WorldWideScience

Sample records for leg bones femur

  1. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Femur (Upper Leg) KidsHealth / For Parents / X- ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  2. Reconstruction of juxta-articular huge defects of distal femur with vascularized fibular bone graft and Ilizarov's distraction osteogenesis.

    Science.gov (United States)

    Lai, Davy; Chen, Chuan-Mu; Chiu, Fang-Yao; Chang, Ming-Chau; Chen, Tain-Hsiung

    2007-01-01

    We evaluate the effect of reconstructing huge defects (mean, 15.8 cm) of the distal femur with Ilizarov's distraction osteogenesis and free twin-barreled vascularized fibular bone graft (TVFG). We retrospectively reviewed a consecutive series of five patients who had cases of distal femoral fractures with huge defects and infection that were treated by the Ilizarov's distraction osteogenesis. After radical debridement, two of the five cases had free TVFG and monolocal distraction osteogenesis, and another two cases had multilocal distraction osteogenesis with knee fusion because of loss of the joint congruity. The other case with floating knee injury had bilocal distraction osteogenesis and a preserved knee joint. The mean defect of distal femur was 15.8 cm (range, 14-18 cm) in length. The mean length of distraction osteogenesis by Ilizarov's apparatus was 8.2 cm. The mean length of TVFG was 8 cm. The average duration from application of Ilizarov's apparatus to achievement of bony union was 10.2 months (range, 8-13 months). At the end of the follow-up, ranges of motion of three knees were 0 to 45 degrees, 0 to 60 degrees, and 0 to 90 degrees. Two cases had knee arthrodesis with bony fusion because of loss of the joint congruity. There were no leg length discrepancies in all five patients. In addition, three patients had pin tract infections and one case had a 10 degree varus deformity of the femur. Juxta-articular huge defect (>10 cm) of distal femur remains a challenge to orthopedic surgeons. Ilizarov's technique provides the capability to maintain stability, eradicate infection, restore leg length, and to perform adjuvant reconstructive procedure easily. In this study, we found that combining Ilizarov's distraction osteogenesis with TVFG results in improved patient outcome for patients with injuries such as supracondylar or intercondylar infected fractures or nonunion of distal femur with huge bone defect.

  3. Bone Morphology in 46 BXD Recombinant Inbred Strains and Femur-Tibia Correlation

    Directory of Open Access Journals (Sweden)

    Yueying Zhang

    2015-01-01

    Full Text Available We examined the bone properties of BXD recombinant inbred (RI mice by analyzing femur and tibia and compared their phenotypes of different compartments. 46 BXD RI mouse strains were analyzed including progenitor C57BL/6J (n=16 and DBA/2J (n=15 and two first filial generations (D2B6F1 and B6D2F1. Strain differences were observed in bone quality and structural properties (P<0.05 in each bone profile (whole bone, cortical bone, or trabecular bone. It is well known that skeletal phenotypes are largely affected by genetic determinants and genders, such as bone mineral density (BMD. While genetics and gender appear expectedly as the major determinants of bone mass and structure, significant correlations were also observed between femur and tibia. More importantly, positive and negative femur-tibia associations indicated that genetic makeup had an influence on skeletal integrity. We conclude that (a femur-tibia association in bone morphological properties significantly varies from strain to strain, which may be caused by genetic differences among strains, and (b strainwise variations were seen in bone mass, bone morphology, and bone microarchitecture along with bone structural property.

  4. Bone mineral content in the senescent rat femur: an assessment using single photon absorptiometry

    International Nuclear Information System (INIS)

    Kiebzak, G.M.; Smith, R.; Howe, J.C.; Sacktor, B.

    1988-01-01

    The single photon absorptiometry technique was evaluated for measuring bone mineral content (BMC) of the excised femurs of the rat, and the system was used to examine the changes in cortical and trabecular bone from young adult (6 mo), mature adult (12 mo), and senescent (24 mo) male and female animals. BMC of the femur midshaft, representing cortical bone, apparently increased progressively with advancing age. The width of the femur at the scan site also increased with age. Normalizing the midshaft BMC by width partially compensated for the age-associated increase. However, when bone mineral values were normalized by the cortical area at the scan site, to take into account the geometric differences in the femurs of different aged animals, maximum bone densities were found in the mature adult and these values decreased slightly in the femurs from senescent rats. In contrast, the BMC of the femur distal metaphysis, representing trabecular bone, decreased markedly in the aged rat. The loss of trabecular bone was also evident from morphological examination of the distal metaphysis. These findings indicated that bone mineral loss with age was site specific in the rat femur. These studies provided additional evidence that the rat might serve as a useful animal model for specific experiments related to the pathogenesis of age-associated osteopenia

  5. Bone anatomy of the pelvic girdle, the thigh and the leg of Myrmecophaga tridactyla (Myrmecophagidae: Pilosa

    Directory of Open Access Journals (Sweden)

    Lucas de Assis Ribeiro

    2013-11-01

    Full Text Available The giant anteater (Myrmecophaga tridactyla is the largest anteater species in the world. It is an animal of terrestrial habits, however, it has some ability to climb tall trees and termite mounds. The hard skeletal structures are of crucial importance, since they join and protect the soft organs and help support the body, shape, and get involved in movement. The appendicular skeleton is an important part of the locomotor apparatus, whose anatomical information in wild species is scarce, making it difficult to interpret data on these bones. This paper aims to describe the pelvic girdle, the thigh, and the leg skeleton in the giant anteater. We used two specimens of Myrmecophaga tridactyla Linnaeus (1758, fixed in a 3.7% aqueous formaldehyde solution. At first, the limbs were disjointed and we removed the skin, viscera, and muscles associated to the bones of the pelvic girdle, the thigh, and the leg in the specimens. Then, they were macerated in boiling water, and, subsequently, placed in a hydrogen peroxide solution. Once clean and dry, the bones were identified and described. The pelvic girdle skeleton in the giant anteater consists of the hip bone, formed by the ilium, pubis, and ischium bones; the thigh consists of the femur bone, and the leg consists of the tibia and fibula bones. In the knee joint region there is the patella, a relatively small sesamoid bone, considering the large size of this animal. The giant anteater have osteological features of the pelvic girdle, the thigh, and the leg similar to those in domestic carnivores, however, some morphological differences are made evident, something which may reflect differences in locomotor patterns.

  6. [MRI characteristic of proximal femur bone marrow edema syndrome].

    Science.gov (United States)

    Wu, Xi-Yuan

    2014-07-01

    To study the MRI features of proximal femur bone marrow edema syndrome for further improve the understanding of the disease. MRI imaging of 10 patients with proximal femur bone marrow edema syndrome was retrospectively reviewed,including 6 males and 4 females with an average age of 41.5 years old ranging from 36 to 57. The courses of diseases ranged from 1 week to 3 months. Among them, 9 cases had clinical manifestations of sudden hip pain, 7 cases had limited ability of walking and hip movement;all patients had no obvious injury history, non of the female patients was pregnant. All patients were followed up from 3 to 12 months, the following-up were topped after MRI when the symptoms disappeared for 3 months. The MRI demonstrated diffuse bone marrow edema involving the femoral head, neck and the inter-trochanteric region, 13 hips of 10 patients with bone marrow edema included 6 cases in grade 1, 5 cases in grade 2,2 cases in grade 3; 9 hips with hip hydrarthrosis included 6 hips in grade I ,1 hip in grade II, 2 hips in grade III. After treatment for 3 to 12 months the hip symptoms of the patients disappeared and MRI images were normal. MRI is useful in defining the location and extent of proximal femur bone marrow edema syndrome.

  7. Endoscopic Surgery for Symptomatic Unicameral Bone Cyst of the Proximal Femur.

    Science.gov (United States)

    Miyamoto, Wataru; Takao, Masato; Yasui, Youichi; Miki, Shinya; Matsushita, Takashi

    2013-11-01

    Recently, surgical treatment of a symptomatic unicameral cyst of the proximal femur has been achieved with less invasive procedures than traditional open curettage with an autologous bone graft. In this article we introduce endoscopic surgery for a symptomatic unicameral cyst of the proximal femur. The presented technique, which includes minimally invasive endoscopic curettage of the cyst and injection of a bone substitute, not only minimizes muscle damage around the femur but also enables sufficient curettage of the fibrous membrane in the cyst wall and the bony septum through direct detailed visualization by an endoscope. Furthermore, sufficient initial strength after curettage can be obtained by injecting calcium phosphate cement as a bone substitute.

  8. Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study.

    Directory of Open Access Journals (Sweden)

    Karen N Borschmann

    Full Text Available Immobility and neural damage likely contribute to accelerated bone loss after stroke, and subsequent heightened fracture risk in humans.To investigate the skeletal effect of middle cerebral artery occlusion (MCAo stroke in rats and examine its utility as a model of human post-stroke bone loss.Twenty 15-week old spontaneously hypertensive male rats were randomized to MCAo or sham surgery controls. Primary outcome: group differences in trabecular bone volume fraction (BV/TV measured by Micro-CT (10.5 micron istropic voxel size at the ultra-distal femur of stroke affected left legs at day 28. Neurological impairments (stroke behavior and foot-faults and physical activity (cage monitoring were assessed at baseline, and days 1 and 27. Serum bone turnover markers (formation: N-terminal propeptide of type 1 procollagen, PINP; resorption: C-terminal telopeptide of type 1 collagen, CTX were assessed at baseline, and days 7 and 27.No effect of stroke was observed on BV/TV or physical activity, but PINP decreased by -24.5% (IQR -34.1, -10.5, p = 0.046 at day 27. In controls, cortical bone volume (5.2%, IQR 3.2, 6.9 and total volume (6.4%, IQR 1.2, 7.6 were higher in right legs compared to left legs, but these side-to-side differences were not evident in stroke animals.MCAo may negatively affect bone formation. Further investigation of limb use and physical activity patterns after MCAo is required to determine the utility of this current model as a representation of human post-stroke bone loss.

  9. Vascularised and modified lower-leg rotationplasty for the treatment of severe infection and bone loss of the proximal femur: a case report.

    Science.gov (United States)

    Fischer, Sebastian; Hirche, Christoph; Heppert, Volkmar G; Grützner, Paul A; Kneser, Ulrich; Kremer, Thomas

    2017-09-19

    We report a reconstructive case in a paraplegic patient, who suffers from a severe proximal femur infection. Aiming at the preservation of the capacity to remain in a seated position to operate a wheelchair, lower leg rotationplasty was considered suitable for reconstruction. Due to severe infection and subclinical femoral artery stenosis, rotationplasty was supercharged by the inferior epigastric artery. Furthermore, extensor tendons of the foot were attached to the acetabulum to facilitate stability of the neo-hip joint. Follow-up examination 1 year after surgery revealed no complications and a satisfied patient. Especially in paraplegic patients, lower leg rotationplasty is a possible treatment option for severe femoral infection. Supercharging provides well-vascularised tissue to the former infection site and improves wound healing.

  10. Finite element analysis of functionally graded bone plate at femur bone fracture site

    Science.gov (United States)

    Satapathy, Pravat Kumar; Sahoo, Bamadev; Panda, L. N.; Das, S.

    2018-03-01

    This paper focuses on the analysis of fractured Femur bone with functionally graded bone plate. The Femur bone is modeled by using the data from the CT (Computerized Tomography) scan and the material properties are assigned using Mimics software. The fracture fixation plate used here is composed of Functionally Graded Material (FGM). The functionally graded bone plate is considered to be composed of different layers of homogeneous materials. Finite element method approach is adopted for analysis. The volume fraction of the material is calculated by considering its variation along the thickness direction (z) according to a power law and the effective properties of the homogeneous layers are estimated. The model developed is validated by comparing numerical results available in the literature. Static analysis has been performed for the bone plate system by considering both axial compressive load and torsional load. The investigation shows that by introducing FG bone plate instead of titanium, the stress at the fracture site increases by 63 percentage and the deformation decreases by 15 percentage, especially when torsional load is taken into consideration. The present model yields better results in comparison with the commercially available bone plates.

  11. Three-Dimensional Bone Adaptation of the Proximal Femur

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...... remodeling scheme is included the memory of past loadings to account for the delay in the bone response to the load changes. In order to get a realistic bone adaptation process, the bone structure at the onset of the remodeling needs to be realistic too. A start design is obtained by structural optimization...

  12. Application of sub-regional analysis to bone mineral density of the lower limb from whole body DXA scans

    International Nuclear Information System (INIS)

    Haddaway, Michael J; Davie, Michael W J; Davies, Helen L; Sharp, Christopher A

    2013-01-01

    Bone mineral density at spine and hip is widely used to diagnose osteoporosis. Certain conditions cause changes in bone density at other sites, particularly in the lower limb, with fractures occurring in non-classical locations. Bone density changes at these sites would be of interest for diagnosis and treatment. We describe an application, based on an existing software option for Hologic scanners, which allows reproducible measurement of bone density at six lower limb sites (upper femur, mid-femur, lower femur; upper leg, mid-leg, lower leg). In 30 unselected subjects, referred for bone density, precision (CV%) measured on 2 occasions, separated by repositioning, ranged from 1.7% (mid-femur) to 4.5% at the lowest leg site. Intra-operator precision, measured by three operators on ten subjects on three occasions, was between 1.0% and 2.9%, whilst inter-operator precision was between 1.0% and 3.6%, according to region. These values compare well with those at the spine and upper femur, and in the literature. There was no evidence that this operator agreement improved between occasions 1 and 3. This technique promises to be useful for assessing bone changes at vulnerable sites in the lower limb, in diverse pathological states and in assessing response to treatment. (paper)

  13. The Effect of Weight-Bearing Exercise on the Strength of Femur Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    GH Sharifi

    2011-08-01

    Full Text Available Introduction & Objective: Fractures due to osteoporosis after menopause in women is widespread. Osteoporosis may occur in case of inadequate lack of physical activity .The aim of this study was to determine the effect of running training on femur bone strength in ovariectomized rats. Materials & Methods Forty matured Sprague Dawley rats were chosen for this study. A group of 10 were killed randomly to measure their initial femur strength. The remaining rats had ovarian surgery. After three months, in order to reach menopause period, they were randomly divided into 3 groups, including pre test, running training and control groups. The running training program was carried out for one hour a day, five days a week, for eight weeks. Femur bone strength was measured by HOUNSFIELD system. Data was analyzed by using one-way analysis of variance and dependent T- tests by the SPSS software. Results: Results of this study showed that ovariectomy leads to significant decrease of femur bone strength. On the other hand the eight weeks running training lead to significant increase of femur bone strength. Conclusion: The results of this study suggest that life style is important factors in preventing of osteoporosis and running training program had an inhibitory or reversal effect on decrease of menopause-induced femur bone strength.

  14. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.

    Science.gov (United States)

    Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer

    2009-10-01

    Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.

  15. [Analysis of the results of bone healing in femurs lengthened by the gradual distraction method in children and adolescents].

    Science.gov (United States)

    Jochymek, J; Skvaril, J; Ondrus, S

    2009-10-01

    Treatment of leg length inequality via lengthening of the shorter extremity is an infrequent orthopedic procedure due to the requirement of special distraction devices and possible serious complications. Essential qualitative changes in operative technique development are associated with the name of G. A. Ilizarov, who paved the way for the autoregenerate gradual distraction method in the 1950s. In the years 1990 through 2007 a total of 67 patients underwent femur lengthening via gradual distraction using various types of external fixators at the Department of Pediatric Surgery, Orthopedics, and Traumatology, Faculty Hospital in Brno. The quality of bone healing was monitored and a number of parameters followed and statistically evaluated using regularly scheduled X-ray examinations. In 13 cases we had to remove the external fixator following the distraction phase, perform an osteosynthesis via a splint and fill the distraction gap via spongioplasty. The bone healing was satisfactory in the remaining 54 patients and the lengthened bone required no other fixation method. The analysis showed statistically significant deceleration in bone healing following distraction in female patients over 12 years of age, and in boys over 14 years of age. Lack of periosteal callus five weeks after surgery always signified serious problems in further healing. Severe complications were recorded in 11 cases during the distraction phase, and in 12 cases after the removal of the distraction apparatus. Our results fully correspond with the data and experience of others cited authors. In addition our study showed deceleration in bone healing in girls over 12 years and in boys over 14 years of age and serious problem in healing when is lack of periostal callus five weeks after surgery. The aim of this report was to present the results of our study of distraction gap bone healing using the gradual lengthening approach. Key words: leg lengthening, gradual distraction, external fixation, leg

  16. Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images.

    Science.gov (United States)

    Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan

    2013-01-01

    Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  17. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    Science.gov (United States)

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  18. [Simultaneous existence of unicameral bone cysts involving the femur and ischium].

    Science.gov (United States)

    Makris, Vassilios; Papavasiliou, Kyriakos A; Bobos, Mattheos; Hytiroglou, Prodromos; Kirkos, John M; Kapetanos, George A

    2009-01-01

    We report a 30-year-old male patient with two unicameral bone cysts (UBC) simultaneously located in the proximal third of the right femur and ipsilateral ischium ramus, respectively. Fine needle biopsies were attempted for both lesions. Biopsy of the femoral lesion under local anesthesia was unsuccessful, so an open biopsy was performed which confirmed the diagnosis of UBC. Biopsy of the ischial lesion was not sufficient for diagnosis. Cytological examination of both specimens showed no other benign or malignant pathology. The femoral lesion was treated with intralesional (due to its large size) excision-curettage, bone grafting, and the introduction of a long gamma locking intramedullary nail to prevent the occurrence of a pathological fracture. The ischial lesion was left untreated and followed conservatively. The patient was free of any symptoms and complications three years postoperatively. This is the first report of an adult patient with UBCs simultaneously located both in a long tubular bone (femur) and a flat bone (ischium ramus).

  19. Pilot study on proximal femur strains during locomotion and fall-down scenario

    Energy Technology Data Exchange (ETDEWEB)

    Klodowski, Adam, E-mail: adam.klodowski@lut.fi; Valkeapaeae, Antti, E-mail: antti.valkeapaa@lut.fi; Mikkola, Aki, E-mail: aki.mikkola@lut.fi [Lappeenranta University of Technology (Finland)

    2012-09-15

    The most common and severe type of fracture among the elderly is known as a proximal femur fracture. Aging-related bone loss is one of the major contributing factors to increased likelihood of bone fracture. Specific exercises can be used to strain bones and increase bone strength to counter the effects of bone loss. The flexible multibody simulation approach can be used as a non-invasive method for estimating bone strains caused by physical activity. This method was recently used to analyze the strain of locomotion in regard to human femur and tibia leg bones. The current study focuses on strain analysis of the femoral neck. The research test person was a clinically healthy 65-year old Caucasian male. The computed tomography was used to build a geometrically accurate finite element model of the femur with inhomogeneous material properties derived from the voxel data. The anthropometric data was used to model the musculoskeletal system of the test person. The multibody skeletal model was utilized to estimate loading on the femoral neck during walking, which represents a routine daily activity. The flexible multibody simulation results were compared to strains that occurred during a simulated fall onto the greater trochanter of the femur. The fall simulation was made entirely using finite element software. Results from the finite element analysis were compared with the previous study showing that the test person does not belong to the high-risk hip fracture group. Finally, the estimated strains gathered from the walking simulation were compared to the strain values from the simulated fall-down scenario.

  20. Femoral infarction following intraarterial chemotherapy for osteosarcoma of the leg: A possible pitfall in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ollivier, L.; Leclerc, J.; Pouillart, P.; Vanel, D.; Forest, M.; Tomeno, B.; Riche, M.C.

    1991-01-01

    Bone infarction of the distal femur is reported in two patients with osteosarcoma of the leg (1 tibia, 1 fibula) treated by preoperative chemotherapy including intraarterial chemotherapy (IAC) by Cis-platinum. Both patients were examined by magnetic resonance imaging before chemotherapy and again prior to limb salvage surgery. The location of these lesions in the distal femur must suggest bone infarction especially if the tumor has decreased in size under treatment. (orig.)

  1. Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, 2005-2008

    Science.gov (United States)

    ... Osteoporosis or Low Bone Mass at the Femur Neck or Lumbar Spine in Older Adults: United States, ... on bone mineral density at either the femur neck or lumbar spine? Nine percent of persons aged ...

  2. Effect of Hind-Limb Suspension and X-Ray Irradiation on the Mechanical and Chemical Properties of Rat Femur and Tibia Bones

    Science.gov (United States)

    Heacox, Hayley; Hill, Brent; Mehta, Rahul; Barajas, Jordan; Freyaldenhoven, Sidney; Dobretsov, Max; Chowdhury, Parimal

    It is known that space conditions such as microgravity and cosmic radiation have detrimental effects on the skeletal system of humans, such as decreased bone mineral density. This research studies the changes in mechanical properties, elasticity, and chemical properties, calcium and phosphorus content, of rat femur and tibia bones when exposed to hind-limb suspension and x-ray irradiation, simulated microgravity and cosmic radiation. It is hypothesized that if microgravity and cosmic radiation lead to decreased bone mineral density, then these conditions will produce weakened bones, lower elastic moduli and abnormal concentrations of calcium and phosphorus, as compared to bones not subject to these conditions. A technique known as three-point bending was employed to estimate the Young's (elastic) modulus for the leg bones. To investigate the chemical nature of the bones, a Scanning Electron Microscope (SEM) was utilized to take cross-sectional images and to perform energy dispersive x-ray spectroscopy. Ultimately, the results produced by this research will aid in quantifying the effects of spaceflight and may be used in developing a treatment to counteract such effects. This work supported by a RID and CRP Grant from Arkansas Space Grant Consortium.

  3. A case of monostotic fibrous dysplasia of proximal femur managed with curettage and cortical bone grafting

    Directory of Open Access Journals (Sweden)

    A D Sud

    2013-01-01

    Full Text Available We present a case report of a young military personnel with monostotic fibrous dysplasia of proximal femur with painful, dysplasticlesion of the femoral neck and fatigue fracture who underwent cortical bone grafting using autogenous fibular strut graft and iliac crest bone graft. The fibular cortical grafts was used to bridge the lesion in the femoral neck and were securely anchored to the normal bone of the lateral femoral cortex and a head of the femur. No supplemental internal fixation was required.

  4. A comparison of bone mineral density in osteoporotic fracture of the proximal femur using dual energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Lee, Jong Seok; Yoo, Beong Gyu; Kim, Keung Sik

    2000-01-01

    There were some controversies about direct cause of hip fracture. We attempted to look at 40 osteoporotic proximal femur fractures in women over 50 years between March in 1999 and February in 2000. The bone density of the fracture group and the healthy 85 control group was measured by Dual Energy X-ray absorptiometry (DEXA). The result was compared using age matched paired T test. The results were as follows: The femoral neck fractures were 14 cases and the trochanteric fractures were 26 cases. Mean age at a fracture was 67.1 years in neck fracture group and 76.5 years in trochanteric fracture. In the control group, the bone density of both side of the proximal femur was measured and it showed statistically no difference between both sides in same person. The bone density of neck, Ward's triangle, trochanter (P<0.05) and lumbar spine (P<0.001) was significantly reduced in the proximal femoral fracture group comparing with the control group. The bone density of neck, Ward's triangle, trochanter (P<0.05) was significantly reduced in the proximal femoral neck fracture group comparing with the control group, but there was no statistical difference in lumbar spine comparing with the control group. The bone density of neck, Ward's triangle, trochanter and lumbar spine (P<0.001) was significantly reduced in the proximal femoral neck fracture group comparing with the control group. We concluded that the bone mineral densities (BMD) of proximal femur and lumbar spine had decreased in hip fractures but that the bone mineral density and T-score % of the proximal femur were statistically lower than that of the lumbar spine. We suggest that measuring the bone mineral density of the proximal femur may reflect the weakness of the proximal femur more precisely than measuring the bone mineral density of the lumbar spine

  5. A comparison of bone mineral density in osteoporotic fracture of the proximal femur using dual energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Seok; Yoo, Beong Gyu [Wonkwang Health Science College, Iksan (Korea, Republic of); Kim, Keung Sik [Yonsei University Yong Dong Severance Hospital, Seoul (Korea, Republic of)

    2000-04-15

    There were some controversies about direct cause of hip fracture. We attempted to look at 40 osteoporotic proximal femur fractures in women over 50 years between March in 1999 and February in 2000. The bone density of the fracture group and the healthy 85 control group was measured by Dual Energy X-ray absorptiometry (DEXA). The result was compared using age matched paired T test. The results were as follows: The femoral neck fractures were 14 cases and the trochanteric fractures were 26 cases. Mean age at a fracture was 67.1 years in neck fracture group and 76.5 years in trochanteric fracture. In the control group, the bone density of both side of the proximal femur was measured and it showed statistically no difference between both sides in same person. The bone density of neck, Ward's triangle, trochanter (P<0.05) and lumbar spine (P<0.001) was significantly reduced in the proximal femoral fracture group comparing with the control group. The bone density of neck, Ward's triangle, trochanter (P<0.05) was significantly reduced in the proximal femoral neck fracture group comparing with the control group, but there was no statistical difference in lumbar spine comparing with the control group. The bone density of neck, Ward's triangle, trochanter and lumbar spine (P<0.001) was significantly reduced in the proximal femoral neck fracture group comparing with the control group. We concluded that the bone mineral densities (BMD) of proximal femur and lumbar spine had decreased in hip fractures but that the bone mineral density and T-score % of the proximal femur were statistically lower than that of the lumbar spine. We suggest that measuring the bone mineral density of the proximal femur may reflect the weakness of the proximal femur more precisely than measuring the bone mineral density of the lumbar spine.

  6. Idiopathic New Bone Formation in the Femoral Shafts of a Cynomolgus Monkey (Macaca fascicularis)

    OpenAIRE

    Lee, Jae-il; Kim, Young-suk; Kim, Myung-Jin; Hong, Sung-Hyeok

    2008-01-01

    A 6.5-y-old cynomolgus monkey was referred to the Veterinary Medical Teaching Hospital at Chungnam National University for suspected bone fracture. The monkey had been reared singly in a cage at a laboratory facility. An animal caretaker incidentally found a bone fragment protruding through the skin of the right leg. Radiographic examination revealed 2 new bone fragments clearly distinguishable from the original femurs; the fragments seemed to be inserted into both femurs. One of the new bone...

  7. Bone mineral density in lifelong trained male football players compared with young and elderly untrained men

    Directory of Open Access Journals (Sweden)

    Marie Hagman

    2018-04-01

    Full Text Available Purpose: The purpose of the present controlled cross-sectional study was to investigate proximal femur and whole-body bone mineral density (BMD, as well as bone turnover profile, in lifelong trained elderly male football players and young elite football players compared with untrained age-matched men. Methods: One hundred and forty healthy, non-smoking men participated in the study, including lifelong trained football players (FTE, n = 35 aged 65–80 years, elite football players (FTY, n = 35 aged 18–30 years, as well as untrained age-matched elderly (UE, n = 35 and young (UY, n = 35 men. All participants underwent a regional dual-energy X-ray Absorptiometry (DXA scan of the proximal femur and a whole-body DXA scan to determine BMD. From a resting blood sample, the bone turnover markers (BTMs osteocalcin, carboxy-terminal type-1 collagen crosslinks (CTX-1, procollagen type-1 amino-terminal propeptide (P1NP, and sclerostin were measured. Results: FTE had 7.3%–12.9% higher (p < 0.05 BMD of the femoral neck, wards, shaft, and total proximal femur in both legs compared to UE, and 9.3%–9.7% higher (p < 0.05 BMD in femoral trochanter in both legs compared to UY. FTY had 24.3%–37.4% higher (p < 0.001 BMD in all femoral regions and total proximal femur in both legs compared to UY. The whole-body DXA scan confirmed these results, with FTE showing similar whole-body BMD and 7.9% higher (p < 0.05 leg BMD compared to UY, and with FTY having 9.6% higher (p < 0.001 whole-body BMD and 18.2% higher (p < 0.001 leg BMD compared to UY. The plasma concentration of osteocalcin, CTX-1, and P1NP were 29%, 53%, and 52% higher (p < 0.01, respectively, in FTY compared to UY. Conclusion: BMD of the proximal femur and whole-body BMD are markedly higher in lifelong trained male football players aged 65–80 years and young elite football players aged 18–30 years compared to age-matched untrained men. Elderly football

  8. Morphometrical and Topographical Anatomy of Position of Nutrient Foramen on Fully Ossified Left Femur

    Directory of Open Access Journals (Sweden)

    Tanvir Hossain Parash

    2013-05-01

    Full Text Available Background: The femur is the typical long bone of lower limb which extends from the pelvis to the knee. It forms the skeleton of the thigh, bears body weight, supports movement of legs; provide attachment to muscles, form blood cells and acts as a store house for calcium and phosphate. The nutrient foramina are cavities that conduct the nutrient arteries and the peripheral nerves. The majority blood supply for femur originates from the nutrient arteries, mainly during the growing period and during the early phase of ossification. In bone grafts the nutrient blood supply is crucial and it should be preserved in order to promote the fracture healing.Objective: The anatomy of nutrient foramen of femur is very essential for orthopedic & vascular surgeons as well as to radiologists for planning of treatment.Materials and method: This cross sectional study was carried out in the department of Anatomy, Sir Salimullah Medical College, Dhaka, Bangladesh from July 2011 to June 2012. The study comprised 199 fully ossified left sided dry femur of both sex (n=89 male, n=110 female. Sampling technique was purposive. Morphometric and topographic study was carried out on all samples by direct physical and photographic methods.Results: The most common position of nutrient foramen on the shaft of femur was found on the middle 1/5th in both male and female femur (50.78% in male and 56.86% in female respectively.Conclusion: The anatomical knowledge about this study might be useful in certain surgical procedures as well as micro vascular bone transfer to preserve the circulation.

  9. operative treatment of primary bone tumours of the femur and the tibia

    African Journals Online (AJOL)

    can cause infection, pseudoarthrosis and pathological fracture. Objective: The purpose of ... after several re-surgeries. Key words: Bone tumour, Femur, Tibia, Resection, Allograft .... stress, the length of the graft, the realization of an arthrodesis ...

  10. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density.

    Science.gov (United States)

    Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland

    2018-02-01

    There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV

  11. Effects of different loading patterns on the trabecular bone morphology of the proximal femur using adaptive bone remodeling.

    Science.gov (United States)

    Banijamali, S Mohammad Ali; Oftadeh, Ramin; Nazarian, Ara; Goebel, Ruben; Vaziri, Ashkan; Nayeb-Hashemi, Hamid

    2015-01-01

    In this study, the changes in the bone density of human femur model as a result of different loadings were investigated. The model initially consisted of a solid shell representing cortical bone encompassing a cubical network of interconnected rods representing trabecular bone. A computationally efficient program was developed that iteratively changed the structure of trabecular bone by keeping the local stress in the structure within a defined stress range. The stress was controlled by either enhancing existing beam elements or removing beams from the initial trabecular frame structure. Analyses were performed for two cases of homogenous isotropic and transversely isotropic beams.Trabecular bone structure was obtained for three load cases: walking, stair climbing and stumbling without falling. The results indicate that trabecular bone tissue material properties do not have a significant effect on the converged structure of trabecular bone. In addition, as the magnitude of the loads increase, the internal structure becomes denser in critical zones. Loading associated with the stumbling results in the highest density;whereas walking, considered as a routine daily activity, results in the least internal density in different regions. Furthermore, bone volume fraction at the critical regions of the converged structure is in good agreement with previously measured data obtained from combinations of dual X-ray absorptiometry (DXA) and computed tomography (CT). The results indicate that the converged bone architecture consisting of rods and plates are consistent with the natural bone morphology of the femur. The proposed model shows a promising means to understand the effects of different individual loading patterns on the bone density.

  12. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs.

    Science.gov (United States)

    Garcia, J A D; Souza, A L T; Cruz, L H C; Marques, P P; Camilli, J A; Nakagaki, W R; Esteves, A; Rossi-Junior, W C; Fernandes, G J M; Guerra, F D; Soares, E A

    2015-11-01

    The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179 ± 2.5 g. The rats were divided into three groups (n=06): CT (control), AC (chronic alcoholic), DT (detoxification). After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT) allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC) presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC - UNIFENAS.

  13. Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs

    Directory of Open Access Journals (Sweden)

    J. A. D. Garcia

    Full Text Available Abstract The objective of this study was to verify the effects of ethanol consumption and alcohol detoxification on the biomechanics, area and thickness of cortical and trabecular bone in rat femur. This was an experimental study in which 18 male Wistar rats were used, with 40 days of age, weighing 179±2.5 g. The rats were divided into three groups (n=06: CT (control, AC (chronic alcoholic, DT (detoxification. After experimental procedures, the animals were euthanized by an overdose of the anesthetic and their femurs were collected for mechanical testing and histological processing. All animals did not present malnutrition or dehydration during experimentation period. Morphometric analysis of cortical and trabecular bones in rat femurs demonstrated that AC animals showed inferior dimensions and alcohol detoxification (DT allowed an enhancement in area and thickness of cortical and trabecular bone. Material and structural properties data of AC group highlighted the harmful effects of ethanol on bone mechanical properties. The results of this study demonstrated that chronic alcoholic rats (AC presented major bone damage in all analyzed variables. Those findings suggested that alcohol detoxification is highly suggested in pre-operative planning and this corroborates to the success of bone surgery and bone tissue repair. Thanks to the financial support offered by PROBIC – UNIFENAS.

  14. Bone architecture analyses of rat femur with 3D microtomographics images

    International Nuclear Information System (INIS)

    Lima, I.C.B.; Lopes, R.T.; Oliveira, L.F.

    2006-01-01

    One of the great 3D micro tomography (3D-μCT) applications in the medical area is the characterization of bone architecture, especially when it is spoken in osteoporosis because, among other factors, is characterized by the deterioration of the architecture. This work shows the 3D quantification, based on stereological concepts, of the bone tissue through 3D-μCT in real time. The analyses were carried out in femur rat and the 3D visualizations helped to understand bones morphology. The results showed the potential of this computational technique to verify the capability of characterization of the internal bone structures and the importance of the threshold level in the binarization process. (author)

  15. Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo

    Directory of Open Access Journals (Sweden)

    Stefan Grote

    2013-06-01

    Full Text Available Knowledge of local bone quality is essential for surgeons to determine operation techniques. A device for intraoperative measurement of local bone quality has been developed by the AO-Research Foundation (DensiProbe®. We used this device to experimentally measure peak breakaway torque of trabecular bone in the proximal femur and correlated this with local bone mineral density (BMD and failure load. Bone mineral density of 160 cadaver femurs was measured by ex situ dual-energy X-ray absorptiometry. The failure load of all femurs was analyzed by side-impact analysis. Femur fractures were fixed and mechanical peak torque was measured with the DensiProbe® device. Correlation was calculated whereas correlation coefficient and significance was calculated by Fisher’s Z-transformation. Moreover, linear regression analysis was carried out. The unpaired Student’s t-test was used to assess the significance of differences. The Ward triangle region had the lowest BMD with 0.511 g/cm2 (±0.17 g/cm2, followed by the upper neck region with 0.546 g/cm2 (±0.16 g/cm2, trochanteric region with 0.685 g/cm2 (±0.19 g/cm2 and the femoral neck with 0.813 g/cm2 (±0.2 g/cm2. Peak torque of DensiProbe® in the femoral head was 3.48 Nm (±2.34 Nm. Load to failure was 4050.2 N (±1586.7 N. The highest correlation of peak torque measured by Densi Probe® and load to failure was found in the femoral neck (r=0.64, P<0.001. The overall correlation of mechanical peak torque with T-score was r=0.60 (P<0.001. A correlation was found between mechanical peak torque, load to failure of bone and BMD in vitro. Trabecular strength of bone and bone mineral density are different aspects of bone strength, but a correlation was found between them. Mechanical peak torque as measured may contribute additional information about bone strength, especially in the perioperative testing.

  16. Comparison of lead residues among avian bones

    International Nuclear Information System (INIS)

    Ethier, A.L.M.; Braune, B.M.; Scheuhammer, A.M.; Bond, D.E.

    2007-01-01

    To determine if significant differences exist in lead (Pb) accumulation in different bones, especially those most often used for bone-Pb studies in wildlife, we compared Pb concentrations in radius, ulna, humerus, femur, and tibia of Common Eider (Somateria mollissima); and radius/ulna (combined), femur, and tibia of American Woodcock (Scolopax minor). There were no significant differences in bone-Pb concentrations among woodcock bones over a wide range of Pb concentrations (3-311 μg/g). In eider, where bone-Pb concentrations were low (<10 μg/g), leg bones had significantly higher Pb concentrations (approximately 30-40%) than wing bones from the same individuals. The variation among individual birds was greater than the variation among different bones within a bird. Based on our findings, we conclude that one type of bone may be substituted for another in bone-Pb studies although the same bone type should be analyzed for all birds within a study, whenever possible. - Variability in Pb concentrations among avian bones

  17. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  18. Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Dirk, E-mail: d.mueller@uk-koeln.de [Department of Radiology, University of Cologne (Germany); Department of Radiology, Technische Universität München (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Baum, Thomas, E-mail: thomas-baum@gmx.de [Department of Radiology, Technische Universität München (Germany); Walter, Flavia, E-mail: flavia_walter2000@yahoo.de [Department of Radiology, Technische Universität München (Germany); Rechl, Hans, E-mail: rechl@tum.de [Department of Orthopaedics, Technische Universität München (Germany); Rummeny, Ernst J., E-mail: rummeny@tum.de [Department of Radiology, Technische Universität München (Germany); Woertler, Klaus, E-mail: klaus.woertler@tum.de [Department of Radiology, Technische Universität München (Germany)

    2014-10-15

    Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E{sub max}), slope (E{sub slope}) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology

  19. Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur

    International Nuclear Information System (INIS)

    Mueller, Dirk; Schaeffeler, Christoph; Baum, Thomas; Walter, Flavia; Rechl, Hans; Rummeny, Ernst J.; Woertler, Klaus

    2014-01-01

    Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E max ), slope (E slope ) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology of

  20. Damage characterization on human femur bone by means of ultrasonics and acoustic emission

    International Nuclear Information System (INIS)

    Strantza, M; Boulpaep, F; Van Hemelrijck, D; Aggelis, D G; Polyzos, D; Louis, O

    2015-01-01

    Human bone tissue is characterized as a material with high brittleness. Due to this nature, visible signs of cracking are not easy to be detected before final failure. The main objective of this work is to investigate if the acoustic emission (AE) technique can offer valuable insight to the fracture process of human femur specimens as in other engineering materials characterization. This study describes the AE activity during fracture of whole femur bones under flexural load. Before fracture, broadband AE sensors were used in order to measure parameters like wave velocity dispersion and attenuation. Waveform parameters like the duration, rise time and average frequency, were also examined relatively to the propagation distance as a preparation for the AE monitoring during fracture. After the ultrasonic study, the samples were partly cast in concrete and fixed as cantilevers. A point load was applied on the femur head, which due to the test geometry resulted in a combination of two different patterns of fracture, bending and torsion. Two AE broadband sensors were placed in different points of the sample, one near the fixing end and the other near the femur head. Preliminary analysis shows that parameters like the number of acquired AE signals and their amplitude are well correlated with the load history. Furthermore, the parameters of rise time and frequency can differentiate the two fracture patterns. Additionally, AE allows the detection of the load at the onset of fracture from the micro-cracking events that occur at the early loading stages, allowing monitoring of the whole fracture process. Parameters that have been used extensively for monitoring and characterization of fracture modes of engineering materials seem to poses characterization power in the case of bone tissue monitoring as well. (paper)

  1. Insights into the effects of tensile and compressive loadings on human femur bone.

    Science.gov (United States)

    Havaldar, Raviraj; Pilli, S C; Putti, B B

    2014-01-01

    Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.

  2. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body.

    Science.gov (United States)

    Nawathe, Shashank; Yang, Haisheng; Fields, Aaron J; Bouxsein, Mary L; Keaveny, Tony M

    2015-05-01

    The influence of the ductility of bone tissue on whole-bone strength represents a fundamental issue of multi-scale biomechanics. To gain insight, we performed a computational study of 16 human proximal femurs and 12 T9 vertebral bodies, comparing the whole-bone strength for the two hypothetical bounding cases of fully brittle versus fully ductile tissue-level failure behaviors, all other factors, including tissue-level elastic modulus and yield stress, held fixed. For each bone, a finite element model was generated (60-82 μm element size; up to 120 million elements) and was virtually loaded in habitual (stance for femur, compression for vertebra) and non-habitual (sideways fall, only for femur) loading modes. Using a geometrically and materially non-linear model, the tissue was assumed to be either fully brittle or fully ductile. We found that, under habitual loading, changing the tissue behavior from fully ductile to fully brittle reduced whole-bone strength by 38.3±2.4% (mean±SD) and 39.4±1.9% for the femur and vertebra, respectively (p=0.39 for site difference). These reductions were remarkably uniform across bones, but (for the femur) were greater for non-habitual (57.1±4.7%) than habitual loading (pductile cases. These theoretical results suggest that the whole-bone strength of the proximal femur and vertebra can vary substantially between fully brittle and fully ductile tissue-level behaviors, an effect that is relatively insensitive to bone morphology but greater for non-habitual loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of calcium citrate on bone integration in a rabbit femur defect model.

    Science.gov (United States)

    Zhang, Wei; Wang, Wei; Chen, Qing-Yu; Lin, Zhong-Qin; Cheng, Shao-Wen; Kou, Dong-Quan; Ying, Xiao-Zhou; Shen, Yue; Cheng, Xiao-Jie; Nie, Peng-Fei; Li, Xiu-Cui; Rompis, Ferdinand An; Huang, Hang; Zhang, Hua; Mu, Zhong-Lin; Peng, Lei

    2012-04-01

    To explore effect of calcium citrate on bone integration in a rabbit femur defect model, and to compare the bone formation with different sizes by radiological and histological study. Twenty-four male Japanese white rabbits were randomly divided into three groups (Group A, B, C) in this study. Under anesthesia, defects of four sizes (1.2, 1.5, 2.0 and 2.5 mm) were created in each of the rabbits. Commercially pure calcium citrate powder was placed inside the medullary compartment of the femur (Experimental), while in the contralateral femur (Control) nothing was implanted. The defects were analyzed using radiography and histological analysis by using Imagepro-Plus 6.0 software after animal was sacrificed at 4th(Group A), 6th(Group B) and 8th(Group C) weeks postoperatively. Four samples were analyzed for each size of defect and each healing period. The histological and the radiologic evaluation were performed after sacrification of all rabbits on postoperative 4th and 6th weeks, It showed significant difference between the experimental group and the control group when these defects were less than or equal to 2.0 mm. No statistical difference was observed when these defects were larger than 2.0 mm at all healing periods except at the 4th week. Calcium citrate affects the early periods of bone defects healing mechanism in Japanese white rabbits positively, especially when the defect is not too large. We suggest further studies on calcium citrate to determine the effects of various dosages, administration ways and the experimental time on the bone defects. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  4. Measurements of bone mineral density of the proximal femur by two commercially available dual energy X-ray absorptiometric systems

    International Nuclear Information System (INIS)

    Svendsen, O.L.; Marslew, U.; Hassager, C.; Christiansen, C.

    1992-01-01

    Two dual energy X-ray absorptiometric (DXA) instruments have recently become commercially available for local bone densitometry: the QDR-1000 (Hologic Inc.) and the DPX (Lunar Radiation Corp.). We report the precision, influence of femoral, rotation, correlation and agreement of bone mineral measurements of the proximal fermur by these two instruments. In vitro (femur phantom) short-term precision was 1.1%-3.5%, and the long-term precision was 1.2%-3.8%. In vivo (groups of 10 premenopausal and 10 postmenopausal women) short-term precision of duplicate measurements was 1.6%-4.7%, and long-term precision was 1.9%-5.5%. Overall, the precision for Ward's triangle was over 3% and that for the femoral neck and trochanter, 2%-3%. Rotation of the femur phantom produced a statistically significant change in the bone mineral density (BMD) of the femoral neck. Within a clinically relevant range of femoral rotation (20deg inward rotation ±5deg) the coefficient of variation (CV%) increased by a mean factor of 1.1-1.4. Although the correlation (r<0.9) between BMD measurements of the proximal femur by the DPX and QDR-1000 in 30 postmenopausal women was high, there was lack of agreement between the two instruments. We found no statistically significant differences between the right and left femur in 30 postmenopausal women. A bilateral femur scan took a mean total time of about 22 min. We conclude that with the introduction of DXA instruments, the precision of bone mineral measurments of the proximal femur has improved. However, for comparability between commercially available DXA instruments, it might be advantageous if units were standardized. (orig.)

  5. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats

    International Nuclear Information System (INIS)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-01-01

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n = 12) to 1000 ppm lead acetate in drinking water for 90 days while control group (n = 8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ + Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant.

  6. Bone mineral density of lumbar spine and femur in acromegaly. Knochendichte an Lendenwirbelsaeule und Femur bei Akromegalie

    Energy Technology Data Exchange (ETDEWEB)

    Huebsch, P. (Ludwig-Boltzmann-Institut fuer Radiologisch-Physikalische Tumordiagnostik, Vienna (Austria)); Kotzmann, H. (Universitaetsklinik fuer Innere Medizin 3, Vienna (Austria)); Svoboda, T. (Universitaetsklinik fuer Innere Medizin 3, Vienna (Austria)); Kainberger, F.M. (Ludwig-Boltzmann-Institut fuer Radiologisch-Physikalische Tumordiagnostik, Vienna (Austria)); Bankier, A. (Ludwig-Boltzmann-Institut fuer Radiologisch-Physikalische Tumordiagnostik, Vienna (Austria)); Seidl, G. (Ludwig-Boltzmann-Institut fuer Radiologisch-Physikalische Tumordiagnostik, Vienna (Austria))

    1993-08-01

    Acromegaly is regarded as a cause for secondary osteoporosis, whereas recent papers suggest that growth hormone increases bone mineral density (BMD). In 16 patients with active acromegaly we found an increased BMD compared to normal controls in the lumbar spine and the proximal femur by means of dual energy X-ray absoptiometry. This increase in BMD was statistically significant in the femoral neck and in Ward's triangle (P=0.05). Moreover, no signs of osteoporosis were found radiologically. (orig.)

  7. Increased Leg Bone Mineral Density and Content During the Initial Years of College Sport.

    Science.gov (United States)

    Scerpella, John J; Buehring, Bjoern; Hetzel, Scott J; Heiderscheit, Bryan C

    2018-04-01

    Scerpella, JJ, Buehring, B, Hetzel, SJ, and Heiderscheit, BC. Increased leg bone mineral density and content during the initial years of college sport. J Strength Cond Res 32(4): 1123-1130, 2018-Bone mineral density (BMD) and bone mineral content (BMC) data are useful parameters for evaluating how training practices promote bone health. We used dual-energy X-ray absorptiometry (DXA) to longitudinally assess sport-specific growth in leg and total body BMD/BMC over the initial 2 years of collegiate training. Eighty-five Division 1 collegiate basketball, hockey, and soccer athletes (50 males and 35 females; age 19.0 [0.8] years) underwent annual DXA scans. Leg and total body BMD/BMC were compared within and across two 1-year intervals (periods 1 and 2) using repeated-measures analysis of variance, adjusting for age, sex, race, and sport. Leg BMD, leg BMC, and total body BMC all increased over period 1 (0.05 g·cm [p = 0.001], 0.07 kg [p = 0.002], and 0.19 kg [p BMC (p BMC (p = 0.005). Leg lean mass increased more during period 2 than period 1 (p = 0.018). Sports participation was the only significant predictor of change in leg BMD. Significant increases in both leg BMD and BMC were demonstrated over both 2-year periods, with greater gains during period 1. These gains highlight the importance of attentive training procedures, capitalizing on attendant physical benefits of increased BMD/BMC. Additional research in young adults, evaluating bone mass acquisition, will optimize performance and decrease risk of bone stress injury among collegiate athletes.

  8. Modeling of the pliant surfaces of the thigh and leg during gait

    Science.gov (United States)

    Ball, Kevin A.; Pierrynowski, Michael R.

    1998-05-01

    Rigid Body Modeling, a 6 degree of freedom (DOF) method, provides state of the art human movement analysis, but with one critical limitation; it assumes segment rigidity. A non- rigid 12 DOF method, Pliant Surface Modeling (PSM) was developed to model the simultaneous pliant characteristics (scaling and shearing) of the human body's soft tissues. For validation, bone pins were surgically inserted into the tibia and femur of three volunteers. Infrared markers (44) were placed upon the thigh, leg, and bone pin surfaces. Two synchronized OPTOTRAK/3020TM cameras (Northern Digital Inc., Waterloo, ON) were used to record 120 seconds of treadmill gait per subject. In comparison to the 'gold standard' bone pin rotational results, PSM located the tibia, femur and tibiofemoral joint with root mean square (RMS) errors of 2.4 degrees, 4.0 degrees and 4.6 degrees, respectively. These performances met or exceeded (P less than .01) the current state of the art for surface data, Rigid Surface Modeling. The thigh's measured surface experienced uniform repeatable changes in scale: 40% mediolateral, 5% anterioposterior, 5% superioinferior, and planar shears of: 25 degrees transverse, 15 degrees sagittal, 5 degrees frontal. With the brief exception of push-off, the lower leg demonstrated much greater rigidity: less than 5% scaling and less than 5 degrees shearing. Thus, PSM offers superior 'rigid' estimates of knee motion with the ability to quantify 'pliant' surface changes.

  9. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    International Nuclear Information System (INIS)

    Ascenzi, Maria-Grazia; Kawas, Neal P.; Lutz, Andre; Kardas, Dieter; Nackenhorst, Udo; Keyak, Joyce H.

    2013-01-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing

  10. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Maria-Grazia, E-mail: mgascenzi@mednet.ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Kawas, Neal P., E-mail: nealkawas@ucla.edu [UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, Rehabilitation Bldg, Room 22-69, 1000 Veteran Avenue, University of California, Los Angeles, CA 90095 (United States); Lutz, Andre, E-mail: andre.lutz@hotmail.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Kardas, Dieter, E-mail: kardas@ibnm.uni-hannover.de [ContiTech Vibration Control, Jaedekamp 30 None, 30419 Hannover (Germany); Nackenhorst, Udo, E-mail: nackenhorst@ibnm.uni-hannover.de [Institute of Biomechanics and Numerical Mechanics, Leibniz University Hannover, 30167 Hannover (Germany); Keyak, Joyce H., E-mail: jhkeyak@uci.edu [Department of Radiological Sciences, Medical Sciences I, Bldg 811, Room B140, University of California, Irvine, CA 92697-5000 (United States)

    2013-07-01

    We present an innovative method to perform multi-scale finite element analyses of the cortical component of the femur using the individual’s (1) computed tomography scan; and (2) a bone specimen obtained in conjunction with orthopedic surgery. The method enables study of micro-structural characteristics regulating strains and stresses under physiological loading conditions. The analysis of the micro-structural scenarios that cause variation of strain and stress is the first step in understanding the elevated strains and stresses in bone tissue, which are indicative of higher likelihood of micro-crack formation in bone, implicated in consequent remodeling or macroscopic bone fracture. Evidence that micro-structure varies with clinical history and contributes in significant, but poorly understood, ways to bone function, motivates the method’s development, as does need for software tools to investigate relationships between macroscopic loading and micro-structure. Three applications – varying region of interest, bone mineral density, and orientation of collagen type I, illustrate the method. We show, in comparison between physiological loading and simple compression of a patient’s femur, that strains computed at the multi-scale model’s micro-level: (i) differ; and (ii) depend on local collagen-apatite orientation and degree of calcification. Our findings confirm the strain concentration role of osteocyte lacunae, important for mechano-transduction. We hypothesize occurrence of micro-crack formation, leading either to remodeling or macroscopic fracture, when the computed strains exceed the elastic range observed in micro-structural testing.

  11. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.

    Science.gov (United States)

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-02-15

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca 2+ +Mg 2+ + Na + )/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse actions induced by lead on the processes regulating bone turnover mechanism. This information may explain the osteoporosis diseases associated to lead intoxication as well as the risk of fracture observed in populations exposed to this toxicant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Bone mineral density of lumbar spine and femur in acromegaly

    International Nuclear Information System (INIS)

    Huebsch, P.; Kotzmann, H.; Svoboda, T.; Kainberger, F.M.; Bankier, A.; Seidl, G.

    1993-01-01

    Acromegaly is regarded as a cause for secondary osteoporosis, whereas recent papers suggest that growth hormone increases bone mineral density (BMD). In 16 patients with active acromegaly we found an increased BMD compared to normal controls in the lumbar spine and the proximal femur by means of dual energy X-ray absoptiometry. This increase in BMD was statistically significant in the femoral neck and in Ward's triangle (P=0.05). Moreover, no signs of osteoporosis were found radiologically. (orig.) [de

  13. Use of femur bone density to segregate wild from farmed Dybowski's frog (Rana dybowskii).

    Science.gov (United States)

    Yang, Shu Hui; Huang, Xiao Ming; Xia, Rui; Xu, Yan Chun; Dahmer, Thomas D

    2011-04-15

    Wildlife has been utilized by humans throughout history and demand continues to grow today. Farming of wildlife can supplement the supply of wild-harvested wildlife products and, in theory, can reduce pressure on free-ranging populations. However, poached wildlife products frequently enter legal markets where they are fraudulently sold as farmed wildlife products. To effectively close this illegal trade in wild-captured wildlife, there is a need to discriminate wild products from farmed products. Because of the strong market demand for wild-captured frog meat and the resulting strong downward pressure on wild populations, we undertook research to develop a method to discriminate wild from farmed Dybowski's frog (Rana dybowskii) based on femur bone density. We measured femur bone density (D(f)) as the ratio of bone mass to bone volume. D(f) of wild frogs revealed a slightly increasing linear trend with increasing age (R(2)=0.214 in males and R(2)=0.111 in females, p=0.000). Wild males and wild females of age classes from 2 to ≥ 5 years had similar D(f) values. In contrast, 2-year-old farmed frogs showed significantly higher D(f) values (p=0.000) among males (mean D(f)=0.623 ± 0.011 g/ml, n=32) than females (mean D(f)=0.558 ± 0.011 g/ml, n=27). For both sexes, D(f) of wild frogs was significantly higher than that of farmed frogs (p=0.000). Among males, 87.5% (28 of 32 individuals) of farmed frogs were correctly identified as farmed frogs and 86.3% (69 of 80 individuals) of wild frogs were correctly identified as wild frogs. These results suggest that femur bone density is one reliable tool for discriminating between wild and farmed Dybowski's frog. This study also highlights a novel strategy with explicit forensic potential to discriminate wild from captive bred wildlife species. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro.

    Science.gov (United States)

    Henstock, J R; Rotherham, M; Rose, J B; El Haj, A J

    2013-04-01

    Mechanical loading of bone and cartilage in vivo results in the generation of cyclic hydrostatic forces as bone compression is transduced to fluid pressure in the canalicular network and the joint synovium. It has therefore been suggested that hydrostatic pressure is an important stimulus by which osteochondral cells and their progenitors sense and respond to mechanical loading in vivo. In this study, hydrostatic pressure regimes of 0-279kPa at 0.005-2Hz were applied to organotypically cultured ex vivo chick foetal femurs (e11) for 1hour per day in a custom designed bioreactor for 14days and bone formation assessed by X-ray microtomography and qualified by histology. We found that the mineralised portion of the developing femur cultured under any cyclic hydrostatic pressure regime was significantly larger and/or denser than unstimulated controls but that constant (non-cycling) hydrostatic pressure had no effect on bone growth. Further experiments showed that the increase in bone formation was directly proportional to stimulation frequency (R(2)=0.917), but independent of the magnitude of the pressure applied, whilst even very low frequencies of stimulation (0.005Hz) had significant effects on bone growth. Expression of Type-II collagen in both epiphyses and diaphysis was significantly upregulated (1.48-fold and 1.95-fold respectively), together with osteogenic genes (osteonectin and osteopontin) and the osteocyte maturation marker CD44. This work demonstrates that cyclic hydrostatic pressure promotes bone growth and mineralisation in a developmental model and supports the hypothesis that hydrostatic forces play an important role in regulating bone growth and remodelling in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Three-dimensional quantitative CT of the proximal femur: Relationship to vertebral trabecular bone density

    International Nuclear Information System (INIS)

    Bhasin, S.; Zlatkin, M.B.; Sartoris, D.J.; Andre, M.; Resnick, D.

    1987-01-01

    Integrated cancellous, cortical, and total bone density in the femoral neck and inter-trochanteric region was measured bilaterally in 25 women aged 35-90 years (mean age, 65). Contiguous-section (1-cm-thick) data were analyzed using three-dimensional histogram software on a Cemax 1000 image processor. Single-section quantitative CT was used to determine mean mineral equivalent values for vertebral cancellous bone from T-11 to L-3 in each woman. Significant correlation was found between cancellous bone density at the two sites. Cortical and total bone densities in the proximal femur were predicted less well with vertebral cancellous data, suggesting a greater dependence on weight-bearing and activity factors

  16. 99mTc-MDP bone uptake in secondary hyperparathyroidism: comparison among mandible, cranium, radius and femur

    International Nuclear Information System (INIS)

    Boasquevisque, Edson; Silva, Jorge Wagner Esteves da; Bernardo, Vanessa V. de Albuquerque; Macedo, Sara Mello Santana de; Boasquevisque, Camila S.

    2008-01-01

    Full text: Objective: Evaluating bone involvement in secondary hyperparathyroidism (SHPT) by 99m Tc-MDP uptake in the mandible, cranium, radius and femur and with data correlation with PTHi serum (Intact Parathyroid Hormone). Materials and Methods: In a prospective study of 54 patients with SHPT due to chronic renal disease and 15 normal individuals (control group), all patients had elevated serum PTHi, concentration and positive 99m Tc-MDP bone scintigraphy. Bone uptake measurements were carried out drawing regions-of-interest (ROI) on the mandible, posterior cranium, distal radius and proximal femur. Additionally, soft tissue uptake was measured with one region-of-interest on the internal tight soft tissue (BG). The ROI-BG ratio used as the index of normalized bone uptake. Results: The uptake differences from SHPT and control groups mainly for mandible (p = 0,001) and cranium (p = 0,002) were statistically significant, even when the SHPT groups were separated according to serum PTHi levels. There was increased bone uptake with the increased levels of PTHi serum. All of the mandibles of the SHPT patients were abnormal with 33% having focal lesions. Conclusions: The bone uptake in SHPT group was abnormal in all areas evaluated, with high uptake of 99m Tc-MDP correlated to the increase of PTHi serum concentration. (author)

  17. Time domain optical coherence tomography investigation of bone matrix interface in rat femurs

    Science.gov (United States)

    Rusu, Laura-Cristina; Negruá¹±iu, Meda-Lavinia; Sinescu, Cosmin; Hoinoiu, Bogdan; Topala, Florin-Ionel; Duma, Virgil-Florin; Rominu, Mihai; Podoleanu, Adrian G.

    2013-08-01

    The materials used to fabricate scaffolds for tissue engineering are derived from synthetic polymers, mainly from the polyester family, or from natural materials (e.g., collagen and chitosan). The mechanical properties and the structural properties of these materials can be tailored by adjusting the molecular weight, the crystalline state, and the ratio of monomers in the copolymers. Quality control and adjustment of the scaffold manufacturing process are essential to achieve high standard scaffolds. Most scaffolds are made from highly crystalline polymers, which inevitably result in their opaque appearance. Their 3-D opaque structure prevents the observation of internal uneven surface structures of the scaffolds under normal optical instruments, such as the traditional light microscope. The inability to easily monitor the inner structure of scaffolds as well as the interface with the old bone poses a major challenge for tissue engineering: it impedes the precise control and adjustment of the parameters that affect the cell growth in response to various mimicked culture conditions. The aim of this paper is to investigate the interface between the femur rat bone and the new bone that is obtained using a method of tissue engineering that is based on different artificial matrixes inserted in previously artificially induced defects. For this study, 15 rats were used in conformity with ethical procedures. In all the femurs a round defect was induced by drilling with a 1 mm spherical Co-Cr surgical drill. The matrixes used were Bioss and 4bone. These materials were inserted into the induced defects. The femurs were investigated at 1 week, 1 month, 2 month and three month after the surgical procedures. The interfaces were examined using Time Domain (TD) Optical Coherence Tomography (OCT) combined with Confocal Microscopy (CM). The optical configuration uses two single mode directional couplers with a superluminiscent diode as the source centered at 1300 nm. The scanning

  18. A comparison of more and less aggressive bone debridement protocols for the treatment of open supracondylar femur fractures.

    Science.gov (United States)

    Ricci, William M; Collinge, Cory; Streubel, Philipp N; McAndrew, Christopher M; Gardner, Michael J

    2013-12-01

    This study compared results of aggressive and nonaggressive debridement protocols for the treatment of high-energy, open supracondylar femur fractures after the primary procedure, with respect to the requirement for secondary bone grafting procedures, and deep infection. Retrospective review. Level I and level II trauma centers. Twenty-nine consecutive patients with high-grade, open (Gustilo types II and III) supracondylar femur fractures (OTA/AO 33A and C) treated with debridement and locked plating. Surgeons at 2 different level I trauma centers had different debridement protocols for open supracondylar femur fractures. One center used a more aggressive (MA) protocol in their patients (n = 17) that included removal of all devitalized bone and placement of antibiotic cement spacers to fill large segmental defects. The other center used a less aggressive (LA) protocol in their patients (n = 12) that included debridement of grossly contaminated bone with retention of other bone fragments and no use of antibiotic cement spacers. All other aspects of the treatment protocol at the 2 centers were similar: definitive fixation with locked plates in all cases, IV antibiotics were used until definitive wound closure, and weight bearing was advanced upon clinical and radiographic evidence of fracture healing. Healing after the primary procedure, requirement for secondary bone grafting procedures, and the presence of deep infection. Demographics were similar between included patients at each center with regard to age, gender, rate of open fractures, open fracture classification, mechanism, and smoking (P > 0.05). Patients at the MA center were more often diabetic (P debridement (35% vs. 0%, P debridement (71% vs. 8%, P debridement (92% vs. 35%, P debrided after a high-energy, high-grade, open supracondylar femur fracture is a matter of surgeon judgment and falls along a continuous spectrum. Based on the results of the current study, the theoretic trade-off between infection

  19. Effects of 1.8 GHz radiofrequency field on microstructure and bone metabolism of femur in mice.

    Science.gov (United States)

    Guo, Ling; Zhang, Jun-Ping; Zhang, Ke-Ying; Wang, Huan-Bo; Wang, Huan; An, Guang-Zhou; Zhou, Yan; Meng, Guo-Lin; Ding, Gui-Rong

    2018-04-30

    To investigate the effects of 1.8 GHz radiofrequency (RF) field on bone microstructure and metabolism of femur in mice, C57BL/6 mice (male, age 4 weeks) were whole-body exposed or sham exposed to 1.8 GHz RF field. Specific absorption rates of whole body and bone were approximately 2.70 and 1.14 W/kg (6 h/day for 28 days). After exposure, microstructure and morphology of femur were observed by microcomputed tomography (micro-CT), Hematoxylin and Eosin (HE) and Masson staining. Subsequently, bone parameters were calculated directly from the reconstructed images, including structure model index, bone mineral density, trabecular bone volume/total volume, connectivity density, trabecular number, trabecular thickness, and trabecular separation. Biomarkers that reflect bone metabolism, such as serum total alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), and tartrate-resistant acid phosphatase 5b (TRACP-5b), were determined by biochemical assay methods. Micro-CT and histology results showed that there was no significant change in bone microstructure and the above parameters in RF group, compared with sham group. The activity of serum ALP and BALP increased 29.47% and 16.82%, respectively, in RF group, compared with sham group (P microstructure; however, it might promote metabolic function of osteoblasts in mice. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. 99mTc-MDP bone uptake in secondary hyperparathyroidism. Comparison of the mandible, cranium, radius, and femur

    International Nuclear Information System (INIS)

    Boasquevisque, Edson; Mandarim-de-Lacerda, Carlos A.; Silva, Jorge Wagner Esteves da; Albuquerque Bernardo, V.V. de; Macedo, S. Mello Santana de; Oliveira, Andre Ribeiro Nogueira de; Pires Kasai, Erika Tami; Boasquevisque, Camila S.

    2008-01-01

    The objective of this study to evaluate the bone involvement of the mandible, cranium, radius, and femur in secondary hyperparathyroidism (SHPT) using 99m Tc-methylene diphosphonate sodium (MDP) uptake correlated with the serum intact parathyroid hormone (PTHi). In a prospective study of 54 patients with SHPT due to chronic renal disease and 15 normal individuals (control group), all patients had elevated serum PTHi and 99m Tc-MDP bone scintigraphy. Bone uptake was measured in regions of interest (ROIs) in the mandible posterior cranium, distal radius, and proximal femur. In addition, soft tissue uptake was measured in one ROI in the soft tissues of the medial thigh (BG). The ROI-BG ratio was used as an index of the normalized bone uptake. The uptake differences in the SHPT and control groups were statistically significant for the mandible (P=0.001) and cranium (P=0.002). When the SHPT group was subclassified according to serum PTHi levels, the bone uptake increased with the serum PTHi level. All mandibles of the patients with SHPT were abnormal, and 33% had focal lesions. The bone uptake in the SHPT group was abnormal in all areas evaluated, and a high uptake of 99m Tc-MDP was correlated with an increased serum PTHi. (author)

  1. [The monorail system--bone segment transport over unreamed interlocking nails].

    Science.gov (United States)

    Oedekoven, G; Jansen, D; Raschke, M; Claudi, B F

    1996-11-01

    A treatment protocol is demonstrated, consisting of an osteotomy, either proximal or distal, of the bone defect with subsequent segmental transport via an anteromedially (tibia) or laterally (femur) mounted AO external fixation over an unreamed interlocking nail (monorail system). Twenty patients were treated by this method with indications as follows: 13 had a segmental bone defect of the tibia, 3 of the femur. Three patients showed post-traumatic and postinfectious leg-length discrepancies and one was treated for hypertrophic non-union of the femur. Defect distance varied between 5 and 18.5 cm and average time for transport was 19,42 days/ cm for the tibial shaft, 15,93 days/cm for the femur. Two patients developed deep infection, which required change of treatment, removing the monorail system and application of an Ilizarov apparatus. Despite complications using the monorail system, all patients healed and no amputations were required. The monorail system can be used as an alternative to the Ilizarov method under certain criteria of patient selection; these criteria are shown by an algorithm for segmental bone defects without infection, respecting the soft-tissue status with or without neurovascular compromise.

  2. [Individual difference of coronal bowing of femur and its influence on the lower limbs alignment after the total knee arthroplasty].

    Science.gov (United States)

    Wu, W; Guo, W S; Cheng, L M; Liu, Z H; Zhang, Q D; Zhang, N F

    2017-04-04

    Objective: To disclose the correlation between the femur bowing angle(FBA) and vulgas correction angle(VCA), anlysys its influence on the total knee arthroplasty and the lower limbs alignment. Methods: From Janurary 2013 to December 2015, 699 patients who had received total knee arthroplasty(TKA)were collected in the Department of Joint Surgery, China-Japan Friendship. The FBA, VCA, offset of the proximal femur, the lengh of the femur, the neck shaft angle of the femur of the eligible cases from the long leg X-ray were measured.All the data were analysed for the following steps: the FBA's mean value and characteristics of distributation of all the cases; the VCA's mean value and characteristics of distributation of all the cases; correlations between the VCA and the other parameters; divide all the cases into four groups based on the value of FBA : group A(FBA3°, 236)and then plan to cut the distal femur with 5° and 6°, respectively. The percent of ideal alignmental outcome's percentage of every group were compared. Results: The mean Value of the FBA is -7.1--12.1(1.4±2.4)°; the mean Value of the VCA is 2.5--11.9(6.5±1.3)°. The correlation index between VCA and FBA, the neck shaft angle of the femur , offset of the hip joint, the lengh of the femur is 0.72, -0.26, 0.45 and -0.08, perspectively. The theoretical ideal alignment percentage of the 5 degree-valgus-bone cut and 6 degree-valgus-bone cut in every group is group A: 89.7% and 66.5%; group B: 93.7% and 95.7%; group C: 71.9% and 94.6%; group D: 21.2% and 50.8%, respectively. Conclusion: The cases whose femur bowing angles are outliers are common in daily medical practice, so the vulgas correction angles need be ajusted for its significant correlation with FBA. 5 degree-valgus-bone cut or 6 degree-valgus-bone cut could not get the ideal alignment some times.

  3. Heterogeneous modelling and finite element analysis of the femur

    Directory of Open Access Journals (Sweden)

    Zhang Binkai

    2017-01-01

    Full Text Available As the largest and longest bone in the human body, the femur has important research value and application prospects. This paper introduces a fast reconstruction method with Mimics and ANSYS software to realize the heterogeneous modelling of the femur according to Hu distribution of the CT series, and simulates it in various situations by finite element analysis to study the mechanical characteristics of the femur. The femoral heterogeneous model shows the distribution of bone mineral density and material properties, which can be used to assess the diagnosis and treatment of bone diseases. The stress concentration position of the femur under different conditions can be calculated by the simulation, which can provide reference for the design and material selection of prosthesis.

  4. Curvature reduces bending strains in the quokka femur

    Directory of Open Access Journals (Sweden)

    Kyle McCabe

    2017-03-01

    Full Text Available This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading.

  5. Evaluation of femur of orchiectomized Guinea pigs by bone densitometry using dual-energy X-ray absorptiometry (DXA) and mechanical testing

    International Nuclear Information System (INIS)

    Estanislau, Cristiane de Abreu; Rahal, Sheila Canavese; Araujo, Fabio Andre Pinheiro de; Sergio Swain Muller; Louzada, Mario Jefferson Quirino; Estanislau, Caroline de Abreu

    2010-01-01

    The aim of this study was to evaluate the effects of castration on bones in the male guinea pigs and to observe whether mechanical testing correlates with dual-energy X-ray absorptiometry (DXA). Twelve male guinea pigs (Cavia porcellus), aged 21-27 days, and with average initial weight of 279 grams were used. The animals were equally allocated to two groups: GI - orchiectomized animals and GII - intact control animals. They underwent euthanasia at seven months following surgery. DXA measurement was performed at the mid third of the right femoral diaphysis in the cortical region and at the left femoral neck in order to verify its correlation with results of mechanical testing. Three-point bending test of right femur and axial compression test of left femur were performed. Bone mineral density of GI was significantly lower only at femoral neck. No differences were observed in the maximum load values between GI and GII for both bending and axial compression tests. The bending test revealed lower bone stiffness in GI compared to GII, but in the axial compression test no differences between groups were observed. Only left femur showed positive correlation coefficient between maximum load and bone mineral density according to Pearson's correlation coefficient. The results suggest that hormonal deprivation in guinea pigs induces reduction of bone mineral density, especially in the femoral neck area and reduction of bone stiffness in the mid-femoral diaphysis. (author)

  6. Evaluation of femur of orchiectomized Guinea pigs by bone densitometry using dual-energy X-ray absorptiometry (DXA) and mechanical testing

    Energy Technology Data Exchange (ETDEWEB)

    Estanislau, Cristiane de Abreu; Rahal, Sheila Canavese; Araujo, Fabio Andre Pinheiro de, E-mail: crisestanislau@hotmail.co, E-mail: sheilacr@fmvz.unesp.b, E-mail: fabioandre@fmvz.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Anestesiologia Veterinaria; Sergio Swain Muller, E-mail: diretoria@fmb.unesp.b [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil). Faculdade de Medicina, Veterinaria e Zootecnia. Dept. de Cirurgia e Ortopedia; Louzada, Mario Jefferson Quirino, E-mail: louzada@fmva.unesp.b [Universidade Estadual Paulista (UNESP), Aracatuba, SP (Brazil). Faculdade de Medicina Veterinaria; Estanislau, Caroline de Abreu, E-mail: caestanis@hotmail.co

    2010-03-15

    The aim of this study was to evaluate the effects of castration on bones in the male guinea pigs and to observe whether mechanical testing correlates with dual-energy X-ray absorptiometry (DXA). Twelve male guinea pigs (Cavia porcellus), aged 21-27 days, and with average initial weight of 279 grams were used. The animals were equally allocated to two groups: GI - orchiectomized animals and GII - intact control animals. They underwent euthanasia at seven months following surgery. DXA measurement was performed at the mid third of the right femoral diaphysis in the cortical region and at the left femoral neck in order to verify its correlation with results of mechanical testing. Three-point bending test of right femur and axial compression test of left femur were performed. Bone mineral density of GI was significantly lower only at femoral neck. No differences were observed in the maximum load values between GI and GII for both bending and axial compression tests. The bending test revealed lower bone stiffness in GI compared to GII, but in the axial compression test no differences between groups were observed. Only left femur showed positive correlation coefficient between maximum load and bone mineral density according to Pearson's correlation coefficient. The results suggest that hormonal deprivation in guinea pigs induces reduction of bone mineral density, especially in the femoral neck area and reduction of bone stiffness in the mid-femoral diaphysis. (author)

  7. Longitudinal shapes of the tibia and femur are unrelated and variable.

    Science.gov (United States)

    Howell, Stephen M; Kuznik, Kyle; Hull, Maury L; Siston, Robert A

    2010-04-01

    In general practice, short films of the knee are used to assess component position and define the entry point for intramedullary femoral alignment in TKAs; however, whether it is justified to use the short film commonly used in research settings and everyday practice as a substitute for the whole leg view is controversial and needs clarification. In 138 long leg CT scanograms we measured the angle formed by the anatomic axis of the proximal fourth of the tibia and the mechanical axis of the tibia, the angle formed by the anatomic axis of the distal fourth of the femur and the mechanical axis of the femur, the "bow" of the tibia (as reflected by the offset of the anatomic axis from the center of the talus), and the "bow" of the femur (as reflected by the offset of the anatomic axis from the center of the femoral head). Because the angle formed by these axes and the bow of the tibia and femur have wide variability in females and males, a short film of the knee should not be used in place of the whole leg view when accurate assessment of component position and limb alignment is essential. A previous study of normal limbs found that only 2% of subjects have a neutral hip-knee-ankle axis, which can be explained by the wide variability of the bow in the tibia and femur and the lack of correlation between the bow of the tibia and femur in a given limb as shown in the current study.

  8. Metachronous bilateral subtrochanteric fracture of femur in an osteopetrotic bone: A case report with technical note.

    Science.gov (United States)

    Kumar, Dharmendra; Jain, Vijay Kumar; Lal, Hitesh; Arya, Rajinder Kumar; Sinha, Skand

    2012-12-01

    Osteopetrosis is a rare inherited skeletal disorder characterized by increased density. The increased fragility of such dense bone results in a greater incidence of fractures, especially around hip and proximal femur. The surgical treatment of such fractures is difficult due to hard but brittle structure of bone. Herein we report a case of bilateral subtrochanteric fracture in an osteopetrotic patient. It was fixed using a dynamic hip screw with plate.

  9. Long-bone fractures in persons with spinal cord injury.

    Science.gov (United States)

    Frotzler, A; Cheikh-Sarraf, B; Pourtehrani, M; Krebs, J; Lippuner, K

    2015-09-01

    Retrospective data analysis. To document fracture characteristics, management and related complications in individuals with traumatic spinal cord injury (SCI). Rehabilitation centre for SCI individuals. Patients' records were reviewed. Patients with traumatic SCI and extremity fractures that had occurred after SCI were included. Patient characteristics, fractured bone, fracture localisation, severity and management (operative/conservative), and fracture-related complications were extracted. A total of 156 long-bone fractures in 107 SCI patients (34 women and 73 men) were identified. The majority of patients were paraplegics (77.6%) and classified as American Spinal Injury Association Impairment Scale A (86.0%). Only the lower extremities were affected, whereby the femur (60.9% of all fractures) was fractured more frequently than the lower leg (39.1%). A total of 70 patients (65.4%) had one fracture, whereas 37 patients (34.6%) had two or more fractures. Simple or extraarticular fractures were most common (75.0%). Overall, 130 (83.3%) fractures were managed operatively. Approximately half of the femur fractures (48.2%) were treated with locking compression plates. In the lower leg, fractures were mainly managed with external fixation (48.8%). Conservative fracture management was applied in 16.7% of the cases and consisted of braces or a well-padded soft cast. Fracture-associated complications were present in 13.5% of the cases but did not differ significantly between operative (13.1%) and conservative (15.4%) fracture management. SCI was associated with simple or extraarticular fractures of the distal femur and the lower leg. Fractures were mainly managed operatively with a low complication rate.

  10. Concept and development of an orthotropic FE model of the proximal femur.

    Science.gov (United States)

    Wirtz, Dieter Christian; Pandorf, Thomas; Portheine, Frank; Radermacher, Klaus; Schiffers, Norbert; Prescher, Andreas; Weichert, Dieter; Niethard, Fritz Uwe

    2003-02-01

    In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group. In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures

  11. Bone mineral density of the proximal femur after hip resurfacing arthroplasty: 1-year follow-up study

    Directory of Open Access Journals (Sweden)

    Anttila Esa

    2011-05-01

    Full Text Available Abstract Background Hip resurfacing arthroplasty (HRA is considered a bone-preserving procedure and may eliminate proximal femoral stress shielding and osteolysis. However, in addition to implant-related stress-shielding factors, various patient-related factors may also have an effect on bone mineral density (BMD of the proximal femur in patients with HRA. Thus, we studied the effects of stem-neck angle, demographic variables, and physical functioning on the BMD of the proximal femur in a one-year follow-up. Methods Thirty three patients (9 females and 24 males with a mean (SD age of 55 (9 years were included in the study. BMD was measured two days and 3, 6, and 12 months postoperatively and 10 regions of interest (ROI were used. Stem-neck angle was analyzed from anteroposterior radiographs. Results Three months postoperatively, BMD decreased in six out of 10 regions of interest (ROI on the side operated on and in one ROI on the control side (p Conclusions After an early drop, the BMD of the upper femur was restored and even exceeded the preoperative level at one year follow-up. From a clinical standpoint, the changes in BMD in these HRA patients could not be explained by stem-neck angle or patient related factors.

  12. Automatic allograft bone selection through band registration and its application to distal femur.

    Science.gov (United States)

    Zhang, Yu; Qiu, Lei; Li, Fengzan; Zhang, Qing; Zhang, Li; Niu, Xiaohui

    2017-09-01

    Clinical reports suggest that large bone defects could be effectively restored by allograft bone transplantation, where allograft bone selection acts an important role. Besides, there is a huge demand for developing the automatic allograft bone selection methods, as the automatic methods could greatly improve the management efficiency of the large bone banks. Although several automatic methods have been presented to select the most suitable allograft bone from the massive allograft bone bank, these methods still suffer from inaccuracy. In this paper, we propose an effective allograft bone selection method without using the contralateral bones. Firstly, the allograft bone is globally aligned to the recipient bone by surface registration. Then, the global alignment is further refined through band registration. The band, defined as the recipient points within the lifted and lowered cutting planes, could involve more local structure of the defected segment. Therefore, our method could achieve robust alignment and high registration accuracy of the allograft and recipient. Moreover, the existing contour method and surface method could be unified into one framework under our method by adjusting the lift and lower distances of the cutting planes. Finally, our method has been validated on the database of distal femurs. The experimental results indicate that our method outperforms the surface method and contour method.

  13. Comparative limb bone loading in the humerus and femur of the tiger salamander: testing the 'mixed-chain' hypothesis for skeletal safety factors.

    Science.gov (United States)

    Kawano, Sandy M; Economy, D Ross; Kennedy, Marian S; Dean, Delphine; Blob, Richard W

    2016-02-01

    Locomotion imposes some of the highest loads upon the skeleton, and diverse bone designs have evolved to withstand these demands. Excessive loads can fatally injure organisms; however, bones have a margin of extra protection, called a 'safety factor' (SF), to accommodate loads that are higher than normal. The extent to which SFs might vary amongst an animal's limb bones is unclear. If the limbs are likened to a chain composed of bones as 'links', then similar SFs might be expected for all limb bones because failure of the system would be determined by the weakest link, and extra protection in other links could waste energetic resources. However, Alexander proposed that a 'mixed-chain' of SFs might be found amongst bones if: (1) their energetic costs differ, (2) some elements face variable demands, or (3) SFs are generally high. To test whether such conditions contribute to diversity in limb bone SFs, we compared the biomechanical properties and locomotor loading of the humerus and femur in the tiger salamander (Ambystoma tigrinum). Despite high SFs in salamanders and similar sizes of the humerus and femur that would suggest similar energetic costs, the humerus had lower bone stresses, higher mechanical hardness and larger SFs. SFs were greatest in the anatomical regions where yield stresses were highest in the humerus and lowest in the femur. Such intraspecific variation between and within bones may relate to their different biomechanical functions, providing insight into the emergence of novel locomotor capabilities during the invasion of land by tetrapods. © 2016. Published by The Company of Biologists Ltd.

  14. Effects of intravenously injected lanthanum chloride on the femur of rats

    International Nuclear Information System (INIS)

    Miyagawa, Makoto; Daimon, Tateo

    2010-01-01

    Lanthanum (La) is widely used in industry and medicine. Because of lanthanum's physicochemical resemblance to calcium, the possible effects of it on bone have to be considered. The aim of this study was to examine the effects of La on bone toxicity. Rats were intravenously administrated with lanthanum chloride at 5 mg La/kg per week for five weeks. Histomorphometric analysis of femurs were performed using micro-CT scan. Compared with normal controls, the total bone area of the femur did not show any change in La-administrated rats, whereas the trabecular area slightly decreased. The trabecular bone mineral density in the experimented rats was higher than that in the normal controls, although the mineral density of the cortical bone and cancerou one was unchanged after the administration of La. La did not alter mechanical barometers of the femur such as mean cross-sectional moment of inertia, minimum cross-sectional moment of inertia and polar moment of inertia. Additionally, light microscopic analysis of the femurs revealed that histological features of osteoid, calcification front and bone matrix were normal after the administration of La. La was detected in the macrophages in the bone marrow, but not in the bone matrix by histological stain for La and X-ray fluorescence microanalysis. Thus, these micro-CT imaging and microscopy of the femurs did not reveal toxic changes due to La. (author)

  15. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    International Nuclear Information System (INIS)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.; Schubert, R.; Haenni, M.; Hengg, C.; Majumdar, S.; Link, T. M.

    2009-01-01

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between various different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R 2 =0.61 (MF

  16. A novel framework for the temporal analysis of bone mineral density in metastatic lesions using CT images of the femur

    Science.gov (United States)

    Knoop, Tom H.; Derikx, Loes C.; Verdonschot, Nico; Slump, Cornelis H.

    2015-03-01

    In the progressive stages of cancer, metastatic lesions in often develop in the femur. The accompanying pain and risk of fracture dramatically affect the quality of life of the patient. Radiotherapy is often administered as palliative treatment to relieve pain and restore the bone around the lesion. It is thought to affect the bone mineralization of the treated region, but the quantitative relation between radiation dose and femur remineralization remains unclear. A new framework for the longitudinal analysis of CT-scans of patients receiving radiotherapy is presented to investigate this relationship. The implemented framework is capable of automatic calibration of Hounsfield Units to calcium equivalent values and the estimation of a prediction interval per scan. Other features of the framework are temporal registration of femurs using elastix, transformation of arbitrary Regions Of Interests (ROI), and extraction of metrics for analysis. Build in Matlab, the modular approach aids easy adaptation to the pertinent questions in the explorative phase of the research. For validation purposes, an in-vitro model consisting of a human cadaver femur with a milled hole in the intertrochanteric region was used, representing a femur with a metastatic lesion. The hole was incrementally stacked with plates of PMMA bone cement with variable radiopaqueness. Using a Kolmogorov-Smirnov (KS) test, changes in density distribution due to an increase of the calcium concentration could be discriminated. In a 21 cm3 ROI, changes in 8% of the volume from 888 ± 57mg • ml-1 to 1000 ± 80mg • ml-1 could be statistically proven using the proposed framework. In conclusion, the newly developed framework proved to be a useful and flexible tool for the analysis of longitudinal CT data.

  17. Functional and oncologic outcomes after excision of the total femur in primary bone tumors: Results with a low cost total femur prosthesis

    Directory of Open Access Journals (Sweden)

    Ajay Puri

    2012-01-01

    Full Text Available Background: The extent of tumor may necessitate resection of the complete femur rarely to achieve adequate oncologic clearance in bone sarcomas. We present our experience with reconstruction in such cases using an indigenously manufactured, low-cost, total femoral prosthesis (TFP. We assessed the complications of the procedure, the oncologic and functional outcomes, and implant survival. Materials and Methods: Eight patients (four males and four females with a mean age of 32 years, operated between December 2003 and June 2009, had a TFP implanted. The diagnosis included osteogenic sarcoma (5, Ewing′s sarcoma (1, and chondrosarcoma (2. Mean followup was 33 months (9-72 months for all and 40 months (24-72 months in survivors. They were evaluated by Musculoskeletal Tumor Society score, implant survival as well as patient survival. Results: There was one local recurrence and five of seven patients are currently alive at the time of last followup. The Musculoskeletal Tumor Society score for patients ranged from 21 to 25 with a mean of 24 (80%. The implant survival was 88% at 5 years with only one TFP needing removal because of infection. Conclusions: A TFP in appropriately indicated patients with malignant bone tumors is oncologically safe. A locally manufactured, cost-effective implant provided consistent and predictable results after excision of the total femur with good functional outcomes.

  18. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    International Nuclear Information System (INIS)

    Fränzle, Andrea; Giske, Kristina; Bretschi, Maren; Bäuerle, Tobias; Hillengass, Jens; Bendl, Rolf

    2013-01-01

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approach is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean

  19. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.; Schubert, R.; Haenni, M.; Hengg, C.; Majumdar, S.; Link, T. M. [Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Avenue, San Francisco, California 94143 (United States); University of Health Sciences, Medical Informatics and Technology, 6060 Hall (Austria); AO Development Institute, 7270 Davos Platz (Switzerland); Medical University Innsbruck, 6020 Innsbruck (Austria); Department of Radiology and Biomedical Imaging, University of California, 400 Parnassus Avenue, San Francisco, California 94143 (United States)

    2009-11-15

    Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between various different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2

  20. Multiobjective topology optimization of trabecular Bone Structure in the spine and the femur: Implications for biomimcry

    Science.gov (United States)

    Elbanna, Ahmed; Peetz, Darin

    Bone is classically considered to be a self-optimizing structure in accordance with Wolff's law. However, while the structure's ability to adapt to changing stress patterns has been well documented, whether it is fully optimal for compliance is less certain (Sigmund, 2002). Given the complexity of many biological systems, it is expected that this structure serves several purposes. We present a multi-objective topology optimization formulation for trabecular bone in the human body at two locations: the vertebrae and the femur. We account for the effect of different conflicting objectives such as maximization of stiffness, maximization of surface area, and minimization of buckling susceptibility. Our formulation enables us to determine the relative role of each of these objective in optimizing the structure. Moreover, it provides an opportunity to explore what structural features have to evolve to meet a certain objective requirements that may have been absent otherwise. For example, inclusion of stability considerations introduce numerous horizontal and diagonal members in the topology in the case of human vertebrae under vertical loading. However, the stability is found to play a lesser role in the case of the femur bone optimization. Our formulation enables investigation of bone adaptation at different locations of the body as well as under different loading and boundary conditions (e.g. healthy and diseased discs for the case of the spine). We discuss the implications of our findings on developing design rules for bio-inspired and bio-mimetic architectured materials. National Science Foundation: CMMI.

  1. Age-related proximal femur bone mineral loss in South Indian women: a dual energy X-ray absorptiometry study.

    Science.gov (United States)

    Anburajan, M; Rethinasabapathi, C; Korath, M P; Ponnappa, B G; Kumar, K S; Panicker, T M; Govindan, A; Jagadeesan, G N

    2001-04-01

    i) To collect normative data for proximal femur bone mineral density (BMD) in South Indian women using dual energy X-ray absorptiometry (DXA) and ii) to study the rate and significance of hip bone mineral loss with advancing age in this population. Forty five women, whose age ranged from 16 to 84 years were studied. This sample was drawn randomly from general medical practice at KJ Hospital, Chennai, South India during November, 1997 to April, 1998. Of these 45 cases, 21 were pre-menopausal (mean +/- SD age = 30.9+/-8.8 years) and 24 post-menopausal (mean +/- SD age = 62.1+/-11.0 years). Subjects with secondary bone diseases were excluded. Also excluded were those taking any drugs known to affect calcium metabolism e.g., thiazide diuretics, oestrogen and calcium. Subjects were divided into seven decadal age groups from 15-24 years to 75-84 years. BMD of the right proximal femur was evaluated using a QDR-1000 DXA bone densitometer (Hologic Inc., Waltham, Massachusetts, USA). Data analysis was done with SPSS/PC statistical software package. Linear regression analysis showed significant (p India women have been evaluated and it may prove useful for diagnosing osteoporosis in the women of South India.

  2. The pattern of trabecular bone microarchitecture in the distal femur of typically developing children and its effect on processing of magnetic resonance images.

    Science.gov (United States)

    Modlesky, Christopher M; Whitney, Daniel G; Carter, Patrick T; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman

    2014-03-01

    Magnetic resonance imaging (MRI) is used to assess trabecular bone microarchitecture in humans; however, image processing can be labor intensive and time consuming. One aim of this study was to determine the pattern of trabecular bone microarchitecture in the distal femur of typically developing children. A second aim was to determine the proportion and location of magnetic resonance images that need to be processed to yield representative estimates of trabecular bone microarchitecture. Twenty-six high resolution magnetic resonance images were collected immediately above the growth plate in the distal femur of 6-12year-old typically developing children (n=40). Measures of trabecular bone microarchitecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the lateral aspect of the distal femur were determined using the twenty most central images (20IM). The average values for appBV/TV, appTb.N, appTb.Th and appTb.Sp from 20IM were compared to the average values from 10 images (10IM), 5 images (5IM) and 3 images (3IM) equally dispersed throughout the total image set and one image (1IM) from the center of the total image set using linear regression analysis. The resulting mathematical models were cross-validated using the leave-one-out technique. Distance from the growth plate was strongly and inversely related to appBV/TV (r(2)=0.68, p0.05). However, there was a progressive decrease in the strength of the relationships as a smaller proportion of images were used to predict estimates from 20IM (r(2)=0.98 to 0.99 using 10IM, 0.94 to 0.96 using 5IM, 0.87 to 0.90 using 3IM and 0.66 to 0.72 using 1IM; all pimage sets agreed extremely well with estimates from 20IM. The findings indicate that partial magnetic resonance image sets can be used to provide reasonable estimates of trabecular bone microarchitecture status in the distal femur of typically

  3. Lower trabecular volumetric BMD at metaphyseal regions of weight-bearing bones is associated with prior fracture in young girls.

    Science.gov (United States)

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-02-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1-1.9) and 1.3 (1.0-1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. Copyright © 2011 American Society for Bone and Mineral Research.

  4. Bone density of the radius, spine, and proximal femur in osteoporosis

    International Nuclear Information System (INIS)

    Mazess, R.B.; Barden, H.; Ettinger, M.; Schultz, E.

    1988-01-01

    Bone mineral density (BMD) was measured in 140 normal young women (aged 20 to 39 years) and in 423 consecutive women over age 40 referred for evaluation of osteoporosis. Lumbar spine and proximal femur BMD was measured using dual-photon absorptiometry ( 153 Gd), whereas the radius shaft measurement used single-photon absorptiometry ( 125 I). There were 324 older women with no fractures, of which 278 aged 60 to 80 years served as age-matched controls. There were 99 women with fractures including 32 with vertebral and 22 with hip fractures. Subsequently, another 25 women with hip fractures had BMD measured in another laboratory; their mean BMD was within 2% of that of the original series. The mean age in both the nonfracture and fracture groups was 70 +/- 5 years. The BMD in the age-matched controls was 20% to 25% below that of normal young women for the radius, spine, and femur, but the Ward's triangle region of the femur showed even greater loss (35%). The mean BMD at all sites in the crush fracture cases was about 10% to 15% below that of age-matched controls. Spinal abnormality was best discriminated by spine and femoral measurements (Z score about 0.9). In women with hip fractures, the BMD was 10% below that of age-matched controls for the radius and the spine, and the BMD for the femoral sites was about 25% to 30% below that of age-matched control (Z score about 1.6). Femoral densities gave the best discrimination of hip fracture cases and even reflected spinal osteopenia. In contrast, neither the spine nor the radius reflected the full extent of femoral osteopenia in hip fracture

  5. Acute postoperative osteomyelitis in femur fracture: contribution of bone scintilography (case report)

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Natalie Ferreira; Rezende, Cleuza Maria de Faria; Sanchez-Ucros, Natalia; Laguardia, Priscilla [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Veterinaria; Diniz, Simone Odilia Fernandes; Cardoso, Valbert Nascimento [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia; Rodrigues, Carlos Jorge Simal [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina; Santos, Raquel Gouvea dos [Centro de Desenvolcimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Radiobiologia

    2009-07-01

    The treatment of bone fractures is aimed at consolidating and returns of function as soon as possible and can be performed by different methods. Treatment with the plate in fractures of the femur in bridge aims not to address the location of fracture and stabilize it, maintaining the anatomical axis by the fixation of proximal and distal segments. Postoperative follow-up of the fracture is necessary to evaluate the irrigation of the bone structure and the effect of the method. The scintigraphy is a method capable of assessing the degree of bone remodeling and the presence or absence of local bone homeostasis. The objective of this report is to present the case of a rabbit, male, which was subjected to osteotomy and fixation of the femoral diaphysis by means of the plate in the bridge. After 10 days the animal was subjected to scintigraphic and radiographic evaluations. The animal came to death and an autopsy was performed on the same when it was observed macroscopy consistent with acute osteomyelitis due to contamination postoperative time. Radiographic evaluation in acute osteomyelitis is unclear. The methods assist in the scintigraphic diagnosis of osteomyelitis by allowing the detection of functional changes in this infectious process. The bone scintigraphy with diphosphonates labeled with technetium-99m shows increased bone turnover in the infected area and its high sensitivity, even in an early stage makes it the method of choice in the diagnosis of acute osteomyelitis in patients without prior bone disease and bone radiologically normal. (author)

  6. Acute postoperative osteomyelitis in femur fracture: contribution of bone scintilography (case report)

    International Nuclear Information System (INIS)

    Borges, Natalie Ferreira; Rezende, Cleuza Maria de Faria; Sanchez-Ucros, Natalia; Laguardia, Priscilla; Diniz, Simone Odilia Fernandes; Cardoso, Valbert Nascimento; Rodrigues, Carlos Jorge Simal; Santos, Raquel Gouvea dos

    2009-01-01

    The treatment of bone fractures is aimed at consolidating and returns of function as soon as possible and can be performed by different methods. Treatment with the plate in fractures of the femur in bridge aims not to address the location of fracture and stabilize it, maintaining the anatomical axis by the fixation of proximal and distal segments. Postoperative follow-up of the fracture is necessary to evaluate the irrigation of the bone structure and the effect of the method. The scintigraphy is a method capable of assessing the degree of bone remodeling and the presence or absence of local bone homeostasis. The objective of this report is to present the case of a rabbit, male, which was subjected to osteotomy and fixation of the femoral diaphysis by means of the plate in the bridge. After 10 days the animal was subjected to scintigraphic and radiographic evaluations. The animal came to death and an autopsy was performed on the same when it was observed macroscopy consistent with acute osteomyelitis due to contamination postoperative time. Radiographic evaluation in acute osteomyelitis is unclear. The methods assist in the scintigraphic diagnosis of osteomyelitis by allowing the detection of functional changes in this infectious process. The bone scintigraphy with diphosphonates labeled with technetium-99m shows increased bone turnover in the infected area and its high sensitivity, even in an early stage makes it the method of choice in the diagnosis of acute osteomyelitis in patients without prior bone disease and bone radiologically normal. (author)

  7. Monocoque structure for the SKITTER three-legged walker

    Science.gov (United States)

    Bansek, Robert N.; Booth, Andrew J.; Daneman, Steven A.; Dresser, James A.; Haney, Todd G.; Johnson, Gregory R.; Lindzen, Eric C.; Montgomery, Robert C.; Warren, Andrew L.

    1988-01-01

    The SKITTER 2 design is a monocoque version of the proposed lunar three-legged walker. By the definition of monocoque, the body and legs are a shell with no internal ribbing or supports added for absorbing stresses. The purpose of the monocoque is to encase the elements used for power transmission, power supply, and control of the motion. The material for the structure is a vinyl ester resin, Derakane 8084. This material is easily formable and locally obtainable. The body consists of a hexagonally shaped cylinder with truncated hexagonal pyramids on the top and botton. The legs are eight inch diameter cylinders. The legs are comprised of a tibia section and a femur section. The SKITTER 2 is powered by six actuators which provide linear forces that are transformed into rotary torques by a series of chains and sprockets. The joints connect the femur to the body and the tibia to the femur. Surrounding the joints are flexible rubber hoses that fully encase the chains and sprockets. The SKITTER 2 is capable of walking upside down, righting itself after being overturned, and has the ability to perform in many environments. Applications for this walker include lunar transport or drilling, undersea exploration, and operation in severe surroundings such as arctic temperatures or high radiation.

  8. Treatment of Unicameral Bone Cysts of the Proximal Femur With Internal Fixation Lessens the Risk of Additional Surgery.

    Science.gov (United States)

    Wilke, Benjamin; Houdek, Matthew; Rao, Rameshwar R; Caird, Michelle S; Larson, A Noelle; Milbrandt, Todd

    2017-09-01

    Little data exist to guide the treatment of unicameral bone cysts in the proximal femur. Methods of treatment include corticosteroid injections, curettage and bone grafting, and internal fixation. The authors completed a multi-institutional, retrospective review to evaluate their experience with proximal femoral unicameral bone cysts. They posed the following questions: (1) Does internal fixation reduce the risk of further procedures for the treatment of a unicameral bone cyst? (2) Is radiographic healing faster with internal fixation? Following institutional review board approval, the authors conducted a retrospective review of 36 patients treated for a unicameral bone cyst of the proximal femur at their institutions between 1974 and 2014. Medical records and radiographs were reviewed to identify patient demographics and treatment outcomes. Tumor locations included femoral neck (n=13), intertrochanteric (n=16), and subtrochanteric (n=7). Initial treatment included steroid injection (n=2), curettage and bone grafting (n=9), and internal fixation with curettage and bone grafting (n=25). Mean time was 9 months to radiographic healing and 15 months to return to full activity. The number of patients requiring additional surgeries was increased among those who did not undergo internal fixation. There was no difference in time to radiographic healing. However, time to return to normal activities was reduced if patients had received internal fixation. A significant reduction in additional procedures was observed when patients had been treated with internal fixation. Although this did not influence time to radiographic healing, patients did return to normal activities sooner. Internal fixation should be considered in the treatment of proximal femoral unicameral bone cysts. [Orthopedics. 2017; 40(5):e862-e867.]. Copyright 2017, SLACK Incorporated.

  9. Test Bench Development for Femur Stability Assessment

    Directory of Open Access Journals (Sweden)

    Samuel SANCHEZ-CABALLERO

    2015-01-01

    Full Text Available This paper shows the design and development of a test bench for humanfemurs. The main uses of this test bench will run from artificial femurs comparisonwith real femurs, to join stability assessment after bone a fracture repair. Amongthis uses is specially designed for condylar fractures testing. The test bench isdeveloped from a self-made existing tensile/compression testing machine. Thedesign procedure is supported by a literature review about the bone mechanicalbehavior and composition generally and the knee joint performance and repairparticularly. On the basis of this review, the machine was designed to simulate theadduction and abduction movements of the joint. The magnitudes to be measuredare: the compression force, the bone displacement (vertical and the knee jointrotation

  10. Bone mineral density changes of lumbar spine and femur in osteoporotic patient treated with bisphosphonates and beta-hydroxy-beta-methylbutyrate (HMB): Case report.

    Science.gov (United States)

    Tatara, Marcin R; Krupski, Witold; Majer-Dziedzic, Barbara

    2017-10-01

    Currently available approaches to osteoporosis treatment include application of antiresorptive and anabolic agents influencing bone tissue metabolism. The aim of the study was to present bone mineral density (BMD) changes of lumbar spine in osteoporotic patient treated with bisphosphonates such as ibandronic acid and pamidronic acid, and beta-hydroxy-beta-methylbutyrate (HMB). BMD and volumetric BMD (vBMD) of lumbar spine were measured during the 6 year observation period with the use of dual-energy X-ray absorptiometry (DEXA) and quantitative computed tomography (QCT). The described case report of osteoporotic patient with family history of severe osteoporosis has shown site-dependent response of bone tissue to antiosteoporotic treatment with bisphosphonates. Twenty-five-month treatment with ibandronic acid improved proximal femur BMD with relatively poor effects on lumbar spine BMD. Over 15-month therapy with pamidronic acid was effective to improve lumbar spine BMD, while in the proximal femur the treatment was not effective. A total of 61-week long oral administration with calcium salt of HMB improved vBMD of lumbar spine in the trabecular and cortical bone compartments when monitored by QCT. Positive effects of nearly 2.5 year HMB treatment on BMD of lumbar spine and femur in the patient were also confirmed using DEXA method. The results obtained indicate that HMB may be applied for the effective treatment of osteoporosis in humans. Further studies on wider human population are recommended to evaluate mechanisms influencing bone tissue metabolism by HMB.

  11. Antibiotic impregnated total femur spacers: a technical tip

    Directory of Open Access Journals (Sweden)

    Colin D. Canham, MD

    2018-03-01

    Full Text Available Simultaneous prosthetic joint infection of ipsilateral hip and knee arthroplasties is often accompanied by significant bone loss and presents a challenging reconstructive problem. Two-stage reconstruction is favored and requires the placement of a total femur spacer, which is not a commercially available device. We describe a surgical technique, reporting on 2 cases in which a customized total femur antibiotic impregnated spacer was created by combining an articulating knee spacer and an articulating hip spacer with a reinforced cement dowel construct connecting the 2 spacers. Custom total femoral spacers are useful in the management of infected femoral megaprostheses and cases with ipsilateral injected hip and knee arthroplasties and severe femoral bone loss. Keywords: total femur spacer, revision arthroplasty, total hip arthroplasty, total knee arthroplasty, prosthetic joint infection

  12. Prenatal nutritional manipulation by in ovo enrichment influences bone structure, composition, and mechanical properties.

    Science.gov (United States)

    Yair, R; Shahar, R; Uni, Z

    2013-06-01

    The objective of this study was to examine the effect of embryonic nutritional enrichment on the development and properties of broiler leg bones (tibia and femur) from the prenatal period until maturity. To accomplish the objective, 300 eggs were divided into 2 groups: a noninjected group (control) and a group injected in ovo with a solution containing minerals, vitamins, and carbohydrates (enriched). Tibia and femur from both legs were harvested from chicks on embryonic days 19 (E19) and 21 (E21) and d 3, 7, 14, 28, and 54 posthatch (n = 8). The bones were mechanically tested (stiffness, maximal load, and work to fracture) and scanned in a micro-computed tomography (μCT) scanner to examine the structural properties of the cortical [cortical area, medullary area, cortical thickness, and maximal moment of inertia (Imax)] and trabecular (bone volume percent, trabecular thickness, and trabecular number) areas. To examine bone mineralization, bone mineral density (BMD) of the cortical area was obtained from the μCT scans, and bones were analyzed for the ash and mineral content. The results showed improved mechanical properties of the enriched group between E19 and d 3 and on d 14 (P bones), greater femoral cortical area on d 3, and greater Imax of both bones on d 14 (P bone trabecular architecture were that the enriched group had greater bone volume percent and trabecular thickness in the tibia on d 7 and the femur on d 28 (P mineralization between E19 and d 54 showed improved mineralization in the enriched group on E19 whereas on d 3 and 7, the control group showed a mineralization advantage, and on d 28 and 54, the enriched group showed again greater mineralization (P bone properties pre- and postnatally and showed that avian embryos are a good model for studying the effect of embryonic nutrition on natal and postnatal development. Most importantly, the enrichment led to improved mechanical properties until d 14 (roughly third of the lifespan of the bird), a big

  13. EFFECT OF CHICKEN BONE-MARROW ADDITION TO BREAST AND LEG MEAT SUBJECTED TO DIFFERENT GRINDING PROCESSES

    OpenAIRE

    POLLONIO, MAR; ANTUNES, AJ

    1993-01-01

    Mechanical deboning makes chicken meat highly suscetible to lipid oxidation. Tissue disruption and the incorporation of unknown amounts of bone marrow are among the main factors involved. This research was undertaken to evaluate the effect of chicken bone marrow addition to breast and leg meat, ground in a regular meat grinder and passed through a mechanical deboner on lipid stability during frozen storage at -18-degrees-C. Breast and leg meat were manually deboned: a portion was processed th...

  14. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Overgaard, Søren

    2011-01-01

    of 3 months without treatment. Group 3 was left untreated and served as controls. All sheep received a restricted diet with low calcium and phosphorus. At sacrifice, cortical bone samples from the femur midshaft of each sheep were harvested, micro-CT scanned and subjected to three-point bending...... and tensile strength testing. Bone collagen and mineral were determined. Cortical porosity was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Apparent density was significantly decreased in the glucocorticoid-2 compared with the glucocorticoid-1 group....... Collagen content was significantly increased in the glucocorticoid-2 compared with the glucocorticoid-1 and control groups. Bone mineral content did not differ between the groups. Neither the three-point bending mechanical properties nor the tensile mechanical properties differed significantly between...

  15. The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl C; Overgaard, Søren

    2010-01-01

    The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone – Validation of large animal model for tissue engineering and biomaterial research Ming Ding,1* Carl Christian Danielsen,2 Søren Overgaard1 1Orthopaedic Research Laboratory......, Department of Orthopaedics and Traumatology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark 2Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Aarhus C, Denmark Osteopenia in sheep has been successfully induced...... by glucocorticoid treatment and the changes in properties of cancellous bone were comparable with those observed in humans after long-term glucocorticoid treatment. However, the influence on cortical bone has not been thoroughly elucidated. This study aimed to investigate the influence of glucocorticoid on sheep...

  16. Fast Facts on Osteogenesis Imperfecta

    Science.gov (United States)

    ... bone) and short femur (upper leg bone) Coxa vera is common (the acutely angled femur head affects ... Fax: 301-947-0456 Internet: www.oif.org E-mail: bonelink@oif.org The National Institutes of ...

  17. The study of bone mineral density and structure in proximal femur by quantitative CT in elderly Chinese women

    International Nuclear Information System (INIS)

    Cheng Xiaoguang; Liu Xia; Wang Yusheng; Li Jin; Qu Hui; Li Jing; Genant, H.; Lang, T.

    2009-01-01

    Objective: To evaluate the bone mineral density (BMD) and structure of proximal femur in elderly Chinese women by quantatitive computed tomography (QCT) and dual energy X-ray absorptiometry (DXA), and to further compare the results of these two methods. Methods: Sixty-six healthy Chinese women over 65 years old participated in this study. The left hips of all subjects were measured with DXA and the BMD of femoral neck and trochanteric region were calculated. With QCT, the BMD and tissue volume of cortical, trabecular and integral bone were calculated for femoral neck, trochanteric and total femur regions in both hips. Appropriate statistical analyses were performed with SPSS 11.5. Results: The BMD and structural parameters in different regions and different compartments of the proximal femur could be precisely assessed with QCT technique. The BMD of cortical bone in femoral neck [(0.52±0.04) g/cm 3 ], BMD of cortical bone in trochanteric region [(0.49±0.03) g/cm 3 ] and BMD of integral bone in troehanteric region [(0.22±0.04) g/cm 3 ] were greater in the fight than those in the left [(0.51±0.04), (0.48±0.03), (0.21±0.04)g/cm 3 ]. The difference had statistical signification (P 2 (0.78±0.13) g/cm 2 , 5.80 cm 3 (0.06±0.03) g/cm 3 , (5.19 ± 1.40) cm 3 , (0.25 ± 0.04)g/cm 3 , 15.66 cm 3 , (21.74±3.43) cm 3 , (0.08 ± 0.03)g/cm 3 , (34.27±6.09) cm 3 and (76.12±11.11) cm 3 respectively, in the fight the corresponding parameters being (0.52±0.10) g/cm 2 (0.78±0.13) g/cm 2 6.01 cm 3 , (0.06±0.02) g/cm 3 , (5.17±1.27) cm 3 , (0.25±0.04)g/cm 3 , 15.62 cm 3 , (22.12±3.60) cm 3 , (0.09±0.03) g/cm 3 , (34.17±5.94) cm 3 and (76.53±10.71) cm 3 respectively. There were no significant difference between the left and right parameters above (P>0.0 ). All QCT parameters of the right hip correlated well with their corresponding ones of left hip with correlation coefficients ranging from 0.656-0.955, P<0.05. QCT-derived simulated DXA femoral neck and trochanteric

  18. Late radiation damage to the rat femur and the NSD formula

    International Nuclear Information System (INIS)

    Pitkaenen, M.A.; Hietanen, T.

    1984-01-01

    The extraction of 86 Rb chloride, the red blood cell volume and the mineral content in the rat femur have been studied 7 months after local X-irradiation. Doses were given as 3, 6 and 9 fractions over three weeks. The total doses used were based on NSD value of 1450 and 1900 on the basis of the results from our previous single dose irradiation studies. The reduction in the extraction of 86 Rb chloride was statistically significant for all fractionation schemes and at both NSD levels. In the whole femur, with bone marrow, the extraction was reduced by 33% to 46%. In the hard bone the reduction was less only 18% to 38%. There was no significant difference between the fractionation schemes used at each NSD level. The red blood cell volume was significantly reduced in the whole femur, with bone marrow, with no difference between the fractionation schemes. However, there was no change in the hard bone. The dry bone weight was reduced by 3 to 6% with no significant difference between the different fractionation schemes. The dose levels predicted by the NSD formula produced approximately the same damage to the rat femur 7 months after the irradiation when the dry weight and the extraction of 86 Rb chloride were used as end points for the evaluation of the severity of late radiation damage. (orig.) [de

  19. Development of a Three-Dimensional (3D) Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Science.gov (United States)

    Chou, Ying-Chao; Lee, Demei; Chang, Tzu-Min; Hsu, Yung-Heng; Yu, Yi-Hsun; Liu, Shih-Jung; Ueng, Steve Wen-Neng

    2016-01-01

    This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D) printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire) fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft. PMID:27104525

  20. Development of a Three-Dimensional (3D Printed Biodegradable Cage to Convert Morselized Corticocancellous Bone Chips into a Structured Cortical Bone Graft

    Directory of Open Access Journals (Sweden)

    Ying-Chao Chou

    2016-04-01

    Full Text Available This study aimed to develop a new biodegradable polymeric cage to convert corticocancellous bone chips into a structured strut graft for treating segmental bone defects. A total of 24 adult New Zealand white rabbits underwent a left femoral segmental bone defect creation. Twelve rabbits in group A underwent three-dimensional (3D printed cage insertion, corticocancellous chips implantation, and Kirschner-wire (K-wire fixation, while the other 12 rabbits in group B received bone chips implantation and K-wire fixation only. All rabbits received a one-week activity assessment and the initial image study at postoperative 1 week. The final image study was repeated at postoperative 12 or 24 weeks before the rabbit scarification procedure on schedule. After the animals were sacrificed, both femurs of all the rabbits were prepared for leg length ratios and 3-point bending tests. The rabbits in group A showed an increase of activities during the first week postoperatively and decreased anterior cortical disruptions in the postoperative image assessments. Additionally, higher leg length ratios and 3-point bending strengths demonstrated improved final bony ingrowths within the bone defects for rabbits in group A. In conclusion, through this bone graft converting technique, orthopedic surgeons can treat segmental bone defects by using bone chips but with imitate characters of structured cortical bone graft.

  1. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (p<0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p<0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and

  2. Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping.

    Science.gov (United States)

    Kozielski, M; Buchwald, T; Szybowicz, M; Błaszczak, Z; Piotrowski, A; Ciesielczyk, B

    2011-07-01

    Biomechanical properties of bone depend on the composition and organization of collagen fibers. In this study, Raman microspectroscopy was employed to determine the content of mineral and organic constituents and orientation of collagen fibers in spongy bone in the human head of femur at the microstructural level. Changes in composition and structure of trabecula were illustrated using Raman spectral mapping. The polarized Raman spectra permit separate analysis of local variations in orientation and composition. The ratios of ν₂PO₄³⁻/Amide III, ν₄PO₄³⁻/Amide III and ν₁CO₃²⁻/ν₂PO₄³⁻ are used to describe relative amounts of spongy bone components. The ν₁PO₄³⁻/Amide I ratio is quite susceptible to orientation effect and brings information on collagen fibers orientation. The results presented illustrate the versatility of the Raman method in the study of bone tissue. The study permits better understanding of bone physiology and evaluation of the biomechanical properties of bone.

  3. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J., E-mail: jianboc@gmail.com [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Bly, R.A. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Saad, M.M.; AlKhodary, M.A.; El-Backly, R.M. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Cohen, D.J.; Kattamis, N. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Fatta, M.M.; Moore, W.A. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Arnold, C.B. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Marei, M.K. [Tissue Engineering laboratories, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Soboyejo, W.O. [Princeton Institute of Science and Technology of Materials and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2011-07-20

    Titanium surfaces were designed, produced, and evaluated for levels of osseointegration into the femurs of rabbits. A total of 36 Ti-6Al-4V pins (15 mm length, 1.64 mm diameter) were prepared into three experimental groups. These were designed to test the effects of osseointegration on laser grooved, RGD coated, and polished control surfaces, as well as combined effects. Circumferential laser grooves were introduced onto pin surfaces (40 {mu}m spacing) using a UV laser ({lambda} = 355 nm). The tripeptide sequence, Arginine-Glycine-Aspartic acid (RGD), was functionalized onto laser grooved surfaces. Of the prepared samples, surface morphology and chemistry were analyzed using scanning electron microscopy (SEM) and Immunoflourescence (IF) spectroscopy, respectively. The experimental pin surfaces were surgically implanted into rabbit femurs. The samples were then harvested and evaluated histologically. Sections of the sample were preserved in a methylmethacralate mold, sliced via a hard microtome, and polished systematically. In the case of the RGD coated and laser grooved surfaces, histological results showed accelerated bone growth into the implant, pull-out tests were also used to compare the adhesion between bone and the titanium pins with/without laser textures and/or RGD coatings. - Research highlights: {yields} Circumferential laser grooves were introduced onto pin surfaces using a UV laser. {yields} The tripeptide sequence, RGD, was functionalized onto laser grooved surfaces. {yields} The experimental pin surfaces were surgically implanted into rabbit femurs. {yields} RGD coated laser groove surfaces accelerated bone growth into the implant. {yields} RGD coated laser grooved surfaces enhanced the adhesion between the bone and implant.

  4. In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs

    International Nuclear Information System (INIS)

    Chen, J.; Bly, R.A.; Saad, M.M.; AlKhodary, M.A.; El-Backly, R.M.; Cohen, D.J.; Kattamis, N.; Fatta, M.M.; Moore, W.A.; Arnold, C.B.; Marei, M.K.; Soboyejo, W.O.

    2011-01-01

    Titanium surfaces were designed, produced, and evaluated for levels of osseointegration into the femurs of rabbits. A total of 36 Ti-6Al-4V pins (15 mm length, 1.64 mm diameter) were prepared into three experimental groups. These were designed to test the effects of osseointegration on laser grooved, RGD coated, and polished control surfaces, as well as combined effects. Circumferential laser grooves were introduced onto pin surfaces (40 μm spacing) using a UV laser (λ = 355 nm). The tripeptide sequence, Arginine-Glycine-Aspartic acid (RGD), was functionalized onto laser grooved surfaces. Of the prepared samples, surface morphology and chemistry were analyzed using scanning electron microscopy (SEM) and Immunoflourescence (IF) spectroscopy, respectively. The experimental pin surfaces were surgically implanted into rabbit femurs. The samples were then harvested and evaluated histologically. Sections of the sample were preserved in a methylmethacralate mold, sliced via a hard microtome, and polished systematically. In the case of the RGD coated and laser grooved surfaces, histological results showed accelerated bone growth into the implant, pull-out tests were also used to compare the adhesion between bone and the titanium pins with/without laser textures and/or RGD coatings. - Research highlights: → Circumferential laser grooves were introduced onto pin surfaces using a UV laser. → The tripeptide sequence, RGD, was functionalized onto laser grooved surfaces. → The experimental pin surfaces were surgically implanted into rabbit femurs. → RGD coated laser groove surfaces accelerated bone growth into the implant. → RGD coated laser grooved surfaces enhanced the adhesion between the bone and implant.

  5. Slow Recovery of Weight Bearing After Stabilization of Long-Bone Fractures Using Elastic Stable Intramedullary Nails in Children.

    Science.gov (United States)

    Lardelli, Patrizia; Frech-Dörfler, Martina; Holland-Cunz, Stefan; Mayr, Johannes

    2016-03-01

    Stabilization of diaphyseal long-bone fractures using elastic stable intramedullary nails (ESIN) in children promises early mobilization and rapid resumption of full weight bearing. We evaluated the duration of postoperative functional rehabilitation after ESIN, measured by the time from stabilization until first partial weight bearing, full weight bearing, and resumption of school sports. Fifty children with unstable, displaced fractures of the femur or lower leg treated with ESIN between 2002 and 2012 were included in this retrospective analysis. We classified fractures according to the pediatric comprehensive classification of fractures (PCCF). Thirty-five children sustained a femur fracture, and 15 children had a fracture of the lower leg or tibia. The surgeons in charge applied an additional plaster cast in 7 of 15 children who suffered a lower leg fracture. The postoperative time interval until full weight bearing in the group of children who had suffered transverse or short oblique femur fractures was significantly shorter (median: 4.4 weeks; range: 0.1-9.1 weeks) than that in the group who had sustained more complex fracture patterns (median: 6.8 weeks; range: 2.9-13.9 weeks; P = 0.04). Similarly, transverse and short oblique lower leg and tibia fractures required less time until full weight bearing (median: 4.1 weeks; range 2.7-6.0 weeks) than complex lower leg fractures (median: 6.1 weeks; range: 1.3-12.9 weeks; P = 0.04). ESIN proved fairly effective in restoring full weight bearing in transverse or short oblique fractures of the lower extremities but was less effective in complex fractures.

  6. Femur Neck Fracture in a Young Marfan Syndrome Patient.

    Science.gov (United States)

    Kwon, Yong-Uk; Kong, Gyu-Min; Park, Jun-Ho

    2016-12-01

    Marfan syndrome is an autosomal dominant and could decrease bone mineral density. So patients with Marfan syndrome could vulnerable to trauma in old ages. We present the first report, to the best of our knowledge, of a rare fracture of the femoral neck with a minor traumatic history in a juvenile Marfan syndrome patient whose physis is still open. Although the patient is young, her bone mineral density was low and the geometry of femur is changed like old ages. The femur neck fracture in children is very rare and only caused by high energy trauma, we concluded that the Marfan syndrome makes the bone weaker in young age and preventative medications to avoid fractures in younger Marfan syndrome patients are necessary in early ages.

  7. A biomechanical comparison of composite femurs and cadaver femurs used in experiments on operated hip fractures.

    Science.gov (United States)

    Basso, Trude; Klaksvik, Jomar; Syversen, Unni; Foss, Olav A

    2014-12-18

    Fourth generation composite femurs (4GCFs, models #3406 and #3403) simulate femurs of males cadaver femurs (HCFs) selected to represent patients with hip fractures. Ten 4GCFs (Sawbones, Pacific Research Laboratories, Inc., Vashon, WA, USA) were compared to 24 HCFs from seven females and five males >60 years. Proximal femur anthropometric measurements were noted. Strain gauge rosettes were attached and femurs were mounted in a hip simulator applying a combined subject-specific axial load and torque. Baseline measurements of resistance to deformation were recorded. Standardized femoral neck fractures were surgically stabilized before the constructs were subjected to 20,000 load-cycles. An optical motion tracking system measured relative movements. Median (95% CI) head fragment migration was 0.8mm (0.4 to 1.1) in the 4GCF group versus 2.2mm (1.5 to 4.6) in the cadaver group (p=0.001). This difference in fracture stability could not be explained by observed differences in femoral anthropometry or potential overloading of 4GCFs. 4GCFs failed with fracture-patterns different from those observed in cadavers. To conclude, standard 4GCFs provide unrealistically stable bone-implant constructs and fail with fractures not observed in cadavers. Until a validated osteopenic or osteoporotic composite femur model is provided, standard 4GCFs should only be used when representing the biomechanical properties of young healthy femurs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.

    Science.gov (United States)

    Butcher, Michael T; White, Bartholomew J; Hudzik, Nathan B; Gosnell, W Casey; Parrish, John H A; Blob, Richard W

    2011-08-01

    Terrestrial locomotion can impose substantial loads on vertebrate limbs. Previous studies have shown that limb bones from cursorial species of eutherian mammals experience high bending loads with minimal torsion, whereas the limb bones of non-avian reptiles (and amphibians) exhibit considerable torsion in addition to bending. It has been hypothesized that these differences in loading regime are related to the difference in limb posture between upright mammals and sprawling reptiles, and that the loading patterns observed in non-avian reptiles may be ancestral for tetrapod vertebrates. To evaluate whether non-cursorial mammals show loading patterns more similar to those of sprawling lineages, we measured in vivo strains in the femur during terrestrial locomotion of the Virginia opossum (Didelphis virginiana), a marsupial that uses more crouched limb posture than most mammals from which bone strains have been recorded, and which belongs to a clade phylogenetically between reptiles and the eutherian mammals studied previously. The presence of substantial torsion in the femur of opossums, similar to non-avian reptiles, would suggest that this loading regime likely reflects an ancestral condition for tetrapod limb bone design. Strain recordings indicate the presence of both bending and appreciable torsion (shear strain: 419.1 ± 212.8 με) in the opossum femur, with planar strain analyses showing neutral axis orientations that placed the lateral aspect of the femur in tension at the time of peak strains. Such mediolateral bending was unexpected for a mammal running with near-parasagittal limb kinematics. Shear strains were similar in magnitude to peak compressive axial strains, with opossum femora experiencing similar bending loads but higher levels of torsion compared with most previously studied mammals. Analyses of peak femoral strains led to estimated safety factor ranges of 5.1-7.2 in bending and 5.5-7.3 in torsion, somewhat higher than typical mammalian values

  9. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa)

    International Nuclear Information System (INIS)

    Álvarez-Lloret, Pedro; Rodríguez-Navarro, Alejandro B.; Romanek, Christopher S.; Ferrandis, Pablo; Martínez-Haro, Mónica; Mateo, Rafael

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. - Highlights: •The effect of Pb toxicity on bone mineralization was investigated in partridges. •Lead exposure decreased bone mineralization degree. •Demonstrated usefulness of FTIR and DRX to evaluate alterations in bone chemistry and crystallinity by Pb exposure

  10. Effects of lead shot ingestion on bone mineralization in a population of red-legged partridge (Alectoris rufa)

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Lloret, Pedro, E-mail: pedroalvarez@geol.uniovi.es [Department of Mineralogy and Petrology, University of Granada, Avd. Fuentenueva s/n, 18002 Granada (Spain); Departament of Geology, University of Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo (Spain); Rodríguez-Navarro, Alejandro B. [Department of Mineralogy and Petrology, University of Granada, Avd. Fuentenueva s/n, 18002 Granada (Spain); Romanek, Christopher S. [Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY (United States); Ferrandis, Pablo [Department of Plant Production and Agricultural Technology, E.T.S. Ingenieros Agrónomos, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Martínez-Haro, Mónica [Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); IMAR-Instituto do Mar, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra (Portugal); Mateo, Rafael [Instituto de Investigación en Recursos Cinegéticos, IREC (CSIC, UCLM, JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)

    2014-01-01

    The effect of lead (Pb) toxicity on bone mineralization was investigated in a wild population of red-legged partridge (Alectoris rufa) inhabiting a farmland area contaminated with Pb-shot from recreational hunting activities in Albacete, a southeastern province of Spain. Femora from 40 specimens of red-legged partridge were analyzed for Pb by graphite furnace atomic absorption spectroscopy (GF-AAS), and for bone composition by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The FTIR and DRX data of bone were analyzed in detail to determine possible alterations in bone mineral chemistry and crystallinity due to Pb toxicity. Results showed a marked decrease in the degree of mineralization as Pb concentrations in bone tissue increased while XRD analyses showed that the crystallinity of apatite crystals increased with the Pb load in bone. These load-dependent effects are indicative that Pb contamination altered bone remodeling by reducing new bone mineral formation and demonstrate that bone quality is a sensitive indicator of adverse effects on wild bird populations exposed to Pb pollution. - Highlights: •The effect of Pb toxicity on bone mineralization was investigated in partridges. •Lead exposure decreased bone mineralization degree. •Demonstrated usefulness of FTIR and DRX to evaluate alterations in bone chemistry and crystallinity by Pb exposure.

  11. A computer-aided system for automatic extraction of femur neck trabecular bone architecture using isotropic volume construction from clinical hip computed tomography images.

    Science.gov (United States)

    Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan

    2016-10-01

    Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.

  12. Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: a cohort study

    Directory of Open Access Journals (Sweden)

    Lind Lars

    2010-02-01

    Full Text Available Abstract Background Drinking coffee has been linked to reduced calcium conservation, but it is less clear whether it leads to sustained bone mineral loss and if individual predisposition for caffeine metabolism might be important in this context. Therefore, the relation between consumption of coffee and bone mineral density (BMD at the proximal femur in men and women was studied, taking into account, for the first time, genotypes for cytochrome P450 1A2 (CYP1A2 associated with metabolism of caffeine. Methods Dietary intakes of 359 men and 358 women (aged 72 years, participants of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, were assessed by a 7-day food diary. Two years later, BMD for total proximal femur, femoral neck and trochanteric regions of the proximal femur were measured by Dual-energy X-ray absorptiometry (DXA. Genotypes of CYP1A2 were determined. Adjusted means of BMD for each category of coffee consumption were calculated. Results Men consuming 4 cups of coffee or more per day had 4% lower BMD at the proximal femur (p = 0.04 compared with low or non-consumers of coffee. This difference was not observed in women. In high consumers of coffee, those with rapid metabolism of caffeine (C/C genotype had lower BMD at the femoral neck (p = 0.01 and at the trochanter (p = 0.03 than slow metabolizers (T/T and C/T genotypes. Calcium intake did not modify the relation between coffee and BMD. Conclusion High consumption of coffee seems to contribute to a reduction in BMD of the proximal femur in elderly men, but not in women. BMD was lower in high consumers of coffee with rapid metabolism of caffeine, suggesting that rapid metabolizers of caffeine may constitute a risk group for bone loss induced by coffee.

  13. Coffee consumption and CYP1A2 genotype in relation to bone mineral density of the proximal femur in elderly men and women: a cohort study.

    Science.gov (United States)

    Hallström, Helena; Melhus, Håkan; Glynn, Anders; Lind, Lars; Syvänen, Ann-Christine; Michaëlsson, Karl

    2010-02-22

    Drinking coffee has been linked to reduced calcium conservation, but it is less clear whether it leads to sustained bone mineral loss and if individual predisposition for caffeine metabolism might be important in this context. Therefore, the relation between consumption of coffee and bone mineral density (BMD) at the proximal femur in men and women was studied, taking into account, for the first time, genotypes for cytochrome P450 1A2 (CYP1A2) associated with metabolism of caffeine. Dietary intakes of 359 men and 358 women (aged 72 years), participants of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS), were assessed by a 7-day food diary. Two years later, BMD for total proximal femur, femoral neck and trochanteric regions of the proximal femur were measured by Dual-energy X-ray absorptiometry (DXA). Genotypes of CYP1A2 were determined. Adjusted means of BMD for each category of coffee consumption were calculated. Men consuming 4 cups of coffee or more per day had 4% lower BMD at the proximal femur (p = 0.04) compared with low or non-consumers of coffee. This difference was not observed in women. In high consumers of coffee, those with rapid metabolism of caffeine (C/C genotype) had lower BMD at the femoral neck (p = 0.01) and at the trochanter (p = 0.03) than slow metabolizers (T/T and C/T genotypes). Calcium intake did not modify the relation between coffee and BMD. High consumption of coffee seems to contribute to a reduction in BMD of the proximal femur in elderly men, but not in women. BMD was lower in high consumers of coffee with rapid metabolism of caffeine, suggesting that rapid metabolizers of caffeine may constitute a risk group for bone loss induced by coffee.

  14. Evaluation of bone repair in the femur of rats submitted to laser therapy in different wavelengths: An image segmentation method of analysis

    Science.gov (United States)

    Queiroga, A. S.; Sousa, F. B.; Araújo, J. M. S.; Santos, S. D.; Sousa, C. D'f. S.; Quintans, T. C.; Almeida, T. P.; Nonaka, C. F. W.; Batista, L. V.; Limeira Junior, F. A.

    2008-09-01

    The aim of this study was to histologically assess the effect of laser therapy (LILT, 660 and 780 nm) on the repair of standardized bone defects on the femur of Wistar albinus rats. The sample was composed of 12 Wistar albinus young adult rats of both genders. Three randomized groups were studied: group I (control, n = 4), group II (LILT, 660 nm, n = 4), and group III (LILT, 780 nm, n = 4). Samples were prepared using a bone defect on the left-side femur surface of the animals, with a total dimension of approximately 3 mm3. Groups II and III were irradiated every 48 h from the second application, where the first dose was given immediately after surgery and the second application came 24 h after surgery. The irradiations were applied transcutaneously at four points around the wound for 14 days. At each point, a dose of 50 J/cm2 (2 J) was given ( s ˜ 0.04 cm2, 40 mW) and the total dose per session was 200 J/cm2 (8 J). The sacrifices were made 15 days after surgery and the specimens were routinely processed to wax, serially cut, stained with an H&E stain, and analyzed under light microscopy. The images were submitted to morphometric analysis using the image segmentation method using the K-means algorithm. The data obtained through the morphometric analysis were submitted to statistical analysis using the Tukey test. The results showed that the group treated with laser therapy in the infrared spectrum resulted in an increase in the repair of bone defects when compared with the group treated with the laser in the red spectrum and control group, which, in turn, had a very similar pattern of repair. A statistical significance ( p spectrum produced a positive biomodulation effect on the repair of bone defects in the femur of rats.

  15. Bone mineral density of lumbar spine and proximal femur in healthy males

    International Nuclear Information System (INIS)

    Akin, S.; Isikli, S.; Korkusuz, F.; Ungan, M.; Senkoylu, A.

    2004-01-01

    Relationship between BMD and age at lumbar spine and proximal femur in Turkish males was investigated. Two hundred ninety healthy males (aged 20-59 years) were investigated. BMD of the lumbar spine had its peak at ages 30-39, however, the peak for the proximal femur was between the ages of 20 and 29. There was a significant decrease in BMD at proximal femur after these peak values with increasing age. There was a significant correlation between age and the proximal femoral BMD in males and age has a strong predictive power on proximal femur BMD score. (author)

  16. Bone Parameters and Risk of Hip and Femur Fractures in Patients on Hemodialysis

    Science.gov (United States)

    Hazzan, Azzour D.; Jhaveri, Kenar D.; Ma, Lin; Lacson, Eduardo

    2016-01-01

    Background and objectives Patients on hemodialysis have a high rate of hip fractures. In this study, we performed a contemporary analysis of mineral and bone parameters and their relationship to hip and femur fracture risk. Design, setting, participants, & measurements Patients on hemodialysis treated between 2000 and 2013 in Fresenius Medical Care North America facilities were included. Predictors were on the basis of data as of December 31 of each baseline year and time-averaged values of selected laboratory parameters and medication doses throughout the year. Four period cohorts were constructed from baseline years: 2000, 2003, 2006, and 2009. Follow-up for each cohort was ≤3 years. Results The incidence of hip and femur fractures remained generally unchanged (P=0.40), except among patients who were white and >65 years of age, in whom the rate decreased significantly over the 14-year period (P<0.01). Results from combined multivariable models indicated that the lowest quartiles of time–averaged intact parathyroid hormone were independently associated with higher hip fracture risk (intact parathyroid hormone =181–272 pg/ml: hazard ratio, 1.20; 95% confidence interval [95% CI], 1.03 to 1.41 and intact parathyroid hormone <181 pg/ml: hazard ratio, 1.20; 95% CI, 1.01 to 1.44; referent third quartile, 273 to <433 pg/ml). The lowest quartile of time–averaged serum calcium was also associated with higher risk (calcium <8.7 mg/dl; hazard ratio, 1.17; 95% CI, 1.00 to 1.37) compared with the referent third quartile of 9.1 to <9.5 mg/dl. Conclusions We found an association between lower levels of intact parathyroid hormone and serum calcium and greater risk for hip and femur fractures among patients on hemodialysis. These findings support additional research toward elucidating long-term safety of treatment approaches for hyperparathyroidism in patients with ESRD. PMID:27026521

  17. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L.) Mill. (Cactaceae) Cladodes as Calcium Source in Diet.

    Science.gov (United States)

    Hernández-Becerra, Ezequiel; Gutiérrez-Cortez, Elsa; Del Real, Alicia; Rojas-Molina, Alejandra; Rodríguez-García, Mario; Rubio, Efraín; Quintero-García, Michelle; Rojas-Molina, Isela

    2017-02-04

    Mechanical, microstructural properties, mineral content and bone mineral density (BMD) of the femur were evaluated in growing rats fed with Opuntia ficus indica (L.) Mill. (Cactaceae) cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively) and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively) for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet). The failure load of femurs was significantly lower ( p ≤ 0.05) in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi) and trabecular thickness (Tb.Th) of the femurs in control and N-600 groups were significantly higher ( p ≤ 0.05) than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health.

  18. Bone Mineral Density, Mechanical, Microstructural Properties and Mineral Content of the Femur in Growing Rats Fed with Cactus Opuntia ficus indica (L. Mill. (Cactaceae Cladodes as Calcium Source in Diet

    Directory of Open Access Journals (Sweden)

    Ezequiel Hernández-Becerra

    2017-02-01

    Full Text Available Mechanical, microstructural properties, mineral content and bone mineral density (BMD of the femur were evaluated in growing rats fed with Opuntia ficus indica (L. Mill. (Cactaceae cladodes at different maturity stages as calcium source. Male weanling rats were fed with cladodes at early maturity stage (25 and 60 days of age, belonging to groups N-60 and N-200, respectively and cladodes at late maturity stage (100 and 135 days of age, belonging to groups N-400 and N-600, respectively for 6 weeks. Additionally, a control group fed with calcium carbonate as calcium source was included for comparative purposes. All diets were fitted to the same calcium content (5 g/kg diet. The failure load of femurs was significantly lower (p ≤ 0.05 in groups N-60 and N-200 in comparison to N-400, N-600 and control groups. The cortical width (Ct.Wi and trabecular thickness (Tb.Th of the femurs in control and N-600 groups were significantly higher (p ≤ 0.05 than Ct.Wi and Tb.Th of femurs in groups N-60 and N-200. Trabecular separation of the femurs in N-60 and N-200 groups showed the highest values compared with all experimental groups. The highest calcium content in the femurs were observed in control, N-600 and N-400 groups; whereas the lowest phosphorus content in the bones were detected in N-200, N-600 and N-400 groups. Finally, the BMD in all experimental groups increased with age; nevertheless, the highest values were observed in N-600 and control groups during pubertal and adolescence stages. The results derived from this research demonstrate, for the first time, that the calcium found in Opuntia ficus indica cladodes is actually bioavailable and capable of improving mineral density and mechanical and microstructural properties of the bones. These findings suggest that the consumption of cladodes at late maturity stage within the diet might have a beneficial impact on bone health.

  19. Biomechanical Evaluations of Hip Fracture Using Finite Element Model that Models Individual Differences of Femur

    OpenAIRE

    田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi

    2004-01-01

    This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...

  20. [Remodeling simulation of human femur under bed rest and spaceflight circumstances based on three dimensional finite element analysis].

    Science.gov (United States)

    Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang

    2017-12-01

    Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.

  1. Skin metastasis from conventional giant cell tumor of bone: conceptual significance

    International Nuclear Information System (INIS)

    Tyler, W.; Barrett, T.; Frassica, F.; McCarthy, E.

    2002-01-01

    A conventional giant cell tumor of the proximal femur recurred twice locally and developed pulmonary nodules. The lung lesions were felt to be an example of ''benign'' metastases. Eight months after the initial presentation, the patient developed a single skin nodule on the contralateral leg. Histologic features of the skin nodule showed conventional giant cell tumor identical to the bone lesion. This nodule is a manifestation of arterial metastasis typical of any malignant tumor and seemingly contradicts the concept of ''benign '' metastasis. (orig.)

  2. Bone mineral density in lifelong trained male football players compared with young and elderly untrained men

    DEFF Research Database (Denmark)

    Hagman, Marie; Helge, Eva Wulff; Hornstrup, Therese

    2018-01-01

    001) BMD in all femoral regions and total proximal femur in both legs compared to UY. The whole-body DXA scan confirmed these results, with FTE showing similar whole-body BMD and 7.9% higher (p 0.05) leg BMD compared to UY, and with FTY having 9.6% higher (p 001) whole-body BMD and 18.2...... men. Methods: One hundred and forty healthy, non-smoking men participated in the study, including lifelong trained football players (FTE, n = 35) aged 65-80 years, elite football players (FTY, n = 35) aged 18-30 years, as well as untrained age-matched elderly (UE, n = 35) and young (UY, n = 35) men....... All participants underwent a regional Dual-Energy X-ray Absorptiometry (DXA) scan of the proximal femur and a whole-body DXA scan to determine BMD. From a resting blood sample, the bone turnover markers (BTMs) osteocalcin, carboxy-terminal type-1 collagen crosslinks (CTX-1), procollagen type-1 amino...

  3. Is Total Femur Replacement a Reliable Treatment Option for Patients With Metastatic Carcinoma of the Femur?

    Science.gov (United States)

    Sevelda, Florian; Waldstein, Wenzel; Panotopoulos, Joannis; Kaider, Alexandra; Funovics, Philipp Theodor; Windhager, Reinhard

    2018-05-01

    The majority of metastatic bone lesions to the femoral bone can be treated without surgery or with minimally invasive intramedullary nailing. In rare patients with extensive metastatic disease to the femur, total femur replacement may be the only surgical alternative to amputation; however, little is known about this approach. In a highly selected small group of patients with metastatic carcinoma of the femur, we asked: (1) What was the patient survivorship after this treatment? (2) What was the implant survivorship free from all-cause revision and amputation, and what complications were associated with this treatment? (3) What functional outcomes were achieved by patients after total femur replacement for this indication? Eleven patients (three men, eight women) with a mean age of 64 years (range, 41-78 years) received total femur replacements between 1986 and 2016; none were lost to followup. The most common primary disease was breast cancer. In general, during this period, our indications for this procedure were extensive metastatic disease precluding internal fixation or isolated proximal or distal femur replacement, and an anticipated lifespan exceeding 6 months. Our contraindication for this procedure during this time was expected lifespan less than 6 months. Patient survival was assessed by Kaplan-Meier analysis; implant survival free from revision surgery and amputation were assessed by competing risk analysis. Function was determined preoperatively and 6 to 12 weeks postoperatively with the Musculoskeletal Tumor Society (MSTS) score normalized to a 100-point scale, with higher scores representing better function from a longitudinally maintained institutional database. Eleven patients died at a median of 5 months (range, 1-31 months) after surgery. One-year revision-free and limb survival were 82% (95% CI, 51%-98%) and 91% (95% CI, 61%-99%), respectively. Reasons for reoperation were hip dislocation, infection and local recurrence in one patient each. The

  4. Three-dimensional microarchitecture of the proximal femur in osteoarthritis and rheumatoid arthritis

    DEFF Research Database (Denmark)

    Wang, B. L.; Ding, Ming; Overgaard, Søren

    2015-01-01

    microstructure has an important impact on bone quality. Recently, the quantification of bone architecture based on micro-CT has been widely used in the research of various bone diseases. OBJECTIVE: To observe the osteoarthritis- and rheumatoid arthritis-related changes in the properties of the proximal femur...... based on micro-CT, thus to compare the bone microstructure in osteoarthritis and rheumatoid arthritis patients. METHODS: Femoral heads were collected from primary osteoarthritis (n=10) and rheumatoid arthritis (n=7) patients undergoing total hip replacement. A 10-mm segment of the femoral neck was cut...... from each individual femur, perpendicular to the main trabecular direction on X-ray films. The specimens were analyzed by using micro-CT system. After scanning, the data were transferred to three-dimensional images, and then detailed structural parameters of the cortical bone, cancellous bone...

  5. Augmented reality in bone tumour resection

    Science.gov (United States)

    Park, Y. K.; Gupta, S.; Yoon, C.; Han, I.; Kim, H-S.; Choi, H.; Hong, J.

    2017-01-01

    Objectives We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. Methods We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. Results The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137–143. PMID:28258117

  6. Primary non-Hodgkin lymphoma of the right femur and subsequent metastasis to the left femur: A case report and literature review.

    Science.gov (United States)

    Hu, Jing-Yu; Yu, Dan; Wu, Yao-Hui

    2018-04-01

    Non-Hodgkin lymphoma of the bone is rare and typically causes an extensive bone lesion. The present study describes a case of diffuse large B-cell primary non-Hodgkin lymphoma of the bone, which occurred in the right femur, and was initially treated with surgery and chemotherapy. Following a 7-year period of complete remission, a new, similar lesion was identified in the left femur. With both lesions, there was no accompanying destruction of any other bones or organ involvement. Metastasis of PLB to the contralateral side is extremely rare and, to the best of our knowledge, this is the first report of this particular presentation in China or worldwide. We hypothesized that the present situation arose due to mechanisms involving the tumor microenvironment, circulating tumor cells, lymphocyte homing and self-seeding. The present report describes the case in detail, and discusses the possible underlying mechanisms and their potential contribution to the treatment of non-Hodgkin lymphoma, as well as the prevention of metastasis and recurrence, which may be of considerable clinical significance.

  7. Prediction on fracture risk of femur with Osteogenesis Imperfecta using finite element models: Preliminary study

    Science.gov (United States)

    Wanna, S. B. C.; Basaruddin, K. S.; Mat Som, M. H.; Mohamad Hashim, M. S.; Daud, R.; Majid, M. S. Abdul; Sulaiman, A. R.

    2017-10-01

    Osteogenesis imperfecta (OI) is a genetic disease which affecting the bone geometry. In a severe case, this disease can cause death to patients. The main issue of this disease is the prediction on bone fracture by the orthopaedic surgeons. The resistance of the bone to withstand the force before the bones fracture often become the main concern. Therefore, the objective of the present preliminary study was to investigate the fracture risk associated with OI bone, particularly in femur, when subjected to the self-weight. Finite element (FEA) was employed to reconstruct the OI bone model and analyse the mechanical stress response of femur before it fractures. Ten deformed models with different severity of OI bones were developed and the force that represents patient self-weight was applied to the reconstructed models in static analysis. Stress and fracture risk were observed and analysed throughout the simulation. None of the deformed model were observed experienced fracture. The fracture risk increased with increased severity of the deformed bone. The results showed that all deformed femur models were able to bear the force without experienced fracture when subjected to only the self-weight.

  8. SKELETAL METASTASIS IN PRIMARY CARCINOMA OF THE LIVER*

    African Journals Online (AJOL)

    1971-04-24

    Apr 24, 1971 ... The ribs and the long bones of the limbs are less commonly involved. ... The pain radiated down the back of his left leg to the toes. He had had .... fracture of a long bone such as humerus' or femurS.> may occasionally be the ...

  9. Functional bracing for delayed union of a femur fracture associated with Paget's disease of the bone in an Asian patient: a case report

    Directory of Open Access Journals (Sweden)

    Fukuta Masashi

    2010-05-01

    Full Text Available Abstract Paget's disease of the bone is a common metabolic bone disease in most European countries, Australia, New Zealand, and North America. Conversely, this disease is rare in Scandinavia, Asia, and Africa. In Japan, it is extremely rare, with a prevalence of 0.15/100000. Paget's disease is a localized disorder of bone remodeling. Excessive bone resorption and abnormal bone formation result in biomechanically weakened bone and predispose patients to fracture. Delayed union and non-union of fractures have been reported in patients with Paget's disease. Therefore, open reduction and internal fixation of fractures has been recommended to prevent such complications. Here we report an unusual case of a 63-year-old Asian woman with delayed union of a femur fracture secondary to Paget's disease, which was treated successfully by functional bracing.

  10. Septal endocarditis, bone infection and severe leg ischemia detected in Tc-99m labelled monoclonal anti granulocyte scan

    International Nuclear Information System (INIS)

    Bechelaghem, A.I; Habbeche, M; Benlabgaa, R; Ghedbane, IE; Hanzal, A; Khelifa, A; Mechcken, F; Bourezak, SE; Bouyoucef, SE

    2006-01-01

    Patient 28 years old has continued to have a persistent fever (39.2 O C), despite ten days treatment by specific antibiotics for bacterial endocarditis associated to a recent claudication of the right lower leg. The persistent fever has motivated a 99mTc-labelled monoclonal anti granulocyte scan which has showed an important uptake in the myocardial septum, and other infection locations in temporal bone and in right tibial arteries. Two days after, a nanocolloids-99mTc WBS showed no uptake in the heart area, a total absence of uptake of the nanocolloids in the bone marrow of right tibia b and cranial SPECT views confirmed the infectious site in the right temporal bone. New antibiotic strategy was adopted successfully associated with surgical amputation of the right lower leg (au)

  11. Genetic parameters for claw and leg health, foot and leg conformation, and locomotion in Danish Holsteins

    DEFF Research Database (Denmark)

    Laursen, M. V.; Boelling, D.; Mark, Thomas

    2009-01-01

    was defined as absence of hock infection, swollen hock, and bruising. The potential indicators were locomotion and foot and leg conformation, represented by rear leg side view, rear leg rear view, foot angle, and apparent hock quality and bone structure. The study was conducted using records from 429......,877 Danish Holstein cows in first lactation. Binary health traits were divided into 3 subcategories: claw health, leg health, and absence of all claw and leg disorders. Genetic (r(g)) and phenotypic correlations were estimated using a bivariate linear sire model and REML. Estimated heritabilities were 0.......01 for all 3 combined claw and leg health traits (on the observed binary scale), 0.09 for locomotion, 0.14 for rear leg rear view, 0.19 for rear leg side view, 0.13 for foot angle, 0.22 for apparent hock quality, and 0.27 for apparent bone structure. Heritabilities were 0.06 and 0.01 for claw health and leg...

  12. Quantitative CT assessment of proximal femoral bone density. An experimental study concerning its correlation to breaking load for femoral neck fractures; Quantitative CT des proximalen Femurs. Experimentelle Untersuchungen zur Korrelation mit der Bruchlast bei Schenkelhalsfrakturen

    Energy Technology Data Exchange (ETDEWEB)

    Buitrago-Tellez, C.H.; Schulze, C.; Gufler, H.; Langer, M. [Abt. Roentgendiagnostik, Radiologische Universitaetsklinik, Albert-Ludwigs-Univ. Freiburg (Germany); Bonnaire, F.; Hoenninger, A.; Kuner, E. [Abt. Unfallchirurgie, Chirurgische Universitaetsklinik, Albert-Ludwigs-Univ. Freiburg (Germany)

    1997-12-01

    Purpose: In an experimental study, the correlation between the trabecular bone density of the different regions of the proximal femur and the fracture load in the setting of femoral neck fractures was examined. Methods: The bone mineral density 41 random proximal human femora was estimated by single-energy quanitative CT (SE-QCT). The trabecular bone density was measured at the greatest possible extracortical volume at midcapital, midneck and intertrochanteric level and in the 1 cm{sup 3} volumes of the centres of these regions in a standardised 10 mm thick slice in the middle of the femoral neck axis (in mg/ml Ca-hydroxyl apatite). The proximal femora were then isolated and mounted on a compression/bending device under two-legged stand conditions and loaded up to the point when a femoral neck fracture occurred. Results: Statistical analysis revealed a linear correlation between the trabecular bone density and the fracture load for the greater regions, with the highest value in the maximal area of the head (coefficient factor r=0.76). Conclusion: According to our data, the measurement of the trabecular bone by SE-QCT at the femoral head is a more confident adjunct than the neck or trochanteric area to predict a femoral neck fracture. (orig.) [Deutsch] Ziel: In einer experimentellen Versuchsserie wurde der Zusammenhang zwischen der Knochendichte an verschiedenen Lokalisationen des proximalen Femurs und der maximalen Last bei der Entstehung von Schenkelhalsfrakturen (Bruchlast) untersucht. Methode: An 41 frisch entnommenen proximalen Leichenfemora wurde die trabekulaere Knochendichte mit Hilfe der Ein-Energie Quantitativen Computertomographie (SE-QCT) bei einer Schichtdicke von 10 mm in der Mitte der Schenkelhalsachse bestimmt. Erfasst wurden die maximale extrakortikale, zylinderfoermige Messregion im Hueftkopf, Schenkelhals und der Intertrochantaerregion sowie das 1 cm{sup 3} umfassende Zentrum dieser Regionen. Die Praeparate wurden unter Zweibeinstandbedingungen

  13. Femur ultrasound (FemUS)-first clinical results on hip fracture discrimination and estimation of femoral BMD

    DEFF Research Database (Denmark)

    Barkmann, R; Dencks, S; Laugier, P

    2010-01-01

    has been introduced yet. We developed a QUS scanner for measurements at the femur (Femur Ultrasound Scanner, FemUS) and tested its in vivo performance. METHODS: Using the FemUS device, we obtained femoral QUS and DXA on 32 women with recent hip fractures and 30 controls. Fracture discrimination......A quantitative ultrasound (QUS) device for measurements at the proximal femur was developed and tested in vivo (Femur Ultrasound Scanner, FemUS). Hip fracture discrimination was as good as for DXA, and a high correlation with hip BMD was achieved. Our results show promise for enhanced QUS...... and the correlation with femur bone mineral density (BMD) were assessed. RESULTS: Hip fracture discrimination using the FemUS device was at least as good as with hip DXA and calcaneal QUS. Significant correlations with total hip bone mineral density were found with a correlation coefficient R (2) up to 0...

  14. Comparative element analysis on femur of antler hemo-treated ovariectomized wistar rats by SRXRF

    International Nuclear Information System (INIS)

    Yang Jianhong; Fei Yurong; Wang Ruilin; Cao Yi; Huang Yuying; He Wei

    2007-01-01

    To investigate the relationship between bone element contents and bone m/neral density (BMD), left femur of sham-operated rats (SHAM, n=5), ovariectomized rats (OVX, n=5) and antler hemo-treated ovariectomized rats (OVX + antler hemo, n=5) were analyzed by synchrotron radiation X-ray fluorescence (SRXRF) microprobe. The results showed that there were very good positive correlations among contents of Ca, P, Zn and Sr. In comparison to the SHAM group, decreased relative intensities of Ca, P, Zn and Sr (especially Ca and P, p<0.05) were observed in femur of the OVX group, which showed significant decrease (p<0.05) of the BMD. The results indicate that loss of Ca and P in bone will cause osteoporosis. On the other hand, increased relative intensities of Ca, P and Zn in femur, and the BMD (p<0.05), of the anlter hemo-treated OVX group were found, in comparison to the OVX group. This suggests that anlter hemo may help cure osteoporosis through maintaining bone contents of Zn, Ca and P, and increasing the BMD. (authors)

  15. Histomorphometry and cortical robusticity of the adult human femur.

    Science.gov (United States)

    Miszkiewicz, Justyna Jolanta; Mahoney, Patrick

    2018-01-13

    Recent quantitative analyses of human bone microanatomy, as well as theoretical models that propose bone microstructure and gross anatomical associations, have started to reveal insights into biological links that may facilitate remodeling processes. However, relationships between bone size and the underlying cortical bone histology remain largely unexplored. The goal of this study is to determine the extent to which static indicators of bone remodeling and vascularity, measured using histomorphometric techniques, relate to femoral midshaft cortical width and robusticity. Using previously published and new quantitative data from 450 adult human male (n = 233) and female (n = 217) femora, we determine if these aspects of femoral size relate to bone microanatomy. Scaling relationships are explored and interpreted within the context of tissue form and function. Analyses revealed that the area and diameter of Haversian canals and secondary osteons, and densities of secondary osteons and osteocyte lacunae from the sub-periosteal region of the posterior midshaft femur cortex were significantly, but not consistently, associated with femoral size. Cortical width and bone robusticity were correlated with osteocyte lacunae density and scaled with positive allometry. Diameter and area of osteons and Haversian canals decreased as the width of cortex and bone robusticity increased, revealing a negative allometric relationship. These results indicate that microscopic products of cortical bone remodeling and vascularity are linked to femur size. Allometric relationships between more robust human femora with thicker cortical bone and histological products of bone remodeling correspond with principles of bone functional adaptation. Future studies may benefit from exploring scaling relationships between bone histomorphometric data and measurements of bone macrostructure.

  16. Secondary Hyperparathyroidism and Bone Turnover in Elderly with Bone Loss - Original Investigation

    Directory of Open Access Journals (Sweden)

    Nurdan Peker

    2006-12-01

    Full Text Available Bone loss is common in the elderly. Parathyroid hormone (PTH, which regulates serum calcium levels,calcitonin and vitamin D metabolites have various effects on skeletal system. The aim of this study was to assess secondary hyperparathyroidism (HPTH and bone turnover in elderly with bone loss. Fifty-five patients (9 men,46 women older than 65 years with bone loss were included in the study. Bone mineral density was measured by dual energy x-ray absorptiomety (DXA at L1-4 vertebrae and proximal femur regions. Patients with T scores <-1.5 at one of the measurement sites were included in the study. Study subjects were assessed in terms of fracture history, sunbathing and walking activity. Routine biochemical tests, serum osteocalcin (OC and C-telopeptide type 1 collagen (CTX and lateral thoracal and lumbar vertebrae radyographic evaluation was performed. Our results showed that 70.9% of the patients had HPTH. Total femur BMD values and femur neck T scores were significantly lower in HPTH group than PTH normal one (p=0.05, p=0.03. Serum OC and CTX levels were higher in both groups. There was a negative correlation with femur neck BMD and CTX (r=0,321. There was no correlation between serum PTH levels and lumbar vertebrae and proximal femur BMD values. Serum PTH and alkaline phosphatase levels showed a significant positive correlation. In conclusion secondary HPTH and increased bone turnover is common elderly with bone loss. Adequate calcium and vitamin D intake is important the older people. (Osteoporoz Dünyasından 2006; 12: 70-3

  17. Accuracy of dual photon absorptiometry in excised femurs

    International Nuclear Information System (INIS)

    Erman, J.; Ott, S.M.

    1988-01-01

    We investigated the accuracy of assessment of bone mineral content (BMC) by dual photon absorptiometry (DPA). Measurements were compared between BMC and ashed weight using two related scanners. The BMC in different locations of the femur was determined. Twelve cadaver femurs were cleaned of all soft tissue, divided into four parts (head, neck, trochanteric region, and shaft), and measured for BMC in an ethanol/water solution. The bones were then ashed and weighed. Volumetric density was also determined. The correlation coefficient between ash weight and BMC was 0.99 with an s.e.e. of 0.51 g and relative error of 4.8%. Similar correlations were seen within each region. The correlation between the machines was 0.99. Differences in volumetric density were found, with the density of the shaft greater than other regions, and the neck greater than the head or trochanteric regions

  18. Augmented reality in bone tumour resection: An experimental study.

    Science.gov (United States)

    Cho, H S; Park, Y K; Gupta, S; Yoon, C; Han, I; Kim, H-S; Choi, H; Hong, J

    2017-03-01

    We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice. The mean error of 164 resections in 82 femurs in the AR group was 1.71 mm (0 to 6). The mean error of 82 resections in 41 femurs in the conventional resection group was 2.64 mm (0 to 11) (p Augmented reality in bone tumour resection: An experimental study. Bone Joint Res 2017;6:137-143. © 2017 Cho et al.

  19. Rare Event; Not Undergoing Surgical Treatment of Proximal Femur Fracture

    Directory of Open Access Journals (Sweden)

    Mehmet Balik

    2013-06-01

    Full Text Available In concordance with the increase in elderly population, incidence of proximal femur fracture (PFF increases. In elderly people, decreased physical activity and bone density, and visual impairments increase the likelihood of falls and fracture of the long bones. Fractures in this population are most commonly due to low-energy traumas. These elderly patient commonly present with co-morbidities. Therefore the treatment of the fracture poses additional risks. Seventy-eight-years old male presents with inability to walk and pain on the right groin following a fall at home. Right intertrochanteric femur fracture was diagnosed. His medical history consisted of ischemic heart disease, hypertension and hypercholesterolemia. The patient was offered hospitalization for surgery, however the patient and his family declined the surgery.

  20. Bone mineral analysis through dual energy X-ray absorptiometry in laboratory animals

    International Nuclear Information System (INIS)

    Tsujio, Masashi; Mizorogi, Toshihiro; Kitamura, Itsuko

    2009-01-01

    To determine how to eliminate species difference in animal bone experiment, bone mineral content (BMC) was measured using dual energy X-ray absorptiometry (DXA) on the femurs of laboratory mice (Mus musculus) and rats (Rattus norvegicus), and common marmosets (Callithrix jacchus). Measures were taken on femurs in situ, detached from the body, skinned and defleshed, or dried completely. When the BMC of the bone measured in the intact limb attached to the trunk was set at 100%, the actual BMC of the dry bone was 58.7±11.5% in mice and 103.2±3.2% in rats. Similarly, the bone area (Area) and bone mineral density (BMD) of the dried femur was significantly lower in the mouse femurs than intact limb. Thus, soft limb tissue such as skin and muscle modified the BMC, Area, and BMD only in mouse but not in those from rats or marmosets. The bone mineral ratio (BMR; BMC divided by dry bone weight) was nearest to the human bone value in the rat femurs, whereas the mouse femur BMR was the most different. The BMR was proved to be a practical index in evaluating bone characteristics in laboratory animals, but the mouse femur might not be suitable as an animal model for research into the aging of human bone. (author)

  1. Periosteal osteoblastoma of the distal femur

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Tetsuya; Yamamoto, Tetsuji; Akisue, Toshihiro; Marui, Takashi; Hitora, Toshiaki; Kawamoto, Teruya; Nagira, Keiko; Yoshiya, Shinichi; Kurosaka, Masahiro [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe (Japan); Fujita, Ikuo; Matsumoto, Keiji [Department of Orthopaedic Surgery, Hyogo Medical Center for Adults, Akashi, Hyogo (Japan)

    2004-02-01

    Osteoblastomas located on the surface of the cortical bone, so-called periosteal osteoblastomas, are extremely rare. We report on a case of periosteal osteoblastoma arising from the posterior surface of the right distal femur in a 17-year-old man. Roentgenographic, computed tomographic, magnetic resonance imaging, and histologic features of the case are presented. Periosteal osteoblastoma should be radiologically and histologically differentiated from myositis ossificans, avulsive cortical irregularity syndrome, osteoid osteoma, parosteal osteosarcoma, periosteal osteosarcoma, and high-grade surface osteosarcoma. Although periosteal osteoblastoma is rare, this tumor should be included in the differential diagnosis of surface-type bone tumors. (orig.)

  2. Cross-sectional properties of the lower limb long bones in the Middle Pleistocene Sima de los Huesos sample (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Arsuaga, Juan Luis

    2018-04-01

    The recovery to date of three complete and five partial femora, seven complete tibiae, and four complete fibulae from the Atapuerca Sima de los Huesos site provides an opportunity to analyze the biomechanical cross-sectional properties in this Middle Pleistocene population and to compare them with those of other fossil hominins and recent modern humans. We have performed direct comparisons of the cross-sectional geometric parameters and reduced major axis (RMA) regression lines among different samples. We have determined that Atapuerca Sima de los Huesos (SH) fossils have significantly thicker cortices than those of recent modern humans for the three leg bones at all diaphyseal levels, except that of the femur at 35% of biomechanical length. The SH bones are similar to those of Neandertals and Middle Pleistocene humans and different from Homo sapiens in their diaphyseal cross-sectional shape and strength parameters. When standardized by estimated body size, both the SH and Neandertal leg bones have in general greater strength than those of H. sapiens from the early modern (EMH), Upper Paleolithic (UP), and recent populations (RH). The Sima de los Huesos human leg bones have, in general terms, an ancestral pattern similar to that of Pleistocene humans and differing from H. sapiens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Burkitt`s lymphoma involving the femur in a 12 year old girl a rare ...

    African Journals Online (AJOL)

    The Diagnosis of Burkitt`s lymphoma with multicentre involvement of the left femur and abdominal visceral was reached.However it was not established whether femur was the primary or secondarily involved. This patient was started on Chemotherapy and she recovered well. Burkitt`s Lymphoma of a long bone are very rare ...

  4. Paucity of bone scan abnormalities in a child with multifocal osteomyelitis and disseminated sepsis

    International Nuclear Information System (INIS)

    Trpezanovski, J.; Porn, U.; Uren, R.; Howman-Giles, R.; Mansberg, R.

    2000-01-01

    Full text: We present an unusual case of multifocal osteomyelitis with minimal bone scan abnormalities and markedly discordant findings on Magnetic Resonance Imaging(MRI) and gallium scans. A seven-year-old female presented with left leg, right elbow pain and fever. A bone scan was performed. Mild increased vascularity was demonstrated on the dynamic and blood pool phases of the study in the area of the right elbow. In the delayed images there was a photopenic lesion in the left distal femoral metadiaphysis and also irregular uptake in the metaphyseal regions of the long bones. Low grade soft tissue tracer uptake was seen in the left thigh and right forearm. The patient deteriorated clinically and underwent further investigations with MRI and gallium scans. The MRI showed extensive abnormalities with mulitlocular fluid collection seen throughout most of the muscle groups of both thighs suggesting myositis with an associated cellulitis and osteomyelitis of the left femur. The gallium study was markedly abnormal with increased uptake in the distal 2/3rds of the left femur, proximal 1/2 of the right femur, right proximal forearm (mid forearm extending to mid upper arm), left proximal humerus and right hemithorax especially the lower zones. Staphylococcal aureus was cultured. The patient required intensive care management and slowly responded to antibiotic therapy and surgery to drain abscesses in the thighs. A bone marrow biopsy was normal and immunological tests were performed but a result has yet to be determined. The lack of increased bone uptake in the demonstrated areas of osteomyelitis maybe explained on the basis of an overwhelming infective process inhibiting the patient's healing response. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  5. Nanoscale characterization of bone-implant interface and biomechanical modulation of bone ingrowth

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Paul A. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States)]. E-mail: pclark4@gmail.com; Clark, Andrew M. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Rodriguez, Anthony [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Hussain, Mohammad A. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States); Mao, Jeremy J. [Tissue Engineering Laboratory MC 841, Departments of Anatomy and Cell Biology, Bioengineering, and Orthodontics, University of Illinois at Chicago, Chicago, 801 South Paulina Street, Illinois 60612 (United States)]. E-mail: jmao2@uic.edu

    2007-04-15

    Bone-implant interface is characterized by an array of cells and macromolecules. This study investigated the nanomechancial properties of bone-implant interface using atomic force microscopy in vitro, and the mechanical modulation of implant bone ingrowth in vivo using bone histomorphometry. Upon harvest of screw-type titanium implants placed in vivo in the rabbit maxilla and proximal femur for 4 weeks, nanoindentation was performed in the bone-implant interface at 60-{mu}m intervals radially from the implant surface. The average Young's Moduli (E) of the maxillary bone-implant interface was 1.13 {+-} 0.27 MPa, lacking significant differences at all intervals. In contrast, an increasing gradient of E was observed radially from the femur bone-implant interface: 0.87 {+-} 0.25 MPa to 2.24 {+-} 0.69 MPa, representing significant differences among several 60-{mu}m intervals. In a separate experiment, bone healing was allowed for 6 weeks for proximal femur implants. The right femoral implant received axial cyclic loading at 200 mN and 1 Hz for 10 min/d over 12 days, whereas the left femoral implant served as control. Cyclic loading induced significantly higher bone volume, osteoblast numbers per endocortical bone surface, mineral apposition rate, and bone formation rate than controls. These data demonstrate nanoscale and microscale characterizations of bone-implant interface, and mechanical modulation of bone ingrowth surrounding titanium implants.

  6. Nanoscale characterization of bone-implant interface and biomechanical modulation of bone ingrowth

    International Nuclear Information System (INIS)

    Clark, Paul A.; Clark, Andrew M.; Rodriguez, Anthony; Hussain, Mohammad A.; Mao, Jeremy J.

    2007-01-01

    Bone-implant interface is characterized by an array of cells and macromolecules. This study investigated the nanomechancial properties of bone-implant interface using atomic force microscopy in vitro, and the mechanical modulation of implant bone ingrowth in vivo using bone histomorphometry. Upon harvest of screw-type titanium implants placed in vivo in the rabbit maxilla and proximal femur for 4 weeks, nanoindentation was performed in the bone-implant interface at 60-μm intervals radially from the implant surface. The average Young's Moduli (E) of the maxillary bone-implant interface was 1.13 ± 0.27 MPa, lacking significant differences at all intervals. In contrast, an increasing gradient of E was observed radially from the femur bone-implant interface: 0.87 ± 0.25 MPa to 2.24 ± 0.69 MPa, representing significant differences among several 60-μm intervals. In a separate experiment, bone healing was allowed for 6 weeks for proximal femur implants. The right femoral implant received axial cyclic loading at 200 mN and 1 Hz for 10 min/d over 12 days, whereas the left femoral implant served as control. Cyclic loading induced significantly higher bone volume, osteoblast numbers per endocortical bone surface, mineral apposition rate, and bone formation rate than controls. These data demonstrate nanoscale and microscale characterizations of bone-implant interface, and mechanical modulation of bone ingrowth surrounding titanium implants

  7. A Systematic Review and Meta-Analysis of Ilizarov Methods in the Treatment of Infected Nonunion of Tibia and Femur.

    Directory of Open Access Journals (Sweden)

    Peng Yin

    Full Text Available Infected nonunion of tibia and femur are common in clinical practice, however, the treatment of these diseases has still been a challenge for orthopaedic surgeons. Ilizarov methods can eradicate infection, compensate bone defects and promote the bone union through progressive bone histogenesis. The objective of this systematic review was to review current available studies reporting on Ilizarov methods in the treatment of infected nonunion of tibia and femur, and to perform meta-analysis of bone and functional results and complications to evaluate the efficacy of Ilizarov methods.A comprehensive literature search was performed from the SCI, PubMed, Cochrane Library; and Embase between January 1995 and August 2015. Some major data were statistically analyzed using weighted means based on the sample size in each study by SPSS 13.0, including number of patients, mean age, mean previous surgical procedures, mean bone defects, mean length of follow-up, bone union, complications per patient, external fixation time, and external fixation index(EFI. Bone results (excellent, good, fair and poor rate, functional results (excellent, good, fair and poor rate and complications were analyzed by Stata 9.0.A total of 590 patients from 24 studies were included in this systematic review. The average of bone union rate was 97.26% in all included studies. The poor rate in bone results and functional results was 8% (95%CI, 0.04-0.12; I2 = 44.1%, P = 0.065 and 10% (95%CI, 0.05-0.14; I2 = 34.7%, P = 0.121 in patients with infected nonunion of tibia and femur treated by Ilizarov methods. The rate of refracture, malunion, infectious recurrence, knee stiffness, amputation, limb edema and peroneal nerve palsy was respectively 4%, 7%, 5%, 12%, 4%, 13% and 13%.Our systematic review showed that the patients with infected nonunion of tibia and femur treated by Ilizarov methods had a low rate of poor bone and functional results. Therefore, Ilizarov methods may be a good choice

  8. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    Science.gov (United States)

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  9. Elastic-plastic fracture mechanics of compact bone

    Science.gov (United States)

    Yan, Jiahau

    Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear

  10. Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur.

    Science.gov (United States)

    Hao, Yongqiang; Ma, Yongcheng; Wang, Xuepeng; Jin, Fangchun; Ge, Shengfang

    2012-04-01

    Damaged bone is sensitive to mechanical stimulation throughout the remodeling phase of bone healing. Muscle damage and muscular atrophy associated with open fractures and subsequent fixation are not beneficial to maintaining optimum conditions for mechanical stability. The aim of this study was to investigate whether local muscle atrophy and dysfunction affect fracture healing in a rat femur fracture model. We combined the rat model of a short period atrophy of the quadriceps with femur fracture. Forty-four-month-old male Wistar rats were adopted for this study. Two units of botulinum toxin-A (BXTA) were administered locally into the right side of the quadriceps of each rat, while the same dose of saline was injected into the contralateral quadriceps. After BXTA had been fully absorbed by the quadriceps, osteotomy was performed in both femurs with intramedullary fixation. Gross observation and weighing of muscle tissue, X-ray analysis, callus histology, and bone biomechanical testing were performed at different time points up to 8 weeks post-surgery. Local injection of BXTA led to a significant decrease in the volume and weight of the quadriceps compared to the control side. At the eighth week, the left side femurs of the saline-injected quadriceps almost reached bony union, and fibrous calluses were completely calcified into woven bone. However, a gap was still visible in the BXTA-treated side on X-ray images. As showed by bone histology, there were no mature osseous calluses or woven bone on the BXTA-treated side, but a resorption pattern was evident. Biomechanical testing indicated that the femurs of the BXTA-treated side exhibited inferior mechanical properties compared with the control side. The inferior outcome following BXTA injection, compared with saline injection, in terms of callus resistance may be the consequence of unexpected load and mechanical unsteadiness caused by muscle atrophy and dysfunction. Copyright © 2011 Orthopaedic Research Society.

  11. Bone Marrow Stromal Cells Contribute to Bone Formation Following Infusion into Femoral Cavities of a Mouse Model of Osteogenesis Imperfecta

    Science.gov (United States)

    Li, Feng; Wang, Xujun; Niyibizi, Christopher

    2010-01-01

    Currently, there are conflicting data in literature regarding contribution of bone marrow stromal cells (BMSCs) to bone formation when the cells are systemically delivered in recipient animals. To understand if BMSCs contribute to bone cell phenotype and bone formation in osteogenesis imperfecta bones (OI), MSCs marked with GFP were directly infused into the femurs of a mouse model of OI (oim). The contribution of the cells to the cell phenotype and bone formation was assessed by histology, immunohistochemistry and biomechanical loading of recipient bones. Two weeks following infusion of BMSCs, histological examination of the recipient femurs demonstrated presence of new bone when compared to femurs injected with saline which showed little or no bone formation. The new bone contained few donor cells as demonstrated by GFP fluorescence. At six weeks following cell injection, new bone was still detectable in the recipient femurs but was enhanced by injection of the cells suspended in pepsin solublized type I collagen. Immunofluorescence and immunohistochemical staining showed that donor GFP positive cells in the new bone were localized with osteocalcin expressing cells suggesting that the cells differentiated into osteoblasts in vivo. Biomechanical loading to failure in thee point bending, revealed that, femurs infused with BMSCs in PBS or in soluble type I collagen were biomechanically stronger than those injected with PBS or type I collagen alone. Taken together, the results indicate that transplanted cells differentiated into osteoblasts in vivo and contributed to bone formation in vivo; we also speculate that donor cells induced differentiation or recruitment of endogenous cells to initiate reparative process at early stages following transplantation. PMID:20570757

  12. Dietary Pseudopurpurin Improves Bone Geometry Architecture and Metabolism in Red-Bone Guishan Goats

    Science.gov (United States)

    Han, TieSuo; Li, Peng; Wang, JianGuo; Liu, GuoWen; Wang, Zhe; Ge, ChangRong; Gao, ShiZheng

    2012-01-01

    Red-colored bones were found initially in some Guishan goats in the 1980s, and they were designated red-boned goats. However, it is not understood what causes the red color in the bone, or whether the red material changes the bone geometry, architecture, and metabolism of red-boned goats. Pseudopurpurin was identified in the red-colored material of the bone in red-boned goats by high-performance liquid chromatography–electrospray ionization–mass spetrometry and nuclear magnetic resonance analysis. Pseudopurpurin is one of the main constituents of Rubia cordifolia L, which is eaten by the goats. The assessment of the mechanical properties and micro-computed tomography showed that the red-boned goats displayed an increase in the trabecular volume fraction, trabecular thickness, and the number of trabeculae in the distal femur. The mean thickness, inner perimeter, outer perimeter, and area of the femoral diaphysis were also increased. In addition, the trabecular separation and structure model index of the distal femur were decreased, but the bone mineral density of the whole femur and the mechanical properties of the femoral diaphysis were enhanced in the red-boned goats. Meanwhile, expression of alkaline phosphatase and osteocalcin mRNA was higher, and the ratio of the receptor activator of the nuclear factor kappa B ligand to osteoprotegerin was markedly lower in the bone marrow of the red-boned goats compared with common goats. To confirm further the effect of pseudopurpurin on bone geometry, architecture, and metabolism, Wistar rats were fed diets to which pseudopurpurin was added for 5 months. Similar changes were observed in the femurs of the treated rats. The above results demonstrate that pseudopurpurin has a close affinity with the mineral salts of bone, and consequently a high level of mineral salts in the bone cause an improvement in bone strength and an enhancement in the structure and metabolic functions of the bone. PMID:22624037

  13. OSTEOPLASTY BY G.A. ILIZAROV IN ORTHOPEDIC REHABILITATION OF PATIENTS WITH PRIMARY TUMORS OF LEG BONES

    Directory of Open Access Journals (Sweden)

    P. I. Balaev

    2013-01-01

    Full Text Available The analysis of orthopedic rehabilitation of 49 patients with primary tumors of leg bones using ostheosynthesis technique was presented. Patients with bone sarcoma underwent non-free osteoplasty by G.A. Ilizarov after combined treatment including radical tumor resection and neoadjuvant chemotherapy. In the group of patients with benign tumors the rehabilitation measures for anatomic-and-functional recovery of the limb operated were made in a single-stage fashion. The use of the transosseous osteosynthesis technologies according to Ilizarov allowed replacement of post-resection bone defects and optimal limb reconstruction not only in adults, but also in children with incomplete skeletal formation.

  14. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  15. Specific bone region localization of osteolytic versus osteoblastic lesions in a patient-derived xenograft model of bone metastatic prostate cancer

    Directory of Open Access Journals (Sweden)

    Takeshi Hirata

    2016-10-01

    Conclusion: PCSD1 cells reproducibly induced bone loss leading to osteolytic lesions at the ends of the femur, and, in contrast, induced aberrant bone formation leading to osteoblastic lesions along the femur shaft. Therefore, the interaction of PCSD1 cells with different bone region-specific microenvironments specified the type of bone lesion. Our approach can be used to determine if different bone regions support more therapy resistant tumor growth, thus, requiring novel treatments.

  16. Association of insulin resistance with near peak bone mass in the femur and lumbar spine of Korean adults aged 25-35: The Korean National Health and Nutrition Examination Survey 2008-2010

    Science.gov (United States)

    Choo, Min Soo; Choi, Se Rin; Han, Jun Hyun; Lee, Seong Ho

    2017-01-01

    Objective This study aimed to evaluate the relationship between insulin resistance and the bone mineral density (BMD) of femur and lumbar spine in Korean adults who are expected to exhibit near peak bone mass. Methods Data from the Korean National Health and Nutrition Examination Survey 2008–2010 were analyzed. A total of 2,750 participants aged 25−35 years were included. Insulin resistance was assessed using a homeostatic model assessment of insulin resistance (HOMA-IR) and serum fasting insulin. Results In a multivariate linear regression analysis, the HOMA-IR was significantly inversely associated with the BMD of the total hip (TH, β = −0.052, P = 0.002), femoral neck (FN, β = −0.072, Pinsulin was significantly inversely associated with the BMD of the TH (β = −0.055, P = 0.001), FN (β = −0.072, Pinsulin resistance may be independently and inversely associated with the near peak bone mass of the femur and lumbar spine. PMID:28704413

  17. Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits.

    Science.gov (United States)

    Eftekhari, Hadi; Jahandideh, Alireza; Asghari, Ahmad; Akbarzadeh, Abolfazl; Hesaraki, Saeed

    2017-08-01

    Segmental bone loss due to trauma, infection, and tumor resection and even non-union results in the vast demand for replacement and restoration of the function of the lost bone. The objective of this study is to utilize novel inorganic-organic nanocomposites for biomedical applications. Biodegradable implants have shown great promise for the repair of bone defects and have been commonly used as bone substitutes, which traditionally would be treated using metallic implants. In this study, 45 mature male New Zealand white rabbits 6-8 months and weighting 3-3.5 kg were examined. Rabbits were divided into three groups. Surgical procedures were done after an intramuscular injection of Ketamine 10% (ketamine hydrochloride, 50 mg/kg), Rompun 5% (xylazine, 5 mg/kg). Then an approximately 6 mm diameter - 5 mm cylinder bone defect was created in the femur of one of the hind limbs. After inducing the surgical wound, all rabbits were colored and randomly divided into three experimental groups of nine animals each: Group 1 received medical pure nanocomposite polycaprolactone (PCL) granules, Group 2 received hydroxyapatite and Group 3 was a control group with no treatment. Histopathological evaluation was performed on days 15, 30 and 45 after surgery. On day 45 after surgery, the quantity of newly formed lamellar bone in the healing site in PCL group was better than onward compared with HA and control groups. Finally, nanocomposite PCL granules exhibited a reproducible bone-healing potential.

  18. Effect of nonphytate phosphorus and phytase levels on broiler femur.

    Directory of Open Access Journals (Sweden)

    Luana Martins Schaly

    2009-03-01

    Full Text Available This experiment was carried out to evaluate the effect of nonphytate phosphorus (NPP and phytase levels on the weight, morphometry and weight/length index (WLI of broiler femurs at 21 and 42 days of age. One thousand, two hundred chicks were allocated in a completely randomized design and 4 x 3 factorial arrangement (NPP x phytase levels, with four replicates. The NPP levels, at each phase were of 0.45, 0.37, 0.29 and 0.21% in the initial phase, 0.41, 0.33, 0.25 and 0.17% in the growth phase, and of 0.37, 0.29, 0.21 and 0.13% in the final phase. The phytase levels used were 0, 500 and 1000U/kg of diet. At 21 and 42 days of age, 48 birds were sacrificed for femur collection. At 21 days, there was no effect (P > 0.05 of NPP x phytase interaction on bone parameters, but the NPP reduction decreased (P < 0.05 the weight, length and WLI of the femurs, and the inclusion of 500U/kg of phytase improved (P < 0.05 the weight and WLI of the bones. At 42 days of age, NPP x phytase interaction was significant (P < 0.05 for the weight and length, and birds fed diets with no phytase had femurs that were lighter and shorter when the lowest NPP levels were evaluated. However, the inclusion of 500 or 1000U/kg of phytase produced weights and lengths similar to those produced by treatment with recommended NPP levels, and the lower NPP levels evaluated caused a reduction (P < 0.05 in the diameter and WLI of femurs. It was concluded that diets with 0.29, 0.25 or 0.21% of NPP, with 500 U/kg of phytase, could be used with no negative effect on the femur quality in broilers from one to 42 days of age.

  19. Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery.

    Science.gov (United States)

    Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir

    2015-06-01

    The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.

  20. Minimally invasive registration for computer-assisted orthopedic surgery: combining tracked ultrasound and bone surface points via the P-IMLOP algorithm.

    Science.gov (United States)

    Billings, Seth; Kang, Hyun Jae; Cheng, Alexis; Boctor, Emad; Kazanzides, Peter; Taylor, Russell

    2015-06-01

    We present a registration method for computer-assisted total hip replacement (THR) surgery, which we demonstrate to improve the state of the art by both reducing the invasiveness of current methods and increasing registration accuracy. A critical element of computer-guided procedures is the determination of the spatial correspondence between the patient and a computational model of patient anatomy. The current method for establishing this correspondence in robot-assisted THR is to register points intraoperatively sampled by a tracked pointer from the exposed proximal femur and, via auxiliary incisions, from the distal femur. In this paper, we demonstrate a noninvasive technique for sampling points on the distal femur using tracked B-mode ultrasound imaging and present a new algorithm for registering these data called Projected Iterative Most-Likely Oriented Point (P-IMLOP). Points and normal orientations of the distal bone surface are segmented from ultrasound images and registered to the patient model along with points sampled from the exposed proximal femur via a tracked pointer. The proposed approach is evaluated using a bone- and tissue-mimicking leg phantom constructed to enable accurate assessment of experimental registration accuracy with respect to a CT-image-based model of the phantom. These experiments demonstrate that localization of the femur shaft is greatly improved by tracked ultrasound. The experiments further demonstrate that, for ultrasound-based data, the P-IMLOP algorithm significantly improves registration accuracy compared to the standard ICP algorithm. Registration via tracked ultrasound and the P-IMLOP algorithm has high potential to reduce the invasiveness and improve the registration accuracy of computer-assisted orthopedic procedures.

  1. Relationships between bone strength and bone quality. Three-dimensional imaging analysis in ovariectomized mice

    International Nuclear Information System (INIS)

    Wakabayashi, Suguru; Sakurai, Takashi; Kashima, Isamu

    2004-01-01

    Low-energy trauma resulting in fractures of the distal femur is often observed in elderly patients with osteoporosis; such fractures are often associated with treatment difficulties and poor prognosis. The purpose of this study was to clarify the factors that affect the bone strength of the distal femur. We used ovariectomized mice to demonstrate bone quality factors associated with deterioration of the strength of the distal femur. Ten-week old ICR-strain mice were ovariectomized or sham-ovariectomized. Total bone mineral density (BMD), total bone area, cortical BMD, cortical thickness, and trabecular BMD were measured by peripheral quantitative computed tomography in the distal metaphyseal region of the femora. As three-dimensional architectural parameters, the trabecular number, trabecular thickness (Tb.Th), trabecular separation, and connectivity density were measured in the same region by micro-computed tomography. The maximum load measured by compression testing of the distal metaphyseal region was regarded as the bone strength of each sample. No significant differences in total bone area or in cortical BMD were found between the groups. Bone strength showed the closest relationship with total BMD (r=0.834). Multiple regression analysis demonstrated that total BMD greatly depended on cortical thickness. The addition of Tb.Th to trabecular BMD markedly reflected bone strength (R=0.857), suggesting that Tb.Th affected bone strength more significantly than trabecular BMD. These findings suggested that deterioration of bone strength of the distal femur (metaphysis) was not caused by a reduction in cortical BMD, but was related to reduced cortical thickness, which reduced total BMD, and to trabecular BMD and architecture, in particular to reduced Tb.Th. (author)

  2. Exocrine glands in the legs of the social wasp Vespula vulgaris.

    Science.gov (United States)

    Nijs, Catherine; Billen, Johan

    2015-09-01

    This study brings a survey of the exocrine glands in the legs of Vespula vulgaris wasps. We studied workers, males, virgin queens as well as mated queens. A variety of 17 glands is found in the different leg segments. Among these, five glands are novel exocrine structures for social insects (trochanter-femur gland, ventrodistal tibial gland, distal tibial sac gland, ventral tibial gland, and ventral tarsomere gland). Most leg glands are present in the three leg pairs of all castes. This may indicate a mechanical function. This is likely for the numerous glands that occur near the articulation between the various leg segments, where lubricant production may be expected. Other possible functions include antenna cleaning, acting as a hydraulic system, or pheromonal. Further research including leg-related behavioural observations and chemical analyses may help to clarify the functions of these glandular structures in the legs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Risk of refracture through unicameral bone cysts of the proximal femur.

    Science.gov (United States)

    Norman-Taylor, Fabian H; Hashemi-Nejad, Aresh; Gillingham, Bruce L; Stevens, David; Cole, William G

    2002-01-01

    The authors determined the results after traction or traction and hip spica treatment of the initial fractures through unicameral bone cysts of the proximal femur in 20 children. All of the eight displaced fractures healed, but with coxa vara and avascular necrosis in one, coxa vara in a second, and coxa breva in a third. Spontaneous healing of the cyst occurred in three of the eight children; satisfactory healing was achieved and maintained after intralesional corticosteroid injections in four of the eight children. In the remaining child with a displaced fracture, reactivation of the cyst and exercise-related pain, indicative of an incipient refracture, occurred 3 years after initial presentation. All of the 12 undisplaced fractures healed without deformity or avascular necrosis. Intralesional corticosteroids were used in all of the 12 children because none of them showed spontaneous healing of their cysts. Satisfactory radiographic healing was achieved 1 year after presentation in all of the 12 children. However, one or more refractures resulting from reactivation of the cyst occurred in 6 of the 12 children 2 to 5 years after initial presentation. The results of this study indicate that satisfactory radiographic healing needs to be achieved by the end of the first year and needs to be maintained thereafter to prevent refractures.

  4. Age-predicted values for lumbar spine, proximal femur, and whole-body bone mineral density: results from a population of normal children aged 3 to 18 years

    Energy Technology Data Exchange (ETDEWEB)

    Webber, C.E. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada)]. E-mail: webber@hhsc.ca; Beaumont, L.F. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); Morrison, J. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); Sala, A. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada); Univ. of Milan-Bicocca, Monza (Italy); Barr, R.D. [McMaster Children' s Hospital, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Pediatrics, Hamilton, Ontario (Canada)

    2007-02-15

    We measured areal bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) at the lumbar spine and the proximal femur and for the total body in 179 subjects (91 girls and 88 boys) with no known disorders that might affect calcium metabolism. Results are also reported for lumbar spine bone mineral content (BMC) and for the derived variable, bone mineral apparent density (BMAD). Expected-for-age values for each variable were derived for boys and girls by using an expression that represented the sum of a steady increase due to growth plus a rapid increase associated with puberty. Normal ranges were derived by assuming that at least 95% of children would be included within 1.96 population standard deviations (SD) of the expected-for-age value. The normal range for lumbar spine BMD derived from our population of children was compared with previously published normal ranges based on results obtained from different bone densitometers in diverse geographic locations. The extent of agreement between the various normal ranges indicates that the derived expressions can be used for reporting routine spine, femur, and whole-body BMD measurements in children and adolescents. The greatest difference in expected-for-age values among the various studies was that arising from intermanufacturer variability. The application of published conversion factors derived from DXA measurements in adults did not account fully for these differences, especially in younger children. (author)

  5. Age-predicted values for lumbar spine, proximal femur, and whole-body bone mineral density: results from a population of normal children aged 3 to 18 years

    International Nuclear Information System (INIS)

    Webber, C.E.; Beaumont, L.F.; Morrison, J.; Sala, A.; Barr, R.D.

    2007-01-01

    We measured areal bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) at the lumbar spine and the proximal femur and for the total body in 179 subjects (91 girls and 88 boys) with no known disorders that might affect calcium metabolism. Results are also reported for lumbar spine bone mineral content (BMC) and for the derived variable, bone mineral apparent density (BMAD). Expected-for-age values for each variable were derived for boys and girls by using an expression that represented the sum of a steady increase due to growth plus a rapid increase associated with puberty. Normal ranges were derived by assuming that at least 95% of children would be included within 1.96 population standard deviations (SD) of the expected-for-age value. The normal range for lumbar spine BMD derived from our population of children was compared with previously published normal ranges based on results obtained from different bone densitometers in diverse geographic locations. The extent of agreement between the various normal ranges indicates that the derived expressions can be used for reporting routine spine, femur, and whole-body BMD measurements in children and adolescents. The greatest difference in expected-for-age values among the various studies was that arising from intermanufacturer variability. The application of published conversion factors derived from DXA measurements in adults did not account fully for these differences, especially in younger children. (author)

  6. High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?

    Science.gov (United States)

    Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula

    2017-03-01

    Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The petrous bone

    DEFF Research Database (Denmark)

    Jørkov, Marie Louise Schjellerup; Heinemeier, Jan; Lynnerup, Niels

    2009-01-01

    Intraskeletal variation in the composition of carbon (delta(13)C) and nitrogen (delta(15)N) stable isotopes measured in collagen is tested from various human bones and dentine. Samples were taken from the femur, rib, and petrous part of the temporal bone from well-preserved skeletons of both adults...... (n = 34) and subadults (n = 24). Additional samples of dentine from the root of 1st molars were taken from 16 individuals. The skeletal material is from a medieval cemetery (AD 1200-1573) in Holbaek, Denmark. Our results indicate that the petrous bone has an isotopic signal that differs significantly...... from that of femur and rib within the single skeleton (P bone and the 1st molar. The intraskeletal variation may reflect differences...

  8. Treatment of Unstable Trochanteric Femur Fractures: Proximal Femur Nail Versus Proximal Femur Locking Compression Plate.

    Science.gov (United States)

    Singh, Ashutosh Kumar; Narsaria, Nidi; G R, Arun; Srivastava, Vivek

    Unstable trochanteric femur fractures are common fractures that are difficult to manage. We conducted a prospective study to compare functional outcomes and complications of 2 different implant designs, proximal femur nail (PFN) and proximal femur locking compression plate (PFLCP), used in internal fixation of unstable trochanteric femur fractures. On hospital admission, 48 patients with unstable trochanteric fractures were randomly assigned (using a sealed envelope method) to treatment with either PFN (24 patients) or PFLCP (24 patients). Perioperative data and complications were recorded. All cases were followed up for 2 years. The groups did not differ significantly (P > .05) in operative time, reduction quality, complications, hospital length of stay, union rate, or time to union. Compared with the PFLCP group, the PFN group had shorter incisions and less blood loss. Regarding functional outcomes, there was no significant difference in mean Harris Hip Score (P = .48) or Palmer and Parker mobility score (P = .58). Both PFN and PFLCP are effective in internal fixation of unstable trochanteric femur fractures.

  9. Influence of cortical endplates on ultrasonic properties of trabecular bone

    International Nuclear Information System (INIS)

    Kim, Yoon Mi; Lee, Kang Il

    2015-01-01

    The present study investigated the influence of thick cortical endplates on the ultrasonic properties of trabecular bone in a femur with a high fracture risk. Twelve trabecular bone samples were prepared from bovine femurs, and acrylic plates with thicknesses of 1.25, 1.80, and 2.75 mm were manufactured to simulate the cortical endplates using acrylic with a density and a sound speed similar to cortical bone. Although the thickness of the acrylic plates attached to the two sides of the trabecular bone increased, high correlations were observed between the speed of sound and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.80-0.86. High correlations were also observed between the attenuation coefficient at 0.5 mm and the apparent bone density of the trabecular bone, with Pearson's correlation coefficients of 0.84-0.91. These results suggest that the speed of sound and attenuation coefficient at a specific frequency measured in a femur with relatively thick cortical endplates compared to the calcaneus could be used as indices for predicting the bone mineral density of the femur.

  10. Metallographic examination of a failed Jewett nail-plate from a human femur

    International Nuclear Information System (INIS)

    Gray, R.J.; Zirkel, L.G. Jr.

    1976-01-01

    A type 316L wrought stainless steel Jewett nail-plate is one of several implant designs for bridging fractures in the proximal end of the femur. A soldier received a high velocity projectile in the trochanteric region of the femur. He was treated for a subtrochanteric fracture and greater trochanteric bone loss. After 9 months, hip varus angulation was progressively increasing. A Jewett nail-plate was inserted after valgus osteotomy and bone grafting of the unhealed fracture. The nail-plate fractured three weeks after surgery. Optical and scanning electron microscopy related the origin of failure to an impactor failure and subsequent microscopic scoring of the nail-plate during insertion into the abnormally hard femoral head. Photomicrographs showing the implant failure and evidences of corrosion after the short time in the body are presented. 12 figs

  11. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  12. Ubx regulates differential enlargement and diversification of insect hind legs.

    Directory of Open Access Journals (Sweden)

    Najmus Mahfooz

    2007-09-01

    Full Text Available Differential enlargement of hind (T3 legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug and Acheta domesticus (house cricket. In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs.

  13. Note on glands present in meliponinae (Hymenoptera, Apidae bees legs

    Directory of Open Access Journals (Sweden)

    Carminda da Cruz-Landim

    1998-01-01

    Full Text Available The present paper reports the presence of glandular structures in legs of some stingless bee species. The glands appear as: the epidermis transformation in a glandular epithelium as in basitarsus, an epithelial sac inside the segment as in the femur of queens or in the last tarsomere, as round glandular cells, scattered or forming groupments. The saculiform gland of femur is present only in queens, the other glands are present in males, queens and workers of the studied species, apparently without any type of polymorphism. This occurrence seems indicate that the function of these glands have not to do with the sociality or specific behavior of castes.

  14. Chondrosarcoma of the femur with histology-imaging correlation of tumor growth--preliminary observations concerning periosteal new bone formation and soft tissue extension.

    Science.gov (United States)

    Steiner, German C; Schweitzer, Mark E; Kenan, Samuel; Abdelwahab, Ibrahim F

    2011-01-01

    The objective of this study was, in chondrosarcoma (CHS) of the femur, to evaluate by radiologic-pathologic correlation, the degree of tumor growth, cortical destruction, periosteal reaction, and soft tissue extension present. Eight cases of histologically proven CHS of the femur were studied. All cases were resected, evaluated histologically with coronal slabs, and compared with radiographs and magnetic resonance imaging (MRI) scans. In two resected specimens, the tumors were studied in more detail; along with coronal slabs, axial sections of the remaining anterior and posterior halves of both tumors were taken, and the bone specimens were X-rayed and examined histologically. CHS initially involved the medullary cavity and subsequently destroyed the cortex; first, by endosteal scalloping and, second, by subsequent invasion and destruction of the cortex. During this process, there was periosteal new bone formation (PNBF), with increased cortical thickness, the degree of which often correlated with the degree of cortical destruction. In the areas of cortical thickening of three cases, a "grey line" was seen on MRI that separated the cortex from the periosteal new bone; the line, in reality,is a space between the two structures. The presence of this line suggests that the tumor does not extend beyond the cortex. PNBF occurred in all cases and varied in thickness. It frequently developed independent of direct periosteal tumor involvement. The periosteum of one case contained porotic bone with interposed marrow fat, which was easily misinterpreted as tumor extension on MRI. Expansion and remodeling of the femoral diaphysis in CHS, with widening of the medullary cavity, is usually due to extensive cortical destruction with PNBF. Soft tissue extension was present in five cases and apparently occurred by two different mechanisms: direct tumor destruction of the cortex and periosteum, with extension into the soft tissues; and subtle MRI occult tumor permeation through the

  15. Bisphosphonate-associated atypical sub-trochanteric femur fractures: paired bone biopsy quantitative histomorphometry before and after teriparatide administration.

    Science.gov (United States)

    Miller, Paul D; McCarthy, Edward F

    2015-04-01

    Bisphosphonate-associated atypical sub-trochanteric femur fractures (ASFF) may be seen with long-term bisphosphonate use, though these fractures are also seen in patients never exposed to bisphosphonates. One theory for the mechanism of action whereby bisphosphonates may induce these ASFF is over-suppression of bone turnover. Bisphosphonates suppress bone turnover, but in bisphosphonate clinical trials, over-suppression defined whether by maintaining the biochemical markers of bone turnover below the defined reference range or by quantitative bone histomorphometry, has not been observed. We studied 15 clinic patients referred to The Colorado Center for Bone Research (CCBR) after they had a bisphosphonate-associated ASFF and performed quantitative bone histomorphometry both before and after 12 months of teriparatide (20µg SQ/day). All patients had been on long-term alendronate (mean = 7 years, range: 6-11 years) and had already had intramedullary rods placed when first seen (6 weeks to 7 months after rod placement). Alendronate had been discontinued in all patients at the time of their first clinic visit to CCBR. All of the fractures fulfilled The American Society for Bone and Mineral Research major radiological criteria for ASFF. Three key dynamic histomorphometric features show that 7 of the 15 patients had unmeasurable bone formation, mineralizing surface, and mineral apposition, while the other 8 patients had measurable dynamic parameters; although for all 15 patients, the mean values for all 3 dynamic parameters was far below the average for the published normal population. Administration of teriparatide was associated with an increase in all 3 dynamic histomorphometric parameters. Baseline bone turnover markers did not correlate with the baseline histomorphometry. While there is heterogeneity in the bone turnover in patients with bisphosphonate ASFF, there is a large portion in this uncontrolled series that had absent bone turnover at the standard biopsy site

  16. Bioceramic inlays do not improve mechanical incorporation of grit-blasted titanium stems in the proximal sheep femur.

    Science.gov (United States)

    Keränen, Pauli; Koort, Jyri; Itälä, Ari; Ylänen, Heimo; Dalstra, Michel; Hupa, Mikko; Kommonen, Bertel; Aro, Hannu T

    2010-03-15

    The aim of the present study was to determine, if bioactive glass (BG) surface inlays improve osseointegration of titanium implants in the proximal femur of adult sheep. In simulation of uncemented primary stems (nine animals), only the proximal part of the implants was grit-blasted and three surface slots of the grit-blasted region were filled with sintered BG microspheres. Primary stems were implanted using press-fit technique. In revision stem simulation (eight animals), grit-blasting was extended over the whole implant and seven perforating holes of the stem were filled by sintered BG granules. Revision stems were implanted with a mixture of autogenous bone graft and BG granules. Comparison with solid partially or fully grit-blasted control stems implanted in the contralateral femurs was performed in the primary and revision stem experiments at 12 and 25 weeks, respectively. Implant incorporation was evaluated by torsional failure testing and histomorphometry. Only one-third of the primary stems anchored mechanically to bone. The revision stems incorporated better and the BG inlays of the revision stems showed ingrowth of new bone. However, there were no significant differences in the torsional failure loads between the stems with BG inlays and the control stems. In conclusion, surface BG inlays gave no measurable advantage in mechanical incorporation of grit-blasted titanium implants. Overall, the proximal sheep femur, characterized by minimal amount of cancellous bone and the presence of adipocytic bone marrow, seemed to present compromised bone healing conditions. (c) 2009 Wiley Periodicals, Inc.

  17. A retrospective review of bone tunnel enlargement after anterior cruciate ligament reconstruction with hamstring tendons fixed with a metal round cannulated interference screw in the femur.

    Science.gov (United States)

    Kobayashi, Masahiko; Nakagawa, Yasuaki; Suzuki, Takashi; Okudaira, Shuzo; Nakamura, Takashi

    2006-10-01

    To assess bone tunnel enlargement after anterior cruciate ligament (ACL) reconstruction with the use of hamstring tendons fixed with a round cannulated interference (RCI) screw in the femur. A consecutive series of 30 ACL reconstructions performed with hamstring tendons fixed with an RCI screw in the femur and with staples via Leeds-Keio ligament in the tibia was retrospectively reviewed. The clinical outcome was evaluated through the Lysholm score. Anterior instability was tested by Telos-SE (Telos Japan, Tokyo, Japan) measurement. The location and angle of each femoral and tibial tunnel were measured with the use of plain radiographs, and bone tunnel enlargement greater than 2 mm detected any time 3, 6, 12, and 24 months postoperatively was defined as positive. Each factor (location and angle of the tunnels, sex, affected side, age, Lysholm score, and Telos-SE measurement) was compared between enlarged and nonenlarged groups. Positive enlargement of the bone tunnel (>2.0 mm) was observed in 36.7% (11 of 30) on the femoral side and 33.3% (10 of 30) on the tibial side, and in 6 knees of both sides. Half of patients (15 of 30) had an enlarged tunnel on the femoral or the tibial side until 1 year postoperatively. In most cases, enlargement reached maximum at 6 months postoperatively. Female patients tended to have an enlarged tunnel, especially on the femoral side (P < .05). Tunnel enlargement was not correlated with location and angle of the tunnels. Moreover, no difference was found in Lysholm score and Telos-SE measurement between enlarged and nonenlarged groups, although the nonenlarged group tended to exhibit higher Lysholm score and lesser instability. Bone tunnel enlargement of the femoral or tibial side was observed in half of patients (6 in both sides, 5 only in the femur, and 4 only in the tibia) after ACL reconstruction was performed with a hamstring tendon fixed with an RCI screw. Female patients had a greater chance for enlargement of the femoral tunnel

  18. CALCANEAL MINERAL DENSITY IN CHILDREN ATHLETES AND TAKE-OFF LEG

    Directory of Open Access Journals (Sweden)

    Borislav Obradović

    2010-06-01

    Full Text Available It is well-known that physical activity has an anabolic effect on the bone tissue. To examine the influence of the take-off lower limb to the bone density we studied a group of prepubertal boys and girls at the initial phase of their peak bone mass acquisition. A sample consisted of 60 subjects ie., 32 soccer players (boys, 10.7±0.5 years old and 28 swimmers (15 girls and 13 boys, 10.8±0.8 years old, who had performed at least one year of high-level sport training (10-15 hours per week for soccer players, 8-12 hours per week for swimmers. The sample was divided into two groups: the first consisted of 40 subjects, with the left take-off leg, while the second consisted of 20 subjects, with the right take-off leg. The bone mineral density (BMD measurements of the left and the right calcaneus were performed using ultrasound densitometer “Sahara” (Hologic, Inc., MA, USA. There were no significant differences between the groups in regard to BUA and SOS of both the left and the right take-off lower legs. Mean BUA of the take-off left leg and the take-off right leg were different, but not significantly (p>0.05. Likewise, mean SOS of the take-off left leg and the take-off right leg were different, but it was not significant (p>0.05. The results do not indicate that the take-off lower limb has an influence on calcaneal bone mineral density.

  19. Evaluation of laser photobiomodulation on bone defect in the femur of osteoporotic rats: a Raman spectral study

    Science.gov (United States)

    Soares, Luiz Guilherme P.; Aciole, Jouber Mateus d. S.; Neves, Bruno Luiz R. C.; Silveira, Landulfo; Pinheiro, Antônio L. B.

    2015-03-01

    Phototherapies have shown positive effects on the bone repair process, increasing the blood supply to the injured area. The aim of this study was to assess through Raman spectroscopy, the efficacy of laser phototherapy (λ = 780 nm, P = 70 mW, CW, 20.4 J/cm2 per session, 163.2 J/cm2 per treatment) on the bone repair process of osteoporotic rats. The osteoporosis induction was achieved by ovariectomy surgery. Thirty Wistar rats were divided into 4 groups (Basal; OVX, OVX + Clot and OVX + Clot + Laser), then subdivided into 2 subgroups according to the experimental time (15 and 30 days). After the osteoporosis induction time (60 days), a bone defect with 2 mm was created with a trephine drill in the right femur in the animals of groups OVX, Clot and Clot + Laser. After surgery, the irradiation protocol was applied in the same groups on repeated sessions every 48 hours during 15 days. The samples were analyzed by Raman Spectroscopy to assess the inorganic content of phosphate and carbonated hydroxyapatite (~960 and 1070 cm-1, respectively) and organic lipids and proteins (~1454 cm-1). Statistical analysis (ANOVA, Student-T test) showed significant difference between groups Basal, OVX + Clot, and OVX + Clot + Laser for the inorganic content peaks at ~960 (p≤0.001), and ~1070 cm-1 (p≤0.001) in both periods of 15 and 30 days, however on peak at ~1450 cm-1 no differences were detected. It was concluded that the Laser phototherapy increased deposition of HA on bone repair process of osteoporotic rats.

  20. Proximal Femur Volumetric Bone Mineral Density and Mortality: 13 Years of Follow-Up of the AGES-Reykjavik Study.

    Science.gov (United States)

    Marques, Elisa A; Elbejjani, Martine; Gudnason, Vilmundur; Sigurdsson, Gunnar; Lang, Thomas; Sigurdsson, Sigurdur; Aspelund, Thor; Meirelles, Osorio; Siggeirsdottir, Kristin; Launer, Lenore; Eiriksdottir, Gudny; Harris, Tamara B

    2017-06-01

    Bone mineral density (BMD) has been linked to mortality, but little is known about the independent contribution of each endosteal bone compartment and also the rate of bone loss to risk of mortality. We examined the relationships between (1) baseline trabecular and cortical volumetric BMD (vBMD) at the proximal femur, and (2) the rate of trabecular and cortical bone loss and all-cause mortality in older adults from the AGES-Reykjavik study. The analysis of trabecular and cortical vBMD and mortality was based on the baseline cohort of 4654 participants (aged ≥66 years) with a median follow-up of 9.4 years; the association between rate of bone loss and mortality was based on 2653 participants with bone loss data (median follow-up of 5.6 years). Analyses employed multivariable Cox-proportional models to estimate hazard ratios (HRs) with time-varying fracture status; trabecular and cortical variables were included together in all models. Adjusted for important confounders, Cox models showed that participants in the lowest quartile of trabecular vBMD had an increased risk of mortality compared to participants in other quartiles (HR = 1.12; 95% confidence interval (CI), 1.01 to 1.25); baseline cortical vBMD was not related to mortality (HR = 1.08; 95% CI, 0.97 to 1.20). After adjustment for time-dependent fracture status, results were attenuated and not statistically significant. A faster loss (quartile 1 versus quartiles 2-4) in both trabecular and cortical bone was associated with higher mortality risk (HR = 1.37 and 1.33, respectively); these associations were independent of major potential confounders including time-dependent incident fractures (HR = 1.32 and 1.34, respectively). Overall, data suggest that faster bone losses over time in both the trabecular and cortical bone compartments are associated with mortality risk and that measurements of change in bone health may be more informative than single-point measurements in explaining mortality

  1. Locking plate and fibular strut-graft augmentation in the reconstruction of unicameral bone cyst of proximal femur in the paediatric population.

    Science.gov (United States)

    Jamshidi, Khodamorad; Mirkazemi, Masoud; Izanloo, Azra; Mirzaei, Alireza

    2018-01-01

    Several therapeutic strategies have been used for managing unicameral bone cyst (UBC) of the proximal femur. However, there is insufficient evidence to support one treatment over another, and the optimal treatment is controversial. This study aims at describing our experience with surgical reconstruction of paediatric UBCs of the proximal femur using a proximal locking plate and fibular strut allograft. In total, 14 consecutive paediatric patients with Dormans types IB (four cases) and IIB (10 cases) UBC were assessed. Mean patient age was 8.6 ± 2.3 years, and mean follow-up period was 41.7 ± 29.8 months. Six patients (42.8%) were referred with a pathologic fracture. Clinical/radiological outcome and complication rates were evaluated at the final follow-up session. No cysts were Capanna's class III (recurrence) or IV (no response). Complete healing (Capanna's class I) was seen in ten cysts, while four other cysts healed with residual radiolucent areas (Capanna's class II). Mean healing period was 14.1 ± 5.1 (9-24 months). One patient had superficial infection, one heterotopic ossification, and one mild coxa vara, and mean Musculoskeletal Tumor Society (MSTS) score was 99.5%. According to our results, locking plate and fibular strut graft in Dormans classification types IB and IIB results in a favorable outcome in managing UBC of the proximal femur in the paediatric population.

  2. Using Anisotropic 3D Minkowski Functionals for Trabecular Bone Characterization and Biomechanical Strength Prediction in Proximal Femur Specimens

    Science.gov (United States)

    Nagarajan, Mahesh B.; De, Titas; Lochmüller, Eva-Maria; Eckstein, Felix; Wismüller, Axel

    2017-01-01

    The ability of Anisotropic Minkowski Functionals (AMFs) to capture local anisotropy while evaluating topological properties of the underlying gray-level structures has been previously demonstrated. We evaluate the ability of this approach to characterize local structure properties of trabecular bone micro-architecture in ex vivo proximal femur specimens, as visualized on multi-detector CT, for purposes of biomechanical bone strength prediction. To this end, volumetric AMFs were computed locally for each voxel of volumes of interest (VOI) extracted from the femoral head of 146 specimens. The local anisotropy captured by such AMFs was quantified using a fractional anisotropy measure; the magnitude and direction of anisotropy at every pixel was stored in histograms that served as a feature vectors that characterized the VOIs. A linear multi-regression analysis algorithm was used to predict the failure load (FL) from the feature sets; the predicted FL was compared to the true FL determined through biomechanical testing. The prediction performance was measured by the root mean square error (RMSE) for each feature set. The best prediction performance was obtained from the fractional anisotropy histogram of AMF Euler Characteristic (RMSE = 1.01 ± 0.13), which was significantly better than MDCT-derived mean BMD (RMSE = 1.12 ± 0.16, p<0.05). We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding regional trabecular bone quality and contribute to improved bone strength prediction, which is important for improving the clinical assessment of osteoporotic fracture risk. PMID:29170581

  3. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    Energy Technology Data Exchange (ETDEWEB)

    Akamaguna, A I; Odita, J C; Ugbodaga, C I; Okolo, A A

    1986-01-01

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.).

  4. Bone and soft tissue components of the leg in infants with protein calorie malnutrition

    International Nuclear Information System (INIS)

    Akamaguna, A.I.; Odita, J.C.; Ugbodaga, C.I.; Okolo, A.A.

    1986-01-01

    The measurements of muscle, fat and cortical thickness were made on leg radiographs of 40 kwashiorkhor infants and were compared with those of 32 normal infants. There is a significant decrease in muscle cylinder ratio, an index of the contribution of muscle to calf thickness in kwashiorkhor. The loss of bone cortex in kwashiorkhor is due mainly to failure of appositional growth. The muscle cylinder ratio in normal Nigerian infants in much higher than has been reported amongst Caucasians. (orig.)

  5. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications

    International Nuclear Information System (INIS)

    Nirmala, R.; Sheikh, Faheem A.; Kanjwal, Muzafar A.; Lee, John Hwa; Park, Soo-Jin; Navamathavan, R.; Kim, Hak Yong

    2011-01-01

    Bovine femur bone hydroxyapatite (HA) containing silver (Ag) nanoparticles was synthesized by thermal decomposition method and subsequent reduction of silver nitrate with N,N-dimethylformamide (DMF) in the presence of poly(vinylacetate) (PVAc). The structural, morphological, and chemical properties of the HA–Ag nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). TEM images showed that the Ag nanoparticles with size ranging from 8 to 20 nm and were arranged at the periphery of HA crystals. Bactericidal activity of HA–Ag with different concentration of Ag nanoparticles immobilized on the surface of HA was investigated against gram-positive Staphylococcus aureus (S. aureus, non-MRSA), Methicillin resistant S. aureus (MRSA) and gram-negative Escherichia coli (E.coli) by the disc diffusion susceptibility test. The HA–Ag nanoparticles showed that broad spectrum activity against non-MRSA, MRSA, and E. coli bacterial strains.

  6. Mineral to matrix ratio determines biomaterial and biomechanical properties of rat femur--application of Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Takata, Shinjiro; Yonezu, Hiroshi; Shibata, Akira; Enishi, Tetsuya; Sato, Nori; Takahashi, Mitsuhiko; Nakao, Shigetaka; Komatsu, Koji; Yasui, Natsuo

    2011-08-01

    We studied the changes of biomaterial and biomechanical properties of the rat femur during development. Thirty male Wistar rats were allocated to 6 groups: aged 6 weeks (n=5), 9 weeks (n=5), 12 weeks (n=5), 15 weeks (n=5), 24 weeks (n=5), and 36 weeks (n=5). The mineral to matrix ratio (M/M ratio) of rat femur by Fourier transform infrared spectroscopy was 0.97 ± 0.10 at the age of 6 weeks, and reached the maximum of 1.52 ± 0.17 at the age of 36 weeks. Total bone mineral density (BMD) by peripheral quantitative computed tomography of the femoral shaft aged 6 weeks was 479.1 ± 58.7 mg/cm(3), and reached the maximum of 1022.2 ± 42.3 mg/cm(3) at the age of 36 weeks. The ultimate load to failure of the femur of the rat aged 6 weeks by the three-point bending test was 29.6 ± 6.1 N. At the age of 36 weeks, the ultimate load to failure of the rat femur increased to the maximum of 283.5 ± 14.7 N. The results showed that the M/M ratio increased with development as total BMD and bone strength increased. The results suggest that the M/M ratio is one of the determinants of the biomaterial and biomechanical properties of bone.

  7. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    International Nuclear Information System (INIS)

    Yoon, S; Dewhirst, M; Oldham, M; Boss, M; Birer, S

    2016-01-01

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm 3 ) ex vivo tissue samples at a resolution of 12.9µm 3 per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10, 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied

  8. Bone Composition in Male and Female Göttingen Minipigs Fed Variously Restrictedly and near ad Libitum

    DEFF Research Database (Denmark)

    Bollen, P. J. A.; Lemmens, A. G.; Beynen, A. C.

    2006-01-01

    diet 2 was a high fat, low fibre diet. A higher level of feed intake led to a significant increase in the following parameters: body weight development, bone size (length and width of rib and femur), bone volume (rib), bone (rib) dry matter and ash content (mg), as well as bone density (femur...... development, bone volume, and dry matter and ash content of the rib (mg) as compared to males. Also bone mineral concentrations in the femur, expressed as calcium, phosphorus and magnesium in mg/cm3, were significantly higher in females as compared to males, as was the Ca:Pi ratio. Bone density measurements...... of the femur’s proximal and distal segment, and total femur bone density (g/cm2) were significantly higher in females as compared to males. Feed conversion in females was significantly lower than in males. This study illustrates that female and male minipigs show distinct differences in body and bone...

  9. Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications

    Science.gov (United States)

    Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan

    2006-06-01

    In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.

  10. Forecasting Proximal Femur and Wrist Fracture Caused by a Fall to the Side during Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Sulkowski, C.; Ruehl, K.; Licata, A.

    2008-01-01

    The possibility of bone fracture in space is a concern due to the negative impact it could have on a mission. The Bone Fracture Risk Module (BFxRM) developed at the NASA Glenn Research Center is a statistical simulation that quantifies the probability of bone fracture at specific skeletal locations for particular activities or events during space exploration missions. This paper reports fracture probability predictions for the proximal femur and wrist resulting from a fall to the side during an extravehicular activity (EVA) on specific days of lunar and Martian exploration missions. The risk of fracture at the proximal femur on any given day of the mission is small and fairly constant, although it is slightly greater towards the end of the mission, due to a reduction in proximal femur bone mineral density (BMD). The risk of wrist fracture is greater than the risk of hip fracture and there is an increased risk on Mars since it has a higher gravitational environment than the moon. The BFxRM can be used to help manage the risk of bone fracture in space as an engineering tool that is used during mission operation and resource planning.

  11. Confocal laser scanning microscopy in study of bone calcification

    Science.gov (United States)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  12. In vivo bone engineering in a rabbit femur.

    Science.gov (United States)

    Fialkov, Jeffrey A; Holy, Chantal E; Shoichet, Molly S; Davies, John E

    2003-05-01

    The repair of bone defects in reconstructive surgery has significant limitations. Donor site morbidity, limited supply of autograft, and risks and complications associated with allografting and synthetic bone substitutes are among the most significant. In an effort to address these problems, the search for an ideal bone replacement has led to the development of a new method of poly(lactide-co-glycolide) (PLGA) foam processing, enabling the production of a biodegradable scaffold with similar porosity to human trabecular bone. In this study, these scaffolds were evaluated for bone repair in vivo in a femoral critical-sized segmental defect in New Zealand White (NZW) rabbits. Three groups of nine animals were investigated. In the first group, the critical-sized defects were empty. Scaffolds alone were implanted in the second group, whereas autologous bone marrow cell-loaded scaffolds were implanted in the third group. Animals ambulated freely for 8 weeks after surgery, and bone formation throughout the defects was serially assessed radiographically and quantified using a bone formation index (BFI) measure. Postmortem radiography and histology were also undertaken to examine bone formation. There was a significant effect of applying this technology to the amount of bone formed in the defects as determined by the BFI (F = 3.41, P < 0.05). The mean BFI for the cell-loaded scaffolds was greater than for the control group at all measured time points (2-, 4-, 6-, and 8-week radiographs). This difference was significant for the 2- and 8-week radiographs (P < 0.05). Qualitative histological assessment confirmed these findings. We concluded from these findings that these PLGA scaffolds loaded with marrow-derived progenitor cells yield significant bone formation in a critical-sized rabbit femoral defect. This technology comprising a novel scaffold design and autologous cells may provide an alternative to current strategies for reconstruction of bony defects.

  13. Benefits of Ilizarov automated bone distraction for nerves and articular cartilage in experimental leg lengthening

    OpenAIRE

    Shchudlo, Nathalia; Varsegova, Tatyana; Stupina, Tatyana; Shchudlo, Michael; Saifutdinov, Marat; Yemanov, Andrey

    2017-01-01

    AIM To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage. METHODS Twenty-nine dogs were divided in two experimental groups: Group M - leg lengthening with manual distraction (1 mm/d in 4 steps), Group A - automated distraction (1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius ...

  14. A new anthropometric phantom of the human leg for calibrating in vivo measurements of stable lead in bone using x-ray fluorescence

    International Nuclear Information System (INIS)

    Spitz, Henry; Jenkins, Mark; Lodwick, Jeffrey

    1997-01-01

    Full text. A new anthropometric phantom of the human leg has been developed for calibrating in vivo measurements of stable lead in the bone using x-ray fluorescence. The phantom reproduces the shape and radiological characteristics of the midshaft of the human leg and includes tissue substitutes for cortical bone, bone marrow, and muscle which have been formulated using polyurethanes and calcium carbonate to provide the desired characteristics of density x-ray attenuation, and calcium content. The phantom includes a set of simulated tibia bones, each containing a precisely known concentration of stable lead, that can be easily inserted into the leg. Formerly, of a set of plexiglas cylinders filled with plaster of-paris, each containing a known lead content, was the consensus standard calibration phantom. Tissue substitute materials used in the new anthropometric calibration phantom are much more uniform in density and composition than the plaster-of-paris phantoms and its realistic appearance provides a practical means of evaluating the variability in measurements results due to the changes in subject-detector positioning. Use of the new anthropometric calibration phantom results in a energy spectrum that closely resembles the spectrum observed when measuring a human subject. The energy spectrum produced by the plaster-of-paris phantom lacks the substantial Compton Scattering component produced by the leg muscle mass which leads to unrealistic estimates of in vivo measurement sensitivity. The minimum detection limit (MDL) for in vivo measurement of stable lead in bone, using an efficiency derived from the new anthropometric phantom, ranges from 18,6 parts per million (ppm) to 26,3 ppm using the K β1,3 /Elastic ratio or the K 1 /Elastic ratio, respectively. These values are significantly greater than the MDL cited in the literature obtained using a efficiency derived the conventional cylindrical plaster-of-paris phantom. Likewise, the realistic shape of the new

  15. Recurrent Proximal Femur Fractures in a Teenager With Osteogenesis Imperfecta on Continuous Bisphosphonate Therapy: Are We Overtreating?

    Science.gov (United States)

    Vasanwala, Rashida F; Sanghrajka, Anish; Bishop, Nicholas J; Högler, Wolfgang

    2016-07-01

    Long-term bisphosphonate (BP) therapy in adults with osteoporosis is associated with atypical femoral fractures, caused by increased material bone density and prolonged suppression of bone remodeling which may reduce fracture toughness. In children with osteogenesis imperfecta (OI), long-term intravenous BP therapy improves bone structure and mass without further increasing the already hypermineralized bone matrix, and is generally regarded as safe. Here we report a teenage girl with OI type IV, who was started on cyclical intravenous pamidronate therapy at age 6 years because of recurrent fractures. Transiliac bone biopsy revealed classical structural features of OI but unusually low bone resorption surfaces. She made substantial improvements in functional ability, bone mass, and fracture rate. However, after 5 years of pamidronate therapy she started to develop recurrent, bilateral, nontraumatic, and proximal femur fractures, which satisfied the case definition for atypical femur fractures. Some fractures were preceded by periosteal reactions and prodromal pain. Pamidronate was discontinued after 7 years of therapy, following which she sustained two further nontraumatic femur fractures, and continued to show delayed tibial osteotomy healing. Despite rodding surgery, and very much in contrast to her affected, untreated, and normally mobile mother, she remains wheelchair-dependent. The case of this girl raises questions about the long-term safety of BP therapy in some children, in particular about the risk of oversuppressed bone remodeling with the potential for microcrack accumulation, delayed healing, and increased stiffness. The principal concern is whether there is point at which benefit from BP therapy could turn into harm, where fracture risk increases again. This case should stimulate debate whether current adult atypical femoral fracture guidance should apply to children, and whether low-frequency, low-dose cyclical, intermittent, or oral treatment

  16. Ontogeny of the female femur: geometric morphometric analysis applied on current living individuals of a Spanish population

    Science.gov (United States)

    Pujol, Aniol; Rissech, Carme; Ventura, Jacint; Badosa, Joaquim; Turbón, Daniel

    2014-01-01

    In this study we describe the development of the female femur based on the analysis of high-resolution radiographic images by means of geometric morphometrics, while assessing the usefulness of this method in these kinds of studies. The material analysed consisted of digital images in DICOM format (telemetries), corresponding to 184 left femora in anterior view, obtained from the database of the Hospital Sant Joan de Déu of Barcelona (Spain). Bones analysed corresponded to individuals from 9 to 14 years old. Size and shape variation of the entire femur was quantified by 22 two-dimensional landmarks. Landmark digitisation errors were assessed using Procrustes anova test. Centroid size (CS) variation with age was evaluated by an anova test. Shape variation was assessed by principal component analysis. A mancova test between the first five principal components and age, using the CS as covariable, was applied. Results indicated that both size and shape vary significantly with age. Several age-related shape changes remained significant after removing the allometric effect. In general, an increase in the robustness of the bone and noticeable phenotypic changes in certain areas of the femur were observed. During growth in the proximal region of the femur, the collo-diaphyseal angle decreases, the neck of the femur widens and the fovea moves to a lower position, standing more in line with the plane of the neck. Likewise, the size of the greater and lesser trochanters increase. In the distal region, a significant increase of epiphyseal dimensions was recorded, mainly in the medial condyle. The angular remodelling of the neck and the bicondylar region of the femur in females continues until 13 years old. The information provided in the present study increases our knowledge on the timing and morphology of the femur during development, and in particular the morphology of the different femoral ossification centres during development. PMID:24975495

  17. Enhancement of bone formation in rabbits by recombinant human growth hormone

    International Nuclear Information System (INIS)

    Ehrnberg, A.; Brosjoe, O.; Laaftman, P.; Nilsson, O.; Stroemberg, L.

    1993-01-01

    We studied the effect of human recombinant growth hormone on diaphyseal bone in 40 adult rabbits. The diaphyseal periosteum of one femur in each animal was mechanically stimulated by a nylon cerclage band. The bands induced an increase in bone formation, bone mineral content, and maximum torque capacity of the diaphyseal bone at 1 and 2 months. Growth hormone enhanced the anabolic effect of the cerclage bands on bone metabolism, evidenced by a further increase in torsional strength of the femurs. (au) (32 refs.)

  18. Low dose PTH improves metaphyseal bone healing more when muscles are paralyzed.

    Science.gov (United States)

    Sandberg, Olof; Macias, Brandon R; Aspenberg, Per

    2014-06-01

    Stimulation of bone formation by PTH is related to mechanosensitivity. The response to PTH treatment in intact bone could therefore be blunted by unloading. We studied the effects of mechanical loading on the response to PTH treatment in bone healing. Most fractures occur in the metaphyses, therefor we used a model for metaphyseal bone injury. One hind leg of 20 male SD rats was unloaded via intramuscular botulinum toxin injections. Two weeks later, the proximal unloaded tibia had lost 78% of its trabecular contents. At this time-point, the rats received bilateral proximal tibiae screw implants. Ten of the 20 rats were given daily injections of 5 μg/kg PTH (1-34). After two weeks of healing, screw fixation was measured by pull-out, and microCT of the distal femur cancellous compartment was performed. Pull-out force provided an estimate for cancellous bone formation after trauma. PTH more than doubled the pull-out force in the unloaded limbs (from 14 to 30 N), but increased it by less than half in the loaded ones (from 30 to 44 N). In relative terms, PTH had a stronger effect on pull-out force in unloaded bone than in loaded bone (p=0.03). The results suggest that PTH treatment for stimulation of bone healing does not require simultaneous mechanical stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Mathematical modeling of deformation of reinforced femur during prolonged static loads

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-12-01

    Full Text Available A two-layer mathematical model of a human femur neck reinforced implants of different design for modeling stress-strain state which occurs during a surgical procedure to prevent femur neck fractures by the forced introduction of metallic implants is proposed. Engineered implant designs are provided. Methods and software for geometric modeling of femur embedded with the implants are developed. New boundary value problems to evaluate kinetics in creep conditions of the stress-strain state of reinforced and non-reinforced femoral neck during prolonged static loads corresponding to human foot traffic are formulated. Effective elastic properties of cortical and cancellous bone, power and kinematic boundary value problems. A phenomenological creep model for compact bone tissue is constructed. The technique of identifying the parameters is developed. A check of its adequacy to experimental data is carried out. Based on the finite element method the numerical method for solving the provided boundary value problems at macro level of continuum mechanics is developed. A lot of variative calculations allowed developing recommendations for the rational positioning of the implant in order to minimize stress concentrations. The performed analysis showed that there is a significant relaxation of stresses in the most loaded areas due to creep. Relaxation is more intense in reinforced femoral neck than in the unreinforced. Thus the tension in the most loaded femoral neck area due to creep is reduced by 49 % with respect to the intensity of the initial time of loading for femur which is reinforced by the spoke-spoke-type implant when loading duration is 1 year under natural loads corresponding to human foot traffic. It was found that the time component (long-term fixed load does not impair the positive effect of reducing the stress concentration due to a femoral neck reinforcement which is a positive fact from the medical practice point of view.

  20. Spectroscopic studies of cow femurs and porites species coral from Sabah

    International Nuclear Information System (INIS)

    Fadhlia Zafarina Zakaria; Fauziah Abdul Aziz; Nahulan Thevarajah

    2007-01-01

    Some cortical bone specimens from the femurs of adult cows and sea coral of Porites species were studied by using Fourier Transform Infrared Spectroscopy, FTIR. Carbonate were shown to be present by indication of C-O stretch found between 1510-1410 cm -1 in both cortical bone and porites. Based on the comparison of the relative intensity of CO 3 2- bands with respect to the PO 4 3- bands, peak intensity of porites was found to be higher than peak intensity of cortial bone at carbonated band. This explains that porites skeleton is made up of CaCO 3 while bone consists of a mineral, hydroxyapatite Ca 5 (PO 4 ) 3 OH with the present of carbonate ions, typically from 3 to 7 wt %. (Author)

  1. Effect of parathyroidectomy on bone growth and composition in the young rat

    Science.gov (United States)

    Keil, L. C.; Prinz, J. A.; Evans, J. W.

    1974-01-01

    In an effort to determine the influence of the parathyroids on bone growth and composition, 28-day-old male Sprague-Dawley rats were sacrificed 28, 56, and 84 days after parathyroidectomy or sham parathyroidectomy. Body growth as well as femur growth were retarded following parathyroidectomy. Hypocalcemia and hyperphosphatemia occurred in all parathyroidectomized rats; no alterations in plasma magnesium levels were noted. Femur magnesium was increased by 22-30% in the parathyroidectomized rats whereas femur calcium remained unchanged. Bone phosphorus was increased 56 and 84 days following parathyroidectomy. Results of this study indicate that parathyroidectomy retards growth while increasing bone magnesium and phosphorus content.

  2. [Factors affecting bone regeneration in Ilizarov callus distraction].

    Science.gov (United States)

    Fink, B; Krieger, M; Schneider, T; Menkhaus, S; Fischer, J; Rüther, W

    1995-12-01

    We evaluated the X-rays of 36 patients who underwent 50 callus distractions. With the aid of a computerized digitalisation system for analogue films, the relative X-ray density of the distraction area was calculated for each X-ray. These relative X-ray densities were figured graphically for the duration of treatment for each patient. In the consolidation phase, the graph of each patient had a logarithmic relationship. The gradients of the logarithmic density curves were considered an indicator of the quantity of new bone formation. These gradients were correlated to the following clinical parameters: age of the patient, beginning of distraction after corticotomy, average speed of distraction, average weight bearing during the distraction and consolidation phase, location of corticotomy (distal femur versus proximal tibia) and diclofenac medication. Except for the location of the corticotomy and diclofenac, all parameters had an influence on osteoneogenesis by callus distraction. The parameters affecting new bone formation the most were the age of the patient and weight bearing. Patients aged under 18 years (p = 0.005), beginning of distraction later than 8 days (p = 0.109), an average distraction speed below 1 mm/day (p = 0.079), and average weight bearing of more than 30 kg (p = 0.068 for the distraction phase and p = 0.089 for the consolidation phase) showed a quantitatively higher rate of new bone formation by callus distraction than the patients in the other groups. Patients with a shorter leg due to poliomyelitis and one patient with an amniotic leg tie showed a slower increase in X-ray density graphs than the other patients.

  3. Case report 387: Gaucher disease affecting the skeleton (left femur)

    International Nuclear Information System (INIS)

    Tabas, J.H.; Daffner, R.H.; Hartsock, R.J.; Blakley, J.B.

    1986-01-01

    A case is described of a non-Jewish (Italian) 49-year-old man who presented to the hospital with pain in the left hip. Radionuclide studies showed decreased tracer activity with 99m Tc MDP over a lytic area in the subtrochanteric region of the left femur. Increased activity, however, was present in the right temporal bone, low anterior rib cage and right tenth posterior rib. The presence of subendosteal sclerosis with some cortical thickening adjacent to the femoral lesion, suggested the possibility of malignant neoplasm, (e.g. chondrosarcoma). Biopsy of the bone marrow showed the presence of Gaucher disease. (orig./SHA)

  4. Case report 387: Gaucher disease affecting the skeleton (left femur)

    Energy Technology Data Exchange (ETDEWEB)

    Tabas, J.H.; Daffner, R.H.; Hartsock, R.J.; Blakley, J.B.

    1986-08-01

    A case is described of a non-Jewish (Italian) 49-year-old man who presented to the hospital with pain in the left hip. Radionuclide studies showed decreased tracer activity with /sup 99m/Tc MDP over a lytic area in the subtrochanteric region of the left femur. Increased activity, however, was present in the right temporal bone, low anterior rib cage and right tenth posterior rib. The presence of subendosteal sclerosis with some cortical thickening adjacent to the femoral lesion, suggested the possibility of malignant neoplasm, (e.g. chondrosarcoma). Biopsy of the bone marrow showed the presence of Gaucher disease. (orig./SHA).

  5. Modified fixation with pinning and external fixation components for feline femur multiple-lined fracture: A case report

    International Nuclear Information System (INIS)

    Okamoto, Y.; Minami, S.; Matuhashi, A.

    1992-01-01

    A 3-year-old female Japanese domestic cat, weighing 3kg, was referred to us because of right hind leg lameness occuring for 3 days' duration. Radiography of the affected leg revealed severe femoral diaphysial comminuted fracture. The affected leg was treated using wire with an intramedullary Stainman pin being placed completely through the femur. After suturing the wound, both ends of the intramedullary pin exposed both proximally and distally were fixed with external fixation components (two double clamps, two single clamps, two short rods and one long rod) to prevent the pin from rotation. There was a slight gait problem due to the external apparatus and no post-operative infection. The function of the right hind leg gradually recovered. The intramedullary pin and external fixative apparatus were removed on the 52nd day after surgery. This modified fixation appears to offer versatility in the treatment of various fractures in smaller dogs and cats

  6. Recurrence of a Unicameral Bone Cyst in the Femoral Diaphysis.

    Science.gov (United States)

    Kim, Hyun Se; Lim, Kyung Sup; Seo, Sung Wook; Jang, Seung Pil; Shim, Jong Sup

    2016-12-01

    Diaphyseal unicameral bone cysts of the long bone are generally known to originate near the growth plate and migrate from the metaphysis to the diaphysis during skeletal growth. In the case of unicameral bone cysts of diaphyseal origin, recurrence at the same location is extremely rare. We report a case of recurrence of a unicameral bone cyst in the diaphysis of the femur that developed 8 years after treatment with curettage and bone grafting. We performed bone grafting and lengthening of the affected femur with an application of the Ilizarov apparatus over an intramedullary nail to treat the cystic lesion and limb length discrepancy simultaneously.

  7. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Bunnell, Kevin; Auger, Janene; Black, Hal L; Donahue, Seth W

    2009-07-22

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechanical properties of black bear (Ursus americanus) cortical bone by studying femurs from large groups of male and female bears (with wide age ranges) killed during pre-hibernation (fall) and post-hibernation (spring) periods. Bone properties that are affected by body mass (e.g. bone geometrical properties) tended to be larger in male compared to female bears. There were no differences (p>0.226) in bone structure, mineral content, or mechanical properties between fall and spring bears. Bone geometrical properties differed by less than 5% and bone mechanical properties differed by less than 10% between fall and spring bears. Porosity (fall: 5.5+/-2.2%; spring: 4.8+/-1.6%) and ash fraction (fall: 0.694+/-0.011; spring: 0.696+/-0.010) also showed no change (p>0.304) between seasons. Statistical power was high (>72%) for these analyses. Furthermore, bone geometrical properties and ash fraction (a measure of mineral content) increased with age and porosity decreased with age. These results support the idea that bears possess a biological mechanism to prevent disuse and age-related osteoporoses.

  8. Performance of laser sintered Ti-6Al-4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur.

    Science.gov (United States)

    Cohen, David J; Cheng, Alice; Sahingur, Kaan; Clohessy, Ryan M; Hopkins, Louis B; Boyan, Barbara D; Schwartz, Zvi

    2017-04-28

    Long term success of bone-interfacing implants remains a challenge in compromised patients and in areas of low bone quality. While surface roughness at the micro/nanoscale can promote osteogenesis, macro-scale porosity is important for promoting mechanical stability of the implant over time. Currently, machining techniques permit pores to be placed throughout the implant, but the pores are generally uniform in dimension. The advent of laser sintering provides a way to design and manufacture implants with specific porosity and variable dimensions at high resolution. This approach enables production of metal implants that mimic complex geometries found in biology. In this study, we used a rabbit femur model to compare osseointegration of laser sintered solid and porous implants. Ti-6Al-4V implants were laser sintered in a clinically relevant size and shape. One set of implants had a novel porosity based on human trabecular bone; both sets had grit-blasted/acid-etched surfaces. After characterization, implants were inserted transaxially into rabbit femora; mechanical testing, micro-computed tomography (microCT) and histomorphometry were conducted 10 weeks post-operatively. There were no differences in pull-out strength or bone-to-implant contact. However, both microCT and histomorphometry showed significantly higher new bone volume for porous compared to solid implants. Bone growth was observed into porous implant pores, especially near apical portions of the implant interfacing with cortical bone. These results show that laser sintered Ti-6Al-4V implants with micro/nanoscale surface roughness and trabecular bone-inspired porosity promote bone growth and may be used as a superior alternative to solid implants for bone-interfacing implants.

  9. Comparison of Percutaneous Cementoplasty with and Without Interventional Internal Fixation for Impending Malignant Pathological Fracture of the Proximal Femur

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Qing-Hua, E-mail: ddqinghua-tian@163.com; He, Cheng-Jian, E-mail: tianhechengjian@163.com; Wu, Chun-Gen, E-mail: 649514608@qq.com; Li, Yong-Dong, E-mail: tianliyongdong@163.com; Gu, Yi-Feng, E-mail: tianyifenggu@163.com; Wang, Tao, E-mail: tianandwangtao@163.com; Xiao, Quan-Ping, E-mail: tianxiaoquanping@163.com; Li, Ming-Hua, E-mail: tianminghuali@163.com [Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Department of Diagnostic and Interventional Radiology (China)

    2016-01-15

    PurposeTo compare the efficacy of percutaneous cementoplasty (PCP) with and without interventional internal fixation (IIF) on malignant impending pathological fracture of proximal femur.MethodsA total of 40 patients with malignant impending pathological fracture of proximal femur were selected for PCP and IIF (n = 19, group A) or PCP alone (n = 21, group B) in this non-randomized prospective study. Bone puncture needles were inserted into the proximal femur, followed by sequential installation of the modified trocar inner needles through the puncture needle sheath. Then, 15–45 ml cement was injected into the femur lesion.ResultsThe overall excellent and good pain relief rate during follow-ups were significantly higher in group A than that in group B (89 vs. 57 %, P = 0.034). The average change of VAS, ODI, KPS, and EFES in group A were significantly higher than those in group B at 1-, 3-, 6-month, 1-year (P < 0.05). Meanwhile, The stability of the treated femur was significantly higher in group A than that in group B (P < 0.05).ConclusionPCP and IIF were not only a safe and effective procedure, but resulted in greater pain relief, bone consolidation, and also reduced the risk of fracture than the currently recommended approach of PCP done on malignant proximal femoral tumor.

  10. Comparison of Percutaneous Cementoplasty with and Without Interventional Internal Fixation for Impending Malignant Pathological Fracture of the Proximal Femur

    International Nuclear Information System (INIS)

    Tian, Qing-Hua; He, Cheng-Jian; Wu, Chun-Gen; Li, Yong-Dong; Gu, Yi-Feng; Wang, Tao; Xiao, Quan-Ping; Li, Ming-Hua

    2016-01-01

    PurposeTo compare the efficacy of percutaneous cementoplasty (PCP) with and without interventional internal fixation (IIF) on malignant impending pathological fracture of proximal femur.MethodsA total of 40 patients with malignant impending pathological fracture of proximal femur were selected for PCP and IIF (n = 19, group A) or PCP alone (n = 21, group B) in this non-randomized prospective study. Bone puncture needles were inserted into the proximal femur, followed by sequential installation of the modified trocar inner needles through the puncture needle sheath. Then, 15–45 ml cement was injected into the femur lesion.ResultsThe overall excellent and good pain relief rate during follow-ups were significantly higher in group A than that in group B (89 vs. 57 %, P = 0.034). The average change of VAS, ODI, KPS, and EFES in group A were significantly higher than those in group B at 1-, 3-, 6-month, 1-year (P < 0.05). Meanwhile, The stability of the treated femur was significantly higher in group A than that in group B (P < 0.05).ConclusionPCP and IIF were not only a safe and effective procedure, but resulted in greater pain relief, bone consolidation, and also reduced the risk of fracture than the currently recommended approach of PCP done on malignant proximal femoral tumor

  11. Diaphyseal pseudarthrosis of the femur in a patient with poliomyelitis. A special case study

    Directory of Open Access Journals (Sweden)

    J.A. Enríquez-Castro

    2018-04-01

    Full Text Available Introduction: The incidence of long bone pseudarthrosis ranges from 2% to 10%, with the femur being the second most commonly affected bone. There are local and systemic factors that influence the development of this condition. Various implants such as plates, nails, external fixators and combinations of the foregoing, plus grafts and materials to facilitate consolidation are reported in the literature to treat pseudarthrosis. Objective: To present the special case study of a patient diagnosed with pseudarthrosis of the femur who presented with poliomyelitis sequelae. Case report: A 40-year-old man with a history of poliomyelitis previously treated with osteosynthesis on 2 occasions due a fracture of the left femur. He was assessed and diagnosed with pseudarthrosis of the left femur with poliomyelitis sequelae. He underwent surgery with Luque rod fixation, frozen fibular graft and bone graft chips. His bones consolidated 12 months after the operation and he was able to resume normal activities at 16 months. Resumen: Introducción: La pseudoartrosis en los huesos largos tiene una incidencia del 2 al 10%; el fémur ocupa el segundo lugar en frecuencia. Existen factores locales y sistémicos en el desarrollo de esta patología. Para su tratamiento está descrito el uso de diversos implantes, placas, clavos, fijadores externos y combinaciones entre los mismos, más aplicación de injerto y materiales que coadyuven en la consolidación. Objetivo: Presentación de un caso especial con diagnóstico de pseudoartrosis en fémur que presenta secuelas de poliomielitis. Caso clínico: Hombre de 40 años con antecedente de poliomielitis, inicialmente tratado con osteosíntesis en 2 ocasiones por fractura de fémur izquierdo. Es valorado y se hace diagnóstico de pseudoartrosis de fémur izquierdo y secuelas de poliomielitis. Tratamiento enclavado con una barra de Luque, injerto de peroné congelado y chips. Tuvo una consolidación a los 12 meses postcirug

  12. Cement augmentation in the proximal femur to prevent stem subsidence in revision hip arthroplasty with Paprosky type II/IIIa defects

    Directory of Open Access Journals (Sweden)

    Shang-Wen Tsai

    2018-06-01

    Full Text Available Background: Subsidence remains a common complication after revision hip arthroplasty which may lead to prolonged weight-bearing restrictions, leg-length discrepancies or considerable loss of function. We evaluated the effectiveness of cement augmentation in the proximal femoral metaphysis during a revision of femoral components to prevent post-operative stem subsidence. Methods: Forty patients were enrolled. Follow-up averaged 67.7 months (range: 24–149. Twenty-seven patients had a Paprosky type II defect and 13 had a type IIIa defect. All revision hip arthroplasty used a cementless, cylindrical, non-modular cobalt–chromium stem. The defect in the metaphysis was filled with antibiotic-loaded bone cement. Thirteen patients who had undergone stem revision only was allowed to walk immediately without weight-bearing restrictions. Twenty-seven patients who had undergone revision total hip arthroplasty was allowed partial weight-bearing within 6 weeks after surgery in the consideration of acetabular reconstruction. Results: Three patients (7.5% had post-surgery stem subsidences of three mm, five mm, and 10 mm, respectively, at three, one, and 14 months. There were no acute surgical site infections. There were three femoral stem failures: two delayed infections and one periprosthetic Vancouver B2 fracture. Both five- and 10-year survivorships of the femoral implant were 90.1%. Conclusion: An adequate length of the scratch-fit segment and diaphyseal ingrowth remain of paramount importance when revising femoral components. To fill metaphyseal bone defects with antibiotic-loaded bone cement may be an alternative method in dealing with proximal femoral bone loss during a femoral revision. Keywords: Bone defect, Cement augmentation, Femur, Revision hip arthroplasty, Subsidence

  13. Intercalary defects reconstruction of the femur and tibia after primary malignant bone tumour resection. A series of 13 cases.

    Science.gov (United States)

    Brunet, O; Anract, P; Bouabid, S; Babinet, A; Dumaine, V; Toméno, B; Biau, D

    2011-09-01

    Performing intercalary segment reconstruction after malignant bone tumour resection results in both mechanical and biological challenges. Fixation must be solid enough to avoid short-term or mid-term mechanical failure. The use of an allograft or autograft must ensure long-term survival of the reconstruction. The goal of this study was to analyse the clinical and radiological outcomes of these reconstructions. Thirteen patients were operated on eight femurs and five tibias. The median age was 20 years old (range 14-50). The most common diagnosis was osteosarcoma. The median resection length was 15cm (Q1-Q3: 6-26). A plate was used for fixation in nine cases and an intramedullary locked nail in four cases. An isolated bone autograft was used in two cases, an isolated bone allograft in one case, a dual autograft-allograft composite in six cases, and vascularised fibula and allograft combination in four cases. The cumulative probability of union was 46% (95% CI: 0-99%) at 1 year; at the final follow-up, union was achieved in 12 patients (92%). Because of non-unions, 13 iterative procedures were needed to obtain these results. A non-displaced fracture of a cuboid-shaped tibial graft occurred in one patient, which was treated conservatively. Three infections occurred. The results of intercalary segmental defects reconstruction after bone tumour resection were good, both from an oncologic and radiological point-of-view. One or more iterative procedures are sometimes needed to finally obtain bone union. We prefer to use a free rectangular cuboidal tibial graft since reconstruction with a vascularised autograft is technically more difficult. The choice of fixation methods is still controversial and no approach was found to be superior. Level IV. Retrospective study. Copyright © 2011. Published by Elsevier Masson SAS.

  14. Molt performance and bone density of cortical, medullary, and cancellous bone in laying hens during feed restriction or alfalfa-based feed molt.

    Science.gov (United States)

    Kim, W K; Donalson, L M; Bloomfield, S A; Hogan, H A; Kubena, L F; Nisbet, D J; Ricke, S C

    2007-09-01

    A study was conducted to evaluate the effects of alfalfa-based molt diets on molting performance and bone qualities. A total of 36 Single Comb White Leghorn hens were used for the study. There were 6 treatments: pretrial control (PC), fully fed (FF), feed withdrawal (FW), 90% alfalfa:10% layer ration (A90), 80% alfalfa:20% layer ration (A80), and 70% alfalfa:30% layer ration (A70). For the PC treatment, hens were euthanized by CO(2) gas, and bones were collected before molt was initiated. At the end of the 9-d molt period, hens were euthanized, and femurs and tibias were collected to evaluate bone qualities by peripheral quantitative computed tomography, mechanical testing, and conventional ash weights. The hens fed alfalfa-based molt diets and FW stopped laying eggs within 5 d after molt started, and all hens in these groups had reduced ovary weights compared with those of the FF hens. In the FW and A90 groups, total femur volumetric bone mineral densities (vBMD) at the midshaft were significantly lower, but those of the A80 and A70 groups were not significantly different from the values for the PC and FF hens. In cortical bone density, the midshaft tibial vBMD were significantly higher for FF and A70 hens than for PC hens. The medullary bone densities at the midshaft femur or tibia of the FW, A90, A80, and A70 hens were reduced compared with those of the PC hens. Femur cancellous densities at the distal femur for the FW and A90 hens were significantly reduced compared with those of the PC and FF hens. The FW, A80, and A70 hens yielded significantly higher elastic moduli, and the A80 hens had higher ultimate stress compared with the PC hens, suggesting that the mechanical integrity of the midshaft bone was maintained even though the medullary vBMD was reduced. These results suggest that alfalfa-based molt diets exhibit molt performance similar to FW, that medullary and cancellous bones are labile bone compartments during molting, and that alfalfa-based molt diets

  15. The molecular response of bone to growth hormone during skeletal unloading: regional differences

    Science.gov (United States)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Currier, P. A.; Tanner, S.; Morey-Holton, E.

    1995-01-01

    Hind limb elevation of the growing rat provides a good model for the skeletal changes that occur during space flight. In this model the bones of the forelimbs (normally loaded) are used as an internal control for the changes that occur in the unloaded bones of the hind limbs. Previous studies have shown that skeletal unloading of the hind limbs results in a transient reduction of bone formation in the tibia and femur, with no change in the humerus. This fall in bone formation is accompanied by a fall in serum osteocalcin (bone Gla protein, BGP) and bone BGP messenger RNA (mRNA) levels, but a rise in bone insulin-like growth factor-I (IGF-I) protein and mRNA levels and resistance to the skeletal growth-promoting actions of IGF-I. To determine whether skeletal unloading also induced resistance to GH, we evaluated the response of the femur and humerus of sham and hypophysectomized rats, control and hind limb elevated, to GH (two doses), measuring mRNA levels of IGF-I, BGP, rat bone alkaline phosphatase (RAP), and alpha 1(1)-procollagen (coll). Hypophysectomy (HPX) decreased the mRNA levels of IGF-I, BGP, and coll in the femur, but was either less effective or had the opposite effect in the humerus. GH at the higher dose (500 micrograms/day) restored these mRNA levels to or above the sham control values in the femur, but generally had little or no effect on the humerus. RAP mRNA levels were increased by HPX, especially in the femur. The lower dose of GH (50 micrograms/day) inhibited this rise in RAP, whereas the higher dose raised the mRNA levels and resulted in the appearance of additional transcripts not seen in controls. As for the other mRNAs, RAP mRNA in the humerus was less affected by HPX or GH than that in the femur. Hind limb elevation led to an increase in IGF-I, coll, and RAP mRNAs and a reduction in BGP mRNA in the femur and either had no effect or potentiated the response of these mRNAs to GH. We conclude that GH stimulates a number of markers of bone

  16. What is the risk of death or severe harm due to bone cement implantation syndrome among patients undergoing hip hemiarthroplasty for fractured neck of femur? A patient safety surveillance study

    Science.gov (United States)

    Rutter, Paul D; Panesar, Sukhmeet S; Darzi, Ara; Donaldson, Liam J

    2014-01-01

    Objective To estimate the risk of death or severe harm due to bone cement implantation syndrome (BCIS) among patients undergoing hip hemiarthroplasty for fractured neck of femur. Setting Hospitals providing secondary and tertiary care throughout the National Health Service (NHS) in England and Wales. Participants Cases reported to the National Reporting and Learning System (NRLS) in which the reporter clearly describes severe acute patient deterioration associated with cement use in hip hemiarthroplasty for fractured neck of femur (assessed independently by two reviewers). Outcome measures Primary—number of reported deaths, cardiac arrests and periarrests per year. Secondary—timing of deterioration and outcome in relation to cement insertion. Results Between 2005 and 2012, the NRLS received 62 reports that clearly describe death or severe harm associated with the use of cement in hip hemiarthroplasty for fractured neck of femur. There was one such incident for every 2900 hemiarthroplasties for fractured neck of femur during the period. Of the 62 reports, 41 patients died, 14 were resuscitated from cardiac arrest and 7 from periarrest. Most reports (55/62, 89%) describe acute deterioration occurring during or within a few minutes of cement insertion. The vast majority of deaths (33/41, 80%) occurred on the operating table. Conclusions These reports provide narrative evidence from England and Wales that cement use in hip hemiarthroplasty for fractured neck of femur is associated with instances of perioperative death or severe harm consistent with BCIS. In 2009, the National Patient Safety Agency publicised this issue and encouraged the use of mitigation measures. Three-quarters of the deaths in this study have occurred since that alert, suggesting incomplete implementation or effectiveness of those mitigation measures. There is a need for stronger evidence that weighs the risks and benefits of cement in hip hemiarthroplasty for fractured neck of femur. PMID

  17. MR imaging of the bone marrow in myeloid leukemia and myelodysplastic syndrome. Comparison of the lumbar spine and femur

    International Nuclear Information System (INIS)

    Tanaka, Osamu; Kobayashi, Yasuyuki; Ichikawa, Tamaki; Matsuura, Katsuhiko; Nagai, Jun; Takagi, Shojiro

    1995-01-01

    MR imaging of the lumber spine and the femur was performed with T1-weighted SE sequence and comparison of the MRI findings of the lumber vertebral body and the femoral marrow was made in 15 patients with acute myeloid leukemia (AML), 5 chronic myelogenous leukemia (CML), and 9 myelodysplastic syndrome (MDS). The MRI appearance of the bone marrow was classified into four patterns: 1) fatty marrow; 2) faint signal; 3) heterogeneous infiltration; and 4) diffuse infiltration. The MRI of the lumber vertebral body showed a diffuse marrow infiltration pattern in over the half of the cases of AML and MDS. On the MRI of the femoral marrow, the signal intensity alteration, a low signal on T1-weighted SE image, began in the proximal femurs almost symmetrically. The abnormal low signal intensity area tended to gradually extend towards the distal portion of the femoral marrow with progression of the disease in the patients with AML and MDS. M2 type of AML tended to be demonstrated as a faint signal pattern, which was significantly different from the other types of AML. In all the cases of CML, a diffuse cellular infiltration pattern was noted with total replacement of the fatty marrow on both lumbar spinal and femoral MRI, and the femoral marrow involvement was more downwardly extended than AML. We concluded that MRI of the femoral marrow was more efficient than that of the lumbar spine in the assessment of myeloid leukemia and MDS. (author)

  18. A hospital based study of biochemical markers of bone turnovers & bone mineral density in north Indian women

    Science.gov (United States)

    Kumar, Ashok; Devi, Salam Gyaneshwori; Mittal, Soniya; Shukla, Deepak Kumar; Sharma, Shashi

    2013-01-01

    Background & objectives: The osteoporotic risk for women increases soon after menopause. Bone turnover markers are known to be associated with bone loss and fracture risk. This study was aimed to assess bone turnover using bone markers and their correlation with bone mineral density (BMD) in pre- and post-menopausal women. Methods: A total of 255 healthy women (160 pre- and 95 post-menopausal) were enrolled. Serum bone alkaline phosphatase (sBAP) and serum N-terminal telopeptide of type I collagen (NTX) were measured to evaluate the bone formation and resorption, respectively. Bone mineral density was determined at lumbar spine (L2-L4) anteroposteriorly, femoral neck and Ward's triangle using Prodigy dual-energy X-ray absorptiometry (DXA) system. The comparison of years since menopause with respect to BMD and bone markers was also evaluated. Results: NTX and sBAP showed significant negative correlation with BMD of femur neck and Ward's triangle in postmenopausal women. BMD of all three sides were significant variables for NTX and BMD of femur neck and Ward's triangle for sBAP in postmenopausal women. BMD lumbar spine was a significant variable for sBAP in premenopausal women. The mean values of NTX increased significantly with increase in the duration of years since menopause. The BMD of all three sides decreased significantly with increase in the duration of years since menopause. Interpretation & conclusions: Serum NTX and sBAP were inversely correlated to BMD of femur neck and Ward's triangle in post-menopausal women. Simultaneous measurements of NTX and BMD in the north Indian women, suggest that bone resorption in women with low BMD remains high after menopause. PMID:23481051

  19. NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model

    Science.gov (United States)

    Kwak, Jinny; Zara, Janette N.; Chiang, Michael; Ngo, Richard; Shen, Jia; James, Aaron W.; Le, Khoi M.; Moon, Crystal; Zhang, Xinli; Gou, Zhongru; Ting, Kang

    2013-01-01

    Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0–50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures. PMID:23083222

  20. OUTCOME OF UNCEMENTED UNIPOLAR HEMIARTHROPLASTY IN FRACTURE NECK OF FEMUR, IN GERIATRIC PATIENTS IN RELATION TO BONE QUALITY

    Directory of Open Access Journals (Sweden)

    Mehraj Din

    2015-09-01

    Full Text Available BACKGROUND: Osteoporosis plays an important role in pathogenesis of fracture neck of femur in mobile elderly. Hemiarthroplasty is most common mode of management of femoral neck fractures in elderly in developing world. We report the outcome of uncemented hemiarthropl asty in elderly patients with a femoral neck fracture in relation to bone quality of patient as estimated by Dual energy x ray absorptiometry (DEXA scan. MATERIALS AND METHODS: 75 uncemented hemiarthroplasties for femoral neck fractures were performed in elderly patients more than 70 years of age between August 2008 and April 2012. The clinical, radiological results and bone mineral density of 65 hips in 65 patients who could be followed up were analyzed. For all cases Austin Moore prosthesis was implanted . RESULTS: The mean age of the patients was 79.96±7.21 years ( 7 1 to 96 years. 44 patients were women and 21 were men. Average duration of follow - up was 18.59±11.53 months ( R ange 4 to 44 months. The mean Harris Hip Score in patients with osteopenia was 80 .29±13.29 and in patients with osteoporosis it was 79.96 ± 11.67 at the time of the last follow - up. There was no significant difference in mean Harris hi p score in osteoporotic and non - osteoporotic patient’s p value 0.923. Out of 65 patients whose results were assessed in our study 48 patients (73.8% had osteoporosis and 17 patients (26.1% had Osteopenia. None of the patients in our study had a normal bone density. The mean T Score as measured on DEXA scan was - 3.74±1.57. CONCLUSION: Uncemented hemiarthro plasty for elderly patients more than 70 years of age with a femoral neck fracture showed satisfactory short - term results with no relationship to the bone quality

  1. Effect of dietary coenzyme Q10 supplementation on serum and bone minerals and leg weakness mortality in broilers

    Directory of Open Access Journals (Sweden)

    M. Gopi

    2014-05-01

    Full Text Available Aim: This work was carried out to study the effect of coenzyme Q10 supplementation on serum calcium and phosphorus levels, tibial bone weight, bone ash, bone calcium and phosphorus levels and mortality of birds due to leg weakness when the broilers were maintained under high environmental temperature. Materials and Methods: The trial was carried out on 216 Cobb400 broiler chicks and divided into four groups with nine replicates and each replicate consisting of six birds. The treatments include normal energy diet (NE (as per breeder's specifications (G1, high energy (HE (NE plus 100 kcal/kg diet without CoQ10 supplementation (G2, high energy diet supplemented with CoQ10 at 20 mg/kg (G3 and high energy diet supplemented with CoQ10 at 40 mg/kg (G4. The experiment was carried out when the temperature humidity index (THI ranged from 33.05 to 38.65oC for a period of 42 days. Results: The serum calcium and phosphorus levels in the G1, G2, G3 and G4 were 9.07 ± 0.22, 8.48 ± 0.10, 8.30 ± 0.10, 8.32 ± 0.12 and 4.90 ± 0.20, 4.06 ± 0.32, 3.96 ± 0.17, 4.02 ± 0.24, respectively. The tibial bone weight (g was 21.58 ± 1.32, 17.92 ± 1.90, 18.67 ± 1.30 and 17.42 ± 1.18; tibial bone Ash (% 46.67 ± 2.71, 44.48 ± 2.40, 44.66 ± 3.09 and 44.62 ± 1.74; Bone calcium (% 33.57 ± 0.2, 31.27 ± 0.55, 31.50 ± 0.45 and 31.47 ± 0.83, bone phosphorus (% was 11.86 ± 0.16, 10.38 ± 0.11, 10.68 ± 0.08 and 10.39 ± 0.17, respectively in G1, G2, G3 and G4 groups. The serum calcium and phosphorus levels were significantly higher (P<0.05 in G1 over the other three groups. The tibial bone weight was not altered by the energy level or the coenzyme Q10 supplementation. The tibial bone calcium and phosphorus levels were significantly higher in G1 than the other three groups. Conclusion: The supplementation of coenzyme Q10 did not alter the serum and tibial bone calcium and phosphorus levels. The leg abnormality associated mortality was significantly decreased in G3

  2. Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats

    Science.gov (United States)

    Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.

    2012-01-01

    Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361

  3. Indomethacin induced avascular necrosis of head of femur

    Science.gov (United States)

    Prathapkumar, K; Smith, I; Attara, G

    2000-01-01

    Chemically induced avascular necrosis of bone is a well documented entity. Indomethacin is one of the causes of this condition but is often difficult to recognise. Review of the literature shows that only one case of indomethacin induced avascular necrosis has been reported in the English language between 1966 and the present.
The case of a young healthy man, who developed avascular necrosis of head of femur after prolonged administration of indomethacin, is reported here.


Keywords: indomethacin; avascular necrosis PMID:10964124

  4. Metaphyseal bone loss demonstrated with routine planar radiography

    International Nuclear Information System (INIS)

    Mintzer, C.M.; Robertson, D.D.; Weissman, B.; Ewald, F.; Spector, M.

    1989-01-01

    This paper reports on an vitro study performed to examine the ability of current-day radiography for detecting metaphyseal bone loss. A block was cut from the anterior aspect of a cadaveric distal femur, sequential sections (approximately 4% of the BMC of the block) were cut from the block, and a fat-equivalent material was substituted in to the void. Following removal of each bone section, the femur was placed in a water bath, a lateral radiography was taken, and the ash content of the section was determined. Five readers each evaluated over 100 combinations of two radiographs side by side, noting whether there was no difference or whether one femur's region of interest was denser. The readings were compared with bone mineral differences as determined by ashing. All readers identified losses of 25% or more, and 5%-10% losses were seen by four of five readers half of the time

  5. Allometry in dinosaurs and mammals

    Science.gov (United States)

    Lee, Scott

    2015-03-01

    The proportions of the leg bones change as the size of an animal becomes larger since the mass of the animal increases at a faster rate than the cross-sectional area of its leg bones. For the case of elastic similarity (in which the longitudinal stress in the legs remains constant in animals of all sizes), the diameter d and length L of the femur should be related as d = A L3/2. For geometric similarity (in which all dimensions are scaled by the same factor), d = A L. For animals with femora longer than 20 cm, we find the power law relationship to be d = A Lb with b = 1.13 +/- 0.06 for extant mammals (the largest mammal being Loxodonta africana with a 1.00-m-long femur) and b = 1.18 +/- 0.02 for dinosaurs (the largest dinosaur being Brachiosaurus brancai with a 2.03-m-long femur). These data show that extinct dinosaurs and extant animals scale in the same basic manner. The large sauropods (with femora twice as long as found in elephants) scale in a manner consistent with extrapolation of the scaling shown by extant mammals. These results argue that extinct dinosaurs moved in a manner very similar to extant mammals.

  6. DON-induced changes in bone homeostasis in mink dams

    Directory of Open Access Journals (Sweden)

    Tomaszewska Ewa

    2017-09-01

    Full Text Available Introduction: The aim of the study was to investigate the mechanical and geometric properties as well as bone tissue and mineral density of long bones in mink dams exposed to deoxynivalenol (DON since one day after mating, throughout gestation (ca. 46 d and lactation to pelt harvesting. Material and Methods: Thirty clinically healthy multiparous minks (Neovison vison of the standard dark brown type were used. After the mating, the minks were randomly assigned into two equal groups: nontreated control group and DON group fed wheat contaminated naturally with DON at a concentration of 1.1 mg·kg-1 of feed. Results: The final body weight and weight and length of the femur did not differ between the groups. However, DON contamination decreased mechanical endurance of the femur. Furthermore, DON reduced the mean relative wall thickness and vertical wall thickness of the femur, while vertical cortical index, midshaft volume, and cross-sectional moment of inertia increased. Finally, DON contamination did not alter bone tissue density, bone mineral density, or bone mineral content, but decreased the values of all investigated structural and material properties. Conclusion: DON at applied concentration probably intensified the process of endosteal resorption, which was the main reason for bone wall thinning and the weakening of the whole bone.

  7. Bone scintigraphy in Erdheim-chester disease: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, V.L.; Soares, L.M.M.; Ribeiro, V.P.B.; Coura Filho, G.B.; Sapienza, M.T.; Ono, C.R.; Watanabe, T.; Costa, P.L.A.; Hironaka, F.; Buchpiguel, C.A. [Universidade de Sao Paulo (FM/USP), SP (Brazil). Fac. de Medicina. Hospital das Clinicas

    2008-07-01

    Full text: Introduction: Erdheim-Chester disease (ECD) is a rare non-Langerhans cell histiocytosis, of unknown etiology, characterized by infiltration of foamy histiocytes. Clinically, patients usually present with bone pain, and various extraskeletal manifestations. ECD differs from Langerhans cell histiocytosis (LCH) by radiologic and immunohistochemistry features. Case report: A 57-year-old woman presented with a history of intense pain on her left hand, besides eyelid xanthelasmas and xanthoms on frontal area ten years ago. Four years late she presented with pain on hips, legs and feet. Xanthoms spread to perioral area, mento and neck. Radiographs of the hands showed osteolysis of carpal bones bilaterally, osteolysis of fifth left metacarpal bone, osteosclerosis of all metacarpal bones bilaterally, except the fifth, and osteosclerosis of the second and third proximal falanges bilaterally. The legs showed bilateral diaphyseal and metaphyseal osteosclerosis. Bone scintigraphy demonstrated increased uptake on face bone (maxilla), and symmetric intense uptake on elbows, distal radii and ulnae, hands, distal area of femurs, tibias particularly on proximal and distal area, and feet. A tibia biopsy and a biopsy of neck lesion were made. The analysis of histology and immunohistochemistry were consistent with ECD. She has been treated with a-interferon for 1,5 year, and she reports delay in xanthoms progression and bone pain remission. Discussion: ECD is an adult multisystemic xanthogranulomatous infiltrative disease of unknown etiology. It may be confused with LCH, however ECD have distinctive immunohistochemistry and radiologic findings. LCH shows typically lytic bone lesions on axial skeleton, whereas symmetrical long-bone osteosclerosis is the radiologic sign for ECD. LCH stain positive for CD1a and S-100 protein, and the electron microscopy of cytoplasm discloses Biberck granules. ECD stain positive for CD68, negative for CD1a and S-100 protein, shows absent of

  8. Associations of Age, BMI, and Years of Menstruation with Proximal Femur Strength in Chinese Postmenopausal Women: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Huili Kang

    2016-01-01

    Full Text Available This study aimed to elucidate the associations of age, BMI, and years of menstruation with proximal femur strength in Chinese postmenopausal women, which may improve the prediction of hip fracture risk. A cross-sectional study was conducted in 1322 Chinese postmenopausal women recruited from communities. DXA images were used to generate bone mineral density (BMD and geometric parameters, including cross-sectional area (CSA, outer diameter (OD, cortical thickness (CT, section modulus (SM, buckling ratio (BR at the narrow neck (NN, intertrochanter (IT, and femoral shaft (FS. Relationships of age, BMI, and years of menstruation with bone phenotypes were analyzed with the adjustment of height, age at menarche, total daily physical activity, education, smoking status, calcium tablet intake, etc. Age was associated with lower BMD, CSA, CT, SM, and higher BR (p < 0.05, which indicated a weaker bone strength at the proximal femur. BMI and years of menstruation had the positive relationships with proximal femur strength (p < 0.05. Further analyses showed that the ranges of absolute value of change slope per year, per BMI or per year of menstruation were 0.14%–1.34%, 0.20%–2.70%, and 0.16%–0.98%, respectively. These results supported that bone strength deteriorated with aging and enhanced with higher BMI and longer time of years of menstruation in Chinese postmenopausal women.

  9. Fracture of the Femur of A Newborn after Cesarean Section for Breech Presentation and Fibroid Uterus :A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Ibrahima Farikou

    2014-01-01

    Full Text Available Introduction: The practice of cesarean section is known to decrease the occurrence of long bone fractures. We present here an unusual diaphyseal fracture of the femur of a newborn after cesarean section, the only case observed in our 14 years of practice. Case Report: The patient was a 3.4-kg female child born at 38 weeks of gestation. The mother was a primipara and aged 39 years. Ultrasound examination at 20th week revealed intrauterine fibroids with a breech presentation. Therefore, elective cesarean section was indicated. There was no apparent bone disorder that could predispose to sustain femur fracture. The fracture was treated successfully with a bilateral spica cast. The cesarean section was indicated in an aged primipara, bearer of uterine fibroids, and breech presentation. She had a good general health status, but her bone density was unknown since this examination is not routinely performed in our clinical settings in Africa. Conclusion: Elderly age, primipara status, presence of uterine fibroids, and breech presentation are usual indications for cesarean section. However, there are not many reports on femur fracture after cesarean section. Our present case suggests that despite the latest advances in delivery techniques, cesarean section for breech presentation predisposes the neonate to femoral fractures. Keywords: Femur fracture; Cesarean section; Fibroid; Breech presentation; Africa.

  10. The effects of growth rate on leg morphology and tibia breaking strength, mineral density, mineral content, and bone ash in broilers.

    Science.gov (United States)

    Shim, M Y; Karnuah, A B; Mitchell, A D; Anthony, N B; Pesti, G M; Aggrey, S E

    2012-08-01

    Fast-growing broilers are especially susceptible to bone abnormalities, causing major problems for broiler producers. The cortical bones of fast-growing broilers are highly porous, which may lead to leg deformities. Leg problems were investigated in 6-wk-old Arkansas randombred broilers. Body weight was measured at hatch and at 6 wk. There were 8 different settings of approximately 450 eggs each. Two subpopulations, slow-growing (SG; bottom quarter, n=511) and fast-growing (FG; top quarter, n=545), were created from a randombred population based on their growth rate from hatch until 6 wk of age. At 6 wk of age, the broilers were processed and chilled at 4°C overnight before deboning. Shank (78.27±8.06 g), drum stick (190.92±16.91 g), and thigh weights (233.88±22.66 g) of FG broilers were higher than those of SG broilers (54.39±6.86, 135.39±15.45, and 168.50±21.13 g, respectivly; Ppercentage of ash content (39.76±2.81) of FG broilers was lower than that of SG broilers (39.99±2.67; P=0.173). Fast-growing broiler bones were longer, wider, heavier, stronger, more dense, and contained more ash than SG ones. After all parameters were calculated per unit of final BW at 6 wk, tibia density and bone ash percentage of FG broilers were lower than those of SG broilers.

  11. Leg Regrowth in Blaberus discoidalis (Discoid Cockroach) following Limb Autotomy versus Limb Severance and Relevance to Neurophysiology Experiments

    Science.gov (United States)

    Marzullo, Timothy C.

    2016-01-01

    Background Many insects can regenerate limbs, but less is known about the regrowth process with regard to limb injury type. As part of our neurophysiology education experiments involving the removal of a cockroach leg, 1) the ability of Blaberus discoidalis cockroaches to regenerate a metathoracic leg was examined following autotomy at the femur/trochanter joint versus severance via a transverse coxa-cut, and 2) the neurophysiology of the detached legs with regard to leg removal type was studied by measuring spike firing rate and microstimulation movement thresholds. Leg Regrowth Results First appearance of leg regrowth was after 5 weeks in the autotomy group and 12 weeks in the coxa-cut group. Moreover, regenerated legs in the autotomy group were 72% of full size on first appearance, significantly larger (pbarbs, and a 10% higher electrical microstimulation threshold for movement. Summary It is recommended that neurophysiology experiments on cockroach legs remove the limb at autotomy joints instead of coxa cuts, as the leg regenerates significantly faster when autotomized and does not detract from the neurophysiology educational content. PMID:26824931

  12. Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density

    International Nuclear Information System (INIS)

    Hwang, Kyo Seung; Kim, Yoon Mi; Park, Jong Chan; Choi, Min Joo; Lee, Kang Il

    2012-01-01

    Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

  13. Vertebral metastasis of femur primary osteosarcoma: a case report and literature review; Metastase vertebral de osteossarcoma primario de femur: relato de caso e revisao da literatura

    Energy Technology Data Exchange (ETDEWEB)

    Cioni, Claudia Helena [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Radiologia Pediatrica; Francisco, Marina Celli; Lederman, Henrique Manoel [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: nana_celli@hotmail.com; Francisco, Fabiano Celli [Hospital de Caridade Sao Braz, Porto Uniao, SC (Brazil); Oliveira, Andrea Alencar de [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Oncologia Pediatrica; Neves, Felipe Trentin [Hospital Ipiranga, Sao Paulo, SP (Brazil). Cirurgia Geral

    2006-10-15

    We present a case of a 21-year-old patient, bearer of femur primary osteosarcoma, who began with pain in the thoracic column. The metastasis of primary osteosarcoma has greater incidence on lungs, rarely affecting vertebras. We reviewed the literature about this disease and emphasized the image's characteristics on the several methods used (traditional radiographic exams, bone scintigraphy, computed tomography, magnetic resonance) and the main differential diagnostics. (author)

  14. Effects of focal vibration on bone mineral density and motor performance of postmenopausal osteoporotic women.

    Science.gov (United States)

    Brunetti, O; Botti, F M; Brunetti, A; Biscarini, A; Scarponi, A M; Filippi, G M; Pettorossi, V E

    2015-01-01

    This randomized double blind controlled study is aimed at determining the effect of repeated vibratory stimuli focally applied to the contracted quadriceps muscles (repeated muscle vibration=rMV) on bone mineral density, leg power and balance of postmenopausal osteoporotic women. The study has been conducted on 40 voluntary postmenopausal osteoporotic women, randomised at 2 groups for rMV treatment and for control. The treatment group underwent rMV (100Hz, 300-500 μm; three applications per day, each lasting 10-minutes, for 3 consecutive days) applied to voluntary contracted quadriceps (VC=vibrated and contracted group). The control group, received a sham stimulation on contracted quadriceps (NV=non vibrated group). Bone mineral density T-score of proximal femur of the participants, was evaluated in two weeks before and 360 days after intervention; body balance and explosive leg power were measured 1 day before, 30 days and 360 days after treatment. VC group T-score at one year didn't change significantly relative to baseline values (pretreatment: -2.61±0.11, post-treatment -2.62±0.13); conversely in NV subjects T-score decreased significantly from -2.64 ± 0.15 SD down to -2.99 ± 0.28 SD. A significant improvement of balance and explosive leg power was observed only in VC group at 30 and 360 days after the intervention. We conclude that rMV is a safe, short-lasting and non-invasive treatment that can significantly and persistently improve muscle performance and can effectively counteract progressive demineralisation in postmenopausal and osteoporotic women.

  15. Segmentation of radiographic images under topological constraints: application to the femur.

    Science.gov (United States)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  16. Segmentation of radiographic images under topological constraints: application to the femur

    International Nuclear Information System (INIS)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-01-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  17. Segmentation of radiographic images under topological constraints: application to the femur

    Energy Technology Data Exchange (ETDEWEB)

    Gamage, Pavan; Xie, Sheng Quan [University of Auckland, Department of Mechanical Engineering (Mechatronics), Auckland (New Zealand); Delmas, Patrice [University of Auckland, Department of Computer Science, Auckland (New Zealand); Xu, Wei Liang [Massey University, School of Engineering and Advanced Technology, Auckland (New Zealand)

    2010-09-15

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  18. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  19. Low cortical bone density measured by computed tomography in children and adolescents with untreated hyperthyroidism.

    Science.gov (United States)

    Numbenjapon, Nawaporn; Costin, Gertrude; Gilsanz, Vicente; Pitukcheewanont, Pisit

    2007-05-01

    To determine whether increased thyroid hormones levels have an effect on various bone components (cortical vs cancellous bone). The anthropometric and 3-dimensional quantitative computed tomography (CT) bone measurements, including bone density (BD), cross-sectional area (CSA) of the lumbar spine and femur, and cortical bone area (CBA) of the femur, of 18 children and adolescents with untreated hyperthyroidism were reviewed and compared with those of age-, sex-, and ethnicity-matched historical controls. No significant differences in height, weight, body mass index (BMI), or pubertal staging between patients and controls were found. Cortical BD was significantly lower (P hyperthyroidism compared with historical controls. After adjusting for weight and height, no difference in femur CSA between hyperthyroid children and historical controls was evident. No significant correlations among thyroid hormone levels, antithyroid antibody levels, and cortical BD values were found. As determined by CT, cortical bone is the preferential site of bone loss in children and adolescents with untreated hyperthyroidism.

  20. Trends in osteoporosis and low bone mass in older US adults, 2005-2006 through 2013-2014.

    Science.gov (United States)

    Looker, A C; Sarafrazi Isfahani, N; Fan, B; Shepherd, J A

    2017-06-01

    This study examined trends in osteoporosis and low bone mass in older US adults between 2005 and 2014 using bone mineral density (BMD) data from the National Health and Nutrition Examination Survey (NHANES). Osteoporosis and low bone mass appear to have increased at the femur neck but not at the lumbar spine during this period. Recent preliminary data from Medicare suggest that the decline in hip fracture incidence among older US adults may have plateaued in 2013-2014, but comparable data on BMD trends for this time period are currently lacking. This study examined trends in the prevalence of osteoporosis and low bone mass since 2005 using BMD data from NHANES. The present study also updated prevalence estimates to 2013-2014 and included estimates for non-Hispanic Asians. Femur neck and lumbar spine BMD by DXA were available for 7954 adults aged 50 years and older from four NHANES survey cycles between 2005-2006 and 2013-2014. Significant trends (quadratic or linear) were observed for the femur neck (mean T-score and osteoporosis in both sexes; low bone mass in women) but not for the lumbar spine. The trend in femur neck status was somewhat U-shaped, with prevalences being most consistently significantly higher (by 1.1-6.6 percentage points) in 2013-2014 than 2007-2008. Adjusting for changes in body mass index, smoking, milk intake, and physician's diagnosis of osteoporosis between surveys did not change femur neck trends. In 2013-2014, the percent of older adults with osteoporosis was 6% at the femur neck, 8% at the lumbar spine, and 11% at either site. There was some evidence of a decline in femur neck BMD between 2005-2006 and 2013-2014, but not in lumbar spine BMD. Changes in the risk factors that could be examined did not explain the femur neck BMD trends.

  1. Sex determination in femurs of modern Egyptians: A comparative study between metric measurements and SRY gene detection

    Directory of Open Access Journals (Sweden)

    Iman F. Gaballah

    2014-12-01

    Conclusion: The SRY gene detection method for sex determination is quick and simple, requiring only one PCR reaction. It corroborates the results obtained from anatomical measurements and further confirms the sex of the femur bone in question.

  2. MR imaging of proximal femur: age-related changes

    International Nuclear Information System (INIS)

    Kim, Ju Heon; Jeon, Woo Jin; Sohn, Cheol Ho; Park, Mi Ok; Lee, Seong Mun; Joo, Yang Gu; Suh, Soo Jhi; Pyun, Young Sik

    1995-01-01

    The purpose of this study is to illustrate MR patterns of signal intensity of proximal femur in normal subjects according to the age distribution. T1-weighted MR images of the proximal femur in 125 subjects, aged 13 days to 25 years, were retrospectively analyzed. Age distribution was classified to 4 groups; below 4 months, 5 months to 4 years, 5 years to 14 years, and 15 years to 25 years. By the age of 4 months, the non-ossified femoral epiphysis was seen as intermediate-signal-intensity cartilage. At 5 months-4 years, the ossified femoral capital epiphysis was seen within intermediate-signal-intensity cartilage and appeared as decreased or increased signal-intensity red or yellow marrow surrounded by a rim of low-signal-intensity cortical bone. At 5-14 years, the ossified femoral capital and greater trochanteric epiphysis were seen within the intermediate-signal-intensity cartilage and appeared as decreased or increased signal-intensity red or yellow marrow. At 15-25 years, the proximal metaphyseal marrow showed increased signal intensity. Four patterns of the metaphyseal marrow were recognized by Ricci et al. The frequency of pattern 1 a progressively decreased with age. Pattern 2 and 3 were visible in the 15-25 years age group. An understanding of the spectrum of normal age-related change of the proximal femoral cartilage and marrow patterns serves as the foundation for interpretation of proximal femur pathologies

  3. Radiology trainer. Surgical ambulance. Revision 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Ackermann, Ole; Barkhausen, Joerg

    2013-01-01

    The radiology trainer for surgical ambulance includes informative X-ray imaging examples for the following issues: zygoma, nasal bone, spinal cord, clavicle, shoulder, upper arms, elbow, forearms, wrist, hand, phalanx, thorax, sternum, pelvis, abdomen, hips, femur, knee, lower leg, ankle, feet.

  4. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Directory of Open Access Journals (Sweden)

    Marzia Ferretti

    2015-01-01

    Full Text Available Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1 baseline, (2 normal diet for 4 weeks, (3 calcium-deprived diet for 4 weeks, and (4 calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis, an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis. Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.

  5. A comparative study on BMD of lumbar spine and proximal femur in post-menopausal women using dual energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Yoon, Han Sik; Mo, Eun Hee

    1999-01-01

    Osteoporosis, which causes mainly fracture of the spine, proximal femur and distal radius by minimal trauma, is a major public health problem and its prevalence is steadily increasing in Korea according to the development of public health care. There are reliable methods for diagnosis based on bone densitometry. Early detection and intervention are important for reducing the incidence of fractures. A consensus definition of osteoporosis, based on bone density measurement, has been developed by the World Health Organization(WHO). In this study, bone mineral density(BMD) was measured by dual energy x-ray absorptiometry(DEXA) at the proximal femur and lumbar spine in 132 post-menopausal women. The purpose of this study is to find influential factors on the BMD of the proximal femur and the lumbar spine and to analyze correlation between BMD and the problematic factors. We obtained the following results : 1. Mean BMD score, T-score and Z-score of the proximal femur were 0.81(g/cm 2 ), -2.45(S.D.) and -2.09(S.D.) respectively and in the lumber spine were 0.83(g/cm 2 ), -2.02(S.D.), -2.43(S.D.) respectively. 2. In correlation analysis between BMD and many factors, correlation coefficients were -0.467, 0.212, -0.321 and 0.241 in age, height, duration after menopause respectively. BMI and the residuals were comparatively small. 3. Correlation coefficients to age matched BMD, in height and body weight were 0.222 and 0.241, in age and duration after menopause were -0.268, -0.282. 4. The fracture threshold of proximal femur BMD to the 90th percentile was 0.845(g/cm 2 ). 5. At the result of multiple regression analysis, age, body weight, BMI(kg/m 2 ) and duration after menopause described as significant variables

  6. A comparative study on BMD of lumbar spine and proximal femur in post-menopausal women using dual energy X-ray absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Han Sik [Wonkwang Health Science College, Iksan (Korea, Republic of); Mo, Eun Hee [College of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    1999-04-01

    Osteoporosis, which causes mainly fracture of the spine, proximal femur and distal radius by minimal trauma, is a major public health problem and its prevalence is steadily increasing in Korea according to the development of public health care. There are reliable methods for diagnosis based on bone densitometry. Early detection and intervention are important for reducing the incidence of fractures. A consensus definition of osteoporosis, based on bone density measurement, has been developed by the World Health Organization(WHO). In this study, bone mineral density(BMD) was measured by dual energy x-ray absorptiometry(DEXA) at the proximal femur and lumbar spine in 132 post-menopausal women. The purpose of this study is to find influential factors on the BMD of the proximal femur and the lumbar spine and to analyze correlation between BMD and the problematic factors. We obtained the following results : 1. Mean BMD score, T-score and Z-score of the proximal femur were 0.81(g/cm{sup 2}), -2.45(S.D.) and -2.09(S.D.) respectively and in the lumber spine were 0.83(g/cm{sup 2}), -2.02(S.D.), -2.43(S.D.) respectively. 2. In correlation analysis between BMD and many factors, correlation coefficients were -0.467, 0.212, -0.321 and 0.241 in age, height, duration after menopause respectively. BMI and the residuals were comparatively small. 3. Correlation coefficients to age matched BMD, in height and body weight were 0.222 and 0.241, in age and duration after menopause were -0.268, -0.282. 4. The fracture threshold of proximal femur BMD to the 90th percentile was 0.845(g/cm{sup 2}). 5. At the result of multiple regression analysis, age, body weight, BMI(kg/m{sup 2}) and duration after menopause described as significant variables.

  7. Early Diagnosis of Avascular Necrosis of Bone Following Renal Transplantation By Bone Scan

    International Nuclear Information System (INIS)

    Shin, Hyun Ho; Kim, Han Su; Ihn, Chun Gyoo; Kim, Myung Jae

    1982-01-01

    Avascular necrosis of bone has become a well-recognized complication of renal transplantation. While preexisting metabolic bone disease, especially hyperparathyroidism, and metabolic disturbances induced by steroids have been implicated as etiological factors, the pathogenesis is controversial. The diagnosis of avascular necrosis of bone had been based on a history of joint pain and radiographic demonstration of bone necrosis. Recently the bone scan using 99m Tc-methylene diphosphonate is helpful in determining the early stage of bone necrosis. We report two cases of avascular necrosis of femur head, of which diagnosis was made by the bone scan using 99m Tc-methylene diphosphonate.

  8. Leg Lengthening as a Means of Improving Ambulation Following an Internal Hemipelvectomy

    Directory of Open Access Journals (Sweden)

    Wakyo Sato

    2016-01-01

    Full Text Available Reconstructive surgery following an internal hemipelvectomy for a malignant pelvic tumor is difficult due to the structural complexity of the pelvis and the massive extension of the tumor. While high complication rates have been encountered in various types of reconstructive surgery, resection without reconstruction reportedly involved fewer complications. However, this method often results in limb shortening with resultant instability during walking. We reported herein leg lengthening performed to correct lower limb shortening after an internal hemipelvectomy, which improved ambulatory stability and overall QOL. An 18-year-old male patient came to our hospital to correct a lower limb discrepancy resulting from a left internal hemipelvectomy. His left pelvis and proximal femur had been resected, and the femur remained without an acetabular roof. His left lower limb was about 8 centimeters shorter. The left tibia was lengthened 8 centimeters with an external fixator. After the lengthening, the patient was able to walk without support and his gait remarkably improved. Additionally he no longer required placing a wallet in his back pocket as a pad as a means of raising the left side of his torso while sitting. Leg lengthening was a useful method of improving ambulation after an internal hemipelvectomy.

  9. BIOCHEMICAL MARKERS OF BONE RESORPTION AND HORMONAL REGULATION OF BONE METABOLISM FOLLOWING LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    V. P. Buzulina

    2013-01-01

    Full Text Available Aim. Comparative evaluation of two biochemical markers of bone resorption and hormonal regulation of bone metabolism in liver recipients. Methods and results. Bоne densitometry of L2–L4 and neck of femur, serum level of some hormones (PTH, vitamin D3, estradiol, testosterone regulating osteoclastogenesis as well as com- parative analyses of two bone resorption markers β-crosslaps and tartrate-resistant acid phosphatase type 5b (TRAP-5b were fulfilled in patients after orthotopic liver transplantation (OLT. In 1 month after OLT bone density reduction of L2–L4 and neck of femur; decrease of vitamin D3, estradiol in women, testosterone in men and increase levels of bone resorption markers were observed. In 1 and 2 years after OLT the rise of bone density, increased levels of PTH, estradiol, testosterone and decreased β-crosslaps levels were revealed, while vitamin D3 and TRAP-5b levels remained stable. Conclusion. TRAP-5b was found to be a more speciffic marker of bone resorption, independent from collagen metabolism in liver. Osteoporosis defined in long-term period after OLT was associated with higher TRAP-5b and revialed in women with low estradiol level. 

  10. Early Conversion of External Fixation to Interlocked Nailing in Open Fractures of Both Bone Leg Assisted with Vacuum Closure (VAC) - Final Outcome.

    Science.gov (United States)

    Gill, Simrat Pal Singh; Raj, Manish; Kumar, Sunil; Singh, Pulkesh; Kumar, Dinesh; Singh, Jasveer; Deep, Akash

    2016-02-01

    Management of compound grade III fractures of both bone leg includes external stabilization for long period, followed by various soft tissue coverage procedures. Primary interlocking of tibia had been also done with variable results. External fixation for long time without any bone loss often leads to infected nonunion, loss of reduction, pin tract infection and failure of fixation, primary interlocking in compound grade III fractures had shown high medullary infection rate. We managed all cases of compound grade III A/B fractures with primary external fixation, simultaneous wound management using vacuum assisted closure (VAC) followed by early conversion to interlocking within 2 weeks of fixator application. To determine the effectiveness of vacuum assisted closure (VAC) for the early conversion of external fixator to definitive interlocking in open fractures of the both bone leg. In current study we selected 84 cases of compound grade IIIA/B diaphyseal fractures of both bone leg during period of May 2010 to September 2013. We managed these cases by immediate debridement and application of external fixation followed by repeated debridement, application of vacuum assisted closure (VAC) and conversion to interlocking within two weeks. Out of 84 cases union was achieved in 80(95%) of cases with definitive tibial interlocking. Excellent to good result were obtained in 77(91.8%) of cases and fair to poor result seen in rest of 7(8.2%) of cases according to modified Ketenjian's criteria. 5 out of these 7 poor result group cases were from Compound Grade III B group to start with. Deep infection rate in our series were 7% i.e. total 6 cases and 4 out of these were from compound Grade III B group to start with. Vacuum assisted closure (VAC) give a good help for rapid closure of the wound and help in early conversion to definitive intramedullary nailing. Reamed nail could well be used in compound grade IIIA/B fractures without increasing the risk of infection. It gives

  11. Fracture of phalanx from simple bone cyst: A rare bone lesion in the hand

    Directory of Open Access Journals (Sweden)

    Emre Inozu

    2016-08-01

    Full Text Available Solitary bone cysts, also known as unicameral bone cysts or simple bone cysts, are benign tumors of the bone full of liquid. While typically seen on proximal humerus and femur bones, they are rarely seen on other bones. Simple bone cysts, diagnosed with X-ray. incidentally or for other reasons, are usually asymptomatic. In this case, a 25-year-old male patient with pathologic fracture of the proximal phalanx from an undiagnosed simple bone cyst was reported and referred to the authors' clinic to be treated with curettage. [Hand Microsurg 2016; 5(2.000: 100-103

  12. Ultra Morphological Structure of Sensory Sensillae on the Legs and External Genitalia of the Red Palm Weevil Rhynchophorus ferrugineus (Oliv.)

    International Nuclear Information System (INIS)

    Sharaby, Aziz M.; AlDosary, Mona M.

    2007-01-01

    The Red Palm Weevil (RPW) is a major pest infesting date trees in the Gulf region. Chemoreceptors play an important role for insects behaviour in detecting their defined host for feeding, egg laying or mating. The present study is aimed to study morphological structure of sensillae on different legs and external genitalia of both sexes. Three kinds of sensillae are found on the different parts of the three pairs of fore, mid and hind legs, these sensillae are identified as ( Trichoid in three types, coeloconic in two types and one type of Basiconic sensillae). Fore legs bear the highest number of different forms of sensillae, males contained realatively greater number than females. Mid femur only in female bears a dense hair of trichoid sensillae, while they are found on fore- mid and hind femur of males, this may be used for differentiating two sexes. Female ovipositor contained trichoid sensilla can be subdivided into three distinct type1,2, and 3 in addition placoid sensillae, it could be identified four types of trichoid sensilla on the male external genitalia and numerous of placoid sensillae.These may be for hygroreception. (author)

  13. Cells at risk for the production of bone tumors in man: an electron microscope study of the endosteal surface of control bone and bone from a human radium case

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.

    1979-01-01

    The endosteal cells of bone from a radium dial worker are documented for the first time by electron microscopy. Fresh samples of bone and tumor tissue from the femur were made available as a result of amputation for a fibrosarcoma in the region of the right knee joint. Bone was examined from a site proximal to the tumor where no invasion of tumor tissue was evident. The patient, who was exposed at age 16 in 1918, died in 1978 with a terminal body burden, calculated to be 1.2 μCi, 226 Ra. A sample of bone, also obtained at amputation from an unirradiated control patient, age 65, was examined from the same site in the femur. A comparison of the bone bone-marrow interface from the two patients showed that, unlike the control bone where cells were seen close to bone mineral, an intervening fibrotic layer was interposed between the marrow cells and the bone mineral in the radium bone. This layer varied in thickness up to 50 μm and was usually acellular, although cell remnants and occasionally cells, which appeared viable, were seen. Autoradiographs of sections of bone adjacent to those used for the electron microscope studies are being evaluated

  14. Paediatric diaphyseal femur fracture treated with intramedullary titanium elastic nail system

    Directory of Open Access Journals (Sweden)

    Shrawan Kumar Thapa

    2015-11-01

    Full Text Available noBackground & Objectives: Over the few years there has been a marked increase in the use of intramedullary fixation in the management of fracture of shaft of femur in children. The goals should be to stabilize the fracture, to control length and alignment, to promote bone healing and to minimize the morbidity and complications for the child. In this prospective study we intend to evaluate the functional and radiological outcome of diaphyseal fracture of shaft of femur treated with elastic intramedullary nail.Materials & Methods: All 56 patients with diaphyseal fracture shaft of femur were treated with titanium elastic nail and followed for period of 32 weeks.Results: The In this study, outcome was assessed by using Flynn’s criteria of titanium flexible nail outcome score and we found excellent result in 49 cases, satisfactory in six cases and poor in one case. We faced one major complication in form of implant failure and six minor complications inform of superficial wound infection.Conclusion: Elastic intramedullary nail used in treatment of diaphyseal fracture shaft of femur yield excellent functional and radiological outcome. It is easy and simple procedure has low rate of complication. It is physeal-protective, cost effective, does not involve heavy instrumentation and can be performed in small set up. It has minimal risk of infection and no risk of injury to the neurovascular structure.JCMS Nepal. 2015; 11(2:20-22

  15. The Relationship Between Fractures and DXA Measures of BMD in the Distal Femur of Children and Adolescents With Cerebral Palsy or Muscular Dystrophy

    Science.gov (United States)

    Henderson, Richard C; Berglund, Lisa M; May, Ryan; Zemel, Babette S; Grossberg, Richard I; Johnson, Julie; Plotkin, Horacio; Stevenson, Richard D; Szalay, Elizabeth; Wong, Brenda; Kecskemethy, Heidi H; Harcke, H Theodore

    2010-01-01

    Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than −5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than −1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04–1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility. © 2010 American Society for Bone and Mineral Research PMID:19821773

  16. Unusual localizations of unicameral bone cysts and aneurysmal bone cysts: A retrospective review of 451 cases.

    Science.gov (United States)

    Aycan, Osman Emre; Çamurcu, İsmet Yalkın; Özer, Devrim; Arıkan, Yavuz; Kabukçuoğlu, Yavuz Selim

    2015-06-01

    Unicameral bone cysts (UBC) and aneurysmal bone cysts (ABC) are benign cystic lesions of bone which are easily diagnosed. However, unusual locations may lead to a false diagnosis. Therefore the aim of this retrospective study was to determine the frequency of unusual localizations. The authors studied 451 cases with histopathologically confirmed diagnosis of UBC or ABC, seen between 1981 and 2012. In the UBC group (352 cases) humerus, femur and calcaneus were found to be the most common sites, while acetabulum, scapula, scaphoid, lunatum, metacarpals, metatarsals, toe phalanges and ulna each accounted for less than 1%. In the ABC group (99 cases) the most common sites of involvement were femur, humerus and tibia, while finger phalanges, ilium, acetabulum, pubis, calcaneus, cuboid, and toe phalanges each accounted for only 1%. The differential diagnosis of cystic bone lesions should include both UBC and ABC. Pain complaints plead for the latter, except in case of fracture.

  17. Computed tomography analysis of guinea pig bone: architecture, bone thickness and dimensions throughout development.

    Science.gov (United States)

    Witkowska, Agata; Alibhai, Aziza; Hughes, Chloe; Price, Jennifer; Klisch, Karl; Sturrock, Craig J; Rutland, Catrin S

    2014-01-01

    The domestic guinea pig, Cavia aperea f. porcellus, belongs to the Caviidae family of rodents. It is an important species as a pet, a source of food and in medical research. Adult weight is achieved at 8-12 months and life expectancy is ∼5-6 years. Our aim was to map bone local thickness, structure and dimensions across developmental stages in the normal animal. Guinea pigs (n = 23) that had died of natural causes were collected and the bones manually extracted and cleaned. Institutional ethical permission was given under the UK Home Office guidelines and the Veterinary Surgeons Act. X-ray Micro Computed Tomography (microCT) was undertaken on the left and right scapula, humerus and femur from each animal to ascertain bone local thickness. Images were also used to undertake manual and automated bone measurements, volumes and surface areas, identify and describe nutrient, supratrochlear and supracondylar foramina. Statistical analysis between groups was carried out using ANOVA with post-hoc testing. Our data mapped a number of dimensions, and mean and maximum bone thickness of the scapula, humerus and femur in guinea pigs aged 0-1 month, 1-3 months, 3-6 months, 6 months-1 year and 1-4 years. Bone dimensions, growth rates and local bone thicknesses differed between ages and between the scapula, humerus and femur. The microCT and imaging software technology showed very distinct differences between the relative local bone thickness across the structure of the bones. Only one bone showed a singular nutrient foramen, every other bone had between 2 and 5, and every nutrient canal ran in an oblique direction. In contrast to other species, a supratrochlear foramen was observed in every humerus whereas the supracondylar foramen was always absent. Our data showed the bone local thickness, bone structure and measurements of guinea pig bones from birth to 4 years old. Importantly it showed that bone development continued after 1 year, the point at which most guinea pigs have

  18. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements.

    Science.gov (United States)

    Hage, Ilige S; Hamade, Ramsey F

    2017-09-01

    Microscale lacunar-canalicular (L-C) porosity is a major contributor to intracortical bone stiffness variability. In this work, such variability is investigated experimentally using micro hardness indentation tests and numerically using a homogenization scheme. Cross sectional rings of cortical bones are cut from the middle tubular part of bovine femur long bone at mid-diaphysis. A series of light microscopy images are taken along a line emanating from the cross-section center starting from the ring's interior (endosteum) ring surface toward the ring's exterior (periosteum) ring surface. For each image in the line, computer vision analysis of porosity is conducted employing an image segmentation methodology based on pulse coupled neural networks (PCNN) recently developed by the authors. Determined are size and shape of each of the lacunar-canalicular (L-C) cortical micro constituents: lacunae, canaliculi, and Haversian canals. Consequently, it was possible to segment and quantify the geometrical attributes of all individual segmented pores leading to accurate determination of derived geometrical measures such as L-C cortical pores' total porosity (pore volume fraction), (elliptical) aspect ratio, orientation, location, and number of pores in secondary and primary osteons. Porosity was found to be unevenly (but linearly) distributed along the interior and exterior regions of the intracortical bone. The segmented L-C porosity data is passed to a numerical microscale-based homogenization scheme, also recently developed by the authors, that analyses a composite made up of lamella matrix punctuated by multi-inclusions and returns corresponding values for longitudinal and transverse Young's modulus (matrix stiffness) for these micro-sized spatial locations. Hence, intracortical stiffness variability is numerically quantified using a combination of computer vision program and numerical homogenization code. These numerically found stiffness values of the homogenization

  19. Confocal laser scanning microscopy in study of bone calcification

    International Nuclear Information System (INIS)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-01-01

    Highlights: ► High-magnification images with depth selection, and thin sections were observed using CLSM. ► The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. ► In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. ► Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  20. Primary desmoplastic small round cell tumor of the femur

    International Nuclear Information System (INIS)

    Yoshida, Akihiko; Garcia, Joaquin; Edgar, Mark A.; Meyers, Paul A.; Morris, Carol D.; Panicek, David M.

    2008-01-01

    Desmoplastic small round cell tumor (DSRCT) is a rare malignant neoplasm typically involving the abdominal cavity of a young male. Extra-abdominal occurrence of this tumor is very rare. We report a 10-year-old girl with primary DSRCT arising within the left femur. The patient presented with knee pain, and radiological findings were strongly suggestive of osteogenic sarcoma. In addition to the typical microscopic appearance and immunophenotype, RT-PCR demonstrated the chimeric transcript of EWS-WT1, which is diagnostic of DSRCT. Pulmonary metastases were present at initial staging studies, but no abdominal or pelvic lesion was present. Despite chemotherapy and complete tumor excision, the patient developed progressive lung and bone metastases and died 3 years after initial presentation. This is the second reported case of primary DSRCT of bone with genetic confirmation. (orig.)

  1. Primary desmoplastic small round cell tumor of the femur

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Akihiko; Garcia, Joaquin [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Edgar, Mark A. [Memorial Sloan-Kettering Cancer Center, Department of Pathology, New York, NY (United States); Weill Medical College of Cornell University, New York, NY (United States); Meyers, Paul A. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Pediatrics, New York, NY (United States); Morris, Carol D. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Surgery, Orthopaedic Service, New York, NY (United States); Panicek, David M. [Weill Medical College of Cornell University, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2008-09-15

    Desmoplastic small round cell tumor (DSRCT) is a rare malignant neoplasm typically involving the abdominal cavity of a young male. Extra-abdominal occurrence of this tumor is very rare. We report a 10-year-old girl with primary DSRCT arising within the left femur. The patient presented with knee pain, and radiological findings were strongly suggestive of osteogenic sarcoma. In addition to the typical microscopic appearance and immunophenotype, RT-PCR demonstrated the chimeric transcript of EWS-WT1, which is diagnostic of DSRCT. Pulmonary metastases were present at initial staging studies, but no abdominal or pelvic lesion was present. Despite chemotherapy and complete tumor excision, the patient developed progressive lung and bone metastases and died 3 years after initial presentation. This is the second reported case of primary DSRCT of bone with genetic confirmation. (orig.)

  2. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway

    Science.gov (United States)

    Ho, Ming-Hua; Yao, Chih-Jung; Liao, Mei-Hsiu; Lin, Pei-I; Liu, Shing-Hwa; Chen, Ruei-Ming

    2015-01-01

    Osteoblasts play critical roles in bone formation. Our previous study showed that chitosan nanofibers can stimulate osteoblast proliferation and maturation. This translational study used an animal model of bone defects to evaluate the effects of chitosan nanofiber scaffolds on bone healing and the possible mechanisms. In this study, we produced uniform chitosan nanofibers with fiber diameters of approximately 200 nm. A bone defect was surgically created in the proximal femurs of male C57LB/6 mice, and then the left femur was implanted with chitosan nanofiber scaffolds for 21 days and compared with the right femur, which served as a control. Histological analyses revealed that implantation of chitosan nanofiber scaffolds did not lead to hepatotoxicity or nephrotoxicity. Instead, imaging analyses by X-ray transmission and microcomputed tomography showed that implantation of chitosan nanofiber scaffolds improved bone healing compared with the control group. In parallel, microcomputed tomography and bone histomorphometric assays further demonstrated augmentation of the production of new trabecular bone in the chitosan nanofiber-treated group. Furthermore, implantation of chitosan nanofiber scaffolds led to a significant increase in the trabecular bone thickness but a reduction in the trabecular parameter factor. As to the mechanisms, analysis by confocal microscopy showed that implantation of chitosan nanofiber scaffolds increased levels of Runt-related transcription factor 2 (Runx2), a key transcription factor that regulates osteogenesis, in the bone defect sites. Successively, amounts of alkaline phosphatase and osteocalcin, two typical biomarkers that can simulate bone maturation, were augmented following implantation of chitosan nanofiber scaffolds. Taken together, this translational study showed a beneficial effect of chitosan nanofiber scaffolds on bone healing through stimulating trabecular bone production due to upregulation of Runx2-mediated alkaline

  3. Comparison of the effectiveness of phalanges vs. humeri and femurs to estimate lizard age with skeletochronology

    Energy Technology Data Exchange (ETDEWEB)

    Comas, M.; Reguera, S.; Zamora-Camacho, F.J.; Salvado, H.; Moreno-Rueda, G.

    2016-07-01

    Skeletochronology allows estimation of lizard age with a single capture (from a bone), making long–term monitoring unnecessary. Nevertheless, this method often involves the death of the animal to obtain the bone. We tested the reliability of skeletochronology of phalanges (which may be obtained without killing) by comparing the estimated age from femurs and humeri with the age estimated from phalanges. Our results show skeletochronology of phalanges is a reliable method to estimate age in lizards as cross–section readings from all bones studied presented a high correlation and repeatability regardless of the bone chosen. This approach provides an alternative to the killing of lizards for skeletochronology studies. (Author)

  4. Comparison of the effectiveness of phalanges vs. humeri and femurs to estimate lizard age with skeletochronology

    International Nuclear Information System (INIS)

    Comas, M.; Reguera, S.; Zamora-Camacho, F.J.; Salvado, H.; Moreno-Rueda, G.

    2016-01-01

    Skeletochronology allows estimation of lizard age with a single capture (from a bone), making long–term monitoring unnecessary. Nevertheless, this method often involves the death of the animal to obtain the bone. We tested the reliability of skeletochronology of phalanges (which may be obtained without killing) by comparing the estimated age from femurs and humeri with the age estimated from phalanges. Our results show skeletochronology of phalanges is a reliable method to estimate age in lizards as cross–section readings from all bones studied presented a high correlation and repeatability regardless of the bone chosen. This approach provides an alternative to the killing of lizards for skeletochronology studies. (Author)

  5. Benefits of Ilizarov automated bone distraction for nerves and articular cartilage in experimental leg lengthening.

    Science.gov (United States)

    Shchudlo, Nathalia; Varsegova, Tatyana; Stupina, Tatyana; Shchudlo, Michael; Saifutdinov, Marat; Yemanov, Andrey

    2017-09-18

    To determine peculiarities of tissue responses to manual and automated Ilizarov bone distraction in nerves and articular cartilage. Twenty-nine dogs were divided in two experimental groups: Group M - leg lengthening with manual distraction (1 mm/d in 4 steps), Group A - automated distraction (1 mm/d in 60 steps) and intact group. Animals were euthanized at the end of distraction, at 30 th day of fixation in apparatus and 30 d after the fixator removal. M-responses in gastrocnemius and tibialis anterior muscles were recorded, numerical histology of peroneal and tibialis nerves and knee cartilage semi-thin sections, scanning electron microscopy and X-ray electron probe microanalysis were performed. Better restoration of M-response amplitudes in leg muscles was noted in A-group. Fibrosis of epineurium with adipocytes loss in peroneal nerve, subperineurial edema and fibrosis of endoneurium in some fascicles of both nerves were noted only in M-group, shares of nerve fibers with atrophic and degenerative changes were bigger in M-group than in A-group. At the end of experiment morphometric parameters of nerve fibers in peroneal nerve were comparable with intact nerve only in A-group. Quantitative parameters of articular cartilage (thickness, volumetric densities of chondrocytes, percentages of isogenic clusters and empty cellular lacunas, contents of sulfur and calcium) were badly changed in M-group and less changed in A-group. Automated Ilizarov distraction is more safe method of orthopedic leg lengthening than manual distraction in points of nervous fibers survival and articular cartilage arthrotic changes.

  6. The development of a composite bone model for training on placement of dental implants.

    Science.gov (United States)

    Alkhodary, Mohamed Ahmed; Abdelraheim, Abdelraheim Emad Eldin; Elsantawy, Abd Elaleem Hassan; Al Dahman, Yousef Hamad; Al-Mershed, Mohammed

    2015-04-01

    It takes a lot of training on patients for both undergraduate to develop clinical sense as regards to the placement of dental implants in the jaw bones, also, the models provided by the dental implant companies for training are usually made of strengthened synthetic foams, which are far from the composition, and tactile sense provided by natural bone during drilling for clinical placement of dental implants. This is an in-vitro experimental study which utilized bovine femur bone, where the shaft of the femur provided the surface compact layer, and the head provided the cancellous bone layer, to provide a training model similar to jaw bones macroscopic anatomy. Both the compact and cancellous bone samples were characterized using mechanical compressive testing. The elastic moduli of the cancellous and cortical femur bone were comparable to those of the human mandible, and the prepared training model provided a more lifelike condition during the drilling and placement of dental implants. The composite bone model developed simulated the macroscopic anatomy of the jaw bones having a surface layer of compact bone, and a core of cancellous bone, and provided a better and a more natural hands-on experience for placement of dental implants as compared to plastic models made of polyurethane.

  7. Femur morphometry, densitometry, geometry and mechanical properties in young pigs fed a diet free of inorganic phosphorus and supplemented with phytase.

    Science.gov (United States)

    Skiba, Grzegorz; Sobol, Monika; Raj, Stanisława

    2017-02-01

    The study investigated in piglets the effect of replacing dietary inorganic P by addition of microbial phytase and its impact on performance, nutrient digestibility and on the geometrical characteristics and mineralisation of the femur. Sixteen pigs on day 58 of age were divided into two groups and fed either a diet free of additional inorganic phosphorus (P) and supplemented with phytase (Diet LP, 4.23 g total P/kg diet) or a diet with a mineral source of P and not supplemented with phytase (Diet SP, 5.38 g total P/kg diet). Performance data and the apparent total tract digestibility of nutrients were estimated between days 58 and 114, and 72 and 86 of age, respectively. On day 114 of age, the pigs were slaughtered, the femur was dissected and the mineral content and mineral density, maximum strength and maximum elastic strength, cortical wall thickness, cross-sectional area and cortical index were analysed. The growth performance and digestibility of nutrient fractions (with exception of P) did not differ between treatment groups. The P-digestibility was significantly higher in Group LP. The femur of pigs in Group LP had significantly greater cortical wall thickness, cortical index, bone mineral content, bone mineral density, maximum strength and maximum elastic strength than Group SP. Femur maximum strength and maximum elastic strength were correlated with cortical wall thickness and cortical index. Resulting from the different supply of digestible P, the femur geometrical, densitometric and mechanical properties of Group LP were better than those of Group SP. The mechanical properties of the femur of pigs depended more on its geometrical characteristics than on the degree of its mineralisation.

  8. Time-course of exercise and its association with 12-month bone changes

    Directory of Open Access Journals (Sweden)

    Vainionpää Aki

    2009-11-01

    Full Text Available Abstract Background Exercise has been shown to have positive effects on bone density and strength. However, knowledge of the time-course of exercise and bone changes is scarce due to lack of methods to quantify and qualify daily physical activity in long-term. The aim was to evaluate the association between exercise intensity at 3, 6 and 12 month intervals and 12-month changes in upper femur areal bone mineral density (aBMD and mid-femur geometry in healthy premenopausal women. Methods Physical activity was continuously assessed with a waist-worn accelerometer in 35 healthy women (35-40 years participating in progressive high-impact training. To describe exercise intensity, individual average daily numbers of impacts were calculated at five acceleration levels (range 0.3-9.2 g during time intervals of 0-3, 0-6, and 0-12 months. Proximal femur aBMD was measured with dual x-ray absorptiometry and mid-femur geometry was evaluated with quantitative computed tomography at the baseline and after 12 months. Physical activity data were correlated with yearly changes in bone density and geometry, and adjusted for confounding factors and impacts at later months of the trial using multivariate analysis. Results Femoral neck aBMD changes were significantly correlated with 6 and 12 months' impact activity at high intensity levels (> 3.9 g, r being up to 0.42. Trochanteric aBMD changes were associated even with first three months of exercise exceeding 1.1 g (r = 0.39-0.59, p r = 0.38-0.52, p Conclusion The number of high acceleration impacts during 6 months of training was positively associated with 12-month bone changes at the femoral neck, trochanter and mid-femur. These results can be utilized when designing feasible training programs to prevent bone loss in premenopausal women. Trial registration Clinical trials.gov NCT00697957

  9. The Effect of Gabapentin and Tramadol in Cancer Pain Induced by Glioma Cell in Rat Femur.

    Science.gov (United States)

    Corona-Ramos, Janette Nallely; Déciga-Campos, Myrna; Romero-Piña, Mario; Medina, Luis A; Martínez-Racine, Issac; Jaramillo-Morales, Osmar A; García-López, Patricia; López-Muñoz, Francisco Javier

    2017-08-01

    Preclinical Research The presence of pain as part of the cancer process is variable. Glioblastoma multiform (GBM) can produce bone metastasis, a condition that involves other pathological phenotypes including neuropathic and inflammatory pain. Tramadol and gabapentin are drugs used in the treatment of neuropathic pain. However, there are no studies evaluating their analgesic effects in bone metastasis. We produced a pain model induced by the inoculation of glioma cells (10 5 ) into the rat femur, by perforating the intercodiloid fossa. Painful behavior was evaluated by measuring mechanical allodynia using the Von Frey test while thermal hyperalgesia was assessed in the plantar test. Histopathological features were evaluated and antinociceptive responses were compared using tramadol and gabapentin. The inoculation of cells inside the right femur produced nociceptive behaviors. Tramadol and gabapentin produced an anti-allodynic effect in this condition, but tramadol did not produce an anti-hyperalgesic response. The development of this model will allow us to perform tests to elucidate the pathology of bone metastasis, cancer pain, and in particular the pain produced by glioma. Drug Dev Res 78 : 173-183, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  11. Study of the variations of fall induced hip fracture risk between right and left femurs using CT-based FEA.

    Science.gov (United States)

    Faisal, Tanvir R; Luo, Yunhua

    2017-10-03

    Hip fracture of elderly people-suffering from osteoporosis-is a severe public health concern, which can be reduced by providing a prior assessment of hip fracture risk. Image-based finite element analysis (FEA) has been considered an effective computational tool to assess the hip fracture risk. Considering the femoral neck region is the weakest, fracture risk indicators (FRI) are evaluated for both single-legged stance and sideways fall configurations and are compared between left and right femurs of each subject. Quantitative Computed Tomography (QCT) scan datasets of thirty anonymous patients' left and right femora have been considered for the FE models, which have been simulated with an equal magnitude of load applied to the aforementioned configurations. The requirement of bilateral hip assessment in predicting the fracture risk has been explored in this study. Comparing the sideways fall and single-legged stance, the FRI varies by 64 to 74% at the superior aspects and by 14 to 19% at the inferior surfaces of both the femora. The results of this in vivo analysis clearly substantiate that the fracture is expected to initiate at the superior surface of femoral neck region if a patient falls from his/her standing height. The distributions of FRI between the femurs vary considerably, and the variability is significant at the superior aspects. The p value (= 0.02) obtained from paired sample t-Test yields p value ≤ 0.05, which shows the evidence of variability of the FRI distribution between left and right femurs. Moreover, the comparison of FRIs between the left and right femur of men and women shows that women are more susceptible to hip fracture than men. The results and statistical variation clearly signify a need for bilateral hip scanning in predicting hip fracture risk, which is clinically conducted, at present, based on one hip chosen randomly and may lead to inaccurate fracture prediction. This study, although preliminary, may play a crucial role in

  12. 99mTc-MDP bone scintigraphy findings representing osteoporosis

    International Nuclear Information System (INIS)

    Nam, Dae Gun; Moon, Tae Geon; Kim, Ji Hong; Son, Seok Man; Kim, In Ju; Kim, Yong Ki

    2001-01-01

    Bone scintigraphy with 99m Tc-labeled phosphates is one of the most common procedures in evaluation of various skeletal disorders. Metabolic bone diseases show involvement of the whole skeleton and are associated with increased bone turnover and increased uptake of 99m Tc-labeled phosphates. In this study, we investigated apparently normal women who were examined with routine bone scintigraphy applied bone densitometry to correlate it with skeletal uptake in bone scan. This study includes 79 women who were performed both of bone mineral density(BMD) and bone scintigraphy. We investigated the relation of bone scan findings and BMD of lumbar, femur, radius. Regional BMD were negatively correlated with increased age. Among the bone scintigraphy findings representing metabolic bone disease, uptakes by the long bones, skull and mandible increased with age in women, while that in the costochondral junction decreased. Increased skull and mandible uptakes is associated with decreased BMD, and it has statistically significance. Our results show that increased radionuclide uptake in bone scintigraphy, especially skull and mandible uptake was associated with decreased lumbar, femur BMD in women. So that, increased skull and mandible uptake in women would be a scintigraphic sign of osteopenia or osteoporosis

  13. Age-associated bone loss and intraskeletal variability in the Imperial Romans.

    Science.gov (United States)

    Cho, Helen; Stout, Sam Darrel

    2011-01-01

    An Imperial Roman sample from the Isola Sacra necropolis (100-300 A.D.) offered an opportunity to histologically examine bone loss and intraskeletal variability in an urban archaeological population. Rib and femur samples were analyzed for static indices of bone remodeling and measures of bone mass. The Imperial Romans experienced normal age-associated bone loss via increased intracortical porosity and endosteal expansion, with females exhibiting greater bone loss and bone turnover rates than in males. Life events such as menopause and lactation coupled with cultural attitudes and practices regarding gender and food may have led to increased bone loss in females. Remodeling dynamics differ between the rib and femur and the higher remodeling rates in the rib may be attributed to different effective age of the adult compacta or loading environment. This study demonstrates that combining multiple methodologies to examine bone loss is necessary to shed light on the biocultural factors that influence bone mass and bone loss.

  14. Early Diagnosis of Avascular Necrosis of Bone Following Renal Transplantation By Bone Scan

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Ho; Kim, Han Su; Ihn, Chun Gyoo; Kim, Myung Jae [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1982-09-15

    Avascular necrosis of bone has become a well-recognized complication of renal transplantation. While preexisting metabolic bone disease, especially hyperparathyroidism, and metabolic disturbances induced by steroids have been implicated as etiological factors, the pathogenesis is controversial. The diagnosis of avascular necrosis of bone had been based on a history of joint pain and radiographic demonstration of bone necrosis. Recently the bone scan using {sup 99m}Tc-methylene diphosphonate is helpful in determining the early stage of bone necrosis. We report two cases of avascular necrosis of femur head, of which diagnosis was made by the bone scan using {sup 99m}Tc-methylene diphosphonate.

  15. Properties of deproteinized bone for reparation of big segmental defect in long bone

    Institute of Scientific and Technical Information of China (English)

    JIAN Yue-kui; TIAN Xiao-bin; LI Bo; QIU Bing; ZHOU Zuo-jia; YANG Zheng; LI Qi-hong

    2008-01-01

    Objective: To explore suitable scaffold material for big segmental long bone defect by studying the properties of the prepared deproteinized bone. Methods: Cancellated bone were made as 30 mm ×3 mm ×3 mm bone blocks from inferior extremity of pig femur along bone trabecula. The deproteinized bone was prepared with an improved method. Their morphological features, components, cell compatibility, mechanical and immunological properties were investigated respectively. Results: Deproteinized bone maintained natural re ticular pore system. The main organic material is collagen Ⅰand inorganic composition is hydroxyapatite. It has good mechanical properties, cell adhesion rate and histocompatibility. Conlusion: This deproteinized bone can be applicable as scaffold for reparation of big segmental defect in long bone.

  16. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    International Nuclear Information System (INIS)

    Taguchi, Kazuhiro; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-01-01

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses

  17. Periodontitis and bone mineral density among pre and post menopausal women: A comparative study

    Directory of Open Access Journals (Sweden)

    Suresh Snophia

    2010-01-01

    Full Text Available Aim: The aim of the study was to assess the relationship between bone mineral density and periodontitis in premenopausal and postmenopausal women. Materials and Methods: Twenty women between the age group of 45-55 years were selected for this study. Ten premenopausal women with healthy periodontium constituted the control group and 10 postmenopausal women with ≥2mm of clinical attachment loss in> 30% of sites constituted the study group. All patients were assessed for plaque index, probing depth and clinical attachment loss. Radiographs (six IOPA and two posterior bitewing were taken and assessed for interproximal alveolar bone loss. The patients were scanned to assess the bone mineral density of lumbar spine (L2 and femur using dual energy X-ray absorptiometry (DEXA. Results: The bone mineral densities of lumbar spine (L2 and femur were significantly lower in the study group than the control group. Osteopenia of the lumbar spine and femur was observed in 60% whereas osteoporosis of lumbar spine was observed in 30% of cases in study group. Conclusion: Increased proportion of osteopenia and osteoporosis cases of lumbar spine and femur in postmenopausal women with periodontitis suggests that there is association between bone mineral density and periodontitis.

  18. Unicameral Bone Cyst of the Medial Cuneiform.

    Science.gov (United States)

    Schick, Faith A; Daniel, Joseph N; Miller, Juliane S

    2016-09-02

    A unicameral bone cyst is a relatively uncommon, benign bone tumor found in the metaphysis of long bones, such as the humerus and the femur, in skeletally immature persons. In the foot, these benign, fluid-filled cavities are most commonly found within the os calcis. We present a case report of a 10-year-old female with a unicameral bone cyst of the medial cuneiform.

  19. Vertebral metastasis of femur primary osteosarcoma: a case report and literature review

    International Nuclear Information System (INIS)

    Cioni, Claudia Helena; Oliveira, Andrea Alencar de; Neves, Felipe Trentin

    2006-01-01

    We present a case of a 21-year-old patient, bearer of femur primary osteosarcoma, who began with pain in the thoracic column. The metastasis of primary osteosarcoma has greater incidence on lungs, rarely affecting vertebras. We reviewed the literature about this disease and emphasized the image's characteristics on the several methods used (traditional radiographic exams, bone scintigraphy, computed tomography, magnetic resonance) and the main differential diagnostics. (author)

  20. The effect of sympathectomy on bone blood flow in man

    International Nuclear Information System (INIS)

    Lahtinen, T.; Alhava, E.M.; Hyoedynmaa, S.; Hendolin, H.; Oksala, I.

    1982-01-01

    The effect of lumbar sympathectomy on bone blood flow was measured in seven patients with a Xe-133 washout method. On the third postoperative day there was a significant increase of blood flow in the proximal femur and a slight increase in the proximal tibia. Two months after the operation blood flow in the proximal part of the femur was no more significantly increased but in the proximal tibia there was a significant increase. The study suggests that the positive effect of sympathectomy on bone blood flow may be of value in cases where the increase of blood flow to peripheral bones is required

  1. Comparison of xenogenic bone bioimplant and calcium phosphate granules on experimental femoral bone defect healing in rabbits

    Directory of Open Access Journals (Sweden)

    GH Mousavi

    2012-05-01

    Full Text Available Rebuilding and renovation of lost bone whether because of physiologic or pathologic factors was one of the surgeons’ motivations from the past. Osteogenesis of decalcified bone induced by growth factors contained in it. This study is to assay probability effect of decalcified bone and calcium phosphate granules on osteogenesis which is made in experimental flaw and it is as a laboratory pattern in rabbit femur.This experimental study is made on 15 male rabbits. Animals were divided randomly into 3 groups (control and treatments.After induction of general anesthesia, 2 holes in size of 2 mm in diameter was made using a dental bit in femur width to medullary channel. After surgery, the control group left untreated and decalcified bones was placed in group 2 and calcium phosphate granules were placed in group 3. Histopathological and histomorphometrical studies for evaluation of bone healing were carried out in experimental rats, which were euthanized after 45 days of the experiment using hematoxylin-eosin (H&E staining method.In control group, defect seemed to be filled with woven bone and bone marrow spaces and in spite of a poor osteogenic activity. In calcium phosphate group, young bone trabeculas increased in number and bone trabeculas more organized. Histomorphometric results, observed that calcium phosphate granules has significant effect on bone healing than decalcified and control groups.

  2. Confocal laser scanning microscopy in study of bone calcification

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tetsunari, E-mail: tetsu-n@cc.osaka-dent.ac.jp [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Kokubu, Mayu; Kato, Hirohito [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Imai, Koichi [Department of Biomaterials, Osaka Dental University, Osaka (Japan); Tanaka, Akio [Department of Oral Pathology, Osaka Dental University, Osaka (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer High-magnification images with depth selection, and thin sections were observed using CLSM. Black-Right-Pointing-Pointer The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. Black-Right-Pointing-Pointer In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. Black-Right-Pointing-Pointer Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 {mu}m/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  3. Lymphangiopathy in neurofibromatosis 1 manifesting with chylothorax, pericardial effusion, and leg edema

    Directory of Open Access Journals (Sweden)

    Finsterer J

    2013-09-01

    Full Text Available Josef Finsterer,1 Claudia Stollberger,2 Elisabeth Stubenberger,3 Sasan Tschakoschian4 1Krankenanstalt Rudolfstiftung, Vienna, Austria; 2Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria; 3Thoracic Surgery Department, Vienna, Austria; 4Interne Lungenabt, Vienna, Austria Background: This case report documents the affliction of the lymph vessels as a phenotypic feature of neurofibromatosis-1 (NF-1. Methodology: Routine transthoracic echocardiography, computed tomography scan of the thorax, magnetic resonance angiography of the renal arteries, and conventional digital subtraction angiography were applied. Comprehensive NF-1 mutation analysis was carried out by fluorescence in situ hybridization analysis, long-range reverse transcriptase polymerase chain reaction, and multiple-ligation probe assay. All other investigations were performed using routine, well-established techniques. Results: The subject is a 34-year-old, half-Chinese male; NF-1 was suspected at age 15 years for the first time. His medical history included preterm birth, mild facial dysmorphism, "café au lait" spots, subcutaneous and paravertebral fibromas, multifocal tachycardia, atrial fibrillation, and heart failure in early infancy. Noncalcified bone fibromas in the femur and tibia were detected at age 8 years. Surgical right leg lengthening was carried out at age 11 years. Bilateral renal artery stenosis, stenosis and aneurysm of the superior mesenteric artery, and an infrarenal aortic stenosis were detected at age 15 years. Leg edema and ectasia of the basilar artery were diagnosed at age 18 years. After an episode with an erysipela at age 34 years, he developed pericardial and pleural effusion during a 4-month period. Stenosis of the left subclavian vein at the level of thoracic duct insertion was detected. After repeated pleural punctures, pleural effusion was interpreted as chylothorax. Reduction of lymph fluid production by diet and injection of talcum into

  4. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Directory of Open Access Journals (Sweden)

    Jagpal Sugeet

    2008-11-01

    Full Text Available Abstract Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2, which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD rats (n = 84, age = 20 weeks were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls or diets high in RS2 (18% by weight throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD and bone mineral content (BMC of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p 2 had higher femur BMD (p 2-fed rats also had higher femur calcium (p Conclusion Weight cycling reduces bone mass. A diet high in RS2 can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.

  5. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  6. Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models.

    Science.gov (United States)

    Prodinger, Peter M; Foehr, Peter; Bürklein, Dominik; Bissinger, Oliver; Pilge, Hakan; Kreutzer, Kilian; von Eisenhart-Rothe, Rüdiger; Tischer, Thomas

    2018-02-14

    Rat fracture models are extensively used to characterize normal and pathological bone healing. Despite, systematic research on inter- and intra-individual differences of common rat bones examined is surprisingly not available. Thus, we studied the biomechanical behaviour and radiological characteristics of the humerus, the tibia and the femur of the male Wistar rat-all of which are potentially available in the experimental situation-to identify useful or detrimental biomechanical properties of each bone and to facilitate sample size calculations. 40 paired femura, tibiae and humeri of male Wistar rats (10-38 weeks, weight between 240 and 720 g) were analysed by DXA, pQCT scan and three-point-bending. Bearing and loading bars of the biomechanical setup were adapted percentually to the bone's length. Subgroups of light (skeletal immature) rats under 400 g (N = 11, 22 specimens of each bone) and heavy (mature) rats over 400 g (N = 9, 18 specimens of each bone) were formed and evaluated separately. Radiologically, neither significant differences between left and right bones, nor a specific side preference was evident. Mean side differences of the BMC were relatively small (1-3% measured by DXA and 2.5-5% by pQCT). Over all, bone mineral content (BMC) assessed by DXA and pQCT (TOT CNT, CORT CNT) showed high correlations between each other (BMC vs. TOT and CORT CNT: R 2  = 0.94-0.99). The load-displacement diagram showed a typical, reproducible curve for each type of bone. Tibiae were the longest bones (mean 41.8 ± 4.12 mm) followed by femurs (mean 38.9 ± 4.12 mm) and humeri (mean 29.88 ± 3.33 mm). Failure loads and stiffness ranged from 175.4 ± 45.23 N / 315.6 ± 63.00 N/mm for the femurs, 124.6 ± 41.13 N / 260.5 ± 59.97 N/mm for the humeri to 117.1 ± 33.94 N / 143.8 ± 36.99 N/mm for the tibiae. Smallest interindividual differences were observed in failure loads of the femurs (CV% 8.6) and tibiae (CV% 10.7) of heavy

  7. Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk.

    Science.gov (United States)

    Bryan, Rebecca; Nair, Prasanth B; Taylor, Mark

    2009-09-18

    Interpatient variability is often overlooked in orthopaedic computational studies due to the substantial challenges involved in sourcing and generating large numbers of bone models. A statistical model of the whole femur incorporating both geometric and material property variation was developed as a potential solution to this problem. The statistical model was constructed using principal component analysis, applied to 21 individual computer tomography scans. To test the ability of the statistical model to generate realistic, unique, finite element (FE) femur models it was used as a source of 1000 femurs to drive a study on femoral neck fracture risk. The study simulated the impact of an oblique fall to the side, a scenario known to account for a large proportion of hip fractures in the elderly and have a lower fracture load than alternative loading approaches. FE model generation, application of subject specific loading and boundary conditions, FE processing and post processing of the solutions were completed automatically. The generated models were within the bounds of the training data used to create the statistical model with a high mesh quality, able to be used directly by the FE solver without remeshing. The results indicated that 28 of the 1000 femurs were at highest risk of fracture. Closer analysis revealed the percentage of cortical bone in the proximal femur to be a crucial differentiator between the failed and non-failed groups. The likely fracture location was indicated to be intertrochantic. Comparison to previous computational, clinical and experimental work revealed support for these findings.

  8. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  9. Bone mineral density change during adjuvant chemotherapy in pediatric osteosarcoma

    Directory of Open Access Journals (Sweden)

    Ju Hyun Ahn

    2015-09-01

    Full Text Available PurposeOsteoporosis is currently receiving particular attention as a sequela in survivors of childhood osteosarcoma. The aim of this study was to evaluate bone mineral density (BMD changes during methotrexate-based chemotherapy in children and adolescents with osteosarcoma.MethodsNine patients with osteosarcoma were included in this retrospective study and compared with eight healthy controls. BMD of the lumbar spine and unaffected femur neck of patients was serially measured by dual-energy x-ray absorptiometry (DXA before and just after chemotherapy and compared with controls.ResultsFour patients (44% showed decreased lumbar spine BMD and seven patients (78% showed decreased femur neck BMD, while all controls showed increased lumbar and femur BMD (P=0.024 and P=0.023. The femur neck BMD z-scores decreased from -0.49±1.14 to -1.63±1.50 (P=0.032. At the end of therapy, five patients (56% showed femur neck BMD z-scores below -2.0.ConclusionThe bone metabolism is disturbed during therapy in children with osteosarcoma, resulting in a reduced BMD with respect to healthy controls. Since a reduced BMD predisposes to osteoporosis, specific attention and therapeutic interventions should be considered.

  10. [Clinical and physiological evaluation of bone changes among astronauts after long-term space flights

    Science.gov (United States)

    Grigoriev, A. I.; Oganov, V. S.; Bakulin, A. V.; Poliakov, V. V.; Voronin, L. I.; Morgun, V. V.; Shnaider, V. S.; Murashko, L. V.; Novikov, V. E.; LeBlank, A.; hide

    1998-01-01

    Results of the joint Russian/US studies of the effect of microgravity on bone tissues in 18 cosmonauts on return from 4.5- to 14.5-month long missions are presented. Dual-energy x-ray gamma-absorbtiometry (QDR-1000 W, Hologic, USA) was used to measure bone mineral density (BMD, g/cm2) and mineral content (BMC, g) in the whole body, the scalp including cervical vertebra, arms, ribs, sternal and lumbar regions of the spinal column, pelvis and legs. A clearly defined dependence of topography of changes upon the position of a skeletal segment in the gravity vector was established. The greatest BMD losses have been observed in the skeleton of the lower body, i.e. in pelvic bones (-11.99 +/- 1.22%), lumbar vertebra (-5.63 +/- 0.817%), and in proximal femur, particularly in the femoral neck (-8.17 +/- 1.24%). Bones of the upper skeleton were either unchanged (insignificant) or showed a positive trend. Overall changes in bone mass of the whole skeleton of male cosmonauts during the period of about 6 months on mission made up -1.41 +/- 0.406% and suggest the mean balance of calcium over flight equal to -227 +/- 62.8 mg/day. Reasoning is given to qualify these states of cosmonauts' bone tissues as local osteopenia. On the literature and results of authors' clinical evidence, discussed is availability of the densitometric data for predicting risk of trauma. A biological nature of the changes under observation is hypothesized.

  11. Histological Observation of Regions around Bone Tunnels after Compression of the Bone Tunnel Wall in Ligament Reconstruction

    International Nuclear Information System (INIS)

    Maeda, Shintaro; Ishikawa, Hiroki; Tanigawa, Naoaki; Miyazaki, Kyosuke; Shioda, Seiji

    2012-01-01

    The objectives of this study were to investigate the time-course of influence of compression of bone tunnel wall in ligament reconstruction on tissue around the bone tunnel and to histologically examine the mechanism of preventing the complication of bone tunnel dilation, using rabbit tibia. A model in which the femoral origin of the extensor digitorum longus tendon was cut and inserted into a bone tunnel made proximal to the tibia was prepared in the bilateral hind legs of 20 Japanese white rabbits. In each animal, a tunnel was made using a drill only in the right leg, while an undersized bone tunnel was made by drilling and then dilated by compression using a dilator to the same tunnel size as that in the right leg. Animals were sacrificed at 0, 2, 4, 8 and 12 weeks after surgery (4 animals at each time point). Observation of bone tunnels by X-ray radiography showed osteosclerosis in the 2- and 4-week dilation groups. Osteosclerosis appeared as white lines around the bone tunnel on X-ray radiography. This suggests that dilation promotes callus formation in the bone tunnel wall and prevents the complication of bone tunnel enlargement after ligament reconstruction

  12. Bone grafting: An overview

    Directory of Open Access Journals (Sweden)

    D. O. Joshi

    2010-08-01

    Full Text Available Bone grafting is the process by which bone is transferred from a source (donor to site (recipient. Due to trauma from accidents by speedy vehicles, falling down from height or gunshot injury particularly in human being, acquired or developmental diseases like rickets, congenital defects like abnormal bone development, wearing out because of age and overuse; lead to bone loss and to replace the loss we need the bone grafting. Osteogenesis, osteoinduction, osteoconduction, mechanical supports are the four basic mechanisms of bone graft. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. An ideal bone graft material is biologically inert, source of osteogenic, act as a mechanical support, readily available, easily adaptable in terms of size, shape, length and replaced by the host bone. Except blood, bone is grafted with greater frequency. Bone graft indicated for variety of orthopedic abnormalities, comminuted fractures, delayed unions, non-unions, arthrodesis and osteomyelitis. Bone graft can be harvested from the iliac crest, proximal tibia, proximal humerus, proximal femur, ribs and sternum. By adopting different procedure of graft preservation its antigenicity can be minimized. The concept of bone banking for obtaining bone grafts and implants is very useful for clinical application. Absolute stability require for successful incorporation. Ideal bone graft must possess osteogenic, osteoinductive and osteocon-ductive properties. Cancellous bone graft is superior to cortical bone graft. Usually autologous cancellous bone graft are used as fresh grafts where as allografts are employed as an alloimplant. None of the available type of bone grafts possesses all these properties therefore, a single type of graft cannot be recomm-ended for all types of orthopedic abnormalities. Bone grafts and implants can be selected as per clinical problems, the equipments available and preference of

  13. Bone strength and athletic ability in hominids: Ardipithecus ramidus to Homo sapiens

    Science.gov (United States)

    Lee, S. A.

    2013-03-01

    The ability of the femur to resist bending stresses is determined by its midlength cross-sectional geometry, its length and the elastic properties of the mineral part of the bone. The animal's athletic ability, determined by a ``bone strength index,'' is limited by this femoral bending strength in relation to the loads on the femur. This analysis is applied to the fossil record for Homo sapiens, Homo neanderthalensis, Homo erectus, Homo habilis, Australopithecus afarensis and Ardipithecus ramidus. Evidence that the femoral bone strength index of modern Homo sapiens has weakened over the last 50,000 years is found.

  14. Osteoporosis in clinical practice – bone densitometry and fracture risk

    African Journals Online (AJOL)

    Osteoporosis is a condition of decreased bone mass and bone density associated with an increase in fracture risk. Bone mineral density (BMD) of the lumbar spine and femur can be reliably measured by double-beam X-ray absorptiometry (DEXA), which provides a measure of bone strength. Reduction in BMD is a ...

  15. Relationship of homocysteine levels with lumbar spine and femur neck BMD in postmenopausal women.

    Science.gov (United States)

    Bahtiri, E; Islami, H; Rexhepi, S; Qorraj-Bytyqi, H; Thaçi, K; Thaçi, S; Karakulak, C; Hoxha, R

    2015-01-01

    The focus of several studies in recent years has been the association between increased plasma concentrations of homocysteine (Hcy), reduced bone mineral density and increased risk of bone fractures. Nevertheless, inconsistencies persist in the literature. Thus, the objective of this study was to investigate the possible relationship between serum Hcy and vitamin B12 status, and bone mineral density, on a group of post-menopausal women. One hundred thirty-nine postmenopausal women were recruited to enter this cross-sectional study. Bone mineral density (BMD) of total hip, femoral neck and lumbar spine was measured by dual-energy X-ray absorptiometry (DXA) and serum Hcy, vitamin B12, parathyroid hormone (PTH), total calcium and magnesium levels were determined. In addition, we investigated the relationship of Hcy and vitamin B12 and BMD using a meta-analysis approach. Serum Hcy levels were significantly higher in osteoporotic women when compared to other BMD groups, and were inversely related to lumbar spine BMD and femur neck BMD. Body mass index and serum Hcy levels were shown to be significant predictors of BMD at lumbar spine, femur neck and total hip. The performed meta-analysis showed that serum Hcy levels were significantly higher in osteoporotic subjects compared to normal BMD subjects. This study shows that Hcy status, but not vitamin B12 status, is associated with BMD in this cohort of postmenopausal women. We therefore confirm that high Hcy levels are an independent risk factor for osteoporosis. BMD evaluation in women at post menopause with high Hcy levels may be helpful in advising precautionary measures.

  16. Computer-navigated minimally invasive total knee arthroplasty for patients with retained implants in the femur

    Directory of Open Access Journals (Sweden)

    Sung-Yen Lin

    2014-08-01

    Full Text Available Total knee arthroplasty (TKA in patients with knee arthritis and retained implants in the ipsilateral femur is a challenge for knee surgeons. Use of a conventional intramedullary femoral cutting guide is not practical because of the obstruction of the medullary canal by implants. Previous studies have shown that computer-assisted surgery (CAS can help restore alignment in conventional TKA for patients with knee arthritis with retained femoral implants or extra-articular deformity, without the need for implant removal or osteotomy. However, little has been published regarding outcomes with the use of navigation in minimally invasive surgery (MIS-TKA for patients with this complex knee arthritis. MIS has been proven to provide less postoperative pain and faster recovery than conventional TKA, but MIS-TKA in patients with retained femoral implants poses a greater risk in limb malalignment. The purpose of this study is to report the outcome of CAS-MIS-TKA in patients with knee arthritis and retained femoral implants. Between April 2006 and March 2008, eight patients with knee arthritis and retained femoral implants who underwent the CAS-MIS-TKA were retrospectively reviewed. Three of the eight patients had extra-articular deformity, including two femur bones and one tibia bone, in the preoperative examination. The anteroposterior, lateral, and long-leg weight-bearing radiographs carried out at 3-month follow-up was used to determine the mechanical axis of lower limb and the position of components. The mean preoperative femorotibial angle in patients without extra-articular deformity was 3.8° of varus and was corrected to 4.6° of valgus. With the use of navigation in MIS-TKA, the two patients in this study with extra-articular femoral deformity also obtained an ideal postoperative mechanical axis within 2° of normal alignment. Overall, there was a good restoration of postoperative mechanical alignment in all cases, with a mean angle of 0.4° of

  17. Changes in Cytokines of the Bone Microenvironment during Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Sosnoski, D.M.; Krishnan, V.; Mastro, A.M.; Kraemer, W.J.; Dunn-Lewis, C.

    2012-01-01

    It is commonly accepted that cancer cells interact with host cells to create a microenvironment favoring malignant colonization. The complex bone microenvironment produces an ever changing array of cytokines and growth factors. In this study, we examined levels of MCP-1, IL-6, KC, MIP-2, VEGF, MIG, and eotaxin in femurs of athymic nude mice inoculated via intracardiac injection with MDA-MB-231GFP human metastatic breast cancer cells, MDA-MB-231 BRMS1GFP, a metastasis suppressed variant, or PBS. Animals were euthanized (day 3, 11, 19, 27 after injection) to examine femoral cytokine levels at various stages of cancer cell colonization. The epiphysis contained significantly more cytokines than the diaphysis except for MIG which was similar throughout the bone. Variation among femurs was evident within all groups. By day 27, MCP-1, MIG, VEGF and eotaxin levels were significantly greater in femurs of cancer cell-inoculated mice. These pro-osteoclastic and angiogenic cytokines may manipulate the bone microenvironment to enhance cancer cell colonization

  18. Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus).

    Science.gov (United States)

    Nganvongpanit, Korakot; Siengdee, Puntita; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Angkawanish, Taweepoke; Thitaram, Chatchote

    2017-09-01

    This study evaluated the morphology and elemental composition of Asian elephant (Elephas maximus) bones (humerus, radius, ulna, femur, tibia, fibula and rib). Computerized tomography was used to image the intraosseous structure, compact bones were processed using histological techniques, and elemental profiling of compact bone was conducted using X-ray fluorescence. There was no clear evidence of an open marrow cavity in any of the bones; rather, dense trabecular bone was found in the bone interior. Compact bone contained double osteons in the radius, tibia and fibula. The osteon structure was comparatively large and similar in all bones, although the lacuna area was greater (P < 0.05) in the femur and ulna. Another finding was that nutrient foramina were clearly present in the humerus, ulna, femur, tibia and rib. Twenty elements were identified in elephant compact bone. Of these, ten differed significantly across the seven bones: Ca, Ti, V, Mn, Fe, Zr, Ag, Cd, Sn and Sb. Of particular interest was the finding of a significantly larger proportion of Fe in the humerus, radius, fibula and ribs, all bones without an open medullary cavity, which is traditionally associated with bone marrow for blood cell production. In conclusion, elephant bones present special characteristics, some of which may be important to hematopoiesis and bone strength for supporting a heavy body weight.

  19. Effects of administration of four different doses of Escherichia coli phytase on femur properties of 16-week-old turkeys.

    Science.gov (United States)

    Tatara, Marcin R; Krupski, Witold; Kozłowski, Krzysztof; Drażbo, Aleksandra; Jankowski, Jan

    2015-03-18

    The enzyme phytase is able to initiate the release of phosphates from phytic acid, making it available for absorption within gastrointestinal tract and following utilization. The aim of the study was to determine effects of Escherichia coli phytase administration on morphological, densitometric and mechanical properties of femur in 16-week-old turkeys. One-day-old BUT Big-6 males were assigned to six weight-matched groups. Turkeys receiving diet with standard phosphorus (P) and calcium (Ca) content belonged to the positive control group (Group I). Negative control group (Group II) consisted of birds fed diet with lowered P and Ca content. Turkeys belonging to the remaining groups have received the same diet as group II but enriched with graded levels of Escherichia coli phytase: 125 (Group III), 250 (Group IV), 500 (Group V) and 1000 (Group VI) FTU/kg. At the age of 112 days of life, the final body weights were determined and the turkeys were sacrificed to obtain right femur for analyses. Geometric and densitometric properties of femur were determined using quantitative computed tomography (QCT) technique, while mechanical evaluation was performed in three-point bending test. Phytase administration increased cross-sectional area, second moment of inertia, mean relative wall thickness, cortical bone mineral density and maximum elastic strength decreasing cortical bone area of femur (P phytase administration on geometric, densitometric and mechanical properties of femur were observed in turkeys receiving 125 and 250 FTU/kg of the diet. Phytase administration at the dosages of 500 and 1000 FTU/kg of the diet improved the final body weight in turkeys. The results obtained in this study indicate a possible practical application of Escherichia coli phytase in turkey feeding to improve skeletal system properties and function.

  20. Proximal and distal alignment of normal canine femurs: A morphometric analysis.

    Science.gov (United States)

    Kara, Mehmet Erkut; Sevil-Kilimci, Figen; Dilek, Ömer Gürkan; Onar, Vedat

    2018-05-01

    Many researchers are interested in femoral conformation because most orthopaedic problems of the long bones occur in the femur and its joints. The neck-shaft (NSA) and the anteversion (AVA) angles are good predictors for understanding the orientation of the proximal end of the femur. The varus (aLDFA) and procurvatum (CDFA) angles have also been used to understand the orientation of the distal end of the femur. The purposes of this study were to investigate the relationship between the proximal and distal angles of the femur and to compare the distal femoral angles in male and female dogs in order to investigate the sexual dimorphism. The measurements of normal CDFAs, which have not been previously reported, may also provide a database of canine distal femoral morphology. A total of 75 cleaned healthy femora from different breeds or mixed breed of dogs were used. The three-dimensional images were reconstructed from computed tomographic images. The AVA, NSA, aLDFA and CDFA were measured on the 3D images. The correlation coefficients were calculated among the measured angles. The distal femoral angles were also compared between male and female femora. The 95% confidence intervals of the AVA and the NSA were calculated to be 24.22°-29.50° and 144.97°-147.50°, respectively. The 95% confidence intervals of the aLDFA and the CDFA for all studied dogs were 92.62°-94.08° and 89.09°-91.94°, respectively. The NSA showed no correlation with either the aLDFA or CDFA. There was a weak inverse correlation between the AVA and CDFA and a weak positive correlation between the AVA and aLDFA. The differences in the aLDFA and CDFA measurements between male and female dog were not significant. In conclusion, femoral version, regardless of the plane, might have little influence on distal femoral morphology in normal dogs. Besides this, there is no evidence of a sexual dimorphism in the varus and procurvatum angles of the dog distal femur. The data from this study may be used in

  1. Decreased 133Xe clearance in the proximal femur in acromegaly

    International Nuclear Information System (INIS)

    Kapitola, J.; Marek, J.; Jahoda, I.; Vilimovska, D.

    1986-01-01

    Using the 133 Xe tissue clearance method, the blood flow in the greater trochanter of the femur was studied in 30 patients with acromegaly. Both the washout rate constant (k 2 ) and blood flow (P 2 ) values are significantly decreased in acromegaly (p < 0.01). There is a significant negative correlation (r = -0.42, p < 0.05) between the flow values and mean daily concentrations of growth hormone in serum of acromegalic patients. The observation is presented as a preliminary evidence of a possible influence of growth hormone on the blood flow in bone. (author)

  2. Prenatal programming of skeletal development in the offspring: effects of maternal treatment with beta-hydroxy-beta-methylbutyrate (HMB) on femur properties in pigs at slaughter age.

    Science.gov (United States)

    Tatara, Marcin R; Sliwa, Ewa; Krupski, Witold

    2007-06-01

    Alteration in fetal growth and development in response to prenatal environmental conditions such as nutrition has long-term or permanent effects during postnatal life. The aim of this study was to investigate effects of beta-hydroxy-beta-methylbutyrate (HMB) treatment of sows during the last 2 weeks of pregnancy on programming of skeletal development in the offspring. The study was performed on 141 pigs born by 12 sows of Polish Landrace breed. Two weeks before delivery, pregnant sows were divided into two groups. The first group consisted of control sows (N=6) that were treated with placebo. Sows that were orally treated with beta-hydroxy-beta-methylbutyrate (N=6) at the dosage of 0.05 g/kg of body weight per day belonged to the second group. Newborn piglets were weighed and subjected to blood collection for determination of serum levels of growth hormone (GH), insulin-like growth factor-1 (IGF-1), insulin, leptin, glucose and bone alkaline phosphatase (BAP) activity and lipid profile. At the age of 6 months, the piglets were slaughtered, their femur was isolated for analysis and assessment of lean meat content of carcasses was performed. The effects of maternal administration with HMB on skeletal properties in the offspring were evaluated in relation to bone mineral density and geometrical and mechanical properties. Maternal treatment with HMB increased serum levels of GH, IGF-1 and BAP activity in the newborns by 38.0%, 20.0% and 26.0%, respectively (PHMB administration significantly increased volumetric bone mineral density of the trabecular and cortical bone of femur in the offspring at the age of 6 months (PHMB treatment (PHMB induced higher values of maximum elastic strength and ultimate strength of femur (PHMB-treated sows (PHMB has positive long-term effects on bone tissue and improves volumetric bone mineral density, geometrical and mechanical properties of femur in the offspring. These effects were connected with increased level of GH and IGF-1 in the

  3. Limb shortening osteotomy in a patient with achondroplasia and leg length difference after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Christian L. Galata

    2013-07-01

    Full Text Available Introduction: Achondroplasia is the most common reason for disproportionate short stature. Normally, orthopedic limb lengthening procedures must be discussed in the course of this genetic disorder and have been successful in numerous achondroplastic patients in the past. In some cases, the disease may lead to leg length differences with need for surgical correction. Case Report: We report a case of achondroplastic dysplastic coxarthrosis with symptomatic leg length difference after bilateral total hip arthroplasty in a 52-year-old female patient, in which a distal femoral shortening osteotomy was successfully performed. Conclusion: Femoral shortening osteotomy is very uncommon in patients with achondroplasia. We conclude, however, that in rare cases it can be indicated and provide the advantage of shorter operation time, less perioperative complications and faster recovery compared to leg lengthening procedures. Keywords: Achondroplasia, dysplastic coxarthrosis, limb shortening, distal femur osteotomy.

  4. Influence of long-term hypodynamy on spongy bone tissue in Japanese quails

    Directory of Open Access Journals (Sweden)

    Lucia Tarabová

    2013-01-01

    Full Text Available Weightlessness can cause various damages especially on the musculoskeletal system both in animals and humans. The aim of our study was to observe the influence of simulated, long-term microgravity on the spongy bone tissue of the femur in Japanese quails. A total of 80 cockerels at the age of 2 days were exposed to simulated microgravity – hypodynamy. After days 56, 63, 90 and 180, six birds from the experimental group and six birds from the control group were euthanised. Samples for histological examination were collected from femur epiphysis. The whole femur of the other limb was used for the analysis of the calcium content. Microscopic examination showed differences between experimental and control animals in the spongy bone tissue after every day of the experiment. In the experimental animals, there were numerous, big, multinucleated cells osteoclasts, lying on the bone trabeculae surface, which were damaged. The highest difference in the calcium content in femurs between the control and experimental animals was found after 90 days of hypodynamy. This study builds on short-term hypodynamy experiments; such long periods had never been studied before in birds. Because our findings are similar to those found in osteoporotic bone tissue, it could by useful in the development of countermeasures against the negative influence of microgravity and immobilization.

  5. A bone cyst treated with corticosteroid installation in an osteopetrotic child

    DEFF Research Database (Denmark)

    Al-Aubaidi, Zaid; Pedersen, Niels Wisbech

    2010-01-01

    Bone cysts in patients suffering from osteopetrosis are uncommon. A pathologic fracture might cause therapeutic difficulties because of the osteosclerotic bone. We describe a patient with an autosomal dominant osteopetrosis suffering from a large bone cyst in the proximal femur. The cyst was trea...

  6. Associations of Age, BMI, and Years of Menstruation with Proximal Femur Strength in Chinese Postmenopausal Women: A Cross-Sectional Study.

    Science.gov (United States)

    Kang, Huili; Chen, Yu-Ming; Han, Guiyuan; Huang, Hua; Chen, Wei-Qing; Wang, Xidan; Zhu, Ying-Ying; Xiao, Su-Mei

    2016-01-23

    This study aimed to elucidate the associations of age, BMI, and years of menstruation with proximal femur strength in Chinese postmenopausal women, which may improve the prediction of hip fracture risk. A cross-sectional study was conducted in 1322 Chinese postmenopausal women recruited from communities. DXA images were used to generate bone mineral density (BMD) and geometric parameters, including cross-sectional area (CSA), outer diameter (OD), cortical thickness (CT), section modulus (SM), buckling ratio (BR) at the narrow neck (NN), intertrochanter (IT), and femoral shaft (FS). Relationships of age, BMI, and years of menstruation with bone phenotypes were analyzed with the adjustment of height, age at menarche, total daily physical activity, education, smoking status, calcium tablet intake, etc. Age was associated with lower BMD, CSA, CT, SM, and higher BR (p menstruation had the positive relationships with proximal femur strength (p menstruation were 0.14%-1.34%, 0.20%-2.70%, and 0.16%-0.98%, respectively. These results supported that bone strength deteriorated with aging and enhanced with higher BMI and longer time of years of menstruation in Chinese postmenopausal women.

  7. Quantitative CT assessment of proximal femoral bone density. An experimental study concerning its correlation to breaking load for femoral neck fractures

    International Nuclear Information System (INIS)

    Buitrago-Tellez, C.H.; Schulze, C.; Gufler, H.; Langer, M.; Bonnaire, F.; Hoenninger, A.; Kuner, E.

    1997-01-01

    Purpose: In an experimental study, the correlation between the trabecular bone density of the different regions of the proximal femur and the fracture load in the setting of femoral neck fractures was examined. Methods: The bone mineral density 41 random proximal human femora was estimated by single-energy quanitative CT (SE-QCT). The trabecular bone density was measured at the greatest possible extracortical volume at midcapital, midneck and intertrochanteric level and in the 1 cm 3 volumes of the centres of these regions in a standardised 10 mm thick slice in the middle of the femoral neck axis (in mg/ml Ca-hydroxyl apatite). The proximal femora were then isolated and mounted on a compression/bending device under two-legged stand conditions and loaded up to the point when a femoral neck fracture occurred. Results: Statistical analysis revealed a linear correlation between the trabecular bone density and the fracture load for the greater regions, with the highest value in the maximal area of the head (coefficient factor r=0.76). Conclusion: According to our data, the measurement of the trabecular bone by SE-QCT at the femoral head is a more confident adjunct than the neck or trochanteric area to predict a femoral neck fracture. (orig.) [de

  8. The impact of bone development on final carcass weight

    DEFF Research Database (Denmark)

    Tatara, M.R.; Tygesen, Malin Plumhoff; Sawa-Wojtanowicz, B.

    2006-01-01

    Proper development and function of the skeleton is crucial for the optimal growth of an organism, with rapid growth rates often resulting in skeletal disorders in farm animals. Yet, despite clear benefits for breed selection and animal welfare (HARRISON et al., 2004), the impact of bone development...... was removed and its parameters correlated with carcass weight. Results suggest that both femur length and femur weight act as good predictors of final carcass weight in lambs. However, no effect of paternal genetics, on the femur to carcass correlations, was noted....

  9. Atypical femur fractures associated with bisphosphonates: from prodrome to resolution

    Directory of Open Access Journals (Sweden)

    Braulio Sastre-Jala

    2015-10-01

    Full Text Available Atypical fractures related to the prolonged use of bisphosphonates are caused by low energy mechanisms and are characterized by oblique and transverse lines and frequent bilateralism. We present a clinical case of a patient who we believe illustrates, both in clinical and radiological aspects, the new definition of atypical femur fracture related to treatment using bisphosphonates treated conservatively and successfully with discharge and teriparatide 20 mcg/80 mcl s.c./24h. The appearance of painful symptoms in the upper thigh, especially if bilateral, in patients treated with bisphosphonates for long periods of time, makes it necessary to dismiss bone lesions that might otherwise suggest atypical fracture. In those cases where the fracture is incomplete, restoring bone metabolism through the administration of teriparatide 20 mcg/80 mcl s.c./24h could prevent displaced fractures.

  10. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice.

    Science.gov (United States)

    Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lay, Yu-An E; Lane, Nancy E; Yao, Wei

    2015-12-01

    For tamoxifen-dependent Cre recombinase, also known as CreER recombinase, tamoxifen (TAM) is used to activate the Cre to generate time- and tissue-specific mouse mutants. TAM is a potent CreER system inducer; however, TAM is also an active selective estrogen receptor modulator (SERM) that can influence bone homeostasis. The purpose of this study was to optimize the TAM dose for Cre recombinase activation while minimizing the effects of TAM on bone turnover in young growing mice. To evaluate the effects of TAM on bone turnover and bone mass, 1-month-old wild-type male and female mice were intraperitoneally injected with TAM at 0, 1, 10 or 100mg/kg/day for four consecutive days, or 100, 300 mg/kg/day for one day. The distal femurs were analyzed one month after the last TAM injection by microCT, mechanical test, and surface-based bone histomorphometry. Similar doses of TAM were used in Col1 (2.3 kb)-CreERT2; mT/mG reporter male mice to evaluate the dose-dependent efficacy of Cre-ER activation in bone tissue. A TAM dose of 100 mg/kg × 4 days significantly increased trabecular bone volume/total volume (BV/TV) of the distal femur, femur length, bone strength, and serum bone turnover markers compared to the 0mg control group. In contrast, TAM doses ≤ 10 mg/kg did not significantly change any of these parameters compared to the 0mg group, although a higher bone strength was observed in the 10mg group. Surface-based histomorphometry revealed that the 100mg/kg dose of TAM dose significantly increased trabecular bone formation and decreased periosteal bone formation at 1-week post-TAM treatment. Using the reporter mouse model Col1-CreERT2; mT/mG, we found that 10mg/kg TAM induced Col1-CreERT2 activity in bone at a comparable level to the 100mg/kg dose. TAM treatment at 100mg/kg/day × 4 days significantly affects bone homeostasis, resulting in an anabolic bone effect on trabecular bone in 1-month-old male mice. However, a lower dose of TAM at 10 mg/kg/day × 4 days can

  11. Assessment of Bone Quality in Osteoporosis Treatment with Bone Anabolic Agents: Really Something New?

    Science.gov (United States)

    Ulivieri, Fabio M; Caudarella, Renata; Camisasca, Marzia; Cabrini, Daniela M; Merli, Ilaria; Messina, Carmelo; Piodi, Luca P

    2018-04-20

    Osteoporosis is a chronic pathologic condition, particularly of the elderly, in which a reduction of bone mineral density (BMD) weakens bone, leading to the so-called fragility fractures, most often of spine and femur. The gold standard exam for the quantitative measurement of BMD is the dual X-ray photon absorptiometry (DXA), a radiological method. However, a relevant number of fragility fractures occurs in the range of normal BMD values, meaning that also qualitative aspects of bone play a role, namely bone architecture and bone geometry. Bone structure is investigated by microCT and histomorphometry, which necessitate an invasive approach with a biopsy, usually taken at the iliac crest, not the typical site of fragility fractures. New tools, trabecular bone score (TBS) and hip structural analysis (HSA), obtained during DXA, can supply informations about bone structure of spine and femur, respectively, in a not invasive way. Therapy of osteoporosis is based on two types of drugs leading to an increase of BMD: antiresorptive and anabolic treatments. The antiresorptive drugs inhibit the osteoclasts, whereas teriparatide and, in part, strontium ranelate ameliorate bone structure. The present review deals with the relation between the anabolic drugs for osteoporosis and the cited new tools which investigate bone architecture and geometry, in order to clarify if they represent a real advantage in monitoring efficacy of osteoporosis' treatment. Data from the studies show that increases of TBS and HSA values after anabolic therapy are small and very close to their least significant change at the end of the usual period of treatment. Therefore, it is questionable if TBS and HSA are really helpful in monitoring bone quality and in defining reduction of individual fragility fracture risk during osteoporosis treatment with bone anabolic agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Dual-energy X-ray absorptiometry in the lumbar spine, proximal femur and distal radius in children

    International Nuclear Information System (INIS)

    Tsukahara, H.; Sudo, M.; Umezaki, M.; Hiraoka, M.; Yamamoto, K.; Ishii, Y.; Haruki, S.

    1992-01-01

    Dual-energy X-ray absorptiometry was used to measure bone mineral density (BMD) in the lumbar spine, proximal femur and distal radius in 48 Japanese children aged 3-18 years. In the normal children (n=32), BMD increased with age in all locations, with a nearly twofold increase from preschool age to adolescence. Most of the children with chronic diseases known to affect bone metabolism (e.g., steroid osteoporosis) (n=16) had low BMD in every region, indicating that these disease states probably affect multiple sites of the skeleton in children. (orig.)

  13. Leg Regrowth in Blaberus discoidalis (Discoid Cockroach following Limb Autotomy versus Limb Severance and Relevance to Neurophysiology Experiments.

    Directory of Open Access Journals (Sweden)

    Timothy C Marzullo

    Full Text Available Many insects can regenerate limbs, but less is known about the regrowth process with regard to limb injury type. As part of our neurophysiology education experiments involving the removal of a cockroach leg, 1 the ability of Blaberus discoidalis cockroaches to regenerate a metathoracic leg was examined following autotomy at the femur/trochanter joint versus severance via a transverse coxa-cut, and 2 the neurophysiology of the detached legs with regard to leg removal type was studied by measuring spike firing rate and microstimulation movement thresholds.First appearance of leg regrowth was after 5 weeks in the autotomy group and 12 weeks in the coxa-cut group. Moreover, regenerated legs in the autotomy group were 72% of full size on first appearance, significantly larger (p<0.05 than coxa-cut legs (29% of full size at first appearance. Regenerated legs in both groups grew in size with each subsequent molt; the autotomy-removed legs grew to full size within 18 weeks, whereas coxa-cut legs took longer than 28 weeks to regrow. Removal of the metathoracic leg in both conditions did not have an effect on mortality compared to matched controls with unmolested legs.Autotomy-removed legs had lower spontaneous firing rates, similar marked increased firing rates upon tactile manipulation of tibial barbs, and a 10% higher electrical microstimulation threshold for movement.It is recommended that neurophysiology experiments on cockroach legs remove the limb at autotomy joints instead of coxa cuts, as the leg regenerates significantly faster when autotomized and does not detract from the neurophysiology educational content.

  14. New concept of 3D printed bone clip (polylactic acid/hydroxyapatite/silk composite) for internal fixation of bone fractures.

    Science.gov (United States)

    Yeon, Yeung Kyu; Park, Hae Sang; Lee, Jung Min; Lee, Ji Seung; Lee, Young Jin; Sultan, Md Tipu; Seo, Ye Bin; Lee, Ok Joo; Kim, Soon Hee; Park, Chan Hum

    Open reduction with internal fixation is commonly used for the treatment of bone fractures. However, postoperative infection associated with internal fixation devices (intramedullary nails, plates, and screws) remains a significant complication, and it is technically difficult to fix multiple fragmented bony fractures using internal fixation devices. In addition, drilling in the bone to install devices can lead to secondary fracture, bone necrosis associated with postoperative infection. In this study, we developed bone clip type internal fixation device using three- dimensional (3D) printing technology. Standard 3D model of the bone clip was generated based on computed tomography (CT) scan of the femur in the rat. Polylacticacid (PLA), hydroxyapatite (HA), and silk were used for bone clip material. The purpose of this study was to characterize 3D printed PLA, PLA/HA, and PLA/HA/Silk composite bone clip and evaluate the feasibility of these bone clips as an internal fixation device. Based on the results, PLA/HA/Silk composite bone clip showed similar mechanical property, and superior biocompatibility compared to other types of the bone clip. PLA/HA/Silk composite bone clip demonstrated excellent alignment of the bony segments across the femur fracture site with well-positioned bone clip in an animal study. Our 3D printed bone clips have several advantages: (1) relatively noninvasive (drilling in the bone is not necessary), (2) patient-specific design (3) mechanically stable device, and (4) it provides high biocompatibility. Therefore, we suggest that our 3D printed PLA/HA/Silk composite bone clip is a possible internal fixation device.

  15. Effects of diet-induced obesity and voluntary wheel running on the microstructure of the murine distal femur

    Directory of Open Access Journals (Sweden)

    Timonen Jussi

    2011-01-01

    Full Text Available Abstract Background Obesity and osteoporosis, two possibly related conditions, are rapidly expanding health concerns in modern society. Both of them are associated with sedentary life style and nutrition. To investigate the effects of diet-induced obesity and voluntary physical activity we used high resolution micro-computed tomography (μCT together with peripheral quantitative computed tomography (pQCT to examine the microstructure of the distal femoral metaphysis in mice. Methods Forty 7-week-old male C57BL/6J mice were assigned to 4 groups: control (C, control + running (CR, high-fat diet (HF, and high-fat diet + running (HFR. After a 21-week intervention, all the mice were sacrificed and the left femur dissected for pQCT and μCT measurements. Results The mice fed the high-fat diet showed a significant weight gain (over 70% for HF and 60% for HFR, with increased epididymal fat pad mass and impaired insulin sensitivity. These obese mice had significantly higher trabecular connectivity density, volume, number, thickness, area and mass, and smaller trabecular separation. At the whole bone level, they had larger bone circumference and cross-sectional area and higher density-weighted maximal, minimal, and polar moments of inertia. Voluntary wheel running decreased all the cortical bone parameters, but increased the trabecular mineral density, and decreased the pattern factor and structure model index towards a more plate-like structure. Conclusions The results suggest that in mice the femur adapts to obesity by improving bone strength both at the whole bone and micro-structural level. Adaptation to running exercise manifests itself in increased trabecular density and improved 3D structure, but in a limited overall bone growth

  16. Biomechanical properties of the femoral neck relative to osteosynthesis methods and bone mineral content assessed by computed tomography

    International Nuclear Information System (INIS)

    Husby, T.

    1990-01-01

    Bone mineral content as determined by computerized tomography (CT) and mechanical strength on axial loading were compared in 36 cadaveric femur specimens. Based on the CT measurements of density and area, the mass of a transverse slice of the femur was estimated. Highly significant correlations were demonstrated between strength and cancellous bone density. Even higher correlations were revealed when the bone masses of the proximal and distal femoral areas were calculated. Based on these findings, an equal distribution of the effective mass of the femur was postulated. This hypothesis was confirmed in an experimental rotational model. The CT attenuation values were also correlated to direct measurements of bone mineral content, i.e. calcium. Moreover, the strength of different metal implants, commonly used in femoral neck fractures, were assessed in cadaver specimens. 134 refs., 13 figs., 12 tabs

  17. "Effect of Hydroxyapatite to Load Failure Value in Rat with Diaphyseal Femur Fracture"

    OpenAIRE

    Rinartha, Adi Surya; Rahyussalim, Rahyussalim

    2011-01-01

    Introduction. Calcium hydroxyapatite are non organic compound of the bone formed the fracture healing. In fracture healing, the parts of the compounds make up unordinary scaffold and producing an incredible amount of me- senchymal stem cell under bearing of the scaffold. This study is aimed to determine the effect of hydroxyapatite administration to load failure value in mice with diaphyseal femur fracture. Materials and methods. Research was done using Sprague Dawley rat undergone ...

  18. Relationship of homocysteine levels with lumbar spine and femur neck BMD in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Elton Bahtiri

    2015-10-01

    Full Text Available Objective: The focus of several studies in recent years has been the association between increased plasma concentrations of homocysteine (Hcy, reduced bone mineral density and increased risk of bone fractures. Nevertheless, inconsistencies persist in the literature. Thus, the objective of this study was to investigate the possible relationship between serum Hcy and vitamin B12 status, and bone mineral density, on a group of post-menopausal women. Materials and methods: One hundred thirty-nine postmenopausal women were recruited to enter this cross-sectional study. Bone mineral density (BMD of total hip, femoral neck and lumbar spine was measured by dual-energy X-ray absorptiometry (DXA and serum Hcy, vitamin B12, parathyroid hormone (PTH, total calcium and magnesium levels were determined. In addition, we investigated the relationship of Hcy and vitamin B12 and BMD using a meta-analysis approach. Results: Serum Hcy levels were significantly higher in osteoporotic women when compared to other BMD groups, and were inversely related to lumbar spine BMD and femur neck BMD. Body mass index and serum Hcy levels were shown to be significant predictors of BMD at lumbar spine, femur neck and total hip. The performed meta-analysis showed that serum Hcy levels were significantly higher in osteoporotic subjects compared to normal BMD subjects. Conclusion: This study shows that Hcy status, but not vitamin B12 status, is associated with BMD in this cohort of postmenopausal women. We therefore confirm that high Hcy levels are an independent risk factor for osteoporosis. BMD evaluation in women at post menopause with high Hcy levels may be helpful in advising precautionary measures.

  19. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  20. The study of mechanical behavior on the interface between calcar-defect femur and restorations by means of finite element analysis

    International Nuclear Information System (INIS)

    Shi, X.H.; Jiang, W.; Chen, H.Z.; Zou, W.; Wang, W.D.; Guo, Z.; Luo, J.M.; Gu, Z.W.; Zhang, X.D.

    2008-01-01

    The mechanical behaviors of calcar-defected femur and restorations under physiological load are the key factors that will greatly influence the success of femur calcar defect repairing, especially the stress distribution on the bone-restoration interface. 3D finite elements analysis (FEA) was used to analyze the mechanical characters on the interfaces between femoral calcar defects and bone cement or HA restorations. Under the load of two times of a human weight (1436.03 N) and with the increase of the defect dimension from 6 mm to 12 mm, the maximal stresses on the surface of restorations are from 7.06 MPa to 11.89 MPa for bone cement and 2.97-9 MPa for HA separately. In this condition, HA restoration will probably be broken on the bone-restoration interface when the defect diameter is beyond 8 mm. Furthermore, under the load of 1.5 times of a human weight, HA restoration would not be safe unless the defect dimension is smaller than 10 mm, because the maximal stress (4.62 MPa) on the restoration is only a little lower than compressive strength of HA, otherwise the bone fixation device should be applied to ensure the safety. It is relatively safe for all restorations under all the tested defect sizes when the load is just the weight of a human body

  1. Relationship of bony trabecular characteristics and age to bone mass

    International Nuclear Information System (INIS)

    Choi, Dong Hoon; Song, Young Han; Yoon, Young Nam; Lee, Wan; Lee, Byung Do

    2006-01-01

    Bony strength is dependent on bone mass and bony structure. So this study was designed to investigate the relationship between the bone mass and bony mass and bony trabecular characteristics. Study subjects were 51 females (average age 68.6 years) and 20 males (average age 66.4 years). Bony mineral density (BMD, grams/cm 2 ) of proximal femur was measured by a dual energy X-ray absorptiometry (DEXA). Regions of interest (ROIs) were selected from the digitized radiographs of proximal femur. A customized computer program processed morphologic operations (MO) of ROIs. 44 skeletal variables of MO were calculated from ROIs on the Ward's triangle and greater trochanter of femur. WHO BMD classes were predicted by MO variables of the same ROI. Classification and Regression Tree analysis was used for calculating weighted kappa values, sensitivity and specificity of MO. The discriminating factors of morphologic operation were branch point, branch point [per cm sq]. Age also played important role in distinguishing osteoporotic classes. The sensitivity of MO at Ward's triangle and Greater Trochanter was 91.8%, 65.6%, respectively. The specificity of MO was 100% at Ward's triangle and Greater Trochanter. Bony trabecular characteristics obtained using radiological bone morphometric analysis seem to be related to bone mass

  2. Sex Specific Association of Physical Activity on Proximal Femur BMD in 9 to 10 Year-Old Children

    Science.gov (United States)

    Cardadeiro, Graça; Baptista, Fátima; Ornelas, Rui; Janz, Kathleen F.; Sardinha, Luís B.

    2012-01-01

    The results of physical activity (PA) intervention studies suggest that adaptation to mechanical loading at the femoral neck (FN) is weaker in girls than in boys. Less is known about gender differences associated with non-targeted PA levels at the FN or other clinically relevant regions of the proximal femur. Understanding sex-specific relationships between proximal femur sensitivity and mechanical loading during non-targeted PA is critical to planning appropriate public health interventions. We examined sex-specific associations between non-target PA and bone mineral density (BMD) of three sub-regions of the proximal femur in pre- and early-pubertal boys and girls. BMD at the FN, trochanter (TR) and intertrochanter (IT) regions, and lean mass of the whole body were assessed using dual-energy x-ray absorptiometry in 161 girls (age: 9.7±0.3 yrs) and 164 boys (age: 9.7±0.3 yrs). PA was measured using accelerometry. Multiple linear regression analyses (adjusted for body height, total lean mass and pubertal status) revealed that vigorous PA explained 3–5% of the variability in BMD at all three sub-regions in boys. In girls, vigorous PA explained 4% of the variability in IT BMD and 6% in TR BMD. PA did not contribute to the variance in FN BMD in girls. An additional 10 minutes per day of vigorous PA would be expected to result in a ∼1% higher FN, TR, and IT BMD in boys (pgirls. In conclusion, vigorous PA can be expected to contribute positively to bone health outcomes for boys and girls. However, the association of vigorous PA to sub-regions of the proximal femur varies by sex, such that girlś associations are heterogeneous and the lowest at the FN, but stronger at the TR and the IT, when compared to boys. PMID:23209801

  3. A comparative approach to computer aided design model of a dog femur.

    Science.gov (United States)

    Turamanlar, O; Verim, O; Karabulut, A

    2016-01-01

    Computer assisted technologies offer new opportunities in medical imaging and rapid prototyping in biomechanical engineering. Three dimensional (3D) modelling of soft tissues and bones are becoming more important. The accuracy of the analysis in modelling processes depends on the outline of the tissues derived from medical images. The aim of this study is the evaluation of the accuracy of 3D models of a dog femur derived from computed tomography data by using point cloud method and boundary line method on several modelling software. Solidworks, Rapidform and 3DSMax software were used to create 3D models and outcomes were evaluated statistically. The most accurate 3D prototype of the dog femur was created with stereolithography method using rapid prototype device. Furthermore, the linearity of the volumes of models was investigated between software and the constructed models. The difference between the software and real models manifests the sensitivity of the software and the devices used in this manner.

  4. NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model.

    Science.gov (United States)

    Lin, Tzu-Hua; Pajarinen, Jukka; Sato, Taishi; Loi, Florence; Fan, Changchun; Córdova, Luis A; Nabeshima, Akira; Gibon, Emmanuel; Zhang, Ruth; Yao, Zhenyu; Goodman, Stuart B

    2016-09-01

    Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the current study, we examined the effects of local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) on wear particle-induced bone loss in a murine continuous femoral particle infusion model. Ultra-high molecular weight polyethylene particles (UHMWPE) with or without lipopolysaccharide (LPS) were infused via osmotic pumps into hollow titanium rods placed in the distal femur of mice for 4weeks. Particle-induced bone loss was evaluated by μCT, and immunohistochemical analysis of sections from the femur. Particle infusion alone resulted in reduced bone mineral density and trabecular bone volume fraction in the distal femur. The decoy ODN reversed the particle-associated bone volume fraction loss around the implant, irrespective of the presence of LPS. Particle-infusion with LPS increased bone mineral density in the distal femur compared with particle-infusion alone. NF-κB decoy ODN reversed or further increased the bone mineral density in the femur (3-6mm from the distal end) exposed to particles alone or particles plus LPS. NF-κB decoy ODN also inhibited macrophage infiltration and osteoclast number, but had no significant effects on osteoblast numbers in femurs exposed to wear particles and LPS. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced osteolysis. Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Chronic inflammation is crucial for the development of wear particle-associated bone loss. Modulation of NF-κB signaling in macrophages (pro-inflammatory cells), osteoclasts (bone

  5. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    Science.gov (United States)

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyright © 2012 Orthopaedic Research Society.

  6. Bone mineral density in lifelong trained male football players compared with young and elderly untrained men

    DEFF Research Database (Denmark)

    Hagman, Marie; Helge, Eva Wulff; Hornstrup, Therese

    2018-01-01

    Purpose: The purpose of the present controlled cross-sectional study was to investigate proximal femur and whole-body bone mineral density (BMD), as well as bone turnover profile, in lifelong trained elderly male football players and young elite football players compared with untrained age....... All participants underwent a regional Dual-Energy X-ray Absorptiometry (DXA) scan of the proximal femur and a whole-body DXA scan to determine BMD. From a resting blood sample, the bone turnover markers (BTMs) osteocalcin, carboxy-terminal type-1 collagen crosslinks (CTX-1), procollagen type-1 amino...

  7. Evaluation of Bone Mineral Density in Rural Women of Kawar-Fars

    Directory of Open Access Journals (Sweden)

    Masoumeh Tohidi

    2010-12-01

    Full Text Available Background: Osteoporosis is a major public health problem. This study designed to assess peak bone mineral density (BMD, its onset in rural women in Kawar-Fars as well as prevalence of osteopenia and osteoporosis according to WHO and local reference values. Methods: In this cross sectional study , 266 healthy women aged 20-85 years from Kawar-Fars participated and they underwent Dual-energy X-ray absorptiometry (DXA scanning including two lumbar and femur regions. Results: Peak bone mass of lumbar spine occurred during 29±2 years. Also peak bone mass of total femur occurred around the age of 34±2 years. Prevalence of osteoporosis in lumbar spine according to WHO reference data was 29.7% but using Iranian normative data was 10.5%. Also using WHO reference data, prevalence of osteoporosis in total femur in rural women was 15.4% whereas according to the Iranian normative data was 16.2%. Conclusion: This study provided a baseline normative data of BMD for rural Iranian women. Also it showed prevalence of osteoporosis in rural women is more than urban women.

  8. Changes in Cytokines of the Bone Microenvironment during Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Donna M. Sosnoski

    2012-01-01

    Full Text Available It is commonly accepted that cancer cells interact with host cells to create a microenvironment favoring malignant colonization. The complex bone microenvironment produces an ever changing array of cytokines and growth factors. In this study, we examined levels of MCP-1, IL-6, KC, MIP-2, VEGF, MIG, and eotaxin in femurs of athymic nude mice inoculated via intracardiac injection with MDA-MB-231GFP human metastatic breast cancer cells, MDA-MB-231BRMS1GFP, a metastasis suppressed variant, or PBS. Animals were euthanized (day 3, 11, 19, 27 after injection to examine femoral cytokine levels at various stages of cancer cell colonization. The epiphysis contained significantly more cytokines than the diaphysis except for MIG which was similar throughout the bone. Variation among femurs was evident within all groups. By day 27, MCP-1, MIG, VEGF and eotaxin levels were significantly greater in femurs of cancer cell-inoculated mice. These pro-osteoclastic and angiogenic cytokines may manipulate the bone microenvironment to enhance cancer cell colonization.

  9. Multiple myeloma of an extremity: must the whole bone be irradiated?

    International Nuclear Information System (INIS)

    Catell, Donna; Kogen, Zeev; Donahue, Bernadine; Steinfeld, Alan

    1996-01-01

    Purpose/Objective: Radiation of the entire shaft of a long bone affected by multiple myeloma is often advocated to prevent recurrent disease in the bone remote from the symptomatic site. Our standard of care has been to irradiate only the symptomatic area. We investigated the pattern of recurrence in patients treated in this manner. Materials and Methods: 163 patients with multiple myeloma were treated between 1971 and 1994. Twenty-seven patients received treatment to a long bone with 43 sites irradiated (17 humeri, 24 femurs, 1 radius, 1 ulna.) The most common long bone treated was the femur. All patients were treated with megavoltage therapy. The symptomatic lesion, plus a margin of 1-2 cm was treated with no attempt to treat the entire shaft. Mean radiation dose was 2782 cGy (range 600-4480 cGy). The length of the field was measured in centimeters and expressed as both an absolute (AL) and relative (RL) length (i.e. percentage of total length of bone). Results: The mean total AL and RL for femur fields was 18 cm and 42% respectively. For the humerus, the AL and RL were 20 cm and 68% respectively. Only 4 patients developed progressive disease in the same bone but outside the previously irradiated field. In 3 of the 4 patients the RL was between 20 and 30%. The dose of radiation given to these patients was 1250, 2100, 3000 and 3500 cGy. In all of these 4 cases, treatment of progressive disease in adjacent sites provided effective palliation of symptoms. Conclusion: Radiation therapy to the symptomatic portion of a long bone affected by MM is effective for palliation. Symptomatic recurrence out of the irradiated field is uncommon and can be effectively treated. Potential benefits of this approach include irradiation of less normal marrow and elimination of use of pairs of fields or extended distance treatment to cover the entire femur

  10. Radiation injuries of the pelvis and proximal parts of the femur after irradiation of carcinoma of the cervix uteri

    International Nuclear Information System (INIS)

    Shimanovskaya, K.; Shiman, A.D.

    1983-01-01

    Data relating to 244 patients with carcinoma of the cervix uteri treated by intensive radiotherapy are given. Radiation injury of bone was diagnosed in 12 cases (4.9 +/- 1.4 percent). After x-ray therapy alone they were found in five of 59 patients treated (8.5 +/- 3.6 percent), and after γ-ray therapy in one of 171 cases (0.6 +/- 0.6 percent). The minimal focal dose of x-ray therapy causing radiation injury to bone was 5,000 rads. With an increase in dose, the frequency of injuries also increased. Radiation injury was found after γ-ray therapy with an absorbed dose of 7,000 rads. The radiological features of radiation injury of bones after irradiation of malignant tumors of the pelvis are increasing osteoporosis and the appearance of foci of sclerosis and osteolysis. Necrotic areas of various sizes may be formed. A fracture of the neck of the femur may be prevented in some cases by taking precautionary measures. Healing of an injured part depends on the size of the dose given. Large doses completely suppressed the reparative powers of the bone. Unlike changes that are traumatic in nature, radiation fractures of the pelvic bones and the proximal part of the femur have a mild clinical course; sometimes the patients continue to use the lower limb, simply complaining of pain that may vary in severity. Metastasization of tumors of the uterus to the pelvic bones is possible but infrequent. Metastases are usually associated with increasing pain

  11. Reconstruction with distraction osteogenesis for juxta-articular nonunions with bone loss.

    Science.gov (United States)

    Kabata, Tamon; Tsuchiya, Hiroyuki; Sakurakichi, Keisuke; Yamashiro, Teruhisa; Watanabe, Koji; Tomita, Kasuro

    2005-06-01

    Nonunions of a juxta-articular lesion with bone loss, which represent a challenging therapeutic problem, were treated using external fixation and distraction osteogenesis. Seven juxta-articular nonunions (five septic and two aseptic) were treated. The location of the nonunion was the distal femur in four patients, the proximal tibia in one patient, and the distal tibia in two patients. All of them were located within 5 cm from the affected joints. Preoperative limb shortening was present in six cases, averaging 2.9 cm (range, 1-7 cm). The reconstructive procedure consisted of refreshment of the nonunion site, deformity correction, stabilization by external fixation, and lengthening to eliminate leg length discrepancy or to fill the defect. Shortening-distraction was applied to six patients and bone transport to one patient for reconstruction. Intramedullary nailing to reduce the duration of external fixation was simultaneously performed in two cases. All the patients had at least 1 year of follow-up evaluation. Osseous union without angular deformity or leg length discrepancy greater than 1 cm was achieved in all patients. The mean amount of lengthening was 5.8 cm (range, 2.2-10.0 cm). The mean external fixation period was 219 days (range, 98-317 days), and the mean external fixation index was 34.4 days/cm (range, 24.5-47.6 days/cm). All patients reported excellent pain reduction. There were no recurrences of infection in five patients with prior history of osteomyelitis. The functional results were categorized as excellent in two, good in three, and fair in two. Despite the length of postoperative external fixation, distraction osteogenesis can be a valuable alternative for the treatment of juxta-articular nonunions.

  12. Precision of dual-energy X-ray absorptiometry of the knee and heel: methodology and implications for research to reduce bone mineral loss after spinal cord injury.

    Science.gov (United States)

    Peppler, W T; Kim, W J; Ethans, K; Cowley, K C

    2017-05-01

    Methodological validation of dual-energy x-ray absorptiometry (DXA)-based measures of leg bone mineral density (BMD) based on the guidelines of the International Society for Clinical Densitometry. The primary objective of this study was to determine the precision of BMD estimates at the knee and heel using the manufacturer provided DXA acquisition algorithm. The secondary objective was to determine the smallest change in DXA-based measurement of BMD that should be surpassed (least significant change (LSC)) before suggesting that a biological change has occurred in the distal femur, proximal tibia and calcaneus. Academic Research Centre, Canada. Ten people with motor-complete SCI of at least 2 years duration and 10 people from the general population volunteered to have four DXA-based measurements taken of their femur, tibia and calcaneus. BMDs for seven regions of interest (RIs) were calculated, as were short-term precision (root-mean-square (RMS) standard deviation (g cm -2 ), RMS-coefficient of variation (RMS-CV, %)) and LSC. Overall, RMS-CV values were similar between SCI (3.63-10.20%, mean=5.3%) and able-bodied (1.85-5.73%, mean=4%) cohorts, despite lower absolute BMD values at each RIs in those with SCI (35%, heel to 54%, knee; P10% are needed to detect differences between treated and untreated groups in studies aimed at reducing bone mineral loss after SCI.

  13. Association of insulin resistance with near peak bone mass in the femur and lumbar spine of Korean adults aged 25-35: The Korean National Health and Nutrition Examination Survey 2008-2010.

    Directory of Open Access Journals (Sweden)

    Min Soo Choo

    Full Text Available This study aimed to evaluate the relationship between insulin resistance and the bone mineral density (BMD of femur and lumbar spine in Korean adults who are expected to exhibit near peak bone mass.Data from the Korean National Health and Nutrition Examination Survey 2008-2010 were analyzed. A total of 2,750 participants aged 25-35 years were included. Insulin resistance was assessed using a homeostatic model assessment of insulin resistance (HOMA-IR and serum fasting insulin.In a multivariate linear regression analysis, the HOMA-IR was significantly inversely associated with the BMD of the total hip (TH, β = -0.052, P = 0.002, femoral neck (FN, β = -0.072, P<0.001, femoral trochanter (FTr, β = -0.055, P = 0.003, femoral intertrochanter (FITr, β = -0.041, P = 0.015, and lumbar spine (LS, β = -0.063, P = 0.001 among all study subjects after adjustment for gender, age, height, weight, whole body fat mass percentage, systolic blood pressure, diastolic blood pressure, total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, vitamin D, smoking, alcohol intake, physical activity, education level, and household income in both genders as well as labor, the use of oral contraceptives, and age at menarche in females. The serum fasting insulin was significantly inversely associated with the BMD of the TH (β = -0.055, P = 0.001, FN (β = -0.072, P<0.001, FTr (β = -0.055, P = 0.003, FITr (β = -0.045, P = 0.009, and LS (β = -0.064, P = 0.001 among all subjects in a multivariate linear regression analysis.Our results suggest that insulin resistance may be independently and inversely associated with the near peak bone mass of the femur and lumbar spine.

  14. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.

    Science.gov (United States)

    Levadnyi, Ievgen; Awrejcewicz, Jan; Gubaua, José Eduardo; Pereira, Jucélio Tomás

    2017-12-01

    The change in mechanical properties of femoral cortical bone tissue surrounding the stem of the hip endoprosthesis is one of the causes of implant instability. We present an analysis used to determine the best conditions for long-term functioning of the bone-implant system, which will lead to improvement of treatment results. In the present paper, a finite element method coupled with a bone remodelling model is used to evaluate how different three-dimensional prosthesis models influence distribution of the density of bone tissue. The remodelling process begins after the density field is obtained from a computed tomography scan. Then, an isotropic Stanford model is employed to solve the bone remodelling process and verify bone tissue adaptation in relation to different prosthesis models. The study results show that the long-stem models tend not to transmit loads to proximal regions of bone, which causes the stress-shielding effect. Short stems or application in the calcar region provide a favourable environment for transfer of loads to the proximal region, which allows for maintenance of bone density and, in some cases, for a positive variation, which causes absence of the aseptic loosening of an implant. In the case of hip resurfacing, bone mineral density changes slightly and is closest to an intact femur. Installation of an implant modifies density distribution and stress field in the bone. Thus, bone tissue is stimulated in a different way than before total hip replacement, which evidences Wolff's law, according to which bone tissue adapts itself to the loads imposed on it. The results suggest that potential stress shielding in the proximal femur and cortical hypertrophy in the distal femur may, in part, be reduced through the use of shorter stems, instead of long ones, provided stem fixation is adequate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Measurements of bone mineral density in the lumbar spine and proximal femur using lunar prodigy and the new pencil-beam dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Choi, Dongil; Kim, Deog-Yoon; Han, Chung Soo; Kim, Seonwoo; Bok, Hae Sook; Huh, Wooseong; Ko, Jae-Wook; Hong, Sung Hwa

    2010-01-01

    We evaluated the correlation of the absolute bone mineral density (BMD) values of the lumbar spine and standard sites of the proximal femur obtained from a Lunar Prodigy and the newly developed pencil-beam dual-energy X-ray absorptiometry (Dexxum). Between June 2008 and December 2008, 79 Korean volunteers were enrolled. Measurements were obtained on the same day using both densitometers. The absolute BMD values (g/cm 2 ) from the two densitometers were evaluated using Pearson's correlation analysis with Bonferroni's correction for the three clinically important sites. In order to evaluate precision, we performed duplicate Dexxum measurements, and calculated the within-subject coefficient of variation (WSCV). The Pearson's correlation coefficient (r) of BMD values for the total proximal femur, femoral neck, and lumbar spine by the two densitometers were 0.926, 0.948, and 0.955 respectively, and the null hypotheses of r = 0.8 were all rejected (p < 0.001 by one-sided Z-test with Fisher's z-transformation for each site). The T-scores (r ≥ 0.842) and Z-scores (r ≥ 0.709) also showed strong positive correlations. The duplicate BMD values of Dexxum showed a high level of precision (WSCV ≤ 4.27%). Dexxum measurements of BMD, T-scores, and Z-scores showed a strong linear correlation with those measured on Lunar Prodigy. (orig.)

  16. Nontraumatic femur fracture in an oligomenorrheic athlete.

    Science.gov (United States)

    Dugowson, C E; Drinkwater, B L; Clark, J M

    1991-12-01

    Exercise-associated amenorrhea is the cessation of menses in a woman following onset of training or an increase in training intensity. Its physiologic basis is characterized by consistently low levels of gonadotropin and ovarian hormones, but the underlying cause of this phenomenon is unknown. Although osteopenia has been described in amenorrheic women athletes, it has been primarily a laboratory diagnosis. Several recent studies have described a significantly lower bone mineral density (BMD) in the lumbar spine of amenorrheic athletes. Marcus et al. also reported an increased number of metatarsal and tibial stress fractures in a group of amenorrheic women. We report here the first case of a nontraumatic femur fracture in an amenorrheic athlete. A 32-yr-old white female, with four prior fibular stress fractures, suffered a left femoral shaft fracture during the 13th mile of a half-marathon. The fracture was successfully internally fixed. Biochemical studies showed no metabolic abnormality. Bone mineral density of the lumbar spine, femoral neck, tibia, and fibula were below the mean for both eumenorrheic and amenorrheic female athletes. Exercise-associated amenorrhea is a medical problem that may have serious implications for both competitive and high-intensity recreational female athletes.

  17. A comparison of long bone development in historical and contemporary ducks.

    Science.gov (United States)

    Van Wyhe, R C; Applegate, T J; Lilburn, M S; Karcher, D M

    2012-11-01

    The selection for growth and carcass traits in poultry meat species has contributed to increased interest in understanding and characterizing skeletal growth as the birds struggle to balance skeletal development with increased BW and muscle mass. The objective of this study was to compare the physical characteristics and mineralization of the tibia and femur from commercial Pekin ducks representing circa 1993 and 2010 commercial strains. In 1993, the femur and tibia were collected from 8 ducks at 11 ages between 11 and 53 d. A similar study was done in 2010 in which the femur and tibia were collected from 8 ducks at 12 sample ages between 10 and 49 d. All bones were weighed and the length and width at 50% of length were measured. Each bone was subsequently cut into epiphyseal (top 25% of length) and diaphyseal (midregion at 50% of length) sections. Each bone segment was extracted with ether, hot weighed, and ashed. The 2010 contemporary ducks reached market weight faster than the 1993 ducks. Therefore, statistical comparisons were made at common BW as well as at common ages. The mean tibia length of the 2010 duck was 0.75 cm greater (P ducks. The percentage epiphyseal ash in the femur was 10% lower (P ducks but there were no significant differences by 18 d of age. The lower epiphyseal ash values at both younger ages and smaller BW in the 2010 contemporary ducks suggests that it is critical to monitor those factors that influence bone mineralization in contemporary ducklings that can achieve market BW at earlier chronological ages.

  18. Unicameral Bone Cyst of the Medial Cuneiform: A Case Report.

    Science.gov (United States)

    Schick, Faith A; Daniel, Joseph N; Miller, Juliane S

    2016-02-17

    A unicameral bone cyst is a relatively uncommon, benign bone tumor found in the metaphysis of long bones, such as the humerus and the femur, in skeletally immature persons. In the foot, these benign, fluid-filled cavities are most commonly found within the os calcis. We present a case report of a 10-year-old female with a unicameral bone cyst of the medial cuneiform.

  19. Cellular Therapy to Obtain Rapid Endochondral Bone Formation

    Science.gov (United States)

    2008-02-01

    length from the tibial fusion site, and then stop which would be consistent with the resorption being associated with the lack of weight bearing load. In...Defect in the Rat Femur with Use of a Vascularized Periosteal Flap, a Biodegradable Matric, and Bone Morphogenetic Protein. J Bone Joint Surg 87-A(6

  20. Salubrinal improves mechanical properties of the femur in osteogenesis imperfecta mice.

    Science.gov (United States)

    Takigawa, Shinya; Frondorf, Brian; Liu, Shengzhi; Liu, Yang; Li, Baiyan; Sudo, Akihiro; Wallace, Joseph M; Yokota, Hiroki; Hamamura, Kazunori

    2016-10-01

    Salubrinal is an agent that reduces the stress to the endoplasmic reticulum by inhibiting de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). We and others have previously shown that the elevated phosphorylation of eIF2α stimulates bone formation and attenuates bone resorption. In this study, we applied salubrinal to a mouse model of osteogenesis imperfecta (Oim), and examined whether it would improve Oim's mechanical property. We conducted in vitro experiments using RAW264.7 pre-osteoclasts and bone marrow derived cells (BMDCs), and performed in vivo administration of salubrinal to Oim (+/-) mice. The animal study included two control groups (wildtype and Oim placebo). The result revealed that salubrinal decreased expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and suppressed osteoclast maturation, and it stimulated mineralization of mesenchymal stem cells from BMDCs. Furthermore, daily injection of salubrinal at 2 mg/kg for 2 months made stiffness (N/mm) and elastic module (GPa) of the femur undistinguishable to those of the wildtype control. Collectively, this study supported salubrinal's beneficial role to Oim's femora. Unlike bisphosphonates, salubrinal stimulates bone formation. For juvenile OI patients who may favor strengthening bone without inactivating bone remodeling, salubrinal may present a novel therapeutic option. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  1. Pediatric femur fractures, epidemiology and treatment

    Directory of Open Access Journals (Sweden)

    Petković Lazar

    2011-01-01

    Full Text Available Background/Aim. Femur fractures in children most often occur as a consequence of traffic accidents, during play and sport activities, and due to different pathological states. Diagnosis is rather simple and it includes physical and radiographycal examination. Femur fractures treatment in children can be operative and unoperative, depending on several facts: age, localisation and type of fracture, joint injuries of soft tissues, the presence of other injuries (in polytrauma, economical and social aspects, ect. The aim of this study was to present epidemiological characteristics of pediatric femur fractures, that is in the stage of development, including a special analysis of the used treatment techniques, as well as the comparison of the obtained data with those from the literature. Methods. The evaluation included following parameters: age, gender, cause, localisation and type of femur fracture, applied treatment and hospitalisation duration. Results. Among the presented 143 patients with femur fracture, 109 were boys and 34 were girls (3.2 : 1 ratio; p = 0.0001. Average age for both genders was 8.6 years, and no difference between boys and girls were found for the age (p = 0.758. In total, the most common fracture was diaphyseal fracture of femur in 93 (65.03% patients. The second was proximal fracture in 30 (20.98% patients, and the last distal fracture of the femur in 20 (13.99% patients (p = 0.0001. Three main causes of femur fracture can be distinguished: during play and sport activities in 67 (46.8% children, in traffic accidents in 64 (44.8% children, and pathological fractures in 12 (8.4% children. Inoperative treatment was applied in 82 (57.3% patients, and operative one in 61 (42.7% patients. The most common tretament was traction, in 71 (49.6% patients, followed by immobilization by hip spica cast mostly in young children. Intramedullar elastic nailing was applied in 16 (11.2% cases, and intramedullar rigid nailing (Küntscher in 19

  2. X-Ray Exam: Lower Leg (Tibia and Fibula)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Lower Leg (Tibia and Fibula) KidsHealth / For ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  3. Women Build Long Bones With Less Cortical Mass Relative to Body Size and Bone Size Compared With Men.

    Science.gov (United States)

    Jepsen, Karl J; Bigelow, Erin M R; Schlecht, Stephen H

    2015-08-01

    The twofold greater lifetime risk of fracturing a bone for white women compared with white men and black women has been attributed in part to differences in how the skeletal system accumulates bone mass during growth. On average, women build more slender long bones with less cortical area compared with men. Although slender bones are known to have a naturally lower cortical area compared with wider bones, it remains unclear whether the relatively lower cortical area of women is consistent with their increased slenderness or is reduced beyond that expected for the sex-specific differences in bone size and body size. Whether this sexual dimorphism is consistent with ethnic background and is recapitulated in the widely used mouse model also remains unclear. We asked (1) do black women build bones with reduced cortical area compared with black men; (2) do white women build bones with reduced cortical area compared with white men; and (3) do female mice build bones with reduced cortical area compared with male mice? Bone strength and cross-sectional morphology of adult human and mouse bone were calculated from quantitative CT images of the femoral midshaft. The data were tested for normality and regression analyses were used to test for differences in cortical area between men and women after adjusting for body size and bone size by general linear model (GLM). Linear regression analysis showed that the femurs of black women had 11% lower cortical area compared with those of black men after adjusting for body size and bone size (women: mean=357.7 mm2; 95% confidence interval [CI], 347.9-367.5 mm2; men: mean=400.1 mm2; 95% CI, 391.5-408.7 mm2; effect size=1.2; pbone size (women: mean=350.1 mm2; 95% CI, 340.4-359.8 mm2; men: mean=394.3 mm2; 95% CI, 386.5-402.1 mm2; effect size=1.3; pbone size (female: mean=0.73 mm2; 95% CI, 0.71-0.74 mm2; male: mean=0.70 mm2; 95% CI, 0.68-0.71 mm2; effect size=0.74; p=0.04, GLM). Female femurs are not simply a more slender version of male

  4. Radioprotective action on bone marrow CFU during immobilization of mice

    International Nuclear Information System (INIS)

    Keizer, H.J.; van Putten, L.M.

    1976-01-01

    Anesthesia and restraint without anesthesia during whole-body x-irradiation decrease the mortality from both the bone marrow and the intestinal syndromes (30- and 5-day mortality). The two types of immobilization decrease the radiosensitivity of the hemopoietic stem cells, as shown by an increased survival of hemopoietic stem cells in the marrow of immobilized mice. The hypoxic cell radiosensitizer Ro-07-0582 reversed the radioprotective effect during restraint without anesthesia, but not during pentobarbital anesthesia. This indicates that hypoxia of the femur bone marrow cannot explain the decreased radiosensitivity of the stem cells during pentobarbital anesthesia. Pentobarbital was also shown to inhibit the recruitment of resting femur bone marrow stem cells (G 0 -phase cells) into cycle following a sublethal dose of x rays. The relevance of these observations is discussed

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray ( ... leg (shin), ankle or foot. top of page What are some common uses of the procedure? A ...

  6. Failure analysis of stainless steel femur fixation plate.

    Science.gov (United States)

    Hussain, P B; Mohammad, M

    2004-05-01

    Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.

  7. Serial radiography of the front legs of Hanoverian horses aged 3 to 7 years

    International Nuclear Information System (INIS)

    Mueller, F.

    1982-01-01

    In a chronologic collection of literature a general view is given about the X-ray examination of the front leg, especially the navicular bone of the horse. At this bone radiologic findings are shown which you can see in navicular disease. Isolated parts of bone near the processus extensorius are demonstrated on the pedal bone. (orig./MG) [de

  8. The efficacy of single-stage open intramedullary nailing of neglected femur fractures.

    Science.gov (United States)

    Boopalan, P R J V C; Sait, Azad; Jepegnanam, Thilak Samuel; Matthai, Thomas; Varghese, Viju Daniel

    2014-02-01

    Neglected femur fractures are not rare in the developing world. Treatment options include single-stage open reduction and intramedullary nailing, or open release, skeletal traction, and then second-stage open intramedullary nailing, with bone grafting. Single-stage procedures have the potential advantage of avoiding neurovascular complications secondary to acute lengthening, but they require a second operation, with potentially increased resource use and infection risk. We sought to determine the (1) likelihood of union, (2) complications and reoperations, and (3) functional results with single-stage open intramedullary nailing without bone grafting in patients with neglected femur fractures. Between January 2003 and December 2007, 17 consecutive patients presented to our practice with neglected femoral shaft fractures. All were treated with single-stage nailing without bone grafting. There were 15 men and two women with a median age of 27 years. The average time from fracture to treatment was 13 weeks (range, 4-44 weeks). Eleven patients underwent open nailing with interlocked nails and six were treated with cloverleaf Kuntscher nails. Patients were followed for a minimum of 6 months (mean, 33 months; range, 6-72 months). The mean preoperative ROM of the knee was 28° (range, 10°-150°) and femoral length discrepancy was 3.1 cm (range, 1-5 cm). All fractures united and the mean time to union was 16 weeks (range, 7-32 weeks). There were no neurologic complications secondary to acute lengthening. The mean postoperative ROM of the knee was 130° (range, 60°-150°). All patients were able to return to preinjury work. Sixteen patients regained their original femoral length. One-stage open intramedullary nailing of neglected femoral diaphyseal fractures without bone grafting was safe and effective, and obviated the need for a two-stage approach. Although the findings need to be replicated in larger numbers of patients, we believe this technique may be useful in

  9. Vladimir Byurchiev, Ankle Bones

    OpenAIRE

    Churyumov, Anton

    2017-01-01

    Vladimir says that today not many children play with ankle bones. He recalls when he was young, children played with bones more often. According to Vladimir, various games using ankle bones develop flexibility, agility, and muscle in children’s hands. Ankles bones are taken from the back legs of a cow or a sheep. It is possible to determine the age and health of animals by examining this particular bone. Arcadia

  10. Nutritional Programming of Bone Structure in Male Offspring by Maternal Consumption of Citrus Flavanones.

    Science.gov (United States)

    Sacco, Sandra M; Saint, Caitlin; LeBlanc, Paul J; Ward, Wendy E

    2018-06-01

    Maternal exposure to hesperidin (HSP) and naringin (NAR) during pregnancy and lactation transiently compromised bone mineral density (BMD) and bone structure at the proximal tibia in female CD-1 offspring. We examined whether maternal consumption of HSP + NAR during pregnancy and lactation compromises BMD, bone structure, and bone strength in male CD-1 offspring. Male CD-1 offspring, from mothers fed a control diet (CON, n = 10) or a 0.5% HSP + 0.25% NAR diet (HSP + NAR, n = 8) for 5 weeks before mating and throughout pregnancy and lactation, were weaned and fed CON until 6 months of age. In vivo micro-computed tomography (µCT) measured tibia BMD and structure at 2, 4, and 6 months of age. Ex vivo µCT measured femur and lumbar vertebrae (LV) structure at age 6 months. Ex vivo BMD (femur, LV) and biomechanical strength (femur and tibia midpoint, femur neck) were assessed at age 6 months by dual energy x-ray absorptiometry and strength testing, respectively. At all ages, HSP + NAR offspring had greater (p structure compared to CON offspring. At age 4 months, proximal tibia trabecular structure was greater (p structure were greater (p structure at the proximal tibia in male CD-1 offspring that persisted to 6 months of age. Thus, maternal programming of offspring BMD and bone structure from consumption of HSP + NAR occurred as a sex-specific response.

  11. Suppression of asparaginyl endopeptidase attenuates breast cancer-induced bone pain through inhibition of neurotrophin receptors.

    Science.gov (United States)

    Yao, Peng; Ding, Yuanyuan; Han, Zhenkai; Mu, Ying; Hong, Tao; Zhu, Yongqiang; Li, Hongxi

    2017-01-01

    Objective Cancer-induced bone pain is a common clinical problem in breast cancer patients with bone metastasis. However, the mechanisms driving cancer-induced bone pain are poorly known. Recent studies show that a novel protease, asparaginyl endopeptidase (AEP) plays crucial roles in breast cancer metastasis and progression. We aim to determine the functions and targeted suppress of AEP in a mouse model of breast cancer-induced bone pain. Methods Breast cancer cells with AEP knocked-down or overexpression were constructed and implanted into the intramedullary space of the femur to induce pain-like behavior in mice. AEP-specific inhibitors or purified AEP proteins were further used in animal model. The histological characters of femur and pain ethological changes were measured. The expressions of AEP and neurotrophin receptors (p75NTR and TrkA) in dorsal root ganglion and spinal cord were examined. Results Femur radiographs and histological analysis revealed that cells with AEP knocked-down reduced bone destruction and pain behaviors. However, cells with AEP overexpression elevated bone damage and pain behaviors. Further, Western blot results found that the expressions of p75NTR and TrkA in dorsal root ganglions and spinal cords were reduced in mice inoculated with AEP knocked-down cells. Targeted suppression of AEP with specific small compounds significantly reduced the bone pain while purified recombinant AEP proteins increased bone pain. Conclusions AEP aggravate the development of breast cancer bone metastasis and bone pain by increasing the expression of neurotrophin receptors. AEP might be an effective target for treatment of breast cancerinduced bone pain.

  12. "Push back" technique: A simple method to remove broken drill bit from the proximal femur.

    Science.gov (United States)

    Chouhan, Devendra K; Sharma, Siddhartha

    2015-11-18

    Broken drill bits can be difficult to remove from the proximal femur and may necessitate additional surgical exploration or special instrumentation. We present a simple technique to remove a broken drill bit that does not require any special instrumentation and can be accomplished through the existing incision. This technique is useful for those cases where the length of the broken drill bit is greater than the diameter of the bone.

  13. Leg Length, Body Proportion, and Health: A Review with a Note on Beauty

    Science.gov (United States)

    Bogin, Barry; Varela-Silva, Maria Inês

    2010-01-01

    Decomposing stature into its major components is proving to be a useful strategy to assess the antecedents of disease, morbidity and death in adulthood. Human leg length (femur + tibia), sitting height (trunk length + head length) and their proportions, for example, (leg length/stature), or the sitting height ratio (sitting height/stature × 100), among others) are associated with epidemiological risk for overweight (fatness), coronary heart disease, diabetes, liver dysfunction and certain cancers. There is also wide support for the use of relative leg length as an indicator of the quality of the environment for growth during infancy, childhood and the juvenile years of development. Human beings follow a cephalo-caudal gradient of growth, the pattern of growth common to all mammals. A special feature of the human pattern is that between birth and puberty the legs grow relatively faster than other post-cranial body segments. For groups of children and youth, short stature due to relatively short legs (i.e., a high sitting height ratio) is generally a marker of an adverse environment. The development of human body proportions is the product of environmental x genomic interactions, although few if any specific genes are known. The HOXd and the short stature homeobox-containing gene (SHOX) are genomic regions that may be relevant to human body proportions. For example, one of the SHOX related disorders is Turner syndrome. However, research with non-pathological populations indicates that the environment is a more powerful force influencing leg length and body proportions than genes. Leg length and proportion are important in the perception of human beauty, which is often considered a sign of health and fertility. PMID:20617018

  14. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry.

    Science.gov (United States)

    Esfahanizadeh, Nasrin; Davaie, Sotoudeh; Rokn, A R; Daneshparvar, Hamid Reza; Bayat, Noushin; Khondi, Nasrin; Ajvadi, Sara; Ghandi, Mostafa

    2013-07-01

    The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA) was carried out to determine bone mineral density (BMD) of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson's correlation coefficient. The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001). There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005). There was a negative correlation (P < 0.01) between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  15. Association of the presence of bone bars on radiographs and low bone mineral density

    International Nuclear Information System (INIS)

    Pitt, Michael J.; Morgan, Sarah L.; Lopez-Ben, Robert; Steelman, Rebecca E.; Nunnally, Nancy; Burroughs, Leandria; Fineberg, Naomi

    2011-01-01

    Bone bars (BB) are struts of normal trabecular bone that cross the medullary portions of the metaphysis and diaphysis at right angles to the long axis of the shaft. The purpose of this investigation was to determine whether the presence of bone bars (BB) identified on radiographs of the proximal femurs and tibia, predict lower bone mineral density (BMD) as evaluated with dual-energy x-ray absorptiometry (DXA) in the lumbar spine, total hip, or femoral neck. A total of 134 sequential DXA patients underwent radiography of the pelvis, hips, and both knees. The radiographs were evaluated for the presence of BB by two musculoskeletal radiologists who were blinded to DXA results. A t test was used to evaluate the relationship of BB to BMD and a Chi-square test was used to determine if BB were equally distributed among the categories of normal BMD, low bone mass (osteopenia), and osteoporosis. BB were associated with lower BMD at all measured sites. BB at the intertrochanteric and proximal tibial sites were the most predictive of low BMD while supraacetabular and distal femur BB were less predictive. Osteoporosis or osteopenia is seen in 60-91% of those with BB depending on the side and reader. It is only seen in about 40% of those without BB. We conclude that the presence of BB suggest decreased BMD and when correlated with other clinical information, might support further evaluation of BMD. (orig.)

  16. Association of the presence of bone bars on radiographs and low bone mineral density

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Michael J. [University of Alabama at Birmingham, Department of Radiology, School of Medicine, Birmingham (United Kingdom); Morgan, Sarah L. [Schools of Health Professions, Medicine, and Dentistry, Departments of Nutrition Sciences and Medicine, Birmingham (United Kingdom); Lopez-Ben, Robert [University of Alabama at Birmingham, Department of Radiology, School of Medicine, Birmingham (United Kingdom); Steelman, Rebecca E. [University of Alabama, Birmingham (United Kingdom); Nunnally, Nancy; Burroughs, Leandria [UAB Osteoporosis Prevention and Treatment Clinic, Birmingham (United Kingdom); Fineberg, Naomi [University of Alabama at Birmingham, Department of Biostatistics, School of Public Health, Birmingham (United Kingdom)

    2011-07-15

    Bone bars (BB) are struts of normal trabecular bone that cross the medullary portions of the metaphysis and diaphysis at right angles to the long axis of the shaft. The purpose of this investigation was to determine whether the presence of bone bars (BB) identified on radiographs of the proximal femurs and tibia, predict lower bone mineral density (BMD) as evaluated with dual-energy x-ray absorptiometry (DXA) in the lumbar spine, total hip, or femoral neck. A total of 134 sequential DXA patients underwent radiography of the pelvis, hips, and both knees. The radiographs were evaluated for the presence of BB by two musculoskeletal radiologists who were blinded to DXA results. A t test was used to evaluate the relationship of BB to BMD and a Chi-square test was used to determine if BB were equally distributed among the categories of normal BMD, low bone mass (osteopenia), and osteoporosis. BB were associated with lower BMD at all measured sites. BB at the intertrochanteric and proximal tibial sites were the most predictive of low BMD while supraacetabular and distal femur BB were less predictive. Osteoporosis or osteopenia is seen in 60-91% of those with BB depending on the side and reader. It is only seen in about 40% of those without BB. We conclude that the presence of BB suggest decreased BMD and when correlated with other clinical information, might support further evaluation of BMD. (orig.)

  17. Effect of Wearing Style on Vitamin D and Bone Mineral Density in Postmenopausal Osteoporotic Women

    Directory of Open Access Journals (Sweden)

    Yeşim Gökçe Kutsal

    2011-12-01

    Full Text Available Aim: Vitamin D deficiency is one of the most important public health problems as a result of osteomalacia, osteoporosis, muscle pain disease, muscle weakness and increased risk of falls and fracture. Outfitting style effects the synthesis and blood levels of vitamin D. The aim of our study is to investigate the effect of outfitting style on blood vitamin D and bone mineral density in postmenopausal osteoporotic women. Materials and Methods: Fifty-five female patients who were diagnosed with osteoporosis were included in our study. These women were divided into two groups according to their clothing habits as veiled and unveiled. Data of all patients about menopause, exposure to sun light, dual energy x-ray absorptiometry results, blood calcium, phosphate, parathyroid hormone, 25-hydroxyvitamin D levels and osteoporosis treatment were recorded. Results: We found 25-hydroxyvitamin D level was significantly low in women with veiled dressing style (17,0±7,9 ng/ml in veiled and 33.9±22.0 ng/ml in unveiled patients, p<0.001. There was statistically significant correlations between 25-hydroxyvitamin D level and femur neck Z-scores, femur total bone mineral density, femur total T-score L1-L4 bone mineral density, femur neck bone mineral density for different seasons (p<0.05. Conclusion: Postmenopausal osteoporotic veiled women are more prone to vitamin D deficiency than unveiled women. Low concentration of 25-hydroxyvitamin D is accompanying further decrease in bone mineral density. Despite low concentration of 25-hydroxyvitamin D in veiled postmenopausal osteoporotic women, there is not direct correlation between wearing style and bone mineral density. (Turkish Journal of Osteoporosis 2011;17:85-8

  18. In Vivo Evaluation of Fracture Callus Development During Bone Healing in Mice Using an MRI-compatible Osteosynthesis Device for the Mouse Femur.

    Science.gov (United States)

    Haffner-Luntzer, Melanie; Müller-Graf, Fabian; Matthys, Romano; Abaei, Alireza; Jonas, René; Gebhard, Florian; Rasche, Volker; Ignatius, Anita

    2017-11-14

    Endochondral fracture healing is a complex process involving the development of fibrous, cartilaginous, and osseous tissue in the fracture callus. The amount of the different tissues in the callus provides important information on the fracture healing progress. Available in vivo techniques to longitudinally monitor the callus tissue development in preclinical fracture-healing studies using small animals include digital radiography and µCT imaging. However, both techniques are only able to distinguish between mineralized and non-mineralized tissue. Consequently, it is impossible to discriminate cartilage from fibrous tissue. In contrast, magnetic resonance imaging (MRI) visualizes anatomical structures based on their water content and might therefore be able to noninvasively identify soft tissue and cartilage in the fracture callus. Here, we report the use of an MRI-compatible external fixator for the mouse femur to allow MRI scans during bone regeneration in mice. The experiments demonstrated that the fixator and a custom-made mounting device allow repetitive MRI scans, thus enabling longitudinal analysis of fracture-callus tissue development.

  19. The Effect of Aloe, Gelfoam, Plaster on Bone Formation in applying to the bone defect

    International Nuclear Information System (INIS)

    Choi, Eui Hwan; Kim, Su Gwan

    1999-01-01

    This study was to evaluate the effects of Aloe, Gelfoam, and Plaster of Paris on bone healing. Four experimental defects were created for placement of the three materials in the right femur of dogs. One defect served as an empty control site. The evaluation was performed at 1-, 6-, and 12-weeks by light microscopy and NIH image program. Radiographic and Histologic examinations showed new bone formation in the presence of Aloe, Gelfoam, and Plaster of Paris and similar bone healing reactions. On the basis of these findings, it was concluded that Aloe, Gelfoam, and Plaster of Paris may be adequate agents for use in bone procurement.

  20. Evaluation of measurement precision errors at different bone density values

    International Nuclear Information System (INIS)

    Wilson, M.; Wong, J.; Bartlett, M.; Lee, N.

    2002-01-01

    Full text: The precision error commonly used in serial monitoring of BMD values using Dual Energy X Ray Absorptometry (DEXA) is 0.01-0.015g/cm - for both the L2 L4 lumbar spine and total femur. However, this limit is based on normal individuals with bone densities similar to the population mean. The purpose of this study was to systematically evaluate precision errors over the range of bone density values encountered in clinical practice. In 96 patients a BMD scan of the spine and femur was immediately repeated by the same technologist with the patient taken off the bed and repositioned between scans. Nine technologists participated. Values were obtained for the total femur and spine. Each value was classified as low range (0.75-1.05 g/cm ) and medium range (1.05- 1.35g/cm ) for the spine, low range (0.55 0. 85 g/cm ) and medium range (0.85-1.15 g/cm ) for the total femur. Results show that the precision error was significantly lower in the medium range for total femur results with the medium range value at 0.015 g/cm - and the low range at 0.025 g/cm - (p<0.01). No significant difference was found for the spine results. We also analysed precision errors between three technologists and found a significant difference (p=0.05) occurred between only two technologists and this was seen in the spine data only. We conclude that there is some evidence that the precision error increases at the outer limits of the normal bone density range. Also, the results show that having multiple trained operators does not greatly increase the BMD precision error. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  1. Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates.

    Science.gov (United States)

    Nagata, Masashi; Kayanoma, Megumu; Takahashi, Takeshi; Kaneko, Tetsuo; Hara, Hiroshi

    2011-08-01

    Zinc (Zn) deficiency during pregnancy may result in a variety of defects in the offspring. We evaluated the influence of marginal Zn deficiency during pregnancy on neonatal bone status. Nine-week-old male Sprague-Dawley rats were divided into two groups and fed AIN-93G-based experimental diets containing 35 mg Zn/kg (Zn adequately supplied, N) or 7 mg Zn/kg (low level of Zn, L) from 14-day preconception to 20 days of gestation, that is, 1 day before normal delivery. Neonates were delivered by cesarean section. Litter size and neonate weight were not different between the two groups. However, in the L-diet-fed dam group, bone matrix formation in isolated neonatal calvaria culture was clearly impaired and was not recovered by the addition of Zn into the culture media. Additionally, serum concentration of osteocalcin, as a bone formation parameter, was lower in neonates from the L-diet-fed dam group. Impaired bone mineralization was observed with a significantly lower content of phosphorus in neonate femurs from L-diet-fed dams compared with those from N-diet-fed dams. Moreover, Zn content in the femur and calvaria of neonates from the L-diet group was lower than that of the N-diet-fed group. In the marginally Zn-deficient dams, femoral Zn content, serum concentrations of Zn, and osteocalcin were reduced when compared with control dams. We conclude that maternal Zn deficiency causes impairment of bone matrix formation and bone mineralization in neonates, implying the importance of Zn intake during pregnancy for proper bone development of offspring.

  2. Vanadate impedes adipogenesis in mesenchymal stem cells derived from different depots within bone.

    Directory of Open Access Journals (Sweden)

    Frans Alexander Jacobs

    2016-08-01

    Full Text Available Glucocorticoid induced osteoporosis (GIO is associated with an increase in bone marrow adiposity which skews the differentiation of mesenchymal stem cell (MSC progenitors away from osteoblastogenesis and towards adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs and from the proximal end of the femur (pfMSCs. By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the haematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 µM added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 µM alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur, and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow

  3. X-ray imaging characterization of femoral bones in aging mice with osteopetrotic disorder.

    Science.gov (United States)

    Tu, Shu-Ju; Huang, Hong-Wen; Chang, Wei-Jeng

    2015-04-01

    Aging mice with a rare osteopetrotic disorder in which the entire space of femoral bones are filled with trabecular bones are used as our research platform. A complete study is conducted with a micro computed tomography (CT) system to characterize the bone abnormality. Technical assessment of femoral bones includes geometric structure, biomechanical strength, bone mineral density (BMD), and bone mineral content (BMC). Normal aging mice of similar ages are included for comparisons. In our imaging work, we model the trabecular bone as a cylindrical rod and new quantitative which are not previously discussed are developed for advanced analysis, including trabecular segment length, trabecular segment radius, connecting node number, and distribution of trabecular segment radius. We then identified a geometric characteristic in which there are local maximums (0.0049, 0.0119, and 0.0147 mm) in the structure of trabecular segment radius. Our calculations show 343% higher in percent trabecular bone volume at distal-metaphysis; 38% higher in cortical thickness at mid-diaphysis; 11% higher in cortical cross-sectional moment of inertia at mid-diaphysis; 42% higher in cortical thickness at femur neck; 26% higher in cortical cross-sectional moment of inertia at femur neck; 31% and 395% higher in trabecular BMD and BMC at distal-metaphysis; 17% and 27% higher in cortical BMD and BMC at distal-metaphysis; 9% and 53% higher in cortical BMD and BMC at mid-diaphysis; 25% and 64% higher in cortical BMD and BMC at femur neck. Our new quantitative parameters and findings may be extended to evaluate the treatment response for other similar bone disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Bone densitometry in pediatric patients treated with pamidronate

    Energy Technology Data Exchange (ETDEWEB)

    Grissom, Leslie E.; Kecskemethy, Heidi H.; Harcke, H.Theodore [Alfred I. duPont Hospital for Children, Nemours Children' s Clinic, Department of Medical Imaging, P.O. Box 269, Wilmington, DE (United States); Bachrach, Steven J. [Alfred I. duPont Hospital for Children, Nemours Children' s Clinic, Division of General Pediatrics, P.O. Box 269, Wilmington, DE (United States); McKay, Charles [Alfred I. duPont Hospital for Children, Nemours Children' s Clinic, Division of Nephrology, P.O. Box 269, Wilmington, DE (United States)

    2005-05-01

    To determine the effect of intravenous pamidronate on the bone mineral density of children with osteogenesis imperfecta and spastic quadriplegic cerebral palsy. Charts of 38 children with osteogenesis imperfecta (n=20) and spastic quadriplegic cerebral palsy (n=18) treated with pamidronate were retrospectively reviewed. Patients were selected for treatment because of prior fracture and/or abnormally low bone mineral density. All received intravenous pamidronate at two-month to eight-month intervals and were periodically examined using dual energy X-ray absorptiometry. All patients had abnormally low bone mineral density prior to treatment. Lumbar spine bone mineral density and z-scores showed serial improvement in 31 of 32 patients. Spine bone mineral density increased 78{+-}38.1% in OI and 47.4{+-}39.0% in children with cerebral palsy. The area of greatest lateral distal femur bone mineral density improvement was in the metaphysis adjacent to the growth plate, with a 96{+-}87.8% improvement in the osteogenesis imperfecta group and 65.7{+-}55.2% improvement in the cerebral palsy group. Increases in bone mineral density exceeded that expected for age-specific growth. This was demonstrated by improvement in both spine and femur z-scores for both groups. No children with spastic quadriplegic cerebral palsy experienced fractures after the first week of treatment, whereas patients with osteogenesis imperfecta continued to have fractures but at a decreased rate. (orig.)

  5. Bone densitometry in pediatric patients treated with pamidronate

    International Nuclear Information System (INIS)

    Grissom, Leslie E.; Kecskemethy, Heidi H.; Harcke, H.Theodore; Bachrach, Steven J.; McKay, Charles

    2005-01-01

    To determine the effect of intravenous pamidronate on the bone mineral density of children with osteogenesis imperfecta and spastic quadriplegic cerebral palsy. Charts of 38 children with osteogenesis imperfecta (n=20) and spastic quadriplegic cerebral palsy (n=18) treated with pamidronate were retrospectively reviewed. Patients were selected for treatment because of prior fracture and/or abnormally low bone mineral density. All received intravenous pamidronate at two-month to eight-month intervals and were periodically examined using dual energy X-ray absorptiometry. All patients had abnormally low bone mineral density prior to treatment. Lumbar spine bone mineral density and z-scores showed serial improvement in 31 of 32 patients. Spine bone mineral density increased 78±38.1% in OI and 47.4±39.0% in children with cerebral palsy. The area of greatest lateral distal femur bone mineral density improvement was in the metaphysis adjacent to the growth plate, with a 96±87.8% improvement in the osteogenesis imperfecta group and 65.7±55.2% improvement in the cerebral palsy group. Increases in bone mineral density exceeded that expected for age-specific growth. This was demonstrated by improvement in both spine and femur z-scores for both groups. No children with spastic quadriplegic cerebral palsy experienced fractures after the first week of treatment, whereas patients with osteogenesis imperfecta continued to have fractures but at a decreased rate. (orig.)

  6. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  7. Seven-legged calf: Dipygus with an extra foreleg at the pelvic region

    International Nuclear Information System (INIS)

    Hiraga, T.; Abe, M.; Iwasa, K.; Takehana, K.; Tetsuka, M.

    1989-01-01

    A male Holstein-Friesian calf with seven legs was examined macroscopically and radiographically. External features included two normal forelimbs, two normal hindlimbs (lateral hindlimbs), and two abnormal hindlimbs (medial hindlimbs) which were underdeveloped. Also, a rudimentary forelimb, which was attached to the pelvic region, was observed between both the medial hindlimbs. It consisted of an underdeveloped humerus, a duplicated ulna, several carpal bones, a partially duplicated metacarpal bone and three digits with three hoofs. This leg was connected with two sets of coxae by a irregular-shaped bone considered the vestigial vertebrae and ribs. Two penises and scrotums, three kidneys and testes were also observed. This calf is the first case of dipygus associated with pygopagus parasiticus in cattle. Based on these findings, the pathogenesis of this rare anomaly was briefly discussed from an embryological point of view

  8. ESR analysis of irradiated frogs' legs and fishes

    International Nuclear Information System (INIS)

    Raffi, J.; Agnel, J.-P.; Evans, J.C.; Rowlands, C.C.; Lesgards, G.

    1989-01-01

    Electron spin resonance (ESR) spectral analysis of different parts (bones, scales, jaw, etc.) from ionized (irradiated) frozen frogs' legs and fishes (brown trout and sardine) were recorded. There is always present, after treatment, a signal due to the irradiation. ESR and ENDOR experiments lead us to assign it to h 1 centers from hydroxyapatite, as in the case of other irradiated meat bones. The use of ESR to prove whether one of these foods has been irradiated or not is discussed. (author)

  9. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (Ploss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (Ploss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  10. Adaptive Bone Remodeling of the Femoral Bone After Tumor Resection Arthroplasty With an Uncemented Proximally Hydroxyapatite-Coated Stem

    DEFF Research Database (Denmark)

    Andersen, Mikkel R.; Petersen, Michael M.

    2016-01-01

    -fluted 125-mm uncemented press-fit titanium alloy stem with hydroxyapatite coating of the proximal part of the stem. Measurements of bone mineral density (BMD; g/cm2) were done postoperatively and after 3, 6, and 12 mo in the part of the femur bone containing the Global Modular Replacement System stem using...... of 8%-9% during the first postoperative year was seen along the femoral stem, but in the bone containing the hydroxyapatite-coated part of the stem, the decrease in BMD was 14%, thus indicating that stress shielding of this part of the bone may play a role for the adaptive bone remodeling....

  11. Apparently normal accumulation in the patellae on bone scintigraphy

    International Nuclear Information System (INIS)

    Kato, Katsuhiko; Ikeda, Mitsuru; Tadokoro, Masanori; Yoshida, Kiyo; Kobayashi, Hidetoshi; Ishigaki, Takeo

    1997-01-01

    In the present study, we examined the influences of gender and ages on accumulation in the patellae on scintigram. The subjects were 828 patients who underwent bone scintigraphy during the past one and half years at the Department of Radiology, Nagoya University Hospital. Patients younger than 20 years old and those with abnormality of the patellae were excluded. The degree of accumulation in the patellae was evaluated using the A-P whole body scintigraphy in comparison with accumulation at the diaphysis of the femur and classified to two categories, ''Positive'' (higher accumulation than that of the diaphysis of the femur) and ''Negative'' (equal or lower than that of the diaphysis of the femur). In general, the degree of accumulation was higher in females than in males. In both males and females, the degree of accumulation increased with age. A difference between the two sides in the degree of accumulation in the patellae was observed in 32% of subjects. The results of this study may serve as basic data for the interpretation of bone scintigrams. (author)

  12. Radiodiagnosis of hemophiliac bone pseudotumors

    International Nuclear Information System (INIS)

    Fedorov, V.V.; Chantseva, E.A.

    1992-01-01

    Of 259 hemophiliacs bone pseudotumors were diagnosed in 11 (4.3 %); they were localised in the femur (6 cases), calcaneus (4) and in the iliac bone (3). Two cases of combined fermoral and calcaneal lesions and 4 cases of bone fracture were observed. As a rule, pseudotumors developed in hemophiliacs with severe disease. An x-ray picture of a pseudotumor depended on its site and was characterized by a large soft tissue tumor shadow, often with calcinosis, and serious destructive changes in bones in the form or round foci of 7 cm in diameter with clear-cut contours. An adge defect of the cortical layer was defined in the diaphysis of the femoral bone (15 cm long). Destructive changes were often accompanied by osteosclerosis and periostitis

  13. Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function.

    Science.gov (United States)

    Rousseau, James H; Kleppinger, Alison; Kenny, Anne M

    2009-10-01

    To assess the relationship between self-reported omega-3 fatty acid (O3FA) intake and bone mineral density (BMD) and lower extremity function in older adults. Cross-sectional analysis of baseline information from three separate ongoing studies of older adults, pooled for this analysis. Academic health center. Two hundred forty-seven men (n=118) and women (n=129) residing in the community or an assisted living facility. Self-reported dietary intake (O3FA, omega-6 fatty acids (O6FA), protein, and total calorie); BMD of the hip or heel; and lower extremity function including leg strength, chair rise time, walking speed, Timed Up and Go, and frailty. The mean reported intake of O3FA was 1.27 g/day. Correlation coefficients (r) between O3FA and T-scores from total femur (n=167) were 0.210 and 0.147 for combined femur and heel T scores. Similar correlations were found for leg strength (r=0.205) and chair rise time (r=-0.178), but the significance was lost when corrected for protein intake. Subjects with lower reported O3FA intake (<1.27 g/day) had lower BMD than those with higher reported O3FA intake. In a multiple regression analysis with femoral neck BMD as the dependent variable and reported intake of O3FA, O6FA, protein, and vitamin D as independent variables, reported O3FA intake was the only significant variable, accounting for 6% of the variance in BMD. Older adults had low reported intakes of O3FA. There was an association between greater reported O3FA intake and higher BMD. There was no independent association between reported O3FA intake and lower extremity function. Results from this preliminary report are promising and suggest further investigation.

  14. Correlations Between Bone Mechanical Properties and Bone Composition Parameters in Mouse Models of Dominant and Recessive Osteogenesis Imperfecta and the Response to Anti-TGF-β Treatment.

    Science.gov (United States)

    Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G

    2017-02-01

    Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in

  15. Differentiation of bone marrow cells with irradiated bone in vitro

    International Nuclear Information System (INIS)

    Toshiyuki Tominaga; Moritoshi Itoman; Izumi, T.; Wakita, R.; Uchino, M.

    1999-01-01

    Disease transmission or infection is an important issue in bone allograft, and irradiation is used for sterilization of graft bones. One of the advantages of bone allograft over biomaterials is that graft bones have osteoinductive factors such as growth factors. Irradiation is reported to decrease the osteoinductive activity in vivo. We investigated the osteoinductive activity of irradiated bone by alkaline phosphatase (ALP) activity in rat bone marrow cell culture. Bones (tibias and femurs of 12-week-old Wistar rats) were cleaned of adhering soft tissue, and the marrow was removed by washing. The bones were defatted, lyophilized, and cut into uniform 70 mg fragments. Then the Bone fragments were irradiated at either 10, 20, 25, 30, 40, or 50 kGy at JAERI. Bone marrow cells were isolated from tibias and femurs of 4-week-old Wistar rats. Cells were plated in tissue culture flask. When primary cultures reached confluence, cells were passaged (4 x 103 cell / cm2) to 6 wells plates. The culture medium consisted of minimum essential medium, 10% fetal bovine serum, ascorbic acid, and antibiotics. At confluence, a cell culture insert was set in the well, and an irradiated bone fragment was placed in it. Then, medium was supplemented with 10 mM ?-glycerophosphate and 1 x 10-8 M dexamethasone. Culture wells were stained by naphthol AS-MX phosphate, N,N-dimethyl formamide, Red violet LB salt on day 0, 7, 14. The density of ALP staining was analyzed by a personal computer. Without bones, ALP staining increased by 50% on day 7 and by 100% on day 14, compared with that on day 0. The other side, with bones irradiated at 30 kGy or lower, ALP staining increased by 150% on day 7, and by 180% on day 14, compared with that on day 0. In the groups of irradiated bones of 40 kGy or higher, the increase in ALP staining was less prominent compared with the groups of irradiated bones of 30 kGy or lower. In the groups of 0-30 kGy irradiation, ALP staining increased in the early period

  16. Correlation between bone mineral density of jaws and skeletal sites in an Iranian population using dual X-ray energy absorptiometry

    Directory of Open Access Journals (Sweden)

    Nasrin Esfahanizadeh

    2013-01-01

    Full Text Available Background: The aim of the present study was to evaluate the relationship between the bone density of various regions of jaws and skeletal bones. Materials and Methods: A total of 110 patients with a mean age of 55.01 ± 10.77 years were selected for the purpose of the present descriptive study. Dual X-ray Energy Absorptiometry (DXA was carried out to determine bone mineral density (BMD of the femur and lumbar vertebrae. Then all the subjects underwent DXA of the jaw bones and BMD values were determined at four jaw regions. Data were analyzed by SPSS 16 statistical software, and the correlation between the various BMD values was determined by Pearson′s correlation coefficient. Results: The results showed that 42.7% of females had normal BMD values in the femur, and in vertebrae, 20% were osteopenic and 37.3% suffered from osteoporosis, with statistically significant differences in the BMD values of the jaws between the three above-mentioned groups (P < 0.001. There was an increasing tendency toward osteopenia and osteoporosis with age. There was a positive correlation between BMD values of the femur and lumbar vertebrae and those of all the jaw regions under study (P < 0.005. There was a negative correlation (P < 0.01 between age and the BMD values of the femur, lumbar vertebrae and anterior maxilla. Conclusion: The bone density of the maxilla and mandible and presence of osteoporosis or osteopenia in these bones might reflect the same problem in skeletal bones.

  17. Sex specific association of physical activity on proximal femur BMD in 9 to 10 year-old children.

    Directory of Open Access Journals (Sweden)

    Graça Cardadeiro

    Full Text Available The results of physical activity (PA intervention studies suggest that adaptation to mechanical loading at the femoral neck (FN is weaker in girls than in boys. Less is known about gender differences associated with non-targeted PA levels at the FN or other clinically relevant regions of the proximal femur. Understanding sex-specific relationships between proximal femur sensitivity and mechanical loading during non-targeted PA is critical to planning appropriate public health interventions. We examined sex-specific associations between non-target PA and bone mineral density (BMD of three sub-regions of the proximal femur in pre- and early-pubertal boys and girls. BMD at the FN, trochanter (TR and intertrochanter (IT regions, and lean mass of the whole body were assessed using dual-energy x-ray absorptiometry in 161 girls (age: 9.7±0.3 yrs and 164 boys (age: 9.7±0.3 yrs. PA was measured using accelerometry. Multiple linear regression analyses (adjusted for body height, total lean mass and pubertal status revealed that vigorous PA explained 3-5% of the variability in BMD at all three sub-regions in boys. In girls, vigorous PA explained 4% of the variability in IT BMD and 6% in TR BMD. PA did not contribute to the variance in FN BMD in girls. An additional 10 minutes per day of vigorous PA would be expected to result in a ∼1% higher FN, TR, and IT BMD in boys (p<0.05 and a ∼2% higher IT and TR BMD in girls. In conclusion, vigorous PA can be expected to contribute positively to bone health outcomes for boys and girls. However, the association of vigorous PA to sub-regions of the proximal femur varies by sex, such that girlś associations are heterogeneous and the lowest at the FN, but stronger at the TR and the IT, when compared to boys.

  18. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee.

    Science.gov (United States)

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (posteophyte formation and subchondral sclerotic bone (psubchondral bone repair in all ESWT groups compared to OA group (p T(M+L) > F(M) in OA rat knees.

  19. Bone response to a titanium aluminium nitride coating on metallic implants.

    Science.gov (United States)

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  20. Dual-photon absorptiometry: A new method of determining bone mineral content. Pt. 1

    International Nuclear Information System (INIS)

    Buttermann, G.; Eiber, J.; Hennig, J.; Pabst, H.W.

    1988-01-01

    Cortical (neck of femur) and trabecular (L 2-4) bone mass has been determined repeatedly with DPA using 153 Gd (NOVO Lab 22 a) in 545 females and 112 males with no evidence of bone diseases. Measured 'normal' (age- and sex-related average) values for bone mineral content (BMC) differed significantly (p [de

  1. SWIMMING ENHANCES BONE MASS ACQUISITION IN GROWING FEMALE RATS

    Directory of Open Access Journals (Sweden)

    Joanne McVeigh

    2010-12-01

    Full Text Available Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10, runners (n = 8 and swimmers (n = 11. Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s-1, while swimming rats swam in 25oC water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC, bone mineral density (BMD and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05 than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05. There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone

  2. A Rapid Clinical Perspective on Bone-Mineral Density

    African Journals Online (AJOL)

    be related to the functional balance between bone-forming osteoblast and ... combination therapy in the management of established osteoporosis. South African .... femur remains a challenge in older adults at higher risk of falling. Treatment ...

  3. Radiating leg pain and positive straight leg raising in spondylolysis in children.

    Science.gov (United States)

    Halperin, N; Copeliovitch, L; Schachner, E

    1983-09-01

    Three children presented with low back pain radiating to the leg and with spasm of the hamstring and paravertebral muscles. Since the pain could not be ascribed to trauma, it was necessary to exclude the presence of infection or tumors. All the signs--localization of the pain, tenderness on one side of the back, X-ray film findings of unilateral or bilateral spondylolysis, and localized positive bone scan--pointed to spondylolysis as the cause of pain. All three children exhibited symptoms resembling those found in the facet syndrome described by Mooney and Robertson.

  4. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  5. Peak lean tissue mass accrual precedes changes in bone strength indices at the proximal femur during the pubertal growth spurt.

    Science.gov (United States)

    Jackowski, Stefan A; Faulkner, Robert A; Farthing, Jonathan P; Kontulainen, Saija A; Beck, Thomas J; Baxter-Jones, Adam D G

    2009-06-01

    We examined the timing of the age and the magnitude of peak lean tissue mass accrual (PLTV) relative to the age and magnitude of two variables of bone strength [peak cross sectional area velocity (PCSAV), and peak section modulus velocity, (PZV)] at the proximal femur in males and females during the adolescent growth spurt. We hypothesized that the age of PLTV would precede the ages of PCSAV and PZV and that there is a positive relationship between the magnitude of PLTV and both PCSAV and PZV in both genders. 41 males and 42 females aged 8-18 years were selected from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-2005). Participants' total body lean tissue mass was assessed annually for 6 consecutive years using DXA. Narrow neck and femoral shaft cross sectional areas (CSA) and section modulus (Z) were determined using the hip structural analysis (HSA) program. Participants were aligned by maturational age (years from peak height velocity). Lean tissue mass, CSA, and Z were converted into whole year velocities and the maturational age of peak tissue velocities was determined using a cubic spline curve fitting procedure. A 2 x 3 (gender x tissue) factorial MANOVA with repeated measures was used to test for differences between age of PLTV and the ages of PCSAV and PZV between genders. Multiple regression analyses were used to examine the relationship between PLTV and both PCSAV and PZV. There were no sex differences in the ages at which tissue peaks occurred when aligned by maturational age. There were significant differences between the age of PLTV and both PCSAV and PZV at the narrow neck (p=0.001) and femoral shaft (p=0.03), where the age of PLTV preceded both PCSAV and PZV when pooled by gender. PLTV was a significant predictor of the magnitude of both PCSAV and PZV at all sites (ptheory that muscle development is an important factor in affecting bone strength.

  6. Bone mineral density after implantation of a femoral neck hip prosthesis--a prospective 5 year follow-up.

    Science.gov (United States)

    Steens, Wolfram; Boettner, Friedrich; Bader, Rainer; Skripitz, Ralf; Schneeberger, Alberto

    2015-08-12

    Bone resorption in the proximal femur due to stress shielding has been observed in a number of conventional cementless implants used in total hip arthroplasty. Short femoral-neck implants are claiming less interference with the biomechanics of the proximal femur. The goal of this study was to prospectively investigate the in vivo changes of bone-mineral density as a parameter of bone remodeling around a short, femoral neck prosthesis over the first 5 years following implantation. The secondary goal was to report on its clinical outcome. We are reporting on the changes of bone mineral density of the proximal femur and the clinical outcome up to five years after implantation of a short femoral neck prosthesis. Bone mineral density was determined using dual energy x-ray absorptiometry, performed 10 days, three, 12 and 60 months after surgery. 20 patients with a mean age of 47 years (range 17 to 65) were clinically assessed using the Harris Hip Score. The WOMAC was used as a patient-relevant outcome-measure. In contrast to conventional implants DEXA-scans overall revealed a slight increase of bone mineral density in the proximal femur in the 12 months following the implantation. The Harris Hip Score improved from an average preoperative score of 46 to a postoperative score at 12 months of 91 points and 95 points at 60 months, the global WOMAC index from 5.3 preoperatively to 0.8 at 12 months and 0.6 at 60 months postoperatively. At 60 months after implantation of a short femoral neck prosthesis, all regions except one (region of interest #5) showed no significant changes in BMD compared to baseline measurements at 10 days which is less to the changes in bone mineral density seen in conventional implants.

  7. Clinical case for the use of intramedullary osteosynthesis in the treatment of pathological fractures of the femur in 6-day newborn girls with a high partial intestinal obstruction

    Directory of Open Access Journals (Sweden)

    Evgeny G. Skryabin

    2017-06-01

    Full Text Available Abstract. Skeletal bone fractures in newborns present a problem of modern traumatology. Aim. The goal is to present the use of the method of intramedullary osteosynthesis in the treatment of a pathological fracture of the right femur in a newborn girl to a wide audience of pediatric orthopedic traumatologists. Material and methods. We have experience in the treatment of a 6-day-old girl, who was born with intrauterine growth retardation and bowel disease. On the second day of stay in the intensive care unit, she had a pathological fracture of the right femur. Diagnosis of the pathological fracture was established based upon the results of clinical examination and radiography of the injured limb segment. Results. Immediately after the diagnosis, the right lower limb of the child was fixed with a plaster bandage. On the control radiographs, the standing of the bone fragments were unsatisfactory, and a decision was made to use the intramedullary osteosynthesis method with a knitting needle on the 6th day after birth of the child. The need for surgical treatment of a fracture of the femur was due to a congenital abnormality of the intestine in the child, and a need to perform surgery on the abdominal organs. Discussion. Spontaneous fracture of the right femur occurred in the child in treatment in the intensive care unit. The cause of the fracture was osteopenic syndrome, which developed as a result of vitamin D deficiency. During the first 12 days of her life, the newborn had two laparoscopic operations to address the intestinal pathology. Four weeks after the operation using osteosynthesis, the metal from the bone marrow channel of the right femur was removed. After the removal of the needle, the correct axis of the operated segment was fixed to the same length of the lower extremities. The patient had absence of pathological mobility in the fracture region, and full amplitude of movements in the knee and hip joints. Conclusion. When receiving

  8. Use of the one‐legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis

    Science.gov (United States)

    Masci, L; Pike, J; Malara, F; Phillips, B; Bennell, K; Brukner, P

    2006-01-01

    Background Active spondylolysis is an acquired lesion in the pars interarticularis and is a common cause of low back pain in the young athlete. Objectives To evaluate whether the one‐legged hyperextension test can assist in the clinical detection of active spondylolysis and to determine whether magnetic resonance imaging (MRI) is equivalent to the clinical gold standard of bone scintigraphy and computed tomography in the radiological diagnosis of this condition. Methods A prospective cohort design was used. Young active subjects with low back pain were recruited. Outcome measures included clinical assessment (one‐legged hyperextension test) and radiological investigations including bone scintigraphy (with single photon emission computed tomography (SPECT)) and MRI. Computed tomography was performed if bone scintigraphy was positive. Results Seventy one subjects were recruited. Fifty pars interarticulares in 39 subjects (55%) had evidence of active spondylolysis as defined by bone scintigraphy (with SPECT). Of these, 19 pars interarticulares in 14 subjects showed a fracture on computed tomography. The one‐legged hyperextension test was neither sensitive nor specific for the detection of active spondylolysis. MRI revealed bone stress in 40 of the 50 pars interarticulares in which it was detected by bone scintigraphy (with SPECT), indicating reduced sensitivity in detecting bone stress compared with bone scintigraphy (p  =  0.001). Conversely, MRI revealed 18 of the 19 pars interarticularis fractures detected by computed tomography, indicating concordance between imaging modalities (p  =  0.345). There was a significant difference between MRI and the combination of bone scintigraphy (with SPECT)/computed tomography in the radiological visualisation of active spondylolysis (p  =  0.002). Conclusions These results suggest that there is a high rate of active spondylolysis in active athletes with low back pain. The one‐legged hyperextension test is not

  9. The Effect of Obesity onBone Mineral Density in Primary Fibromyalgia Cases - Original Investigation

    Directory of Open Access Journals (Sweden)

    Bahadır Yesevi

    2005-12-01

    Full Text Available Fibromyalgia is a chronic musculoskeletal disease, characterized by tender points in various areas at body and widespread pain musculoskeletal system and unknown etiology, in which metabolic, immunologic and neuroendocrin abnormalities are seen. In this study, 45 female patients were enrolled according to 1990 ACR fibromyalgia criteria. They were divided to 3 groups, with 15 patients; normal, preobese and obese, depending to the body mass index. They were tested for bone mineral density of the lomber spine and femur, using dual energy x-ray absorptionmeter. The depression presence was investigated by Hamilton Depression Scale. The bone mineral density of L1-4 region of fibromyalgic normal body weight patients were normal range and there was no significant statistical difference between others groups. In contrast, femur bone mineral density vaules were found to be statistically significantly osteopenic, as compared with obese groups. There was a negative statistical correlation between depression and lomber area bone mineral density. Whereas in femur it was seen that bone mineral density was protected in preobese and obese fibromyalgia patients. The number of studies on this subject is not sufficient. Also the number of patients determined on current studies are low. Further studies, with langer patient numbers and more detailed protocols are needed. (Osteoporoz Dünyasından 2005; 4: 148-150

  10. [The radiological findings of caisson-induced bone infarcts. The relationship between acute arthralgia and bone infarcts (author's transl)].

    Science.gov (United States)

    Horváth, V F

    1978-07-01

    The radiological features, such as calcification in long bones due to infarcts, resulting from Caisson disease are described by the author on the basis of an extensive experience. The similar localisation of acute "arthralgia" and bone infarcts make it appear probable that the infarcts play a primary role in the production of "osteo-articular" pain. The author stresses the advisability of examining the adjacent portions of the tibia and femur at the initial pre-employment examination, since bone infarcts can be caused by a variety of conditions other than work in Caissons.

  11. GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women

    DEFF Research Database (Denmark)

    Iepsen, Eva Pers Winning; Lundgren, Julie Rehné; Hartmann, Bolette

    2015-01-01

    with or without administration of the GLP-1 RA liraglutide (1.2mg/day) for 52 weeks. In case of weight gain, up to two meals per day could be substituted with a low-calorie diet product in order to maintain the weight loss. MAIN OUTCOME MEASURES: Total, pelvic and arm-leg bone mineral content (BMC) and bone...... markers (CTX-1 and P1NP) were investigated before, after weight loss and after 52 weeks weight maintenance. Primary end points: Change in BMC and bone markers after 52 weeks weight maintenance with or without GLP-1 RA treatment. RESULTS: Total, pelvic and arm-leg BMC decreased during weight maintenance...... in the control group (ptotal and arm-leg BMC loss was 4 times greater in the control group compared to the liraglutide group (estimated difference 27g (95% CI 5-48), p=0.01), although the 12% weight loss was maintained in both groups...

  12. Bone augmentation for cancellous bone- development of a new animal model

    Science.gov (United States)

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  13. Analysis of the of bones through 3D computerized tomography

    International Nuclear Information System (INIS)

    Lima, I.; Lopes, R.T.; Oliveira, L.F.; Alves, J.M.

    2009-01-01

    This work shows the analysis of the internal structure of the bones samples through 3D micro tomography technique (3D-μTC). The comprehension of the bone structure is particularly important when related to osteoporosis diagnosis because this implies in a deterioration of the trabecular bone architecture, which increases the fragility and the possibility to have bone fractures. Two bone samples (human calcaneous and Wistar rat femur) were used, and the method was a radiographic system in real time with an X Ray microfocus tube. The quantifications parameters are based on stereological principles and they are five: a bone volume fraction, trabecular number, the ratio between surface and bone volume, the trabecular thickness and the trabecular separation. The quantifications were done with a program developed especially for this purpose in Nuclear Instrumentation Laboratory - COPPE/UFRJ. This program uses as input the 3D reconstructions images and generates a table with the quantifications. The results of the human calcaneous quantifications are presented in tables 1 and 2, and the 3D reconstructions are illustrated in Figure 5. The Figure 6 illustrate the 2D reconstructed image and the Figure 7 the 3D visualization respectively of the Wistar femur sample. The obtained results show that the 3D-μTC is a powerful technique that can be used to analyze bone microstructures. (author)

  14. Improving Soldier Recovery from Catastrophic Bone Injuries: Developing an Animal Model for Standardizing the Bone Reparative Potential of Emerging Progenitor Cell Therapies

    Science.gov (United States)

    2011-08-01

    cell matrix will anchor the developing bone of the outer cortical shell to the surface of intact cortical bone. •Between day 4-7, the three...periosteum so that by day 21 an outer cortical shell, well anchored to the cortical bone at the base of the arch, provides the major structureal support of...tibia was dissected free of the femur, ankle , and overlying skin, and sufficient muscle was retained to not disrupt the fracture zone. The sample was

  15. Diaphyseal chondroblastoma in a long bone: first report

    Energy Technology Data Exchange (ETDEWEB)

    Azorin, D.; Gonzalez-Mediero, I.; Colmenero, I.; Prada, I. de [Hospital Infantil Universitario Nino Jesus, Service of Anatomic Pathology, Madrid (Spain); Lopez-Barea, F. [Hospital Universitario La Paz, Department of Anatomic Pathology, Madrid (Spain)

    2006-01-01

    Chondroblastoma is a rare benign bone tumor typically located in the epiphysis. We describe the first case of chondroblastoma arising in the diaphysis of a long bone. The patient was a 13-year-old girl who presented with pain over her right thigh. Radiographs showed a lytic lesion in the diaphysis of her right femur. A core biopsy and a subsequent surgical resection were performed. (orig.)

  16. Closing the medullary canal after retrograde nail removal using a bioabsorbable bone plug: technical tip

    NARCIS (Netherlands)

    Schepers, T.; Vogels, L. M. M.

    2012-01-01

    We describe a simple technique for closure of the intra-articular opening after the removal of a retrograde femur nail. With the use of a gelatine bioabsorbable bone plug the medullary canal is closed, reducing leakage of blood and cancellous bone particles from the bone into the knee joint

  17. Bone density of women who have recovered from anorexia nervosa.

    Science.gov (United States)

    Hartman, D; Crisp, A; Rooney, B; Rackow, C; Atkinson, R; Patel, S

    2000-07-01

    To examine bone density in 19 women who had previously experienced classical anorexia nervosa from which they had been fully recovered for a mean of 21 years (current characteristics: median age 40.2 years; Eating Attitudes Test [EAT] score 2; body mass index [BMI] 21.1; average 1.8 offspring). Probands were compared, blindly, in respect of bone density, with 13 control subjects matched for age and sex and with no history of eating disorders. Dual energy X-ray absorptiometry (DXA) was used to evaluate the bone mineral density (BMD) of the lumbar spine and the head of the femur. Femur BMD was still significantly less among ex-anorectic sufferers. Two subjects had experienced pathological fractures while anorectic, both having been strenuous exercisers. None appeared to have suffered post illness fractures. BMD at follow-up did not relate to the severity or chronicity of previous anorexia nervosa. Full clinical recovery from anorexia nervosa does not quite confer full establishment of normal bone density. However, pathological fractures are not a feature thereafter, within middle life. Copyright 2000 John Wiley & Sons, Inc.

  18. Comparison of Bone Mineral Density in Thalassemia Major Patients with Healthy Controls

    Directory of Open Access Journals (Sweden)

    Mahesh Chand Meena

    2015-01-01

    Full Text Available Chronic hemoglobinopathies like thalassemia are associated with many osteopathies like osteoporosis. Methods. This observational study was carried out to compare the bone mineral density (BMD in transfusion dependent thalassemics with that of healthy controls. Thirty-two thalassemia patients, aged 2–18 years, and 32 age and sex matched controls were studied. The bone mineral concentration (BMC and BMD were assessed at lumbar spine, distal radius, and neck of femur. Biochemical parameters like serum calcium and vitamin D levels were also assessed. Results. The BMC of neck of femur was significantly low in cases in comparison to controls. We also observed significantly lower BMD at the lumbar spine in cases in comparison to controls. A significantly positive correlation was observed between serum calcium levels and BMD at neck of femur. Conclusion. Hence, low serum calcium may be used as a predictor of low BMD especially in populations where incidence of hypovitaminosis D is very high.

  19. Hake fish bone as a calcium source for efficient bone mineralization.

    Science.gov (United States)

    Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta

    2016-01-01

    Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.

  20. Brown tumors of the femur and pelvis secondary to a parathyroid carcinoma: Report of one case

    OpenAIRE

    Radulescu, Dan; Chis, Bogdan; Donca, Valer; Münteanu, Valentin

    2014-01-01

    Brown tumors result from excess osteoclast activity and consist of collections of osteoclasts intermixed with fibrous tissue and poorly mineralized woven bone. They are secondary to hyperparathyroidism (HPT). Their incidence is higher in primary than in secondary hyperparathyroidism. We report a 69 years-old male, admitted in a state of confusion, lethargy and bedridden, with a pathological fracture of the femur caused by a brown tumor. The laboratory examination revealed a hypercalcemia (8.8...

  1. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  2. Radiographic signs of radiolesions of the pelvis (excluding the femur) after irradiation for epithelioma of the cervix uteri

    International Nuclear Information System (INIS)

    Zenny, J.C.; Bergiron, C.; Chassagne, D.; Couanet, D.; Ibrahim, E.; Masselot, J.

    1980-01-01

    Radiolesions of the pelvic bones (excluding the femur) were observed in 29 patients after irradiation therapy for cervix uteri cancer. Three regions can be affected corresponding to the areas irradiated: the sacrum and internal part of the iliac wings, the pubis, and the cotyles. In most cases the lesions appeared after 1 to 4 years. Their radiological appearances are characteristic, the principal sign being irregular bone condensation in a demineralized bone, without true cavitation. The only lytic lesions observed were in the pubis. Calcification of soft tissues may occur and fractures are frequent. There is a slow progression of the lesions over long periods. Clinical, radiological, and progression signs differentiate radiolesions from other affections: metastases, invasion by contiguity, infections, and radio-induced sarcoma [fr

  3. Time Simulation of Bone Adaptation

    DEFF Research Database (Denmark)

    Bagge, Mette

    1998-01-01

    The structural adaptation of a three-dimensional finite element model ofthe proximal femur is considered. Presuming the bone possesses the optimalstructure under the given loads, the bone material distribution is foundby minimizing the strain energy averaged over ten load cases with avolume....... The remodeling algorithm is derived directly from theoptimization recurrence formula, and in a time increment the materialdistribution changes towards the optimal structure for the present load case.The speed of remodeling is taken from clinical data.Numerical examples of respectively increasing and reducing...

  4. Effect of swimming exercise on three-dimensional trabecular bone microarchitecture in ovariectomized rats.

    Science.gov (United States)

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Fukunaga, Masao

    2015-11-01

    Swimming is generally considered ineffective for increasing bone mass in humans, at least compared with weight-bearing sports. However, swimming exercise has sometimes been shown to have a strong positive effect on bone mass in small animals. This study investigated the effects of swimming on bone mass, strength, and microarchitecture in ovariectomized (OVX) rats. OVX or sham operations were performed on 18-wk-old female Fisher 344 rats. Rats were randomly divided into four groups: sham sedentary (Sham-CON), sham swimming exercised (Sham-SWI), OVX sedentary (OVX-CON), and OVX swimming exercised (OVX-SWI). Rats in exercise groups performed swimming in a water bath for 60 min/day, 5 days/wk, for 12 wk. Bone mineral density (BMD) in right femurs was analyzed using dual-energy X-ray absorptiometry. Three-dimensional trabecular architecture at the distal femoral metaphysis was analyzed using microcomputed tomography (μCT). Geometrical properties of diaphyseal cortical bone were evaluated in the midfemoral region using μCT. The biomechanical properties of femurs were analyzed using three-point bending. Femoral BMD was significantly decreased following ovariectomy. This change was suppressed by swimming. Trabecular bone thickness, number, and connectivity were decreased by ovariectomy, whereas structure model index (i.e., ratio of rod-like to plate-like trabeculae) increased. These changes were also suppressed by swimming exercise. Femurs displayed greater cortical width and maximum load in SWI groups than in CON groups. Together, these results demonstrate that swimming exercise drastically alleviated both OVX-induced decreases in bone mass and mechanical strength and the deterioration of trabecular microarchitecture in rat models of osteoporosis. Copyright © 2015 the American Physiological Society.

  5. PREDICTION OF THE DURATION OF DISTRACTION REGENERATED BONE MATURATION

    Directory of Open Access Journals (Sweden)

    N. V. Tushina

    2012-01-01

    Full Text Available Aim of the study the characteristics of changes of serum biochemical parameters in dogs with delayed maturation of the distraction regenerate after surgical lengthening the leg bones by Ilizarov. The comparative analysis of biochemical changes in blood serum of animals with delayed regenerated bone osteogenesis after surgical leg bone lengthening according to Ilizarov has been made in the work. The development of persistent and marked hypocalcemia, significant accumulation of blood serum nonoxidized degradation products during limb bone surgical lengthening according to Ilizarov have been revealed to be adverse signs evidencing of the high probability of the disorder of further formation of the regenerated bone and its subsequent maturation at the stage of fixation.

  6. Electric reaction arising in bone subjected to mechanical loadings

    Science.gov (United States)

    Murasawa, Go; Cho, Hideo; Ogawa, Kazuma

    2006-03-01

    The aim of present study is the investigation of the electric reaction arising in bone subjected to mechanical loadings. Firstly, specimen was fabricated from femur of cow, and ultrasonic propagation in bone was measured by ultrasonic technique. Secondary, 4-point bending test was conducted up to fracture, and electric reaction arising in bone was measured during loading. Thirdly, cyclic 4-point bending test was conducted to investigate the effect of applied displacement speed on electric reaction.

  7. Removal of well-fixed components in femoral revision arthroplasty with controlled segmentation of the proximal femur.

    Science.gov (United States)

    Megas, Panagiotis; Georgiou, Christos S; Panagopoulos, Andreas; Kouzelis, Antonis

    2014-12-31

    The transfemoral and the extended trochanteric osteotomies are the most common osteotomies used in femoral revision, both when proximal or diaphyseal fixation of the new component has been decided. We present an alternative approach to the trochanteric osteotomies, most frequently used with distally fixated stems, to overcome their shortcomings of osteotomy migration and nonunion, but, most of all, the uncontrollable fragmentation of the femur. The procedure includes a complete circular femoral osteotomy just below the stem tip to prevent distal fracture propagation and a subsequent preplanned segmentation of the proximal femur for better exposure and fast removal of the old prosthesis. The bone fragments are reattached with cerclage wires to the revision prosthesis, which is safely anchored distally. A modified posterolateral approach is used, as the preservation of the continuity of the abductors, the greater trochanter, and the vastus lateralis is a prerequisite. Between 2006 and 2012, 47 stems (33 women, 14 men, mean age 68 years, range 39-88 years) were revised using this technique. They were 12 (26%) stable and 35 (74%) loose prostheses and were all revised to tapered, fluted, grit-blasted stems. No fracture of the trochanters or the distal femur occurred intraoperatively. Mean follow-up was 28 months (range 6-70 months). No case of trochanteric migration or nonunion of the osteotomies was recorded. Restoration of the preexisting bone defects occurred in 83% of the patients. Three patients required repeat revision due to dislocation and one due to a postoperative periprosthetic fracture. None of the failures was attributed to the procedure itself. This new osteotomy technique may seem aggressive at first, but, at least in our hands, has effectively increased the speed of the femoral revision, particularly for the most difficult well-fixed components, but not at the expense of safety.

  8. Uncemented allograft-prosthetic composite reconstruction of the proximal femur

    Directory of Open Access Journals (Sweden)

    Li Min

    2014-01-01

    Full Text Available Background: Allograft-prosthetic composite can be divided into three groups names cemented, uncemented, and partially cemented. Previous studies have mainly reported outcomes in cemented and partially cemented allograft-prosthetic composites, but have rarely focused on the uncemented allograft-prosthetic composites. The objectives of our study were to describe a surgical technique for using proximal femoral uncemented allograft-prosthetic composite and to present the radiographic and clinical results. Materials and Methods: Twelve patients who underwent uncemented allograft-prosthetic composite reconstruction of the proximal femur after bone tumor resection were retrospectively evaluated at an average followup of 24.0 months. Clinical records and radiographs were evaluated. Results: In our series, union occurred in all the patients (100%; range 5-9 months. Until the most recent followup, there were no cases with infection, nonunion of the greater trochanter, junctional bone resorption, dislocation, allergic reaction, wear of acetabulum socket, recurrence, and metastasis. But there were three periprosthetic fractures which were fixed using cerclage wire during surgery. Five cases had bone resorption in and around the greater trochanter. The average Musculoskeletal Tumor Society (MSTS score and Harris hip score (HHS were 26.2 points (range 24-29 points and 80.6 points (range 66.2-92.7 points, respectively. Conclusions: These results showed that uncemented allograft-prosthetic composite could promote bone union through compression at the host-allograft junction and is a good choice for proximal femoral resection. Although this technology has its own merits, long term outcomes are yet not validated.

  9. Potential application of microfocus X-ray techniques for quantitative analysis of bone structure

    International Nuclear Information System (INIS)

    Takahashi, Kenta

    2006-01-01

    With the progress of micro-focused X-ray computed tomography (micro-CT), it has become possible to evaluate the bone structure quantitatively and three-dimensionally. The advantages of micro-CT are that sample preparations are not required and that it provides not only two-dimensional parameters but also three-dimensional stereological indices. This study was carried out to evaluate the potential application of the micro-focus X-ray techniques for quantitative analysis of the new bone produced inside of a hollow chamber of the experimental titanium miniature implant. Twenty-five male wistar rats (9-weeks of age) received experimental titanium miniature implant that had a hollow chamber inside in the left side of the femur. The rats were sacrificed, then the femurs were excised at 4 weeks or 8 weeks after implantation. Micro-CT analysis was performed on the femur samples and the volume of the new bone induced in the hollow chamber of implant was calculated. Percentages of new bone area on the undecalcified histological slides were also measured, linear regression analysis was carried out. In order to evaluate the correlation between pixel numbers of undecalcified slide specimen and pixel numbers of micro-CT image. New bone formation occurred in experimental titanium miniature implant with a hollow chamber. The volume of new bone was measured by micro CT and the area percentage of new bone area against hollow chamber was calculated on the undecalcified slide. Linear regression analysis showed a high correlation between the pixel numbers of undecalcified slide specimen and pixel numbers of micro-CT image. Consequently, the new bone produced inside of the hollow chamber of the experimental titanium miniature implant could be quantified as three-dimensional stereological by micro-CT and its precision was supported by the high correlation between the measurement by micro-CT and conservative two-dimensional measurement of histological slide. (author)

  10. ANATOMIC AND PHYSIOLOGICAL FEATURES OF DISTAL LOWER LEG AND THEIR INFLUENCE ON THE PROCESS OF OSTEOGENESIS

    Directory of Open Access Journals (Sweden)

    Desimir Mladenović

    2010-06-01

    Full Text Available Osteogenesis is the process of bone tissue forming, i.e. bone or callus regeneration. This process is influenced by many factors, and the degree of bone fragments’ stability and vascularization in the fracture area are the basic local factors which determine the nature of reparative process. Regenerative process of all bone structures increases with increasing of blood supply.The distal lower leg has its specific biomechanical features, and plays an important role in the transfer of body weight to foot. The distal part of tibia has a small diameter, which as a consequence has reduced diameter in medullar cave. Through this anatomic feature, the medullar network in the lower tibia part is also reduced.As for anatomic aspect, vascularization in the lower end of tibia is poor. It primarily depends on periosteal vascularization, because medullar vascularization is reduced. Fasciae, tendons and skin cover the lower part of the leg, and there is no muscle mass. These tissues have poor vascular network and that is why the extraosseous blood circulation in tibia is poor, and does not participate in the osteogenesis process. For these reasons, distal lower leg represents a predelection site for delayed osteogenesis and pseudoarthrosys development.Osteosynthesis causes secondary damage to bone and soft tissue circulation. The screw plate damages the periosteal circulation – in the lower part of tibia it is the main source of vascularization, and for this reason, this method of osteosynthesis should not be applied. The external fixator has a sparing role regarding vascularization, and that is the reason why this method is recommended for fracture stabilization at the level of distal lower leg.

  11. Total femur arthroplasty for revision hip failure in osteogenesis imperfecta: limits of biology

    Directory of Open Access Journals (Sweden)

    Pablo Sanz-Ruiz, PhD, MD

    2017-09-01

    Full Text Available Osteogenesis imperfecta (OI is a rare congenital disease characterized by alterations in bone quality, with susceptibility to fractures, instability, deformities, and osteoarthrosis. Prosthetic surgery in these patients is associated with an abnormally high rate of implant failures. On the other hand, abnormal bone fragility adds to the complexity of revision surgery in such individuals—thus representing a genuine challenge for the orthopaedic surgeon. We present a case of femoral reconstruction in a patient with OI and prosthetic loosening after reconstruction secondary to femoral septic pseudoarthrosis. Intramedullary total femoral reconstruction was carried out after exceeding the biological reconstruction limits. This is the first reported instance of the use of an intramedullary total femur arthroplasty as salvage technique in an OI patient. This technique should be considered when we have exceeded biological limits for femoral fixation.

  12. Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1

    Science.gov (United States)

    Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup

    2014-01-01

    Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402

  13. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  14. [Treatment of pediatric distal femur fractures by external fixator combined with limited internal fixation].

    Science.gov (United States)

    Wei, Sheng-wang; Shi, Zhan-ying; Hu, Ju-zheng; Wu, Hao

    2016-03-01

    To discuss the clinical effects of external fixator combined with limited internal fixation in the treatment of pediatric distal femur fractures. From January 2008 to June 2014, 17 children of distal femur fractures were treated by external fixator combined with limited internal fixation. There were 12 males and 5 females, aged from 6 to 13 years old with an average of 10.2 years, ranged in the course of disease from 1 h to 2 d. Preoperative diagnoses were confirmed by X-ray films in all children. There were 11 patients with supracondylar fracture , and 6 patients with intercondylar comminuted fracture. According to AO/ASIF classification, 9 fractures were type A1, 5 cases were type A2,and 3 cases were type C1. The intraoperative and postoperative complications, postoperative radiological examination, lower limbs length and motion of knee joints were observed. Knee joint function was assessed by KSS score. All the patients were followed up from 6 to 38 months with an average of 24.4 months. No nerve or blood vessel injury was found. One case complicated with the external fixation loosening, 2 cases with the infection of pin hole and 3 cases with the leg length discrepancy. Knee joint mobility and length measurement (compared with the contralateral), the average limited inflexion was 10 degrees (0 degrees to 20 degrees), the average limited straight was 4 degrees (0 degrees to 10), the average varus or valgus angle was 3 degrees (0 degrees to 5 degrees). KSS of the injured side was (96.4 +/- 5.0) points at final follow-up, 16 cases got excellent results and 1 good. All fractures obtained healing and no epiphyseal closed early was found. External fixator combined with limited internal fixation has advantages of simple operation, reliable fixation, early functional exercise in treating pediatric distal femurs fractures.

  15. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness.

    Science.gov (United States)

    Makowski, Alexander J; Uppuganti, Sasidhar; Wadeer, Sandra A; Whitehead, Jack M; Rowland, Barbara J; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S

    2014-05-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of these important factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4-/- littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4-/- mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective of age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4-/- mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also in maintaining bone toughness and fracture toughness. Published by Elsevier Inc.

  16. The Loss of Activating Transcription Factor 4 (ATF4) Reduces Bone Toughness and Fracture Toughness

    Science.gov (United States)

    Makowski, Alexander J.; Uppuganti, Sasidhar; Waader, Sandra A.; Whitehead, Jack M.; Rowland, Barbara J.; Granke, Mathilde; Mahadevan-Jansen, Anita; Yang, Xiangli; Nyman, Jeffry S.

    2014-01-01

    Even though age-related changes to bone tissue affecting fracture risk are well characterized, only a few matrix-related factors have been identified as important to maintaining fracture resistance. As a gene critical to osteoblast differentiation, activating transcription factor 4 (ATF4) is possibly one of the seimportant factors. To test the hypothesis that the loss of ATF4 affects the fracture resistance of bone beyond bone mass and structure, we harvested bones from Atf4+/+ and Atf4−/− littermates at 8 and 20 weeks of age (n≥9 per group) for bone assessment across several length scales. From whole bone mechanical tests in bending, femurs from Atf4−/− mice were found to be brittle with reduced toughness and fracture toughness compared to femurs from Atf4+/+ mice. However, there were no differences in material strength and in tissue hardness, as determined by nanoindentation, between the genotypes, irrespective age. Tissue mineral density of the cortex at the point of loading as determined by micro-computed tomography was also not significantly different. However, by analyzing local composition by Raman Spectroscopy (RS), bone tissue of Atf4−/− mice was found to have higher mineral to collagen ratio compared to wild-type tissue, primarily at 20 weeks of age. From RS analysis of intact femurs at 2 orthogonal orientations relative to the polarization axis of the laser, we also found that the organizational-sensitive peak ratio, ν1 Phosphate per Amide I, changed to a greater extent upon bone rotation for Atf4-deficient tissue, implying bone matrix organization may contribute to the brittleness phenotype. Target genes of ATF4 activity are not only important to osteoblast differentiation but also maintaining bone toughness and fracture toughness. PMID:24509412

  17. Interval hypoxic training in complex treatment of fractures of trochanteric area of the femur

    Directory of Open Access Journals (Sweden)

    Василь Михайлович Шимон

    2015-05-01

    Full Text Available The method of interval hypoxic training (IHT is used to increase physical endurance of athletes and for treatment of certain systemic diseases, due to the ability of IHT affect metabolism, homeostasis and the immune system. The aims of the article are improving the results of treatment and rehabilitation of patients with fractures of the trochanteric area of the femur by the method of interval hypoxic training and study its influence on bone metabolism.Materials and methods. 17 patients who were hospitalized in the clinic of general surgery UzhNU with fractures of the trochanteric area of the femur are examined in the period from 2012 to 2015.The first group consisted of 6 patients who from day-patient treatment is conducted IHT by gas mixture of 12 % oxygen. The second group consisted of 4 patients with thyrotoxicosis who are also receiving IHT by gas mixture of 12% oxygen.The control group consisted of 7 patients with fractures of the trochanteric area of the femur who refused from IHT.Results and its discussion. The best physical activity is observed in the first group. Starting physical activity is the lowest in the second group, but its development is faster. Slowly increase the duration of physical activity compared with the first two groups is observed in the control group.In the control study after 1 month it is noted that calcium level increased in all three groups. Increase in the second group is biggest. The level of phosphorus decreased in the first and the control group and increased in the second group.The levels of osteocalcin and alkaline phosphatase increased. Rates were higher and increase was substantial in the first two groups in comparison with the control group.Conclusions.• Intensive growth of length of one-time physical activity most notably in patients with thyrotoxicosis is observed in patients who are receiving IHT.• Improvement of the activity of bone metabolism is observed in patients after IHT

  18. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    Science.gov (United States)

    Straehl, Fiona R; Scheyer, Torsten M; Forasiepi, Analía M; MacPhee, Ross D; Sánchez-Villagra, Marcelo R

    2013-01-01

    Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua), with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.

  19. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones.

    Directory of Open Access Journals (Sweden)

    Fiona R Straehl

    Full Text Available Bone microstructure reflects physiological characteristics and has been shown to contain phylogenetic and ecological signals. Although mammalian long bone histology is receiving increasing attention, systematic examination of the main clades has not yet been performed. Here we describe the long bone microstructure of Xenarthra based on thin sections representing twenty-two species. Additionally, patterns in bone compactness of humeri and femora are investigated. The primary bone tissue of xenarthran long bones is composed of a mixture of woven, parallel-fibered and lamellar bone. The vascular canals have a longitudinal, reticular or radial orientation and are mostly arranged in an irregular manner. Concentric rows of vascular canals and laminar organization of the tissue are only found in anteater bones. The long bones of adult specimens are marked by dense Haversian bone, a feature that has been noted for most groups of mammals. In the long bones of armadillos, secondary osteons have an oblique orientation within the three-dimensional bone tissue, thus resulting in their irregular shape when the bones are sectioned transversely. Secondary remodeling is generally more extensive in large taxa than in small taxa, and this could be caused by increased loading. Lines of arrested growth are assumed to be present in all specimens, but they are restricted to the outermost layer in bones of armadillos and are often masked by secondary remodeling in large taxa. Parameters of bone compactness show a pattern in the femur that separates Cingulata and Pilosa (Folivora and Vermilingua, with cingulates having a lower compactness than pilosans. In addition, cingulates show an allometric relationship between humeral and femoral bone compactness.

  20. The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model

    International Nuclear Information System (INIS)

    Hsu, W.K.; Feeley, B.T.; Krenek, L.; Stout, D.B.; Chatziioannou, A.F.; Lieberman, J.R.

    2007-01-01

    Currently available diagnostic techniques can be unreliable in the diagnosis of delayed fracture healing in certain clinical situations, which can lead to increased complication rates and costs to the health care system. This study sought to determine the utility of positron emission tomography (PET) scanning with 18 F-fluoride ion, which localizes in regions of high osteoblastic activity, and 18 F-fluorodeoxyglucose (FDG), an indicator of cellular glucose metabolism, in assessing bone healing in a rat femur fracture model. Fractures were created in the femurs of immunocompetent rats. Animals in group I had a fracture produced via a manual three-point bending technique. Group II animals underwent a femoral osteotomy with placement of a 2-mm silastic spacer at the fracture site. Fracture healing was assessed with plain radiographs, 18 F-fluoride, and 18 F-FDG PET scans at 1, 2, 3, and 4-week time points after surgery. Femoral specimens were harvested for histologic analysis and manual testing of torsional and bending strength 4 weeks after surgery. All fractures in group I revealed abundant callus formation and bone healing, while none of the nonunion femurs were healed via assessment with manual palpation, radiographic, and histologic evaluation at the 4-week time point. 18 F-fluoride PET images of group I femurs at successive 1-week intervals revealed progressively increased signal uptake at the union site during fracture repair. In contrast, minimal tracer uptake was seen at the fracture sites in group II at all time points after surgery. Data analysis revealed statistically significant differences in mean signal intensity between groups I and II at each weekly interval. No significant differences between the two groups were seen using 18 F-FDG PET imaging at any time point. This study suggests that 18 F-fluoride PET imaging, which is an indicator of osteoblastic activity in vivo, can identify fracture nonunions at an early time point and may have a role in the

  1. The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model

    Science.gov (United States)

    Hsu, W. K.; Feeley, B. T.; Krenek, L.; Stout, D. B.; Chatziioannou, A. F.; Lieberman, J. R.

    2011-01-01

    Purpose Currently available diagnostic techniques can be unreliable in the diagnosis of delayed fracture healing in certain clinical situations, which can lead to increased complication rates and costs to the health care system. This study sought to determine the utility of positron emission tomography (PET) scanning with 18F-fluoride ion, which localizes in regions of high osteoblastic activity, and 18F-fluorodeoxyglucose (FDG), an indicator of cellular glucose metabolism, in assessing bone healing in a rat femur fracture model. Methods Fractures were created in the femurs of immuno-competent rats. Animals in group I had a fracture produced via a manual three-point bending technique. Group II animals underwent a femoral osteotomy with placement of a 2-mm silastic spacer at the fracture site. Fracture healing was assessed with plain radiographs, 18F-fluoride, and 18F-FDG PET scans at 1, 2, 3, and 4-week time points after surgery. Femoral specimens were harvested for histologic analysis and manual testing of torsional and bending strength 4 weeks after surgery. Results All fractures in group I revealed abundant callus formation and bone healing, while none of the nonunion femurs were healed via assessment with manual palpation, radiographic, and histologic evaluation at the 4-week time point. 18F-fluoride PET images of group I femurs at successive 1-week intervals revealed progressively increased signal uptake at the union site during fracture repair. In contrast, minimal tracer uptake was seen at the fracture sites in group II at all time points after surgery. Data analysis revealed statistically significant differences in mean signal intensity between groups I and II at each weekly interval. No significant differences between the two groups were seen using 18F-FDG PET imaging at any time point. Conclusion This study suggests that 18F-fluoride PET imaging, which is an indicator of osteoblastic activity in vivo, can identify fracture nonunions at an early time point

  2. Herniation pits of the femur neck: incidence and radiologic findings

    International Nuclear Information System (INIS)

    Cho, Jae Hyun; Suh, Jin Suk; Lee, Hye Yeon

    1994-01-01

    In order to assess the incidence and radiologic findings of herniation pit of the femur neck in Korean. In 152 macerated femurs of 88 cadavers, and randomly selected 115 hips of 70 patients, the presence of herniation pit was determined by using fluoroscopy and radiography. It was then examined by CT for inspection of overlying surface and its opening was confirmed by inserting thin steal wire under the fluoroscopic guidance. Seventeen herniation pits in 15 macerated femurs of 13 cadavers were noted. (14.8%, 13/88). Two of 13 individuals showed bilaterality. All lesions were found only in males. Six herniation pit in 6 femurs of 6 patients (8.6%, 6/70) were also noted. All lesions were on anterosuperior aspect of femur neck. Plain radiographs of macerated femurs revealed well marginated and thin sclerosis in 15 lesions. Of all 23 lesions, CT showed cortical breakdown in 3, and overlying cortical thickening in 8. In 15 macerated femurs, roughed area of cortex was found in anterosuperior aspect of femur in all cases, and tiny openings(diameter less than 1 mm) related to cystic lesions were confirmed in 9 lesions. The incidence of herniation pits was 14.8% in 88 cadaver, and 8.6% in 70 patients. All were males

  3. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series

    Directory of Open Access Journals (Sweden)

    Cho Hwan

    2012-07-01

    Full Text Available Abstract Background Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Methods Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone matrix. There were 21 males and 4 female patients with mean age of 11.1 years (range, 3–19 years. The proximal metaphysis of the humerus was affected in 12 patients, the proximal femur in five, the calcaneum in three, the distal femur in two, the tibia in two, and the radius in one. There were 17 active cysts and 8 latent cysts. Radiologic change was evaluated according to a modified Neer classification. Time to healing was defined as the period required achieving cortical thickening on the anteroposterior and lateral plain radiographs, as well as consolidation of the cyst. The patients were followed up for mean period of 23.9 months (range, 15–36 months. Results Nineteen of 25 cysts had completely consolidated after a single procedure. The mean time to healing was 6.6 months (range, 3–12 months. Four had incomplete healing radiographically but had no clinical symptom with enough cortical thickness to prevent fracture. None of these four cysts needed a second intervention until the last follow-up. Two of 25 patients required a second intervention because of cyst recurrence. All of the two had a radiographical healing of cyst after mean of 10 additional months of follow-up. Conclusions A minimal invasive technique including the injection of DBM could serve as an excellent treatment method for unicameral bone cysts.

  4. Minimal invasive surgery for unicameral bone cyst using demineralized bone matrix: a case series.

    Science.gov (United States)

    Cho, Hwan Seong; Seo, Sung Hwa; Park, So Hyun; Park, Jong Hoon; Shin, Duk Seop; Park, Il Hyung

    2012-07-29

    Various treatments for unicameral bone cyst have been proposed. Recent concern focuses on the effectiveness of closed methods. This study evaluated the effectiveness of demineralized bone matrix as a graft material after intramedullary decompression for the treatment of unicameral bone cysts. Between October 2008 and June 2010, twenty-five patients with a unicameral bone cyst were treated with intramedullary decompression followed by grafting of demineralized bone matrix. There were 21 males and 4 female patients with mean age of 11.1  years (range, 3-19 years). The proximal metaphysis of the humerus was affected in 12 patients, the proximal femur in five, the calcaneum in three, the distal femur in two, the tibia in two, and the radius in one. There were 17 active cysts and 8 latent cysts. Radiologic change was evaluated according to a modified Neer classification. Time to healing was defined as the period required achieving cortical thickening on the anteroposterior and lateral plain radiographs, as well as consolidation of the cyst. The patients were followed up for mean period of 23.9 months (range, 15-36 months). Nineteen of 25 cysts had completely consolidated after a single procedure. The mean time to healing was 6.6 months (range, 3-12 months). Four had incomplete healing radiographically but had no clinical symptom with enough cortical thickness to prevent fracture. None of these four cysts needed a second intervention until the last follow-up. Two of 25 patients required a second intervention because of cyst recurrence. All of the two had a radiographical healing of cyst after mean of 10 additional months of follow-up. A minimal invasive technique including the injection of DBM could serve as an excellent treatment method for unicameral bone cysts.

  5. Unicameral (simple) bone cysts.

    Science.gov (United States)

    Baig, Rafath; Eady, John L

    2006-09-01

    Since their original description by Virchow, simple bone cysts have been studied repeatedly. Although these defects are not true neoplasms, simple bone cysts may create major structural defects of the humerus, femur, and os calcis. They are commonly discovered incidentally when x-rays are taken for other reasons or on presentation due to a pathologic fracture. Various treatment strategies have been employed, but the only reliable predictor of success of any treatment strategy is the age of the patient; those being older than 10 years of age heal their cysts at a higher rate than those under age 10. The goal of management is the formation of a bone that can withstand the stresses of use by the patient without evidence of continued bone destruction as determined by serial radiographic follow-up. The goal is not a normal-appearing x-ray, but a functionally stable bone.

  6. Unicameral bone cyst of the scaphoid: a report of two cases.

    Science.gov (United States)

    Javdan, Mohammad; Zarezadeh, Abolghasem; Gaulke, Raulf; Eshaghi, Mohammad Amin; Shemshaki, Hamidreza

    2012-08-01

    Unicameral bone cysts are benign, fluid-filled lesions that occur mostly in long bones (proximal humerus, 50-60%; femur, 30%) of male children aged 5 to 15 years. Occurrence in the scaphoid of an adult is rare. We report 2 such patients who presented with wrist pain, with and without a history of trauma. Both underwent curettage and bone grafting (harvested from the distal radius) and achieved good functional recovery.

  7. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  8. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Science.gov (United States)

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  9. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  10. Hydrated disease of bone

    International Nuclear Information System (INIS)

    Mishwani, A.H.; Ahmed, M.; Anwar, S.D.

    2003-01-01

    A case of primary hydatid disease of the right femur is reported that presented with pathological fracture and was diagnosed at the time of exploration for biopsy. The patient was treated by removal of all cysts, irrigation with colloidal solution, bone grafting and immobilization of the fracture followed by four cycles of oral Albendazole. Eosinophilia and serological tests reverted to normal but the patient died due to acute myocardial infarction six months later. This uncommon condition should be considered in the differential diagnosis of pathological fractures, bone pain or osteolytic lesions, especially in patients of rural and farmer background.(author)

  11. The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study

    DEFF Research Database (Denmark)

    Vlachopoulos, Dimitris; Barker, Alan R; Ubago-Guisado, Esther

    2018-01-01

    OBJECTIVES: Research investigating the longitudinal effects of the most popular sports on bone development in adolescent males is scarce. The aim is to investigate the effect of 12-month participation in osteogenic and non-osteogenic sports on bone development. DESIGN: A 12-month study...... by dual-energy X-ray absorptiometry, and bone stiffness was measured by quantitative ultrasound. Bone outcomes at 12 months were adjusted for baseline bone status, age, height, lean mass and moderate to vigorous physical activity. RESULTS: Footballers had higher improvement in adjusted BMC at the total...... body, total hip, shaft, Ward's triangle, legs and bone stiffness compared to cyclists (6.3-8.0%). Footballers had significantly higher adjusted BMC at total body, shaft and legs compared to swimmers (5.4-5.6%). There was no significant difference between swimmers and cyclists for any bone outcomes...

  12. [The effects of strontium in drinking water on growth and development of rat bone].

    Science.gov (United States)

    Xu, F; Zhang, X; Liu, J; Fan, M

    1997-05-01

    Effects of strontium at a high level in drinking water on growth and development of rat bone were studied. The results showed that Sr2+ concentration from 5 to 500 mg/L in drinking water could increase the contents of strontium in blood serum, urine, femur, mixilla and tooth in Wistar rats exposed to Sr2+ for 12 weeks with an obvious dose-response relationship. In addition, strontium at over 50 mg/L could decrease the contents of calcium in bone, increase the contents of calcium in tooth and bone density, and decrease the levels of calcium in blood serum except female rats at the 12th week. Effects of Sr2+ on body weight, body length, AKP activity of serum, calcium content of urine and breaking load of bended femur for rats were not found. However, there are differences in the effects of strontium on growth and development of bone between male and female rats. At the 12th week the content of calcium in blood serum decreased in male rats but increased in female rats in exposed groups. At the 4th and 8th weeks, urine Hop/Cr in male rats increased but it remained normal level in female rats. Sr2+ increased the bone density of mixilla in male rats but it did not increase that of femur in female rats. It is suggested that such changes may be a result of the differences in endocritic regulation and metabolic process between two sexes.

  13. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  14. Comminuted distal femur closed fractures: a new application of the Ilizarov concept of compression-distraction.

    Science.gov (United States)

    El-Tantawy, Ahmad; Atef, Ashraf

    2015-04-01

    The treatment of intra-articular distal femur fractures with severe metaphyseal comminution is challenging. It is important to choose a technique that provides secure fixation, minimum tissue handling, and early ambulation. The aim of this work was to evaluate the outcomes of application of Ilizarov concept as an early definitive treatment of comminuted distal femur closed fractures. A total of 17 male patients (mean age 28.53±6.33 years) presented with comminuted distal femur fractures (with 10 type C2 and 7 type C3-2 fractures according to AO/ASIF system) were included in this prospective study. Initial fixation of the articular fragments was done by inter-fragmentary screws, percutaneously through a limited open approach, and stabilization was completed by Ilizarov fixator. The procedure included acute shortening, through the comminution, followed by gradual re-distraction to compensate the created shortening. Radiological and functional results were assessed according to ASAMI evaluation system. The mean amount of intra-operative shortening was 3.68±0.53 cm. The mean external fixation index was 37.24±2.53 days/cm. The mean follow-up period was 18.18±1.91 months. All fractures united primarily in an average 137.65±4.12 days, with no evident angular deformity or limb-length discrepancy. None of the cases required a second major procedure or bone graft. The functional results were excellent in three cases, good in 12, and fair in two patients. The Ilizarov concept of acute compression-distraction is a valuable alternative for the treatment of distal femur fractures with severe metaphyseal comminution.

  15. Study of bony trabecular characteristics using bone morphometry and micro-CT

    International Nuclear Information System (INIS)

    Song, Young Han; Lee, Wan; Lee, Chang Jin; Ji, Jung Hyun; Lee, Byung Do

    2007-01-01

    The research was done to investigate the effectiveness of 2D bony morphometry and microstructure of micro-computed tomography (micro-CT) on the osteoporotic bony change. We performed the bone morphometric analysis of proximal femur in ovariectomized rabbits with BMD and micro-CT examination. Twenty-one female (Newzeland, about 16 weeks old, 2.9-3.4 kg) rabbits were used. Three rabbits were sacrificed on the day when experiment began (Basline). The remaining 18 rabbits were divided into two groups. One group was ovariectomized bilaterally (OVX) and the other animals were subjected to sham operation (Sham). Bone specimens were obtained from the right and left femur of sacrificed rabbits. At intervals of 1,2,3,5,6 months respectively, BMD tests were performed on the proximal on the proximal femur by using PIXImus 2 (GE Lunar Co. USA), 2-dimensional bone morphometric analysis by custom computer program and 2D / 3D bone structure analysis by micro-CT (Skyscan1072, Antwerpen, Belgium). Statistical analysis was carried out for the correlation between bone morphometry, micro-CT and BMD. BV/TV, Tb.Th, Tb.N of micro-CT parameters showed higher values in sham group than OVX group. N.Nd/Ar.RI, N.NdNd, N.NdTm, N. TmTm, PmB/Ar.RI, 3-D BoxSlope of 2D morphometric parameters showed higher values in Sham group than OVX group. The micro-CT parameters of Tb.Sp. Tb.N were statistically significant correlated with BMD respectively. Several 2D morphometric parameters were statistically significant correlated with BMD respectively. Several parameters of 2D bony morphometry and micro-CT showed effective aspects on the osteoporotic bony change

  16. Association of vitamin D receptor and estrogen receptor-α gene polymorphism with peak bone mass and bone size in Chinese women

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Qi-ren HUANG; Jin-wei HE; Yun-qiu HU; Qi ZHOU; Jing-hui LU; Miao LI; Yu-juan LIU

    2004-01-01

    AIM: To investigate if vitamin D receptor (VDR) gene Apa I polymorphism and estrogen receptor-α (ER-α) gene Pvu II, Xba I polymorphisms are related to bone mineral density (BMD), bone mineral content (BMC) and bone size in premenopausal Chinese women. METHODS: The VDR Apa I genotype and ER-α Pvu II, Xba I genotype were determined by PCR-restriction fragment length polymorphism (RFLP) in 493 unrelated healthy women aged 20-40 years of Hah nationality in Shanghai city. BMD (g/cm2), BMC (g), and bone areal size (BAS, cm2) at lumbar spine 1-4 (L1-4) and proximal femur (femoral neck, trochanter and Ward's triangle) were measured by duel-energy X-ray absorptionmetry. RESULTS: All allele frequencies did not deviate from Hardy-Weinberg equilibrium. After phenotypes were adjusted for age, height, and weight, a significant association was found between VDR Apa I genotype and BMC variation at L1-4 and Ward's triangle (P<0.05), but not in BMD or BAS at lumbar spine and proximal femur.ER-α Pvu II, Xba I genotype was not related to BMC, BMD, and BAS at all sites. CONCLUSION: The study suggested that Apa I polymorphism in VDR gene may influence on attainment and maintenance of peak bone mass in premenopausal Chinese women.

  17. Prevention of Bone Bridge Formation Using Transplantation of the Autogenous Mesenchymal Stem Cells to Physeal Defects: An Experimental Study in Rabbits

    Directory of Open Access Journals (Sweden)

    L. Plánka

    2007-01-01

    Full Text Available Physeal cartilage is known to have poor self-repair capacity after injury. Evaluation of the ability of cultured mesenchymal stem cells to repair damaged physis is the topic of current research. In 10 immature New Zealand white rabbits autogenous mesenchymal stem cells were transplanted into a iatrogenic physeal defect in a lateral portion of the distal growth plate of the right femur. The same defect without stem cells transplantation in the left femoral distal physis served as a control. In our study, we used our own technique of implantation of MSCs with a newly modified gel scaffold (New Composite Hyaluronate/Collagen Type I/Fibrin Scaffold. The rabbits were euthanized 4 months after transplantation. Bone length discrepancy and valgus deformity were measured from femoral radiographs. Healing of the defect was investigated histologically. The ability of mesenchymal stem cells to survive and promote cartilage healing in the physeal defect was assessed by immunofluorescence. Average difference in femur length measured from surgery to euthanasia (4 months was 0.61 ± 0.19 cm after preventive transplantation of MSCs in the right femur, but only 0.11 ± 0.07 cm in the left femur. Average angular (valgus deformity of the right femur with MSCs preventively transplanted to iatrogenically damaged distal femoral physis was 1.2 ± 0.72 °. Valgus deformity in the left femur was 5.4 ± 2.5 °. Prophylactic transplantation of autogenous mesenchymal stem cells to iatrogenically damaged distal growth plate of the rabbit femur prevented a bone bridge formation and resulted in healing of the physeal defect with hyaline cartilage. Immunofluorescence examination showed that the chondrocytes newly formed in growth zone are the result of implanted MSCs differentiation. Femur growth in traumatized physis was maintained even after transplantation of autogenous MSCs. As compared with the opposite femur (with physeal defect but without transplanted MSCs, the bone

  18. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat.

    Directory of Open Access Journals (Sweden)

    David F Razidlo

    2010-07-01

    Full Text Available Histone deacetylase (Hdac3 is a nuclear enzyme that contributes to epigenetic programming and is required for embryonic development. To determine the role of Hdac3 in bone formation, we crossed mice harboring loxP sites around exon 7 of Hdac3 with mice expressing Cre recombinase under the control of the osterix promoter. The resulting Hdac3 conditional knockout (CKO mice were runted and had severe deficits in intramembranous and endochondral bone formation. Calvarial bones were significantly thinner and trabecular bone volume in the distal femur was decreased 75% in the Hdac3 CKO mice due to a substantial reduction in trabecular number. Hdac3-CKO mice had fewer osteoblasts and more bone marrow adipocytes as a proportion of tissue area than their wildtype or heterozygous littermates. Bone formation rates were depressed in both the cortical and trabecular regions of Hdac3 CKO femurs. Microarray analyses revealed that numerous developmental signaling pathways were affected by Hdac3-deficiency. Thus, Hdac3 depletion in osterix-expressing progenitor cells interferes with bone formation and promotes bone marrow adipocyte differentiation. These results demonstrate that Hdac3 inhibition is detrimental to skeletal health.

  19. Management Strategy for Unicameral Bone Cyst

    Directory of Open Access Journals (Sweden)

    Chin-Yi Chuo

    2003-06-01

    Full Text Available The management of a unicameral bone cyst varies from percutaneous needle biopsy, aspiration, and local injection of steroid, autogenous bone marrow, or demineralized bone matrix to the more invasive surgical procedures of conventional curettage and grafting (with autogenous or allogenous bone or subtotal resection with bone grafting. The best treatment for a unicameral bone cyst is yet to be identified. Better understanding of the pathology will change the concept of management. The aim of treatment is to prevent pathologic fracture, to promote cyst healing, and to avoid cyst recurrence and re-fracture. We retrospectively reviewed 17 cases of unicameral bone cysts (12 in the humerus, 3 in the femur, 2 in the fibula managed by conservative observation, curettage and bone grafting with open reduction and internal fixation, or continuous decompression and drainage with a cannulated screw. We suggest percutaneous cannulated screw insertion to promote cyst healing and prevent pathologic fracture. We devised a protocol for the management of unicameral bone cysts.

  20. Management strategy for unicameral bone cyst.

    Science.gov (United States)

    Chuo, Chin-Yi; Fu, Yin-Chih; Chien, Song-Hsiung; Lin, Gau-Tyan; Wang, Gwo-Jaw

    2003-06-01

    The management of a unicameral bone cyst varies from percutaneous needle biopsy, aspiration, and local injection of steroid, autogenous bone marrow, or demineralized bone matrix to the more invasive surgical procedures of conventional curettage and grafting (with autogenous or allogenous bone) or subtotal resection with bone grafting. The best treatment for a unicameral bone cyst is yet to be identified. Better understanding of the pathology will change the concept of management. The aim of treatment is to prevent pathologic fracture, to promote cyst healing, and to avoid cyst recurrence and re-fracture. We retrospectively reviewed 17 cases of unicameral bone cysts (12 in the humerus, 3 in the femur, 2 in the fibula) managed by conservative observation, curettage and bone grafting with open reduction and internal fixation, or continuous decompression and drainage with a cannulated screw. We suggest percutaneous cannulated screw insertion to promote cyst healing and prevent pathologic fracture. We devised a protocol for the management of unicameral bone cysts.

  1. Changes in Mouse Bone Turnover in Response to Microgravity

    Science.gov (United States)

    Cheng-Campbell, M.; Blaber, E.; Almeida, E.

    2016-01-01

    Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1a/p21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23% decrease in bone fraction (p=0.005) and 11.91% decrease in bone thickness (p=0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl/6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n=10) and vivarium controls (n=10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered

  2. Progress towards in vitro quantitative imaging of human femur using compound quantitative ultrasonic tomography

    International Nuclear Information System (INIS)

    Lasaygues, Philippe; Ouedraogo, Edgard; Lefebvre, Jean-Pierre; Gindre, Marcel; Talmant, Marilyne; Laugier, Pascal

    2005-01-01

    The objective of this study is to make cross-sectional ultrasonic quantitative tomography of the diaphysis of long bones. Ultrasonic propagation in bones is affected by the severe mismatch between the acoustic properties of this biological solid and those of the surrounding soft medium, namely, the soft tissues in vivo or water in vitro. Bone imaging is then a nonlinear inverse-scattering problem. In this paper, we showed that in vitro quantitative images of sound velocities in a human femur cross section could be reconstructed by combining ultrasonic reflection tomography (URT), which provides images of the macroscopic structure of the bone, and ultrasonic transmission tomography (UTT), which provides quantitative images of the sound velocity. For the shape, we developed an image-processing tool to extract the external and internal boundaries and cortical thickness measurements. For velocity mapping, we used a wavelet analysis tool adapted to ultrasound, which allowed us to detect precisely the time of flight from the transmitted signals. A brief review of the ultrasonic tomography that we developed using correction algorithms of the wavepaths and compensation procedures are presented. Also shown are the first results of our analyses on models and specimens of long bone using our new iterative quantitative protocol

  3. Administration of Clinoptilolite to Broiler Chickens During Growth and Its Effect on the Growth Rate and Bone Metabolism Indicators

    Directory of Open Access Journals (Sweden)

    E. Straková

    2008-01-01

    Full Text Available The growth rate and bone metabolism indicators were monitored in broiler chickens receiving the feed supplemented with clinoptilolite. One-day-old broiler chickens ROSS 308 were divided into control (C and experimental (E groups with 100 males and 100 females per group. The chickens received the complete feed mixture BR1 from 1 to 10 days of age, followed by the feed mixture BR2 until the age of 30 days, and the feed mixture BR3 until the end of the experiment (40 days. The feed mixtures of the experimental group were supplemented with clinoptilolite (commercial additive ZeoFeed at a level of 0.5% (BR1, 1.5% (BR2 and 2.5% (BR3, replacing the corresponding portion of wheat. Feed mixtures and drinking water were provided ad libitum. The live weight of broiler chickens in both the control and experimental group increased steadily during the experiment. At the end of the experiment, live weights of experimental females (2,416 g and males (2,829 g were higher than those of control females (2,345 g and males (2,694 g by 3% and 5%, respectively. Significant differences in the live weight between groups were found from the age of 30 days (P ⪬ 0.05 and P ⪬ 0.01. At the age of 40 days, the chickens were slaughtered and the femur and tibiotarsus of the right leg were analysed for the content of dry matter, ash, calcium, phosphorus and magnesium. The ash content in dry matter ranged from 53.0 to 54.1% in group C and from 51.7 to 53.2% in group E. The Ca and P contents in dry matter in group E were lower than those in group C, except for Ca and P in the male tibiotarsus. In both groups, regardless of sex, the ash content was higher in the tibiotarsus than in the femur. Since fat levels in bones of the experimental group were increased (females by 19.5% in the femur and 21.3% in the tibiotarsus; males by 22.0% in the femur and 26.3% in the tibiotarsus, which could affect the values obtained, ash, calcium, phosphorus and magnesium were determined in the

  4. Lateral Cortical Thickening and Bone Heterogeneity of the Subtrochanteric Femur Measured With Quantitative CT as Indicators for Early Detection of Atypical Femoral Fractures in Long-Term Bisphosphonate Users.

    Science.gov (United States)

    Lee, Seung Hyun; Lee, Young Han; Suh, Jin-Suck

    2017-10-01

    The objective of our study was to compare subtrochanteric femur bone mineral density (BMD) and bone quality of long-term bisphosphonate (BP) users who sustained an atypical femoral fracture (AFF) with BP users who did not sustain a femoral fracture and BP-naïve patients with no history of femoral fracture using quantitative CT (QCT). Fourteen female BP users with an AFF (mean age, 72.6 years; mean duration of BP use, 6.2 years; mean body mass index, 21.9) who had undergone QCT before fracture events were sex-, age-, BP use duration-, and body mass index-matched to 14 BP users who did not sustain a fracture and 14 BP-naïve patients. The lateral cortical thickness index (CTI) and the mean BMD (BMD mean ) and SD of the BMD (BMD SD ) within the lateral cortex and within the entire cross-sectional area of the subtrochanteric femur were measured on axial QCT. Femoral neck-shaft angles were measured on the QCT scout image. Parameters were analyzed using the Kruskal-Wallis test. Lateral CTIs were greater in the BP users with an AFF (median, 0.28) than in the BP users without a femoral fracture (median, 0.21) (p = 0.038) and the BP-naïve group (median, 0.21) (p = 0.009). The lateral cortex BMD SD was significantly higher in the BP users with an AFF (median, 59.59 mg/cm 3 ) than the BP users without a femoral fracture (median, 39.27 mg/cm 3 ; p = 0.049) and the BP-naïve group (median, 31.02 mg/cm 3 ; p = 0.037). There was no significant difference among groups in lateral cortex BMD mean , BMD mean and BMD SD of the entire cross-sectional area, and femoral neck-shaft angle. Long-term BP users with a subsequent AFF had a thicker lateral cortex and higher lateral cortex BMD SD at the subtrochanteric area before the fracture on QCT than BP users who did not sustain a femoral fracture and BP-naïve patients.

  5. Distraction osteogenesis using combined locking plate and Ilizarov fixator in the treatment of bone defect: A report of 2 cases

    Directory of Open Access Journals (Sweden)

    John Mukhopadhaya

    2017-01-01

    Full Text Available Distraction osteogenesis and bone transport has been used to reconstruct bone loss defect by allowing new bone to form in the gap. Plate-guided bone transport has been successfully described in literature to treat bone loss defect in the femur, tibia, and mandible. This study reports two cases of fracture of femur with segmental bone loss treated with locking plate fixation and bone transport with Ilizarov ring fixator. At the time of docking, when the transport segment is compressed with bone fragment, the bone fragment is fixed with additional locking or nonlocking screws through the plate. The bone defect size was 7 cm in case 1 and 8 cm in case 2 and the external fixation indexes were 12.7 days/cm and 14 days/cm. No shortening was present in either of our cases. The average radiographic consolidation index was 37 days/cm. Both cases achieved infection-free bone segment regeneration and satisfactorily functional outcome. This technique reduces the duration of external fixation during the consolidation phase, allows correction of length and alignment and provides earlier rehabilitation.

  6. Bone cysts: unicameral and aneurysmal bone cyst.

    Science.gov (United States)

    Mascard, E; Gomez-Brouchet, A; Lambot, K

    2015-02-01

    Simple and aneurysmal bone cysts are benign lytic bone lesions, usually encountered in children and adolescents. Simple bone cyst is a cystic, fluid-filled lesion, which may be unicameral (UBC) or partially separated. UBC can involve all bones, but usually the long bone metaphysis and otherwise primarily the proximal humerus and proximal femur. The classic aneurysmal bone cyst (ABC) is an expansive and hemorrhagic tumor, usually showing characteristic translocation. About 30% of ABCs are secondary, without translocation; they occur in reaction to another, usually benign, bone lesion. ABCs are metaphyseal, excentric, bulging, fluid-filled and multicameral, and may develop in all bones of the skeleton. On MRI, the fluid level is evocative. It is mandatory to distinguish ABC from UBC, as prognosis and treatment are different. UBCs resolve spontaneously between adolescence and adulthood; the main concern is the risk of pathologic fracture. Treatment in non-threatening forms consists in intracystic injection of methylprednisolone. When there is a risk of fracture, especially of the femoral neck, surgery with curettage, filling with bone substitute or graft and osteosynthesis may be required. ABCs are potentially more aggressive, with a risk of bone destruction. Diagnosis must systematically be confirmed by biopsy, identifying soft-tissue parts, as telangiectatic sarcoma can mimic ABC. Intra-lesional sclerotherapy with alcohol is an effective treatment. In spinal ABC and in aggressive lesions with a risk of fracture, surgical treatment should be preferred, possibly after preoperative embolization. The risk of malignant transformation is very low, except in case of radiation therapy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic-Osteocyte Lacunae on Trabecular Bone Surface.

    Science.gov (United States)

    Shah, Furqan A; Zanghellini, Ezio; Matic, Aleksandar; Thomsen, Peter; Palmquist, Anders

    2016-02-01

    The orientation of nanoscale mineral platelets was quantitatively evaluated in relation to the shape of lacunae associated with partially embedded osteocytes (osteoblastic-osteocytes) on the surface of deproteinised trabecular bone of adult sheep. By scanning electron microscopy and image analysis, the mean orientation of mineral platelets at the osteoblastic-osteocyte lacuna (Ot.Lc) floor was found to be 19° ± 14° in the tibia and 20° ± 14° in the femur. Further, the mineral platelets showed a high degree of directional coherency: 37 ± 7% in the tibia and 38 ± 9% in the femur. The majority of Ot.Lc in the tibia (69.37%) and the femur (74.77%) exhibited a mean orientation of mineral platelets between 0° and 25°, with the largest fraction within a 15°-20° range, 17.12 and 19.8% in the tibia and femur, respectively. Energy dispersive X-ray spectroscopy and Raman spectroscopy were used to characterise the features observed on the anorganic bone surface. The Ca/P (atomic %) ratio was 1.69 ± 0.1 within the Ot.Lc and 1.68 ± 0.1 externally. Raman spectra of NaOCl-treated bone showed peaks associated with carbonated apatite: ν1, ν2 and ν4 PO4(3-), and ν1 CO3(2-), while the collagen amide bands were greatly reduced in intensity compared to untreated bone. The apatite-to-collagen ratio increased considerably after deproteinisation; however, the mineral crystallinity and the carbonate-to-phosphate ratios were unaffected. The ~19°-20° orientation of mineral platelets in at the Ot.Lc floor may be attributable to a gradual rotation of osteoblasts in successive layers relative to the underlying surface, giving rise to the twisted plywood-like pattern of lamellar bone.

  8. 'Real world' imprecision of dual-energy x-ray absorptiometry (DEXA) at L2-4 and femur neck

    International Nuclear Information System (INIS)

    Phillipov, G.; Sigalas, V.; Seaborn, C.; Phillips, P.; Rowe, C.; Kitchener, M.

    1998-01-01

    Full text: While measurement of bone density (BMD) by DEXA is routinely used to diagnose osteoporosis and estimate future fracture risk, data on what constitutes a significant change between serial BMD measurements has received much less attention. The use of repeat BMD measurements is particularly important to either assess the rate of bone loss or treatment efficacy for individual patients. However to estimate a statistically significant change between consecutive bone mineral density (BMD) measurements requires an accurate knowledge of dual-energy x-ray absorptiometry (DEXA) imprecision under actual day-to-day working conditions. DEXA imprecision, based on in vitro models, such as manufacturers' phantoms, leads to a marked under-estimation of true imprecision, since significant sources of variance (patient positioning, inter- and intra-operator variability etc) are ignored. In an attempt to provide a robust estimate of imprecision for our Lunar DPXplus, 28 females and one male(age 72.8 + 7.8 yr)were recruited to have multiple DEXA scans at approximately four week intervals. The subjects were handled using exactly the same procedure as that for our referred patients. Initial findings after each subject has had am average of 6.6 DEXA scans showed that the within subject variability (CV w ) associated with the AP lumbar spine (L2-4)and femur-neck was 1.83 and 2.24% respectively. No significant correlation was found between BMD values and CV w at either site. Since instrument variability is about 0.7% (derived from phantom studies), it is apparent that operator variation accounts for the majority of total variability. From the derived imprecision, the percentage difference for a significant change at a predefined probability limit is 5.1 and 6.2% for the spine and femur-neck sites respectively, when the probability of a false alarm is 5% (bi-directional). Knowledge of the critical difference required between successive measurements, combined with the known rate of

  9. The effect of canal fill on paediatric femur fractures treated with titanium elastic nails.

    Science.gov (United States)

    Nielsen, E; Bonsu, N; Andras, L M; Goldstein, R Y

    2018-02-01

    Traditional teaching for fixation of paediatric femur fractures recommends 80% nail diameter/medullary canal diameter ratio (ND/MCD) for successful maintenance of reduction. Prior studies have investigated this with stainless steel Enders nails. Our aim was to assess the impact of ND/MCD on maintenance of reduction and malunion rates in paediatric femur fractures treated with flexible intramedullary nails (FINs). Retrospective data was collected on all paediatric patients treated with FINs for diaphyseal femur fractures at a single tertiary care institution over a ten-year period. Patients with co-morbidities affecting bone quality were excluded. Patients were subdivided into groups based on ND/MCD. A total of 66 patients met inclusion criteria. Mean ND/MCD was 76.3% (32.9% to 98.8%, SD 14.3). In all, 50% (n = 33/66) of patients had > 80% ND/MCD, and only 13.6% (n = 9/66) of patients had less than 60% ND/MCD. When controlling for fracture stability, ND/MCD had no correlation with mean shortening (p = 0.07) There was no correlation between ND/MCD and angulation in the sagittal (p = 0.96) or coronal plane (p = 0.20). Three patients fit malunion criteria. ND/MCD for these patients were 40%, 67% and 79%. There was no correlation between ND/MCD and shortening or malangulation. The majority of patients in this series with less than 80% fill with FIN healed within acceptable parameters. III.

  10. Comparative analysis of bone mineral density and incidence of osteoporosis in vegetarians and omnivores

    International Nuclear Information System (INIS)

    Chen Qingfu; Yang Shuyu; Yan Bing; Liu Changqin; Shi Xiulin; Zhang Hujie; Yu Yaxin; Wang Liying; Li Xuejun

    2010-01-01

    Objective: To study the changes of bone mineral density and incidence of osteoporosis in vegetarians. Methods: Dual energy X-ray absorptiometry was used to measure the bone mineral densities of spine, neck of femur and greater trochanter in 62 vegetarians (vegetarian group) and 60 normal age-matched men(control group). Results: Compared with control group, the bone mineral densities(tms · cm -2 ) of spine, neck of femur and greater trochanter in vegetarians were evidently decreased (0.752 ± 0.075 vs 1.014 ± 0.096, 0.697 ± 0.071 vs 1.003 ± 0.111, 0.713 ± 0.083 vs 1.011 ± 0.097, P<0.001) and the incidences of osteoporosis and osteopenia were increased (40.3% υs 13.3%, 19.3% υs 5.0%, P<0.001). Conclusion: Vegetarians have lower bone mineral density and higher incidences of osteoporosis and osteopenia than omnivores. (authors)

  11. Evaluation of Bone Mineral Density in Children with Thalassemia Major

    Directory of Open Access Journals (Sweden)

    Betül Bakan

    2012-12-01

    Full Text Available Aim: Fragile bones develop due to various factors in thalassemic patients. Even with optimum management, osteoporosis occurs, contributing to morbidity in majority of patients with thalassemia major (TM. Our aim was to evaluate bone health of thalassemic children using biochemical parameters and bone mineral density (BMD, and to emphasize the precautionary measures and early diagnosis of osteoporosis. Material and Methods: Thirteen children (5 females, 8 males, age <18 years with TM were included in the study. Age, duration, weight, height, transfusion frequency, medication use were recorded. Following laboratory analysis were obtained: Whole blood count, fasting blood glucose, ferritin, alanine aminotransferase, aspartate aminotransferase, calcium, phosphorus, alkaline phosphatase, thyroid stimulating hormone, free thyroxin, and intact parathyroid hormone (iPTH. BMD was determined using dual energy X-ray absorptiometry (DXA from femur and lumbar vertebrae. Patients with DXA Z-score <-2 was defined as osteoporotic. Results: The mean age was 7.85±3.17 years and body mass index (BMI was 14.68±1.93 kg/m2. The rest of the results were as follows: Lumbar BMD 0.464±0.108 g/cm2; total femur BMD 0.581± 0.114 g/cm2; lumbar DEXA Z-score 2.44±1.60; total femur DEXA -0.93±1.19. Osteoporosis ratio was determined as 69% in the lumbar vertebrae and 10% in the femur. A significant positive correlation was found between lumbar-femoral BMD and BMI, and a significant negative correlation was observed between femoral BMD and iPTH. Conclusion: BMD is low in thalassemic children. Despite regular transfusions and chelation therapy, osteoporosis starts early in life. (Turkish Journal of Osteoporosis 2012;18: 72-7

  12. The healing process of intracorporeally and in situ devitalized distal femur by microwave in a dog model and its mechanical properties in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenwei Ji

    Full Text Available BACKGROUND: Limb-salvage surgery has been well recognized as a standard treatment and alternative to amputation for patients with malignant bone tumors. Various limb-sparing techniques have been developed including tumor prosthesis, allograft, autograft and graft-prosthesis composite. However, each of these methods has short- and long-term disadvantages such as nonunion, mechanical failures and poor limb function. The technique of intracorporeal devitalization of tumor-bearing bone segment in situ by microwave-induced hyperthermia after separating it from surrounding normal tissues with a safe margin is a promising limb-salvage method, which may avoid some shortcomings encountered by the above-mentioned conventional techniques. The purpose of this study is to assess the healing process and revitalization potential of the devitalized bone segment by this method in a dog model. In addition, the immediate effect of microwave on the biomechanical properties of bone tissue was also explored in an in vitro experiment. METHODS: We applied the microwave-induced hyperthermia to devitalize the distal femurs of dogs in situ. Using a monopole microwave antenna, we could produce a necrotic bone of nearly 20 mm in length in distal femur. Radiography, bone scintigraphy, microangiography, histology and functional evaluation were performed at 2 weeks and 1, 2, 3, 6, 9 and 12 months postoperatively to assess the healing process. In a biomechanical study, two kinds of bone specimens, 3 and 6 cm in length, were used for compression and three-point bending test respectively immediately after extracorporeally devitalized by microwave. FINDINGS: An in vivo study showed that intracorporeally and in situ devitalized bone segment by microwave had great revitalization potential. An in vitro study revealed that the initial mechanical strength of the extracorporeally devitalized bone specimen may not be affected by microwave. CONCLUSION: Our results suggest that the

  13. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation.

    Science.gov (United States)

    Lujan, Trevor J; Henderson, Chris E; Madey, Steven M; Fitzpatrick, Dan C; Marsh, J Lawrence; Bottlang, Michael

    2010-03-01

    Locked plating constructs may be too stiff to reliably promote secondary bone healing. This study used a novel imaging technique to quantify periosteal callus formation of distal femur fractures stabilized with locking plates. It investigated the effects of cortex-to-plate distance, bridging span, and implant material on periosteal callus formation. Retrospective cohort study. One Level I and one Level II trauma center. Sixty-four consecutive patients with distal femur fractures (AO types 32A, 33A-C) stabilized with periarticular locking plates. Osteosynthesis using indirect reduction and bridge plating with periarticular locking plates. Periosteal callus size on lateral and anteroposterior radiographs. Callus size varied from 0 to 650 mm2. Deficient callus (20 mm2 or less) formed in 52%, 47%, and 37% of fractures at 6, 12, and 24 weeks postsurgery, respectively. Callus formation was asymmetric, whereby the medial cortex had on average 64% more callus (P=0.001) than the anterior or posterior cortices. A longer bridge span correlated minimally with an increased callus size at Week 6 (P=0.02), but no correlation was found at Weeks 12 and 24 postsurgery. Compared with stainless steel plates, titanium plates had 76%, 71%, and 56% more callus at Week 6 (P=0.04), Week 12 (P=0.03), and Week 24 (P=0.09), respectively. Stabilization of distal femur fractures with periarticular locking plates can cause inconsistent and asymmetric formation of periosteal callus. A larger bridge span only minimally improves callus formation. The more flexible titanium plates enhanced callus formation compared with stainless steel plates.

  14. The shifting trajectory of growth in femur length during gestation.

    Science.gov (United States)

    Bjørnerem, Ashild; Johnsen, Synnøve L; Nguyen, Tuan V; Kiserud, Torvid; Seeman, Ego

    2010-05-01

    Bone size is a determinant of bone strength and tracks in its percentile of origin during childhood and adolescence. We hypothesized that the ranking of an individual's femur length (FL) is established in early gestation and tracks thereafter. Fetal FL was measured serially using 2D ultrasound in 625 Norwegian fetuses. Tracking was assessed using Pearson correlation, a generalized estimating equation model, and by calculating the proportion of fetuses whose FL remained within the same quartile. Baseline FL Z-score (weeks 10 to 19) and later measurements correlated, but more weakly as gestation advanced: r = 0.59 (weeks 20 to 26); r = 0.45 (weeks 27 to 33); and r = 0.32 (weeks 34 to 39) (p baseline FL Z-score, placental weight (150 g), maternal height (5 cm), and weight (10 kg), was associated with a 0.25, 0.15, 0.10, and 0.05 SD higher FL Z-score at the end of gestation, respectively (p ranging from <0.001 to 0.02). Tracking within the same percentile throughout the whole of gestation, as suggest by growth charts, is uncommon. Deviation from tracking is more common and is the result of changes in growth velocity within and between fetuses and is partly influenced by maternal, fetal, and placental factors. (c) 2010 American Society for Bone and Mineral Research.

  15. EFFECTS OF RUN TRAINING ON BONE DEVELOPMENT AND BONE MINERALIZATION IN GROWING MICE

    Directory of Open Access Journals (Sweden)

    B Gönül

    2011-06-01

    Full Text Available We planned to study the body weights, bone sizes and bone mineral (Ca, Mg, Zn contents of growing mice subjected to treadmill training. Twelve 4-week-old male Swiss Albino mice were divided into sedentary and exercise groups. The mice were trained by running exercise on a flat bed treadmill with 15 m/min, 30 min/day motion, throughout 5 days per week, for 12 weeks. The body weight of animals, and length, fat-free dry weight and Ca, Mg, and Zn contents of bones were measured in both groups. Body weights of animals, and lengths and wet and dry weights of the femur and the tibia were significantly higher in the exercised group. Also, the Zn, Mg and Ca mineral contents of bones in the group that underwent exercise were higher than in the other group. Running exercise with a flat bed treadmill performed by the growing mice is an effective exercise mode, especially for bone morphology.

  16. A Prospective Study to Evaluate the Management of Sub-trochanteric Femur Fractures with Long Proximal Femoral Nail.

    Science.gov (United States)

    Kumar, M; Akshat, V; Kanwariya, A; Gandhi, M

    2017-11-01

    Introduction: Sub-trochanteric fractures of the femur remains one of the most challenging fractures faced by orthopaedic surgeons. This study was done to analyse the management and complications of sub-trochanteric fractures using long proximal femoral nail (PFN). Materials and Methods: This was a prospective study of 50 patients with sub-trochanteric fractures of femur who were treated with long PFN at a tertiary care center from July 2012 to June 2016. The fractures were classified according to Seinsheimer classification. All patients were assessed functionally by Harris Hip Score. Results: Average duration of union was 17.08 weeks (range 13 to 32 weeks), union was achieved in 92% cases. Closed reduction was achieved in 68% cases and open reduction was required in 32% cases. Various intraoperative complications were seen in 12% and delayed complications in 26% of cases. Good anatomical results were achieved in 86% of cases and 14% were fair. As per Harris Hip score, excellent results were noted in 28% cases, good in 56% cases and fair in 16% cases. Conclusion: The long PFN is a reliable implant for subtrochanteric femur fractures, with high rate of bone union and minimal soft tissue damage. Intramedullary fixation has biological and biomechanical advantages, but the surgery is technically demanding.

  17. A Prospective Study to Evaluate the Management of Sub-trochanteric Femur Fractures with Long Proximal Femoral Nail

    Directory of Open Access Journals (Sweden)

    Kumar M

    2017-11-01

    Full Text Available INTRODUCTION: Sub-trochanteric fractures of the femur remains one of the most challenging fractures faced by orthopaedic surgeons. This study was done to analyse the management and complications of sub-trochanteric fractures using long proximal femoral nail (PFN. MATERIALS AND METHODS: This was a prospective study of 50 patients with sub-trochanteric fractures of femur who were treated with long PFN at a tertiary care center from July 2012 to June 2016. The fractures were classified according to Seinsheimer classification. All patients were assessed functionally by Harris Hip Score. RESULTS: Average duration of union was 17.08 weeks (range 13 to 32 weeks, union was achieved in 92% cases. Closed reduction was achieved in 68% cases and open reduction was required in 32% cases. Various intraoperative complications were seen in 12% and delayed complications in 26% of cases. Good anatomical results were achieved in 86% of cases and 14% were fair. As per Harris Hip score, excellent results were noted in 28% cases, good in 56% cases and fair in 16% cases. CONCLUSION: The long PFN is a reliable implant for sub-trochanteric femur fractures, with high rate of bone union and minimal soft tissue damage. Intramedullary fixation has biological and biomechanical advantages, but the surgery is technically demanding.

  18. Pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis

    DEFF Research Database (Denmark)

    Kierkegaard, Signe; Jørgensen, Peter Bo; Dalgas, Ulrik

    2015-01-01

    advancing functional tasks, and how these strategies are associated with leg extension power. The aim of the study was to investigate pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis compared with controls. MATERIALS AND METHODS: 57...... patients (mean age 65.6 years) scheduled for medial uni-compartmental knee arthroplasty, and 29 age and gender matched controls were included in this cross-sectional study. Leg extension power was tested with the Nottingham Leg Extension Power-Rig. Pelvic range of motion was derived from an inertia......-based measurement unit placed over the sacrum bone during walking, stair climbing and stepping. RESULTS: Patients had lower leg extension power than controls (20-39 %, P

  19. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate Bone Cement on Mechanical Properties and Bioactivity.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA bone cement after addition of the nano-hydroxyapatite(HA coated bone collagen (mineralized collagen, MC.The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis.15.0%(wt impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA.MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.

  20. Radioprotection by WR-151327 against the late normal tissue damage in mouse hind legs from gamma ray radiation

    International Nuclear Information System (INIS)

    Matsushita, Satoru; Ando, Koichi; Koike, Sachiko

    1994-01-01

    To evaluate the protective effect of WR-151327 on late radiation-induced damaged to normal tissues in mice, the right hind legs of mice with or without WR-151327 administration (400 mg/kg) were irradiated with 137 Cs gamma rays. Leg contracture and skin shrinkage assays were performed at 380 days after irradiation. The mice were killed on day 400 postirradiation and histological sections of the legs were made. The thickness of the dermis, epidermis, and skin (dermis plus epidermis) was measured. The muscular area of the legs and the posterior knee angle between the femur and tibia were also measured. The left hind legs were similarly assessed as nonirradiated controls. Group means and standard deviations were calculated and dose-response curves were drawn for every endpoint. Then, the dose modifying factor (DMF) for each endpoint and the correlations among endpoints were determined. Latae damage assayed by leg contracture and skin shrinkage progressed with increasing radiation dose. However, it was reduced by drug treatment. The significant effect was indicated for skin shrinkage by a DMF of 1.8 at 35%. The DMF for leg contracture was 1.3 at 6 mm. In the irradiated legs, epidermal hyperplasia and dermal fibrosis in the skin, muscular atrophy, and extension disturbance of the knee joint were observed. These changes progressed with increasing radiation dose. Skin damage assayed by the present endpoints was also reduced by drug treatment by DMFs of 1.4 to 1.7. However, DMFs for damage to the muscle and knee were not determined because no isoeffect was observed. There were good correlations between leg contracture or skin shrinkage and the other endpoints in both untreated and drug-treated mice. WR-151327 has the potential to protect against radiation-induced late normal tissue damage. 17 refs., 6 figs., 2 tabs

  1. The partition coefficients of 133Xe between blood and bone

    International Nuclear Information System (INIS)

    Lahtinen, T.; Karjalainen, P.; Vaeaenaenen, A.; Lahtinen, R.; Alhava, E.M.

    1981-01-01

    The partition coefficients of 133 Xe between blood and haematopoietic bone marrow and homogenised bone have been determined in vitro. The partition coefficient lambda 1 corresponding to haematopoietic marrow was 0.95 ml g -1 while that corresponding to homogenised bone was a function of age, lambda 2 = 3.11 + 0.049(age)(ml g -1 ). These data can be used for calculating regional blood flow in healthy human femur by means of a simple 133 Xe radionuclide method. (author)

  2. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  3. Report of a man with heterotopic ossification of the legs.

    Science.gov (United States)

    García-Arpa, Mónica; Flores-Terry, Miguel A; Franco-Muñoz, Monserrat; Villasanti-Rivas, Natalia; González-Ruiz, Lucía; Banegas-Illescas, M Eugenia

    2018-05-21

    Heterotopic ossification is an uncommon disorder that consists of deposition of ectopic bone outside the extraskeletal tissues. In the skin, it can be primary, in association with genetic syndromes, or be secondary to different disorders. The latter include subcutaneous ossification of the legs in chronic venousinsufficiency, an infrequent and unrecognized complication. We report the case of a patient with subcutaneous ossification of both legs secondary to venous insufficiency and review the literature. Copyright © 2018 Sociedad Española de Reumatologña y Colegio Mexicano de Reumatologña. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Mechanism of recombinant human bone morphogenetic protein-2 in repairing hematopoietic injury in mice exposed to γ-rays

    International Nuclear Information System (INIS)

    Liu Shuibing; Hu Peizhen; Hou Ying; Li Xubo; Tian Qiong; Shi Mei

    2009-01-01

    Objective: To investigate the mechanism of recombinant human bone morphogenetic protein-2 (rhBMP-2) in repairing hematopoietic injury in mice irradiated with γ-ray. To prepare SRY gene probe and study the effect of rhBMP-2 in repairing hematopoietic injury in mice by in situ hybridization. Methods: Twenty-two BALB/c female mice were randomly divided into the irradiated group and BMP treated group, respectively. Bone marrow cells of normal male mice were transplanted into 22 female mice post-irradiation to 8.5 Gy of 60 Co γ rays. The left femurs of the survived female mice were re-irradiated with 9 Gy 14 days later. Mice in BMP treated group were given rhBMP-2 20 mg/kg while those in control group were treated with 0.9% saline by intraperitoneal injection every day for 6 days. These mice were killed 14 days later and paraffin sections of femurs were made. The SRY gene was detected with in situ hybridization. Results: There were more positive blots in the left femurs of the mice in irradiated group than those in BMP treated group (T=155.0, P 0.05). The number of positive blots in the left femurs of the mice in BMPtreated group was significantly less than those in the right femurs of the mice in two groups (T=155.0, 55.0, P<0.05). Conclusions: No donor cell of male mice was detected in the left femurs of BMP treated group, suggesting that rhBMP-2 promoted the restoration of residuary bone marrow cells. Thus, rhBMP-2 promotes the proliferation or differentiation of residuary mesenchymal stem cells, improves hematopoietic microenvironment and accelerates the hematopoietic restoration. (authors)

  5. Effects of feed supplementation on mineral composition, mechanical properties and structure in femurs of Iberian red deer hinds (Cervus elaphus hispanicus).

    Science.gov (United States)

    Olguin, Cesar A; Landete-Castillejos, Tomas; Ceacero, Francisco; García, Andrés J; Gallego, Laureano

    2013-01-01

    Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young's modulus of elasticity (E), bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD) and the mid-diaphysis (MD). Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI), but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P) in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected.

  6. Effects of feed supplementation on mineral composition, mechanical properties and structure in femurs of Iberian red deer hinds (Cervus elaphus hispanicus.

    Directory of Open Access Journals (Sweden)

    Cesar A Olguin

    Full Text Available Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young's modulus of elasticity (E, bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD and the mid-diaphysis (MD. Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI, but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected.

  7. In Vivo Bone Formation Within Engineered Hydroxyapatite Scaffolds in a Sheep Model.

    Science.gov (United States)

    Lovati, A B; Lopa, S; Recordati, C; Talò, G; Turrisi, C; Bottagisio, M; Losa, M; Scanziani, E; Moretti, M

    2016-08-01

    Large bone defects still represent a major burden in orthopedics, requiring bone-graft implantation to promote the bone repair. Along with autografts that currently represent the gold standard for complicated fracture repair, the bone tissue engineering offers a promising alternative strategy combining bone-graft substitutes with osteoprogenitor cells able to support the bone tissue ingrowth within the implant. Hence, the optimization of cell loading and distribution within osteoconductive scaffolds is mandatory to support a successful bone formation within the scaffold pores. With this purpose, we engineered constructs by seeding and culturing autologous, osteodifferentiated bone marrow mesenchymal stem cells within hydroxyapatite (HA)-based grafts by means of a perfusion bioreactor to enhance the in vivo implant-bone osseointegration in an ovine model. Specifically, we compared the engineered constructs in two different anatomical bone sites, tibia, and femur, compared with cell-free or static cell-loaded scaffolds. After 2 and 4 months, the bone formation and the scaffold osseointegration were assessed by micro-CT and histological analyses. The results demonstrated the capability of the acellular HA-based grafts to determine an implant-bone osseointegration similar to that of statically or dynamically cultured grafts. Our study demonstrated that the tibia is characterized by a lower bone repair capability compared to femur, in which the contribution of transplanted cells is not crucial to enhance the bone-implant osseointegration. Indeed, only in tibia, the dynamic cell-loaded implants performed slightly better than the cell-free or static cell-loaded grafts, indicating that this is a valid approach to sustain the bone deposition and osseointegration in disadvantaged anatomical sites.

  8. Periostal hypertrophic osteopathy of bones (long bones) in colitis ulcerosa in adolescents

    International Nuclear Information System (INIS)

    Bargon, G.; Arlart, I.

    1982-01-01

    The article reports on a 14-year old girl with periostal new formation of bones at the long bones of the lower arms, the femora and the lower legs the individual phalanges and metacarpalia after colitis ulcerosa which had lasted for several years and had progressed stagewise. After a clinically recorded new attack the periostal new formations of bone progressed. Some time after the last attack of colitis the periostal changes in the bones partially receded. The article discusses the hypothetic explanations aiming at interpreting the pathogenesis of hypertrophic osteoarthropathies and periostoses, as given in the literature. (orig.) [de

  9. Periostal hypertrophic osteopathy of bones (long bones) in colitis ulcerosa in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Bargon, G.; Arlart, I.

    1982-03-01

    The article reports on a 14-year old girl with periostal new formation of bones at the long bones of the lower arms, the femora and the lower legs the individual phalanges and metacarpalia after colitis ulcerosa which had lasted for several years and had progressed stagewise. After a clinically recorded new attack the periostal new formations of bone progressed. Some time after the last attack of colitis the periostal changes in the bones partially receded. The article discusses the hypothetic explanations aiming at interpreting the pathogenesis of hypertrophic osteoarthropathies and periostoses, as given in the literature.

  10. The Relationship Between Osteoporotic Risk Factors and Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Şule Şahin Onat

    2013-12-01

    Full Text Available Objective: Since osteoporosis is a preventable disease to some extent, risk factor determination and if possible modification is very important. The aim of this study is to identify the relationship between ostoporotic risk factors and bone mineral density results and emphasize the importance of risk factors. Materials and Methods: The study comprised 103 postmenopausal osteoporotic women. Demographic characteristics, osteoporortic risk factors, lumbar vertebrae and femur neck T scores were recorded. Relationships between lumbar vertebra and femur neck T scores and risk factors were statistically studied. Results: Advanced age, low physical activity status, inadequte dietary calcium intake and vertebral compression fractures were found to be associated with low bone mineral density results in postmenopausal osteoporotic women whereas marital status, occupation, education level and familial fracture history were not. Furthermore early menopause was found to be associated with low femoral T scores and smoking with low lumbar T scores. Tendency to fall and number of chronic diseases were irrelevant to bone mineral density. Conclusions: Risk factor assesment is still important for osteoporosis prevention. (Turkish Journal of Osteoporosis 2013;19:74-80

  11. Changes in bone geometry and microarchitecture caused by intermittent administration of PTH. Comparison with those by exercise load

    International Nuclear Information System (INIS)

    Mori, Keiya

    2010-01-01

    There have been several studies showing that periodical intermittent medication with parathyroid hormone (PTH) causes increases in cancellous bone mass. However, there have been almost no reports comparing the effects of periodical intermittent PTH medication on bone microarchitecture with changes caused by physiological stimulation such as exercise load. In this study, we compared the effects of these two interventions on the microarchitecturural deterioration of femoral cancellous bone associated with unloading, using micro-computed tomography (micro-CT), and the effects of PTH administration and motion loading on improvement of the deteriorated structure. In the study, 32 eight-week-old male Wistar rats were divided into four groups: a control group without tail suspension (CON), a control recovery group after suspension (S+C), a suspension/PTH group (S+P), and a suspension/jumping exercise group (S+J). Periodical intermittent human PTH (1-34) was given periodically to the S+P group rats at a dose of 75 μg/kg/day five times a week for five weeks, after two weeks of exercise with suspension of the tail. The rats in the S+J group performed 40 cm-high jumping 10 times/day five times a week for five weeks. After this conditioning, upon examination, bilateral femurs were removed and the right distal metaphysis was scanned using micro-CT to obtain images of the cancellous bone region of the femur. Based on the tomographic data, indices of cancellous bone microarchitecture was the index of trabecular bone structure were determined by using three-dimensional image analysis system. In addition, to examine the geometric properties of the diaphysis, mid-portion images of the bone shaft of the left femur were obtained by micro-CT, and then the mechanical bone strength of the left femur was determined by performing a three-point bending test. Compared to the S+C group, the S+P and S+J groups showed significantly higher bone volume, bone surface mass values, superficial bone

  12. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: A comprehensive analysis.

    Directory of Open Access Journals (Sweden)

    Vimal Chandran

    Full Text Available Osteoporosis leads to hip fractures in aging populations and is diagnosed by modern medical imaging techniques such as quantitative computed tomography (QCT. Hip fracture sites involve trabecular bone, whose strength is determined by volume fraction and orientation, known as fabric. However, bone fabric cannot be reliably assessed in clinical QCT images of proximal femur. Accordingly, we propose a novel registration-based estimation of bone fabric designed to preserve tensor properties of bone fabric and to map bone fabric by a global and local decomposition of the gradient of a non-rigid image registration transformation. Furthermore, no comprehensive analysis on the critical components of this methodology has been previously conducted. Hence, the aim of this work was to identify the best registration-based strategy to assign bone fabric to the QCT image of a patient's proximal femur. The normalized correlation coefficient and curvature-based regularization were used for image-based registration and the Frobenius norm of the stretch tensor of the local gradient was selected to quantify the distance among the proximal femora in the population. Based on this distance, closest, farthest and mean femora with a distinction of sex were chosen as alternative atlases to evaluate their influence on bone fabric prediction. Second, we analyzed different tensor mapping schemes for bone fabric prediction: identity, rotation-only, rotation and stretch tensor. Third, we investigated the use of a population average fabric atlas. A leave one out (LOO evaluation study was performed with a dual QCT and HR-pQCT database of 36 pairs of human femora. The quality of the fabric prediction was assessed with three metrics, the tensor norm (TN error, the degree of anisotropy (DA error and the angular deviation of the principal tensor direction (PTD. The closest femur atlas (CTP with a full rotation (CR for fabric mapping delivered the best results with a TN error of 7

  13. Isotopic evidence for resorption of soft tissues and bone in immobilized dogs

    International Nuclear Information System (INIS)

    Klein, L.; Player, J.S.; Heiple, K.G.; Bahniuk, E.; Goldberg, V.M.

    1982-01-01

    Various experimental methods for producing bone and ligament atrophy have yielded contradictory results. These methods include denervation, immobilization (both internal and external), and disarticulation. We studied a model of internal skeletal fixation for twelve weeks in dogs that were chronically prelabeled with 3H-tetracycline, 45Ca, and 3H-proline. Bone resorption was analyzed by the loss of 3H-tetracycline, and bone and soft-tissue mass were analyzed by the radiochemical and chemical analysis of calcium and collagen. The strength of the anterior cruciate ligament was studied in tension to failure when a fast rate of deformation was applied. Failure of the femur-ligament-tibia complex occurred through the insertion of the ligament into the tibia for both the experimental and the control limbs. Loss of collagen was greater in the tibia and femur than in the lateral meniscus and anterior cruciate ligament, and correlated with a mechanical failure via bone. No evidence for collagen replacement in atrophied tissues was found, but one-half of the resorbed calcium was conserved. The marked loss of 3H-tetracycline indicated that bone atrophy was the result of increased resorption of bone rather than decreased bone formation. Clinical Relevance: We have demonstrated significant atrophy of the soft tissues (lateral meniscus and anterior cruciate ligament) as well as of bone in immobilized joints of dogs. It is likely that the decrease in strength of the bone-ligament-bone complex is related to this atrophy of soft tissues and bone around the joint

  14. One-Piece Zirconia Ceramic versus Titanium Implants in the Jaw and Femur of a Sheep Model: A Pilot Study.

    Science.gov (United States)

    Siddiqi, A; Duncan, W J; De Silva, R K; Zafar, S

    2016-01-01

    Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) ( p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) ( p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions.

  15. FOOTBALL PLAYERS’ LEGS BIOMECHANICS DURING THE GAME AND THE REQUIREMENTS FOR FOOTBALL SHOES

    OpenAIRE

    Cornelia Ionescu Luca; Cristina Secan

    2013-01-01

    Football players, during the game, find themselves in both static and dynamic positions. Movement may be accomplished through walking, marching, running and jumping. While walking, the step may be simple, if referred to a single leg or double when talking about both legs. The simple steps have different phases for the bare-foot, the impact phase, supported foot and oscillating shank-bone and propulsion. Football shoes for walking make contact with the support surface through cleats. The back...

  16. CHONDROSARCOMA OF BONE - ONCOLOGIC AND FUNCTIONAL RESULTS

    NARCIS (Netherlands)

    VANLOON, CJM; VETH, RPH; PRUSZCZYNSKI, M; WOBBES, T; LEMMENS, JAM; VANHORN, J

    1994-01-01

    A retrospective review of 27 patients (21 males and 6 females) with chondrosarcoma of bone was performed to evaluate the oncologic and functional results. The average age of the patients was 48 years (range: 17-76). The tumor sites were pelvis in 10 cases, distal femur in 2, proximal tibia in 3, rib

  17. (/sup 125/I) 7-iodo-6-demethyl-6-deoxytetracycline HCl: its use in the study of bone mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Belbeck, L W; Bowen, B M; Garnett, E S [McMaster Univ., Hamilton, Ontario (Canada); Porter, J K; Teare, F W

    1979-06-01

    /sup 125/I 7-iodo-6-demethyl-6-deoxytetracycline can be used in a non-invasive method to indicate sites of active bone mineralization. Sequential doses of this agent have been used to follow bone repair in a fractured femur of a dog without resorting to bone biopsy. Metabolic problems that involve bone may also be studied with this potentially useful radiopharmaceutical.

  18. Correlation between quantitative ultrasound parameters of the calcinosis and bone density of the spine and femur in Arabian women: Relation to menopausal status

    International Nuclear Information System (INIS)

    Al Suhaili, A.R.; Saadi, H.F.; Reed, R.L.; Carter, A.O.

    2002-01-01

    Aims: Quantitative ultrasound (QUS) of the calcaneus is being frequently used to screen for osteoporosis. This technique correlates very well with dual-energy X-ray absorptiometry (DXA) of the spine and femur, and predicts fracture risk in postmenopausal women. The correlation between QUS and DXA in premenopausal women with prevalent vitamin D deficiency however is not known. We assessed the correlation between both techniques in 55 pre- and postmenopausal Arabian women, a population with high prevalence of vitamin D deficiency. Methods: BMD of the right calcaneus was estimated by Sahara ultrasound (Hologic, Waltham, MA). Spine and right total femur BMD was determined by DXA scan (Lunar Expert XL, Madison, WI). Results: Overall, the correlation between calcaneal BMD estimated by QUS and spine and femur BMD measured by DXA in pre- and postmenopausal United Arab Emirates women was statistically significant (r=0.41; p=0.002 for spine and r=0.44; p=0.001 for femur, respectively). In postmenopausal women, all correlations between DXA and QUS parameters were statistically significant. In contrast, only BUA and SOS correlated significantly with spine BMD in premenopausal women. Conclusion: The correlation between DXA and QUS is statistically significant in postmenopausal United Arab Emirates women. However, this correlation is much weaker in premenopausal UAE women suggesting that other factors such as vitamin D deficiency may influence this correlation

  19. Long bone cross-sectional geometric properties of Later Stone Age foragers and herder�foragers

    Directory of Open Access Journals (Sweden)

    Michelle E. Cameron

    2014-09-01

    Full Text Available Diaphyseal cross-sectional geometry can be used to infer activity patterns in archaeological populations. We examined the cross-sectional geometric (CSG properties of adult Later Stone Age (LSA herder-forager long bones from the inland lower Orange River Valley of South Africa (n=5 m, 13 f. We then compared their CSG properties to LSA forager adults from the coastal fynbos (n=23 m, 14 f and forest (n=17 m, 19 f regions, building on a previous report (Stock and Pfeiffer, 2004. The periosteal mould method was used to quantify total subperiosteal area, torsional strength, bilateral asymmetry and diaphyseal circularity (Imax/Imin at the mid-distal (35% location of upper arms (humeri and the mid-shaft (50% location of upper legs (femora. Maximum humerus and femur lengths were similar among the three samples, suggesting that adult stature was similar in all three regions. When compared to the previous study, CSG property values obtained using the periosteal mould method correlated well, and there were no significant differences between data collected using the different methods. No statistically significant differences were found among the humerus or femur CSG properties from the different regions. This finding suggests that all individuals undertook similar volitional habitual activities in regard to their upper limbs, and also had similar degrees of terrestrial mobility. These results indicate relative behavioural homogeneity among LSA foragers and herder foragers from South Africa. The small degree of regional variation apparent among the three samples may reflect local ecology and the subsistence demands affecting populations in these different regions.

  20. Leg tissue composition and physico-chemical parameters of sheep meat fed annatto coproduct

    Directory of Open Access Journals (Sweden)

    Dorgival Morais de Lima Júnior

    2017-10-01

    Full Text Available Our objective was to evaluate leg tissue composition and physico-chemical quality parameters of sheep meat fed with increasing levels of annatto coproduct. 32 male uncastrated animals without a defined breed were randomized in four treatments (0, 100, 200 and 300 g kg-1 of annatto coproduct in the DM diet. After 78 days of confinement, the animals were slaughtered and body components were recorded. Reconstituted leg weight, total muscle weight, biceps weight and semitendinosus weight showed a negative linear behavior (P 0.05 were found for leg tissue composition (%, muscle:bone ratio, relative fat or leg muscle. Meat physico-chemical parameters (color, shear force, water retention capacity and cooking losses were not affected by the inclusion of the annatto coproduct in the diet. The annatto coproduct can be included in up to 300 g kg-1 of dietary dry matter without negative effects to the leg tissue composition (% and physical parameters of confined sheep meat.

  1. Frequency of Osteoporosis and Osteopenia According To Bone Mineral Density of Proximal Femur Subregions in Normal and Osteopenic Postmenopausal Women With Respect to Total Hip Bone

    Directory of Open Access Journals (Sweden)

    Murat Ersöz

    2002-09-01

    Full Text Available In this study 29 normal (mean age: 65.6 ± 5.1 years and 33 osteopenic (mean age: 67.6 ± 4.9 years postmenopausal women according to total bone mineral density (BMD of the hip were evaluated for BMD values of subregions of proximal femur. The percentages for osteoporosis and osteopenia with respect to subregions were 13.8% and 58.6% for femoral neck and 20.7% and 41.4% for Ward’s triangle in normal group. In trochanteric and intertrochanteric measurements there were no T scores below –2.5 but 17.2% of the subjects were osteopenic with regard to trochanteric and 6.9% were osteopenic due to intertrochanteric BMD values. The percentages for osteoporosis and osteopenia with respect to subregion measurements were 57.6% and 42.4% for femoral neck, 60.6% and 36.4% for Ward’s triangle, 3% and 78.8% for trochanteric, 9.1% and 87.9% for intertrochanteric regions in osteopenic group according to total hip values. Knowing that hip fracture risk is increasing 2-3 fold for 1 standart deviation decrease from the young adult mean value for all subregions and knowing the relation between cervical hip fractures and BMD values of Ward’s triangle and femoral neck and the relation between intertrochanteric fractures and trochanteric BMD values, it is recommended to evaluate the BMD values of subregions of the hip besides the total hip values in daily practice.

  2. Bone Response to Dietary Co-Enrichment with Powdered Whole Grape and Probiotics

    Directory of Open Access Journals (Sweden)

    Cynthia Blanton

    2018-01-01

    Full Text Available Nutrition is a primary modifiable determinant of chronic noncommunicable disease, including osteoporosis. An etiology of osteoporosis is the stimulation of bone-resorbing osteoclasts by reactive oxygen species (ROS. Dietary polyphenols and probiotics demonstrate protective effects on bone that are associated with reduced ROS formation and suppressed osteoclast activity. This study tested the effect of dietary enrichment with powdered whole grape and probiotics (composed of equal parts Bifidobacterium bifidum, B. breve, Lactobacillus casei, L. plantarum, and L. bulgaricus on bone microarchitecture in a mouse model of age-related osteoporosis. Groups (n = 7 each of 10-month-old male mice were fed one of six diets for 6 months: 10% grape powder with sugar corrected to 20%; 20% grape powder; 1% probiotic with sugar corrected to 20%; 10% grape powder + 1% probiotic with sugar corrected to 20%; 20% grape powder + 1% probiotic; 20% sugar control. Femur, tibia and 4th lumbar vertebrae from 10-month-old mice served as comparator baseline samples. Bone microarchitecture was measured by micro-computed tomography and compared across diet groups using analysis of variance. Aging exerted a significant effect on tibia metaphysis trabecular bone, with baseline 10-month-old mice having significantly higher bone volume/total volume (BV/TV and trabecular number measurements and lower trabecular spacing measurements than all 16-month-old groups (p < 0.001. Neither grape nor probiotic enrichment significantly improved bone microarchitecture during aging compared to control diet. The combination of 20% grape + 1% probiotic exerted detrimental effects on tibia metaphysis BV/TV compared to 10% grape + 1% probiotic, and trabecular number and trabecular spacing compared to 10% grape + 1% probiotic, 1% probiotic and control groups (p < 0.05. Femur metaphysis trabecular bone displayed less pronounced aging effects than tibia bone, but also showed detrimental effects of the

  3. Effects of magnetic resonance-guided high-intensity focused ultrasound ablation on bone mechanical properties and modeling

    NARCIS (Netherlands)

    Yeoh, S.Y.; Arias Moreno, A.J.; Rietbergen, van B.; Hoeve, ter N.D.; Diest, van P.J.; Grull, H.

    2015-01-01

    Background Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a promising technique for palliative treatment of bone pain. In this study, the effects of MR-HIFU ablation on bone mechanics and modeling were investigated. Methods A total of 12 healthy rat femurs were ablated

  4. Operative treatment of primary bone tumours of the femur and the tibia

    African Journals Online (AJOL)

    The height of the bone sections was determined on the preoperative Magnetic Resonance Imaging (MRI), performed before chemotherapy if necessary, in order to leave a margin of two centimetres of healthy bone. Results: The average age of the series was 34.2 years (9 to 61 years). There were 8 (53.4%) female patients ...

  5. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength.

    Science.gov (United States)

    Tsanzi, Embedzayi; Light, Heather R; Tou, Janet C

    2008-05-01

    Consumption of sugar beverages has increased among adolescents. Additionally, the replacement of sucrose with high fructose corn syrup (HFCS) as the predominant sweetener has resulted in higher fructose intake. Few studies have investigated the effect of drinking different sugar-sweetened beverages on bone, despite suggestions that sugar consumption negatively impacts mineral balance. The objective of this study was to determine the effect of drinking different sugar-sweetened beverages on bone mass and strength. Adolescent (age 35d) female Sprague-Dawley rats were randomly assigned (n=8-9/group) to consume deionized distilled water (ddH2O, control) or ddH2O containing 13% w/v glucose, sucrose, fructose or high fructose corn syrup (HFCS-55) for 8weeks. Tibia and femur measurements included bone morphometry, bone turnover markers, determination of bone mineral density (BMD) and bone mineral content (BMC) by dual energy X-ray absorptiometry (DXA) and bone strength by three-point bending test. The effect of sugar-sweetened beverage consumption on mineral balance, urinary and fecal calcium (Ca) and phosphorus (P) was measured by inductively coupled plasma optical emission spectrometry. The results showed no difference in the bone mass or strength of rats drinking the glucose-sweetened beverage despite their having the lowest food intake, but the highest beverage and caloric consumption. Only in comparisons among the rats provided sugar-sweetened beverage were femur and tibia BMD lower in rats drinking the glucose-sweetened beverage. Differences in bone and mineral measurements appeared most pronounced between rats drinking glucose versus fructose-sweetened beverages. Rats provided the glucose-sweetened beverage had reduced femur and tibia total P, reduced P and Ca intake and increased urinary Ca excretion compared to the rats provided the fructose-sweetened beverage. The results suggested that glucose rather than fructose exerted more deleterious effects on mineral

  6. [New anterolateral approach of distal femur for treatment of distal femoral fractures].

    Science.gov (United States)

    Zhang, Bin; Dai, Min; Zou, Fan; Luo, Song; Li, Binhua; Qiu, Ping; Nie, Tao

    2013-11-01

    To assess the effectiveness of the new anterolateral approach of the distal femur for the treatment of distal femoral fractures. Between July 2007 and December 2009, 58 patients with distal femoral fractures were treated by new anterolateral approach of the distal femur in 28 patients (new approach group) and by conventional approach in 30 patients (conventional approach group). There was no significant difference in gender, age, cause of injury, affected side, type of fracture, disease duration, complication, or preoperative intervention (P > 0.05). The operation time, intraoperative blood loss, intraoperative fluoroscopy frequency, hospitalization days, and Hospital for Special Surgery (HSS) score of knee were recorded. Operation was successfully completed in all patients of 2 groups, and healing of incision by first intention was obtained; no vascular and nerves injuries occurred. The operation time and intraoperative fluoroscopy frequency of new approach group were significantly less than those of conventional approach group (P 0.05). All patients were followed up 12-36 months (mean, 19.8 months). Bone union was shown on X-ray films; the fracture healing time was (12.62 +/- 2.34) weeks in the new approach group and was (13.78 +/- 1.94) weeks in the conventional approach group, showing no significant difference (t=2.78, P=0.10). The knee HSS score at last follow-up was 94.4 +/- 4.2 in the new approach group, and was 89.2 +/- 6.0 in the conventional approach group, showing significant difference between 2 groups (t=3.85, P=0.00). New anterolateral approach of the distal femur for distal femoral fractures has the advantages of exposure plenitude, minimal tissue trauma, and early function rehabilitation training so as to enhance the function recovery of knee joint.

  7. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.

    Science.gov (United States)

    Hamann, Christine; Goettsch, Claudia; Mettelsiefen, Jan; Henkenjohann, Veit; Rauner, Martina; Hempel, Ute; Bernhardt, Ricardo; Fratzl-Zelman, Nadja; Roschger, Paul; Rammelt, Stefan; Günther, Klaus-Peter; Hofbauer, Lorenz C

    2011-12-01

    Patients with diabetes mellitus have an impaired bone metabolism; however, the underlying mechanisms are poorly understood. Here, we analyzed the impact of type 2 diabetes mellitus on bone physiology and regeneration using Zucker diabetic fatty (ZDF) rats, an established rat model of insulin-resistant type 2 diabetes mellitus. ZDF rats develop diabetes with vascular complications when fed a Western diet. In 21-wk-old diabetic rats, bone mineral density (BMD) was 22.5% (total) and 54.6% (trabecular) lower at the distal femur and 17.2% (total) and 20.4% (trabecular) lower at the lumbar spine, respectively, compared with nondiabetic animals. BMD distribution measured by backscattered electron imaging postmortem was not different between diabetic and nondiabetic rats, but evaluation of histomorphometric indexes revealed lower mineralized bone volume/tissue volume, trabecular thickness, and trabecular number. Osteoblast differentiation of diabetic rats was impaired based on lower alkaline phosphatase activity (-20%) and mineralized matrix formation (-55%). In addition, the expression of the osteoblast-specific genes bone morphogenetic protein-2, RUNX2, osteocalcin, and osteopontin was reduced by 40-80%. Osteoclast biology was not affected based on tartrate-resistant acidic phosphatase staining, pit formation assay, and gene profiling. To validate the implications of these molecular and cellular findings in a clinically relevant model, a subcritical bone defect of 3 mm was created at the left femur after stabilization with a four-hole plate, and bone regeneration was monitored by X-ray and microcomputed tomography analyses over 12 wk. While nondiabetic rats filled the defects by 57%, diabetic rats showed delayed bone regeneration with only 21% defect filling. In conclusion, we identified suppressed osteoblastogenesis as a cause and mechanism for low bone mass and impaired bone regeneration in a rat model of type 2 diabetes mellitus.

  8. Effect of alpha-calciferol on bone mineral density, bone histomorphometry and bone biomechanics in rats by radiative injury to kidney

    International Nuclear Information System (INIS)

    Zhu Feipeng; Wang Hongfu; Gao Linfeng; Jin Weifang

    2003-01-01

    The work is to study the effects of alpha-calciferol on bone mineral density, histomorphometry and biomechanics in rats with osteoporosis induced by irradiation of the rat kidney. 32 male SD rats of six months in age were randomly divided into 4 groups (8 rats per group), i.e. the model group, the sham group, the bone one group and the fosamax group. Osteoporosis was developed in the rats by irradiating the kidney. Then the rats were administrated orally as follows in a 90 days, 0.1 g·kg -1 BW.d of alpha-calciferol for the bone one group, 10 mg·kg -1 BW.d of alendronate sodium in 1 mL CMC for the fosamax group, and 1 mL CMC for both the model group and sham group. BMD of L1-4, bone histomorphometry and the bone biomechanical properties were measured. Compared with the model group, both the bone one group and the fosamax group were characterized with significantly higher BMD of L1-4 (p<0.01), significantly larger volume and width of bone trabecula, smaller space of bone trabecula (p<0.05, p<0.01), and significantly larger maximal stress of femur and lumbar vertebra (p<0.05, p<0.01). It is concluded that Alpha-calciferol can improve BMD, bone histomorphometry and bone biomechanical properties in rat osteoporosis induced by kidney irradiation

  9. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    International Nuclear Information System (INIS)

    Smietana, Michael J.; Arruda, Ellen M.; Faulkner, John A.; Brooks, Susan V.; Larkin, Lisa M.

    2010-01-01

    Research highlights: → Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. → Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. → Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1 -/- mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1 -/- mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm 2 ) and strength (MPa) is diminished in Sod1 -/- compared to WT mice. Femurs were obtained from male and female WT and Sod1 -/- mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1 -/- mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1 -/- mice compared to WT as well as between genders. These data indicate that increased oxidative stress

  10. Methanol Extract of Euchelus asper Prevents Bone Resorption in Ovariectomised Mice Model

    Directory of Open Access Journals (Sweden)

    Babita Balakrishnan

    2014-01-01

    Full Text Available Marine molluscs are widely distributed throughout the world and many bioactive compounds exhibiting antiviral, antitumor, antileukemic, and antibacterial activity have been reported worldwide. The present study was designed to investigate the beneficial effect of methanol extract of Euchelus asper (EAME on estrogen deficiency induced osteoporosis in ovariectomised mice model. Forty-two female Swiss albino mice were randomly assigned into Sham operated (Sham group and six ovariectomised (OVX subgroups such as OVX with vehicle (OVX; OVX with estradiol (2 mg/kg/day; OVX with EAME of graded doses (25, 50, 100, and 200 mg/kg/day. Bone turnover markers like serum alkaline phosphatase (ALP, serum acid phosphatase (ACP, serum calcium, and histological investigations of tibia and uterus were analysed. Metaphyseal DNA content of the femur bone was also studied. Antiosteoclastogenic activity of EAME was examined. Administration of EAME was able to reduce the increased bone turnover markers in the ovariectomised mice. Histomorphometric analysis revealed an increase in bone trabeculation and restoration of trabecular separation by EAME treatment. Metaphyseal DNA content of the femur of the OVX mice was increased by EAME administration. EAME also showed a potent antiosteoclastogenic behaviour. Thus, the present study reveals that EAME was able to successfully reduce the estrogen deficiency induced bone loss.

  11. Traumatic bowing of forearm and lower leg in children

    International Nuclear Information System (INIS)

    Stenstroem, R.; Gripenberg, L.; Bergius, A.-R.

    1978-01-01

    Traumatic bowing of the forearm or lower leg is reported in 31 children. It is a relatively rare condition. Bowing occurs most frequently in combination with fracture of the other bone in the same extremity. In a minority of cases a bowing deformity is a single lesion. Age distribution, degree of deformity, mechanism of origin and therapy are presented and discussed. (Auth.)

  12. Genetic and Dynamic Analyses of Murine Peak Bone Density

    Science.gov (United States)

    1999-10-01

    bone density in mice. Femurs from young adult B6, C3H, and CAST females at 4 months of age were measured by pQCT (XCT-960M, Norland Med Sys., Ft...progenitor strains - B6, C3H, and CAST - showed that adult skeletal peak BMD was established at 4 months. Therefore, F2 mice were necropsied at 4...calcium depletion causes hypocalcemia , which leads to secondary hyperparathyroidism, subsequently resulting in increased bone resorption. Conversely

  13. Effects of 15 Gy 137Cs γ-rays radiation of rat kidneys on bone metabolism

    International Nuclear Information System (INIS)

    Gao Linfeng; Wang Hongfu; Xu Peikang; Xu Aihong; Zhu Feipeng

    2003-01-01

    The work was to observe the effects of γ-rays radiation of rat kidneys on rat bone metabolism. Ten male SD rats aged 6 months were irradiated at their kidneys with 15 Gy 137 Cs γ-rays (0.91 Gy/min) and were raised for 3 months after the radiation. On collecting 24h urine of rats they were sacrificed for serum, kidney, spine, femur and tibia exams. Results show that the γ-ray irradiation could induce the pathological injuries of renal glomeruli, tubules and mesenchyme. Comparing to the control group, significant changes were found in the irradiated group in terms of their blood urea, nitrogen creatinine, urinal β-2 microglobulin, serum Ca and P, urine Ca and P, activity of serum alkaline phosphatase, 1,25 (OH) 2 D 3 , serum PTH, urine PYD/creatinine, bone mineral density (BMD) of lumbar vertebras, mineral mass of No.4 lumbar vertebra, BMD, dehydrated weight and ash weight of right femur. Marked changes were also found in bone trabecula volume, average bone trabecula thick and the ratio of nodes/points, and rate of mineralization deposition. It was concluded that renal dysfunction and metabolic bone disease might occur with the character of accelerated bone turnover and decreased bone mass

  14. Inhibition of radio cobalt uptake by human bone powder using Mg and Ni

    International Nuclear Information System (INIS)

    Abdel Fattah, A.T.A.; Mohamed, S.A.

    1992-01-01

    Human bone powder samples of 30 - 40 Μ in diameter were prepared from human bone femurs as fat free (FFB), protein free (PEB) or left untreated as a raw bone powder (RB). The uptake of 60 Co by these types of bone powder took the sequence : PFB > FFB> RB. Stable ions of magnesium and nickel exhibit an inhibition or competing effect on the uptake process of 60 Co. The competing effect did not disturb the uptake sequence. The competing effect of nickel was higher than magnesium

  15. The Effects of Liver Transplantation on the Bone Metabolism and Gonadal Functions

    Directory of Open Access Journals (Sweden)

    Funda Atamaz

    2005-06-01

    Full Text Available The present study was designed to evaluate the effects of liver transplantation (LT on the bone mineral density (BMD, characteristics of bone turnover, mineral metabolism and sex hormons. Fifty one patients (34 men, 11 women aged 43.5 ± 12.1, who underwent LT were studied, assessing the following parameters: lumbar spine and proximal femur BMD, osteocalcin, deoxypyridinoline (DPD, parathyroid hormone (PTH, free testesterone (FT, gonadotropins (FSH, LH, tyroid hormones, growth hormone (GH and blood/ 24-hours urine Ca and P. All the measures were obtained at baseline and at 3rd month after LT. At baseline, 12 patients (%23.5 had osteoporosis, 22 patients (%43.1 had osteopenia and the mean BMD was 0.892 ± 0.1 for lumbar spine. Whereas, osteoporosis was seen less at femoral neck and total femur: 5 (%9.8 and 4 (%7.8, respectively. Three months after LT, 3.9% drop for lumbar spine, 5.3% drop for femur neck, 6.3% drop for total femur were observed, in BMD these decreases were statistically significant for all sites (p<0.05. The thyroid hormones, GH, PTH, blood Ca, P and osteocalcin levels and urinary DPD excretion were within normal range, while the levels of FSH and LH in women and level of FT in men were lower than normal range. After LT, statistically significant increases were observed in the PTH, osteocalcin, DPD, FSH, LH and FT levels (p<0.05. There was a highly significant negative correlation between duration of liver disease and all the BMD measures (p<0.01. Consequently, the increased osteoporosis ratio which was characterized by high bone turnover was found in patients who underwent LT in this study. The normalization of liver functions following LT was characterized by an early rise in sex hormones.

  16. CONSERVATIVE TREATMENT VERSUS STEROID INJECTIONS IN THE MANAGEMENT OF UNICAMERAL BONE CYST

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Roy

    2017-05-01

    Full Text Available BACKGROUND Unicameral Bone Cyst (UBC is described as a central metaphyseal cystic lesion of the bone with serum fluid content. Diagnosis is typically based on x-ray imaging features, age, localisation at proximal humerus and femur and the absence of symptoms until pathological fracture development. MATERIALS AND METHODS Eighteen patients with unicameral bone cysts were reviewed in Nalanda Medical College Hospital. Nine patients received serial steroid injections and the other nine patients were treated conservatively following fractures. In the steroid injection group, six cases were in the proximal femur and three in the proximal humerus. RESULTS The nine steroid injection patients showed radiological evidence of cyst healing within four months of treatment. Subsequently, all 9 patients showed a satisfactory radiological outcome after a year and complete resolution after 2 years. In the conservative group, all 9 cases were in the proximal humerus. Persistent cystic lesions were observed in all 9 patients and 2 was complicated by another fracture within 6 months. CONCLUSION Fractures through UBC in the upper extremity can be treated nonoperatively. However, steroid injection is an effective option to hasten healing and should be considered as a primary treatment of unicameral bone cyst.

  17. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    OpenAIRE

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study,...

  18. Leg tendon glands in male bumblebees ( Bombus terrestris): structure, secretion chemistry, and possible functions

    Science.gov (United States)

    Jarau, Stefan; Žáček, Petr; Šobotník, Jan; Vrkoslav, Vladimír; Hadravová, Romana; Coppée, Audrey; Vašíčková, Soňa; Jiroš, Pavel; Valterová, Irena

    2012-12-01

    Among the large number of exocrine glands described in bees, the tarsal glands were thought to be the source of footprint scent marks. However, recent studies showed that the compounds used for marking by stingless bees are secreted by leg tendon instead of tarsal glands. Here, we report on the structure of leg tendon glands in males of Bombus terrestris, together with a description of the chemical composition of their secretions and respective changes of both during the males' lives. The ultrastructure of leg tendon glands shows that the secretory cells are located in three independent regions, separated from each other by unmodified epidermal cells: in the femur, tibia, and basitarsus. Due to the common site of secretion release, the organ is considered a single secretory gland. The secretion of the leg tendon glands of B. terrestris males differs in its composition from those of workers and queens, in particular by (1) having larger proportions of compounds with longer chain lengths, which we identified as wax esters; and (2) by the lack of certain hydrocarbons (especially long chain dienes). Other differences consist in the distribution of double bond positions in the unsaturated hydrocarbons that are predominantly located at position 9 in males but distributed at seven to nine different positions in the female castes. Double bond positions may change chemical and physical properties of a molecule, which can be recognized by the insects and, thus, may serve to convey specific information. The function of male-specific compounds identified from their tendon glands remains elusive, but several possibilities are discussed.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... Image Gallery Radiological technologist preparing to take an arm x-ray on a ... Images related ...

  20. Maternal High Fat Feeding Does Not Have Long-Lasting Effects on Body Composition and Bone Health in Female and Male Wistar Rat Offspring at Young Adulthood

    Directory of Open Access Journals (Sweden)

    Paula M. Miotto

    2013-12-01

    Full Text Available High fat diets adversely affect body composition, bone mineral and strength, and alter bone fatty acid composition. It is unclear if maternal high fat (HF feeding permanently alters offspring body composition and bone health. Female rats were fed control (CON or HF diet for 10 weeks, bred, and continued their diets throughout pregnancy and lactation. Male and female offspring were studied at weaning and 3 months, following consumption of CON diet. At weaning, but not 3 months of age, male and female offspring from dams fed HF diet had lower lean mass and higher fat and bone mass, and higher femur bone mineral density (females only than offspring of dams fed CON diet. Male and female offspring femurs from dams fed HF diet had higher monounsaturates and lower n6 polyunsaturates at weaning than offspring from dams fed CON diet, where females from dams fed HF diet had higher saturates and lower n6 polyunsaturates at 3 months of age. There were no differences in strength of femurs or lumbar vertebrae at 3 months of age in either male or female offspring. In conclusion, maternal HF feeding did not permanently affect body composition and bone health at young adulthood in offspring.