased angle separation used to separate the correct object from the foil (45, 90, 135, and 180 degrees) and matched the performance of controls. However, rats with MCN lesions were impaired across all separations. Results suggest that the MCN, but not the hippocampus, supports working memory and/or a process aimed at reducing interference for motor response selection based on vector angle information.

  17. 77 FR 25534 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Science.gov (United States)

    2012-04-30

    ... response back to the vehicle. The antenna module translates the radio frequency signal received from the... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY...

  18. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Science.gov (United States)

    2010-10-01

    ...) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  19. Epilepsy and restless legs syndrome.

    Science.gov (United States)

    Geyer, James D; Geyer, Emery E; Fetterman, Zachary; Carney, Paul R

    2017-03-01

    Restless legs syndrome (RLS) is a common neurological movement disorder occurring in approximately 10% of the general population. The prevalence of moderately severe RLS is 2.7% overall (3.7% for women and 1.7% for men). Epilepsy is also a common neurological disorder with significant associated morbidity and impact on quality of life. We evaluated the severity and frequency of primary RLS in patients with localization-related temporal lobe epilepsy (TLE) and investigated the role of prodromal RLS symptoms as a warning sign and lateralizing indicator. All epilepsy patients seen in the outpatient clinic were screened for movement disorders from 2005 to 2015. Ninety-eight consecutive patients with localization-related TLE (50 right TLE and 48 left TLE) who met inclusion criteria were seen in the outpatient clinic. The control group consisted of 50 individuals with no history or immediate family history of epilepsy. Each patient was evaluated with the International Restless Legs Study Group (IRLSSG) questionnaire, NIH RLS diagnostic criteria, ferritin level, and comprehensive sleep screening including polysomnography. Furthermore, patients with obstructive sleep apnea or a definite cause of secondary restless legs syndrome such as low serum ferritin or serum iron levels were also excluded from the study. There was a significant association between the type of epilepsy and whether or not patients had RLS χ 2 (1)=10.17, p<.01, using the χ 2 Goodness of Fit Test. Based on the odds ratio, the odds of patients having RLS were 4.60 times higher if they had right temporal epilepsy than if they had left temporal epilepsy, serving as a potential lateralizing indicator. A prodromal sensation of worsening RLS occurred in some patients providing the opportunity to intervene at an earlier stage in this subgroup. We identified frequent moderate to severe RLS in patients with epilepsy. The frequency of RLS was much more common than would typically be seen in patients of similar

  20. The Relationship among Leg Strength, Leg Power and Alpine Skiing Success.

    Science.gov (United States)

    Gettman, Larry R.; Huckel, Jack R.

    The purpose of this study was to relate leg strength and power to alpine skiing success as measured by FIS points. Isometric leg strength was represented by the knee extension test described by Clarke. Leg power was measured by the vertical jump test and the Margaria-Kalamen stair run. Results in the strength and power tests were correlated with…

  1. Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests

    Directory of Open Access Journals (Sweden)

    Ayanori Yorozu

    2015-09-01

    Full Text Available Falling is a common problem in the growing elderly population, and fall-risk assessment systems are needed for community-based fall prevention programs. In particular, the timed up and go test (TUG is the clinical test most often used to evaluate elderly individual ambulatory ability in many clinical institutions or local communities. This study presents an improved leg tracking method using a laser range sensor (LRS for a gait measurement system to evaluate the motor function in walk tests, such as the TUG. The system tracks both legs and measures the trajectory of both legs. However, both legs might be close to each other, and one leg might be hidden from the sensor. This is especially the case during the turning motion in the TUG, where the time that a leg is hidden from the LRS is longer than that during straight walking and the moving direction rapidly changes. These situations are likely to lead to false tracking and deteriorate the measurement accuracy of the leg positions. To solve these problems, a novel data association considering gait phase and a Catmull–Rom spline-based interpolation during the occlusion are proposed. From the experimental results with young people, we confirm   that the proposed methods can reduce the chances of false tracking. In addition, we verify the measurement accuracy of the leg trajectory compared to a three-dimensional motion analysis system (VICON.

  2. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance

    International Nuclear Information System (INIS)

    Vejdani, H R; Hurst, J W; Blum, Y; Daley, M A

    2013-01-01

    We proposed three swing leg control policies for spring-mass running robots, inspired by experimental data from our recent collaborative work on ground running birds. Previous investigations suggest that animals may prioritize injury avoidance and/or efficiency as their objective function during running rather than maintaining limit-cycle stability. Therefore, in this study we targeted structural capacity (maximum leg force to avoid damage) and efficiency as the main goals for our control policies, since these objective functions are crucial to reduce motor size and structure weight. Each proposed policy controls the leg angle as a function of time during flight phase such that its objective function during the subsequent stance phase is regulated. The three objective functions that are regulated in the control policies are (i) the leg peak force, (ii) the axial impulse, and (iii) the leg actuator work. It should be noted that each control policy regulates one single objective function. Surprisingly, all three swing leg control policies result in nearly identical subsequent stance phase dynamics. This implies that the implementation of any of the proposed control policies would satisfy both goals (damage avoidance and efficiency) at once. Furthermore, all three control policies require a surprisingly simple leg angle adjustment: leg retraction with constant angular acceleration. (paper)

  3. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance.

    Science.gov (United States)

    Vejdani, H R; Blum, Y; Daley, M A; Hurst, J W

    2013-12-01

    We proposed three swing leg control policies for spring-mass running robots, inspired by experimental data from our recent collaborative work on ground running birds. Previous investigations suggest that animals may prioritize injury avoidance and/or efficiency as their objective function during running rather than maintaining limit-cycle stability. Therefore, in this study we targeted structural capacity (maximum leg force to avoid damage) and efficiency as the main goals for our control policies, since these objective functions are crucial to reduce motor size and structure weight. Each proposed policy controls the leg angle as a function of time during flight phase such that its objective function during the subsequent stance phase is regulated. The three objective functions that are regulated in the control policies are (i) the leg peak force, (ii) the axial impulse, and (iii) the leg actuator work. It should be noted that each control policy regulates one single objective function. Surprisingly, all three swing leg control policies result in nearly identical subsequent stance phase dynamics. This implies that the implementation of any of the proposed control policies would satisfy both goals (damage avoidance and efficiency) at once. Furthermore, all three control policies require a surprisingly simple leg angle adjustment: leg retraction with constant angular acceleration.

  4. Phrenic motor outputs in response to bronchopulmonary C‐fibre activation following chronic cervical spinal cord injury

    Science.gov (United States)

    2016-01-01

    Key points Activation of bronchopulmonary C‐fibres, the main chemosensitive afferents in the lung, can induce pulmonary chemoreflexes to modulate respiratory activity.Following chronic cervical spinal cord injury, bronchopulmonary C‐fibre activation‐induced inhibition of phrenic activity was exaggerated.Supersensitivity of phrenic motor outputs to the inhibitory effect of bronchopulmonary C‐fibre activation is due to a shift of phrenic motoneuron types and slow recovery of phrenic motoneuron discharge in cervical spinal cord‐injured animals.These data suggest that activation of bronchopulmonary C‐fibres may retard phrenic output recovery following cervical spinal cord injury.The alteration of phenotype and discharge pattern of phrenic motoneuron enables us to understand the impact of spinal cord injury on spinal respiratory activity. Abstract Cervical spinal injury interrupts bulbospinal pathways and results in cessation of phrenic bursting ipsilateral to the lesion. The ipsilateral phrenic activity can partially recover over weeks to months following injury due to the activation of latent crossed spinal pathways and exhibits a greater capacity to increase activity during respiratory challenges than the contralateral phrenic nerve. However, whether the bilateral phrenic nerves demonstrate differential responses to respiratory inhibitory inputs is unclear. Accordingly, the present study examined bilateral phrenic bursting in response to capsaicin‐induced pulmonary chemoreflexes, a robust respiratory inhibitory stimulus. Bilateral phrenic nerve activity was recorded in anaesthetized and mechanically ventilated adult rats at 8–9 weeks after C2 hemisection (C2Hx) or C2 laminectomy. Intra‐jugular capsaicin (1.5 μg kg−1) injection was performed to activate the bronchopulmonary C‐fibres to evoke pulmonary chemoreflexes. The present results indicate that capsaicin‐induced prolongation of expiratory duration was significantly attenuated in C2Hx

  5. Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury.

    Science.gov (United States)

    Lee, Kun-Ze

    2016-10-15

    Activation of bronchopulmonary C-fibres, the main chemosensitive afferents in the lung, can induce pulmonary chemoreflexes to modulate respiratory activity. Following chronic cervical spinal cord injury, bronchopulmonary C-fibre activation-induced inhibition of phrenic activity was exaggerated. Supersensitivity of phrenic motor outputs to the inhibitory effect of bronchopulmonary C-fibre activation is due to a shift of phrenic motoneuron types and slow recovery of phrenic motoneuron discharge in cervical spinal cord-injured animals. These data suggest that activation of bronchopulmonary C-fibres may retard phrenic output recovery following cervical spinal cord injury. The alteration of phenotype and discharge pattern of phrenic motoneuron enables us to understand the impact of spinal cord injury on spinal respiratory activity. Cervical spinal injury interrupts bulbospinal pathways and results in cessation of phrenic bursting ipsilateral to the lesion. The ipsilateral phrenic activity can partially recover over weeks to months following injury due to the activation of latent crossed spinal pathways and exhibits a greater capacity to increase activity during respiratory challenges than the contralateral phrenic nerve. However, whether the bilateral phrenic nerves demonstrate differential responses to respiratory inhibitory inputs is unclear. Accordingly, the present study examined bilateral phrenic bursting in response to capsaicin-induced pulmonary chemoreflexes, a robust respiratory inhibitory stimulus. Bilateral phrenic nerve activity was recorded in anaesthetized and mechanically ventilated adult rats at 8-9 weeks after C2 hemisection (C2Hx) or C2 laminectomy. Intra-jugular capsaicin (1.5 μg kg -1 ) injection was performed to activate the bronchopulmonary C-fibres to evoke pulmonary chemoreflexes. The present results indicate that capsaicin-induced prolongation of expiratory duration was significantly attenuated in C2Hx animals. However, ipsilateral phrenic

  6. Leg ischemia post-varicocelectomy

    Directory of Open Access Journals (Sweden)

    Al-Wahbi AM

    2016-03-01

    Full Text Available Abdullah M Al-Wahbi1, Shaza Elmoukaied2 1Division of Vascular Surgery, Department of Surgery, King Abdulaziz Medical City, Riyadh, Saudi Arabia; 2Department of Surgery, Dr Sulaiman Al Habib Hospital, Riyadh, Saudi Arabia Abstract: Varicocelectomy is the most commonly performed operation for the treatment of male infertility. Many surgical approaches are used as each of them has advantages over the other and is preferred by surgeons. Vascular injury has never been reported as a complication of varicocelectomy apart from testicular artery injury. We present a 36-year-old male who developed leg ischemia post-varicocelectomy due to common femoral artery injury. He was successfully treated by using a vein graft. Keywords: varicocele, varicocelectomy, complications, vascular injuries

  7. Morphological and motor characteristics of Croatian first league female football players.

    Science.gov (United States)

    Jelaska, Petra Mandić; Katić, Ratko; Jelaska, Igor

    2013-05-01

    The aim of this study was to determine the structure of morphological and motor characteristics of Croatian first league female football players and their impact on the estimated quality of the players. According to the goal of the research, a sample consisted of 70 Croatian first league female football players. Participants were measured in 18 tests for assessing morphological characteristics, a set of 12 basic motor abilities tests and a set of 7 tests for assessing football-specific motor abilities. Exploratory factor analysis strategy was applied separately to all measured tests: morphological, basic motor abilities and football specific motor abilities. Factor analysis of morphological tests has shown existence of 3 significant latent dimensions that explain 64% of the total variability. Factors are defined as transverse dimensionality of the skeleton and voluminosity (35%), subcutaneous fat tissue (16%) and longitudinal dimensionality of the skeleton (13%). In the area of basic motor abilities, four factors were extracted. The first factor is responsible for the integration of agility and explosive power of legs, i.e. a factor of movement regulation (agility/lower body explosiveness) (23%), the second one defines muscle tone regulation (15%), the third one defines the frequency of leg movements (12%), while the fourth one is recognized as responsible for the manifestation of basic strength, particularly of basic core strength (19%). Two factors were isolated in the space of football-specific motor abilities: football-specific efficiency (53%) and situational football coordination (27%). Furthermore, by use of factor analysis on extracted latent dimensions (morphological, basic and football specific motor abilities) two higher order factors (explaining 87% of common variability) were extracted. They were named morphological-motor factor (54%) and football-specific motor abilities factor (33%). It is assumed that two extracted higher-order factors fully

  8. Intensive treatment of leg lymphedema

    Directory of Open Access Journals (Sweden)

    Pereira de Godoy Jose

    2010-01-01

    Full Text Available Background: Despite of all the problems caused by lymphedema, this disease continues to affect millions of people worldwide. Thus, the identification of the most efficacious forms of treatment is necessary. Aim: The aim of this study was to evaluate a novel intensive outpatient treatment for leg lymphedema. Methods: Twenty-three legs of 19 patients were evaluated in a prospective randomized study. The inclusion criteria were patients with Grade II and III lymphedema, where the difference, measured by volumetry, between the affected limb below the knee and the healthy limb was greater than 1.5 kg. Intensive treatment was carried out for 6- to 8-h sessions in the outpatient clinic. Analysis of variance was utilized for statistical analysis with an alpha error of 5% (P-value < 0.05 being considered significant. Results: All limbs had significant reductions in size with the final mean loss being 81.1% of the volume of edema. The greatest losses occurred in the first week (P-value < 0.001. Losses of more than 90% of the lymphedema occurred in 9 (39.13% patients; losses of more than 80% in 13 (56.52%, losses of more than 70% in 17 (73.91% and losses of more than 50% were recorded for 95.65% of the patients; only 1 patient lost less than 50% (37.9% of the edema. Conclusion: The intensive treatment of lymphedema in the outpatient clinic can produce significant reductions in the volume of edema over a short period of time and can be recommended for any grade of lymphedema, in particular the more advanced degrees.

  9. Data report for ROSA-IV LSTF 10% hot leg break experiment Run SB-HL-02

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Hirata, Kazuo; Gotou, Hiroki

    1990-03-01

    Experimental data for the 10% hot leg break test, Run SB-HL-02, conducted at the ROSA-IV Large Scale Test Facility (LSTF) on June 30, 1987, are presented. This test assumed total failure of both high pressure injection (HPI) and auxiliary feedwater (AFW) systems. The test results were characterized by asymmetric loop responses, flashing in the cold legs and upper downcomer, as well as condensation depressurization in the cold legs following injection of emergency core coolant (ECC) from accumulators. (author)

  10. Impact of Vitamin D Supplementation on Gross Motor Development of Healthy Term Infants: A Randomized Dose-Response Trial.

    Science.gov (United States)

    Wicklow, Brandy; Gallo, Sina; Majnemer, Annette; Vanstone, Catherine; Comeau, Kathryn; Jones, Glenville; L'Abbe, Mary; Khamessan, Ali; Sharma, Atul; Weiler, Hope; Rodd, Celia

    2016-08-01

    In addition to benefits for bone health, vitamin D is implicated in muscle function in children and adults. To determine if vitamin D dosage positively correlated with gross motor development at 3 and 6 months of age. We hypothesized that higher doses would be associated with higher scores for gross motor skills. A consecutive sample of 55 healthy, term, and breastfed infants from Montreal, Canada were recruited from a randomized trial of vitamin D supplementation between 2009 and 2012. Infants were randomized to 400 International Units (IU) (n = 19), 800 IU (n = 18) or 1,200 IU (n = 18) vitamin D3/day. Motor performance at 3 and 6 months was quantified by the Alberta Infant Motor Scale (AIMS). Plasma vitamin D3 metabolites were measured by tandem mass spectrometry. AIMS scores did not differ at 3 months. However, total AIMS scores and sitting subscores were significantly higher at 6 months in infants receiving 400 IU/day compared to 800 IU/day and 1,200 IU/day groups (p gross motor achievements were significantly higher in infants receiving 400 IU/day vitamin D. Our findings also support longer infants being slightly delayed.

  11. Repeat exposure to ciguatoxin leads to enhanced and sustained thermoregulatory, pain threshold and motor activity responses in mice: relationship to blood ciguatoxin concentrations.

    Science.gov (United States)

    Bottein Dechraoui, Marie-Yasmine; Rezvani, Amir H; Gordon, Christopher J; Levin, Edward D; Ramsdell, John S

    2008-04-03

    Ciguatera is a common illness in tropical and subtropical regions that manifests in complex and long-lived symptoms which are more severe in subsequent exposures. This study measures central and peripheral neurologic signs, in parallel with blood toxin levels, in mice exposed once or twice (at 3 days interval) to a sublethal dose of ciguatoxin P-CTX-1 (0.26ng/g via i.p.). Mice were implanted with radiotransmitters to monitor motor activity and core temperature. A single exposure to ciguatoxin elicited an immediate and transient decrease in motor activity and temperature, and subsequent long-lasting thermoregulatory dysfunction resulting in stabilized body temperature around 36.0 degrees C with no observable circadian rhythm. The hypothermic response and the reduced activity were enhanced with a second exposure with 30% of the mice dying within 7h. Measurement of the peripheral nervous system by the tail flick assay revealed increased latency with a single ciguatoxin exposure, and a greater effect following the second exposure. Toxin was measurable in blood up to 3 days following the first exposure; at the 1h time point the concentrations were significantly elevated after a second exposure. These findings indicate an early response to ciguatoxin manifest in a central response to lower body temperature and reduce motor activity and a more persistent effect on the peripheral system leading to spinal heat antinociception and delayed fever-like response. The greater neurological response to a second ciguatoxin exposure was associated with elevated concentrations of ciguatoxin in the blood solely over the first hour of exposure. In conclusion, a single exposure to toxin exerts a significant neurological response which may be enhanced with subsequent exposure.

  12. Børns leg og eksperimenterende virksomhed

    DEFF Research Database (Denmark)

    Damgaard Warrer, Sarah; Broström, Stig

    Børns leg og eksperimenterende virksomhed er et rigt felt med mange perspektiver, indgangsvinkler og nuancer. I denne bog kædes leg og det eksperimenterende og skabende sammen som to gensidigt forbundne fænomener og belyses i pædagogisk og didaktisk perspektiv. Desuden beskrives potentialet i båd...

  13. Clinical quality indicators of venous leg ulcers

    DEFF Research Database (Denmark)

    Kjaer, Monica L; Mainz, Jan; Soernsen, Lars T

    2005-01-01

    In the clinical setting, diagnosis and treatment of venous leg ulcers can vary considerably from patient to patient. The first step to reducing this variation is to document venous leg ulcer care through use of quantitative scientific documentation principles. This requires the development of val...

  14. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response.

    Science.gov (United States)

    Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi

    2015-11-15

    Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. An improved fault-tolerant control scheme for PWM inverter-fed induction motor-based EVs.

    Science.gov (United States)

    Tabbache, Bekheïra; Benbouzid, Mohamed; Kheloui, Abdelaziz; Bourgeot, Jean-Matthieu; Mamoune, Abdeslam

    2013-11-01

    This paper proposes an improved fault-tolerant control scheme for PWM inverter-fed induction motor-based electric vehicles. The proposed strategy deals with power switch (IGBTs) failures mitigation within a reconfigurable induction motor control. To increase the vehicle powertrain reliability regarding IGBT open-circuit failures, 4-wire and 4-leg PWM inverter topologies are investigated and their performances discussed in a vehicle context. The proposed fault-tolerant topologies require only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, mitigating the IGBTs failures by specific inverter control. Indeed, the two topologies exploit the induction motor neutral accessibility for fault-tolerant purposes. The 4-wire topology uses then classical hysteresis controllers to account for the IGBT failures. The 4-leg topology, meanwhile, uses a specific 3D space vector PWM to handle vehicle requirements in terms of size (DC bus capacitors) and cost (IGBTs number). Experiments on an induction motor drive and simulations on an electric vehicle are carried-out using a European urban driving cycle to show that the proposed fault-tolerant control approach is effective and provides a simple configuration with high performance in terms of speed and torque responses. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Compensatory Motor Neuron Response to Chromatolysis in the Murine hSOD1G93A Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, Maria; Villagrá, Nuria T.; Berciano, Jose; Berciano, Maria T.; Lafarga, Miguel

    2014-01-01

    We investigated neuronal self-defense mechanisms in a murine model of amyotrophic lateral sclerosis (ALS), the transgenic hSOD1G93A, during both the asymptomatic and symptomatic stages. This is an experimental model of endoplasmic reticulum (ER) stress with severe chromatolysis. As a compensatory response to translation inhibition, chromatolytic neurons tended to reorganize the protein synthesis machinery at the perinuclear region, preferentially at nuclear infolding domains enriched in nuclear pores. This organization could facilitate nucleo-cytoplasmic traffic of RNAs and proteins at translation sites. By electron microscopy analysis, we observed that the active euchromatin pattern and the reticulated nucleolar configuration of control motor neurons were preserved in ALS chromatolytic neurons. Moreover the 5′-fluorouridine (5′-FU) transcription assay, at the ultrastructural level, revealed high incorporation of the RNA precursor 5′-FU into nascent RNA. Immunogold particles of 5′-FU incorporation were distributed throughout the euchromatin and on the dense fibrillar component of the nucleolus in both control and ALS motor neurons. The high rate of rRNA transcription in ALS motor neurons could maintain ribosome biogenesis under conditions of severe dysfunction of proteostasis. Collectively, the perinuclear reorganization of protein synthesis machinery, the predominant euchromatin architecture, and the active nucleolar transcription could represent compensatory mechanisms in ALS motor neurons in response to the disturbance of ER proteostasis. In this scenario, epigenetic activation of chromatin and nucleolar transcription could have important therapeutic implications for neuroprotection in ALS and other neurodegenerative diseases. Although histone deacetylase inhibitors are currently used as therapeutic agents, we raise the untapped potential of the nucleolar transcription of ribosomal genes as an exciting new target for the therapy of some neurodegenerative

  17. Proximal gastric motor activity in response to a liquid meal in type I diabetes mellitus with autonomic neuropathy

    NARCIS (Netherlands)

    Samsom, M.; Roelofs, J. M.; Akkermans, L. M.; van Berge Henegouwen, G. P.; Smout, A. J.

    1998-01-01

    Disordered gastric emptying occurs in 30-50% of patients with diabetes mellitus. Although the rate of gastric emptying is dependent on the integration of motor activity in different regions of the stomach, there is limited information about the function of the proximal stomach in diabetes mellitus.

  18. Data report for ROSA-IV LSTF 10% hot leg break experiment Run SB-HL-04

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Nakamura, Hideo; Saeki, Hiroyuki

    1991-03-01

    Experimental data for the 10% hot leg break test, Run SB-HL-04, conducted on March 29, 1988 at the ROSA-IV Large Scale Test Facility (LSTF), are presented. This test was conducted as part of test series which studied the effect of break orientation on 10% hot leg break transient, and represented a vertical upward break. Other two tests in this test series represented horizontal break and vertical downward break, respectively. The results of these tests were characterized by asymmetric loop responses, flashing in the cold legs as well as upper downcomer, and condensation depressurization in the cold legs following injection of emergency core coolant (ECC) from accumulators. (author)

  19. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  20. Moving the hands and feet specifically impairs working memory for arm- and leg-related action words.

    Science.gov (United States)

    Shebani, Zubaida; Pulvermüller, Friedemann

    2013-01-01

    Language and action systems of the human brain are functionally interwoven. Speaking about actions and understanding action-related speech sparks the motor system of the human brain and, conversely, motor system activation has an influence on the comprehension of action words and sentences. Although previous research has shown that motor systems become active when we understand language, a major question still remains whether these motor system activations are necessary for processing action words. We here report that rhythmic movements of either the hands or the feet lead to a differential impairment of working memory for concordant arm- and leg-related action words, with hand/arm movements predominantly impairing working memory for words used to speak about arm actions and foot/leg movements primarily impairing leg-related word memory. The resulting cross-over double dissociation demonstrates that body part specific and meaning-related processing resources in specific cortical motor systems are shared between overt movements and working memory for action-related words, thus documenting a genuine motor locus of semantic meaning. Copyright © 2011. Published by Elsevier Srl.

  1. Quantifying Leg Movement Activity During Sleep.

    Science.gov (United States)

    Ferri, Raffaele; Fulda, Stephany

    2016-12-01

    Currently, 2 sets of similar rules for recording and scoring leg movement (LM) exist, including periodic LM during sleep (PLMS) and periodic LM during wakefulness. The former were published in 2006 by a task force of the International Restless Legs Syndrome Study Group, and the second in 2007 by the American Academy of Sleep Medicine. This article reviews the basic recording methods, scoring rules, and computer-based programs for PLMS. Less frequent LM activities, such as alternating leg muscle activation, hypnagogic foot tremor, high-frequency LMs, and excessive fragmentary myoclonus are briefly described. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The pathophysiology of restless legs syndrome

    International Nuclear Information System (INIS)

    Miyamoto, Masayuki; Miyamoto, Tomoyuki; Iwanami, Masaoki; Suzuki, Keisuke; Hirata, Koichi

    2009-01-01

    Restless legs syndrome (RLS) is a sensorimotor disorder that is frequently associated with periodic leg movements (PLMS). RLS is generally considered to be a central nervous system (CNS)-related disorder although no specific lesion has been found to be associated with the syndrome. Reduced intracortical inhibition has been demonstrated in RLS by transcranial magnetic stimulation. Some MRI studies have revealed the presence of morphologic changes in the somatosensory cortex, motor cortex and thalamic gray matter. The results of single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies showed that the limbic and opioid systems also play important roles in the pathophysiology of RLS. A functional MRI study revealed abnormal bilateral cerebellar and thalamic activation during the manifestation of sensory symptoms, with additional red nucleus and reticular formation activity during PLMS. PLMS is likely to occur in patients with spinal cord lesions, and some patients with sensory polyneuropathy may exhibit RLS symptoms. RLS symptoms seem to depend on abnormal spinal sensorimotor integration at the spinal cord level and abnormal central somatosensory processing. PLMS appears to depend on increased excitability of the spinal cord and a decreased supraspinal inhibitory mechanism from the A11 diencephalic dopaminergic system. RLS symptoms respond very dramatically to dopaminergic therapy. The results of analysis by PET and SPECT studies of striatal D2 receptor binding in humans are inconclusive. However, studies in animal models suggest that the participation of the A11 dopaminergic system and the D3 receptor in RLS symptoms. The symptoms of RLS are aggravated in those with iron deficiency, and iron treatment ameliorates the symptoms in some patients. Neuroimaging studies, analysis of the cerebrospinal fluid, and studies on postmortem tissue and use of animal models have indicated that low brain iron concentrations and dysfunction of

  3. Does a crouched leg posture enhance running stability and robustness?

    Science.gov (United States)

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height

  4. Probenecid inhibits α-adrenergic receptor-mediated vasoconstriction in the human leg vasculature

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Kiehn, Oliver Thistrup

    2018-01-01

    to α1- and α2-adrenergic receptor stimulation in the human forearm and leg vasculature of young healthy male subjects (23±3 years). By use of immunolabeling and confocal microscopy, Panx1 channels were found to be expressed in vascular smooth muscle cells of arterioles in human leg skeletal muscle....... Probenecid treatment increased (Padrenergic receptor stimulation) by ≈15%, whereas the response to the α1-agonist phenylephrine was unchanged. Inhibition...

  5. Response to Niklasson's comment on Lin, et al. (2012) : "the relation between postural movement and bilateral motor integration".

    Science.gov (United States)

    Lin, Chin-Kai; Kuo, Bor-Chen; Wu, Huey-Min

    2014-10-01

    In the study of Lin, Wu, Lin, Wu, Wu, Kuo, and Yeung (2012 ), the relationship between the validity of postural movement and bilateral motor integration in terms of sensory integration theory was examined. Postural movement is the ability to use the antigravity postures required for stabilization of the neck, trunk and upper extremities via muscle co-contractions in the neck and upper extremities, and balance. Niklasson's (2013 ) comment argued that postural movement should include primitive reflexes in terms of the general abilities approach. Niklasson (2013 ) focused on the efficacy of the treatment rather than the theoretical frameworks implied in the therapeutic activities. For that purpose Lin, et al. (2012 ) used sensory integration as the theoretical foundation, and the relationship between postural movement and bilateral motor integration was assessed via empirical data. The result of Lin, et al. (2012 ) was offered as a theoretical reference for therapeutic activities.

  6. A Case of Nonhealing Leg Ulcer: Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Didem Didar Balcı

    2008-06-01

    Full Text Available A 75-year-old woman was admitted to our outpatient clinic with a three-year history of a painless, nonhealing ulcer located on the left lower leg. She had no response to previous therapy with local wound care. Skin examination revealed an ulcer 2.7 x 3.7 cm in size, and the surrounding skin showed minimal erythema. The surface of the ulcer demonstrated shiny granulation tissue. Biopsy of the ulcer edge and base showed basal cell carcinoma. Venous Doppler ultrasonography and dermatological examination did not reveal chronic venous insufficiency. Basal cell carcinomas rarely arise from previous long-term ulcers or developing de novo. We suggest that patients who develop non-healing leg ulcers, should be examined for basal cell carcinoma.

  7. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    Science.gov (United States)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  8. Acupuncture for restless legs syndrome.

    Science.gov (United States)

    Cui, Ye; Wang, Yin; Liu, Zhishun

    2008-10-08

    Restless legs syndrome (RLS) is a common movement disorder for which patients may seek treatment with acupuncture. However, the benefits of acupuncture in the treatment of RLS are unclear and have not been evaluated in a systematic review until now. To evaluate the efficacy and safety of acupuncture therapy in patients with RLS. We searched the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2007), MEDLINE (January 1950 to February 2007), EMBASE (January 1980 to 2007 Week 8), Chinese Biomedical Database (CBM) (1978 to February 2007), China National Knowledge Infrastructure (CNKI) (1979 to February 2007), VIP Database (1989 to February 2007), Japana Centra Revuo Medicina (1983 to 2007) and Korean Medical Database (1986 to 2007). Four Chinese journals, relevant academic conference proceedings and reference lists of articles were handsearched. Randomized controlled trials and quasi-randomized trials comparing acupuncture with no intervention, placebo acupuncture, sham acupuncture, pharmacological treatments, or other non-acupuncture interventions for primary RLS were included. Trials comparing acupuncture plus non-acupuncture treatment with the same non-acupuncture treatment were also included. Trials that only compared different forms of acupuncture or different acupoints were excluded. Two authors independently identified potential articles, assessed methodological quality and extracted data. Relative risk (RR) was used for binary outcomes and weighted mean difference for continuous variables. Results were combined only in the absence of clinical heterogeneity. Fourteen potentially relevant trials were identified initially, but twelve of them did not meet the selection criteria and were excluded. Only two trials with 170 patients met the inclusion criteria. No data could be combined due to clinical heterogeneity between trials. Both trials had methodological and/or reporting shortcomings. No significant difference was detected

  9. Comparison of the effects of extradural clonidine with those of morphine on postoperative pain, stress responses, cardiopulmonary function and motor and sensory block

    DEFF Research Database (Denmark)

    Lund, Claus; Qvitzau, S; Greulich, A

    1989-01-01

    We have examined the effects of extradural clonidine 150 micrograms or morphine 4 mg on postoperative pain, stress responses, cardiopulmonary function and motor and sensory block in a double-blind, randomized study in 20 patients undergoing hysterectomy with general anaesthesia. Observations were...... made for 6 h after each patient's first request for analgesia. Clonidine provided greater pain relief than morphine only for the first 2 h of observation (P less than 0.001). Plasma cortisol concentrations decreased to a greater extent (P less than 0.05) with morphine, while plasma glucose...

  10. Motor and cognitive development: the role of karate.

    Science.gov (United States)

    Alesi, Marianha; Bianco, Antonino; Padulo, Johnny; Vella, Francesco Paolo; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria

    2014-04-01

    regular physical activity has an effect on biological responses in both muscles and organs that, in turn, alter the structure and functions of the brain. Therefore, this study aims at comparing motor (sprint, coordination ability and explosive legs strength skills) and cognitive abilities (working memory, attention, executive functioning) in children. 39 children with average chronological age of 9 years were divided in: Karatekas (n=19) and Sedentary (n=20) groups. Their abilities were measured by motor and cognitive tests. Motor skills were assessed through a battery composed by the 20 mt Sprint test, the Agility test and the Standing board jump Test. Cognitive profile was assessed by a battery of tests derived from BVN 5-11, "Batteria di Valutazione Neuropsicologica per l'Et à Evolutiva": Visual discrimination test, Reaction time test, Forwards and Backwards Digit Span Tests, Corsi Block-Tapping test and Tower of London. our results reveal significant differences between two groups (p attention and executive functions. karate exercise training shows global benefits resulting in physiological and psychological gains in children.

  11. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.

    1979-06-01

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  12. Microprocessor controller for stepping motors

    International Nuclear Information System (INIS)

    Strait, B.G.; Thuot, M.E.

    1977-01-01

    A new concept for digital computer control of multiple stepping motors which operate in a severe electromagnetic pulse environment is presented. The motors position mirrors in the beam-alignment system of a 100-kJ CO 2 laser. An asynchronous communications channel of a computer is used to send coded messages, containing the motor address and stepping-command information, to the stepping-motor controller in a bit serial format over a fiber-optics communications link. The addressed controller responds by transmitting to the computer its address and other motor information, thus confirming the received message. Each controller is capable of controlling three stepping motors. The controller contains the fiber-optics interface, a microprocessor, and the stepping-motor driven circuits. The microprocessor program, which resides in an EPROM, decodes the received messages, transmits responses, performs the stepping-motor sequence logic, maintains motor-position information, and monitors the motor's reference switch. For multiple stepping-motor application, the controllers are connected in a daisy chain providing control of many motors from one asynchronous communications channel of the computer

  13. Genetic parameters for claw and leg health, foot and leg conformation, and locomotion in Danish Holsteins

    DEFF Research Database (Denmark)

    Laursen, M. V.; Boelling, D.; Mark, Thomas

    2009-01-01

    was defined as absence of hock infection, swollen hock, and bruising. The potential indicators were locomotion and foot and leg conformation, represented by rear leg side view, rear leg rear view, foot angle, and apparent hock quality and bone structure. The study was conducted using records from 429......,877 Danish Holstein cows in first lactation. Binary health traits were divided into 3 subcategories: claw health, leg health, and absence of all claw and leg disorders. Genetic (r(g)) and phenotypic correlations were estimated using a bivariate linear sire model and REML. Estimated heritabilities were 0.......01 for all 3 combined claw and leg health traits (on the observed binary scale), 0.09 for locomotion, 0.14 for rear leg rear view, 0.19 for rear leg side view, 0.13 for foot angle, 0.22 for apparent hock quality, and 0.27 for apparent bone structure. Heritabilities were 0.06 and 0.01 for claw health and leg...

  14. Self-Described Differences Between Legs in Ballet Dancers: Do They Relate to Postural Stability and Ground Reaction Force Measures?

    Science.gov (United States)

    Mertz, Laura; Docherty, Carrie

    2012-12-01

    Ballet technique classes are designed to train dancers symmetrically, but they may actually create a lateral bias. It is unknown whether dancers in general are functionally asymmetrical, or how an individual dancer's perceived imbalance between legs might manifest itself. The purpose of this study was to examine ballet dancers' lateral preference by analyzing their postural stability and ground reaction forces in fifth position when landing from dance-specific jumps. Thirty university ballet majors volunteered to participate in this study. The subjects wore their own ballet technique shoes and performed fundamental ballet jumps out of fifth position on a force plate. The force plate recorded center of pressure (COP) and ground reaction force (GRF) data. Each subject completed a laterality questionnaire that determined his or her preferred landing leg for ballet jumps, self-identified stronger leg, and self-identified leg with better balance. All statistical comparisons were made between the leg indicated on the laterality questionnaire and the other leg (i.e., if the dancer's response to a question was "left," the comparison was made with the left leg as the "preferred" leg and the right leg as the "non-preferred leg"). No significant differences were identified between the limbs in any of the analyses conducted (all statistical comparisons produced p values > 0.05). The results of this study indicate that a dancer's preferential use of one limb over the other has no bearing on GRFs or balance ability after landing jumps in ballet. Similarly, dancers' opinions of their leg characteristics (such as one leg being stronger than the other) seem not to correlate with the dancers' actual ability to absorb GRFs or to balance when landing from ballet jumps.

  15. Spared Primary Motor Cortex and the Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS During Gait Training

    Directory of Open Access Journals (Sweden)

    Luanda Collange Grecco

    2016-07-01

    Full Text Available The current priority of investigations involving transcranial direct current stimulation (tDCS and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether; 1 present motor evoked potential (MEP and, 2 injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP. We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training and tDCS (active or sham. Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (p=0.003 and gait speed (p=0.028, whereas the subcortical injury was a significant predictor of gait kinematics (p=0.013 and gross motor function (p = 0.021. In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.

  16. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  17. Leg ulcer in Werner syndrome (adult progeria): a case report.

    Science.gov (United States)

    Fumo, Giuseppe; Pau, Monica; Patta, Federico; Aste, Nicola; Atzori, Laura

    2013-03-15

    Werner syndrome (WS; MIM#277700) or adult progeria, is a rare disease, associated with mutations of a single gene (RECQL2 or WRN), located on chromosome 8 (8p12). It codes a DNA-helicase, whose defects cause genomic instability. The highest incidences are reported in Japan and Sardinia (Italy). On this major island of the Mediterranean Basin, the WS cases have been observed in the northern areas. The authors describe the apparently first case reported in southern Sardinia, a 51-year-old woman, who was born in and resides in the province of Cagliari. She presented with a 9-year history of an intractable leg ulcer and other characteristic symptoms, including "bird-like" face, high-pitched voice, premature greying, short stature, abdominal obesity in contrast with thin body type, scleroderma-like legs, decreased muscle mass, diabetes, atherosclerosis, and premature menopause. A specialized genetic Institute of Research (IRCCS-IDI, Rome) confirmed the clinical diagnosis. There is no cure or specific treatment and patients must be periodically screened for an increased risk of cardiovascular and cerebrovascular disease and malignancies. Among the many findings, leg ulcers significantly affect the patient's quality of life. This problem may send the patient to the dermatologist, who finally suspects the diagnosis. Poor response to medical treatment may require aggressive repeated surgery, with poor or temporary results.

  18. RELATIONS BETWEEN MOTORIC ABILITIES AND SPECIFIC MOTORIC BASKETBALL SKILLS IN PHYSICAL EDUCATION CLASSES

    Directory of Open Access Journals (Sweden)

    Dejan Milenković

    2014-06-01

    Full Text Available The aim of this study was to determine the relation between motoric and specific motoric basketball skills in physical education classes for elementary school students. The sample was taken from a population of boys and girls in four elementary schools in Niš. Boys (66 and girls (58, have been students of elementary school, 10 years old and all of them have been attending regular physical education classes three times a week. For the assessment of motoric abilities, a set of 12 motoric tests was applied: Explosive strength: squat jump, squat jump arms swing and drop jump; Speed: 20m running from a low start, orbiting hand and orbiting leg; Coordination: jumping over the horizontal rope, envelope test and figure „8“ with bending; Accuracy: darts, shooting with the ball at horizontal target and stiletto. For the assessment of specific motoric basketball skills a set of six tests was applied: elevations precision of ball passing with two hands, horizontal precision of  ball passing with two hands, orbiting ball around the body, orbiting ball through the legs (figure „8“, dribble around a central circle of the basketball court and dribble two "small eights" around two adjacent circles of basketball court. In data processing canonical correlation and regression analysis were used. The results showed that motoric abilities significantly contributed to success of specific motoric tests performance both with boys and also with girls.

  19. Comparison of the ballistic contractile responses generated during microstimulation of single human motor axons with brief irregular and regular stimuli.

    Science.gov (United States)

    Leitch, Michael; Macefield, Vaughan G

    2017-08-01

    Ballistic contractions are induced by brief, high-frequency (60-100 Hz) trains of action potentials in motor axons. During ramp voluntary contractions, human motoneurons exhibit significant discharge variability of ∼20% and have been shown to be advantageous to the neuromuscular system. We hypothesized that ballistic contractions incorporating discharge variability would generate greater isometric forces than regular trains with zero variability. High-impedance tungsten microelectrodes were inserted into human fibular nerve, and single motor axons were stimulated with both irregular and constant-frequency stimuli at mean frequencies ranging from 57.8 to 68.9 Hz. Irregular trains generated significantly greater isometric peak forces than regular trains over identical mean frequencies. The high forces generated by ballistic contractions are not based solely on high frequencies, but rather a combination of high firing rates and discharge irregularity. It appears that irregular ballistic trains take advantage of the "catchlike property" of muscle, allowing augmentation of force. Muscle Nerve 56: 292-297, 2017. © 2016 Wiley Periodicals, Inc.

  20. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  1. A girl with spina bifida, an extra leg, and ectopic intestinal loops--a "foetus in foetu" or a whim of the neural crest?

    Science.gov (United States)

    Lende, G; Wendemu, W; Mørk, S; Wester, K

    2007-10-01

    This article describes a girl with an extra leg attached to her lower back, combined with a spina bifida and a myelomeningocele. Despite lacking sensory or motor functions, the leg grew proportionately with the rest of the body. The bony structures were almost normal. A cross section showed fat tissue with some centrally situated blood vessels, nerve bundles, and muscular fragments. Proximally, an isolated colon loop was found. The extra leg and intestine respected the dorsal fascia, without connection with the peritoneal or retroperitoneal compartments. The finding is discussed with reference to existing hypotheses for limb formation.

  2. The influence of motor imagery on the learning of a fine hand motor skill

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; Verwey, Willem B.; van der Lubbe, Rob

    2017-01-01

    Motor imagery has been argued to affect the acquisition of motor skills. The present study examined the specificity of motor imagery on the learning of a fine hand motor skill by employing a modified discrete sequence production task: the Go/NoGo DSP task. After an informative cue, a response

  3. Single-leg squats can predict leg alignment in dancers performing ballet movements in "turnout".

    Science.gov (United States)

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve "turning out" or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in "turned out" postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat.

  4. Movement of the sacroiliac joint during the Active Straight Leg Raise test in patients with long-lasting severe sacroiliac joint pain.

    Science.gov (United States)

    Kibsgård, Thomas J; Röhrl, Stephan M; Røise, Olav; Sturesson, Bengt; Stuge, Britt

    2017-08-01

    The Active Straight Leg Raise is a functional test used in the assessment of pelvic girdle pain, and has shown to have good validity, reliability and responsiveness. The Active Straight Leg Raise is considered to examine the patients' ability to transfer load through the pelvis. It has been hypothesized that patients with pelvic girdle pain lack the ability to stabilize the pelvic girdle, probably due to instability or increased movement of the sacroiliac joint. This study examines the movement of the sacroiliac joints during the Active Straight Leg Raise in patients with pelvic girdle pain. Tantalum markers were inserted in the dorsal sacrum and ilium of 12 patients with long-lasting pelvic girdle pain scheduled for sacroiliac joint fusion surgery. Two to three weeks later movement of the sacroiliac joints during the Active Straight Leg Raise was measured with radiostereometric analysis. Small movements were detected. There was larger movement of the sacroiliac joint of the rested leg's sacroiliac joint compared to the lifted leg's side. A mean backward rotation of 0.8° and inward tilt of 0.3° were seen in the rested leg's sacroiliac joint. The movements of the sacroiliac joints during the Active Straight Leg Raise are small. There was a small backward rotation of the innominate bone relative to sacrum on the rested leg's side. Our findings contradict an earlier understanding that a forward rotation of the lifted leg's innominate occur while performing the Active Straight Leg Raise. Copyright © 2017. Published by Elsevier Ltd.

  5. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.

    Science.gov (United States)

    Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard

    2017-02-01

    Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.

  6. Quantitative assessment of motor functions post-stroke: Responsiveness of upper-extremity robotic measures and its task dependence.

    Science.gov (United States)

    Hussain, Asif; Budhota, Aamani; Contu, Sara; Kager, Simone; Vishwanath, Deshmukh A; Kuah, Christopher W K; Yam, Lester H L; Chua, Karen S G; Masia, Lorenzo; Campolo, Domenico

    2017-07-01

    Technology aided measures offer a sensitive, accurate and time-efflcient approach for the assessment of sensorimotor function after neurological impairment compared to standard clinical assessments. This preliminary study investigated the relationship between task definition and its effect on robotic measures using a planar, two degree of freedom, robotic-manipulator (H-Man). Four chronic stroke participants (49.5±11.95 years, 2 Female, FMA: 37.5±13.96) and eight healthy control participants (26.25± 4.70 years, 2 Female) participated in the study. Motor functions were evaluated using line tracing and circle tracing tasks with dominant and nondominant hand of healthy and affected vs. non affected hand of stroke participants. The results show significant dependence of quantitative measures on investigated tasks.

  7. A randomised clinical trial of the efficacy of drop squats or leg extension/leg curl exercises to treat clinically diagnosed jumper's knee in athletes: pilot study

    Science.gov (United States)

    Cannell, L; Taunton, J; Clement, D; Smith, C; Khan, K

    2001-01-01

    Objectives—To compare the therapeutic effect of two different exercise protocols in athletes with jumper's knee. Methods—Randomised clinical trial comparing a 12 week programme of either drop squat exercises or leg extension/leg curl exercises. Measurement was performed at baseline and after six and 12 weeks. Primary outcome measures were pain (visual analogue scale 1–10) and return to sport. Secondary outcome measures included quadriceps and hamstring moment of force using a Cybex II isokinetic dynamometer at 30°/second. Differences in pain response between the drop squat and leg extension/curl treatment groups were assessed by 2 (group) x 3 (time) analysis of variance. Two by two contingency tables were used to test differences in rates of return to sport. Analysis of variance (2 (injured versus non-injured leg) x 2 (group) x 3 (time)) was also used to determine differences for secondary outcome measures. Results—Over the 12 week intervention, pain diminished by 2.3 points (36%) in the leg extension/curl group and 3.2 points (57%) in the squat group. There was a significant main effect of both exercise protocols on pain (psquat group returned to sporting activity by 12 weeks, but five of those subjects still had low level pain. Six of nine of the leg extension/curl group returned to sporting activity by 12 weeks and four patients had low level pain. There was no significant difference between groups in numbers returning to sporting activity. There were no differences in the change in quadriceps or hamstring muscle moment of force between groups. Conclusions—Progressive drop squats and leg extension/curl exercises can reduce the pain of jumper's knee in a 12 week period and permit a high proportion of patients to return to sport. Not all patients, however, return to sport by that time. Key Words: knee; patellar tendon; tendinopathy; tendinosis; eccentric strengthening; strength training PMID:11157465

  8. Role of the Internal Superior Laryngeal Nerve in the Motor Responses of Vocal Cords and the Related Voice Acoustic Changes

    Science.gov (United States)

    Seifpanahi, Sadegh; Izadi, Farzad; Jamshidi, Ali-Ashraf; Torabinezhad, Farhad; Sarrafzadeh, Javad; Mohammadi, Siavash

    2016-01-01

    Background: Repeated efforts by researchers to impose voice changes by laryngeal surface electrical stimulation (SES) have come to no avail. This present pre-experimental study employed a novel method for SES application so as to evoke the motor potential of the internal superior laryngeal nerve (ISLN) and create voice changes. Methods: Thirty-two normal individuals (22 females and 10 males) participated in this study. The subjects were selected from the students of Iran University of Medical Sciences in 2014. Two monopolar active electrodes were placed on the thyrohyoid space at the location of the ISLN entrance to the larynx and 1 dispersive electrode was positioned on the back of the neck. A current with special programmed parameters was applied to stimulate the ISLN via the active electrodes and simultaneously the resultant acoustic changes were evaluated. All the means of the acoustic parameters during SES and rest periods were compared using the paired t-test. Results: The findings indicated significant changes (P=0.00) in most of the acoustic parameters during SES presentation compared to them at rest. The mean of fundamental frequency standard deviation (SD F0) at rest was 1.54 (SD=0.55) versus 4.15 (SD=3.00) for the SES period. The other investigated parameters comprised fundamental frequency (F0), minimum F0, jitter, shimmer, harmonic-to-noise ratio (HNR), mean intensity, and minimum intensity. Conclusion: These findings demonstrated significant changes in most of the important acoustic features, suggesting that the stimulation of the ISLN via SES could induce motor changes in the vocal folds. The clinical applicability of the method utilized in the current study in patients with vocal fold paralysis requires further research. PMID:27582586

  9. Role of the Internal Superior Laryngeal Nerve in the Motor Responses of Vocal Cords and the Related Voice Acoustic Changes

    Directory of Open Access Journals (Sweden)

    Sadegh Seifpanahi

    2016-09-01

    Full Text Available Background: Repeated efforts by researchers to impose voice changes by laryngeal surface electrical stimulation (SES have come to no avail. This present pre-experimental study employed a novel method for SES application so as to evoke the motor potential of the internal superior laryngeal nerve (ISLN and create voice changes. Methods: Thirty-two normal individuals (22 females and 10 males participated in this study. The subjects were selected from the students of Iran University of Medical Sciences in 2014. Two monopolar active electrodes were placed on the thyrohyoid space at the location of the ISLN entrance to the larynx and 1 dispersive electrode was positioned on the back of the neck. A current with special programmed parameters was applied to stimulate the ISLN via the active electrodes and simultaneously the resultant acoustic changes were evaluated. All the means of the acoustic parameters during SES and rest periods were compared using the paired t-test. Results: The findings indicated significant changes (P=0.00 in most of the acoustic parameters during SES presentation compared to them at rest. The mean of fundamental frequency standard deviation (SD F0 at rest was 1.54 (SD=0.55 versus 4.15 (SD=3.00 for the SES period. The other investigated parameters comprised fundamental frequency (F0, minimum F0, jitter, shimmer, harmonic-to-noise ratio (HNR, mean intensity, and minimum intensity. Conclusion: These findings demonstrated significant changes in most of the important acoustic features, suggesting that the stimulation of the ISLN via SES could induce motor changes in the vocal folds. The clinical applicability of the method utilized in the current study in patients with vocal fold paralysis requires further research.

  10. Leg Movement Activity During Sleep in Adults With Attention-Deficit/Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Corrado Garbazza

    2018-05-01

    Full Text Available Objectives: To conduct a first detailed analysis of the pattern of leg movement (LM activity during sleep in adult subjects with Attention-Deficit/Hyperactivity Disorder (ADHD compared to healthy controls.Methods: Fifteen ADHD patients and 18 control subjects underwent an in-lab polysomnographic sleep study. The periodic character of LMs was evaluated with established markers of “periodicity,” i.e., the periodicity index, intermovement intervals, and time distribution of LM during sleep, in addition to standard parameters such as the periodic leg movement during sleep index (PLMSI and the periodic leg movement during sleep arousal index (PLMSAI. Subjective sleep and psychiatric symptoms were assessed using several, self-administered, screening questionnaires.Results: Objective sleep parameters from the baseline night did not significantly differ between ADHD and control subjects, except for a longer sleep latency (SL, a longer duration of the periodic leg movements during sleep (PLMS in REM sleep and a higher PLMSI also in REM sleep. Data from the sleep questionnaires showed perception of poor sleep quality in ADHD patients.Conclusions: Leg movements during sleep in ADHD adults are not significantly more frequent than in healthy controls and the nocturnal motor events do not show an increased periodicity in these patients. The non-periodic character of LMs in ADHD has already been shown in children and seems to differentiate ADHD from other pathophysiological related conditions like restless legs syndrome (RLS or periodic limb movement disorder (PLMD. The reduced subjective sleep quality reported by ADHD adults contrasted with the normal objective polysomnographic parameters, which could suggest a sleep-state misperception in these individuals or more subtle sleep abnormalities not picked up by the traditional sleep staging.

  11. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture

    Directory of Open Access Journals (Sweden)

    Troy Michael Herter

    2015-04-01

    Full Text Available Primary motor cortex (M1 and red nucleus (RN are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49 and M1 (n = 109 of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms changes of neural discharges in many RN (28 of 49, 57% and M1 (43 of 109, 39% neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.

  12. [Physical treatment modalities for chronic leg ulcers].

    Science.gov (United States)

    Dissemond, J

    2010-05-01

    An increasing numbers of physical treatment options are available for chronic leg ulcer. In this review article, compression therapy, therapeutic ultrasound, negative pressure therapy, extracorporeal shock wave therapy, electrostimulation therapy, electromagnetic therapy, photodynamic therapy, water-filtered infrared-A-radiation and hydrotherapy are discussed in terms of their practical applications and the underlying evidence. With the exception of compression therapy for most of these treatments, good scientific data are not available. However this is a widespread problem in the treatment of chronic wounds. Nevertheless, several of the described methods such as negative pressure therapy represent one of the gold standards in practical treatment of patients with chronic leg ulcers. Although the use of physical treatment modalities may improve healing in patients with chronic leg ulcers, the diagnosis and treatment of the underlying causes are essential for long-lasting success.

  13. Conjoined legs: Sirenomelia or caudal regression syndrome?

    Directory of Open Access Journals (Sweden)

    Sakti Prasad Das

    2013-01-01

    Full Text Available Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.

  14. Conjoined legs: Sirenomelia or caudal regression syndrome?

    Science.gov (United States)

    Das, Sakti Prasad; Ojha, Niranjan; Ganesh, G Shankar; Mohanty, Ram Narayan

    2013-07-01

    Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.

  15. Motor homopolar

    OpenAIRE

    Martín Muñoz, Agustín

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  16. Delineation of the working memory profile in female FMR1 premutation carriers: the effect of cognitive load on ocular motor responses.

    Science.gov (United States)

    Shelton, Annie L; Cornish, Kim M; Godler, David E; Clough, Meaghan; Kraan, Claudine; Bui, Minh; Fielding, Joanne

    2015-04-01

    Fragile X mental retardation 1 (FMR1) premutation carriers (PM-carriers) are characterised as having mid-sized expansions of between 55 and 200 CGG repeats in the 5' untranslated region of the FMR1 gene. While there is evidence of executive dysfunction in PM-carriers, few studies have explicitly explored working memory capabilities in female PM-carriers. 14 female PM-carriers and 13 age- and IQ-matched healthy controls completed an ocular motor n-back working memory paradigm. This task examined working memory ability and the effect of measured increases in cognitive load. Female PM-carriers were found to have attenuated working memory capabilities. Increasing the cognitive load did not elicit the expected reciprocal increase in the task errors for female PM-carriers, as it did in controls. However female PM-carriers took longer to respond than controls, regardless of the cognitive load. Further, FMR1 mRNA levels were found to significantly predict PM-carrier response time. Although preliminary, these findings provide further evidence of executive dysfunction, specifically disruption to working memory processes, which were found to be associated with increases in FMR1 mRNA expression in female PM-carriers. With future validation, ocular motor paradigms such as the n-back paradigm will be critical to the development of behavioural biomarkers for identification of PM-carrier cognitive-affective phenotypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Hox gene expression leads to differential hind leg development between honeybee castes.

    Science.gov (United States)

    Bomtorin, Ana Durvalina; Barchuk, Angel Roberto; Moda, Livia Maria; Simoes, Zila Luz Paulino

    2012-01-01

    Beyond the physiological and behavioural, differences in appendage morphology between the workers and queens of Apis mellifera are pre-eminent. The hind legs of workers, which are highly specialized pollinators, deserve special attention. The hind tibia of worker has an expanded bristle-free region used for carrying pollen and propolis, the corbicula. In queens this structure is absent. Although the morphological differences are well characterized, the genetic inputs driving the development of this alternative morphology remain unknown. Leg phenotype determination takes place between the fourth and fifth larval instar and herein we show that the morphogenesis is completed at brown-eyed pupa. Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from hind leg imaginal discs of pre-pupal honeybees of both castes we present a list of 200 differentially expressed genes. Notably, there are castes preferentially expressed cuticular protein genes and members of the P450 family. We also provide results of qPCR analyses determining the developmental transcription profiles of eight selected genes, including abdominal-A, distal-less and ultrabithorax (Ubx), whose roles in leg development have been previously demonstrated in other insect models. Ubx expression in workers hind leg is approximately 25 times higher than in queens. Finally, immunohistochemistry assays show that Ubx localization during hind leg development resembles the bristles localization in the tibia/basitarsus of the adult legs in both castes. Our data strongly indicate that the development of the hind legs diphenism characteristic of this corbiculate species is driven by a set of caste-preferentially expressed genes, such as those encoding cuticular protein genes, P450 and Hox proteins, in response to the naturally different diets offered to honeybees during the larval period.

  18. Dipoles on a Two-leg Ladder

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Zinner, Nikolaj Thomas

    2013-01-01

    We study polar molecules with long-range dipole-dipole interactions confined to move on a two-leg ladder for different orientations of the molecular dipole moments with respect to the ladder. Matrix product states are employed to calculate the many-body ground state of the system as function...... that there is a critical angle at which ordering disappears. This angle is slightly larger than the angle at which the dipoles are non-interacting along a single leg. This behavior should be observable using current experimental techniques....

  19. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Directory of Open Access Journals (Sweden)

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  20. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  1. Time-dependent motor properties of multipedal molecular spiders.

    Science.gov (United States)

    Samii, Laleh; Blab, Gerhard A; Bromley, Elizabeth H C; Linke, Heiner; Curmi, Paul M G; Zuckermann, Martin J; Forde, Nancy R

    2011-09-01

    Molecular spiders are synthetic biomolecular walkers that use the asymmetry resulting from cleavage of their tracks to bias the direction of their stepping motion. Using Monte Carlo simulations that implement the Gillespie algorithm, we investigate the dependence of the biased motion of molecular spiders, along with binding time and processivity, on tunable experimental parameters, such as number of legs, span between the legs, and unbinding rate of a leg from a substrate site. We find that an increase in the number of legs increases the spiders' processivity and binding time but not their mean velocity. However, we can increase the mean velocity of spiders with simultaneous tuning of the span and the unbinding rate of a spider leg from a substrate site. To study the efficiency of molecular spiders, we introduce a time-dependent expression for the thermodynamic efficiency of a molecular motor, allowing us to account for the behavior of spider populations as a function of time. Based on this definition, we find that spiders exhibit transient motor function over time scales of many hours and have a maximum efficiency on the order of 1%, weak compared to other types of molecular motors.

  2. Task driven optimal leg trajectories in insect-scale legged microrobots

    Science.gov (United States)

    Doshi, Neel; Goldberg, Benjamin; Jayaram, Kaushik; Wood, Robert

    Origami inspired layered manufacturing techniques and 3D-printing have enabled the development of highly articulated legged robots at the insect-scale, including the 1.43g Harvard Ambulatory MicroRobot (HAMR). Research on these platforms has expanded its focus from manufacturing aspects to include design optimization and control for application-driven tasks. Consequently, the choice of gait selection, body morphology, leg trajectory, foot design, etc. have become areas of active research. HAMR has two controlled degrees-of-freedom per leg, making it an ideal candidate for exploring leg trajectory. We will discuss our work towards optimizing HAMR's leg trajectories for two different tasks: climbing using electroadhesives and level ground running (5-10 BL/s). These tasks demonstrate the ability of single platform to adapt to vastly different locomotive scenarios: quasi-static climbing with controlled ground contact, and dynamic running with un-controlled ground contact. We will utilize trajectory optimization methods informed by existing models and experimental studies to determine leg trajectories for each task. We also plan to discuss how task specifications and choice of objective function have contributed to the shape of these optimal leg trajectories.

  3. The effect of Hominis Placenta Pharmacopuncture on Leg spasticity of stroke patients (A Pilot study, Double blind, Randomized, Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Ju-hwan Noh

    2009-12-01

    Full Text Available Objective : The purpose of this study is to determine the effect of Hominis Placenta Pharmacopuncture(HPP on lower limb spasticity control in stroke patients. Methods : Twenty stroke patients with Leg spasticity were randomly divided into two groups, a Distilled water Pharmacopuncture(group I and a HPP(group II. The number of Pharmacopuncture was 5 times a week and acupuncture treatment was 3 times a week for 3 weeks. Modified Ashworth Scale(MAS, H-reflex/M-response ratio(H/M ratio, Berg Balance Scale(BBS and Time Up & Go(TUG were used for evaluation of spasticity control before experiment, after 1 week, 2 weeks, 3 weeks. Results : Group I showed significant improvement(p<.05 in BBS but no significant improvement in MAS, H/M ratio, and TUG. Group II showed significant improvement(p<.05 in MAS, BBS, and TUG, but no significant improvement in H/M ratio. The results showed significant difference in TUG, but no significant difference in MAS, H/M ratio and BBS between 2 groups. Conclusion : These results showed that HPP might decrease lower limb spasticity and increase leg motor function in stroke patients. Further studies will be required to examine more cases in the long period for the effect on lower limb in spasticity by HPP.

  4. THE EFFECTS OF SINGLE LEG HOP PROGRESSION AND DOUBLE LEGS HOP PROGRESSION EXERCISE TO INCREASE SPEED AND EXPLOSIVE POWER OF LEG MUSCLE

    Directory of Open Access Journals (Sweden)

    Nining W. Kusnanik

    2015-05-01

    Full Text Available The main purpose of this study was to determine the effect of single leg hop progression and double legs hop progression exercise to increase speed and explosive power of leg muscles. Plyometric is one of the training methods that can increase explosive power. There are many models of plyometric training including single leg hop progression and double leg hop progression. This research was experimental using match subject design techniques. The subjects of this study were 39 students who joined basketball school club. There were 3 groups in this study: Group 1 were 13 students who given sin¬gle leg hop progression exercise, Group 2 were 13 students who given double legs hop progression exercise, Group 3 were 13 students who given conventional exercise. The data was collected during pre test and post test by testing 30m speed running and vertical jump. The data was analyzed using Analysis of Varians (Anova. It was found that there were significantly increased on speed and explosive power of leg muscles of Group 1 and Group 2. It can be stated that single leg hop progression exercise was more effective than double leg hop progression exercise. The recent findings supported the hypothesis that single leg hop progression and double legs hop progression exercise can increase speed and explosive power of leg muscles. These finding were supported by some previous studies (Singh, et al, 2011; Shallaby, H.K., 2010. The single leg hop progression is more effective than double legs hop progression. This finding was consistent with some previous evidences (McCurdy, et al, 2005; Makaruk et al, 2011.

  5. Two Pilot Studies of the Effect of Bicycling on Balance and Leg Strength among Older Adults

    Science.gov (United States)

    Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna

    2013-01-01

    Objectives. Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Methods. Study 1: a cross-sectional survey of 43 adults aged 44–79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49–72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Results. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time) and timed single leg standing. Conclusions. Cycling by healthy older adults appears promising for improving risk factors for falls. PMID:23690805

  6. Two Pilot Studies of the Effect of Bicycling on Balance and Leg Strength among Older Adults

    Directory of Open Access Journals (Sweden)

    Chris Rissel

    2013-01-01

    Full Text Available Objectives. Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Methods. Study 1: a cross-sectional survey of 43 adults aged 44–79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT test (decision time and response time, leg strength and timed single leg standing. Study 2: 18 older adults aged 49–72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Results. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time and timed single leg standing. Conclusions. Cycling by healthy older adults appears promising for improving risk factors for falls.

  7. Assessment of the vibration on the foam legged and sheet metal-legged passenger seat

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2015-10-01

    Full Text Available In this study, it was aim ed to decrease the vibration reaching to passenger from the legs of vehicle seats. In order to determine the levels of vibrations reaching at passengers, a test pad placed under the passenger seat was used, and HVM100 device was used for digitizing the information obtained. By transferring the vibration data to system by using HVM100 device, the acceleration graphics were prepared with Blaze software. As a result, it was determined that the acceleration values of seat legs made of foam material were lower than that of seat legs made of 2 mm thick sheet metal, so they damped the vibration better.

  8. Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia.

    Science.gov (United States)

    Martin, Elodie; Schüle, Rebecca; Smets, Katrien; Rastetter, Agnès; Boukhris, Amir; Loureiro, José L; Gonzalez, Michael A; Mundwiller, Emeline; Deconinck, Tine; Wessner, Marc; Jornea, Ludmila; Oteyza, Andrés Caballero; Durr, Alexandra; Martin, Jean-Jacques; Schöls, Ludger; Mhiri, Chokri; Lamari, Foudil; Züchner, Stephan; De Jonghe, Peter; Kabashi, Edor; Brice, Alexis; Stevanin, Giovanni

    2013-02-07

    Spastic paraplegia 46 refers to a locus mapped to chromosome 9 that accounts for a complicated autosomal-recessive form of hereditary spastic paraplegia (HSP). With next-generation sequencing in three independent families, we identified four different mutations in GBA2 (three truncating variants and one missense variant), which were found to cosegregate with the disease and were absent in controls. GBA2 encodes a microsomal nonlysosomal glucosylceramidase that catalyzes the conversion of glucosylceramide to free glucose and ceramide and the hydrolysis of bile acid 3-O-glucosides. The missense variant was also found at the homozygous state in a simplex subject in whom no residual glucocerebrosidase activity of GBA2 could be evidenced in blood cells, opening the way to a possible measurement of this enzyme activity in clinical practice. The overall phenotype was a complex HSP with mental impairment, cataract, and hypogonadism in males associated with various degrees of corpus callosum and cerebellar atrophy on brain imaging. Antisense morpholino oligonucleotides targeting the zebrafish GBA2 orthologous gene led to abnormal motor behavior and axonal shortening/branching of motoneurons that were rescued by the human wild-type mRNA but not by applying the same mRNA containing the missense mutation. This study highlights the role of ceramide metabolism in HSP pathology. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Transcutaneous laser treatment of leg veins

    NARCIS (Netherlands)

    Meesters, Arne A.; Pitassi, Luiza H. U.; Campos, Valeria; Wolkerstorfer, Albert; Dierickx, Christine C.

    2014-01-01

    Leg telangiectasias and reticular veins are a common complaint affecting more than 80% of the population to some extent. To date, the gold standard remains sclerotherapy for most patients. However, there may be some specific situations, where sclerotherapy is contraindicated such as needle phobia,

  10. Leg og læring

    DEFF Research Database (Denmark)

    Pedersen, Annette

    2008-01-01

    Leg synes at have et potentiale som metode til at fremme læring. Men hvordan? Legen har en vis grad af parallelitet med den virkelige verden i dens interaktive og relationelle strukturer. Det bliver muligt at finde nye meninger i interaktioner, som refererer til vante interaktionsformer, men...

  11. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J. S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J. P. K.; Geertzen, J. H. B.

    2004-01-01

    This paper describes a new automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients, fitted

  12. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J.S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J.P.K.; Geertzen, J.H.B.

    This paper describes a new, automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients,

  13. Parallel kinematics robot with five legs

    NARCIS (Netherlands)

    Lambert, P.

    2011-01-01

    Robot with multiple degrees of freedom comprising five legs (2) linked at a first of their ends to a base ( 3), and at a second of their ends opposite to the first ends to a mobile platform (4), which platform carries at least one tool (5, 6, 121, 12 "), and wherein the robot further comprises an

  14. Omnidirectional Wheel-Legged Hybrid Mobile Robot

    Directory of Open Access Journals (Sweden)

    István Vilikó

    2015-06-01

    Full Text Available The purpose of developing hybrid locomotion systems is to merge the advantages and to eliminate the disadvantages of different type of locomotion. The proposed solution combines wheeled and legged locomotion methods. This paper presents the mechatronic design approach and the development stages of the prototype.

  15. Clinical aspects of lower leg compartment syndrome

    NARCIS (Netherlands)

    Brand, Johan Gerard Henric van den

    2004-01-01

    A compartment syndrome is a condition in which increased pressure within a limited space compromises the circulation and function of tissues within that space. Although pathofysiology is roughly similar in chronic exertional and acute compartment syndrome of the lower leg, the clinical

  16. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Femur (Upper Leg) KidsHealth / For Parents / X- ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  17. Parental smoking during pregnancy shortens offspring's legs.

    Science.gov (United States)

    Żądzińska, E; Kozieł, S; Borowska-Strugińska, B; Rosset, I; Sitek, A; Lorkiewicz, W

    2016-12-01

    One of the most severe detrimental environmental factors acting during pregnancy is foetal smoke exposure. The aim of this study was to assess the effect of maternal, paternal and parental smoking during pregnancy on relative leg length in 7- to 10-year-old children. The research conducted in the years 2001-2002 included 978 term-born children, 348 boys and 630 girls, at the age of 7-10 years. Information concerning the birth weight of a child was obtained from the health records of the women. Information about the mother's and the father's smoking habits during pregnancy and about the mothers' education level was obtained from a questionnaire. The influence of parental smoking on relative leg length, controlled for age, sex, birth weight and the mother's education, as a proxy measure of socioeconomic status, and controlled for an interaction between sex and birth weight, was assessed by an analysis of covariance, where relative leg length was the dependent variable, smoking and sex were the independent variables, and birth weight as well as the mother's education were the covariates. Three separate analyses were run for the three models of smoking habits during pregnancy: the mother's smoking, the father's smoking and both parents' smoking. Only both parents' smoking showed a significant effect on relative leg length of offspring. It is probable that foetal hypoxia caused by carbon monoxide contained in smoke decelerated the growth of the long bones of foetuses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Chronic leg ulcer caused by Mycobacterium immunogenum

    NARCIS (Netherlands)

    Loots, Miriam A. M.; de Jong, Menno D.; van Soolingen, Dick; Wetsteyn, José C. F. M.; Faber, William R.

    2005-01-01

    Rare tropical skin diseases are seen more frequently in Western countries because of the increased popularity of visiting tropical regions. A 55-year-old white man developed a painless leg ulcer after traveling in Guatemala and Belize. A mycobacterium was cultured from a biopsy specimen and was

  19. Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury

    Science.gov (United States)

    Onushko, Tanya; Hyngstrom, Allison

    2013-01-01

    Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conversely, whether knee and ankle stretch afferents affect hip-triggered reflexes. A custom-built servomotor apparatus was used to stretch the hip muscles in nine chronic SCI subjects by oscillating the legs about the hip joint bilaterally from 10° of extension to 40° flexion. To test whether stretch-related feedback from the knee or ankle would be affected by hip movement, patellar tendon percussions and Achilles tendon vibration were delivered when the hip was either extending or flexing. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Patellar tendon percussions and Achilles tendon vibration both elicited reflex responses local to the knee or ankle, respectively, and did not influence reflex responses observed at the hip. Rather, the movement direction of the hip modulated the reflex responses local to the joint. The patellar tendon reflex amplitude was larger when the perturbation was delivered during hip extension compared with hip flexion. The response to Achilles vibration was modulated by hip movement, with an increased tonic component during hip flexion compared with extension. These results demonstrate that hip-mediated sensory signals modulate activity in distal muscles of the leg and appear to play a unique role in modulation of spastic muscle activity throughout the leg in SCI. PMID:23615544

  20. Reaction Time of Motor Responses in Two-Stimulus Paradigms Involving Deception and Congruity with Varying Levels of Difficulty

    Directory of Open Access Journals (Sweden)

    Jennifer M. C. Vendemia

    2005-01-01

    Full Text Available Deception research has focused on identifying peripheral nervous system markers while ignoring cognitive mechanisms underlying those markers. Cognitive theorists argue that the process of deception may involve such constructs as attentional capture, working memory load, or perceived incongruity with memory, while psychophysiologists argue for stimulus salience, arousal, and emotion. Three studies were conducted to assess reaction time (RT in relation to deception, response congruity, and preparedness to deceive. Similar to a semantic verification task, participants evaluated sentences that were either true or false, and then made truthful or deceptive evaluations of the sentence’s base truth-value. Findings indicate that deceptive responses have a longer RT than truthful responses, and that this relationship remains constant across response type and preparedness to deceive. The authors use these findings in preliminary support of a comprehensive cognitive model of deception.

  1. Frequency and predisposing factors of leg cramps in pregnancy: a prospective clinical trial

    Directory of Open Access Journals (Sweden)

    Sohrabvand F

    2009-12-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Leg cramp is the painful contraction of the muscles that often occurs at night. Pregnancy is the most common cause of muscle cramps that usually occur in the second trimester of pregnancy. Although the reasons of the spasms had not been determined, the imbalance between the absorption and elimination of serum electrolytes such as Ca, Mg and potassium and also insufficiency of some vitamins and probably the changes in activities of motor neurons of spinal cord, can be the source of these problems. The aim of this study was the evaluation of frequency and predisposing factors of leg cramps."n"nMethods: In a cross sectional descriptive analytic study, a group of 400 women in the third trimester of pregnancy were asked to record the symptoms of leg cramp. Their education level and job recorded and their total serum level of Ca and Mg was measured in the first visit. Exclusion criteria included systemic medical conditions such as thyroid disease, diabetes, osteoporosis and prenatal disorders such as gestational diabetes mellitus and preeclampsia and patient cooperation."n"nResults: In our study the prevalence of leg cramp was 54.75%. There was a statistically significant relationship between leg cramp and serum

  2. Embodiment and second-language: automatic activation of motor responses during processing spatially associated L2 words and emotion L2 words in a vertical Stroop paradigm.

    Science.gov (United States)

    Dudschig, Carolin; de la Vega, Irmgard; Kaup, Barbara

    2014-05-01

    Converging evidence suggests that understanding our first-language (L1) results in reactivation of experiential sensorimotor traces in the brain. Surprisingly, little is known regarding the involvement of these processes during second-language (L2) processing. Participants saw L1 or L2 words referring to entities with a typical location (e.g., star, mole) (Experiment 1 & 2) or to an emotion (e.g., happy, sad) (Experiment 3). Participants responded to the words' ink color with an upward or downward arm movement. Despite word meaning being fully task-irrelevant, L2 automatically activated motor responses similar to L1 even when L2 was acquired rather late in life (age >11). Specifically, words such as star facilitated upward, and words such as root facilitated downward responses. Additionally, words referring to positive emotions facilitated upward, and words referring to negative emotions facilitated downward responses. In summary our study suggests that reactivation of experiential traces is not limited to L1 processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Multi-Objective Optimization of Moving-magnet Linear Oscillatory Motor Using Response Surface Methodology with Quantum-Behaved PSO Operator

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    To reduce the difficulty of manufacturing and increase the magnetic thrust density, a moving-magnet linear oscillatory motor (MMLOM) without inner-stators was Proposed. To get the optimal design of maximum electromagnetic thrust with minimal permanent magnetic material, firstly, the 3D finite element analysis (FEA) model of the MMLOM was built and verified by comparison with prototype experiment result. Then the influence of design parameters of permanent magnet (PM) on the electromagnetic thrust was systematically analyzed by the 3D FEA to get the design parameters. Secondly, response surface methodology (RSM) was employed to build the response surface model of the new MMLOM, which can obtain an analytical model of the PM volume and thrust. Then a multi-objective optimization methods for design parameters of PM, using response surface methodology (RSM) with a quantum-behaved PSO (QPSO) operator, was proposed. Then the way to choose the best design parameters of PM among the multi-objective optimization solution sets was proposed. Then the 3D FEA of the optimal design candidates was compared. The comparison results showed that the proposed method can obtain the best combination of the geometric parameters of reducing the PM volume and increasing the thrust.

  4. Intelligent PID controller based on ant system algorithm and fuzzy inference and its application to bionic artificial leg

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 曾庆冬; 李文斌

    2004-01-01

    A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.

  5. Subtle abnormalities of gait detected early in vitamin B6 deficiency in aged and weanling rats with hind leg gait analysis.

    Science.gov (United States)

    Schaeffer, M C; Cochary, E F; Sadowski, J A

    1990-04-01

    Motor abnormalities have been observed in every species made vitamin B6 deficient, and have been detected and quantified early in vitamin B6 deficiency in young adult female Long-Evans rats with hind leg gait analysis. Our objective was to determine if hind leg gait analysis could be used to detect vitamin B6 deficiency in weanling (3 weeks) and aged (23 months) Fischer 344 male rats. Rats (n = 10 per group) were fed: the control diet ad libitum (AL-CON); the control diet devoid of added pyridoxine hydrochloride (DEF); or the control diet pair-fed to DEF (PF-CON). At 10 weeks, plasma pyridoxal phosphate concentration confirmed deficiency in both age groups. Gait abnormalities were detected in the absence of gross motor disturbances in both aged and weanling DEF rats at 2-3 weeks. Width of step was significantly reduced (16%, p less than 0.003) in DEF aged rats compared to AL- and PF-CON. This pattern of response was similar to that reported previously in young adult rats. In weanling rats, pair feeding alone reduced mean width of step (+/- SEM) by 25% compared to ad libitum feeding (2.7 +/- 0.1 vs 3.6 +/- 0.1 cm for PF- vs AL-CON, respectively, p less than 0.05). In DEF weanling rats, width (3.0 +/- 0.1 cm) was increased compared to PF-CON (11%, p less than 0.05) but decreased compared to AL-CON (16%, p less than 0.05). Width of step was significantly altered early in B6 deficiency in rats of different ages and strains and in both sexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Motor Programming in Apraxia of Speech

    Science.gov (United States)

    Maas, Edwin; Robin, Donald A.; Wright, David L.; Ballard, Kirrie J.

    2008-01-01

    Apraxia of Speech (AOS) is an impairment of motor programming. However, the exact nature of this deficit remains unclear. The present study examined motor programming in AOS in the context of a recent two-stage model [Klapp, S. T. (1995). Motor response programming during simple and choice reaction time: The role of practice. "Journal of…

  7. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury.

    Science.gov (United States)

    Zhang, Z; Guth, L; Steward, O

    1998-01-01

    Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.

  8. Restless Legs Syndrome -- Self-Tests and Diagnosis

    Science.gov (United States)

    ... legs syndrome Diagnosis Talk to a board certified sleep medicine physician if you think you have restless legs ... He or she can refer you to a sleep medicine physician if necessary. The sleep physician may ask ...

  9. Six-legged walking robot for service operations

    OpenAIRE

    Ihme, T.; Schneider, A.; Schmucker, U.

    1998-01-01

    This paper presents the control system of a six-legged vehicle including force control. Considered control schemes are control of forces and control of body motion. The experimental result with a six-legged robot is presented.

  10. Motor cortex hand area and speech: implications for the development of language.

    Science.gov (United States)

    Meister, Ingo Gerrit; Boroojerdi, Babak; Foltys, Henrik; Sparing, Roland; Huber, Walter; Töpper, Rudolf

    2003-01-01

    Recently a growing body of evidence has suggested that a functional link exists between the hand motor area of the language dominant hemisphere and the regions subserving language processing. We examined the excitability of the hand motor area and the leg motor area during reading aloud and during non-verbal oral movements using transcranial magnetic stimulation (TMS). During reading aloud, but not before or afterwards, excitability was increased in the hand motor area of the dominant hemisphere. This reading effect was found to be independent of the duration of speech. No such effect could be found in the contralateral hemisphere. The excitability of the leg area of the motor cortex remained unchanged during reading aloud. The excitability during non-verbal oral movements was slightly increased in both hemispheres. Our results are consistent with previous findings and may indicate a specific functional connection between the hand motor area and the cortical language network.

  11. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    DEFF Research Database (Denmark)

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS...

  12. Effects of Verbal and Verbal-Motor Responses on Meter Conceptualization in Third-, Fourth-, and Fifth-Grade Children.

    Science.gov (United States)

    Jones, Russell L.

    1992-01-01

    Reports on a study of third-, fourth-, and fifth-grade students to identify and conceptualize meter in music. Finds that ability to perform these tasks improves with maturity and with use of hand gestures as well as verbal response. Concludes that it is important to match curriculum with the developmental levels of students. (CFR)

  13. Update on the Comparison of Second-Order Loads on a Tension Leg Platform for Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gueydon, Sebastien; Jonkman, Jason

    2016-08-01

    In comparison to other kinds of floaters (like a spar or a semisubmersible), the tension leg platform has several notable advantages: its vertical motions are negligible, its weight is lighter, and its mooring system's footprint is smaller. Although a tension leg platform has a negligible response to first-order vertical wave loads, the second-order wave loads need to be addressed. This paper follows up on a verification study of second-order wave loads on a tension leg platform for wind turbines done by the Maritime Research Institute of The Netherlands and National Renewable Energy Laboratory and it brings some corrections to its conclusions.

  14. Study of the response of a piezoceramic motor irradiated in a fast reactor up to a neutron fluence of 2.77E+17 n/cm{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pillon, Mario, E-mail: mario.pillon@enea.it [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Monti, Chiara; Mugnaini, Giampiero; Neri, Carlo; Rossi, Paolo [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45, 00044 Frascati, Rome (Italy); Carta, Mario; Fiorani, Orlando; Santagata, Alfonso [ENEA C.R. CASACCIA, via Anguillarese, 301, 00123 S. Maria di Galeria, Rome (Italy)

    2015-10-15

    Highlights: • Piezoceramic motors are compliant with magnetic field, temperature and vacuum. • We studied the response of a piezoceramic motor during the irradiation with neutrons. • The response was studied using 1 MeV neutrons up to a neutron fluence of 2.77E+17 n/cm{sup 2}. • Neutron irradiation produces a shift of the optimal resonance frequency and a decrease of the motor speed. • The performance changes do not affect the proper operation of the motor. - Abstract: A piezoceramic motor has been identified as the potential apparatus for carrying out the rotation of the scanning head of a laser radar system used for viewing the first wall of the ITER vessel. This diagnostic is simply referred to as IVVS (In Vessel Viewing System). The choice fell on a piezoceramic motor due to the presence of strong magnetic fields (up 8 T) and of the high vacuum and temperature conditions. To be compliant with all the ITER environmental conditions it was necessary to qualify the piezo-motor under gamma and neutron irradiation. In this paper are described the procedures and tests that have been performed to verify the compatibility of the operation of the motor adopted in the presence of a fast neutron fluence which was gradually increased over time in order to reach a total value of 2.77 × 10{sup 17} n/cm{sup 2}. Such neutron fluence was obtained by irradiating the motor in a position close to the core of the fast nuclear reactor TAPIRO, in operation at the ENEA Casaccia Research Centre, Italy. The neutron spectrum in this position has been identified as representative of that found in the rest position of the IVVS head during ITER operation. The cumulative neutron fluence reached corresponds to that it is expected to be reached during the entire life of ITER for the IVVS in the rest position without any shield. This work describes the experimental results of this test; the methodology adopted to determine the total neutron fluence achieved and the methodology adopted

  15. Leg intravenous pressure during head-up tilt.

    NARCIS (Netherlands)

    Groothuis, J.T.; Poelkens, F.; Wouters, C.W.; Kooijman, H.M.; Hopman, M.T.E.

    2008-01-01

    Leg vascular resistance is calculated as the arterial-venous pressure gradient divided by blood flow. During orthostatic challenges it is assumed that the hydrostatic pressure contributes equally to leg arterial, as well as to leg venous pressure. Because of venous valves, one may question whether,

  16. Spider diffraction: a comparison of curved and straight legs

    International Nuclear Information System (INIS)

    Richter, J.L.

    1984-01-01

    It has been known for some time that, if curved legs rather than the usual straight ones are used in the spider that supports the secondary optics in certain telescopes, the visible diffraction effect is reduced. Fraunhofer theory is used to calculate the diffraction effects due to the curved leg spider. Calculated and photographic diffraction patterns are compared for straight and curved leg spiders

  17. Effects and Dose-Response Relationships of Motor Imagery Practice on Strength Development in Healthy Adult Populations: a Systematic Review and Meta-analysis.

    Science.gov (United States)

    Paravlic, Armin H; Slimani, Maamer; Tod, David; Marusic, Uros; Milanovic, Zoran; Pisot, Rado

    2018-05-01

    Motor imagery (MI), a mental simulation of a movement without overt muscle contraction, has been largely used to improve general motor tasks. However, the effects of MI practice on maximal voluntary strength (MVS) remain equivocal. The aims of this meta-analysis were to (1) estimate whether MI practice intervention can meaningfully improve MVS in healthy adults; (2) compare the effects of MI practice on MVS with its combination with physical practice (MI-C), and with physical practice (PP) training alone; and (3) investigate the dose-response relationships of MI practice. Seven electronic databases were searched up to April 2017. Initially 717 studies were identified; however, after evaluation of the study characteristics, data from 13 articles involving 370 participants were extracted. The meta-analysis was completed on MVS as the primary parameter. In addition, parameters associated with training volume, training intensity, and time spent training were used to investigate dose-response relationships. MI practice moderately improved MVS. When compared to conventional PP, effects were of small benefit in favour of PP. MI-C when compared to PP showed unclear effects. MI practice produced moderate effects in both upper and lower extremities on MVS. The cortical representation area of the involved muscles did not modify the effects. Meta-regression analysis revealed that (a) a training period of 4 weeks, (b) a frequency of three times per week, (c) two to three sets per single session, (d) 25 repetitions per single set, and (e) single session duration of 15 min were associated with enhanced improvements in muscle strength following MI practice. Similar dose-response relationships were observed following MI and PP. The present meta-analysis demonstrates that compared to a no-exercise control group of healthy adults, MI practice increases MVS, but less than PP. These findings suggest that MI practice could be considered as a substitute or additional training tool to

  18. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  19. Unilateral pitting edema of the leg as a manifestation of Graves’ disease: a case report

    Directory of Open Access Journals (Sweden)

    Volke Vallo

    2012-08-01

    Full Text Available Abstract Introduction Graves’ hyperthyroidism has a number of well-recognized but relatively rare extrathyroid manifestations such as thyroid acropachy, pretibial myxedema, and congestive heart failure. Case presentation A 38-year-old Caucasian woman presented to the out-patient clinic with symptoms of hyperthyroidism lasting for approximately five months. Remarkably, she had developed pitting edema of her left leg four months before. She had gone through a conventional assessment, but the reason for the edema was not revealed. At presentation to the endocrinology clinic, the skin of both legs was of normal color and pitting edema on her left leg was of a diffuse nature and spread from her toes to two thirds of her leg. The skin surface of her left leg was smooth and had no elevations or discoloration, whereas her right leg appeared normal. Based on signs and symptoms of thyrotoxicosis and suppressed thyroid-stimulating hormone level (less than 0.001mIU/L, local reference of 0.4 to 4, treatment of 10mg of thiamazole three times a day was started. Additional blood tests revealed marked Graves’ hyperthyroidism with elevated free T4 and anti-thyroid receptor antibodies. Within a month, the free T4 level was normalized and the edema was completely cleared and never reappeared during the treatment course of 12 months. Conclusions To the best of our knowledge, this is the first description of unilateral treatment-responsive leg edema as a manifestation of Graves’ hyperthyroidism. However, the pathophysiological mechanism underlying this case of edema remains unclear.

  20. Temperature and blood flow distribution in the human leg during passive heat stress.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  1. Immediate effects of the trunk stabilizing exercise on static balance parameters in double-leg and one-leg stances

    OpenAIRE

    Kim, Jwa-jun; Park, Se-yeon

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the immediate effect of stabilizing exercise using the PNF technique on standing balance in one-leg and double-leg stances. [Subjects and Methods] The present study recruited 34 healthy participants from a local university. The Participants performed four balance tests (double-leg stance with and without vision, one-leg stance with and without vision), before and after exercise. The exercise consisted of exercises performed using PNF techniq...

  2. Microgravity induced changes in the control of motor units

    Science.gov (United States)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  3. Pictorial essay: Ultrasonography in 'tennis leg'.

    Science.gov (United States)

    Shah, Jeshil R; Shah, Bipin R; Shah, Ankit B

    2010-11-01

    Tennis leg is caused by a rupture of the medial head of the gastrocnemius muscle, usually at its distal musculotendinous junction region. However, tears in this muscle and its tendon are also included under the term 'tennis leg'. It is seen regularly in practice and is an important cause of a painful calf. The common USG findings include: disruption of the pinnate pattern of the distal medial gastrocnemius, usually near the junction of the triceps surae (which is the echogenic line between the gastrocnemius, the soleus, and the plantaris muscles), fluid tracking along the fascia, adjacent hematoma, and intramuscular tears as well as hematomas. USG is useful for confirming the diagnosis, excluding other causes of a painful calf, for assessing the severity of the disease, and in follow-up.

  4. The corticospinal responses of metronome-paced, but not self-paced strength training are similar to motor skill training.

    Science.gov (United States)

    Leung, Michael; Rantalainen, Timo; Teo, Wei-Peng; Kidgell, Dawson

    2017-12-01

    The corticospinal responses to skill training may be different to strength training, depending on how the strength training is performed. It was hypothesised that the corticospinal responses would not be different following skill training and metronome-paced strength training (MPST), but would differ when compared with self-paced strength training (SPST). Corticospinal excitability, short-interval intra-cortical inhibition (SICI) and strength and tracking error were measured at baseline and 2 and 4 weeks. Participants (n = 44) were randomly allocated to visuomotor tracking, MPST, SPST or a control group. MPST increased strength by 7 and 18%, whilst SPST increased strength by 12 and 26% following 2 and 4 weeks of strength training. There were no changes in strength following skill training. Skill training reduced tracking error by 47 and 58% at 2 and 4 weeks. There were no changes in tracking error following SPST; however, tracking error reduced by 24% following 4 weeks of MPST. Corticospinal excitability increased by 40% following MPST and by 29% following skill training. There was no change in corticospinal excitability following 4 weeks of SPST. Importantly, the magnitude of change between skill training and MPST was not different. SICI decreased by 41 and 61% following 2 and 4 weeks of MPST, whilst SICI decreased by 41 and 33% following 2 and 4 weeks of skill training. Again, SPST had no effect on SICI at 2 and 4 weeks. There was no difference in the magnitude of SICI reduction between skill training and MPST. This study adds new knowledge regarding the corticospinal responses to skill and MPST, showing they are similar but different when compared with SPST.

  5. Experimental research on pedestrian lower leg impact

    Science.gov (United States)

    Constantin, B. A.; Iozsa, D. M.; Stan, C.

    2017-10-01

    The present paper is centred on the research of deceleration measured at the level of the lower leg during a pedestrian impact in multiple load cases. Basically, the used methodology for physical test setup is similar to EuroNCAP and European Union regulatory requirements. Due cost reduction reasons, it was not used a pneumatic system in order to launch the lower leg impactor in the direction of the vehicle front-end. During the test it was used an opposite solution, namely the vehicle being in motion, aiming the standstill lower leg impactor. The impactor has similar specifications to those at EU level, i.e. dimensions, materials, and principle of measurement of the deceleration magnitude. Therefore, all the results obtained during the study comply with the requirements of both EU regulation and EuroNCAP. As a limitation, due to unavailability of proper sensors in the equipment of the lower leg impactor, that could provide precise results, the bending angle, the shearing and the detailed data at the level of knee ligaments were not evaluated. The knee joint should be improved for future studies as some bending angles observed during the post processing of several impact video files were too high comparing to other studies. The paper highlights the first pedestrian impact physical test conducted by the author, following an extensive research in the field. Deceleration at the level of pedestrian knee can be substantially improved by providing enough volume between the bumper fascia and the front-end structure and by using pedestrian friendly materials for shock absorbers, such as foams.

  6. Dynamic legged locomotion in robots and animals

    Science.gov (United States)

    Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl

    1995-01-01

    This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

  7. Asymptomatic Petechial Eruption on the Lower Legs

    OpenAIRE

    Mendese, Gary; Grande, Donald

    2013-01-01

    The authors report an unusual case of Rocky Mountain spotted fever that presented as an asymptomatic petechial eruption on the lower legs. Rocky Mountain spotted fever is rare in New England and, as such, is typically not on the differential diagnosis when presented with such patients. What began as an asymptomatic eruption progressed to more classic signs of the disease, including a positive Rocky Mountain spotted fever titer. The patient was successfully treated with doxycydine and within a...

  8. Effects of a foot placement constraint on use of motor equivalence during human hopping.

    Directory of Open Access Journals (Sweden)

    Arick G Auyang

    Full Text Available Humans can robustly locomote over complex terrains even while simultaneously attending to other tasks such as accurate foot placement on the ground. We investigated whether subjects would exploit motor redundancy across the joints of the leg to stabilize overall limb kinematics when presented with a hopping task that constrained foot placement position. Subjects hopped in place on one leg (2.2 Hz while having to place their foot into one of three target sizes upon landing (0.250, 0.063, 0.010 m(2. As takeoff and landing angles are critical to this task performance, we hypothesized smaller target sizes would increase the need to stabilize (i.e., make more consistent the leg orientation through motor equivalent combinations of segment angles. As it was not critical to the targeting task, we hypothesized no changes for leg length stabilization across target size. With smaller target sizes, we saw total segment angle variance increase due to greater signal-dependent noise associated with an increased activation of leg extensor muscles (medial and lateral gastrocnemius, vastus medialis, vastus lateralis and rectus femoris. At smaller target sizes, more segment angle variance was aligned to kinematic deviations with the goal of maintaining leg orientation trajectory. We also observed a decrease in the variance structure for stabilizing leg length at the smallest target conditions. This trade-off effect is explained by the nearly orthogonal relationship between the two goal-equivalent manifolds for leg length vs. leg orientation stabilization. Our results suggest humans increasingly rely on kinematic redundancy in their legs to achieve robust, consistent locomotion when faced with novel conditions that constrain performance requirements. These principles may generalize to other human locomotor gaits and provide important insights into the control of the legs during human walking and running.

  9. Efficacy and Safety of Rituximab in the Treatment of Vasculitic Leg Ulcers Associated with Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Fabio Bonilla-Abadía

    2012-01-01

    Full Text Available Vasculitic leg ulcers are a cutaneous manifestation of hepatitis C virus (HCV infection often associated with cryoglobulinemia. Their treatment is difficult and is based on steroids and immunosuppressive drugs with an erratic response and a high probability of adverse reaction. We report three patients with vasculitic leg ulcers associated with hepatitis C virus infection who were treated successfully with rituximab. The pain control and healing were achieved quickly. No adverse effects with rituximab in these patients were presented.

  10. Proprioceptive Actuation Design for Dynamic Legged locomotion

    Science.gov (United States)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  11. Sleep board review question: restless legs

    Directory of Open Access Journals (Sweden)

    Omobomi O

    2018-02-01

    Full Text Available No abstract available. Article truncated after 150 words. Ms. Jones (not her real name is a 63-year-old woman who states that she gets very fidgety when sitting in a theater, watching a movie or when flying long distances on a plane. She is unable to find words to describe the sensation but she states that moving her legs make them feel better. Lately, she has been getting this feeling almost every night. She reports no leg discomfort in the daytime. She denies muscle cramps her legs. She had some recent investigations done by her primary care physician because of complaints of fatigue. Which of the following will be helpful in the diagnosis and management in this patient? 1. An overnight polysomnogram showing apnea hypopnea index of 1.6 events per hour and no periodic limb movements (PLMs 2. Ferritin level of 18 ng/ml (normal range 20-200 ng/ml 3. Serum Bicarbonate of 29 mEq/L (normal range 23-29 mEq/L 4. Thyroid …

  12. Quantitative rest activity in ambulatory monitoring as a physiological marker of restless legs syndrome: a controlled study.

    Science.gov (United States)

    Tuisku, Katinka; Holi, Matti Mikael; Wahlbeck, Kristian; Ahlgren, Aulikki Johanna; Lauerma, Hannu

    2003-04-01

    An objective marker of restless legs syndrome (RLS) is needed for developing diagnostic tools and monitoring symptoms. Actometric ambulatory monitoring of 15 RLS patients and 15 healthy controls was undertaken in order to differentiate between RLS-related motor symptoms and normal motor activity. Nocturnal lower-limb activity per minute differentiated and discriminated between groups with no overlap, whereas the periodic limb movement index and the controlled rest activity during sitting showed less discriminative power. The naturalistic recording of nocturnal activity by actometry may prove useful for assessing the severity of RLS and for finding an objective marker to support the diagnosis of RLS. Copyright 2002 Movement Disorder Society

  13. Amyotrophic Lateral Sclerosis Regional Variants (Brachial Amyotrophic Diplegia, Leg Amyotrophic Diplegia, and Isolated Bulbar Amyotrophic Lateral Sclerosis).

    Science.gov (United States)

    Jawdat, Omar; Statland, Jeffrey M; Barohn, Richard J; Katz, Jonathan S; Dimachkie, Mazen M

    2015-11-01

    Amyotrophic lateral sclerosis (ALS), a rapidly progressive, invariably fatal disease, involves mixed upper and lower motor neurons in different spinal cord regions. Patients with bulbar onset progress more rapidly than patients with limb onset or with a lower motor neuron presentation. Recent descriptions of regional variants suggest some patients have ALS isolated to a single spinal region for many years, including brachial amyotrophic diplegia, leg amyotrophic diplegia, and isolated bulbar palsy. Clearer definitions of regional variants will have implications for prognosis, understanding the pathophysiology of ALS, identifying genetic factors related to slower disease progression, and future planning of clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Duplex sonography of the near-surface leg veins

    International Nuclear Information System (INIS)

    Mendoza, E.

    2007-01-01

    The book contains the following contributions: The ultrasonograph, selection of the ultrasonic transducer, anatomy of the near-surface vein system, physiology of the near-surface vein system, varicose status classification, systematics of the duplex sonography of near-surface leg veins, provocational maneuver for the duplex sonographic varicose diagnostics, exploration of vena saphena parva, perforans veins, side branches, phlebitis, sonography for varicose therapy, postsurgical sonography, deep leg veins, examination of near-surface leg veins for the pathology of the deep vein system, differential diagnostic clarification of leg oedema from the phlebologic-lymphological view, diagnostic side features along the near-surface leg veins

  15. Robustness to Inertial Parameter Errors for Legged Robots Balancing on Level Ground

    OpenAIRE

    Giftsun , Nirmal; Del Prete , Andrea; Lamiraux , Florent

    2017-01-01

    International audience; Model-based control has become more and more popular in the legged robots community in the last ten years. The key idea is to exploit a model of the system to compute precise motor commands that result in the desired motion. This allows to improve the quality of the motion tracking, while using lower gains, leading so to higher compliance. However, the main flaw of this approach is typically its lack of robustness to modeling errors. In this paper we focus on the robus...

  16. Mesenchymal stem cell in venous leg ulcer: An intoxicating therapy.

    Science.gov (United States)

    Athanerey, Anjali; Patra, Pradeep Kumar; Kumar, Awanish

    2017-08-01

    Venous leg ulcers (VLU) are a prevalent and reoccurring type of complicated wound, turning as a considerable public healthcare issue, with critical social and economic concern. There are both medical and surgical therapies to treat venous leg ulcers; however, a cure does not yet exist. Mesenchymal stem cells (MSC) are capable and proved of accelerating wound healing in vivo and their study with human chronic wounds is currently awaited. MSCs are a promising source of adult progenitor cells for cellular therapy and have been demonstrated to differentiate into various mesenchymal cell lineages. They have a crucial and integral role in native wound healing by regulating immune response and inflammation. Improved understanding of the cellular and molecular mechanisms at work in delayed wound healing compels to the development of cellular therapy in VLU. This review focuses on the current treatment option of VLU and further emphasizing the role of MSCs in accelerating the healing process. With further understanding of the mechanism of action of these cells in wound improvement and, the involvement of cytokines can also be revealed that could be used for the therapeutic purpose for VLU healing. Clinical uses of MSCs have been started already, and induced MSCs are surely a promising tool or compelling therapy for VLU. Copyright © 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  17. Leg blood flow is impaired during small muscle mass exercise in patients with COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2017-01-01

    to both endothelium-independent (SNP) and endothelium-dependent (ACh) stimulation. The results suggests that leg muscle blood flow is impaired during small muscle mass exercise in patients with COPD possibly due to impaired formation of prostacyclin and increased levels of endothelin-1.......Skeletal muscle blood flow is regulated to match the oxygen demand and dysregulation could contribute to exercise intolerance in patients with COPD. We measured leg hemodynamics and metabolites from vasoactive compounds in muscle interstitial fluid and plasma at rest, during one-legged knee...... the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response...

  18. Development of single leg version of HAL for hemiplegia.

    Science.gov (United States)

    Kawamoto, Hiroaki; Hayashi, Tomohiro; Sakurai, Takeru; Eguchi, Kiyoshi; Sankai, Yoshiyuki

    2009-01-01

    Our goal is to try to enhance the QoL of persons with hemiplegia by the mean of an active motion support system based on the HAL's technology. The HAL (Hybrid Assistive Limb) in its standard version is an exoskeleton-based robot suit to support and enhance the human motor functions. The purpose of the research presented in this paper is the development of a new version of the HAL to be used as an assistive device providing walking motion support to persons with hemiplegia. It includes the realization of the single leg version of the HAL and the redesign of the original HAL's Autonomous Controller to execute human-like walking motions in an autonomous way. Clinical trials were conducted in order to assess the effectiveness of the developed system. The first stage of the trials described in this paper involved the participation of one hemiplegic patient who has difficulties to flex his right knee. As a result, the knee flexion support for walking provided by the HAL appeared to improve the subject's walking (longer stride and faster steps). The first evaluation of the system with one subject showed promising results for the future developments.

  19. Food-cue affected motor response inhibition and self-reported dieting success: a pictorial affective shifting task

    Directory of Open Access Journals (Sweden)

    Adrian eMeule

    2014-03-01

    Full Text Available Behavioral inhibition is one of the basic facets of executive functioning and is closely related to self-regulation. Impulsive reactions, i.e. low inhibitory control, have been associated with higher body-mass-index (BMI, binge eating, and other problem behaviors (e.g. substance abuse, pathological gambling, etc.. Nevertheless, studies which investigated the direct influence of food-cues on behavioral inhibition have been fairly inconsistent. In the current studies, we investigated food-cue affected behavioral inhibition in young women. For this purpose, we used a go/no-go task with pictorial food and neutral stimuli in which stimulus-response mapping is reversed after every other block (affective shifting task. In study 1, hungry participants showed faster reaction times to and omitted fewer food than neutral targets. Low dieting success and higher BMI were associated with behavioral disinhibition in food relative to neutral blocks. In study 2, both hungry and satiated individuals were investigated. Satiation did not influence overall task performance, but modulated associations of task performance with dieting success and self-reported impulsivity. When satiated, increased food craving during the task was associated with low dieting success, possibly indicating a preload-disinhibition effect following food intake. Food-cues elicited automatic action and approach tendencies regardless of dieting success, self-reported impulsivity, or current hunger levels. Yet, associations between dieting success, impulsivity, and behavioral food-cue responses were modulated by hunger and satiation. Future research investigating clinical samples and including other salient non-food stimuli as control category is warranted.

  20. Motor Proficiency in Young Children

    Directory of Open Access Journals (Sweden)

    Fotini Venetsanou

    2016-01-01

    Full Text Available This study aimed to examine motor proficiency in young children, focusing on potential gender differences. For that purpose, the Bruininks-Oseretsky Test of Motor Proficiency–Long Form (BOTMP-LF was administered to 540 children (272 boys, 4½ to 6 years old. First, the 2 (sex × 4 (age groups ANOVA computed on children’s total BOTMP-LF scores showed that age had a statistically significant effect, whereas gender did not. Second, the one-way MANCOVA applied on subtest scores, with age as covariate, revealed statistical significant gender differences; however, η2 values were found to be small or moderate. Finally, the MANCOVA applied on items where significant gender differences have been reported showed a significant effect of gender. Nonetheless, η2 values exceeded the limit of practical significance only on two items (“standing on preferred leg on floor”, “throwing a ball at a target with preferred hand” that are associated with gender-stereotyped activities. It can be concluded that (a besides statistical significance, effect sizes should be examined for the results of a study to be adequately interpreted; (b young boys’ and girls’ motor proficiency is similar rather than different. Gender differences in specific skills should be used for movement programs to be individualized.

  1. Computational simulation of passive leg-raising effects on hemodynamics during cardiopulmonary resuscitation.

    Science.gov (United States)

    Shin, Dong Ah; Park, Jiheum; Lee, Jung Chan; Shin, Sang Do; Kim, Hee Chan

    2017-03-01

    The passive leg-raising (PLR) maneuver has been used for patients with circulatory failure to improve hemodynamic responsiveness by increasing cardiac output, which should also be beneficial and may exert synergetic effects during cardiopulmonary resuscitation (CPR). However, the impact of the PLR maneuver on CPR remains unclear due to difficulties in monitoring cardiac output in real-time during CPR and a lack of clinical evidence. We developed a computational model that couples hemodynamic behavior during standard CPR and the PLR maneuver, and simulated the model by applying different angles of leg raising from 0° to 90° and compression rates from 80/min to 160/min. The simulation results showed that the PLR maneuver during CPR significantly improves cardiac output (CO), systemic perfusion pressure (SPP) and coronary perfusion pressure (CPP) by ∼40-65% particularly under the recommended range of compression rates between 100/min and 120/min with 45° of leg raise, compared to standard CPR. However, such effects start to wane with further leg lifts, indicating the existence of an optimal angle of leg raise for each person to achieve the best hemodynamic responses. We developed a CPR-PLR model and demonstrated the effects of PLR on hemodynamics by investigating changes in CO, SPP, and CPP under different compression rates and angles of leg raising. Our computational model will facilitate study of PLR effects during CPR and the development of an advanced model combined with circulatory disorders, which will be a valuable asset for further studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Radioprotection by WR-151327 against the late normal tissue damage in mouse hind legs from gamma ray radiation

    International Nuclear Information System (INIS)

    Matsushita, Satoru; Ando, Koichi; Koike, Sachiko

    1994-01-01

    To evaluate the protective effect of WR-151327 on late radiation-induced damaged to normal tissues in mice, the right hind legs of mice with or without WR-151327 administration (400 mg/kg) were irradiated with 137 Cs gamma rays. Leg contracture and skin shrinkage assays were performed at 380 days after irradiation. The mice were killed on day 400 postirradiation and histological sections of the legs were made. The thickness of the dermis, epidermis, and skin (dermis plus epidermis) was measured. The muscular area of the legs and the posterior knee angle between the femur and tibia were also measured. The left hind legs were similarly assessed as nonirradiated controls. Group means and standard deviations were calculated and dose-response curves were drawn for every endpoint. Then, the dose modifying factor (DMF) for each endpoint and the correlations among endpoints were determined. Latae damage assayed by leg contracture and skin shrinkage progressed with increasing radiation dose. However, it was reduced by drug treatment. The significant effect was indicated for skin shrinkage by a DMF of 1.8 at 35%. The DMF for leg contracture was 1.3 at 6 mm. In the irradiated legs, epidermal hyperplasia and dermal fibrosis in the skin, muscular atrophy, and extension disturbance of the knee joint were observed. These changes progressed with increasing radiation dose. Skin damage assayed by the present endpoints was also reduced by drug treatment by DMFs of 1.4 to 1.7. However, DMFs for damage to the muscle and knee were not determined because no isoeffect was observed. There were good correlations between leg contracture or skin shrinkage and the other endpoints in both untreated and drug-treated mice. WR-151327 has the potential to protect against radiation-induced late normal tissue damage. 17 refs., 6 figs., 2 tabs

  3. Jidosha's Motors

    OpenAIRE

    Shirakawa Okuma, Rosely; Calderón Orejuela, Javier

    2016-01-01

    La tesis narra la situación de una empresa concesionaria de vehículos nuevos, Jidosha's Motors, perteneciente a una corporación japonesa que cuenta con una cultura muy arraigada de ética y de cumplimiento. Se plantean respuestas, se identifican problemas y sus alternativas de solución para una toma adecuada de decisiones por parte de los directivos, siguiendo una estructura de análisis de situaciones de negocios (ASN). Tesis

  4. Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses.

    Science.gov (United States)

    Huang, Cheng-Ya; Zhao, Chen-Guang; Hwang, Ing-Shiou

    2014-11-01

    Dual-task performance is strongly affected by the direction of attentional focus. This study investigated neural control of a postural-suprapostural procedure when postural focus strategy varied. Twelve adults concurrently conducted force-matching and maintained stabilometer stance with visual feedback on ankle movement (visual internal focus, VIF) and on stabilometer movement (visual external focus, VEF). Force-matching error, dynamics of ankle and stabilometer movements, and event-related potentials (ERPs) were registered. Postural control with VEF caused superior force-matching performance, more complex ankle movement, and stronger kinematic coupling between the ankle and stabilometer movements than postural control with VIF. The postural focus strategy also altered ERP temporal-spatial patterns. Postural control with VEF resulted in later N1 with less negativity around the bilateral fronto-central and contralateral sensorimotor areas, earlier P2 deflection with more positivity around the bilateral fronto-central and ipsilateral temporal areas, and late movement-related potential commencing in the left frontal-central area, as compared with postural control with VIF. The time-frequency distribution of the ERP principal component revealed phase-locked neural oscillations in the delta (1-4Hz), theta (4-7Hz), and beta (13-35Hz) rhythms. The delta and theta rhythms were more pronounced prior to the timing of P2 positive deflection, and beta rebound was greater after the completion of force-matching in VEF condition than VIF condition. This study is the first to reveal the neural correlation of postural focusing effect on a postural-suprapostural task. Postural control with VEF takes advantage of efficient task-switching to facilitate autonomous postural response, in agreement with the "constrained-action" hypothesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. CONNECTION BETWEEN SOME MOTORIC ABILITIES WITH SUCCESS IN REALIZATION OF PROGRAMMED CONTENTS FROM THE AREA OF GYMNASTICS OF THE FOURTH GRADE OF HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Jovica Petković

    2007-05-01

    Full Text Available This research is undertaken for the purpose of defi ning and determinating of the le vel of connection between some motoric abilities with effi ciency in realization of some pro gramme issnes in the area of gymnastic (stretched – legged jump and folded – legged jump. On the sample of fi fty students from the fourth grade of High school, examined stu dents have been tested on ten motoric tests and on two specifi c motoric assignmentsstre tched – legged jump and folded – legged jump. The results of this research clearly point that there exist the multitude of statistically important coeffi cients of correlation between treated motoric abilities and applied assignments

  6. Relationship between Leg Mass, Leg Composition and Foot Velocity on Kicking Accuracy in Australian Football.

    Science.gov (United States)

    Hart, Nicolas H; Nimphius, Sophia; Spiteri, Tania; Cochrane, Jodie L; Newton, Robert U

    2016-06-01

    Kicking a ball accurately over a desired distance to an intended target is arguably the most important skill to acquire in Australian Football. Therefore, understanding the potential mechanisms which underpin kicking accuracy is warranted. The aim of this study was to examine the relationship between leg mass, leg composition and foot velocity on kicking accuracy in Australian Football. Thirty-one Australian Footballers (n = 31; age: 22.1 ± 2.8 years; height: 1.81 ± 0.07 m; weight: 85.1 ± 13.0 kg; BMI: 25.9 ± 3.2) each performed ten drop punt kicks over twenty metres to a player target. Athletes were separated into accurate (n = 15) and inaccurate (n = 16) kicking groups. Leg mass characteristics were assessed using whole body DXA scans. Foot velocity was determined using a ten-camera optoelectronic, three-dimensional motion capture system. Interactions between leg mass and foot velocity evident within accurate kickers only (r = -0.670 to -0.701). Relative lean mass was positively correlated with kicking accuracy (r = 0.631), while no relationship between foot velocity and kicking accuracy was evident in isolation (r = -0.047 to -0.083). Given the evident importance of lean mass, and its interaction with foot velocity for accurate kickers; future research should explore speed-accuracy, impulse-variability, limb co-ordination and foot-ball interaction constructs in kicking using controlled with-in subject studies to examine the effects of resistance training and skill acquisition programs on the development of kicking accuracy. Key pointsAccurate kickers expressed a very strong inverse relationship between leg mass and foot velocity. Inaccurate kickers were unable to replicate this, with greater volatility in their performance, indicating an ability of accurate kickers to mediate foot velocity to compensate for leg mass in order to deliver the ball over the required distance.Accurate kickers exhibited larger quantities of relative lean mass and lower quantities

  7. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.

    Science.gov (United States)

    Hustert, R; Baldus, M

    2010-12-01

    Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae

  8. Clinical and angiographic evaluation of the topic application of nitrate compounds in obstructive distal arteriopathies of the legs

    International Nuclear Information System (INIS)

    Perini, L.; Cavallo, A.; Perin, B.; Natale, F.; Borelli, G.; Bisiato, R.

    1988-01-01

    The vasodilatator effect obtained by the topic use of a nytroglycerin compound (TNG) has been angiographically tested on 11 patients affected by distal arteriopathy of the legs. All patients presented arteriosclerotic vascular lesions; two of them also suffered from diabetic angiopathy. Arteriography of the legs has proved to be a very important tool in the evaluation of the patients'response to the administration of the drug. An hour after 80 mg of TNG had been applied to the skin of the examined leg, arteriography showed a marked dilatation, especially of the muscular arteries and the undamaged tracts of the arteries of the legs. Angiographic evaluation of the functional blood supply thus obtained provides prognostic information and helps in the choice of the subsequent therapy. Furthermore, the clinical efficacy of prolonged treatment with this drug has been tested in 10 out of the 11 patients. They all responded with an immediate and persistent hemodynamic improvement, evaluated according to Fontaine's classification

  9. Robust and efficient walking with spring-like legs

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, J; Blum, Y; Seyfarth, A, E-mail: juergen.rummel@uni-jena.d, E-mail: andre.seyfarth@uni-jena.d [Lauflabor Locomotion Laboratory, University of Jena, Dornburger Strasse 23, 07743 Jena (Germany)

    2010-12-15

    The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between robustness and energy efficiency in walking. It is found that, compared to asymmetric walking, symmetric walking with flatter angles of attack reveals such a compromise. With increasing leg stiffness, energy efficiency increases continuously. However, robustness is the maximum at moderate leg stiffness and decreases slightly with increasing stiffness. Hence, an adjustable leg compliance would be preferred, which is adaptable to the environment. If the ground is even, a high leg stiffness leads to energy efficient walking. However, if external perturbations are expected, e.g. when the robot walks on uneven terrain, the leg should be softer and the angle of attack flatter. In the case of underactuated robots with constant physical springs, the leg stiffness should be larger than k-tilde = 14 in order to use the most robust gait. Soft legs, however, lack in both robustness and efficiency.

  10. Robust and efficient walking with spring-like legs

    International Nuclear Information System (INIS)

    Rummel, J; Blum, Y; Seyfarth, A

    2010-01-01

    The development of bipedal walking robots is inspired by human walking. A way of implementing walking could be performed by mimicking human leg dynamics. A fundamental model, representing human leg dynamics during walking and running, is the bipedal spring-mass model which is the basis for this paper. The aim of this study is the identification of leg parameters leading to a compromise between robustness and energy efficiency in walking. It is found that, compared to asymmetric walking, symmetric walking with flatter angles of attack reveals such a compromise. With increasing leg stiffness, energy efficiency increases continuously. However, robustness is the maximum at moderate leg stiffness and decreases slightly with increasing stiffness. Hence, an adjustable leg compliance would be preferred, which is adaptable to the environment. If the ground is even, a high leg stiffness leads to energy efficient walking. However, if external perturbations are expected, e.g. when the robot walks on uneven terrain, the leg should be softer and the angle of attack flatter. In the case of underactuated robots with constant physical springs, the leg stiffness should be larger than k-tilde = 14 in order to use the most robust gait. Soft legs, however, lack in both robustness and efficiency.

  11. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding.

    Science.gov (United States)

    Charalambous, Charalambos C; Bowden, Mark G; Adkins, DeAnna L

    2016-01-01

    Despite the plethora of human neurophysiological research, the bilateral involvement of the leg motor cortical areas and their interhemispheric interaction during both normal and impaired human walking is poorly understood. Using transcranial magnetic stimulation (TMS), we have expanded our understanding of the role upper-extremity motor cortical areas play in normal movements and how stroke alters this role, and probed the efficacy of interventions to improve post-stroke arm function. However, similar investigations of the legs have lagged behind, in part, due to the anatomical difficulty in using TMS to stimulate the leg motor cortical areas. Additionally, leg movements are predominately bilaterally controlled and require interlimb coordination that may involve both hemispheres. The sensitive, but invasive, tools used in animal models of locomotion hold great potential for increasing our understanding of the bihemispheric motor cortical control of walking. In this review, we discuss 3 themes associated with the bihemispheric motor cortical control of walking after stroke: (a) what is known about the role of the bihemispheric motor cortical control in healthy and poststroke leg movements, (b) how the neural remodeling of the contralesional hemisphere can affect walking recovery after a stroke, and (c) what is the effect of behavioral rehabilitation training of walking on the neural remodeling of the motor cortical areas bilaterally. For each theme, we discuss how rodent models can enhance the present knowledge on human walking by testing hypotheses that cannot be investigated in humans, and how these findings can then be back-translated into the neurorehabilitation of poststroke walking. © The Author(s) 2015.

  12. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila.

    Science.gov (United States)

    Pitmon, E; Stephens, G; Parkhurst, S J; Wolf, F W; Kehne, G; Taylor, M; Lebestky, T

    2016-03-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH-positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. © 2016 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  13. May 2015 critical care case of the month: an infected leg

    Directory of Open Access Journals (Sweden)

    Till SL

    2015-05-01

    Full Text Available No abstract available. Article truncated at 150 words. History of Present Illness: A 46-year-old transferred due to concern for necrotizing fasciitis. One the day prior to transfer purple discoloration was not noted in the lower portion of the left leg. On the day of transfer the leg became more purple, painful, and swollen. She presented to a pain clinic that advised her to go to an emergency room. The emergency room performed arterial Doppler ultrasound, which was normal and transferred her due to concern of necrotizing fasciitis. Past Medical History, Social History and Family History: She has a past medical history of fibromyalgia. She had an extensive surgical history including an appendectomy, bladder implant, cholecystectomy, dilatation and curettage, esophageal repair, left femoral artery repair due to a motor vehicle accident, partial hysterectomy, left knee surgery, and several left leg operations with grafting. Family history was non-contributory. The patient was single with two children, and smoked 1-2 packs of ...

  14. Injury of leg somatotopy of corticospinal tract at corona radiata by ventriculoperitoneal shunt: A case report.

    Science.gov (United States)

    Jang, Sung Ho; Kwon, Younghyeon

    2018-03-01

    A 45-year-old right-handed female patient suffered head trauma after being hit by a truck that ran into a house. The patient lost consciousness for 1 hour and experienced posttraumatic amnesia for 1 month after the accident. She underwent conservative management for a subdural hematoma in the left frontotemporal lobes and intracerebral hematoma in the left frontal lobe. The patient's Glasgow Coma Scale score was 11. She underwent a VP shunt operation, approached through the right posterior parietal area of the brain, at 4 months after onset. Approximately, 6 months after onset, she was admitted to the rehabilitation department of a university hospital. She presented with moderate weakness of the left leg: Medical Research Council scores: hip flexor; 3, knee extensor; 3+, ankle dorsiflexor; 3-. Brain magnetic resonance imaging revealed a leukomalactic lesion in the right posterior corona radiata along the shunt. On 6-month (2 months after the shunt operation) diffusion tensor tractography, the left CST showed partial injury in the posterior portion compared with the right CST. On 6-month transcranial magnetic stimulation study, the motor-evoked potential obtained at the left tibialis anterior muscle revealed lower amplitude than that on the right side. Injury of leg somatotopy of a CST was demonstrated in a patient with leg weakness following a VP shunt operation.

  15. Sleep disturbances in restless legs syndrome

    Directory of Open Access Journals (Sweden)

    Jović Jasmina

    2018-01-01

    Full Text Available Background/Aim. Resteless legs syndrome (RLS is chronical neurological disorder characterized by urge to move legs that is usually accompanied by unpleasant sensations in the lower extremities. Sleep disturbance is one of the main accompanying symptoms of RLS which exists in approximatelly 90% of patients. Impairment of sleep is related to daily sleepiness, depressive and anxiety disorders. The aim of this study was to detect frequency and characterisitics of sleep-related symptoms in patients with RLS, and its impairrment to daily sleepiness, fatique, anxiety and depression. Methods. We have examinated 94 patients with RLS. The diagnose of RLS was based on questionnaire with 4 specific questions according to the International Restless Legs Syndrome Study Group (IRLSSG criteria updated in 2003. Severity of symptoms was astimated with IRLSSG Rating Scale, depression and anxiety with Hamilton Depression Rating Scale (HDRS and Hamilton Anxiety Rating Scale (HARS and sleepiness with Epworth Sleepiness scale (ESS. We astimated sleep characteristics and disturbances with specific questionnaire. Results. In our study 79.9% of patients had sleep-related symptoms. Average sleep duration was 6.50 ± 1.42 hours, with average frequency of awakening 2.34 ± 1.69 times per night. Average ESS score was 5.12 ± 4.08 (0–17. Patients with more severe symptoms had higher degree of sleepiness (p = 0.005. Patients with higher symptoms frequency, significantly more often had sleep disturbance (p = 0.016, tiredness and daily sleepiness (p = 0.001. Daily sleepiness (ESS also significantly correlates with depression (p < 0.05 and anxiety (p = 0.012. Conclusion. Our results confirm that sleep disturbances are one of the key accompanying symptoms of RLS which cause daily sleepiness, tiredness, depression and anxiety. Therefore, their early recognition and appropriate treatment must be a priority in RLS patients.

  16. Painful legs and moving toes syndrome

    Directory of Open Access Journals (Sweden)

    Qiu-ying Ma

    2015-10-01

    Full Text Available Painful legs and moving toes syndrome (PLMT is a rare movement disorder with low diagnostic rate, which is characterized by lower limb pain with involuntary movements of feet or toes. Etiology and pathogenesis of this disease is still unclear. Patients have different clinical manifestations, so the diagnosis is difficult. Treatment methods for PLMT are numerous, but so far the treatment of this disease is still a major challenge for clinicians. Further research is still needed to guide clinical work. DOI: 10.3969/j.issn.1672-6731.2015.10.013

  17. Optimal powering schemes for legged robotics

    Science.gov (United States)

    Muench, Paul; Bednarz, David; Czerniak, Gregory P.; Cheok, Ka C.

    2010-04-01

    Legged Robots have tremendous mobility, but they can also be very inefficient. These inefficiencies can be due to suboptimal control schemes, among other things. If your goal is to get from point A to point B in the least amount of time, your control scheme will be different from if your goal is to get there using the least amount of energy. In this paper, we seek a balance between these extremes by looking at both efficiency and speed. We model a walking robot as a rimless wheel, and, using Pontryagin's Maximum Principle (PMP), we find an "on-off" control for the model, and describe the switching curve between these control extremes.

  18. Asymptomatic petechial eruption on the lower legs.

    Science.gov (United States)

    Mendese, Gary; Grande, Donald

    2013-09-01

    The authors report an unusual case of Rocky Mountain spotted fever that presented as an asymptomatic petechial eruption on the lower legs. Rocky Mountain spotted fever is rare in New England and, as such, is typically not on the differential diagnosis when presented with such patients. What began as an asymptomatic eruption progressed to more classic signs of the disease, including a positive Rocky Mountain spotted fever titer. The patient was successfully treated with doxycydine and within a short period of time, was completely back at baseline.

  19. Analysis of ATLAS Cold Leg SBLOCA Using SPACE Code

    International Nuclear Information System (INIS)

    Kang, Doo Hyuk; Suh, Jae Seung; Kim, Se Yun

    2012-01-01

    SPACE Code has been developed to predict the thermal-hydraulic responses of nuclear steam supply system to the anticipated transients and postulated accidents and adopted advanced physical modeling of two-phase flows, mainly two-fluid, three-field models that comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or non-structured meshes. In this paper, a cold-leg SBLOCA which is the experiment, SB-CL-09, of the ATLAS integral effect test facility during the second domestic stand problem (DSP-02) was analyzed. The results were compared with those of MARS-KS code simulations. The SPACE code with a 1.0 version was released by KHNP in 2012. The analysis has been performed in a desktop PC with Windows 7 environment

  20. Are the hamstrings from the drive leg or landing leg more active in baseball pitchers? An electromyographic study.

    Science.gov (United States)

    Erickson, Brandon J; Zaferiou, Antonia; Chalmers, Peter N; Ruby, Deana; Malloy, Phillip; Luchetti, Timothy J; Verma, Nikhil N; Romeo, Anthony A

    2017-11-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure among baseball players of all levels. There are several graft choices in performing UCLR, one of which is a hamstring (gracilis or semitendinosus) autograft. It is unclear whether the hamstring muscle from a pitcher's drive leg (ipsilateral side of the UCLR) or landing leg (contralateral side of the UCLR) is more active during the pitching motion. We hypothesized that the landing leg semitendinosus will be more electromyographically active than the drive leg. Healthy, elite male pitchers aged 16-21 years were recruited. Sixteen pitchers (average age, 17.6 ± 1.6 years; 67% threw right handed) underwent electromyographic analysis. Pitchers threw 5 fastballs at 100% effort from the wind-up with electromyographic analysis of every pitch. Activation of the semitendinosus and biceps femoris in both legs was compared within pitchers and between pitchers. Hamstring activity was higher in the drive leg than in the landing leg during each phase and in sum, although the difference was significant only during the double support phase (P = .021). On within-pitcher analysis, 10 of 16 pitchers had significantly more sum hamstring activity in the drive leg than in the landing leg, while only 4 of 16 had more activity in the landing leg (P = .043). During the baseball pitch, muscle activity of the semitendinosus was higher in the drive leg than in the landing leg in most pitchers. Surgeons performing UCLR using hamstring autograft should consider harvesting the graft from the pitcher's landing leg to minimize disruption to the athlete's pitching motion. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. Blood pressure and the contractility of a human leg muscle.

    Science.gov (United States)

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  2. Novel actuation design of a gait trainer with shadow leg approach.

    Science.gov (United States)

    Meuleman, Jos; Meuleman, Jos; van Asseldonk, Edwin H F; van der Kooij, Herman

    2013-06-01

    Robotic gait training has developed since the end of the 20(th) century, yet there is much room for improvement in the design of the robots. With the conventional exoskeleton structures, donning of patients in a gait trainer usually is a cumbersome process due to the need of joint alignments and normal walking is often hindered due to obstructed arm swing. Our goal was to design a gait training robots that overcomes these limitations. We propose a novel design in which these drawbacks are reduced to a great amount. By using a parallel structure behind the patient (shadow leg) that is connected to the patient joints with rods, little alignment is needed, the area lateral to the hip is left free, and thus arm swing is not obstructed. The construction is lightweight, because the actuators are mounted on a fixed base and the transmission of power is executed with light weight rods. An end stop in the shadow leg prevents hyper extension of the patient's knee. The relationship between motor displacement and human joint rotations is nonlinear. In this paper we derive the nonlinear relationships between motors and patient joints and verify these. calculations with a measurement. The device has been built, now tests with subjects are required to assess if subjects can indeed walk normally in the robot.

  3. An Ultralightweight and Living Legged Robot.

    Science.gov (United States)

    Vo Doan, Tat Thang; Tan, Melvin Y W; Bui, Xuan Hien; Sato, Hirotaka

    2018-02-01

    In this study, we describe the most ultralightweight living legged robot to date that makes it a strong candidate for a search and rescue mission. The robot is a living beetle with a wireless electronic backpack stimulator mounted on its thorax. Inheriting from the living insect, the robot employs a compliant body made of soft actuators, rigid exoskeletons, and flexure hinges. Such structure would allow the robot to easily adapt to any complex terrain due to the benefit of soft interface, self-balance, and self-adaptation of the insect without any complex controller. The antenna stimulation enables the robot to perform not only left/right turning but also backward walking and even cessation of walking. We were also able to grade the turning and backward walking speeds by changing the stimulation frequency. The power required to drive the robot is low as the power consumption of the antenna stimulation is in the order of hundreds of microwatts. In contrast to the traditional legged robots, this robot is of low cost, easy to construct, simple to control, and has ultralow power consumption.

  4. Restless Legs Syndrome with Current Diagnostic Criteria

    Directory of Open Access Journals (Sweden)

    Meral Bilgilisoy Filiz

    2015-08-01

    Full Text Available Restless legs syndrome (RLS, also known as Willis-Ekbom disease, is a chronic movement disorder, characterized by an urge to move legs usually accompanied by uncomfortable sensations and sleep disorders. The prevalence of the syndrome ranges from 1% to 15% in the general population, and about 2% during childhood. RLS is the most common movement disorder in pregnancy. However RLS still remains underdiagnosed probably due to lack of accurate information about the disease. Family history is positive in 50-70% of the primary RLS patients. The secondary form of the syndrome is associated with iron deficiency, renal failure, pregnancy, diabetes mellitus and many rheumatologic disorders. Secondary forms generally manifest at older ages and have a rapid progression with a poorer prognosis. The pathophysiology of RLS is focused on the dopaminergic system, reduced central nervous system iron levels and genetic linkages. Diagnosis is based on clinical features and the diagnostic criteria suggested by International RLS Study Group. Secondary causes must be carefully investigated before the treatment. In mild forms of the disease non-pharmacologic therapies might be useful, while in moderate or severe forms of the disease generally pharmacologic therapies such as dopamine agonists, anticonvulsants, opioids and benzodiazepines are required. (Turkish Journal of Osteoporosis 2015;21: 87-95

  5. Restless legs syndrome in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Shahram Rafie

    2016-01-01

    Full Text Available Restless legs syndrome (RLS is a neurological disorder characterized by uncomfortable sensation of paresthesia in legs that subsequently causes involuntary and continuous movement of the lower limbs, especially at rest. Its prevalence in hemodialysis is more than that in the general population. Different risk factors have been suggested for RLS. We studied the prevalence and risk factors of RLS in 137 hemodialysis patients followed up at our center. The patients completed at least three months on dialysis and fulfilled four criteria for the diagnosis of RLS. We compared the patients with and without RLS, and the odds ratios (ORs were estimated by the logistic regression models. The prevalence of RLS was 36.5% in the study patients. Among the variables, diabetes was the only predicting factor for the development of RLS. The diabetic patients may be afflicted with RLS 2.25 times more than the non-diabetics. Women developed severe RLS 5.23 times more than men. Neurodegeneration, decrease in dopamine level, higher total oxidant status, and neuropathy in diabetic patients may explain the RLS symptoms.

  6. The effects of passive leg press training on jumping performance, speed, and muscle power.

    Science.gov (United States)

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p training (p training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p training only increased participants' 30-m sprint performance and peak power (p training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to contract faster compared with voluntary contraction. Therefore, muscle training with high contraction velocity is one of the main methods of increasing muscle power. Passive leg press training is a unique method for enhancing jump performance, speed, and muscle power.

  7. Bioinspired template-based control of legged locomotion

    OpenAIRE

    Ahmad Sharbafi, Maziar

    2018-01-01

    cient and robust locomotion is a crucial condition for the more extensive use of legged robots in real world applications. In that respect, robots can learn from animals, if the principles underlying locomotion in biological legged systems can be transferred to their artificial counterparts. However, legged locomotion in biological systems is a complex and not fully understood problem. A great progress to simplify understanding locomotion dynamics and control was made by introducing simple mo...

  8. Six weeks' aerobic retraining after two weeks' immobilization restores leg lean mass and aerobic capacity but does not fully rehabilitate leg strenght in young and older men

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Gram, Martin; Wiuff, Caroline

    2015-01-01

    OBJECTIVE: To determine the effect of aerobic retraining as rehabilitation after short-term leg immobilization on leg strength, leg work capacity, leg lean mass, leg muscle fibre type composition and leg capillary supply, in young and older men. SUBJECTS AND DESIGN: Seventeen young (23 ± 1 years...... immobilization had marked effects on leg strength, and work capacity and 6 weeks' retraining was sufficient to increase, but not completely rehabilitate, muscle strength, and to rehabilitate aerobic work capacity and leg lean mass (in the young men)....

  9. Alleviation of Motor Impairments in Patients with Cerebral Palsy: Acute Effects of Whole-body Vibration on Stretch Reflex Response, Voluntary Muscle Activation and Mobility

    Directory of Open Access Journals (Sweden)

    Anne Krause

    2017-08-01

    Full Text Available IntroductionIndividuals suffering from cerebral palsy (CP often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP.Methods44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16–25 Hz, 1.5–3 mm. Assessment included (1 recordings of stretch reflex (SR activity of the triceps surae, (2 electromyography (EMG measurements of maximal voluntary muscle activation of lower limb muscles, and (3 neuromuscular activation during active range of motion (aROM. We recorded EMG of m. soleus (SOL, m. gastrocnemius medialis (GM, m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint.ResultsAfter WBV, (1 SOL SRs were decreased (p < 0.01 while (2 maximal voluntary activation (p < 0.05 and (3 angular excursion in the knee joint (p < 0.01 were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist–antagonist ratios during aROM was significantly enhanced (p < 0.05.DiscussionThe findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level, while the execution of voluntary movement (supraspinal level is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor

  10. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Science.gov (United States)

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  11. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Directory of Open Access Journals (Sweden)

    Maurice Mohr

    Full Text Available Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM and Lateralis (VL. Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role.Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum.For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat.There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement

  12. Dynamically Timed Electric Motor

    Science.gov (United States)

    Casper, Ann M. (Inventor)

    1997-01-01

    A brushless DC motor including a housing having an end cap secured thereto. The housing encloses a rotor. a stator and a rotationally displaceable commutation board having sensors secured thereon and spaced around the periphery of the rotor. An external rotational force is applied to the commutation board for displacement of the sensors to various positions whereby varying feedback signals are generated by the positioning of the sensors relative to the rotating rotor. The commutation board is secured in a fixed position in response to feedback signals indicative of optimum sensor position being determined. The rotation of the commutation board and the securing of the sensors in the desired fixed position is accomplished without requiring the removal of the end cap and with the DC motor operating.

  13. Developing an eBook-Integrated High-Fidelity Mobile App Prototype for Promoting Child Motor Skills and Taxonomically Assessing Children’s Emotional Responses Using Face and Sound Topology

    Science.gov (United States)

    Brown, William; Liu, Connie; John, Rita Marie; Ford, Phoebe

    2014-01-01

    Developing gross and fine motor skills and expressing complex emotion is critical for child development. We introduce “StorySense”, an eBook-integrated mobile app prototype that can sense face and sound topologies and identify movement and expression to promote children’s motor skills and emotional developmental. Currently, most interactive eBooks on mobile devices only leverage “low-motor” interaction (i.e. tapping or swiping). Our app senses a greater breath of motion (e.g. clapping, snapping, and face tracking), and dynamically alters the storyline according to physical responses in ways that encourage the performance of predetermined motor skills ideal for a child’s gross and fine motor development. In addition, our app can capture changes in facial topology, which can later be mapped using the Facial Action Coding System (FACS) for later interpretation of emotion. StorySense expands the human computer interaction vocabulary for mobile devices. Potential clinical applications include child development, physical therapy, and autism. PMID:25954336

  14. Leg Stiffness in Female Soccer Players: Intersession Reliability and the Fatiguing Effects of Soccer-Specific Exercise.

    Science.gov (United States)

    De Ste Croix, Mark B A; Hughes, Jonathan D; Lloyd, Rhodri S; Oliver, Jon L; Read, Paul J

    2017-11-01

    De Ste Croix, MBA, Hughes, JD, Lloyd, RS, Oliver, JL, and Read, PJ. Leg stiffness in female soccer players: intersession reliability and the fatiguing effects of soccer-specific exercise. J Strength Cond Res 31(11): 3052-3058, 2016-Low levels of leg stiffness and reduced leg stiffness when fatigue is present compromise physical performance and increase injury risk. The purpose of this study was to (a) determine the reliability of leg stiffness measures obtained from contact mat data and (b) explore age-related differences in leg stiffness after exposure to a soccer-specific fatigue protocol in young female soccer players. Thirty-seven uninjured female youth soccer players divided into 3 subgroups based on chronological age (under 13 [U13], under 15 [U15], and under 17 [U17] year-olds) volunteered to participate in the study. After baseline data collection, during which relative leg stiffness, contact time, and flight time were collected, participants completed an age-appropriate soccer-specific fatigue protocol (SAFT). Upon completion of the fatigue protocol, subjects were immediately retested. Intersession reliability was acceptable and could be considered capable of detecting worthwhile changes in performance. Results showed that leg stiffness decreased in the U13 year-olds, was maintained in the U15 age group, and increased in the U17 players. Contact times and flight times did not change in the U13 and U15 year-olds, but significantly decreased and increased, respectively, in the U17 age group. The data suggest that age-related changes in the neuromuscular control of leg stiffness are present in youth female soccer players. Practitioners should be aware of these discrepancies in neuromuscular responses to soccer-specific fatigue, and should tailor training programs to meet the needs of individuals, which may subsequently enhance performance and reduce injury risk.

  15. Probabilitic analysis for fatigue failure of leg-supported liquid containers under random earthquake-type excitation

    International Nuclear Information System (INIS)

    Fujita, Takafumi

    1981-01-01

    Leg-supported cylindrical containers frequently used for nuclear power plants and chemical plants and leg-supported rectangular containers such as water and fuel tanks are the structures, of which the reliability is feared at the time of earthquakes. In this study, about such leg-supported liquid containers, the structural reliability of the system at the time of earthquakes was analyzed from the viewpoint of fatigue failure at the joints of tanks and supporting legs and the fixing parts of legs. The second order unsteady coupled probability density of response displacement and response velocity and the first and second order unsteady probability density of response displacement envelope were determined, then using the results, the expected value, variance and unsteady probability density of cumulative damage were obtained on the basis of Miner's law, thus the structural reliability of the system was analyzed. The result of analysis was verified with the results of vibration tests using many simulated earthquake waves, and the experiment of the fatigue failure of a model with sine wave vibration was carried out. The mechanical model for the analysis, the unsteady probability density described above, the analysis of structural reliability and the experiment are reported. (Kako, I.)

  16. Fine motor control

    Science.gov (United States)

    ... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...

  17. Intermediate Leg SBLOCA - Long Lasting Pressure Transient

    International Nuclear Information System (INIS)

    Konjarek, D.; Bajs, T.; Vukovic, J.

    2010-01-01

    The basic phenomenology of Small Break Loss of Coolant Accident (SBLOCA) for PWR plant is described with focus on analysis of scenario in which reactor coolant pressure decreases below secondary system pressure. Best estimate light water reactor transient analysis code RELAP5/mod3.3 was used in calculation. Rather detailed model of the plant was used. The break occurs in intermediate leg on lowest elevation near pump suction. The size of the break is chosen to be small enough to cause cycling of safety valves (SVs) on steam generators (SGs) for some time, but, afterwards, it is large enough to remove decay heat through the break, causing cooling the secondary side. In this case of SBLOCA, when primary pressure decreases below secondary pressure, long lasting pressure transients with significant amplitude occur. Reasons for such behavior are explained.(author).

  18. Restless legs syndrome in patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Saleh Mohammad Yaser Salman

    2011-01-01

    Full Text Available Restless legs syndrome (RLS is common among dialysis patients, with a reported prevalence of 6-60%. The prevalence of RLS in Syrian patients on hemodialysis (HD is not known. The purpose of this study is to determine the prevalence of RLS in patients on regular HD, and to find the possible correlation between the presence of RLS and demographic, clinical, and biochemical factors. One hundred and twenty-three patients (male/female = 70/53, mean age = 41.95 ± 15.11 years on HD therapy at the Aleppo University Hospital were enrolled into the study. RLS was diagnosed based on criteria established by the International Restless Legs Syn-drome Study Group (IRLSSG. Data procured were compared between patients with and without RLS. Applying the IRLSSG criteria for the diagnosis, RLS was seen in 20.3% of the study pa-tients. No significant difference in age, gender, and intake of nicotine and caffeine was found between patients with and without the RLS. Similarly, there was no difference between the two groups in the duration of end-stage renal disease (ESRD, the period of dialysis dependence, dialysis adequacy, urea and creatinine levels, and the presence of anemia. The co-morbidities and the use of drugs also did not differ in the two groups. Our study suggests that the high prevalence of RLS among patients on HD requires careful attention and correct diagnosis can lead to better therapy and better quality of life. The pathogenesis of RLS is not clear and further studies are required to identify any possible cause as well as to discover the impact of this syndrome on sleep, quality of life, and possibly other complications such as cardiovasculare disease.

  19. Deep vein thrombosis of the leg

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hee; Rhee, Kwang Woo; Jeon, Suk Chul; Joo, Kyung Bin; Lee, Seung Ro; Seo, Heung Suk; Hahm, Chang Kok [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1987-04-15

    Ascending contrast venography is the definitive standard method for the diagnosis of deep vein thrombosis (DVT) of the lower extremities. Authors analysed 22 cases of DVT clinically and radiographically. 1.The patients ranged in age from 15 to 70 yrs and the most prevalent age group was 7th decade (31%). There was an equal distribution of males and females. 2.In 11 cases of 22 cases, variable etiologic factors were recognized, such as abdominal surgery, chronic bedridden state, local trauma on the leg, pregnancy, postpartum, Behcet's syndrome, iliac artery aneurysm, and chronic medication of estrogen. 3.Nineteen cases out of 22 cases showed primary venographic signs of DVT, such as well-defined filling defect in opacified veins and narrowed, irregularly filled venous lumen. In only 3 cases, the diagnosis of DVT was base upon the segmental nonvisualization of deep veins with good opacification of proximal and distal veins and presence of collaterals. 4.Extent of thrombosis: 3 cases were confined to calf vein, 4 cases extended to femoral vein, and 15 cases had involvement above iliac vein. 5.In 17 cases involving relatively long segment of deep veins, propagation pattern of thrombus was evaluated by its radiologic morphology according to the age of thrombus: 9 cases suggested central or antegrade propagation pattern and 8 cases, peripheral or retrograde pattern. 6.None of 22 cases showed clinical evidence of pulmonary embolism. The cause of the rarity of pulmonary embolism in Korean in presumed to be related to the difference in major involving site and propagation pattern of DVT in the leg.

  20. Deep vein thrombosis of the leg

    International Nuclear Information System (INIS)

    Lee, Eun Hee; Rhee, Kwang Woo; Jeon, Suk Chul; Joo, Kyung Bin; Lee, Seung Ro; Seo, Heung Suk; Hahm, Chang Kok

    1987-01-01

    Ascending contrast venography is the definitive standard method for the diagnosis of deep vein thrombosis (DVT) of the lower extremities. Authors analysed 22 cases of DVT clinically and radiographically. 1.The patients ranged in age from 15 to 70 yrs and the most prevalent age group was 7th decade (31%). There was an equal distribution of males and females. 2.In 11 cases of 22 cases, variable etiologic factors were recognized, such as abdominal surgery, chronic bedridden state, local trauma on the leg, pregnancy, postpartum, Behcet's syndrome, iliac artery aneurysm, and chronic medication of estrogen. 3.Nineteen cases out of 22 cases showed primary venographic signs of DVT, such as well-defined filling defect in opacified veins and narrowed, irregularly filled venous lumen. In only 3 cases, the diagnosis of DVT was base upon the segmental nonvisualization of deep veins with good opacification of proximal and distal veins and presence of collaterals. 4.Extent of thrombosis: 3 cases were confined to calf vein, 4 cases extended to femoral vein, and 15 cases had involvement above iliac vein. 5.In 17 cases involving relatively long segment of deep veins, propagation pattern of thrombus was evaluated by its radiologic morphology according to the age of thrombus: 9 cases suggested central or antegrade propagation pattern and 8 cases, peripheral or retrograde pattern. 6.None of 22 cases showed clinical evidence of pulmonary embolism. The cause of the rarity of pulmonary embolism in Korean in presumed to be related to the difference in major involving site and propagation pattern of DVT in the leg

  1. Nocturnal variations in lower-leg subcutaneous blood flow in paraplegic men

    DEFF Research Database (Denmark)

    Sindrup, J H; Wroblewski, H; Kastrup, J

    1992-01-01

    1. Lower-leg subcutaneous adipose tissue blood flow rates were measured over 12-20 h under ambulatory conditions by means of the 133Xe-washout technique in nine paraplegic men, all with complete spinal cord lesions at or below the Th 6 level, and in nine age-matched healthy men. Portable Cd......Te(Cl) detectors and data-storage units were used. 2. The central and local sympathetic vasoconstrictive activity at the lower leg was measured under laboratory conditions by means of the 133Xe-washout technique and a stationary NaI(Tl) detector system. 3. The paraplegic men were found to have intact central...... the paraplegic men suffered from complete lower-leg somaesthetic denervation. 5. A significant correlation was found between the time of going to bed and the nightly hyperaemic response in the right and left lower legs (P less than 0.01). 6. It is concluded that the present data are in accordance...

  2. Bacteria of leg atheromatous arteries responsible for inflammation.

    Science.gov (United States)

    Olszewski, Waldemar Lech; Rutkowska, Joanna; Moscicka-Wesolowska, Maria; Swoboda-Kopec, Ewa; Stelmach, Ewa; Zaleska, Marzanna; Zagozda, Malgorzata

    2016-09-01

    Ischaemia of the lower limbs is frequently followed by inflammation and, in advanced cases, necrosis of peripheral tissues. Whether this is caused by arterial hypoperfusion only or by the presence of bacteria in the arterial walI as well remains unclear. The aim of the study was to prove the presence and source of bacteria in arterial specimens and evaluate their chemotactic properties resulting in the formation of periarterial cellular infiltrates. Bacterial culture and testing for 16sRNA were performed in fragments of popliteal artery harvested from amputated limbs. Carotid artery plaques served as controls. Fragments of arteries were transplanted into scid mice to evaluate their chemotactic activity for macrophages. a) higher prevalence of isolates and 16sRNA in atherosclerotic popliteal than carotid arteries, b) high density of plaque and periarterial infiltrates and mRNA level for pro-inflammatory cytokines in popliteal arteries, c) prevalent microbes were Staphylococcus aureus, S. epidermidis and Enterococci, d) foot skin and arterial bacterial phenotypes and DNA revealed evident similarities, and e) more intensive mouse macrophage accumulation in popliteal than carotid implants into scid mice. The presence of bacteria in the lower limb arterial wall was documented. They may predispose to inflammation secondary to ischaemic changes.

  3. Diurnal variations in lower leg subcutaneous blood flow rate in patients with chronic venous leg ulcers

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Kristensen, J K

    1991-01-01

    The blood flow rate in subcutaneous adipose tissue was measured on the lower legs of 11 patients with chronic lower-leg venous insufficiency and ulceration and in eight age-matched control subjects for 12-20 h, under ambulatory conditions, using the 133Xe wash-out technique with portable Cadmium...... telluride (CdTe(Cl)) detectors. In both groups, the change from an upright to a supine position at the beginning of the night period elicited an instantaneous increment in the blood flow rate of 30-40% with a decrease in the central and local postural sympathetic vasoconstrictor activity. After...... approximately 1 h of sleep, a considerable increase in blood flow rate was seen in both patient and control groups which persisted for nearly 100 min. In the patient group, the mean increase was 137% compared to a mean increase of 68% in the control group (P less than 0.01). The blood flow then returned...

  4. Lateralization of cortical negative motor areas.

    Science.gov (United States)

    Borggraefe, Ingo; Catarino, Claudia B; Rémi, Jan; Vollmar, Christian; Peraud, Aurelia; Winkler, Peter A; Noachtar, Soheyl

    2016-10-01

    The lateral and mesial aspects of the central and frontal cortex were studied by direct electrical stimulation of the cortex in epilepsy surgery candidates in order to determine the localization of unilateral and bilateral negative motor responses. Results of electrical cortical stimulation were examined in epilepsy surgery candidates in whom invasive electrodes were implanted. The exact localization of subdural electrodes was defined by fusion of 3-dimensional reconstructed MRI and CT images in 13 patients and by analysis of plane skull X-rays and intraoperative visual localization of the electrodes in another 7 patients. Results of electrical stimulation of the cortex were evaluated in a total of 128 patients in whom invasive electrodes were implanted for planning resective epilepsy surgery. Twenty patients, in whom negative motor responses were obtained, were included in the study. Bilateral upper limb negative motor responses were more often elicited from stimulation of the mesial frontal cortex whereas stimulation of the lateral central cortex leads to contralateral upper limb negative motor responses (pfrontal gyrus whereas contralateral negative motor responses localized predominantly in the anterior part of the precentral gyrus (pgyrus and the mesial fronto-central cortex showing functional differences with regard to unilateral and bilateral upper limb representation. The lateral fronto-central negative motor area serves predominantly contralateral upper limb motor control whereas the mesial frontal negative motor area represents bilateral upper limb movement control. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Secondary hyperparathyroidism: Uncommon cause of a leg ulcer

    NARCIS (Netherlands)

    van Rijssen, L. B.; Brenninkmeijer, E. E. A.; Nieveen van Dijkum, E. J. M.

    2012-01-01

    Most leg ulcers are vascular based. Only if vascular therapy fails other causes are considered. We report the case of a female with incapacitating leg ulcers caused by a rare condition which was only diagnosed after failing treatment. PRESENTATION OF CASE: The female had an extensive previous

  6. Laboratory on Legs: An Architecture for Adjustable Morphology with Legged Robots

    Science.gov (United States)

    2012-04-01

    including walking, running,7 pronking,8,9 leaping and flipping,10 climbing stairs ,11,12 recovering from failures,13 and even running upright on (modified...speed activities requiring large leg torques, such as clambering over rocks and climbing stairs , as well as high speed activities with moderate torques...8] McMordie, D. and Buehler, M., “Towards pronking with a hexapod robot ,” in [International Conference on Climbing and Walking Robots

  7. Relationship between Leg Mass, Leg Composition and Foot Velocity on Kicking Accuracy in Australian Football

    Directory of Open Access Journals (Sweden)

    Nicolas H. Hart, Jodie L. Cochrane, Tania Spiteri, Sophia Nimphius, Robert U. Newton

    2016-06-01

    Full Text Available Kicking a ball accurately over a desired distance to an intended target is arguably the most important skill to acquire in Australian Football. Therefore, understanding the potential mechanisms which underpin kicking accuracy is warranted. The aim of this study was to examine the relationship between leg mass, leg composition and foot velocity on kicking accuracy in Australian Football. Thirty-one Australian Footballers (n = 31; age: 22.1 ± 2.8 years; height: 1.81 ± 0.07 m; weight: 85.1 ± 13.0 kg; BMI: 25.9 ± 3.2 each performed ten drop punt kicks over twenty metres to a player target. Athletes were separated into accurate (n = 15 and inaccurate (n = 16 kicking groups. Leg mass characteristics were assessed using whole body DXA scans. Foot velocity was determined using a ten-camera optoelectronic, three-dimensional motion capture system. Interactions between leg mass and foot velocity evident within accurate kickers only (r = -0.670 to -0.701. Relative lean mass was positively correlated with kicking accuracy (r = 0.631, while no relationship between foot velocity and kicking accuracy was evident in isolation (r = -0.047 to -0.083. Given the evident importance of lean mass, and its interaction with foot velocity for accurate kickers; future research should explore speed-accuracy, impulse-variability, limb co-ordination and foot-ball interaction constructs in kicking using controlled with-in subject studies to examine the effects of resistance training and skill acquisition programs on the development of kicking accuracy.

  8. Hereditary motor neuropathies and motor neuron diseases: which is which.

    Science.gov (United States)

    Hanemann, Clemens O; Ludolph, Albert C

    2002-12-01

    When Charcot first defined amyotrophic lateral sclerosis (ALS) he used the clinical and neuropathological pattern of vulnerability as a guideline. Similarly other motor neuron diseases such as the spinal muscular atrophies (SMA) and the motor neuropathies (MN) were grouped following clinical criteria. However, ever since the etiology of these diseases has started to be disclosed by genetics, we have learnt that the limits of the syndromes are not as well defined as our forefathers thought. A mutation leading to ALS can also be associated with the clinical picture of spinal muscular atrophy; even more unexpected is the overlap of the so-called motor neuropathies with the clinical syndrome of slowly progressive ALS or that primary lateral sclerosis (PLS) can be caused by the same gene as that responsible for some cases of ALS. In this review we summarise recent work showing that there is a considerable overlap between CMT, MN, SMA, ALS and PLS. Insights into these phenotypes should lead to study of the variants of motor neuron disease and possibly to a reclassification. This comprehensive review should help to improve understanding of the pathogenesis of motor neuron degeneration and finally may aid the research for urgently needed new treatment strategies, perhaps with validity for the entire group of motor neuron diseases.

  9. Frustrated S = 1/2 Two-Leg Ladder with Different Leg Interactions

    Science.gov (United States)

    Tonegawa, Takashi; Okamoto, Kiyomi; Hikihara, Toshiya; Sakai, Tôru

    2017-04-01

    We explore the ground-state phase diagram of the S = 1/2 two-leg ladder. The isotropic leg interactions J1,a and J1,b between nearest neighbor spins in the legs a and b, respectively, are different from each other. The xy and z components of the uniform rung interactions are denoted by Jr and ΔJr, respectively, where Δ is the XXZ anisotropy parameter. This system has a frustration when J1,aJ1,b employ the physical consideration, the level spectroscopy analysis of the results obtained by the exact diagonalization method and also the density-matrix renormalization-group method. It is found that the non-collinear ferrimagnetic (NCFR) state appears as the ground state in the frustrated region of the parameters. Furthermore, the direct-product triplet-dimer (TD) state in which all rungs form the TD pair is the exact ground state, when J1,a + J1,b = 0 and 0≤ Δ ≲ 0.83. The obtained phase diagrams consist of the TD, XY and Haldane phases as well as the NCFR phase.

  10. A survey of bio-inspired compliant legged robot designs

    International Nuclear Information System (INIS)

    Zhou Xiaodong; Bi Shusheng

    2012-01-01

    The roles of biological springs in vertebrate animals and their implementations in compliant legged robots offer significant advantages over the rigid legged ones in certain types of scenarios. A large number of robotics institutes have been attempting to work in conjunction with biologists and incorporated these principles into the design of biologically inspired robots. The motivation of this review is to investigate the most published compliant legged robots and categorize them according to the types of compliant elements adopted in their mechanical structures. Based on the typical robots investigated, the trade-off between each category is summarized. In addition, the most significant performances of these robots are compared quantitatively, and multiple available solutions for the future compliant legged robot design are suggested. Finally, the design challenges for compliant legged robots are analysed. This review will provide useful guidance for robotic designers in creating new designs by inheriting the virtues of those successful robots according to the specific tasks. (topical review)

  11. Short-term lower-leg growth rate and urine cortisol excretion in children treated with ciclesonide

    DEFF Research Database (Denmark)

    Agertoft, Lone; Pedersen, Søren

    2005-01-01

    BACKGROUND: Measurement of short-term lower-leg growth rate in children by means of knemometry has become established as an integral part of the available measures of systemic activity of topical steroids in children. OBJECTIVE: We sought to determine the effects of clinically effective doses....... There was no statistically significant dose-response effect. Likewise, no statistically significant differences or dose-response effects were found for urinary cortisol adjusted for creatinine. CONCLUSION: Short-term lower-leg growth rate and hypothalamic-pituitary-adrenal axis function are not affected by treatment...... of the novel inhaled corticosteroid ciclesonide on lower-leg growth rate and hypothalamic-pituitary-adrenal axis function in children with asthma. METHODS: In a double-blind, placebo-controlled, 4-period crossover study, 24 children aged 6 to 12 years sequentially received ciclesonide (40, 80, and 160 microg...

  12. Synchronization of low- and high-threshold motor units.

    Science.gov (United States)

    Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S

    2014-04-01

    We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  13. Single-leg squats can predict leg alignment in dancers performing ballet movements in “turnout”

    Science.gov (United States)

    Hopper, Luke S; Sato, Nahoko; Weidemann, Andries L

    2016-01-01

    The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve “turning out” or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in “turned out” postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat. PMID:27895518

  14. Single-leg squats can predict leg alignment in dancers performing ballet movements in “turnout”

    Directory of Open Access Journals (Sweden)

    Hopper LS

    2016-11-01

    Full Text Available Luke S Hopper,1 Nahoko Sato,2 Andries L Weidemann1 1Western Australian Academy of Performing Arts, Edith Cowan University, Mt Lawley, WA, Australia; 2Department of Physical Therapy, Nagoya Gakuin University, Seto, Japan Abstract: The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve “turning out” or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in “turned out” postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat. Keywords: injury, motion capture, clinical assessment

  15. Motor and cognitive growth following a Football Training Program

    Directory of Open Access Journals (Sweden)

    Marianna eAlesi

    2015-10-01

    Full Text Available Football may be a physical and sport activities able to improve motor and cognitive growth in children. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times.Forty-six children with chronological age of ~9.10 years, were divided into two groups: Group 1 (n=24 attended a Football Exercise Program and Group 2 (n=22 was composed of sedentary children.Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a natural and enjoyable tool to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.

  16. Motor and cognitive growth following a Football Training Program.

    Science.gov (United States)

    Alesi, Marianna; Bianco, Antonino; Padulo, Johnny; Luppina, Giorgio; Petrucci, Marco; Paoli, Antonio; Palma, Antonio; Pepi, Annamaria

    2015-01-01

    Motor and cognitive growth in children may be influenced by football practice. Therefore the aim of this study was to assess whether a Football Training Program taken over 6 months would improve motor and cognitive performances in children. Motor skills concerned coordinative skills, running, and explosive legs strength. Cognitive abilities involved visual discrimination times and visual selective attention times. Forty-six children with chronological age of ∼9.10 years, were divided into two groups: Group 1 (n = 24) attended a Football Exercise Program and Group 2 (n = 22) was composed of sedentary children. Their abilities were measured by a battery of tests including motor and cognitive tasks. Football Exercise Program resulted in improved running, coordination, and explosive leg strength performances as well as shorter visual discrimination times in children regularly attending football courses compared with their sedentary peers. On the whole these results support the thesis that the improvement of motor and cognitive abilities is related not only to general physical activity but also to specific ability related to the ball. Football Exercise Programs is assumed to be a "natural and enjoyable tool" to enhance cognitive resources as well as promoting and encouraging the participation in sport activities from early development.

  17. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES - IMPLICATIONS FOR REHABILITATION STRATEGIES

    DEFF Research Database (Denmark)

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas

    2016-01-01

    BACKGROUND: A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important...... to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. PURPOSE: The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used...... balance devices (Airex®, BOSU® Ball and wobble board). DESIGN: Descriptive exploratory laboratory study. METHODS: Nineteen healthy subjects performed single-legged balance with eyes open on an Airex® mat, BOSU® Ball, wobble board, and floor (reference condition). Ankle kinematics were measured using...

  18. Remission of severe restless legs syndrome and periodic limb movements in sleep after bilateral excision of multiple foot neuromas: a case report

    Directory of Open Access Journals (Sweden)

    Lettau Ludwig A

    2010-09-01

    Full Text Available Abstract Introduction Restless legs syndrome is a sensorimotor neurological disorder characterized by an urge to move the legs in response to uncomfortable leg sensations. While asleep, 70 to 90 percent of patients with restless legs syndrome have periodic limb movements in sleep. Frequent periodic limb movements in sleep and related brain arousals as documented by polysomnography are associated with poorer quality of sleep and daytime fatigue. Restless legs syndrome in middle age is sometimes associated with neuropathic foot dysesthesias. The causes of restless legs syndrome and periodic limb movements in sleep are unknown, but the sensorimotor symptoms are hypothesized to originate in the central nervous system. We have previously determined that bilateral forefoot digital nerve impingement masses (neuromas may be a cause of both neuropathic foot dysesthesias and the leg restlessness of restless legs syndrome. To the best of our knowledge, this case is the first report of bilateral foot neuromas as a cause of periodic limb movements in sleep. Case presentation A 42-year-old Caucasian woman with severe restless legs syndrome and periodic limb movements in sleep and bilateral neuropathic foot dysesthesias was diagnosed as having neuromas in the second, third, and fourth metatarsal head interspaces of both feet. The third interspace neuromas represented regrowth (or 'stump' neuromas that had developed since bilateral third interspace neuroma excision five years earlier. Because intensive conservative treatments including repeated neuroma injections and various restless legs syndrome medications had failed, radical surgery was recommended. All six neuromas were excised. Leg restlessness, foot dysesthesias and subjective sleep quality improved immediately. Assessment after 18 days showed an 84 to 100 percent reduction of visual analog scale scores for specific dysesthesias and marked reductions of pre-operative scores of the Pittsburgh sleep

  19. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  20. Neuromodulation of vertebrate motor neuron membrane properties

    DEFF Research Database (Denmark)

    Hultborn, Hans; Kiehn, Ole

    1992-01-01

    The short-term function of motor neurons is to integrate synaptic inputs converging onto the somato-dendritic membrane and to transform the net synaptic drive into spike trains. A set of voltage-gated ion channels determines the electro-responsiveness and thereby the motor neuron's input-output f...

  1. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  2. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  3. Leg contracture in mice after single and multifractionated 137Cs exposure

    International Nuclear Information System (INIS)

    Masuda, K.; Hunter, N.; Stone, H.B.; Withers, H.R.

    1987-01-01

    This is a report of studies of time-dose relationships for post-irradiation leg contractures in mice. The isoeffect doses for various degrees of contracture, measured 250 days after irradiation, increased with the number of fractions, but not with the overall treatment times, throughout 30 days. The isoeffect curves relating the total doses for given levels of responses to the doses per fraction were steeper for leg contractures than for acute skin reactions. The alpha/beta ratios ranged from 1.4 to 5.0 Gy, depending on the degrees of contracture. They were less than the 7.5 to 50 Gy for acute skin reactions as determined in previous experiments using the same animals and irradiation systems. Thus, the data resembled those from other slowly-responding normal tissues such as the spinal cord, kidney and lung. The leg contracture consisted of dermatogenic, myogenic, and arthrogenic components; after the mice were sacrificed there was residual contracture following removal of the skin and muscle. Inhibition of bone growth accounted for only a small proportion of the contracture. The overall response reflected responses of several tissue types

  4. Leg contracture in mice after single and multifractionated 137Cs exposure

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K.; Hunter, N.; Stone, H.B.; Withers, H.R.

    1987-08-01

    This is a report of studies of time-dose relationships for post-irradiation leg contractures in mice. The isoeffect doses for various degrees of contracture, measured 250 days after irradiation, increased with the number of fractions, but not with the overall treatment times, throughout 30 days. The isoeffect curves relating the total doses for given levels of responses to the doses per fraction were steeper for leg contractures than for acute skin reactions. The alpha/beta ratios ranged from 1.4 to 5.0 Gy, depending on the degrees of contracture. They were less than the 7.5 to 50 Gy for acute skin reactions as determined in previous experiments using the same animals and irradiation systems. Thus, the data resembled those from other slowly-responding normal tissues such as the spinal cord, kidney and lung. The leg contracture consisted of dermatogenic, myogenic, and arthrogenic components; after the mice were sacrificed there was residual contracture following removal of the skin and muscle. Inhibition of bone growth accounted for only a small proportion of the contracture. The overall response reflected responses of several tissue types.

  5. Restless legs syndrome in patients on dialysis

    International Nuclear Information System (INIS)

    AlJahdali, Hamdan H; AlQadhi, Waleed A; Khogeer, Haithm A; AlHejaili, Fayez F; Al Sayyari, Abdullah A; AlGhamdi, Saeed M

    2009-01-01

    Restless legs syndrome (RLS) is an extremely distressing problem experienced by patients on dialysis; the prevalence appears to be greater than in the general population, with a wide variation from 6.6% to 80%. The diagnosis of RLS is a clinical one, and its definition has been clarified and standardized by internationally recognized diagnostic criteria, published in 1995 by the International Restless Legs Syndrome Study Group (IRLSSG). This study was designed to find out the prevalence of RLS in Saudi patients with end-stage renal disease (ESRD) on maintenance dialysis. This is a cross sectional study carried out between May and Sept 2007 at two centers, King Abdulaziz Medical City-King Fahad National Guard Hospital (KAMC-KFNGH), Riyadh and King Faisal Specialist Hospital and Research Centre (KFHRC), Jeddah, Saudi Arabia. Data were gathered on 227 Saudi patients on chronic maintenance hemodialysis or chronic peritoneal dialysis. The prevalence of RLS was measured using IRLSSG's RLS Questionnaire (RLSQ). Potential risk factors for RLS including other sleep disorders, underlying cause of chronic renal failure, duration on dialysis, dialysis shift, biochemical tests and demographic data were also evaluated. The overall prevalence of RLS was 50.22% including 53.7% males and 46.3% females. Their mean age was 55.7 + - 17.2 years and mean duration on dialysis 40.4 + - 37.8 months. Significant predictors of RLS were history of diabetes mellitus (DM), coffee intake, afternoon dialysis, gender and type of dialysis (P= 0.03, 0.01, < 0.001, 0.05 and 0.009 respectively). Patients with RLS were found to be at increased risk of having insomnia and excessive daytime sleepiness (EDS) (P= < 0.001 and 0.001, respectively). Our study suggests that RLS is a very common problem in dialysis population and was significantly associated with other sleep disorders, particularly insomnia, and EDS. Optimal care of dialysis patient should include particular attention to the diagnosis and

  6. Restless legs syndrome in patients on dialysis

    Directory of Open Access Journals (Sweden)

    Al-Jahdali Hamdan

    2009-01-01

    Full Text Available Restless legs syndrome (RLS is an extremely distressing problem experienced by patients on dialysis; the prevalence appears to be greater than in the general population, with a wide variation from 6.6% to 80%. The diagnosis of RLS is a clinical one, and its definition has been clarified and standardized by internationally recognized diagnostic criteria, published in 1995 by the International Restless Legs Syndrome Study Group (IRLSSG. This study was designed to find out the prevalence of RLS in Saudi patients with end-stage renal disease (ESRD on maintenance dialysis. This is a cross sectional study carried out between May and Sept 2007 at two centers, King Abdulaziz Medical City-King Fahad National Guard Hospital (KAMC-KFNGH, Riyadh and King Faisal Specialist Hospital and Research Centre (KFHRC, Jeddah, Saudi Arabia. Data were gathered on 227 Saudi patients on chronic maintenance hemodialysis or chronic peritoneal dialysis. The prevalence of RLS was measured using IRLSSG′s RLS Questionnaire (RLSQ. Potential risk factors for RLS including other sleep disorders, underlying cause of chronic renal failure, duration on dialysis, dialysis shift, biochemical tests and demographic data were also evaluated. The overall prevalence of RLS was 50.22% including 53.7% males and 46.3% females. Their mean age was 55.7 ± 17.2 years and mean duration on dialysis 40.4 ± 37.8 months. Significant predictors of RLS were history of diabetes mellitus (DM, coffee intake, afternoon dialysis, gender and type of dialysis (P= 0.03, 0.01, < 0.001, 0.05 and 0.009 respectively. Patients with RLS were found to be at increased risk of having insomnia and excessive daytime sleepiness (EDS (P= < 0.001 and 0.001, respectively. Our study suggests that RLS is a very common problem in dialysis population and was significantly associated with other sleep disorders, particularly insomnia, and EDS. Optimal care of dialysis patient should include particular attention to the diagnosis

  7. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.

    Science.gov (United States)

    Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W; Daley, Monica A

    2014-11-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force-length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force-length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. © 2014. Published by The Company of Biologists Ltd.

  8. Using the motor to monitor pump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  9. Using the motor to monitor pump conditions

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented

  10. Evaluation of arm-leg coordination in flat breaststroke.

    Science.gov (United States)

    Chollet, D; Seifert, L; Leblanc, H; Boulesteix, L; Carter, M

    2004-10-01

    This study proposes a new method to evaluate arm-leg coordination in flat breaststroke. Five arm and leg stroke phases were defined with a velocity-video system. Five time gaps quantified the time between arm and leg actions during three paces of a race (200 m, 100 m and 50 m) in 16 top level swimmers. Based on these time gaps, effective glide, effective propulsion, effective leg insweep and effective recovery were used to identify the different stroke phases of the body. A faster pace corresponded to increased stroke rate, decreased stroke length, increased propulsive phases, shorter glide phases, and a shorter T1 time gap, which measured the effective body glide. The top level swimmers showed short time gaps (T2, T3, T4, measuring the timing of arm-leg recoveries), which reflected the continuity in arm and leg actions. The measurement of these time gaps thus provides a pertinent evaluation of swimmers' skill in adapting their arm-leg coordination to biomechanical constraints.

  11. Evaluation of Thermoelectric Performance and Durability of Functionalized Skutterudite Legs

    Science.gov (United States)

    Skomedal, Gunstein; Kristiansen, Nils R.; Sottong, Reinhard; Middleton, Hugh

    2017-04-01

    Thermoelectric generators are a promising technology for waste heat recovery. As new materials and devices enter a market penetration stage, it is of interest to employ fast and efficient measurement methods to evaluate the long-term stability of thermoelectric materials in combination with metallization and coating (functionalized thermoelectric legs). We have investigated a method for measuring several thermoelectric legs simultaneously. The legs are put under a common temperature gradient, and the electrical characteristics of each leg are measured individually during thermal cycling. Using this method, one can test different types of metallization and coating applied to skutterudite thermoelectric legs and look at the relative changes over time. Postcharacterization of these initial tests with skutterudite legs using a potential Seebeck microprobe and an electron microscope showed that oxidation and interlayer diffusion are the main reasons for the gradual increase in internal resistance and the decrease in open-circuit voltage. Although we only tested skutterudite material in this work, the method is fully capable of testing all kinds of material, metallization, and coating. It is thus a promising method for studying the relationship between failure modes and mechanisms of functionalized thermoelectric legs.

  12. Laterality of the legs in young female soccer players

    Directory of Open Access Journals (Sweden)

    Antosiak-Cyrak Katarzyna Z.

    2015-12-01

    Full Text Available Purpose. The aim of the present study was assessment of laterality of the legs of young female soccer players and their non-training counterparts. Methods. The study sample comprised 9 female soccer players and 19 non-training girls. They underwent three measurement sessions, one every six months. The applied tests included kinesthetic differentiation, rate of local movements, static balance, single-leg hop, rate of global movements, strength and speed, and functional asymmetry of the legs tests. Results. The soccer players were better than the controls in their performance of the rate of local movements, rate of global movements, kinesthetic differentiation, single-leg 15m timed hop and static balance tests. Smaller differences between the results of the left and the right legs in soccer players, than in non-training girls, were noted in the rate of local movements, rate of global movements and kinesthetic differentiation tests. In the static balance test, the differences were greater in the group of soccer players. Conclusions. Lateralization of the lower limbs is a highly complex characteristic with a different variability in athletes than in nontraining individuals. The results of the present study also point to the specialization of soccer players’ left legs in body balance and single-leg hop tests.

  13. [Design and application of medical electric leg-raising machine].

    Science.gov (United States)

    Liang, Jintang; Chen, Jinyuan; Zhao, Zixian; Lin, Jinfeng; Li, Juanhong; Zhong, Jingliang

    2017-08-01

    Passive leg raising is widely used in clinic, but it lacks of specialized mechanical raise equipment. It requires medical staff to raise leg by hand or requires a multi-functional bed to raise leg, which takes time and effort. Therefore we have developed a new medical electric leg-raising machine. The equipment has the following characteristics: simple structure, stable performance, easy operation, fast and effective, safe and comfortable. The height range of the lifter is 50-120 cm, the range of the angle of raising leg is 10degree angle-80degree angle, the maximum supporting weight is 40 kg. Because of raising the height of the lower limbs and making precise angle, this equipment can completely replace the traditional manner of lifting leg by hand with multi-functional bed to lift patients' leg and can reduce the physical exhaustion and time consumption of medical staff. It can change the settings at any time to meet the needs of the patient; can be applied to the testing of PLR and dynamically assessing the hemodynamics; can prevent deep vein thrombosis and some related complications of staying in bed; and the machine is easy to be cleaned and disinfected, which can effectively avoid hospital acquired infection and cross infection; and can also be applied to emergency rescue of various disasters and emergencies.

  14. [Innovative therapy for leg ulcers: Electrostimulation].

    Science.gov (United States)

    Maillard, H

    2015-01-01

    Chronic wounds can take a long time to heal despite appropriate therapy based upon aetiology and use of suitable dressings. The success of electrostimulation is based upon the existence within the skin of the endogenous currents involved in the wound healing process. Where skin continuity is broken by a wound, these electrical potentials are short-circuited, resulting in leakage of electrical current. Woundel(®) therapy is the only such treatment currently available in France and is based on the use of continuous pulsed current that generates an electrical field near the endogenous electrical fields. It utilises a console to deliver the electrical impulses, a dressing electrode and a dispersion electrode. The electrode dressing is left on the wound for 3 days, and venous compression bandaging may be applied to the leg, taking care to leave the connector free. Negative polarity stimulates migration of fibroblasts, resulting in elimination of fibrin. Positive polarity causes keratinocyte migration, which in turn leads to epidermisation. Electrostimulation is of recognised utility in the healing of chronic wounds: it has been assigned a high-level recommendation in the European and American guidelines for the treatment of venous ulcers and bedsores with proof level of A. Further, the analgesic effect of electrostimulation has been demonstrated in several studies. Electrostimulation is already well developed in France among wound specialists, but prospective studies are planned so that it may be used at patients' homes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Peripheral Dopamine in Restless Legs Syndrome

    Directory of Open Access Journals (Sweden)

    Ulrike H. Mitchell

    2018-03-01

    Full Text Available Objective/BackgroundRestless Legs Syndrome (RLS is a dopamine-dependent disorder characterized by a strong urge to move. The objective of this study was to evalulate blood levels of dopamine and other catecholamines and blood D2-subtype dopamine receptors (D2Rs in RLS.Patients/MethodsDopamine levels in blood samples from age-matched unmedicated RLS subjects, medicated RLS subjects and Controls were evaluated with high performance liquid chromatography and dopamine D2R white blood cell (WBC expression levels were determined with fluorescence-activated cell sorting and immunocytochemistry.ResultsBlood plasma dopamine levels, but not norepinepherine or epinephrine levels, were significantly increased in medicated RLS subjects vs unmedicated RLS subjects and Controls. The percentage of lymphocytes and monocytes expressing D2Rs differed between Control, RLS medicated and RLS unmedicated subjects. Total D2R expression in lymphocytes, but not monocytes, differed between Control, RLS medicated and RLS unmedicated subjects. D2Rs in lymphocytes, but not monocytes, were sensitive to dopamine in Controls only.ConclusionDownregulation of WBCs D2Rs occurs in RLS. This downregulation is not reversed by medication, although commonly used RLS medications increase plasma dopamine levels. The insensitivity of monocytes to dopamine levels, but their downregulation in RLS, may reflect their utility as a biomarker for RLS and perhaps brain dopamine homeostasis.

  16. RAW CHICKEN LEG AND BREAST SENSORY EVALUATION

    Directory of Open Access Journals (Sweden)

    Octavian Baston

    2010-01-01

    Full Text Available In the paper we presented a method of sensorial evaluation for chicken meat (red and white. This is a descriptive method of analysis. It was perform with trained assessors for chicken refrigerated raw meat organoleptical evaluation. The sensorial attributes considered were: external aspect of anatomical part of chicken analyzed by slime, the surface odor, the skin and muscle color and muscular elasticity. Color was determined for the skin and white and red muscles. Our scale of analysis is formed by three values that characterize each quality attribute. The trained assessor appreciated the sensorial quality of raw anatomical part of chicken as excellent, acceptable and unacceptable. The objectives were: to establish the sensorial attributes to be analyzed for each type of muscular fiber, to describe the quality of each considered attribute and to realize a sensorial scale of quantification for the considered sensorial attributes. Our purpose was to determine the quality of the red and white refrigerated raw chicken anatomical parts (respectively for legs and breasts after one week of storage.

  17. Adjuvant Biological Therapies in Chronic Leg Ulcers

    Directory of Open Access Journals (Sweden)

    Natalia Burgos-Alonso

    2017-11-01

    Full Text Available Current biological treatments for non-healing wounds aim to address the common deviations in healing mechanisms, mainly inflammation, inadequate angiogenesis and reduced synthesis of extracellular matrix. In this context, regenerative medicine strategies, i.e., platelet rich plasmas and mesenchymal stromal cell products, may form part of adjuvant interventions in an integral patient management. We synthesized the clinical experience on ulcer management using these two categories of biological adjuvants. The results of ten controlled trials that are included in this systematic review favor the use of mesenchymal stromal cell based-adjuvants for impaired wound healing, but the number and quality of studies is moderate-low and are complicated by the diversity of biological products. Regarding platelet-derived products, 18 controlled studies investigated their efficacy in chronic wounds in the lower limb, but the heterogeneity of products and protocols hinders clinically meaningful quantitative synthesis. Most patients were diabetic, emphasizing an unmet medical need in this condition. Overall, there is not sufficient evidence to inform routine care, and further clinical research is necessary to realize the full potential of adjuvant regenerative medicine strategies in the management of chronic leg ulcers.

  18. Analytical Study of Active Prosthetic Legs

    Science.gov (United States)

    Ono, Kyosuke; Katsumata, Mie

    Walking with prosthesis has not been well analyzed mathematically and it seems that the design of powered prosthesis has been done empirically so far. This paper presents a dynamic simulation of a normal human walking and walking with an active prosthesis. We also studied the two controlling methods of a powered thigh prosthesis based on multi-body simulation of human walking. First we measured the normal human walking gait, then, we showed that a 3-DOF human walking model can walk on level ground by applying tracking control to the measured walking gait within a certain range of tuned walking period. Next, we applied the tracking control and self-excited control to the powered thigh prosthesis and compared the robustness and efficiency of the two control methods by numerical simulation. As a result, we found that the self-excited control can significantly decrease the hip joint torque and specific cost to 1/3 compared with the tracking control. Moreover, the self-excited control is superior to the tracking control because tuning for the walking period is not needed for the active prosthetic leg.

  19. Primary headaches in restless legs syndrome patients

    Directory of Open Access Journals (Sweden)

    Ravi Gupta

    2012-01-01

    Full Text Available Earlier studies conducted among migraineurs have shown an association between migraine and restless legs syndrome (RLS. We chose RLS patients and looked for migraine to exclude sample bias. Materials and Methods: 99 consecutive subjects of idiopathic RLS were recruited from the sleep clinic during four months period. Physician diagnosis of headache and depressive disorder was made with the help of ICHD-2 and DSM-IV-TR criteria, respectively. Sleep history was gathered. Severity of RLS and insomnia was measured using IRLS (Hindi version and insomnia severity index Hindi version, respectively. Chi-square test, one way ANOVA and t-test were applied to find out the significance. Results: Primary headache was seen in 51.5% cases of RLS. Migraine was reported by 44.4% subjects and other types of ′primary headaches′ were reported by 7.1% subjects. Subjects were divided into- RLS; RLS with migraine and RLS with other headache. Females outnumbered in migraine subgroup (χ2 =16.46, P<0.001. Prevalence of depression (χ2 =3.12, P=0.21 and family history of RLS (χ2 =2.65, P=0.26 were not different among groups. Severity of RLS (P=0.22 or insomnia (P=0.43 were also similar. Conclusion: Migraine is frequently found in RLS patients in clinic based samples. Females with RLS are prone to develop migraine. Depression and severity of RLS or insomnia do not affect development of headache.

  20. Clinical correlates of the restless legs syndrome

    Directory of Open Access Journals (Sweden)

    Luis Fabiano Marin

    2012-07-01

    Full Text Available OBJECTIVE: To determine the clinical correlates of the restless legs syndrome (RLS in a Brazilian sleep disorders center. METHODS: We retrospectively studied 118 patients with RLS from January, 2004, to December, 2010. The analyzed variables were: age at disease onset, gender, race, years of school instruction, primary and secondary RLS, and treatment options. RESULTS: Among the studied patients, 83.9% were women with a female/male sex ratio of 5:1. Mean age of the patients at symptom onset ± standard deviation was 41.7±17.9 years-old. The primary RLS was found in 85% of patients. The other 15% remainders consisted of secondary forms, and they were associated with neuropathy, iron deficiency anemia, end-stage renal disease, or Parkinson's disease. Drug therapy for RLS was introduced in 67% of patients. CONCLUSIONS: Most patients presented primary RLS with an early disease onset. Further epidemiological studies are welcomed to provide better information on secondary RLS in Brazil.

  1. Anatomical aspects of the nerves of the leg and foot of the giant anteater (Myrmecophaga tridactyla, Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    V.S. Cruz

    2014-10-01

    Full Text Available Although distal stifle joint nerve distribution has been well established in domestic animals, this approach is scarcely reported in wild animals. Therefore, the aim of this study was to describe the nerves of the leg and foot of Myrmecophaga tridactyla with emphasis on their ramification, distribution, topography and territory of innervation. For this purpose, six adult cadavers fixed and preserved in 10% formalin solution were used. The nerves of the leg and foot of the M. tridactyla were the saphenous nerve (femoral nerve branch, fibular and tibial nerves and lateral sural cutaneous nerve (branches of the sciatic nerve and caudal sural cutaneous nerve (tibial nerve branch. The saphenous nerve branches to the skin, the craniomedial surface of the leg, the medial surface of the tarsal and metatarsal regions and the dorsomedial surface of the digits I and II (100% of cases, III (50% of cases and IV (25% of cases. The lateral sural cutaneous nerve innervates the skin of the craniolateral region of the knee and leg. The fibular nerve innervates the flexor and extensor muscles of the tarsal region of the digits and skin of the craniolateral surface of the leg and dorsolateral surface of the foot. The tibial nerve innervates the extensor muscles of the tarsal joint and flexor, adductor and abductor muscles of the digits and the skin of the plantar surface. The caudal sural cutaneous nerve innervates the skin of the caudal surface of the leg. The nerves responsible for the leg and foot innervation were the same as reported in domestic and wild animals, but with some differences, such as the more distal division of the common fibular nerve, the absence of dorsal metatarsal branches of the deep fibular nerve and a greater involvement of the saphenous nerve in the digital innervation with branches to the digits III and IV, in addition to digits I and II.

  2. Effects of Different Environment Temperatures on Some Motor Characteristics and Muscle Strength

    Science.gov (United States)

    Çakir, Ergün; Yüksek, Selami; Asma, Bülent; Arslanoglu, Erkal

    2016-01-01

    The aim of this study was determine the effects of different environment temperatures on motor characteristics and muscle strength. 15 athletes participated to study. Flexibility, vertical jump, hand grip-leg strength, 30m sprint, 20-meter shuttle run and coordination-agility tests were measured in five different environment temperatures. (22°C,…

  3. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  4. Radiating leg pain and positive straight leg raising in spondylolysis in children.

    Science.gov (United States)

    Halperin, N; Copeliovitch, L; Schachner, E

    1983-09-01

    Three children presented with low back pain radiating to the leg and with spasm of the hamstring and paravertebral muscles. Since the pain could not be ascribed to trauma, it was necessary to exclude the presence of infection or tumors. All the signs--localization of the pain, tenderness on one side of the back, X-ray film findings of unilateral or bilateral spondylolysis, and localized positive bone scan--pointed to spondylolysis as the cause of pain. All three children exhibited symptoms resembling those found in the facet syndrome described by Mooney and Robertson.

  5. Supplementary Motor Area Activation in Disfluency Perception : An fMRI Study of Listener Neural Responses to Spontaneously Produced Unfilled and Filled Pauses

    OpenAIRE

    Eklund, Robert; Ingvar, Martin

    2016-01-01

    Spontaneously produced Unfilled Pauses (UPs) and Filled Pauses (FPs) were played to subjects in an fMRI experiment. For both stimuli increased activity was observed in the Primary Auditory Cortex (PAC). However, FPs, but not UPs, elicited modulation in the Supplementary Motor Area (SMA), Brodmann Area 6. Our results provide neurocognitive confirmation of the alleged difference between FPs and other kinds of speech disfluency and could also provide a partial explanation for the previously repo...

  6. Analysis of large break loss of coolant accident with simultaneous injection into cold leg and hot leg

    International Nuclear Information System (INIS)

    Luo Bangqi

    1997-01-01

    When a large break loss of coolant accident occurs, the most part of the safety injection water injected into the cold leg by the safety injection system will flow through the channel between the pressure vessel and the barrel out of the break into the containment, only a little part of the safety injection water can flow into the reactor core. If the safety injection can inject into both the cold leg and the hot leg simultaneously, the safety injection water injected from the cold leg will flow into the core more easily, because the safety injection water injected from the hot leg will carry out more heat from the upper plenum and the core, so the upper plenum and the core is depressed. In addition, a small part of the safety injection water injected from the hot leg will flow down in the core after impinging the guide tubes in the upper plenum, so the core will get more safety injection water than only cold leg injection, and the core will be much safer

  7. Improved Rotor Speed Brushless DC Motor Using Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    Jafar Mostafapour

    2015-04-01

    Full Text Available A brushless DC (BLDC Motors have advantages over brushed, Direct current (DC Motors and , Induction motor (IM. They have better speed verses torque characteristics, high dynamic response, high efficiency, long operating life, noiseless operation, higher speed ranges, and rugged construction. Also, torque delivered to motor size is higher, making it useful in application where space and weight are critical factors. With these advantages BLDC motors find wide spread application in automotive appliance, aerospace medical, and instrumentation and automation industries This paper can be seen as fuzzy controllers compared to PI control BLDC motor rotor speed has improved significantly and beter result can be achieve.

  8. Anthropometric and motor development profiles of street children ...

    African Journals Online (AJOL)

    With regard to the gross motor development, deficits were found with regard to running speed and agility, bilateral coordination and strength. Fine motor deficits were found in upper limb speed and dexterity, response speed and visual motor control. The neuromotor development of street children also showed deficits, ...

  9. Design of robotic leg and physiotherapy (ROLEP) assist with interactive game

    Science.gov (United States)

    Hasan, A. F.; Husin, M. F. Che; Hashim, M. N.; Rosli, K. A.; Roslim, F. R. A.; Abidin, A. F. Z.

    2017-09-01

    Injuries in certain parts of the feet can cause a person to have difficulty in walking or running if it is not treated through physiotherapy. In Malaysia, therapy centers only provide a service or the use of basic tools that are not efficient as more sophisticated equipment requires a high cost. In fact, exercise requiring close monitoring physiotherapist are also at a high cost. Therefore, using robot therapy is a new technology that can provide an alternative way to solve this problem. The implementation of this project has produced a robotic physiotherapy which has one degree of freedom, portable and inexpensive way to help the movement of the patient's leg. It covers basic electrical circuits, mechanical components, programming and has been combined with an interactive game as the main driver. ROLEP (Robotic-Leg-Physiotherapy) is able to help patients through the therapy process. It was built using CT-UNO as its microprocessor connected to MD10-C which acted as the motor driver. The interactive game produced by using Unity game software is a key driver in getting rid of boredom and reduce pain. As a result, ROLEP designed can operate well within its range of the patient's weight. It has the advantage of portability and easy to use by the patients. ROLEP expected to help patients undergoing therapy process more efficient and interesting in the process of recovery.

  10. 3-D thermoelastic analysis of the straight section of a PWR hot leg containing a hot spot using BEM

    International Nuclear Information System (INIS)

    Bains, R.S.; Sugimoto, J.

    1995-01-01

    A 3-D steady state thermoelastic analysis using the boundary element method has been successfully employed to investigate the structural response of the straight section of a pressurised water reactor hot leg containing a localised hot spot. With the present severe accident thermal boundary conditions, the analysis produces a nonuniform expansion across the hot leg thickness. This expansion was most predominant on the inner surface, especially at the hot spot location where surface swelling was obtained. Furthermore, the hot spot generates large tangential and axial tensile stresses on the outer surface. These could be detrimental to the integrity of the hot leg by acting as potential sites of crack initiation and subsequent propagation. (orig.)

  11. Development and Physical Control Research on Prototype Artificial Leg

    Directory of Open Access Journals (Sweden)

    Fei Li

    2016-03-01

    Full Text Available To provide an ideal platform for research on intelligent bionic leg (IBL, this paper proposes a model of a biped robot with heterogeneous legs (BRHL. A prototype o