WorldWideScience

Sample records for left ventral striatum

  1. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  2. Vomeronasal inputs to the rodent ventral striatum.

    Science.gov (United States)

    Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A

    2008-03-18

    Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.

  3. Lateralization and gender differences in the dopaminergic response to unpredictable reward in the human ventral striatum.

    Science.gov (United States)

    Martin-Soelch, Chantal; Szczepanik, Joanna; Nugent, Allison; Barhaghi, Krystle; Rallis, Denise; Herscovitch, Peter; Carson, Richard E; Drevets, Wayne C

    2011-05-01

    Electrophysiological studies have shown that mesostriatal dopamine (DA) neurons increase activity in response to unpredicted rewards. With respect to other functions of the mesostriatal dopaminergic system, dopamine's actions show prominent laterality effects. Whether changes in DA transmission elicited by rewards also are lateralized, however, has not been investigated. Using [¹¹C]raclopride-PET to assess the striatal DA response to unpredictable monetary rewards, we hypothesized that such rewards would induce an asymmetric reduction in [¹¹C]raclopride binding in the ventral striatum, reflecting lateralization of endogenous dopamine release. In 24 healthy volunteers, differences in the regional D₂/₃ receptor binding potential (ΔBP) between an unpredictable reward condition and a sensorimotor control condition were measured using the bolus-plus-constant-infusion [¹¹C]raclopride method. During the reward condition subjects randomly received monetary awards while performing a 'slot-machine' task. The ΔBP between conditions was assessed in striatal regions-of-interest and compared between left and right sides. We found a significant condition × lateralization interaction in the ventral striatum. A significant reduction in binding potential (BP(ND) ) in the reward condition vs. the control condition was found only in the right ventral striatum, and the ΔBP was greater in the right than the left ventral striatum. Unexpectedly, these laterality effects appeared to be partly accounted for by gender differences, as our data showed a significant bilateral BP(ND) reduction in women while in men the reduction reached significance only in the right ventral striatum. These data suggest that DA release in response to unpredictable reward is lateralized in the human ventral striatum, particularly in males. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Opposing Amygdala and Ventral Striatum Connectivity during Emotion Identification

    Science.gov (United States)

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James

    2011-01-01

    Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed…

  5. Aversive counterconditioning attenuates reward signalling in the ventral striatum

    Directory of Open Access Journals (Sweden)

    Anne Marije Kaag

    2016-08-01

    Full Text Available Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient rewards such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional Magnetic Resonance Imaging (fMRI. In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signalling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signalling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula.

  6. Contingency learning in human fear conditioning involves the ventral striatum.

    Science.gov (United States)

    Klucken, Tim; Tabbert, Katharina; Schweckendiek, Jan; Merz, Christian Josef; Kagerer, Sabine; Vaitl, Dieter; Stark, Rudolf

    2009-11-01

    The ability to detect and learn contingencies between fearful stimuli and their predictive cues is an important capacity to cope with the environment. Contingency awareness refers to the ability to verbalize the relationships between conditioned and unconditioned stimuli. Although there is a heated debate about the influence of contingency awareness on conditioned fear responses, neural correlates behind the formation process of contingency awareness have gained only little attention in human fear conditioning. Recent animal studies indicate that the ventral striatum (VS) could be involved in this process, but in human studies the VS is mostly associated with positive emotions. To examine this question, we reanalyzed four recently published classical fear conditioning studies (n = 117) with respect to the VS at three distinct levels of contingency awareness: subjects, who did not learn the contingencies (unaware), subjects, who learned the contingencies during the experiment (learned aware) and subjects, who were informed about the contingencies in advance (instructed aware). The results showed significantly increased activations in the left and right VS in learned aware compared to unaware subjects. Interestingly, this activation pattern was only found in learned but not in instructed aware subjects. We assume that the VS is not involved when contingency awareness does not develop during conditioning or when contingency awareness is unambiguously induced already prior to conditioning. VS involvement seems to be important for the transition from a contingency unaware to a contingency aware state. Implications for fear conditioning models as well as for the contingency awareness debate are discussed.

  7. Amygdala and ventral striatum make distinct contributions to reinforcement learning

    Science.gov (United States)

    Costa, Vincent D.; Monte, Olga Dal; Lucas, Daniel R.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2016-01-01

    Summary Reinforcement learning (RL) theories posit that dopaminergic signals are integrated within the striatum to associate choices with outcomes. Often overlooked is that the amygdala also receives dopaminergic input and is involved in Pavlovian processes that influence choice behavior. To determine the relative contributions of the ventral striatum (VS) and amygdala to appetitive RL we tested rhesus macaques with VS or amygdala lesions on deterministic and stochastic versions of a two-arm bandit reversal learning task. When learning was characterized with a RL model relative to controls, amygdala lesions caused general decreases in learning from positive feedback and choice consistency. By comparison, VS lesions only affected learning in the stochastic task. Moreover, the VS lesions hastened the monkeys’ choice reaction times, which emphasized a speed-accuracy tradeoff that accounted for errors in deterministic learning. These results update standard accounts of RL by emphasizing distinct contributions of the amygdala and VS to RL. PMID:27720488

  8. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    International Nuclear Information System (INIS)

    Kienast, Thorsten; Rapp, Michael; Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias; Wrase, Jana; Heinz, Andreas; Braus, Dieter F.; Smolka, Michael N.; Mann, Karl; Roesch, Frank; Cumming, Paul; Gruender, Gerhard; Bartenstein, Peter

    2008-01-01

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [ 18 F]DOPA for measurements of dopamine synthesis capacity and [ 18 F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [ 18 F]DOPA net influx constant K in app /[ 18 F]DMFP-binding potential (BP N D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  9. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Kienast, Thorsten; Rapp, Michael [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias [University of Mainz, Department of Nuclear Medicine, Mainz (Germany); Wrase, Jana; Heinz, Andreas [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Central Institute of Mental Health, Mannheim (Germany); Braus, Dieter F. [University of Hamburg, Neuroimage Nord, Department of Psychiatry, Hamburg (Germany); Smolka, Michael N.; Mann, Karl [Central Institute of Mental Health, Mannheim (Germany); Roesch, Frank [University of Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Cumming, Paul [PET Center and Center for Functionally Integrative Neuroscience, Aarhus (Denmark); Gruender, Gerhard [Aachen University Medical Center, Department of Psychiatry of the RWTH, Mainz (Germany); Bartenstein, Peter [Ludwig-Maximilians-University, Department of Nuclear Medicine, Munich (Germany)

    2008-06-15

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [{sup 18}F]DOPA for measurements of dopamine synthesis capacity and [{sup 18}F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [{sup 18}F]DOPA net influx constant K{sub in}{sup app} /[{sup 18}F]DMFP-binding potential (BP{sub N}D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  10. Art for reward's sake: visual art recruits the ventral striatum.

    Science.gov (United States)

    Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K

    2011-03-01

    A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Cocaine exposure shifts the balance of associative encoding from ventral to dorsolateral striatum

    Directory of Open Access Journals (Sweden)

    Yuji Takahashi

    2007-12-01

    Full Text Available Both dorsal and ventral striatum are implicated in the "habitization" of behavior that occurs in addiction. Here we examined the effect of cocaine exposure on associative encoding in these two regions. Neural activity was recorded during go/no-go discrimination learning and reversal. Activity in ventral striatum developed and reversed rapidly, tracking the valence of the predicted outcome, whereas activity in dorsolateral striatum developed and reversed more slowly, tracking discriminative responding. This difference is consistent with the putative roles of these two areas in promoting habit-like behavior. Dorsolateral striatum has been directly implicated in habit or stimulus response learning, whereas ventral striatum appears to be involved indirectly by allowing cues associated with reward to exert a general motivational influence on responding. Interestingly cocaine exposure did not uniformly enhance processing across both regions. Instead cocaine reduced the degree and flexibility of cue-evoked firing in ventral striatum while marginally enhanced cue-selective firing in dorsolateral striatum. Thus cocaine exposure causes regionally specific effects on neural processing in striatum; these effects may promote the habitization of behavior by shifting control from ventral to dorsolateral regions.

  12. Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction.

    Science.gov (United States)

    Brand, Matthias; Snagowski, Jan; Laier, Christian; Maderwald, Stefan

    2016-04-01

    One type of Internet addiction is excessive pornography consumption, also referred to as cybersex or Internet pornography addiction. Neuroimaging studies found ventral striatum activity when participants watched explicit sexual stimuli compared to non-explicit sexual/erotic material. We now hypothesized that the ventral striatum should respond to preferred pornographic compared to non-preferred pornographic pictures and that the ventral striatum activity in this contrast should be correlated with subjective symptoms of Internet pornography addiction. We studied 19 heterosexual male participants with a picture paradigm including preferred and non-preferred pornographic materials. Subjects had to evaluate each picture with respect to arousal, unpleasantness, and closeness to ideal. Pictures from the preferred category were rated as more arousing, less unpleasant, and closer to ideal. Ventral striatum response was stronger for the preferred condition compared to non-preferred pictures. Ventral striatum activity in this contrast was correlated with the self-reported symptoms of Internet pornography addiction. The subjective symptom severity was also the only significant predictor in a regression analysis with ventral striatum response as dependent variable and subjective symptoms of Internet pornography addiction, general sexual excitability, hypersexual behavior, depression, interpersonal sensitivity, and sexual behavior in the last days as predictors. The results support the role for the ventral striatum in processing reward anticipation and gratification linked to subjectively preferred pornographic material. Mechanisms for reward anticipation in ventral striatum may contribute to a neural explanation of why individuals with certain preferences and sexual fantasies are at-risk for losing their control over Internet pornography consumption. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The dorsal striatum and ventral striatum play different roles in the programming of social behaviour: a tribute to Lex Cools.

    Science.gov (United States)

    van den Bos, Ruud

    2015-02-01

    Early work by Lex Cools suggested that the caudate nucleus (dorsal striatum) plays a role in programming social behaviour: enhanced activity in the caudate nucleus increased the extent to which ongoing behaviour is controlled by the individual's own behaviour (internal control) rather than by that of its partners (external control). Interestingly, later studies by others have indicated that the ventral striatum plays a role in external rather than internal control. Here, I discuss the role of these different striatal areas - and the emotional (ventral striatum) and cognitive control (dorsal striatum) system in which they are embedded - in the organization of social behaviour in the context of locus of control. Following on from this discussion, I will pay particular attention to individual differences in social behaviour (individuals with more internal or external control), focusing on the role of dopamine, serotonin and the effects of stress-related challenges in relation to their different position in a dominance hierarchy. I will subsequently allude to potential psychological and behavioural problems in the social domain following on from these differences in locus of control ['social obliviousness' (dorsal stratum) and 'social impulsivity' (ventral striatum)]. In doing so, I provide as a tribute a historical account of the early research by Lex Cools.

  14. Reduced activation in ventral striatum and ventral tegmental area during probabilistic decision-making in schizophrenia.

    Science.gov (United States)

    Rausch, Franziska; Mier, Daniela; Eifler, Sarah; Esslinger, Christine; Schilling, Claudia; Schirmbeck, Frederike; Englisch, Susanne; Meyer-Lindenberg, Andreas; Kirsch, Peter; Zink, Mathias

    2014-07-01

    Patients with schizophrenia suffer from deficits in monitoring and controlling their own thoughts. Within these so-called metacognitive impairments, alterations in probabilistic reasoning might be one cognitive phenomenon disposing to delusions. However, so far little is known about alterations in associated brain functionality. A previously established task for functional magnetic resonance imaging (fMRI), which requires a probabilistic decision after a variable amount of stimuli, was applied to 23 schizophrenia patients and 28 healthy controls matched for age, gender and educational levels. We compared activation patterns during decision-making under conditions of certainty versus uncertainty and evaluated the process of final decision-making in ventral striatum (VS) and ventral tegmental area (VTA). We replicated a pre-described extended cortical activation pattern during probabilistic reasoning. During final decision-making, activations in several fronto- and parietocortical areas, as well as in VS and VTA became apparent. In both of these regions schizophrenia patients showed a significantly reduced activation. These results further define the network underlying probabilistic decision-making. The observed hypo-activation in regions commonly associated with dopaminergic neurotransmission fits into current concepts of disrupted prediction error signaling in schizophrenia and suggests functional links to reward anticipation. Forthcoming studies with patients at risk for psychosis and drug-naive first episode patients are necessary to elucidate the development of these findings over time and the interplay with associated clinical symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hippocampal projections to the ventral striatum: from spatial memory to motivated behavior

    NARCIS (Netherlands)

    van der Meer, M.M.A; Ito, R.; Lansink, C.S.; Pennartz, C.M.A.; Derdikman, D.; Knierim, J.J.

    2014-01-01

    Multiple regions of the hippocampal formation project to the ventral striatum, a central node in brain circuits that subserve aspects of motivation. These projections emphasize information flow from the ventral (temporal) pole of the hippocampus and interact with converging projections and

  16. Ventral Striatum Functional Connectivity as a Predictor of Adolescent Depressive Disorder in a Longitudinal Community-Based Sample.

    Science.gov (United States)

    Pan, Pedro Mario; Sato, João R; Salum, Giovanni A; Rohde, Luis A; Gadelha, Ary; Zugman, Andre; Mari, Jair; Jackowski, Andrea; Picon, Felipe; Miguel, Eurípedes C; Pine, Daniel S; Leibenluft, Ellen; Bressan, Rodrigo A; Stringaris, Argyris

    2017-11-01

    Previous studies have implicated aberrant reward processing in the pathogenesis of adolescent depression. However, no study has used functional connectivity within a distributed reward network, assessed using resting-state functional MRI (fMRI), to predict the onset of depression in adolescents. This study used reward network-based functional connectivity at baseline to predict depressive disorder at follow-up in a community sample of adolescents. A total of 637 children 6-12 years old underwent resting-state fMRI. Discovery and replication analyses tested intrinsic functional connectivity (iFC) among nodes of a putative reward network. Logistic regression tested whether striatal node strength, a measure of reward-related iFC, predicted onset of a depressive disorder at 3-year follow-up. Further analyses investigated the specificity of this prediction. Increased left ventral striatum node strength predicted increased risk for future depressive disorder (odds ratio=1.54, 95% CI=1.09-2.18), even after excluding participants who had depressive disorders at baseline (odds ratio=1.52, 95% CI=1.05-2.20). Among 11 reward-network nodes, only the left ventral striatum significantly predicted depression. Striatal node strength did not predict other common adolescent psychopathology, such as anxiety, attention deficit hyperactivity disorder, and substance use. Aberrant ventral striatum functional connectivity specifically predicts future risk for depressive disorder. This finding further emphasizes the need to understand how brain reward networks contribute to youth depression.

  17. Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram.

    Science.gov (United States)

    Stoy, Meline; Schlagenhauf, Florian; Sterzer, Philipp; Bermpohl, Felix; Hägele, Claudia; Suchotzki, Kristina; Schmack, Katharina; Wrase, Jana; Ricken, Roland; Knutson, Brian; Adli, Mazda; Bauer, Michael; Heinz, Andreas; Ströhle, Andreas

    2012-05-01

    Major Depressive Disorder (MDD) involves deficits in the reward system. While neuroimaging studies have focused on affective stimulus processing, few investigations have directly addressed deficits in the anticipation of incentives. We examined neural responses during gain and loss anticipation in patients with MDD before and after treatment with a selective serotonin reuptake inhibitor (SSRI). Fifteen adults with MDD and 15 healthy participants, matched for age, verbal IQ and smoking habits, were investigated in a functional magnetic resonance imaging (fMRI) study using a monetary incentive delay task. Patients were scanned drug-free and after 6 weeks of open-label treatment with escitalopram; controls were scanned twice at corresponding time points. We compared the blood oxygenation level dependent (BOLD) response during the anticipation of gain and loss with a neutral condition. A repeated measures ANOVA was calculated to identify effects of group (MDD vs. controls), time (first vs. second scan) and group-by-time interaction. Severity of depression was measured with the Hamilton Rating Scale of Depression and the Beck Depression Inventory. MDD patients showed significantly less ventral striatal activation during anticipation of gain and loss compared with controls before, but not after, treatment. There was a significant group-by-time interaction during anticipation of loss in the left ventral striatum due to a signal increase in patients after treatment. Ventral striatal hyporesponsiveness was associated with the severity of depression and in particular anhedonic symptoms. These findings suggest that MDD patients show ventral striatal hyporesponsiveness during incentive cue processing, which normalizes after successful treatment.

  18. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Martín-Pérez, Cristina; Vilar-López, Raquel; Verdejo-Garcia, Antonio

    2017-05-01

    The food addiction model proposes that obesity overlaps with addiction in terms of neurobiological alterations in the striatum and related clinical manifestations (i.e., craving and persistence of unhealthy habits). Therefore, we aimed to examine the functional connectivity of the striatum in excess-weight versus normal-weight subjects and to determine the extent of the association between striatum connectivity and individual differences in food craving and changes in body mass index (BMI). Forty-two excess-weight participants (BMI > 25) and 39 normal-weight participants enrolled in the study. Functional connectivity in the ventral and dorsal striatum was indicated by seed-based analyses on resting-state data. Food craving was indicated with subjective ratings of visual cues of high-calorie food. Changes in BMI between baseline and 12 weeks follow-up were assessed in 28 excess-weight participants. Measures of connectivity in the ventral striatum and dorsal striatum were compared between groups and correlated with craving and BMI change. Participants with excess weight displayed increased functional connectivity between the ventral striatum and the medial prefrontal and parietal cortices and between the dorsal striatum and the somatosensory cortex. Dorsal striatum connectivity correlated with food craving and predicted BMI gains. Obesity is linked to alterations in the functional connectivity of dorsal striatal networks relevant to food craving and weight gain. These neural alterations are associated with habit learning and thus compatible with the food addiction model of obesity. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  20. Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder

    NARCIS (Netherlands)

    Holz, N.E.; Boecker-Schlier, R.; Buchmann, A.F.; Blomeyer, D.; Jennen-Steinmetz, C.; Baumeister, S.; Plichta, M.M.; Cattrell, A.; Schumann, G.; Esser, G.; Schmidt, M.; Buitelaar, J.K.; Meyer-Lindenberg, A.; Banaschewski, T.; Brandeis, D.; Laucht, M.

    2017-01-01

    Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At

  1. Differences between Dorsal and Ventral Striatum in the Sensitivity of Tonically Active Neurons to Rewarding Events

    Directory of Open Access Journals (Sweden)

    Kevin Marche

    2017-07-01

    Full Text Available Within the striatum, cholinergic interneurons, electrophysiologically identified as tonically active neurons (TANs, represent a relatively homogeneous group in terms of their functional properties. They display typical pause in tonic firing in response to rewarding events which are of crucial importance for reinforcement learning. These responses are uniformly distributed throughout the dorsal striatum (i.e., motor and associative striatum, but it is unknown, at least in monkeys, whether differences in the modulation of TAN activity exist in the ventral striatum (i.e., limbic striatum, a region specialized for processing of motivational information. To address this issue, we examined the activity of dorsal and ventral TANs in two monkeys trained on a Pavlovian conditioning task in which a visual stimulus preceded the delivery of liquid reward by a fixed time interval. We found that the proportion of TANs responding to the stimulus predictive of reward did not vary significantly across regions (58%–80%, whereas the fraction of TANs responding to reward was higher in the limbic striatum (100% compared to the motor (65% and associative striatum (52%. By examining TAN modulation at the level of both the population and the individual neurons, we showed that the duration of pause responses to the stimulus and reward was longer in the ventral than in the dorsal striatal regions. Also, the magnitude of the pause was greater in ventral than dorsal striatum for the stimulus predictive of reward but not for the reward itself. We found similar region-specific differences in pause response duration to the stimulus when the timing of reward was less predictable (fixed replaced by variable time interval. Regional variations in the duration and magnitude of the pause response were transferred from the stimulus to reward when reward was delivered in the absence of any predictive stimulus. It therefore appears that ventral TANs exhibit stronger responses to

  2. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.

    Science.gov (United States)

    Guo, Rong; Böhmer, Wendelin; Hebart, Martin; Chien, Samson; Sommer, Tobias; Obermayer, Klaus; Gläscher, Jan

    2016-12-14

    Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results from a novel task in which stimulus-response and response-outcome associations are learned simultaneously but dominate behavior at different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus-response versus response-outcome learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in representing prediction errors whenever one of them is dominating choice behavior. Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error. Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and encoding error signals regardless of the specific nature of the reinforcer itself. Copyright © 2016 the authors 0270-6474/16/3612650-11$15.00/0.

  3. The Neural Representation of Goal-Directed Actions and Outcomes in the Ventral Striatum's Olfactory Tubercle

    Science.gov (United States)

    Gadziola, Marie A.

    2016-01-01

    The ventral striatum is critical for evaluating reward information and the initiation of goal-directed behaviors. The many cellular, afferent, and efferent similarities between the ventral striatum's nucleus accumbens and olfactory tubercle (OT) suggests the distributed involvement of neurons within the ventral striatopallidal complex in motivated behaviors. Although the nucleus accumbens has an established role in representing goal-directed actions and their outcomes, it is not known whether this function is localized within the nucleus accumbens or distributed also within the OT. Answering such a fundamental question will expand our understanding of the neural mechanisms underlying motivated behaviors. Here we address whether the OT encodes natural reinforcers and serves as a substrate for motivational information processing. In recordings from mice engaged in a novel water-motivated instrumental task, we report that OT neurons modulate their firing rate during initiation and progression of the instrumental licking behavior, with some activity being internally generated and preceding the first lick. We further found that as motivational drive decreases throughout a session, the activity of OT neurons is enhanced earlier relative to the behavioral action. Additionally, OT neurons discriminate the types and magnitudes of fluid reinforcers. Together, these data suggest that the processing of reward information and the orchestration of goal-directed behaviors is a global principle of the ventral striatum and have important implications for understanding the neural systems subserving addiction and mood disorders. SIGNIFICANCE STATEMENT Goal-directed behaviors are widespread among animals and underlie complex behaviors ranging from food intake, social behavior, and even pathological conditions, such as gambling and drug addiction. The ventral striatum is a neural system critical for evaluating reward information and the initiation of goal-directed behaviors. Here we

  4. Ventral striatum activation to prosocial rewards predicts longitudinal declines in adolescent risk taking.

    Science.gov (United States)

    Telzer, Eva H; Fuligni, Andrew J; Lieberman, Matthew D; Galván, Adriana

    2013-01-01

    Adolescence is a period of intensified emotions and an increase in motivated behaviors and passions. Evidence from developmental neuroscience suggests that this heightened emotionality occurs, in part, due to a peak in functional reactivity to rewarding stimuli, which renders adolescents more oriented toward reward-seeking behaviors. Most prior work has focused on how reward sensitivity may create vulnerabilities, leading to increases in risk taking. Here, we test whether heightened reward sensitivity may potentially be an asset for adolescents when engaged in prosocial activities. Thirty-two adolescents were followed over a one-year period to examine whether ventral striatum activation to prosocial rewards predicts decreases in risk taking over a year. Results show that heightened ventral striatum activation to prosocial stimuli relates to longitudinal declines in risk taking. Therefore, the very same neural region that has conferred vulnerability for adolescent risk taking may also be protective against risk taking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Craving behavioral intervention for internet gaming disorder: remediation of functional connectivity of the ventral striatum.

    Science.gov (United States)

    Zhang, Jin-Tao; Ma, Shan-Shan; Li, Chiang-Shan R; Liu, Lu; Xia, Cui-Cui; Lan, Jing; Wang, Ling-Jiao; Liu, Ben; Yao, Yuan-Wei; Fang, Xiao-Yi

    2018-01-01

    Psychobehavioral intervention is an effective treatment of Internet addiction, including Internet gaming disorder (IGD). However, the neural mechanisms underlying its efficacy remain unclear. Cortical-ventral striatum (VS) circuitry is a common target of psychobehavioral interventions in drug addiction, and cortical-VS dysfunction has been reported in IGD; hence, the primary aim of the study was to investigate how the VS circuitry responds to psychobehavioral interventions in IGD. In a cross-sectional study, we examined resting-state functional connectivity of the VS in 74 IGD subjects (IGDs) and 41 healthy controls (HCs). In a follow-up craving behavioral intervention (CBI) study, of the 74 IGD subjects, 20 IGD subjects received CBI (CBI+) and 16 IGD subjects did not (CBI-). All participants were scanned twice with similar time interval to assess the effects of CBI. IGD subjects showed greater resting-state functional connectivity of the VS to left inferior parietal lobule (lIPL), right inferior frontal gyrus and left middle frontal gyrus, in positive association with the severity of IGD. Moreover, compared with CBI-, CBI+ showed significantly greater decrease in VS-lIPL connectivity, along with amelioration in addiction severity following the intervention. These findings demonstrated that functional connectivity between VS and lIPL, each presumably mediating gaming craving and attentional bias, may be a potential biomarker of the efficacy of psychobehavioral intervention. These results also suggested that non-invasive techniques such as transcranial magnetic or direct current stimulation targeting the VS-IPL circuitry may be used in the treatment of Internet gaming disorders. © 2016 Society for the Study of Addiction.

  6. S175. AMOTIVATION IS ASSOCIATED WITH SMALLER VENTRAL STRIATUM VOLUMES IN OLDER PATIENTS WITH SCHIZOPHRENIA

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Iwata, Yusuke; Plitman, Eric; Chung, Jun Ku; Nakajima, Shinichiro; Mar, Wanna; Gerretsen, Philip; Kim, Julia; Chakravarty, Mallar; Mulsant, Benoit; Pollock, Bruce; Mamo, David; Remington, Gary; Graff-Guerrero, Ariel

    2018-01-01

    Abstract Background Motivational deficits are prevalent in patients with schizophrenia, persist despite antipsychotic treatment, and predict long‐term outcomes. Evidence suggests that patients with greater amotivation have smaller ventral striatum (VS) volumes. We wished to replicate this finding in a sample of older, chronically medicated patients with schizophrenia. Using structural imaging and positron emission tomography, we examined whether amotivation uniquely predicted VS volumes beyond the effects of striatal dopamine D2/3 receptor (D2/3R) blockade by antipsychotics. Methods Data from 41 older schizophrenia patients (mean age: 60.2 ± 6.7; 11 female) were reanalysed from previously published imaging data. We constructed multivariate linear stepwise regression models with VS volumes as the dependent variable and various sociodemographic and clinical variables as the initial predictors: age, gender, total brain volume, and antipsychotic striatal D2/3R occupancy. Amotivation was included as a subsequent step to determine any unique relationships with VS volumes beyond the contribution of the covariates. In a reduced sample (n = 36), general cognition was also included as a covariate. Results Amotivation uniquely explained 8% and 6% of the variance in right and left VS volumes, respectively (right: β = -.38, t = -2.48, P = .01; left: β = -.31, t = -2.17, P = .03). Considering cognition, amotivation levels uniquely explained 9% of the variance in right VS volumes (β = -.43, t = -0.26, P = .03). Discussion We replicate and extend the finding of reduced VS volumes with greater amotivation. We demonstrate this relationship uniquely beyond the potential contributions of striatal D2/3R blockade by antipsychotics. Elucidating the structural correlates of amotivation in schizophrenia may help develop treatments for this presently irremediable deficit.

  7. Amotivation is associated with smaller ventral striatum volumes in older patients with schizophrenia.

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Iwata, Yusuke; Plitman, Eric; Chung, Jun Ku; Nakajima, Shinichiro; Mar, Wanna; Gerretsen, Philip; Kim, Julia; Chakravarty, M Mallar; Mulsant, Benoit; Pollock, Bruce; Mamo, David; Remington, Gary; Graff-Guerrero, Ariel

    2018-03-01

    Motivational deficits are prevalent in patients with schizophrenia, persist despite antipsychotic treatment, and predict long-term outcomes. Evidence suggests that patients with greater amotivation have smaller ventral striatum (VS) volumes. We wished to replicate this finding in a sample of older, chronically medicated patients with schizophrenia. Using structural imaging and positron emission tomography, we examined whether amotivation uniquely predicted VS volumes beyond the effects of striatal dopamine D 2/3 receptor (D 2/3 R) blockade by antipsychotics. Data from 41 older schizophrenia patients (mean age: 60.2 ± 6.7; 11 female) were reanalysed from previously published imaging data. We constructed multivariate linear stepwise regression models with VS volumes as the dependent variable and various sociodemographic and clinical variables as the initial predictors: age, gender, total brain volume, and antipsychotic striatal D 2/3 R occupancy. Amotivation was included as a subsequent step to determine any unique relationships with VS volumes beyond the contribution of the covariates. In a reduced sample (n = 36), general cognition was also included as a covariate. Amotivation uniquely explained 8% and 6% of the variance in right and left VS volumes, respectively (right: β = -.38, t = -2.48, P = .01; left: β = -.31, t = -2.17, P = .03). Considering cognition, amotivation levels uniquely explained 9% of the variance in right VS volumes (β = -.43, t = -0.26, P = .03). We replicate and extend the finding of reduced VS volumes with greater amotivation. We demonstrate this relationship uniquely beyond the potential contributions of striatal D 2/3 R blockade by antipsychotics. Elucidating the structural correlates of amotivation in schizophrenia may help develop treatments for this presently irremediable deficit. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Reduced activation in the ventral striatum during probabilistic decision-making in patients in an at-risk mental state

    NARCIS (Netherlands)

    Rausch, Franziska; Mier, Daniela; Eifler, Sarah; Fenske, Sabrina; Schirmbeck, Frederike; Englisch, Susanne; Schilling, Claudia; Meyer-Lindenberg, Andreas; Kirsch, Peter; Zink, Mathias

    2015-01-01

    Patients with schizophrenia display metacognitive impairments, such as hasty decision-making during probabilistic reasoning - the "jumping to conclusion" bias (JTC). Our recent fMRI study revealed reduced activations in the right ventral striatum (VS) and the ventral tegmental area (VTA) to be

  9. Separate populations of neurons in ventral striatum encode value and motivation.

    Science.gov (United States)

    Bissonette, Gregory B; Burton, Amanda C; Gentry, Ronny N; Goldstein, Brandon L; Hearn, Taylor N; Barnett, Brian R; Kashtelyan, Vadim; Roesch, Matthew R

    2013-01-01

    Neurons in the ventral striatum (VS) fire to cues that predict differently valued rewards. It is unclear whether this activity represents the value associated with the expected reward or the level of motivation induced by reward anticipation. To distinguish between the two, we trained rats on a task in which we varied value independently from motivation by manipulating the size of the reward expected on correct trials and the threat of punishment expected upon errors. We found that separate populations of neurons in VS encode expected value and motivation.

  10. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Fowler J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi F.

    2012-03-23

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  11. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    International Nuclear Information System (INIS)

    Volkow, N.D.; Fowler, J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi, F.

    2012-01-01

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [ 11 C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([ 11 C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [ 11 C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  12. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people.

    Science.gov (United States)

    Myrick, Hugh; Anton, Raymond F; Li, Xingbao; Henderson, Scott; Randall, Patrick K; Voronin, Konstantin

    2008-04-01

    Medication for the treatment of alcoholism is currently not particularly robust. Neuroimaging techniques might predict which medications could be useful in the treatment of alcohol dependence. To explore the effect of naltrexone, ondansetron hydrochloride, or the combination of these medications on cue-induced craving and ventral striatum activation. Functional brain imaging was conducted during alcohol cue presentation. Participants were recruited from the general community following media advertisement. Experimental procedures were performed in the magnetic resonance imaging suite of a major training hospital and medical research institute. Ninety non-treatment-seeking alcohol-dependent (by DSM-IV criteria) and 17 social drinking (analysis but intermediate in a region-specific analysis. Consistent with animal data that suggest that both naltrexone and ondansetron reduce alcohol-stimulated dopamine output in the ventral striatum, the current study found evidence that these medications, alone or in combination, could decrease alcohol cue-induced activation of the ventral striatum, consistent with their putative treatment efficacy.

  13. Interest in politics modulates neural activity in the amygdala and ventral striatum.

    Science.gov (United States)

    Gozzi, Marta; Zamboni, Giovanna; Krueger, Frank; Grafman, Jordan

    2010-11-01

    Studies on political participation have found that a person's interest in politics contributes to the likelihood that he or she will be involved in the political process. Here, we looked at whether or not interest in politics affects patterns of brain activity when individuals think about political matters. Using functional magnetic resonance imaging (fMRI), we scanned individuals (either interested or uninterested in politics based on a self-report questionnaire) while they were expressing their agreement or disagreement with political opinions. After scanning, participants were asked to rate each political opinion presented in the scanner for emotional valence and emotional intensity. Behavioral results showed that those political opinions participants agreed with were perceived as more emotionally intense and more positive by individuals interested in politics relative to individuals uninterested in politics. In addition, individuals interested in politics showed greater activation in the amygdala and the ventral striatum (ventral putamen) relative to individuals uninterested in politics when reading political opinions in accordance with their own views. This study shows that having an interest in politics elicits activations in emotion- and reward-related brain areas even when simply agreeing with written political opinions. © 2010 Wiley-Liss, Inc.

  14. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  15. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    Science.gov (United States)

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  16. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum

    DEFF Research Database (Denmark)

    Deserno, Lorenz; Beck, Anne; Huys, Quentin J. M.

    2015-01-01

    Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non-drug......-related stimuli towards drug-related stimuli. Such ‘hijacked’ dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs......) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N = 27). All participants also underwent 6-[18F]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation...

  17. Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder

    Science.gov (United States)

    Boecker-Schlier, Regina; Buchmann, Arlette F.; Blomeyer, Dorothea; Jennen-Steinmetz, Christine; Baumeister, Sarah; Plichta, Michael M.; Cattrell, Anna; Schumann, Gunter; Esser, Günter; Schmidt, Martin; Buitelaar, Jan; Meyer-Lindenberg, Andreas; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred

    2017-01-01

    Abstract Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At age 25 years, functional MRI data during two affective tasks, i.e. a reward (N = 171) and a face-matching paradigm (N = 181) and anatomical scans (N = 181) were acquired in right-handed currently healthy participants of an epidemiological study followed since birth. CFA during childhood was determined using a standardized parent interview. Disruptive behaviors and CD diagnoses during childhood and adolescence were obtained by diagnostic interview (2–19 years), temperamental reward dependence was assessed by questionnaire (15 and 19 years). CFA predicted increased CD and amygdala volume. Both exposure to CFA and CD were associated with a decreased VS response during reward anticipation and blunted amygdala activity during face-matching. CD mediated the effect of CFA on brain activity. Temperamental reward dependence was negatively correlated with CFA and CD and positively with VS activity. These findings underline the detrimental effects of CFA on the offspring's affective processing and support the importance of early postnatal intervention programs aiming to reduce childhood adversity factors. PMID:27694318

  18. Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder.

    Science.gov (United States)

    Holz, Nathalie E; Boecker-Schlier, Regina; Buchmann, Arlette F; Blomeyer, Dorothea; Jennen-Steinmetz, Christine; Baumeister, Sarah; Plichta, Michael M; Cattrell, Anna; Schumann, Gunter; Esser, Günter; Schmidt, Martin; Buitelaar, Jan; Meyer-Lindenberg, Andreas; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred

    2017-02-01

    Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At age 25 years, functional MRI data during two affective tasks, i.e. a reward (N = 171) and a face-matching paradigm (N = 181) and anatomical scans (N = 181) were acquired in right-handed currently healthy participants of an epidemiological study followed since birth. CFA during childhood was determined using a standardized parent interview. Disruptive behaviors and CD diagnoses during childhood and adolescence were obtained by diagnostic interview (2-19 years), temperamental reward dependence was assessed by questionnaire (15 and 19 years).CFA predicted increased CD and amygdala volume. Both exposure to CFA and CD were associated with a decreased VS response during reward anticipation and blunted amygdala activity during face-matching. CD mediated the effect of CFA on brain activity. Temperamental reward dependence was negatively correlated with CFA and CD and positively with VS activity. These findings underline the detrimental effects of CFA on the offspring's affective processing and support the importance of early postnatal intervention programs aiming to reduce childhood adversity factors. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Aims Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls. Design Pathological Gamblers...... and Healthy Controlswere experimentally compared in a non-gambling (baseline) and gambling condition. Measurements We used Positron Emission Tomography (PET) with the tracer raclopride to measure dopamine D 2/3 receptor availability in the ventral striatum during a non-gambling and gambling condition...... of the Iowa GamblingTask (IGT). After each condition participants rated their excitement level. Setting Laboratory experiment. Participants 18 Pathological Gamblers and 16 Healthy Controls. Findings Pathological Gamblers with dopamine release in the ventral striatum had significantly higher excitement levels...

  20. Stress-related anhedonia is associated with ventral striatum reactivity to reward and transdiagnostic psychiatric symptomatology

    Science.gov (United States)

    Corral-Frías, Nadia S.; Nikolova, Yuliya S.; Michalski, Lindsay J.; Baranger, David A.A.; Hariri, Ahmad R.; Bogdan, Ryan

    2015-01-01

    Background Early life stress (ELS) is consistently associated with increased risk for subsequent psychopathology. Individual differences in neural response to reward may confer vulnerability to stress-related psychopathology. Using data from the ongoing Duke Neurogenetics Study, the present study examined whether reward-related ventral striatum (VS) reactivity moderates the relationship between retrospectively reported ELS and anhedonic symptomatology. We further assessed whether individual differences in reward-related VS reactivity were associated with other depressive symptoms and problematic alcohol use via stress-related anhedonic symptoms and substance use-associated coping. Method Blood oxygen level-dependent functional magnetic resonance imaging (fMRI) was collected while participants (n = 906) completed a card-guessing task, which robustly elicits VS reactivity. ELS, anhedonic symptoms, other depressive symptoms, coping behavior, and alcohol use behavior were assessed with self-report questionnaires. Linear regressions were run to examine whether VS reactivity moderated the relationship between ELS and anhedonic symptoms. Structural equation models examined whether this moderation was indirectly associated with other depression symptoms and problematic alcohol use through its association with anhedonia. Results Analyses of data from 820 participants passing quality control procedures revealed that the VS × ELS interaction was associated with anhedonic symptoms (p = 0.011). Moreover, structural equation models indirectly linked this interaction to non-anhedonic depression symptoms and problematic alcohol use through anhedonic symptoms and substance-related coping. Conclusions These findings suggest that reduced VS reactivity to reward is associated with increased risk for anhedonia in individuals exposed to ELS. Such stress-related anhedonia is further associated with other depressive symptoms and problematic alcohol use through substance-related coping

  1. A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum.

    Directory of Open Access Journals (Sweden)

    Jie Shi

    Full Text Available Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity

  2. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

    Directory of Open Access Journals (Sweden)

    Lanuza Enrique

    2007-11-01

    Full Text Available Abstract Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae. The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. Conclusion The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse.

  3. A functional difference in information processing between orbitofrontal cortex and ventral striatum during decision-making behaviour.

    Science.gov (United States)

    Stott, Jeffrey J; Redish, A David

    2014-11-05

    Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat's decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Investigating the dynamics of the brain response to music: A central role of the ventral striatum/nucleus accumbens.

    Science.gov (United States)

    Mueller, Karsten; Fritz, Thomas; Mildner, Toralf; Richter, Maxi; Schulze, Katrin; Lepsien, Jöran; Schroeter, Matthias L; Möller, Harald E

    2015-08-01

    Ventral striatal activity has been previously shown to correspond well to reward value mediated by music. Here, we investigate the dynamic brain response to music and manipulated counterparts using functional magnetic resonance imaging (fMRI). Counterparts of musical excerpts were produced by either manipulating the consonance/dissonance of the musical fragments or playing them backwards (or both). Results show a greater involvement of the ventral striatum/nucleus accumbens both when contrasting listening to music that is perceived as pleasant and listening to a manipulated version perceived as unpleasant (backward dissonant), as well as in a parametric analysis for increasing pleasantness. Notably, both analyses yielded a ventral striatal response that was strongest during an early phase of stimulus presentation. A hippocampal response to the musical stimuli was also observed, and was largely mediated by processing differences between listening to forward and backward music. This hippocampal involvement was again strongest during the early response to the music. Auditory cortex activity was more strongly evoked by the original (pleasant) music compared to its manipulated counterparts, but did not display a similar decline of activation over time as subcortical activity. These findings rather suggest that the ventral striatal/nucleus accumbens response during music listening is strongest in the first seconds and then declines. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. No differences in ventral striatum responsivity between adolescents with a positive family history of alcoholism and controls.

    Science.gov (United States)

    Müller, Kathrin U; Gan, Gabriela; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Ströhle, Andreas; Struve, Maren; Schumann, Gunter; Smolka, Michael N

    2015-05-01

    Individuals with alcohol-dependent parents show an elevated risk of developing alcohol-related problems themselves. Modulations of the mesolimbic reward circuit have been postulated as a pre-existing marker of alcoholism. We tested whether a positive family history of alcoholism is correlated with ventral striatum functionality during a reward task. All participants performed a modified version of the monetary incentive delay task while their brain responses were measured with functional magnetic resonance imaging. We compared 206 healthy adolescents (aged 13-15) who had any first- or second-degree relative with alcoholism to 206 matched controls with no biological relative with alcoholism. Reward anticipation as well as feedback of win recruited the ventral striatum in all participants, but adolescents with a positive family history of alcoholism did not differ from their matched peers. Also we did not find any correlation between family history density and reward anticipation or feedback of win. This finding of no differences did not change when we analyzed a subsample of 77 adolescents with at least one parent with alcohol use disorder and their matched controls. Because this result is in line with another study reporting no differences between children with alcohol-dependent parents and controls at young age, but contrasts with studies of older individuals, one might conclude that at younger age the effect of family history has not yet exerted its influence on the still developing mesolimbic reward circuit. © 2014 Society for the Study of Addiction.

  6. Major depression in mothers predicts reduced ventral striatum activation in adolescent female offspring with and without depression.

    Science.gov (United States)

    Sharp, Carla; Kim, Sohye; Herman, Levi; Pane, Heather; Reuter, Tyson; Strathearn, Lane

    2014-05-01

    Prior research has identified reduced reward-related brain activation as a promising endophenotype for the early identification of adolescents with major depressive disorder (MDD). However, it is unclear whether reduced reward-related brain activation constitutes a true vulnerability for MDD. One way of studying vulnerability is through a high-risk design. Therefore, the aim of the current study was to determine whether reward-related activation of the ventral striatum is reduced in nondepressed daughters of mothers with a history of MDD (high-risk) similarly to currently depressed adolescent girls, compared with healthy controls. By directly comparing groups with a shared risk profile during differing states, we aimed to shed light on the endophenotypic nature of reduced reward processing for adolescent depression. We compared reward-related neural activity through functional magnetic resonance imaging (fMRI) between three groups of female biological offspring (N = 52) of mothers with differential MDD status: (a) currently depressed daughters of mothers with a history of MDD (MDD group; n = 14), (b) age- and socioeconomic status (SES)-matched never-depressed daughters of mothers with a history of MDD (high-risk group; n = 19), and (c) age- and SES-matched control daughters of mothers with no past or current psychopathology in either the mother or the daughter (healthy control group; n = 19). For the outcome phase of the reward task, right-sided ventral striatum activation was reduced for both currently depressed and high-risk girls compared with healthy controls. This ventral striatal activity correlated significantly with maternal depression scores. These findings provide further evidence of aberrant functioning for the United States Department of Health & Human Services, National Institutes of Health, National Institute of Mental Health (NIMH) Research Domain Criteria (RDoC)-defined domain of positive valence systems as a vulnerability factor for MDD and a

  7. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    Science.gov (United States)

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  8. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Makoto Ito

    2015-11-01

    Full Text Available Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the "win-stay, lose-switch" strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS, the dorsomedial striatum (DMS, and the ventral striatum (VS identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.

  9. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum.

    Science.gov (United States)

    Ito, Makoto; Doya, Kenji

    2015-11-01

    Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the "win-stay, lose-switch" strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS), the dorsomedial striatum (DMS), and the ventral striatum (VS) identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.

  10. Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system.

    Science.gov (United States)

    Novejarque, Amparo; Gutiérrez-Castellanos, Nicolás; Lanuza, Enrique; Martínez-García, Fernando

    2011-01-01

    Rodents constitute good models for studying the neural basis of sociosexual behavior. Recent findings in mice have revealed the molecular identity of the some pheromonal molecules triggering intersexual attraction. However, the neural pathways mediating this basic sociosexual behavior remain elusive. Since previous work indicates that the dopaminergic tegmento-striatal pathway is not involved in pheromone reward, the present report explores alternative pathways linking the vomeronasal system with the tegmento-striatal system (the limbic basal ganglia) by means of tract-tracing experiments studying direct and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Amygdaloid projections to the nucleus accumbens, olfactory tubercle, and adjoining structures are studied by analyzing the retrograde transport in the amygdala from dextran amine and fluorogold injections in the ventral striatum, as well as the anterograde labeling found in the ventral striato-pallidum after dextran amine injections in the amygdala. This combination of anterograde and retrograde tracing experiments reveals direct projections from the vomeronasal cortex to the ventral striato-pallidum, as well as indirect projections through different nuclei of the basolateral amygdala. Direct projections innervate mainly the olfactory tubercle and the islands of Calleja, whereas indirect projections are more widespread and reach the same structures and the shell and core of nucleus accumbens. These pathways are likely to mediate innate responses to pheromones (direct projections) and conditioned responses to associated chemosensory and non-chemosensory stimuli (indirect projections). Comparative studies indicate that similar connections are present in all the studied amniote vertebrates and might constitute the basic circuitry for emotional responses to conspecifics in most vertebrates, including humans.

  11. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment.

    Science.gov (United States)

    Pfabigan, Daniela M; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus

    2014-08-01

    The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. Copyright © 2014. Published by Elsevier Inc.

  12. Reward Anticipation in Ventral Striatum and Individual Sensitivity to Reward: A Pilot Study of a Child-Friendly fMRI Task.

    Science.gov (United States)

    van Hulst, Branko M; de Zeeuw, Patrick; Lupas, Kellina; Bos, Dienke J; Neggers, Sebastiaan F W; Durston, Sarah

    2015-01-01

    Reward processing has been implicated in developmental disorders. However, the classic task to probe reward anticipation, the monetary incentive delay task, has an abstract coding of reward and no storyline and may therefore be less appropriate for use with developmental populations. We modified the task to create a version appropriate for use with children. We investigated whether this child-friendly version could elicit ventral striatal activation during reward anticipation in typically developing children and young adolescents (aged 9.5-14.5). In addition, we tested whether our performance-based measure of reward sensitivity was associated with anticipatory activity in ventral striatum. Reward anticipation was related to activity in bilateral ventral striatum. Moreover, we found an association between individual reward sensitivity and activity in ventral striatum. We conclude that this task assesses ventral striatal activity in a child-friendly paradigm. The combination with a performance-based measure of reward sensitivity potentially makes the task a powerful tool for developmental imaging studies of reward processing.

  13. From the ventral to the dorsal striatum: devolving views of their roles in drug addiction.

    Science.gov (United States)

    Everitt, Barry J; Robbins, Trevor W

    2013-11-01

    We revisit our hypothesis that drug addiction can be viewed as the endpoint of a series of transitions from initial voluntarily drug use to habitual, and ultimately compulsive drug use. We especially focus on the transitions in striatal control over drug seeking behaviour that underlie these transitions since functional heterogeneity of the striatum was a key area of Ann Kelley's research interests and one in which she made enormous contributions. We also discuss the hypothesis in light of recent data that the emergence of a compulsive drug seeking habit both reflects a shift to dorsal striatal control over behaviour and impaired prefontal cortical inhibitory control mechanisms. We further discuss aspects of the vulnerability to compulsive drug use and in particular the impact of impulsivity. In writing this review we acknowledge the untimely death of an outstanding scientist and a dear personal friend. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Reward-Related Ventral Striatum Activity Buffers against the Experience of Depressive Symptoms Associated with Sleep Disturbances.

    Science.gov (United States)

    Avinun, Reut; Nevo, Adam; Knodt, Annchen R; Elliott, Maxwell L; Radtke, Spenser R; Brigidi, Bartholomew D; Hariri, Ahmad R

    2017-10-04

    Sleep disturbances represent one risk factor for depression. Reward-related brain function, particularly the activity of the ventral striatum (VS), has been identified as a potential buffer against stress-related depression. We were therefore interested in testing whether reward-related VS activity would moderate the effect of sleep disturbances on depression in a large cohort of young adults. Data were available from 1129 university students (mean age 19.71 ± 1.25 years; 637 women) who completed a reward-related functional MRI task to assay VS activity and provided self-reports of sleep using the Pittsburgh Sleep Quality Index and symptoms of depression using a summation of the General Distress/Depression and Anhedonic Depression subscales of the Mood and Anxiety Symptoms Questionnaire-short form. Analyses revealed that as VS activity increased the association between sleep disturbances and depressive symptoms decreased. The interaction between sleep disturbances and VS activity was robust to the inclusion of sex, age, race/ethnicity, past or present clinical disorder, early and recent life stress, and anxiety symptoms, as well as the interactions between VS activity and early or recent life stress as covariates. We provide initial evidence that high reward-related VS activity may buffer against depressive symptoms associated with poor sleep. Our analyses help advance an emerging literature supporting the importance of individual differences in reward-related brain function as a potential biomarker of relative risk for depression. SIGNIFICANCE STATEMENT Sleep disturbances are a common risk factor for depression. An emerging literature suggests that reward-related activity of the ventral striatum (VS), a brain region critical for motivation and goal-directed behavior, may buffer against the effect of negative experiences on the development of depression. Using data from a large sample of 1129 university students we demonstrate that as reward-related VS activity

  15. Reduced activation in the ventral striatum during probabilistic decision-making in patients in an at-risk mental state

    Science.gov (United States)

    Rausch, Franziska; Mier, Daniela; Eifler, Sarah; Fenske, Sabrina; Schirmbeck, Frederike; Englisch, Susanne; Schilling, Claudia; Meyer-Lindenberg, Andreas; Kirsch, Peter; Zink, Mathias

    2015-01-01

    Background Patients with schizophrenia display metacognitive impairments, such as hasty decision-making during probabilistic reasoning — the “jumping to conclusion” bias (JTC). Our recent fMRI study revealed reduced activations in the right ventral striatum (VS) and the ventral tegmental area (VTA) to be associated with decision-making in patients with schizophrenia. It is unclear whether these functional alterations occur in the at-risk mental state (ARMS). Methods We administered the classical beads task and fMRI among ARMS patients and healthy controls matched for age, sex, education and premorbid verbal intelligence. None of the ARMS patients was treated with antipsychotics. Both tasks request probabilistic decisions after a variable amount of stimuli. We evaluated activation during decision-making under certainty versus uncertainty and the process of final decision-making. Results We included 24 AMRS patients and 24 controls in our study. Compared with controls, ARMS patients tended to draw fewer beads and showed significantly more JTC bias in the classical beads task, mirroring findings in patients with schizophrenia. During fMRI, ARMS patients did not demonstrate JTC bias on the behavioural level, but showed a significant hypoactivation in the right VS during the decision stage. Limitations Owing to the cross-sectional design of the study, results are constrained to a better insight into the neurobiology of risk constellations, but not pre-psychotic stages. Nine of the ARMS patients were treated with antidepressants and/or lorazepam. Conclusion As in patients with schizophrenia, a striatal hypoactivation was found in ARMS patients. Confounding effects of antipsychotic medication can be excluded. Our findings indicate that error prediction signalling and reward anticipation may be linked to striatal dysfunction during prodromal stages and should be examined for their utility in predicting transition risk. PMID:25622039

  16. Differential Patterns of Amygdala and Ventral Striatum Activation Predict Gender-Specific Changes in Sexual Risk Behavior

    Science.gov (United States)

    Sansosti, Alexandra A.; Bowman, Hilary C.; Hariri, Ahmad R.

    2015-01-01

    Although the initiation of sexual behavior is common among adolescents and young adults, some individuals express this behavior in a manner that significantly increases their risk for negative outcomes including sexually transmitted infections. Based on accumulating evidence, we have hypothesized that increased sexual risk behavior reflects, in part, an imbalance between neural circuits mediating approach and avoidance in particular as manifest by relatively increased ventral striatum (VS) activity and relatively decreased amygdala activity. Here, we test our hypothesis using data from seventy 18- to 22-year-old university students participating in the Duke Neurogenetics Study. We found a significant three-way interaction between amygdala activation, VS activation, and gender predicting changes in the number of sexual partners over time. Although relatively increased VS activation predicted greater increases in sexual partners for both men and women, the effect in men was contingent on the presence of relatively decreased amygdala activation and the effect in women was contingent on the presence of relatively increased amygdala activation. These findings suggest unique gender differences in how complex interactions between neural circuit function contributing to approach and avoidance may be expressed as sexual risk behavior in young adults. As such, our findings have the potential to inform the development of novel, gender-specific strategies that may be more effective at curtailing sexual risk behavior. PMID:26063921

  17. Brain networks of social action-outcome contingency: The role of the ventral striatum in integrating signals from the sensory cortex and medial prefrontal cortex.

    Science.gov (United States)

    Sumiya, Motofumi; Koike, Takahiko; Okazaki, Shuntaro; Kitada, Ryo; Sadato, Norihiro

    2017-10-01

    Social interactions can be facilitated by action-outcome contingency, in which self-actions result in relevant responses from others. Research has indicated that the striatal reward system plays a role in generating action-outcome contingency signals. However, the neural mechanisms wherein signals regarding self-action and others' responses are integrated to generate the contingency signal remain poorly understood. We conducted a functional MRI study to test the hypothesis that brain activity representing the self modulates connectivity between the striatal reward system and sensory regions involved in the processing of others' responses. We employed a contingency task in which participants made the listener laugh by telling jokes. Participants reported more pleasure when greater laughter followed their own jokes than those of another. Self-relevant listener's responses produced stronger activation in the medial prefrontal cortex (mPFC). Laughter was associated with activity in the auditory cortex. The ventral striatum exhibited stronger activation when participants made listeners laugh than when another did. In physio-physiological interaction analyses, the ventral striatum showed interaction effects for signals extracted from the mPFC and auditory cortex. These results support the hypothesis that the mPFC, which is implicated in self-related processing, gates sensory input associated with others' responses during value processing in the ventral striatum. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Metabolomics of Neurotransmitters and Related Metabolites in Post-Mortem Tissue from the Dorsal and Ventral Striatum of Alcoholic Human Brain.

    Science.gov (United States)

    Kashem, Mohammed Abul; Ahmed, Selina; Sultana, Nilufa; Ahmed, Eakhlas U; Pickford, Russell; Rae, Caroline; Šerý, Omar; McGregor, Iain S; Balcar, Vladimir J

    2016-02-01

    We report on changes in neurotransmitter metabolome and protein expression in the striatum of humans exposed to heavy long-term consumption of alcohol. Extracts from post mortem striatal tissue (dorsal striatum; DS comprising caudate nucleus; CN and putamen; P and ventral striatum; VS constituted by nucleus accumbens; NAc) were analysed by high performance liquid chromatography coupled with tandem mass spectrometry. Proteomics was studied in CN by two-dimensional gel electrophoresis followed by mass-spectrometry. Proteomics identified 25 unique molecules expressed differently by the alcohol-affected tissue. Two were dopamine-related proteins and one a GABA-synthesizing enzyme GAD65. Two proteins that are related to apoptosis and/or neuronal loss (BiD and amyloid-β A4 precursor protein-binding family B member 3) were increased. There were no differences in the levels of dopamine (DA), 3,4-dihydrophenylacetic acid (DOPAC), serotonin (5HT), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (HIAA), histamine, L-glutamate (Glu), γ-aminobutyric acid (GABA), tyrosine (Tyr) and tryptophan (Tryp) between the DS (CN and P) and VS (NAc) in control brains. Choline (Ch) and acetylcholine (Ach) were higher and norepinephrine (NE) lower, in the VS. Alcoholic striata had lower levels of neurotransmitters except for Glu (30 % higher in the alcoholic ventral striatum). Ratios of DOPAC/DA and HIAA/5HT were higher in alcoholic striatum indicating an increase in the DA and 5HT turnover. Glutathione was significantly reduced in all three regions of alcohol-affected striatum. We conclude that neurotransmitter systems in both the DS (CN and P) and the VS (NAc) were significantly influenced by long-term heavy alcohol intake associated with alcoholism.

  19. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum.

    Science.gov (United States)

    McDonald, Robert J; Jones, Jana; Richards, Blake; Hong, Nancy S

    2006-09-01

    The objectives of this research were to further delineate the neural circuits subserving proposed memory-based behavioural subsystems in the hippocampal formation. These studies were guided by anatomical evidence showing a topographical organization of the hippocampal formation. Briefly, perpendicular to the medial/lateral entorhinal cortex division there is a second system of parallel circuits that separates the dorsal and ventral hippocampus. Recent work from this laboratory has provided evidence that the hippocampus incidentally encodes a context-specific inhibitory association during acquisition of a visual discrimination task. One question that emerges from this dataset is whether the dorsal or ventral hippocampus makes a unique contribution to this newly described function. Rats with neurotoxic lesions of the dorsal or ventral hippocampus were assessed on the acquisition of the visual discrimination task. Following asymptotic performance they were given reversal training in either the same or a different context from the original training. The results showed that the context-specific inhibition effect is mediated by a circuit that includes the ventral but not the dorsal hippocampus. Results from a control procedure showed that rats with either dorso-lateral striatum damage or dorsal hippocampal lesions were impaired on a tactile/spatial discrimination. Taken together, the results represent a double dissociation of learning and memory function between the ventral and dorsal hippocampus. The formation of an incidental inhibitory association was dependent on ventral but not dorsal hippocampal circuitry, and the opposite dependence was found for the spatial component of a tactile/spatial discrimination.

  20. Influence of menarche on the relation between diurnal cortisol production and ventral striatum activity during reward anticipation.

    Science.gov (United States)

    LeMoult, Joelle; Colich, Natalie L; Sherdell, Lindsey; Hamilton, J Paul; Gotlib, Ian H

    2015-09-01

    Adolescence is characterized by an increase in risk-taking and reward-seeking behaviors. In other populations, increased risk taking has been associated with tighter coupling between cortisol production and ventral striatum (VS) activation during reward anticipation; this relation has not yet been examined, however, as a function of adolescent development. This study examined the influence of pubertal development on the association between diurnal cortisol production and VS activity during reward anticipation. Pre- and post-menarcheal girls collected diurnal cortisol and completed an functional magnetic resonance imaging-based monetary incentive delay task, from which we extracted estimates of VS activity during the anticipation of reward, anticipation of loss and anticipation of non-incentive neutral trials. Post-menarcheal girls showed greater coupling between the cortisol awakening response and VS activation during anticipation of reward and loss than did their pre-menarcheal counterparts. Post-menarcheal girls did not differ from pre-menarcheal girls in their cortisol-VS coupling during anticipation of neutral trials, suggesting that puberty-related changes in cortisol-VS coupling are specific to affective stimuli. Interestingly, behavioral responses during the task indicate that post-menarcheal girls are faster to engage with affective stimuli than are pre-menarcheal girls. Thus, post-menarcheal girls exhibit neurobiological and behavioral patterns that have been associated with risk taking and that may underlie the dramatic increase in risk-taking behavior documented during adolescence. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Age-related changes in the intrinsic functional connectivity of the human ventral vs. dorsal striatum from childhood to middle age

    Directory of Open Access Journals (Sweden)

    James N. Porter

    2015-02-01

    Full Text Available The striatum codes motivated behavior. Delineating age-related differences within striatal circuitry can provide insights into neural mechanisms underlying ontogenic behavioral changes and vulnerabilities to mental disorders. To this end, a dual ventral/dorsal model of striatal function was examined using resting state intrinsic functional connectivity (iFC imaging in 106 healthy individuals, ages 9–44. Broadly, the dorsal striatum (DS is connected to prefrontal and parietal cortices and contributes to cognitive processes; the ventral striatum (VS is connected to medial orbitofrontal and anterior cingulate cortices, and contributes to affective valuation and motivation. Findings revealed patterns of age-related changes that differed between VS and DS iFCs. We found an age-related increase in DS iFC with posterior cingulate cortex (pCC that stabilized after the mid-twenties, but a decrease in VS iFC with anterior insula (aIns and dorsal anterior cingulate cortex (dACC that persisted into mid-adulthood. These distinct developmental trajectories of VS vs. DS iFC might underlie adolescents’ unique behavioral patterns and vulnerabilities to psychopathology, and also speaks to changes in motivational networks that extend well past 25 years old.

  2. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task

    Directory of Open Access Journals (Sweden)

    Matthijs A A Van Der Meer

    2009-06-01

    Full Text Available Local field potential (LFP oscillations in the brain reflect organization thought to be important for perception, attention, movement, and memory. In the basal ganglia, including dorsal striatum, dysfunctional LFP states are associated with Parkinson’s disease, while in healthy subjects, dorsal striatal LFPs have been linked to decision-making processes. However, LFPs in ventral striatum have been less studied. We report that in rats running a spatial decision task, prominent gamma-50 (45-55 Hz and gamma-80 (70-85 Hz oscillations in ventral striatum had distinct relationships to behavior, task events, and spiking activity. Gamma-50 power increased sharply following reward delivery and before movement initiation, while in contrast, gamma-80 power ramped up gradually to reward locations. Gamma-50 power was low and contained little structure during early learning, but rapidly developed a stable pattern, while gamma-80 power was initially high before returning to a stable level within a similar timeframe. Putative fast-spiking interneurons (FSIs showed phase, firing rate, and coherence relationships with gamma-50 and gamma-80, indicating that the observed LFP patterns are locally relevant. Furthermore, in a number of FSIs such relationships were specific to gamma-50 or gamma-80, suggesting that partially distinct FSI populations mediate the effects of gamma-50 and gamma-80.

  3. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala and ventral striatum

    Science.gov (United States)

    Fletcher, PC; Napolitano, A; Skeggs, A; Miller, SR; Delafont, B; Cambridge, VC; de Wit, S; Nathan, PJ; Brooke, A; O’Rahilly, S; Farooqi, IS; Bullmore, ET

    2012-01-01

    We used fMRI to explore brain responses to food images in overweight humans, examining independently the impact of a pre-scan meal (“satiety”) and the anti-obesity drug sibutramine, a serotonin and noradrenaline reuptake inhibitor. We identified significantly different responses to these manipulations in amygdala, hypothalamus and ventral striatum. Each region was specifically responsive to high calorie compared to low calorie food images. However, the ventral striatal response was attenuated by satiety (but unaffected by sibutramine) while the hypothalamic and amygdala responses were attenuated by drug but unaffected by satiety. Direct assessment of regional interactions confirmed the significance of this double dissociation. We explored the regional responses in greater detail by determining whether they were predictive of eating behaviour and weight change. We observed that across the different regions, the individual-specific magnitude of drug- and satiety-induced modulation was associated with both variables: the sibutramine-induced modulation of the hypothalamic response was correlated with the drug’s impact on both weight and subsequently-measured ad libitum eating. The satiety-induced modulation of striatal response also correlated with subsequent ad lib eating. These results suggest that hypothalamus and amygdala have roles in the control of food intake that are distinct from those of ventral striatum. Furthermore, they support a regionally-specific effect on brain function through which sibutramine exerts its clinical effect. PMID:20980590

  4. Intracerebral stimulation of left and right ventral temporal cortex during object naming.

    Science.gov (United States)

    Bédos Ulvin, Line; Jonas, Jacques; Brissart, Hélène; Colnat-Coulbois, Sophie; Thiriaux, Anne; Vignal, Jean-Pierre; Maillard, Louis

    2017-12-01

    While object naming is traditionally considered asa left hemisphere function, neuroimaging studies have reported activations related to naming in the ventral temporal cortex (VTC) bilaterally. Our aim was to use intracerebral electrical stimulation to specifically compare left and right VTC in naming. In twenty-three epileptic patients tested for visual object naming during stimulation, the proportion of naming impairments was significantly higher in the left than in the right VTC (31.3% vs 13.6%). The highest proportions of positive naming sites were found in the left fusiform gyrus and occipito-temporal sulcus (47.5% and 31.8%). For 17 positive left naming sites, an additional semantic picture matching was carried out, always successfully performed. Our results showed the enhanced role of the left compared to the right VTC in naming and suggest that it may be involved in lexical retrieval rather than in semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity Disorder

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Kollins, S.H.; Wigal, T.L.; Newcorn, J.H.; Telang, F.W.; Fowler, J.S.; Logan, J.; Wong, C.T.; Swanson, J.M.

    2012-01-01

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and ( 11 C)raclopride (D 2 /D 3 receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D 2 /D 3 receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response.

  6. Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Wang G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Kollins, S.H.; Wigal, T.L.; Newcorn, J.H.; Telang, F.W.; Fowler, J.S.; Logan, J.; Wong, C.T.; Swanson, J.M.

    2012-01-18

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [{sup 11}C]raclopride (D{sub 2}/D{sub 3} receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D{sub 2}/D{sub 3} receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response.

  7. PER1 rs3027172 Genotype Interacts with Early Life Stress to Predict Problematic Alcohol Use, but Not Reward-Related Ventral Striatum Activity

    Science.gov (United States)

    Baranger, David A. A.; Ifrah, Chloé; Prather, Aric A.; Carey, Caitlin E.; Corral-Frías, Nadia S.; Drabant Conley, Emily; Hariri, Ahmad R.; Bogdan, Ryan

    2016-01-01

    Increasing evidence suggests that the circadian and stress regulatory systems contribute to alcohol use disorder (AUD) risk, which may partially arise through effects on reward-related neural function. The C allele of the PER1 rs3027172 single nucleotide polymorphism (SNP) reduces PER1 expression in cells incubated with cortisol and has been associated with increased risk for adult AUD and problematic drinking among adolescents exposed to high levels of familial psychosocial adversity. Using data from undergraduate students who completed the ongoing Duke Neurogenetics Study (DNS) (n = 665), we tested whether exposure to early life stress (ELS; Childhood Trauma Questionnaire) moderates the association between rs3027172 genotype and later problematic alcohol use (Alcohol Use Disorders Identification Test) as well as ventral striatum (VS) reactivity to reward (card-guessing task while functional magnetic resonance imaging data were acquired). Initial analyses found that PER1 rs3027172 genotype interacted with ELS to predict both problematic drinking and VS reactivity; minor C allele carriers, who were also exposed to elevated ELS reported greater problematic drinking and exhibited greater ventral striatum reactivity to reward-related stimuli. When gene × covariate and environment × covariate interactions were controlled for, the interaction predicting problematic alcohol use remained significant (p < 0.05, corrected) while the interaction predicting VS reactivity was no longer significant. These results extend our understanding of relationships between PER1 genotype, ELS, and problematic alcohol use, and serve as a cautionary tale on the importance of controlling for potential confounders in studies of moderation including gene × environment interactions. PMID:27065929

  8. PER1 rs3027172 genotype interacts with early life stress to predict problematic alcohol use, but not reward-related ventral striatum activity

    Directory of Open Access Journals (Sweden)

    David eBaranger

    2016-03-01

    Full Text Available Increasing evidence suggests that the circadian and stress regulatory systems contribute to alcohol use disorder (AUD risk, which may partially arise through effects on reward-related neural function. The C allele of the PER1 rs3027172 single nucleotide polymorphism reduces PER1 expression in cells incubated with cortisol and has been associated with increased risk for adult AUD and problematic drinking among adolescents exposed to high levels of familial psychosocial adversity. Using data from undergraduate students who completed the ongoing Duke Neurogenetics Study (n=665, we tested whether exposure to early life stress (ELS; Childhood Trauma Questionnaire moderates the association between rs3027172 genotype and later problematic alcohol use (Alcohol Use Disorders Identification Test as well as ventral striatum (VS reactivity to reward (card-guessing task while functional magnetic resonance imaging data were acquired. Initial analyses found that PER1 rs3027172 genotype interacted with ELS to predict both problematic drinking and VS reactivity; minor C allele carriers, who were also exposed to elevated ELS reported greater problematic drinking and exhibited greater ventral striatum reactivity to reward-related stimuli. When gene x covariate and environment x covariate interactions were controlled for, the interaction predicting problematic alcohol use remained significant (p<0.05, corrected while the interaction predicting VS reactivity was no longer significant. These results extend our understanding of relationships between PER1 genotype, early life stress, and problematic alcohol use, and serve as a cautionary tale on the importance of controlling for potential confounders in studies of moderation including gene x environment interactions.

  9. Left-right functional asymmetry of ventral hippocampus depends on aversiveness of situations.

    Science.gov (United States)

    Sakaguchi, Yukitoshi; Sakurai, Yoshio

    2017-05-15

    Many studies suggest that animals exhibit lateralized behaviors during aversive situations, and almost all animals exhibit right hemisphere-dominant behaviors associated with fear or anxiety. However, which brain structure in each hemisphere underlies such lateralized function is unclear. In this study, we focused on the hippocampus and investigated the effects of bilateral and unilateral lesions of the ventral hippocampus (VH) on anxiety-like behavior using the successive alleys test. We also examined the expression of c-fos in the VH, which was induced by an aversive situation. Results revealed that consistent right VH dominance trended with the anxiety level. Weaker anxiety induced both right and left VH functions, whereas stronger anxiety induced right VH function. From these results, we conclude that animals are able to adaptively regulate their behaviors to avoid aversive stimuli by changing the functional dominance of their left and right VH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  11. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum

    Science.gov (United States)

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.

    2015-01-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206

  12. Being right is its own reward: load and performance related ventral striatum activation to correct responses during a working memory task in youth.

    Science.gov (United States)

    Satterthwaite, Theodore D; Ruparel, Kosha; Loughead, James; Elliott, Mark A; Gerraty, Raphael T; Calkins, Monica E; Hakonarson, Hakon; Gur, Ruben C; Gur, Raquel E; Wolf, Daniel H

    2012-07-02

    The ventral striatum (VS) is a critical brain region for reinforcement learning and motivation. Intrinsically motivated subjects performing challenging cognitive tasks engage reinforcement circuitry including VS even in the absence of external feedback or incentives. However, little is known about how such VS responses develop with age, relate to task performance, and are influenced by task difficulty. Here we used fMRI to examine VS activation to correct and incorrect responses during a standard n-back working memory task in a large sample (n=304) of healthy children, adolescents and young adults aged 8-22. We found that bilateral VS activates more strongly to correct than incorrect responses, and that the VS response scales with the difficulty of the working memory task. Furthermore, VS response was correlated with discrimination performance during the task, and the magnitude of VS response peaked in mid-adolescence. These findings provide evidence for scalable intrinsic reinforcement signals during standard cognitive tasks, and suggest a novel link between motivation and cognition during adolescent development. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Accessing orthographic representations from speech: the role of left ventral occipitotemporal cortex in spelling.

    Science.gov (United States)

    Ludersdorfer, Philipp; Kronbichler, Martin; Wimmer, Heinz

    2015-04-01

    The present fMRI study used a spelling task to investigate the hypothesis that the left ventral occipitotemporal cortex (vOT) hosts neuronal representations of whole written words. Such an orthographic word lexicon is posited by cognitive dual-route theories of reading and spelling. In the scanner, participants performed a spelling task in which they had to indicate if a visually presented letter is present in the written form of an auditorily presented word. The main experimental manipulation distinguished between an orthographic word spelling condition in which correct spelling decisions had to be based on orthographic whole-word representations, a word spelling condition in which reliance on orthographic whole-word representations was optional and a phonological pseudoword spelling condition in which no reliance on such representations was possible. To evaluate spelling-specific activations the spelling conditions were contrasted with control conditions that also presented auditory words and pseudowords, but participants had to indicate if a visually presented letter corresponded to the gender of the speaker. We identified a left vOT cluster activated for the critical orthographic word spelling condition relative to both the control condition and the phonological pseudoword spelling condition. Our results suggest that activation of left vOT during spelling can be attributed to the retrieval of orthographic whole-word representations and, thus, support the position that the left vOT potentially represents the neuronal equivalent of the cognitive orthographic word lexicon. © 2014 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  14. Treatment for Alexia with Agraphia Following Left Ventral Occipito-Temporal Damage: Strengthening Orthographic Representations Common to Reading and Spelling

    Science.gov (United States)

    Kim, Esther S.; Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2015-01-01

    Purpose: Damage to left ventral occipito-temporal cortex can give rise to written language impairment characterized by pure alexia/letter-by-letter (LBL) reading, as well as surface alexia and agraphia. The purpose of this study was to examine the therapeutic effects of a combined treatment approach to address concurrent LBL reading with surface…

  15. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum.

    Science.gov (United States)

    Brenes, Juan C; Fornaguera, Jaime

    2009-03-02

    This study examined the effect of fluoxetine, a selective serotonin (5-HT) reuptake inhibitor, on isolation-induced changes on sucrose consumption and preference, spontaneous open-field activity, forced swimming behavior, and on tissue levels of 5-HT and dopamine (DA) in hippocampus and ventral striatum (VS). Male Sprague-Dawley rats were reared in social isolation or group housing from postnatal day 28. Thirty-two days later, half of the isolated animals were orally treated with fluoxetine (10mg/kg/day) during the following 34 days. At the end of this period, behavior was assessed and afterward ex-vivo tissue samples were obtained. It was found that fluoxetine restored isolation-increased sucrose consumption and immobility behavior, without affecting locomotor activity, which appeared slightly increased in isolated groups both treated and untreated. In the hippocampus, isolation rearing depleted 5-HT contents and increased 3,4-dihydroxyphenylacetic acid (DOPAC) levels, as well as 5-HT and DA turnover. These neurochemical alterations were reversed by fluoxetine. In VS, treated and untreated isolated rats showed higher 5-HT levels than grouped congeners. Although fluoxetine did not affect 5-HT and DA contents in this region, it slightly reversed the alterations in the 5-HT and DA turnover observed in isolated rats. Overall, social isolation impaired incentive and escape motivated behaviors. At the neurochemical level, isolation rearing affected 5-HT rather than DA activity, and this differential effect was more noticeable in hippocampus than in VS. The chronic treatment with fluoxetine during the last month of rearing somewhat prevented these behavioral and neurochemical alterations. Our data suggest that isolation rearing is an appropriate procedure to model some developmental-related alterations underlying depression disorders.

  16. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  17. Functional Specialization within the Striatum along Both the Dorsal/Ventral and Anterior/Posterior Axes during Associative Learning via Reward and Punishment

    Science.gov (United States)

    Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E. L.

    2011-01-01

    The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what…

  18. Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus.

    Science.gov (United States)

    Aizawa, Hidenori; Bianco, Isaac H; Hamaoka, Takanori; Miyashita, Toshio; Uemura, Osamu; Concha, Miguel L; Russell, Claire; Wilson, Stephen W; Okamoto, Hitoshi

    2005-02-08

    The habenulae are part of an evolutionarily highly conserved limbic-system conduction pathway that connects telencephalic nuclei to the interpeduncular nucleus (IPN) of the midbrain . In zebrafish, unilateral activation of the Nodal signaling pathway in the left brain specifies the laterality of the asymmetry of habenular size . We show "laterotopy" in the habenulo-interpeduncular projection in zebrafish, i.e., the stereotypic, topographic projection of left-sided habenular axons to the dorsal region of the IPN and of right-sided habenular axons to the ventral IPN. This asymmetric projection is accounted for by a prominent left-right (LR) difference in the size ratio of the medial and lateral habenular sub-nuclei, each of which specifically projects either to ventral or dorsal IPN targets. Asymmetric Nodal signaling directs the orientation of laterotopy but is dispensable for the establishment of laterotopy itself. Our results reveal a mechanism by which information distributed between left and right sides of the brain can be transmitted bilaterally without loss of LR coding, which may play a crucial role in functional lateralization of the vertebrate brain .

  19. Reading skill related to left ventral occipitotemporal cortex during a phonological awareness task in 5–6-year old children

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2018-04-01

    Full Text Available The left ventral occipitotemporal cortex (vOT is important in visual word recognition. Studies have shown that the left vOT is generally observed to be involved in spoken language processing in skilled readers, suggesting automatic access to corresponding orthographic information. However, little is known about where and how the left vOT is involved in the spoken language processing of young children with emerging reading ability. In order to answer this question, we examined the relation of reading ability in 5–6-year-old kindergarteners to the activation of vOT during an auditory phonological awareness task. Two experimental conditions: onset word pairs that shared the first phoneme and rhyme word pairs that shared the final biphone/triphone, were compared to allow a measurement of vOT’s activation to small (i.e., onsets and large grain sizes (i.e., rhymes. We found that higher reading ability was associated with better accuracy of the onset, but not the rhyme, condition. In addition, higher reading ability was only associated with greater sensitivity in the posterior left vOT for the contrast of the onset versus rhyme condition. These results suggest that acquisition of reading results in greater specialization of the posterior vOT to smaller rather than larger grain sizes in young children. Keywords: Left vOT, Grain size, Phonological awareness, Spoken language

  20. Comparison of four methods of measurement on [11C]Raclopride  binding potential using regional specificity in the striatum

    DEFF Research Database (Denmark)

    Peterson, Ericka; Gjedde, Albert; Møller, Arne

    Background: Dopamine transmission in the striatum and especially the ventral striatum (VST), a structure which includes the nucleus  accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and the reinforcing effects of virtually all drugs...... as reference for all three methods. Mean pB were calculated for left and right putamen, caudate and VST. Correlations between the left and right pB were examined for each striatal region. The results of the three methods were also compared. Results: For all three methods, there was a highly significant...... correlation between the left and right caudate and putamen (pVST (0.01

  1. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    Science.gov (United States)

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  2. Unimodal and multimodal regions for logographic language processing in left ventral occipitotemporal cortex

    Directory of Open Access Journals (Sweden)

    Yuan eDeng

    2013-09-01

    Full Text Available The human neocortex appears to contain a dedicated visual word form area (VWFA and an adjacent multimodal (visual/auditory area. However, these conclusions are based on functional magnetic resonance imaging (fMRI of alphabetic language processing, languages that have clear grapheme-to-phoneme correspondence (GPC rules that make it difficult to disassociate visual-specific processing from form-to-sound mapping. In contrast, the Chinese language has no clear GPC rules. Therefore, the current study examined whether native Chinese readers also have the same VWFA and multimodal area. Two cross-modal tasks, phonological retrieval of visual words and orthographic retrieval of auditory words, were adopted. Different task requirements were also applied to explore how different levels of cognitive processing modulate activation of putative VWFA-like and multimodal-like regions. Results showed that the left occipitotemporal sulcus responded exclusively to visual inputs and an adjacent region, the left inferior temporal gyrus, showed comparable activation for both visual and auditory inputs. Surprisingly, processing levels did not significantly alter activation of these two regions. These findings indicated that there are both unimodal and multimodal word areas for non-alphabetic language reading, and that activity in these two word-specific regions are independent of task demands at the linguistic level.

  3. The causal role of category-specific neuronal representations in the left ventral premotor cortex (PMv) in semantic processing.

    Science.gov (United States)

    Cattaneo, Zaira; Devlin, Joseph T; Salvini, Francesca; Vecchi, Tomaso; Silvanto, Juha

    2010-02-01

    The left ventral premotor cortex (PMv) is preferentially activated by exemplars of tools, suggestive of category specificity in this region. Here we used state-dependent transcranial magnetic stimulation (TMS) to investigate the causal role of such category-specific neuronal representations in the encoding of tool words. Priming to a category name (either "Tool" or "Animal") was used with the objective of modulating the initial activation state of this region prior to application of TMS and the presentation of the target stimulus. When the target word was an exemplar of the "Tool" category, the effects of TMS applied over PMv (but not PMd) interacted with priming history by facilitating reaction times on incongruent trials while not affecting congruent trials. This congruency/TMS interaction implies that the "Tool" and "Animal" primes had a differential effect on the initial activation state of the left PMv and implies that this region is one neural locus of category-specific behavioral priming for the "Tool" category. TMS applied over PMv had no behavioral effect when the target stimulus was an exemplar of the "Animal" category, regardless of whether the target word was congruent or incongruent with the prime. That TMS applied over the left PMv interacted with a priming effect that extended from the category name ("Tool") to exemplars of that category suggests that this region contains neuronal representation associated with a specific semantic category. Our results also demonstrate that the state-dependent effects obtained in the combination of visual priming and TMS are useful in the study of higher-level cognitive functions. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  4. Association of ventral striatum monoamine oxidase-A binding and functional connectivity in antisocial personality disorder with high impulsivity: A positron emission tomography and functional magnetic resonance imaging study.

    Science.gov (United States)

    Kolla, Nathan J; Dunlop, Katharine; Downar, Jonathan; Links, Paul; Bagby, R Michael; Wilson, Alan A; Houle, Sylvain; Rasquinha, Fawn; Simpson, Alexander I; Meyer, Jeffrey H

    2016-04-01

    Impulsivity is a core feature of antisocial personality disorder (ASPD) associated with abnormal brain function and neurochemical alterations. The ventral striatum (VS) is a key region of the neural circuitry mediating impulsive behavior, and low monoamine oxidase-A (MAO-A) level in the VS has shown a specific relationship to the impulsivity of ASPD. Because it is currently unknown whether phenotypic MAO-A markers can influence brain function in ASPD, we investigated VS MAO-A level and the functional connectivity (FC) of two seed regions, superior and inferior VS (VSs, VSi). Nineteen impulsive ASPD males underwent [(11)C] harmine positron emission tomography scanning to measure VS MAO-A VT, an index of MAO-A density, and resting-state functional magnetic resonance imaging that assessed the FC of bilateral seed regions in the VSi and VSs. Subjects also completed self-report impulsivity measures. Results revealed functional coupling of the VSs with bilateral dorsomedial prefrontal cortex (DMPFC) that was correlated with VS MAO-A VT (r=0.47, p=0.04), and functional coupling of the VSi with right hippocampus that was anti-correlated with VS MAO-A VT (r=-0.55, p=0.01). Additionally, VSs-DMPFC FC was negatively correlated with NEO Personality Inventory-Revised impulsivity (r=-0.49, p=0.03), as was VSi-hippocampus FC with Barratt Impulsiveness Scale-11 motor impulsiveness (r=-0.50, p=0.03). These preliminary results highlight an association of VS MAO-A level with the FC of striatal regions linked to impulsive behavior in ASPD and suggest that phenotype-based brain markers of ASPD have relevance to understanding brain function. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  5. Divergent responses of the amygdala and ventral striatum predict stress-related problem drinking in young adults: possible differential markers of affective and impulsive pathways of risk for alcohol use disorder.

    Science.gov (United States)

    Nikolova, Y S; Knodt, A R; Radtke, S R; Hariri, A R

    2016-03-01

    Prior work suggests that there may be two distinct pathways of alcohol use disorder (AUD) risk: one associated with positive emotion enhancement and behavioral impulsivity, and another associated with negative emotion relief and coping. We sought to map these two pathways onto individual differences in neural reward and threat processing assessed using blood-oxygen-level-dependent functional magnetic resonance imaging in a sample of 759 undergraduate students (426 women, mean age 19.65±1.24 years) participating in the Duke Neurogenetics Study. We demonstrate that problem drinking is highest in the context of stress and in those with one of two distinct neural phenotypes: (1) a combination of relatively low reward-related activity of the ventral striatum (VS) and high threat-related reactivity of the amygdala; or (2) a combination of relatively high VS activity and low amygdala reactivity. In addition, we demonstrate that the relationship between stress and problem alcohol use is mediated by impulsivity, as reflected in monetary delay discounting rates, for those with high VS-low amygdala reactivity, and by anxious/depressive symptomatology for those with the opposite neural risk phenotype. Across both neural phenotypes, we found that greater divergence between VS and amygdala reactivity predicted greater risk for problem drinking. Finally, for those individuals with the low VS-high amygdala risk phenotype we found that stress not only predicted the presence of AUD diagnosis at the time of neuroimaging but also subsequent problem drinking reported 3 months following study completion. These results offer new insight into the neural basis of AUD risk and suggest novel biological targets for early individualized treatment or prevention.

  6. Divergent responses of the amygdala and ventral striatum predict stress-related problem drinking in young adults: Possible differential markers of affective and impulsive pathways of risk for alcohol use disorder

    Science.gov (United States)

    Nikolova, Yuliya S.; Knodt, Annchen R.; Radtke, Spenser R.; Hariri, Ahmad R.

    2015-01-01

    Prior work suggests there may be two distinct pathways of alcohol use disorder (AUD) risk: one associated with positive emotion enhancement and behavioral impulsivity, and one associated with negative emotion relief and coping. We sought to map these two pathways onto individual differences in neural reward and threat processing assessed using BOLD fMRI in a sample of 759 undergraduate students (426 women, mean age 19.65±1.24) participating in the Duke Neurogenetics Study. We demonstrate that problem drinking is highest in the context of stress and in those with one of two distinct neural phenotypes: 1) a combination of relatively low reward-related activity of the ventral striatum (VS) and high threat-related reactivity of the amygdala; or 2) a combination of relatively high VS activity and low amygdala reactivity. In addition, we demonstrate that the relationship between stress and problem alcohol use is mediated by impulsivity, as reflected in monetary delay discounting rates, for those with high VS-low amygdala reactivity, and by anxious/depressive symptomatology for those with the opposite neural risk phenotype. Across both neural phenotypes, we found that greater divergence between VS and amygdala reactivity predicted greater risk for problem drinking. Finally, for those individuals with the low VS-high amygdala risk phenotype we found that stress not only predicted the presence of a DSM-IV diagnosed AUD at the time of neuroimaging, but also subsequent problem drinking reported three months following study completion. These results offer new insight into the neural basis of AUD risk and suggest novel biological targets for early individualized treatment or prevention. PMID:26122584

  7. Top-down and bottom-up influences on the left ventral occipito-temporal cortex during visual word recognition: an analysis of effective connectivity.

    Science.gov (United States)

    Schurz, Matthias; Kronbichler, Martin; Crone, Julia; Richlan, Fabio; Klackl, Johannes; Wimmer, Heinz

    2014-04-01

    The functional role of the left ventral occipito-temporal cortex (vOT) in visual word processing has been studied extensively. A prominent observation is higher activation for unfamiliar but pronounceable letter strings compared to regular words in this region. Some functional accounts have interpreted this finding as driven by top-down influences (e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Price and Devlin [2011]: Trends Cogn Sci 15:246-253), while others have suggested a difference in bottom-up processing (e.g., Glezer et al. [2009]: Neuron 62:199-204; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594). We used dynamic causal modeling for fMRI data to test bottom-up and top-down influences on the left vOT during visual processing of regular words and unfamiliar letter strings. Regular words (e.g., taxi) and unfamiliar letter strings of pseudohomophones (e.g., taksi) were presented in the context of a phonological lexical decision task (i.e., "Does the item sound like a word?"). We found no differences in top-down signaling, but a strong increase in bottom-up signaling from the occipital cortex to the left vOT for pseudohomophones compared to words. This finding can be linked to functional accounts which assume that the left vOT contains neurons tuned to complex orthographic features such as morphemes or words [e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594]: For words, bottom-up signals converge onto a matching orthographic representation in the left vOT. For pseudohomophones, the propagated signals do not converge, but (partially) activate multiple orthographic word representations, reflected in increased effective connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  8. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.

    Science.gov (United States)

    Piacentino, Michael L; Chung, Oliver; Ramachandran, Janani; Zuch, Daniel T; Yu, Jia; Conaway, Evan A; Reyna, Arlene E; Bradham, Cynthia A

    2016-04-01

    Skeletal patterning in the sea urchin embryo requires coordinated signaling between the pattern-dictating ectoderm and the skeletogenic primary mesenchyme cells (PMCs); recent studies have begun to uncover the molecular basis for this process. Using an unbiased RNA-Seq-based screen, we have previously identified the TGF-ß superfamily ligand, LvBMP5-8, as a skeletal patterning gene in Lytechinus variegatus embryos. This result is surprising, since both BMP5-8 and BMP2/4 ligands have been implicated in sea urchin dorsal-ventral (DV) and left-right (LR) axis specification. Here, we demonstrate that zygotic LvBMP5-8 is required for normal skeletal patterning on the left side, as well as for normal PMC positioning during gastrulation. Zygotic LvBMP5-8 is required for expression of the left-side marker soxE, suggesting that LvBMP5-8 is required for left-side specification. Interestingly, we also find that LvBMP5-8 knockdown suppresses serotonergic neurogenesis on the left side. While LvBMP5-8 overexpression is sufficient to dorsalize embryos, we find that zygotic LvBMP5-8 is not required for normal DV specification or development. In addition, ectopic LvBMP5-8 does not dorsalize LvBMP2/4 morphant embryos, indicating that, in the absence of BMP2/4, BMP5-8 is insufficient to specify dorsal. Taken together, our data demonstrate that zygotic LvBMP5-8 signaling is essential for left-side specification, and for normal left-side skeletal and neural patterning, but not for DV specification. Thus, while both BMP2/4 and BMP5-8 regulate LR axis specification, BMP2/4 but not zygotic BMP5-8 regulates DV axis specification in sea urchin embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Reduced amygdala and ventral striatal activity to happy faces in PTSD is associated with emotional numbing.

    Directory of Open Access Journals (Sweden)

    Kim L Felmingham

    Full Text Available There has been a growing recognition of the importance of reward processing in PTSD, yet little is known of the underlying neural networks. This study tested the predictions that (1 individuals with PTSD would display reduced responses to happy facial expressions in ventral striatal reward networks, and (2 that this reduction would be associated with emotional numbing symptoms. 23 treatment-seeking patients with Posttraumatic Stress Disorder were recruited from the treatment clinic at the Centre for Traumatic Stress Studies, Westmead Hospital, and 20 trauma-exposed controls were recruited from a community sample. We examined functional magnetic resonance imaging responses during the presentation of happy and neutral facial expressions in a passive viewing task. PTSD participants rated happy facial expression as less intense than trauma-exposed controls. Relative to controls, PTSD participants revealed lower activation to happy (-neutral faces in ventral striatum and and a trend for reduced activation in left amygdala. A significant negative correlation was found between emotional numbing symptoms in PTSD and right ventral striatal regions after controlling for depression, anxiety and PTSD severity. This study provides initial evidence that individuals with PTSD have lower reactivity to happy facial expressions, and that lower activation in ventral striatal-limbic reward networks may be associated with symptoms of emotional numbing.

  10. Shape abnormalities of the striatum in Alzheimer's disease.

    Science.gov (United States)

    de Jong, Laura W; Ferrarini, Luca; van der Grond, Jeroen; Milles, Julien R; Reiber, Johan H C; Westendorp, Rudi G J; Bollen, Edward L E M; Middelkoop, Huub A M; van Buchem, Mark A

    2011-01-01

    Postmortem studies show pathological changes in the striatum in Alzheimer's disease (AD). Here, we examine the surface of the striatum in AD and assess whether changes of the surface are associated with impaired cognitive functioning. The shape of the striatum (n. accumbens, caudate nucleus, and putamen) was compared between 35 AD patients and 35 individuals without cognitive impairment. The striatum was automatically segmented from 3D T1 magnetic resonance images and automatic shape modeling tools (Growing Adaptive Meshes) were applied for morphometrical analysis. Repeated permutation tests were used to identify locations of consistent shape deformities of the striatal surface in AD. Linear regression models, corrected for age, gender, educational level, head size, and total brain parenchymal volume were used to assess the relation between cognitive performance and local surface deformities. In AD patients, differences of shape were observed on the medial head of the caudate nucleus and on the ventral lateral putamen, but not on the accumbens. The head of the caudate nucleus and ventral lateral putamen are characterized by extensive connections with the orbitofrontal and medial temporal cortices. Severity of cognitive impairment was associated with the degree of deformity of the surfaces of the accumbens, rostral medial caudate nucleus, and ventral lateral putamen. These findings provide evidence for the hypothesis that in AD primarily associative and limbic cerebral networks are affected.

  11. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    Science.gov (United States)

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  12. Basketball training increases striatum volume.

    Science.gov (United States)

    Park, In Sung; Lee, Kea Joo; Han, Jong Woo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah; Rhyu, Im Joo

    2011-02-01

    The striatum is associated with the learning and retention of motor skills. Several studies have shown that motor learning induces neuronal changes in the striatum. We investigated whether macroscopic change in striatum volume occurs in a segment of the human population who learned basketball-related motor skills and practiced them throughout their entire athletic life. Three-dimensional magnetic resonance imaging volumetry was performed in basketball players and healthy controls, and striatum volumes were compared based on basketball proficiency, region and side. We identified morphological enlargement in the striatum of basketball players in comparison with controls. Our results suggest that continued practice and repetitive performance of basketball-related motor skills may induce plastic structural changes in the human striatum. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  14. Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons.

    Science.gov (United States)

    Cooch, Nisha K; Stalnaker, Thomas A; Wied, Heather M; Bali-Chaudhary, Sheena; McDannald, Michael A; Liu, Tzu-Lan; Schoenbaum, Geoffrey

    2015-05-21

    The ventral striatum has long been proposed as an integrator of biologically significant associative information to drive actions. Although inputs from the amygdala and hippocampus have been much studied, the role of prominent inputs from orbitofrontal cortex (OFC) are less well understood. Here, we recorded single-unit activity from ventral striatum core in rats with sham or ipsilateral neurotoxic lesions of lateral OFC, as they performed an odour-guided spatial choice task. Consistent with prior reports, we found that spiking activity recorded in sham rats during cue sampling was related to both reward magnitude and reward identity, with higher firing rates observed for cues that predicted more reward. Lesioned rats also showed differential activity to the cues, but this activity was unbiased towards larger rewards. These data support a role for OFC in shaping activity in the ventral striatum to represent the biological significance of associative information in the environment.

  15. Ventral hernia repair

    Science.gov (United States)

    ... incarcerated) in the hernia and become impossible to push back in. This is usually painful. The blood supply ... you are lying down or that you cannot push back in. Risks The risks of ventral hernia repair ...

  16. Torakal Ventral Cord Herniation

    Directory of Open Access Journals (Sweden)

    Sermin Tok

    2015-11-01

    Full Text Available  Ventral cord herniation is a rare cause of focal myelopathy due to herniation of the thoracic cord through a dural defect.It is also known by a variety of other terms such as spontaneous thoracic cord herniation or idiopathic spinal cord herniation.The key feature is focal distortion and rotation of the cord with no CSF seen between it and the ventral theca.

  17. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

    Science.gov (United States)

    Menegas, William; Bergan, Joseph F; Ogawa, Sachie K; Isogai, Yoh; Umadevi Venkataraju, Kannan; Osten, Pavel; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2015-01-01

    Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense ‘clusters’ of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs. DOI: http://dx.doi.org/10.7554/eLife.10032.001 PMID:26322384

  18. Regional specialization within the human striatum for diverse psychological functions.

    Science.gov (United States)

    Pauli, Wolfgang M; O'Reilly, Randall C; Yarkoni, Tal; Wager, Tor D

    2016-02-16

    Decades of animal and human neuroimaging research have identified distinct, but overlapping, striatal zones, which are interconnected with separable corticostriatal circuits, and are crucial for the organization of functional systems. Despite continuous efforts to subdivide the human striatum based on anatomical and resting-state functional connectivity, characterizing the different psychological processes related to each zone remains a work in progress. Using an unbiased, data-driven approach, we analyzed large-scale coactivation data from 5,809 human imaging studies. We (i) identified five distinct striatal zones that exhibited discrete patterns of coactivation with cortical brain regions across distinct psychological processes and (ii) identified the different psychological processes associated with each zone. We found that the reported pattern of cortical activation reliably predicted which striatal zone was most strongly activated. Critically, activation in each functional zone could be associated with distinct psychological processes directly, rather than inferred indirectly from psychological functions attributed to associated cortices. Consistent with well-established findings, we found an association of the ventral striatum (VS) with reward processing. Confirming less well-established findings, the VS and adjacent anterior caudate were associated with evaluating the value of rewards and actions, respectively. Furthermore, our results confirmed a sometimes overlooked specialization of the posterior caudate nucleus for executive functions, often considered the exclusive domain of frontoparietal cortical circuits. Our findings provide a precise functional map of regional specialization within the human striatum, both in terms of the differential cortical regions and psychological functions associated with each striatal zone.

  19. Learning and motivation in the human striatum.

    Science.gov (United States)

    Shohamy, Daphna

    2011-06-01

    The past decade has seen a dramatic change in our understanding of the role of the striatum in behavior. Early perspectives emphasized a role for the striatum in habitual learning of stimulus-response associations and sequences of actions. Recent advances from human neuroimaging research suggest a broader role for the striatum in motivated learning. New findings demonstrate that the striatum represents multiple learning signals and highlight the contribution of the striatum across many cognitive domains and contexts. Recent findings also emphasize interactions between the striatum and other specialized brain systems for learning. Together, these findings suggest that the striatum contributes to a distributed network that learns to select actions based on their predicted value in order to optimize behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.

    Science.gov (United States)

    Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César

    2016-09-01

    According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.

  1. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    Science.gov (United States)

    Mattfeld, Aaron T.; Stark, Craig E. L.

    2015-01-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298

  2. Neurokinin B-producing projection neurons in the lateral stripe of the striatum and cell clusters of the accumbens nucleus in the rat.

    Science.gov (United States)

    Zhou, Ligang; Furuta, Takahiro; Kaneko, Takeshi

    2004-12-06

    Neurons producing preprotachykinin B (PPTB), the precursor of neurokinin B, constitute 5% of neurons in the dorsal striatum and project to the substantia innominata (SI) selectively. In the ventral striatum, PPTB-producing neurons are collected mainly in the lateral stripe of the striatum (LSS) and cell clusters of the accumbens nucleus (Acb). In the present study, we first examined the distribution of PPTB-immunoreactive neurons in rat ventral striatum and found that a large part of the PPTB-immunoreactive cell clusters was continuous to the LSS, but a smaller part was not. Thus, we divided the PPTB-immunoreactive cell clusters into the LSS-associated and non-LSS-associated ones. We next investigated the projection targets of the PPTB-producing ventral striatal neurons by combining immunofluorescence labeling and retrograde tracing. After injection of Fluoro-Gold into the basal component of the SI (SIb) and medial part of the interstitial nucleus of posterior limb of the anterior commissure, many PPTB-immunoreactive neurons were retrogradely labeled in the LSS-associated cell clusters and LSS, respectively. When the injection site included the ventral part of the sublenticular component of the SI(SIsl), retrogradely labeled neurons showed PPTB-immunoreactivity frequently in non-LSS-associated cell clusters. Furthermore, these PPTB-immunoreactive projections were confirmed by the double-fluorescence method after anterograde tracer injection into the ventral striatum containing the cell clusters. Since the dorsalmost part of the SIsl is known to receive strong inputs from PPTB-producing dorsal striatal neurons, the present results indicate that PPTB-producing ventral striatal neurons project to basal forebrain target regions in parallel with dorsal striatal neurons without significant convergence. 2004 Wiley-Liss, Inc.

  3. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.

    Directory of Open Access Journals (Sweden)

    Miriam Matamales

    Full Text Available Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17% aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the

  4. A common currency for the computation of motivational values in the human striatum

    Science.gov (United States)

    Li, Yansong; Dreher, Jean-Claude

    2015-01-01

    Reward comparison in the brain is thought to be achieved through the use of a ‘common currency’, implying that reward value representations are computed on a unique scale in the same brain regions regardless of the reward type. Although such a mechanism has been identified in the ventro-medial prefrontal cortex and ventral striatum in the context of decision-making, it is less clear whether it similarly applies to non-choice situations. To answer this question, we scanned 38 participants with fMRI while they were presented with single cues predicting either monetary or erotic rewards, without the need to make a decision. The ventral striatum was the main brain structure to respond to both cues while showing increasing activity with increasing expected reward intensity. Most importantly, the relative response of the striatum to monetary vs erotic cues was correlated with the relative motivational value of these rewards as inferred from reaction times. Similar correlations were observed in a fronto-parietal network known to be involved in attentional focus and motor readiness. Together, our results suggest that striatal reward value signals not only obey to a common currency mechanism in the absence of choice but may also serve as an input to adjust motivated behaviour accordingly. PMID:24837478

  5. Efferent projections of the dorsal ventricular ridge and the striatum in the Tegu lizard. Tupinambis nigropunctatus.

    Science.gov (United States)

    Voneida, T J; Sligar, C M

    1979-07-01

    A H3 proline-leucine mixture was injected into the dorsal ventricular ridge (DVR) and striatum of the Tegu lizard in order to determine their efferent projections. The brains were processed according to standard radioautographic technique, and counterstained with cresyl violet. DVR projections were generally restricted to the telencephalon, while striatal projections were limited to diencephalic and mesencephalic structures. Thus the anterior DVR projects ipsilaterally to nuclei sphericus and lateralis amygdalae, striatum (ipsilateral and contralateral) ventromedial nucleus of the hypothalamus, nucleus accumbens, anterior olfactory nucleus, nucleus of the lateral olfactory tract and lateral pallium. Posterior DVR projections enter ipsilateral anterior olfactory nucleus, lateral and interstitial amygdalar nuclei, olfactory tubercle and bulb, nucleus of the lateral olfactory tract and a zone surrounding the ventromedial hypothalamic nucleus. Labeled axons from striatal injections pass caudally in the lateral forebrain bundle to enter (via dorsal peduncle) nuclei dorsomedialis, medialis posterior, entopeduncularis anterior, and a zone surrounding nucleus rotundus. Others join the ventral peduncle of LFB and enter ventromedial nucleus (thalami), while the remaining fibers continue caudally in the ventral peduncle to the mesencephalic prerubral field, central gray, substantia nigra, nucleus intercollicularis, reticular formation and pretectal nucleus posterodorsalis. These results are discussed in relation to the changing notions regarding terminology, classification and functions of dorsl ventricular ridge and striatum.

  6. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  7. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  8. Mapping a lateralisation gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Karsten eSpecht

    2013-01-01

    Recent models on speech perception propose a dual stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend towards the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus...

  9. Mapping a lateralization gradient within the ventral stream for auditory speech perception

    OpenAIRE

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus....

  10. Large Ventral Hernia

    Directory of Open Access Journals (Sweden)

    Meryl Abrams, MD

    2018-04-01

    Full Text Available History of present illness: A 46-year-old female presented to the emergency department (ED with diffuse abdominal pain and three days of poor oral intake associated with non-bilious, non-bloody vomiting. Initial vital signs consisted of a mild resting tachycardia of 111 with a temperature of 38.0 degrees Celsius (°C. On examination, the patient had a large pannus extending to the knees, which contained a hernia. She was tender in this region on examination. Laboratory values included normal serum chemistries and mild leukocytosis of 12.2. The patient reports that her abdomen had been enlarging over the previous 8 years but had not been painful until 3 days prior to presentation. The patient had no associated fever, chills, diarrhea, constipation, chest pain or shortness of breath. Significant findings: Computed tomography (CT scan with intravenous (IV contrast of the abdomen and pelvis demonstrated a large pannus containing a ventral hernia with abdominal contents extending below the knees (white circle, elongation of mesenteric vessels to accommodate abdominal contents outside of the abdomen (white arrow and air fluid levels (white arrow indicating a small bowel obstruction. Discussion: Hernias are a common chief complaint seen in the emergency department. The estimated lifetime risk of a spontaneous abdominal hernia is 5%.1 The most common type of hernia is inguinal while the next most common type of hernia is femoral, which are more common in women.1 Ventral hernias can be epigastric, incisional, or primary abdominal. An asymptomatic, reducible hernia can be followed up as outpatient with a general surgeon for elective repair.2 Hernias become problematic when they are either incarcerated or strangulated. A hernia is incarcerated when the hernia is irreducible and strangulated when its blood supply is compromised. A complicated hernia, especially strangulated, can have a mortality of greater than 50%.1 It is key to perform a thorough history

  11. Reward processing dysfunction in ventral striatum and orbitofrontal cortex in Parkinson's disease

    NARCIS (Netherlands)

    du Plessis, Stéfan; Bossert, Meija; Vink, Matthijs; van den Heuvel, Leigh; Bardien, Soraya; Emsley, Robin; Buckle, Chanelle; Seedat, Soraya; Carr, Jonathan

    BACKGROUND: Parkinson's disease is a growing concern as the longevity of the world's population steadily increases. Both ageing and Parkinson's disease have an impact on dopamine neurotransmission. It is therefore important to investigate their relative impact on the fronto-striatal reward system.

  12. Missing motoric manipulations: rethinking the imaging of the ventral striatum and dopamine in human reward.

    Science.gov (United States)

    Kareken, David A

    2018-01-26

    Human neuroimaging studies of natural rewards and drugs of abuse frequently assay the brain's response to stimuli that, through Pavlovian learning, have come to be associated with a drug's rewarding properties. This might be characterized as a 'sensorial' view of the brain's reward system, insofar as the paradigms are designed to elicit responses to a reward's (drug's) sight, aroma, or flavor. A different field of research nevertheless suggests that the mesolimbic dopamine system may also be critically involved in the motor behaviors provoked by such stimuli. This brief review and commentary surveys some of the preclinical data supporting this more "efferent" (motoric) view of the brain's reward system, and discusses what such findings might mean for how human brain imaging studies of natural rewards and drugs of abuse are designed.

  13. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts

    OpenAIRE

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; Nunzio, Cosimo De; Giannitsas, Kostas; Shokeir, Ahmed A.

    2012-01-01

    Objectives To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Patients and methods Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2?cm, range 1.5?5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture...

  14. Versatility of the ventral approach in bulbar urethroplasty using dorsal, ventral or dorsal plus ventral oral grafts.

    Science.gov (United States)

    Palminteri, Enzo; Berdondini, Elisa; Fusco, Ferdinando; De Nunzio, Cosimo; Giannitsas, Kostas; Shokeir, Ahmed A

    2012-06-01

    To investigate the versatility of the ventral urethrotomy approach in bulbar reconstruction with buccal mucosa (BM) grafts placed on the dorsal, ventral or dorsal plus ventral urethral surface. Between 1999 and 2008, 216 patients with bulbar strictures underwent BM graft urethroplasty using the ventral-sagittal urethrotomy approach. Of these patients, 32 (14.8%; mean stricture 3.2 cm, range 1.5-5) had a dorsal graft urethroplasty (DGU), 121 (56%; mean stricture 3.7, range 1.5-8) a ventral graft urethroplasty (VGU), and 63 (29.2%; mean stricture 3.4, range 1.5-10) a dorsal plus ventral graft urethroplasty (DVGU). The strictured urethra was opened by a ventral-sagittal urethrotomy and BM graft was inserted dorsally or ventrally or dorsal plus ventral to augment the urethral plate. The median follow-up was 37 months. The overall 5-year actuarial success rate was 91.4%. The 5-year actuarial success rates were 87.8%, 95.5% and 86.3% for the DGU, VGU and DVGU, respectively. There were no statistically significant differences among the three groups. Success rates decreased significantly only with a stricture length of >4 cm. In BM graft bulbar urethroplasties the ventral urethrotomy access is simple and versatile, allowing an intraoperative choice of dorsal, ventral or combined dorsal and ventral grafting, with comparable success rates.

  15. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    Science.gov (United States)

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  16. Hemiballism due to the lesion in the striatum demonstrated by CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, S; Ito, N; Hirayama, K [Chiba Univ. (Japan). School of Medicine; Tochigi, S

    1981-09-01

    Two cases of hemiballism due to vascular lesions in the striatum demonstrated by CT scan were reported. Case 1 was a 58-year-old man with hypertension and diabetes mellitus, who had cerebral hemorrhage in the right striatum. Hemiballistic movements, which were confined to his face, neck and trunk as well as limbs of the left side, appeared soon after CVA and improved on treatment with haloperidol up to 4 mg per day. Case 2 was a 63-year-old woman with hypertension, who had probable cerebral infarct in the right striatum. The hemiballistic movements, confined to her right side, appeared soon after CVA and improved on treatment with chlorpromazine up to 50 mg per day, and perphenazine up to 6 mg per day. Whereas case 1 had contralateral hemiballism, case 2 had homolateral hemiballism, both due to vascular lesions in the striatum. Although it has been generally accepted, from postmortem and experimental studies, that the lesion responsible for hemiballism was localized in the contralateral subthalamic nucleus, a few cases of hemiballism have been reported, in which the subthalamic nucleus (Luys' body) and its connections appeared to be intact at necropsy. The present cases of hemiballism with involvement of the striatum without involvement of the subthalamic nucleus by CT scan, seem to be the first reported cases. It is not clear in the CT scan whether the subthalamic nucleus is also involved in addition to the striatal lesion, however, it is unlikely due to different vascular supplies to these areas. From a clinical and an experimental point of view, we would like to propose that hemiballism can occur due to the lesion in the striatum, especially the caudate nucleus even when the subthalamic nucleus and its connections are intact.

  17. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2004-01-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2→3.9%, CA: 57.4→14.1%, ST: 17.7→0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction

  18. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [{sup 11}C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2{yields}3.9%, CA: 57.4{yields}14.1%, ST: 17.7{yields}0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction.

  19. Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories

    OpenAIRE

    Antzoulatos, Evan G.; Miller, Earl K.

    2011-01-01

    Learning to classify diverse experiences into meaningful groups, like categories, is fundamental to normal cognition. To understand its neural basis, we simultaneously recorded from multiple electrodes in the lateral prefrontal cortex and dorsal striatum, two interconnected brain structures critical for learning. Each day, monkeys learned to associate novel, abstract dot-based categories with a right vs. left saccade. Early on, when they could acquire specific stimulus-response associations, ...

  20. The Danish ventral hernia database

    DEFF Research Database (Denmark)

    Helgstrand, Frederik; Jorgensen, Lars Nannestad

    2016-01-01

    Aim: The Danish Ventral Hernia Database (DVHD) provides national surveillance of current surgical practice and clinical postoperative outcomes. The intention is to reduce postoperative morbidity and hernia recurrence, evaluate new treatment strategies, and facilitate nationwide implementation of ...... of operations and is an excellent tool for observing changes over time, including adjustment of several confounders. This national database registry has impacted on clinical practice in Denmark and led to a high number of scientific publications in recent years.......Aim: The Danish Ventral Hernia Database (DVHD) provides national surveillance of current surgical practice and clinical postoperative outcomes. The intention is to reduce postoperative morbidity and hernia recurrence, evaluate new treatment strategies, and facilitate nationwide implementation...... to the surgical repair are recorded. Data registration is mandatory. Data may be merged with other Danish health registries and information from patient questionnaires or clinical examinations. Descriptive data: More than 37,000 operations have been registered. Data have demonstrated high agreement with patient...

  1. Ventral pallidum roles in reward and motivation.

    Science.gov (United States)

    Smith, Kyle S; Tindell, Amy J; Aldridge, J Wayne; Berridge, Kent C

    2009-01-23

    In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.

  2. Pulvinar projections to the striatum and amygdala

    Directory of Open Access Journals (Sweden)

    Jonathan D Day-Brown

    2010-11-01

    Full Text Available Visually-guided movement is possible in the absence of conscious visual perception, a phenomenon referred to as blindsight. Similarly, fearful images can elicit emotional responses in the absence of their conscious perception. Both capabilities are thought to be mediated by pathways from the retina through the superior colliculus (SC and pulvinar nucleus. To define potential pathways that underlie behavioral responses to unperceived visual stimuli, we examined the projections from the pulvinar nucleus to the striatum and amygdala in the tree shrew (Tupaia belangeri, a species considered to be a protypical primate. The tree shrew brain has a large pulvinar nucleus that contains two SC-recipient subdivisions; the dorsal (Pd and central (Pc pulvinar both receive topographic (specific projections from SC, and Pd receives an additional nontopographic (diffuse projection from SC (Chomsung et al., 2008; JCN 510:24-46. Anterograde and retrograde tract tracing revealed that both Pd and Pc project to the caudate and putamen, and Pd, but not Pc, additionally projects to the lateral amygdala. Using immunocytochemical staining for substance P (SP and parvalbumin (PV to reveal the patch/matrix organization of tree shrew striatum, we found that SP-rich/PV-poor patches interlock with a PV-rich/SP-poor matrix. Confocal microscopy revealed that tracer-labeled pulvinostriatal terminals preferentially innervate the matrix. Electron microscopy revealed that the postsynaptic targets of tracer-labeled pulvino-striatal and pulvino-amygdala terminals are spines, demonstrating that the pulvinar nucleus projects to the spiny output cells of the striatum matrix and the lateral amygdala, potentially relaying: 1 topographic visual information from SC to striatum to aid in guiding precise movements, and 2 nontopographic visual information from SC to the amygdala alerting the animal to potentially dangerous visual images.

  3. Response inhibition signals and miscoding of direction in dorsomedial striatum

    Directory of Open Access Journals (Sweden)

    Daniel W Bryden

    2012-09-01

    Full Text Available The ability to inhibit action is critical for everyday behavior and is affected by a variety of disorders. Behavioral control and response inhibition is thought to depend on a neural circuit that includes the dorsal striatum, yet the neural signals that lead to response inhibition and its failure are unclear. To address this issue, we recorded from neurons in rat dorsomedial striatum (mDS in a novel task in which rats responded to a spatial cue that signaled that reward would be delivered either to the left or to the right. On 80% of trials rats were instructed to respond in the direction cued by the light (GO. On 20% of trials a second light illuminated instructing the rat to refrain from making the cued movement and move in the opposite direction (STOP. Many neurons in mDS encoded direction, firing more or less strongly for GO movements made ipsilateral or contralateral to the recording electrode. Neurons that fired more strongly for contralateral GO responses were more active when rats were faster, showed reduced activity on STOP trials, and miscoded direction on errors, suggesting that when these neurons were overly active, response inhibition failed. Neurons that decreased firing for contralateral movement were excited during trials in which the rat was required to stop the ipsilateral movement. For these neurons activity was reduced when errors were made and was negatively correlated with movement time suggesting that when these neurons were less active on STOP trials, response inhibition failed. Finally, the activity of a significant number of neurons represented a global inhibitory signal, firing more strongly during response inhibition regardless of response direction. Breakdown by cell type suggests that putative medium spiny neurons tended to fire more strongly under STOP trials, whereas putative interneurons exhibited both activity patterns. 

  4. Ventral striatal activity correlates with memory confidence for old- and new-responses in a difficult recognition test.

    Directory of Open Access Journals (Sweden)

    Ulrike Schwarze

    Full Text Available Activity in the ventral striatum has frequently been associated with retrieval success, i.e., it is higher for hits than correct rejections. Based on the prominent role of the ventral striatum in the reward circuit, its activity has been interpreted to reflect the higher subjective value of hits compared to correct rejections in standard recognition tests. This hypothesis was supported by a recent study showing that ventral striatal activity is higher for correct rejections than hits when the value of rejections is increased by external incentives. These findings imply that the striatal response during recognition is context-sensitive and modulated by the adaptive significance of "oldness" or "newness" to the current goals. The present study is based on the idea that not only external incentives, but also other deviations from standard recognition tests which affect the subjective value of specific response types should modulate striatal activity. Therefore, we explored ventral striatal activity in an unusually difficult recognition test that was characterized by low levels of confidence and accuracy. Based on the human uncertainty aversion, in such a recognition context, the subjective value of all high confident decisions is expected to be higher than usual, i.e., also rejecting items with high certainty is deemed rewarding. In an accompanying behavioural experiment, participants rated the pleasantness of each recognition response. As hypothesized, ventral striatal activity correlated in the current unusually difficult recognition test not only with retrieval success, but also with confidence. Moreover, participants indicated that they were more satisfied by higher confidence in addition to perceived oldness of an item. Taken together, the results are in line with the hypothesis that ventral striatal activity during recognition codes the subjective value of different response types that is modulated by the context of the recognition test.

  5. Ultrastructural changes of compressed lumbar ventral nerve roots following decompression

    International Nuclear Information System (INIS)

    El-Barrany, Wagih G.; Hamdy, Raid M.; Al-Hayani, Abdulmonem A.; Jalalah, Sawsan M.; Al-Sayyad, Mohammad J.

    2006-01-01

    To study whether there will be permanent lumbar nerve rot scanning or degeneration secondary to continuous compression followed by decompression on the nerve roots, which can account for postlaminectomy leg weakness or back pain. The study was performed at the Department of Anatomy, Faulty of Medicine, king Abdulaziz University, Jeddah, Kingdom of Saudi Arabia during 2003-2005. Twenty-six adult male New Zealand rabbits were used in the present study. The ventral roots of the left fourth lumbar nerve were clamped for 2 weeks then decompression was allowed by removal of the clips. The left ventral roots of the fourth lumbar nerve were excised for electron microscopic study. One week after nerve root decompression, the ventral root peripheral to the site of compression showed signs of Wallerian degeneration together with signs of regeneration. Schwann cells and myelinated nerve fibers showed severe degenerative changes. Two weeks after decompression, the endoneurium of the ventral root showed extensive edema with an increase in the regenerating myelinated and unmyentilated nerve fibers, and fibroblasts proliferation. Three weeks after decompression, the endoneurium showed an increase in the regenerating myelinated and unmyelinated nerve fibers with diminution of the endoneurial edema, and number of macrophages and an increase in collagen fibrils. Five and 6 weeks after decompression, the endoneurium showed marked diminution of the edema, macrophages, mast cells and fibroblasts. The enoneurium was filed of myelinated and unmyelinated nerve fibers and collagen fibrils. Decompression of the compressed roots of a spinal nerve is followed by regeneration of the nerve fibers and nerve and nerve recovery without endoneurial scarring. (author)

  6. Ventral impressions on the hypopharynx

    International Nuclear Information System (INIS)

    Daschner, H.; Hannig, C.

    1991-01-01

    Two impressions can be seen on the ventral aspect of the hypopharynx and upper oesophagus; on static images it is difficult to differentiate these from small tumours. In order to evaluate this region more accurately, we have examined 150 patients by means of rapid rate cinematography. In 52.6% we found a constant irregular or convex impression formed by the cricoid; in the other cases this was not seen or was quite minimal. In 93% a sub-cricoid impression could be demonstrated which was due to lax mucosa. Characteristically this showed a variable appearance during the passage of a bolus. Only the cricoid impression was associated with dysphagia. (orig.) [de

  7. Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder.

    Science.gov (United States)

    Pintsuk, Julia; Borroto-Escuela, Dasiel O; Pomierny, Bartosz; Wydra, Karolina; Zaniewska, Magdalena; Filip, Malgorzata; Fuxe, Kjell

    2016-05-01

    In the current study behavioral and biochemical experiments were performed to study changes in the allosteric A2AR-D2R interactions in the ventral and dorsal striatum after cocaine self-administration versus corresponding yoked saline control. By using ex vivo [(3)H]-raclopride/quinpirole competition experiments, the effects of the A2AR agonist CGS 21680 (100 nM) on the KiH and KiL values of the D2-like receptor (D2-likeR) were determined. One major result was a significant reduction in the D2-likeR agonist high affinity state observed with CGS 21680 after cocaine self-administration in the ventral striatum compared with the yoked saline group. The results therefore support the hypothesis that A2AR agonists can at least in part counteract the motivational actions of cocaine. This action is mediated via the D2-likeR by targeting the A2AR protomer of A2AR-D2-like R heteroreceptor complexes in the ventral striatum, which leads to the reduction of D2-likeR protomer recognition through the allosteric receptor-receptor interaction. In contrast, in the dorsal striatum the CGS 21680-induced antagonistic modulation in the D2-likeR agonist high affinity state was abolished after cocaine self-administration versus the yoked saline group probably due to a local dysfunction/disruption of the A2AR-D2-like R heteroreceptor complexes. Such a change in the dorsal striatum in cocaine self-administration can contribute to the development of either locomotor sensitization, habit-forming learning and/or the compulsive drug seeking by enhanced D2-likeR protomer signaling. Potential differences in the composition and stoichiometry of the A2AR-D2R heteroreceptor complexes, including differential recruitment of sigma 1 receptor, in the ventral and dorsal striatum may explain the differential regional changes observed in the A2A-D2-likeR interactions after cocaine self-administration. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Amphioxus mouth after dorso-ventral inversion.

    Science.gov (United States)

    Kaji, Takao; Reimer, James D; Morov, Arseniy R; Kuratani, Shigeru; Yasui, Kinya

    2016-01-01

    Deuterostomes (animals with 'secondary mouths') are generally accepted to develop the mouth independently of the blastopore. However, it remains largely unknown whether mouths are homologous among all deuterostome groups. Unlike other bilaterians, in amphioxus the mouth initially opens on the left lateral side. This peculiar morphology has not been fully explained in the evolutionary developmental context. We studied the developmental process of the amphioxus mouth to understand whether amphioxus acquired a new mouth, and if so, how it is related to or differs from mouths in other deuterostomes. The left first somite in amphioxus produces a coelomic vesicle between the epidermis and pharynx that plays a crucial role in the mouth opening. The vesicle develops in association with the amphioxus-specific Hatschek nephridium, and first opens into the pharynx and then into the exterior as a mouth. This asymmetrical development of the anterior-most somites depends on the Nodal-Pitx signaling unit, and the perturbation of laterality-determining Nodal signaling led to the disappearance of the vesicle, producing a symmetric pair of anterior-most somites that resulted in larvae lacking orobranchial structures. The vesicle expressed bmp2/4, as seen in ambulacrarian coelomic pore-canals, and the mouth did not open when Bmp2/4 signaling was blocked. We conclude that the amphioxus mouth, which uniquely involves a mesodermal coelomic vesicle, shares its evolutionary origins with the ambulacrarian coelomic pore-canal. Our observations suggest that there are at least three types of mouths in deuterostomes, and that the new acquisition of chordate mouths was likely related to the dorso-ventral inversion that occurred in the last common ancestor of chordates.

  9. Functional inactivation of dorsal medial striatum alters behavioral flexibility and recognition process in mice.

    Science.gov (United States)

    Qiao, Yanhua; Wang, Xingyue; Ma, Lian; Li, Shengguang; Liang, Jing

    2017-10-01

    Deficits in behavioral flexibility and recognition memory are commonly observed in mental illnesses and neurodegenerative diseases. Abnormality of the striatum has been implicated in an association with the pathology of these diseases. However, the exact roles of striatal heterogeneous structures in these cognitive functions are still unknown. In the present study, we investigated the effects of suppressing neuronal activity in the dorsomedial striatum (DMStr) and nucleus accumbens core (NAcC) on reversal learning and novelty recognition in mice. In addition, the locomotor activity, anxiety-like behavior and social interaction were analyzed. Neuronal inactivation was performed by expressing lentivirus-mediated tetanus toxin (TeNT) in the target regions. The results showed that reversal learning was facilitated by neuronal inactivation in the DMStr but not the NAcC, which was attributable to accelerated extinction of acquired strategy but not to impaired memory retention. Furthermore, mice with NAcC inactivation spent more time exploring a novel object than a familiar one, comparable to control mice. In contrast, mice with DMStr inactivation exhibited no preference to a novel environment during the novel object or place recognition test. The DMStr mice also exhibited decreased anxiety level. No phenotypic effect was observed in the locomotion or social interaction in mice with either DMStr or NAcC inactivation. Altogether, these findings suggest that the DMStr but not the ventral area of the striatum plays a crucial role in learning and memory by coordinating spatial exploration as well as mediating information updating. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor

    Science.gov (United States)

    Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.

    2012-01-01

    The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796

  11. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    Science.gov (United States)

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  12. Urethritis due to corynebacterium striatum: An emerging germ.

    Science.gov (United States)

    Frikh, Mohammed; El Yaagoubi, Imad; Lemnouer, Abdelhay; Elouennass, Mostafa

    2015-01-01

    Corynedbacterium striatum (CS) is a Gram-positive coryneform bacillus that is part of mucous and skin flora. It has been considered as a causative agent of many infections in intensive care, neurology, traumatology and urology, but was never implicated in non-gonococcal urethritis. We report the case of a nosocomial urethritis due to Corynebacterium striatum following resection of an intrameatus condyloma.

  13. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder.

    Science.gov (United States)

    Herbort, Maike C; Soch, Joram; Wüstenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, Jürgen; Walter, Henrik; Roepke, Stefan; Schott, Björn H

    2016-01-01

    Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BPD patients and 23 age-matched female healthy controls using functional magnetic resonance imaging (fMRI). Participants performed a delayed monetary incentive task in which three categories of objects predicted a potential gain, loss, or neutral outcome. Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11). Compared to healthy controls, BPD patients exhibited significantly reduced fMRI responses of the ventral striatum/nucleus accumbens (VS/NAcc) to both reward-predicting and loss-predicting cues. BIS-11 scores showed a significant positive correlation with the VS/NAcc reward anticipation responses in healthy controls, and this correlation, while also nominally positive, failed to reach significance in BPD patients. BPD patients, on the other hand, exhibited a significantly negative correlation between ventral striatal loss anticipation responses and BIS-11 scores, whereas this correlation was significantly positive in healthy controls. Our results suggest that patients with BPD show attenuated anticipation responses in the VS/NAcc and, furthermore, that higher impulsivity in BPD patients might be related to impaired prediction of aversive outcomes.

  14. A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Networks in OCD-Associated Repetitive Behaviors.

    Science.gov (United States)

    Wood, Jesse; Ahmari, Susanne E

    2015-01-01

    Significant interest in the mechanistic underpinnings of obsessive-compulsive disorder (OCD) has fueled research on the neural origins of compulsive behaviors. Converging clinical and preclinical evidence suggests that abnormal repetitive behaviors are driven by dysfunction in cortico-striatal-thalamic-cortical (CSTC) circuits. These findings suggest that compulsive behaviors arise, in part, from aberrant communication between lateral orbitofrontal cortex (OFC) and dorsal striatum. An important body of work focused on the role of this network in OCD has been instrumental to progress in the field. Disease models focused primarily on these regions, however, fail to capture an important aspect of the disorder: affective dysregulation. High levels of anxiety are extremely prevalent in OCD, as is comorbidity with major depressive disorder. Furthermore, deficits in processing rewards and abnormalities in processing emotional stimuli are suggestive of aberrant encoding of affective information. Accordingly, OCD can be partially characterized as a disease in which behavioral selection is corrupted by exaggerated or dysregulated emotional states. This suggests that the networks producing OCD symptoms likely expand beyond traditional lateral OFC and dorsal striatum circuit models, and highlights the need to cast a wider net in our investigation of the circuits involved in generating and sustaining OCD symptoms. Here, we address the emerging role of medial OFC, amygdala, and ventral tegmental area projections to the ventral striatum (VS) in OCD pathophysiology. The VS receives strong innervation from these affect and reward processing regions, and is therefore poised to integrate information crucial to the generation of compulsive behaviors. Though it complements functions of dorsal striatum and lateral OFC, this corticolimbic-VS network is less commonly explored as a potential source of the pathology underlying OCD. In this review, we discuss this network's potential role as

  15. Cephalad-renal ectopia: Bilateral subdiaphragmatic kidneys in a patient of omphalocele with ventral hernia

    Directory of Open Access Journals (Sweden)

    Jitendra Parmar

    2016-04-01

    Full Text Available Renal ectopia is a rare congenital anomaly. Thoracic ectopic kidney was being considered as rarest, however no case of bilateral subdiaphragmatic kidneys in omphalocele patients presented with ventral hernia has been reported yet, as per our best of knowledge. This is a report of a 5- year-old male patient who presented with ventral hernia after omphalocele. A thorough examination, laboratory, and radiological investigations including ultrasonography, plain abdominal x-ray, intravenous urogram, and computerized tomography revealed bilateral subdiaphragmatic ectopic kidneys with azygos continuation of inferior vena cava, retro-aortic left renal vein and spina bifida

  16. Primary ventral or groin hernia in pregnancy

    DEFF Research Database (Denmark)

    Oma, E; Bay-Nielsen, M; Jensen, K K

    2017-01-01

    BACKGROUND: Prevalence, management, and risk of emergency operation for primary ventral or groin hernia in pregnancy are unknown. The objective of this study was to estimate the prevalences of primary ventral or groin hernia in pregnancy and the potential risks for elective and emergency repair...... was conducted to identify patients registered with a primary ventral or groin hernia in pregnancy. Follow-up was conducted by review of medical record notes within the Capital Region of Denmark supplemented with structured telephone interviews on indication. RESULTS: In total, 20,714 pregnant women were...... included in the study cohort. Seventeen (0.08%) and 25 (0.12%) women were registered with a primary ventral and groin hernia, respectively. None underwent elective or emergency repair in pregnancy, and all had uncomplicated childbirth. In 10 women, the groin bulge disappeared spontaneously after delivery...

  17. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    constants using data recorded during 240 min of FDOPA circulation in normal monkeys and in monkeys with unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions. Use of the extended models increased the magnitudes of K(D)(i) and k(D)(3) in striatum; in the case of k(D)(3), variance...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  18. Children with ADHD Symptoms Show Decreased Activity in Ventral Striatum during the Anticipation of Reward, Irrespective of ADHD Diagnosis

    Science.gov (United States)

    van Hulst, Branko M.; de Zeeuw, Patrick; Bos, Dienke J.; Rijks, Yvonne; Neggers, Sebastiaan F. W.; Durston, Sarah

    2017-01-01

    Background: Changes in reward processing are thought to be involved in the etiology of attention-deficit/hyperactivity disorder (ADHD), as well as other developmental disorders. In addition, different forms of therapy for ADHD rely on reinforcement principles. As such, improved understanding of reward processing in ADHD could eventually lead to…

  19. Major depression in mothers predict reduced ventral striatum activation in adolescent female offspring with and without depression

    Science.gov (United States)

    Prior research has identified reduced reward-related brain activation as a promising endophenotype for the early identification of adolescents with major depressive disorder. However, it is unclear whether reduced reward-related brain activation constitutes a true vulnerability for major depressive ...

  20. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls....

  1. Children with ADHD symptoms show decreased activity in ventral striatum during the anticipation of reward, irrespective of ADHD diagnosis

    NARCIS (Netherlands)

    van Hulst, Branko M.; de Zeeuw, Patrick; Bos, Dienke J.; Rijks, Yvonne; Neggers, Sebastiaan F W; Durston, Sarah

    2017-01-01

    Background: Changes in reward processing are thought to be involved in the etiology of attention-deficit/hyperactivity disorder (ADHD), as well as other developmental disorders. In addition, different forms of therapy for ADHD rely on reinforcement principles. As such, improved understanding of

  2. Development of striatal patch/matrix organization in organotypic co-cultures of perinatal striatum, cortex and substantia nigra.

    Science.gov (United States)

    Snyder-Keller, A; Costantini, L C; Graber, D J

    2001-01-01

    Organotypic cultures of fetal or early postnatal striatum were used to assess striatal patch formation and maintenance in the presence or absence of dopaminergic and glutamatergic influences. Vibratome-cut slices of the striatum prepared from embryonic day 19 to postnatal day 4 rat pups were maintained in static culture on clear membrane inserts in Dulbecco's modified Eagle's medium/F12 (1:1) with 20% horse serum. Some were co-cultured with embryonic day 12-16 ventral mesencephalon and/or embryonic day 19 to postnatal day 4 cortex, which produced a dense dopaminergic innervation and a modest cortical innervation. Donors of striatal and cortical tissue were previously injected with bromo-deoxyuridine (BrdU) on embryonic days 13 and 14 in order to label striatal neurons destined to populate the patch compartment of the striatum. Patches of BrdU-immunoreactive cells were maintained in organotypic cultures of late prenatal (embryonic days 20-22) or early postnatal striatum in the absence of nigral dopaminergic or cortical glutamatergic influences. In slices taken from embryonic day 19 fetuses prior to the time of in vivo patch formation, patches were observed to form after 10 days in vitro, in 39% of nigral-striatal co-cultures compared to 6% of striatal slices cultured alone or in the presence of cortex only. Patches of dopaminergic fibers, revealed by tyrosine hydroxylase immunoreactivity, were observed in the majority of nigral-striatal co-cultures. Immunostaining for the AMPA-type glutamate receptor GluR1 revealed a dense patch distribution in nearly all cultures, which developed in embryonic day 19 cultures after at least six days in vitro. These findings indicate that striatal patch/matrix organization is maintained in organotypic culture, and can be induced to form in vitro in striatal slices removed from fetuses prior to the time of in vivo patch formation. Furthermore, dopaminergic innervation from co-cultured pieces of ventral mesencephalon enhances patch

  3. Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity.

    Science.gov (United States)

    Brevers, Damien; Noël, Xavier; He, Qinghua; Melrose, James A; Bechara, Antoine

    2016-05-01

    The aim of this study was to examine the impact of different neural systems on monetary decision making in frequent poker gamblers, who vary in their degree of problem gambling. Fifteen frequent poker players, ranging from non-problem to high-problem gambling, and 15 non-gambler controls were scanned using functional magnetic resonance imaging (fMRI) while performing the Iowa Gambling Task (IGT). During IGT deck selection, between-group fMRI analyses showed that frequent poker gamblers exhibited higher ventral-striatal but lower dorsolateral prefrontal and orbitofrontal activations as compared with controls. Moreover, using functional connectivity analyses, we observed higher ventral-striatal connectivity in poker players, and in regions involved in attentional/motor control (posterior cingulate), visual (occipital gyrus) and auditory (temporal gyrus) processing. In poker gamblers, scores of problem gambling severity were positively associated with ventral-striatal activations and with the connectivity between the ventral-striatum seed and the occipital fusiform gyrus and the middle temporal gyrus. Present results are consistent with findings from recent brain imaging studies showing that gambling disorder is associated with heightened motivational-reward processes during monetary decision making, which may hamper one's ability to moderate his level of monetary risk taking. © 2015 Society for the Study of Addiction.

  4. Altered structural covariance of the striatum in functional dyspepsia patients.

    Science.gov (United States)

    Liu, P; Zeng, F; Yang, F; Wang, J; Liu, X; Wang, Q; Zhou, G; Zhang, D; Zhu, M; Zhao, R; Wang, A; Gong, Q; Liang, F

    2014-08-01

    Functional dyspepsia (FD) is thought to be involved in dysregulation within the brain-gut axis. Recently, altered striatum activation has been reported in patients with FD. However, the gray matter (GM) volumes in the striatum and structural covariance patterns of this area are rarely explored. The purpose of this study was to examine the GM volumes and structural covariance patterns of the striatum between FD patients and healthy controls (HCs). T1-weighted magnetic resonance images were obtained from 44 FD patients and 39 HCs. Voxel-based morphometry (VBM) analysis was adopted to examine the GM volumes in the two groups. The caudate- or putamen-related regions identified from VBM analysis were then used as seeds to map the whole brain voxel-wise structural covariance patterns. Finally, a correlation analysis was used to investigate the effects of FD symptoms on the striatum. The results showed increased GM volumes in the bilateral putamen and right caudate. Compared with the structural covariance patterns of the HCs, the FD-related differences were mainly located in the amygdala, hippocampus/parahippocampus (HIPP/paraHIPP), thalamus, lingual gyrus, and cerebellum. And significant positive correlations were found between the volumes in the striatum and the FD duration in the patients. These findings provided preliminary evidence for GM changes in the striatum and different structural covariance patterns in patients with FD. The current results might expand our understanding of the pathophysiology of FD. © 2014 John Wiley & Sons Ltd.

  5. Mapping a lateralisation gradient within the ventral stream for auditory speech perception

    Directory of Open Access Journals (Sweden)

    Karsten eSpecht

    2013-10-01

    Full Text Available Recent models on speech perception propose a dual stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend towards the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic imaging (fMRI studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesised, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a lateralisation gradient. This increasing leftward lateralisation was particularly evident for the left superior temporal sulcus (STS and more anterior parts of the temporal lobe.

  6. Mapping a lateralization gradient within the ventral stream for auditory speech perception.

    Science.gov (United States)

    Specht, Karsten

    2013-01-01

    Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.

  7. Mere Exposure: Preference Change for Novel Drinks Reflected in Human Ventral Tegmental Area.

    Science.gov (United States)

    Ballard, Ian C; Hennigan, Kelly; McClure, Samuel M

    2017-05-01

    Preferences for novel stimuli tend to develop slowly over many exposures. Psychological accounts of this effect suggest that it depends on changes in the brain's valuation system. Participants consumed a novel fluid daily for 10 days and underwent fMRI on the first and last days. We hypothesized that changes in activation in areas associated with the dopamine system would accompany changes in preference. The change in activation in the ventral tegmental area (VTA) between sessions scaled with preference change. Furthermore, a network comprising the sensory thalamus, posterior insula, and ventrolateral striatum showed differential connectivity with the VTA that correlated with individual changes in preference. Our results suggest that the VTA is centrally involved in both assigning value to sensory stimuli and influencing downstream regions to translate these value signals into subjective preference. These results have important implications for models of dopaminergic function and behavioral addiction.

  8. Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women.

    Science.gov (United States)

    Hermans, Erno J; Bos, Peter A; Ossewaarde, Lindsey; Ramsey, Nick F; Fernández, Guillén; van Honk, Jack

    2010-08-01

    Correlational evidence in humans shows that levels of the androgen hormone testosterone are positively related to reinforcement sensitivity and competitive drive. Structurally similar anabolic-androgenic steroids (AAS) are moreover widely abused, and animal studies show that rodents self-administer testosterone. These observations suggest that testosterone exerts activational effects on mesolimbic dopaminergic pathways involved in incentive processing and reinforcement regulation. However, there are no data on humans supporting this hypothesis. We used functional magnetic resonance imaging (fMRI) to investigate the effects of testosterone administration on neural activity in terminal regions of the mesolimbic pathway. In a placebo-controlled double-blind crossover design, 12 healthy women received a single sublingual administration of .5 mg of testosterone. During MRI scanning, participants performed a monetary incentive delay task, which is known to elicit robust activation of the ventral striatum during reward anticipation. Results show a positive main effect of testosterone on the differential response in the ventral striatum to cues signaling potential reward versus nonreward. Notably, this effect interacted with levels self-reported intrinsic appetitive motivation: individuals with low intrinsic appetitive motivation exhibited larger testosterone-induced increases but had smaller differential responses after placebo. Thus, the present study lends support to the hypothesis that testosterone affects activity in terminal regions of the mesolimbic dopamine system but suggests that such effects may be specific to individuals with low intrinsic appetitive motivation. By showing a potential mechanism underlying central reinforcement of androgen use, the present findings may moreover have implications for our understanding of the pathophysiology of AAS dependency. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Neuroimaging Studies Of Striatum In Cognition, Part I: Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Jean-Sebastien eProvost

    2015-10-01

    Full Text Available The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.

  10. Dopamine Transporters in Striatum Correlate with Deactivation in the Default Mode Network during Visuospatial Attention

    International Nuclear Information System (INIS)

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang L.; Ernst, T.; Fowler, J.S.

    2009-01-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [ 11 C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  11. Reward prediction error signal enhanced by striatum-amygdala interaction explains the acceleration of probabilistic reward learning by emotion.

    Science.gov (United States)

    Watanabe, Noriya; Sakagami, Masamichi; Haruno, Masahiko

    2013-03-06

    Learning does not only depend on rationality, because real-life learning cannot be isolated from emotion or social factors. Therefore, it is intriguing to determine how emotion changes learning, and to identify which neural substrates underlie this interaction. Here, we show that the task-independent presentation of an emotional face before a reward-predicting cue increases the speed of cue-reward association learning in human subjects compared with trials in which a neutral face is presented. This phenomenon was attributable to an increase in the learning rate, which regulates reward prediction errors. Parallel to these behavioral findings, functional magnetic resonance imaging demonstrated that presentation of an emotional face enhanced reward prediction error (RPE) signal in the ventral striatum. In addition, we also found a functional link between this enhanced RPE signal and increased activity in the amygdala following presentation of an emotional face. Thus, this study revealed an acceleration of cue-reward association learning by emotion, and underscored a role of striatum-amygdala interactions in the modulation of the reward prediction errors by emotion.

  12. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  13. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.

    Science.gov (United States)

    Schönberg, Tom; Daw, Nathaniel D; Joel, Daphna; O'Doherty, John P

    2007-11-21

    The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance: those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated significantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals, likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence of this type of learning on the functional integrity of the dopaminergic striatal system in humans.

  14. Study on microstructure of corpus striatum in patients with idiopathic rapid eye movement sleep behavior disorder using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Ya-meng ZHANG

    2017-07-01

    Full Text Available Objective To investigate the structure of corpus striatum and the integrity of white matter fiber in patients with Parkinson's disease (PD and idiopathic rapid eye movement sleep behavior disorder (iRBD.  Methods Twelve patients with iRBD, 12 patients with PD and 10 healthy subjects that were well matched in gender, age and education were enrolled in this study. Head MRI examination was performed to all subjects to observe the changes of corpus striatum structure (the gray matter volume and the integrity of white matter fiber [fractional anisotropy (FA] by combining voxel?based morphometry (VBM and diffusion tensor imaging (DTI.  Results Compared with healthy subjects, the gray matter volume of left caudate nucleus was significantly decreased (P < 0.005, and FA values of left caudate nucleus (P < 0.005, right caudate nucleus (P < 0.001 and right putamen (P < 0.05 were all significantly reduced in iRBD patients; FA value of right putamen was significantly decreased in PD patients (P < 0.05. Compared with PD patients, the gray matter volume of left caudate nucleus of iRBD patients was significantly reduced (P < 0.001, FA values of left caudate nucleus (P < 0.01 and right caudate nucleus (P < 0.005 of iRBD patients were significantly reduced.  Conclusions There is atrophy of gray matter volume and extensive white matter fiber impairment in corpus striatum of patients with iRBD, and the white matter fiber impairment was similar to PD, which provides an anatomical evidence for iRBD being presymptom of PD. DOI: 10.3969/j.issn.1672-6731.2017.05.008

  15. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    diffusion of [(18)F]fluorodopamine metabolites from brain. Consequently, time-radioactivity recordings of striatum are progressively influenced by metabolite loss. In linear analyses, the net blood-brain clearance of FDOPA (K(D)(i), ml g(-1) min(-1)) can be corrected for this loss by the elimination rate...... constant k(Lin)(cl) (min(-1)). Similarly, the DOPA decarboxylation rate constant (k(D)(3), min(-1)) calculated by compartmental analysis can also be corrected for metabolite loss by the elimination rate constant k(DA)(9) (min(-1)). To compare the two methods, we calculated the two elimination rate...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  16. Neurochemical characterization of the tree shrew dorsal striatum

    Directory of Open Access Journals (Sweden)

    MATTHEW W RICE

    2011-08-01

    Full Text Available The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington's, Tourette's syndrome, obsessive-compulsive disorders and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei, which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase and acetylcholinesterase immunohistochemistry, and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.

  17. Attention modulates the dorsal striatum response to love stimuli.

    Science.gov (United States)

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.

  18. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  19. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25±2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% ± 1.3% and 10.6% ± 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% ± 4.5% vs. 6.6% ± 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release

  20. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats.

    Science.gov (United States)

    Schumacher, Anett; de Vasconcelos, Anne Pereira; Lecourtier, Lucas; Moser, Andreas; Cassel, Jean-Christophe

    2011-09-23

    Electrical high frequency stimulation (HFS) has been used to treat various neurological and psychiatric diseases. The striatal area contributes to response learning and procedural memory. Therefore, we investigated the effect of striatal HFS application on procedural/declarative-like memory in rats. All rats were trained in a flooded Double-H maze for three days (4 trials/day) to swim to an escape platform hidden at a constant location. The starting place was the same for all trials. After each training session, HFS of the left dorsal striatum was performed over 4h in alternating 20 min periods (during rest time, 10a.m. to 3p.m.). Nineteen hours after the last HFS and right after a probe trial assessing the rats' strategy (procedural vs. declarative-like memory-based choice), animals were sacrificed and the dorsal striatum was quickly removed. Neurotransmitter levels were measured by HPLC. Stimulated rats did not differ from sham-operated and control rats in acquisition performance, but exhibited altered behavior during the probe trial (procedural memory responses being less frequent than in controls). In stimulated rats, GABA levels were significantly increased in the dorsal striatum on both sides. We suggest that HFS of the dorsal striatum does not alter learning behavior in rats but influences the strategy by which the rats solve the task. Given that the HFS-induced increase of GABA levels was found 19 h after stimulation, it can be assumed that HFS has consequences lasting for several hours and which are functionally significant at a behavioral level, at least under our stimulation (frequency, timing, location, side and strength of stimulation) and testing conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Neural correlates of consciousness: a definition of the dorsal and ventral streams and their relation to phenomenology.

    Science.gov (United States)

    Vakalopoulos, Costa

    2005-01-01

    The paper presents a hypothesis for a neural correlate of consciousness. A proposal is made that both the dorsal and ventral streams must be concurrently active to generate conscious awareness and that V1 (striate cortex) provides a serial link between them. An argument is presented against a true extrastriate communication between the dorsal and ventral streams. Secondly, a detailed theory is developed for the structure of the visual hierarchy. Premotor theory states that each organism-object interaction can be described by the two quantitative measures of torque and change in joint position served by the basal ganglia and cerebellum, respectively. This leads to a component theory of motor efference copy providing a fundamental tool for categorizing dorsal and ventral stream networks. The rationale for this is that the dorsal stream specifies spatial coordinates of the external world, which can be coded by the reafference of changes in joint position. The ventral stream is concerned with object recognition and is coded for by forces exerted on the world during a developmental exploratory phase of the organism. The proposed pathways for a component motor efference copy from both the cerebellum and basal ganglia converge on the thalamus and modulate thalamocortical projections via the thalamic reticular nucleus. The origin of the corticopontine projections, which are a massive pathway for cortical information to reach the cerebellum, coincides with the area typically considered as part of the dorsal stream, whereas the entire cortex projects to the striatum. This adds empirical support for a new conceptualization of the visual streams. The model also presents a solution to the binding problem of a neural correlate of consciousness, that is, how a distributed neural network synchronizes its activity during a cognitive event. It represents a reinterpretation of the current status of the visual hierarchy.

  2. Dorsal and ventral streams across sensory modalities

    Institute of Scientific and Technical Information of China (English)

    Anna Sedda; Federica Scarpina

    2012-01-01

    In this review,we describe the current models of dorsal and ventral streams in vision,audition and touch.Available theories take their first steps from the model of Milner and Goodale,which was developed to explain how human actions can be efficiently carried out using visual information.Since then,similar concepts have also been applied to other sensory modalities.We propose that advances in the knowledge of brain functioning can be achieved through models explaining action and perception patterns independently from sensory modalities.

  3. Spike-timing dependent plasticity in the striatum

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2010-06-01

    Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.

  4. Neuronal basis for evaluating selected action in the primate striatum.

    Science.gov (United States)

    Yamada, Hiroshi; Inokawa, Hitoshi; Matsumoto, Naoyuki; Ueda, Yasumasa; Kimura, Minoru

    2011-08-01

    Humans and animals optimize their behavior by evaluating outcomes of individual actions and predicting how much reward the actions will yield. While the estimated values of actions guide choice behavior, the choices are also governed by other behavioral norms, such as rules and strategies. Values, rules and strategies are represented in neuronal activity, and the striatum is one of the best qualified brain loci where these signals meet. To understand the role of the striatum in value- and strategy-based decision-making, we recorded striatal neurons in macaque monkeys performing a behavioral task in which they searched for a reward target by trial-and-error among three alternatives, earned a reward for a target choice, and then earned additional rewards for choosing the same target. This task allowed us to examine whether and how values of targets and strategy, which were defined as negative-then-search and positive-then-repeat (or win-stay-lose-switch), are represented in the striatum. Large subsets of striatal neurons encoded positive and negative outcome feedbacks of individual decisions and actions. Once monkeys made a choice, signals related to chosen actions, their values and search- or repeat-type actions increased and persisted until the outcome feedback appeared. Subsets of neurons exhibited a tonic increase in activity after the search- and repeat-choices following negative and positive feedback in the last trials as the task strategy monkeys adapted. These activity profiles as a heterogeneous representation of decision variables may underlie a part of the process for reinforcement- and strategy-based evaluation of selected actions in the striatum. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. The involvement of the striatum in decision making

    Science.gov (United States)

    Goulet-Kennedy, Julie; Labbe, Sara; Fecteau, Shirley

    2016-01-01

    Decision making has been extensively studied in the context of economics and from a group perspective, but still little is known on individual decision making. Here we discuss the different cognitive processes involved in decision making and its associated neural substrates. The putative conductors in decision making appear to be the prefrontal cortex and the striatum. Impaired decision-making skills in various clinical populations have been associated with activity in the prefrontal cortex and in the striatum. We highlight the importance of strengthening the degree of integration of both cognitive and neural substrates in order to further our understanding of decision-making skills. In terms of cognitive paradigms, there is a need to improve the ecological value of experimental tasks that assess decision making in various contexts and with rewards; this would help translate laboratory learnings into real-life benefits. In terms of neural substrates, the use of neuroimaging techniques helps characterize the neural networks associated with decision making; more recently, ways to modulate brain activity, such as in the prefrontal cortex and connected regions (eg, striatum), with noninvasive brain stimulation have also shed light on the neural and cognitive substrates of decision making. Together, these cognitive and neural approaches might be useful for patients with impaired decision-making skills. The drive behind this line of work is that decision-making abilities underlie important aspects of wellness, health, security, and financial and social choices in our daily lives. PMID:27069380

  6. The issue of ventral versus dorsal approach in bulbar urethral ...

    African Journals Online (AJOL)

    E. Palminteri

    From surgical point of view, the Barbagli Dorsal Grafting by Dor- sal approach [8] gives a good support for the graft; Barbagli stated that his technique offers a wider augmentation than ventral or dorsal grafting using the ventral approach. The good spongiosum covering seems reduce the risk of fistula; in reality there is a ...

  7. Development of the ventral body wall in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Köhler, S. Eleonore; Lamers, Wouter H.

    2015-01-01

    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos

  8. Effects of motion correction for dynamic [{sup 11}C]Raclopride brain PET data on the evaluation of endogenous dopamine release in striatum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Kim, Yu Kyeong; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Choe, Yearn Seong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kang, Eun Joo [Kangwon University, Chunchon (Korea, Republic of)

    2005-10-15

    Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head motion correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. [{sup 11}C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a momentary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task:110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion

  9. Effects of motion correction for dynamic [11C]Raclopride brain PET data on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Kim, Yu Kyeong; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun; Choe, Yearn Seong; Kang, Eun Joo

    2005-01-01

    Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head motion correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a momentary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task:110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction

  10. Gene expression in rat striatum following carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Shuichi Hara

    2017-06-01

    Full Text Available Carbon monoxide (CO poisoning causes brain damage, which is attenuated by treatment with hydrogen [1,2], a scavenger selective to hydroxyl radical (·≡OH [3]. This suggests a role of ·≡OH in brain damage due to CO poisoning. Studies have shown strong enhancement of ·≡OH production in rat striatum by severe CO poisoning with a blood carboxyhemoglobin (COHb level >70% due to 3000 ppm CO, but not less severe CO poisoning with a blood COHb level at approximately 50% due to 1000 ppm CO [4]. Interestingly, 5% O2 causes hypoxia comparable with that by 3000 ppm CO and produces much less •OH than 3000 ppm CO does [4]. In addition, cAMP production in parallel with ·≡OH production [5] might contribute to ·≡OH production [6]. It is likely that mechanisms other than hypoxia contribute to brain damage due to CO poisoning [7]. To search for the mechanisms, we examined the effects of 1000 ppm CO, 3000 ppm CO and 5% O2 on gene expression in rat striatum. All array data have been deposited in the Gene Expression Omnibus (GEO database under accession number GSE94780.

  11. c-Fos induction in mesotelencephalic dopamine pathway projection targets and dorsal striatum following oral intake of sugars and fats in rats.

    Science.gov (United States)

    Dela Cruz, J A D; Coke, T; Karagiorgis, T; Sampson, C; Icaza-Cukali, D; Kest, K; Ranaldi, R; Bodnar, R J

    2015-02-01

    Overconsumption of nutrients high in fats and sugars can lead to obesity. Previous studies indicate that sugar or fat consumption activate individual brain sites using Fos-like immunoreactivity (FLI). Sugars and fats also elicit conditioned flavor preferences (CFP) that are differentially mediated by flavor-flavor (orosensory: f/f) and flavor-nutrient (post-ingestive: f/n) processes. Dopamine (DA) signaling in the medial prefrontal cortex (mPFC), the amygdala (AMY) and the nucleus accumbens (NAc), has been implicated in acquisition and expression of fat- and sugar-CFP. The present study examined the effects of acute consumption of fat (corn oil: f/f and f/n), glucose (f/f and f/n), fructose, (f/f only), saccharin, xanthan gum or water upon simultaneous FLI activation of DA mesotelencephalic nuclei (ventral tegmental area (VTA)) and projections (infralimbic and prelimbic mPFC, basolateral and central-cortico-medial AMY, core and shell of NAc as well as the dorsal striatum). Consumption of corn oil solutions, isocaloric to glucose and fructose, significantly increased FLI in all sites except for the NAc shell. Glucose intake significantly increased FLI in both AMY areas, dorsal striatum and NAc core, but not in either mPFC area, VTA or Nac shell. Correspondingly, fructose intake significantly increased FLI in the both AMY areas, the infralimbic mPFC and dorsal striatum, but not the prelimbic mPFC, VTA or either NAc area. Saccharin and xanthan gum intake failed to activate FLI relative to water. When significant FLI activation occurred, highly positive relationships were observed among sites, supporting the idea of activation of a distributed brain network mediating sugar and fat intake. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Social dominance in rats: effects on cocaine self-administration, novelty reactivity and dopamine receptor binding and content in the striatum.

    Science.gov (United States)

    Jupp, Bianca; Murray, Jennifer E; Jordan, Emily R; Xia, Jing; Fluharty, Meg; Shrestha, Saurav; Robbins, Trevor W; Dalley, Jeffrey W

    2016-02-01

    Studies in human and non-human primates demonstrate that social status is an important determinant of cocaine reinforcement. However, it is unclear whether social rank is associated with other traits that also predispose to addiction and whether social status similarly predicts cocaine self-administration in rats. The objective of this study is to investigate whether social ranking assessed using a resource competition task affects (i) the acquisition, maintenance and reinstatement of cocaine self-administration; (ii) the dopaminergic markers in the striatum; and (iii) the expression of ancillary traits for addiction. Social ranking was determined in group-housed rats based upon drinking times during competition for a highly palatable liquid. Rats were then evaluated for cocaine self-administration and cue-induced drug reinstatement or individual levels of impulsivity, anxiety and novelty-induced locomotor activity. Finally, dopamine content, dopamine transporter (DAT) and dopamine D2/D3 (D2/3) receptor binding were measured postmortem in the dorsal and ventral striatum. Rats deemed socially dominant showed enhanced novelty reactivity but were neither more impulsive nor anxious compared with subordinate rats. Dominant rats additionally maintained higher rates of cocaine self-administration but showed no differences in the acquisition, extinction and reinstatement of this behaviour. D2/3 binding was elevated in the nucleus accumbens shell and dorsal striatum of dominant rats when compared to subordinate rats, and was accompanied by elevated DAT and reduced dopamine content in the nucleus accumbens shell. These findings show that social hierarchy influences the rate of self-administered cocaine but not anxiety or impulsivity in rats. Similar to non-human primates, these effects may be mediated by striatal dopaminergic systems.

  13. 1,2,3,4-Tetrahydroisoquinoline protects terminals of dopaminergic neurons in the striatum against the malonate-induced neurotoxicity.

    Science.gov (United States)

    Lorenc-Koci, Elzbieta; Gołembiowska, Krystyna; Wardas, Jadwiga

    2005-07-27

    Malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, is frequently used as a model neurotoxin to produce lesion of the nigrostriatal dopaminergic system in animals due to particular sensitivity of dopamine neurons to mild energy impairment. This model of neurotoxicity was applied in our study to explore neuroprotective potential of 1,2,3,4-tetrahydroisoquinoline (TIQ), an endo- and exogenous substance whose function in the mammalian brain, despite extensive studies, has not been elucidated so far. Injection of malonate at a dose of 3 mumol unilaterally into the rat left medial forebrain bundle resulted in the 54% decrease in dopamine (DA) concentration in the ipsilateral striatum and, depending on the examined striatum regions, caused 24-44% reduction in [3H]GBR12,935 binding to the dopamine transporter (DAT). TIQ (50 mg/kg i.p.) administered 4 h before malonate infusion and next once daily for successive 7 days prevented both these effects of malonate. Such TIQ treatment restored DA content and DAT binding almost to the control level. The results of the present study indicate that TIQ may act as a neuroprotective agent in the rat brain. An inhibition of the enzymatic activities of monoamine oxidase and gamma-glutamyl transpeptidase as well as an increase in the striatal levels of glutathione and nitric oxide found after TIQ administration and reported in our earlier studies are considered to be potential factors that may be involved in the TIQ-mediated protection of dopamine terminals from malonate toxicity.

  14. Caenorhabditis elegans VEM-1, a novel membrane protein, regulates the guidance of ventral nerve cord-associated axons.

    Science.gov (United States)

    Runko, Erik; Kaprielian, Zaven

    2004-10-13

    In the developing CNS, pathfinding growth cones use intermediate target- and pioneer axon-associated guidance cues to navigate along stereotypical trajectories. We previously showed that the novel membrane-associated protein Vema is localized to the floor plate and the optic chiasm, intermediate targets located at the ventral midline of the spinal cord and diencephalon in the developing rodent CNS, respectively. Here, we report that the Caenorhabditis elegans ortholog of vema, vem-1, is expressed by the AVG pioneer midline neuron and by several neurons that extend longitudinally projecting axons into the ventral nerve cord (VNC). In vem-1 mutants and vem-1 (RNAi) animals, a subset of posteriorly projecting interneuron axons either fail to extend ventrally to the VNC and, instead, assume aberrant lateral positions or are inappropriately located in the left tract of the VNC. In addition, ventral motor neuron axons exhibit pathfinding errors within the VNC and along the dorsoventral body axis. The conserved UNC-40/DCC and SAX-3-/Robo receptors mediate signaling events that regulate axon guidance in a wide variety of systems. Double-mutant analyses reveal that vem-1 genetically interacts with unc-40 and is likely to function in parallel with sax-3 to regulate the guidance of a subset of VNC-associated interneuron and motor neuron axons. Consistent with these genetic data, we also show that VEM-1 is capable of physically interacting with UNC-40 but not SAX-3.

  15. A common neural code for social and monetary rewards in the human striatum.

    Science.gov (United States)

    Wake, Stephanie J; Izuma, Keise

    2017-10-01

    Although managing social information and decision making on the basis of reward is critical for survival, it remains uncertain whether differing reward type is processed in a uniform manner. Previously, we demonstrated that monetary reward and the social reward of good reputation activated the same striatal regions including the caudate nucleus and putamen. However, it remains unclear whether overlapping activations reflect activities of identical neuronal populations or two overlapping but functionally independent neuronal populations. Here, we re-analyzed the original data and addressed this question using multivariate-pattern-analysis and found evidence that in the left caudate nucleus and bilateral nucleus accumbens, social vs monetary reward were represented similarly. The findings suggest that social and monetary rewards are processed by the same population of neurons within these regions of the striatum. Additional findings demonstrated similar neural patterns when participants experience high social reward compared to viewing others receiving low social reward (potentially inducing schadenfreude). This is possibly an early indication that the same population of neurons may be responsible for processing two different types of social reward (good reputation and schadenfreude). These findings provide a supplementary perspective to previous research, helping to further elucidate the mechanisms behind social vs non-social reward processing. © The Author (2017). Published by Oxford University Press.

  16. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

    NARCIS (Netherlands)

    Willuhn, Ingo; Burgeno, Lauren M; Groblewski, Peter A; Phillips, Paul E M

    Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum is thought to assume control over drug seeking. We measured

  17. Molecular and functional definition of the developing human striatum.

    Science.gov (United States)

    Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena

    2014-12-01

    The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.

  18. Paralimbic system and striatum are involved in motivational behavior.

    Science.gov (United States)

    Nishimura, Masahiko; Yoshii, Yoshihiko; Watanabe, Jobu; Ishiuchi, Shogo

    2009-10-28

    Goal-directed rewarded behavior and goal-directed non-rewarded behavior are concerned with motivation. However, the neural substrates involved in goal-directed non-rewarded behaviors are unknown. Using functional magnetic resonance imaging, we investigated the brain activities of healthy individuals during a novel tool use (turning a screwdriver) to elucidate the relationship between the brain mechanism relevant to goal-directed non-rewarded behavior and motivation. We found that our designed behavioral task evoked activities in the orbitofrontal cortex, striatum, anterior insula, lateral prefrontal cortex, and anterior cingulate cortex compared with a meaningless task. These results suggest that activation in these cerebral regions play important roles in motivational behavior without tangible rewards.

  19. Establishment and initial experiences from the Danish Ventral Hernia Database

    DEFF Research Database (Denmark)

    Helgstrand, F; Rosenberg, J; Bay-Nielsen, M

    2010-01-01

    , use of mesh or no mesh, type of suture material, and placement of the mesh. A total of 5,629 elective and 661 acute ventral hernia repairs were registered. After the first 2 years the registration rate was 70%. CONCLUSION: The first national ventral hernia database has been established. Preliminary...... of the Danish Ventral Hernia Database (DVHD). Furthermore, the first 2-year data from 2007 to 2008 are presented. METHODS: Registrations were based on surgeons' web registrations and validated by cross checking with data from the Danish National Patient Register. RESULTS: The DVHD was established in June 2006...... and is based on prospective online web-registration of perioperative data, and individualised tracking of follow up data. During the first 2 years (2007-2008) data showed a large variation in almost all aspects of ventral hernia repair regarding surgical technique, use of open versus laparoscopic technique...

  20. Reward-modulated motor information in identified striatum neurons.

    Science.gov (United States)

    Isomura, Yoshikazu; Takekawa, Takashi; Harukuni, Rie; Handa, Takashi; Aizawa, Hidenori; Takada, Masahiko; Fukai, Tomoki

    2013-06-19

    It is widely accepted that dorsal striatum neurons participate in either the direct pathway (expressing dopamine D1 receptors) or the indirect pathway (expressing D2 receptors), controlling voluntary movements in an antagonistically balancing manner. The D1- and D2-expressing neurons are activated and inactivated, respectively, by dopamine released from substantia nigra neurons encoding reward expectation. However, little is known about the functional representation of motor information and its reward modulation in individual striatal neurons constituting the two pathways. In this study, we juxtacellularly recorded the spike activity of single neurons in the dorsolateral striatum of rats performing voluntary forelimb movement in a reward-predictable condition. Some of these neurons were identified morphologically by a combination of juxtacellular visualization and in situ hybridization for D1 mRNA. We found that the striatal neurons exhibited distinct functional activations before and during the forelimb movement, regardless of the expression of D1 mRNA. They were often positively, but rarely negatively, modulated by expecting a reward for the correct motor response. The positive reward modulation was independent of behavioral differences in motor performance. In contrast, regular-spiking and fast-spiking neurons in any layers of the motor cortex displayed only minor and unbiased reward modulation of their functional activation in relation to the execution of forelimb movement. Our results suggest that the direct and indirect pathway neurons cooperatively rather than antagonistically contribute to spatiotemporal control of voluntary movements, and that motor information is subcortically integrated with reward information through dopaminergic and other signals in the skeletomotor loop of the basal ganglia.

  1. Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians.

    Science.gov (United States)

    Dittinger, Eva; Valizadeh, Seyed Abolfazl; Jäncke, Lutz; Besson, Mireille; Elmer, Stefan

    2018-02-01

    Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning. © 2017 Wiley Periodicals, Inc.

  2. In vitro autoradiography of ionotropic glutamate receptors in hippocampus and striatum of aged Long-Evans rats: relationship to spatial learning

    International Nuclear Information System (INIS)

    Gallagher, M.; Bizon, J.L.; Nicolle, M.M.

    1996-01-01

    Using in vitro autoradiography, we investigated [ 3 H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, [ 3 H]kainate and [ 3 H]N-methyl-d-aspartate binding in two forebrain regions, the hippocampus and striatum, of young (four months of age) and aged (24-25 months of age) Long-Evans rats that had previously been tested for spatial learning ability in the Morris water maze. Although there was substantial preservation of binding in the aged rats, reductions in binding were present in the aged rats that were specific to ligand and anatomical region. In the hippocampus of aged rats, [ 3 H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate binding in CA1 and [ 3 H]kainate binding in CA3 were reduced. In contrast, N-methyl-d-aspartate binding was not significantly different between age groups. There was evidence of sprouting in the dentate gyrus molecular layer of aged rats, indicated by changes in the topography of [ 3 H]kainate binding. Binding density was analysed with respect to patch/matrix compartmentalization in the striatum. The most striking result was a large decrease in N-methyl-d-aspartate binding in aged rats that was not limited to any dorsal/ventral or patch/matrix area of the striatum. Additionally, [ 3 H]kainate binding in striatal matrix was modestly reduced in aged rats. Of these age effects, only N-methyl-d-aspartate binding in the striatum and [ 3 H]kainate binding in the CA3 region of the hippocampus were correlated with spatial learning, with lower binding in the aged rats associated with better spatial learning ability.Age-related alterations in ionotropic glutamate receptors differ with respect to the receptor subtype and anatomical region examined. The age effects were not neccessarily indicative of cognitive decline, as only two age-related binding changes were correlated with spatial learning. Interestingly, in these instances, lower binding in the aged rats was associated with preserved spatial learning, suggesting a compensatory reduction

  3. Inhibiting PKM[zeta] Reveals Dorsal Lateral and Dorsal Medial Striatum Store the Different Memories Needed to Support Adaptive Behavior

    Science.gov (United States)

    Pauli, Wolfgang M.; Clark, Alexandra D.; Guenther, Heidi J.; O'Reilly, Randall C.; Rudy, Jerry W.

    2012-01-01

    Evidence suggests that two regions of the striatum contribute differential support to instrumental response selection. The dorsomedial striatum (DMS) is thought to support expectancy-mediated actions, and the dorsolateral striatum (DLS) is thought to support habits. Currently it is unclear whether these regions store task-relevant information or…

  4. Financial implications of ventral hernia repair: a hospital cost analysis.

    Science.gov (United States)

    Reynolds, Drew; Davenport, Daniel L; Korosec, Ryan L; Roth, J Scott

    2013-01-01

    Complicated ventral hernias are often referred to tertiary care centers. Hospital costs associated with these repairs include direct costs (mesh materials, supplies, and nonsurgeon labor costs) and indirect costs (facility fees, equipment depreciation, and unallocated labor). Operative supplies represent a significant component of direct costs, especially in an era of proprietary synthetic meshes and biologic grafts. We aim to evaluate the cost-effectiveness of complex abdominal wall hernia repair at a tertiary care referral facility. Cost data on all consecutive open ventral hernia repairs (CPT codes 49560, 49561, 49565, and 49566) performed between 1 July 2008 and 31 May 2011 were analyzed. Cases were analyzed based upon hospital status (inpatient vs. outpatient) and whether the hernia repair was a primary or secondary procedure. We examined median net revenue, direct costs, contribution margin, indirect costs, and net profit/loss. Among primary hernia repairs, cost data were further analyzed based upon mesh utilization (no mesh, synthetic, or biologic). Four-hundred and fifteen patients underwent ventral hernia repair (353 inpatients and 62 outpatients); 173 inpatients underwent ventral hernia repair as the primary procedure; 180 inpatients underwent hernia repair as a secondary procedure. Median net revenue ($17,310 vs. 10,360, p costs for cases performed without mesh were $5,432; median direct costs for those using synthetic and biologic mesh were $7,590 and 16,970, respectively (p financial loss was $8,370. Outpatient ventral hernia repairs, with and without synthetic mesh, resulted in median net losses of $1,560 and 230, respectively. Ventral hernia repair is associated with overall financial losses. Inpatient synthetic mesh repairs are essentially budget neutral. Outpatient and inpatient repairs without mesh result in net financial losses. Inpatient biologic mesh repairs result in a negative contribution margin and striking net financial losses. Cost

  5. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    Renana eEitan

    2013-10-01

    Full Text Available Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN, an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson’s disease (PD. This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12-30Hz, the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs.In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and

  6. Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia.

    Science.gov (United States)

    Ewing, Samuel G; Grace, Anthony A

    2013-02-01

    Existing antipsychotic drugs are most effective at treating the positive symptoms of schizophrenia but their relative efficacy is low and they are associated with considerable side effects. In this study deep brain stimulation of the ventral hippocampus was performed in a rodent model of schizophrenia (MAM-E17) in an attempt to alleviate one set of neurophysiological alterations observed in this disorder. Bipolar stimulating electrodes were fabricated and implanted, bilaterally, into the ventral hippocampus of rats. High frequency stimulation was delivered bilaterally via a custom-made stimulation device and both spectral analysis (power and coherence) of resting state local field potentials and amplitude of auditory evoked potential components during a standard inhibitory gating paradigm were examined. MAM rats exhibited alterations in specific components of the auditory evoked potential in the infralimbic cortex, the core of the nucleus accumbens, mediodorsal thalamic nucleus, and ventral hippocampus in the left hemisphere only. DBS was effective in reversing these evoked deficits in the infralimbic cortex and the mediodorsal thalamic nucleus of MAM-treated rats to levels similar to those observed in control animals. In contrast stimulation did not alter evoked potentials in control rats. No deficits or stimulation-induced alterations were observed in the prelimbic and orbitofrontal cortices, the shell of the nucleus accumbens or ventral tegmental area. These data indicate a normalization of deficits in generating auditory evoked potentials induced by a developmental disruption by acute high frequency, electrical stimulation of the ventral hippocampus. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Ventral Striatum, but Not Cortical Volume Loss, Is Related to Cognitive Dysfunction in Type 1 Diabetic Patients With and Without Microangiopathy

    NARCIS (Netherlands)

    van Duinkerken, E.; Schoonheim, M.M.; Steenwijk, M.D.; Klein, M.; IJzerman, R.G.; Moll, A.C.; Heymans, M.W.; Snoek, F.J.; Barkhof, F.; Diamant, M.

    2014-01-01

    Objective: Patients with longstanding type 1 diabetes may develop microangiopathy due to high cumulative glucose exposure. Also, chronic hyperglycemia is related to cerebral alterations and cognitive dysfunction. Whether the presence of microangiopathy is conditional to the development of

  8. Reward Anticipation in Ventral Striatum and Individual Sensitivity to Reward : A Pilot Study of a Child-Friendly fMRI Task

    NARCIS (Netherlands)

    van Hulst, Branko M; de Zeeuw, Patrick; Lupas, Kellina; Bos, Dienke J; Neggers, Sebastiaan F W; Durston, Sarah

    2015-01-01

    Reward processing has been implicated in developmental disorders. However, the classic task to probe reward anticipation, the monetary incentive delay task, has an abstract coding of reward and no storyline and may therefore be less appropriate for use with developmental populations. We modified the

  9. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala, and ventral striatum

    NARCIS (Netherlands)

    Fletcher, P.C.; Napolitano, A.; Skeggs, A.; Miller, S.R.; Delafont, B.; Cambridge, V.C.; de Wit, S.; Nathan, P.J.; Brooke, A.; O'Rahilly, S.; Farooqi, I.S.; Bullmore, E.T.

    2010-01-01

    We used functional magnetic resonance imaging to explore brain responses to food images in overweight humans, examining independently the impact of a prescan meal ("satiety") and the anti-obesity drug sibutramine, a serotonin and noradrenaline reuptake inhibitor. We identified significantly

  10. Mouse and human genetic analyses associate kalirin with ventral striatal activation during impulsivity and with alcohol misuse

    Directory of Open Access Journals (Sweden)

    Yolanda ePeña-Oliver

    2016-04-01

    Full Text Available Impulsivity is associated with a spectrum of psychiatric disorders including drug addiction. To investigate genetic associations with impulsivity and initiation of drug taking, we took a two-step approach. First, we identified genes whose expression level in prefrontal cortex, striatum and accumbens were associated with impulsive behaviour in the 5-choice serial reaction time task across 10 BXD recombinant inbred (BXD RI mouse strains and their progenitor C57BL/6J and DBA2/J strains. Behavioural data were correlated with regional gene expression using GeneNetwork (www.genenetwork.org, to identify 44 genes whose probability of association with impulsivity exceeded a false discovery rate of <0.05. We then interrogated the IMAGEN database of 1423 adolescents for potential associations of SNPs in human homologues of those genes identified in the mouse study, with brain activation during impulsive performance in the Monetary Incentive Delay task, and with novelty seeking scores from the Temperament and Character Inventory, as well as alcohol-experience. There was a significant overall association between the human homologues of impulsivity-related genes and percentage of premature responses in the MID task and with fMRI BOLD-response in ventral striatum (VS during reward anticipation. In contrast, no significant association was found between the polygenic scores and anterior cingulate cortex activation. Univariate association analyses revealed that the G allele (major of the intronic SNP rs6438839 in the KALRN gene was significantly associated with increased VS activation. Additionally, the A-allele (minor of KALRN intronic SNP rs4634050, belonging to the same haplotype block, was associated with increased frequency of binge drinking.

  11. Dorsal-to-Ventral Shift in Midbrain Dopaminergic Projections and Increased Thalamic/Raphe Serotonergic Function in Early Parkinson Disease.

    Science.gov (United States)

    Joutsa, Juho; Johansson, Jarkko; Seppänen, Marko; Noponen, Tommi; Kaasinen, Valtteri

    2015-07-01

    Loss of nigrostriatal neurons leading to dopamine depletion in the dorsal striatum is the pathologic hallmark of Parkinson disease contributing to the primary motor symptoms of the disease. However, Parkinson pathology is more widespread in the brain, affecting also other dopaminergic pathways and neurotransmitter systems, but these changes are less well characterized. This study aimed to investigate the mesencephalic striatal and extrastriatal dopaminergic projections together with extrastriatal serotonin transporter binding in Parkinson disease. Two hundred sixteen patients with Parkinson disease and 204 control patients (patients without neurodegenerative parkinsonism syndromes and normal SPECT imaging) were investigated with SPECT using the dopamine/serotonin transporter ligand (123)I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123)I-FP-CIT) in the clinical setting. The group differences and midbrain correlations were analyzed voxel by voxel over the entire brain. We found that Parkinson patients had lower (123)I-FP-CIT uptake in the striatum and ventral midbrain but higher uptake in the thalamus and raphe nuclei than control patients. In patients with Parkinson disease, the correlation of the midbrain tracer uptake was shifted from the putamen to widespread corticolimbic areas. All findings were highly significant at the voxel level familywise error-corrected P value of less than 0.05. Our findings show that Parkinson disease is associated not only with the degeneration of the nigrostriatal dopamine neurotransmission, but also with a parallel shift toward mesolimbic and mesocortical function. Furthermore, Parkinson disease patients seem to have upregulation of brain serotonin transporter function at the early phase of the disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning

    Directory of Open Access Journals (Sweden)

    Hadley C. Bergstrom

    2018-05-01

    Full Text Available Summary: In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning. We also show that the direct output pathway of the DLS is preferentially recruited and causally involved in early learning and find that silencing the normal contribution of the DLS produces plasticity-related alterations in a PL-DMS circuit. These data provide further evidence suggesting that the DLS is recruited in the construction of stimulus-elicited actions that ultimately automate behavior and liberate cognitive resources for other demands, but with a cost to performance at the outset of learning. : What is the contribution of the DLS in early discrimination learning? Bergstrom et al. show using in vivo optogenetics, fluorescence in situ hybridization, and brain-wide activity mapping that silencing the DLS facilitates early discrimination learning, drives activity in a parallel PL-DMS circuit, and preferentially recruits the DLS “direct” output pathway. Keywords: striatum, reward, goal-directed, habit, optogenetics, plasticity, cognition, Arc

  13. The dorsomedial striatum mediates Pavlovian appetitive conditioning and food consumption.

    Science.gov (United States)

    Cole, Sindy; Stone, Andrew D; Petrovich, Gorica D

    2017-12-01

    The dorsomedial striatum (DMS) is an important sensorimotor region mediating the acquisition of goal-directed instrumental reward learning and behavioral flexibility. However, whether the DMS also regulates Pavlovian cue-food learning is less clear. The current study used excitotoxic lesions to determine whether the DMS is critical in Pavlovian appetitive learning and behavior, using discriminative conditioning and reversal paradigms. The results showed that DMS lesions transiently retarded cue-food learning and subsequent reversal of this learning. Rats with DMS lesions selectively attenuated responding to a food cue but not a control cue, early in training, suggesting the DMS is involved when initial associations are formed. Similarly, initial reversal learning was attenuated in rats with DMS lesions, which suggests impaired flexibility to adjust behavior when the cue meaning is reversed. We also examined the effect of DMS lesions on food intake during tests with access to a highly palatable food along with standard chow diet. Rats with DMS lesions showed an altered pattern of intake, with an initial reduction in high-fat diet followed by an increase in chow consumption. These results demonstrate that the DMS has a role in mediating cue-food learning and its subsequent reversal, as well as changes in food intake when a choice is provided. Together, these results demonstrate the DMS is involved in reward associative learning and reward consumption, when behavioral flexibility is needed to adjust responding or consumption to match the current value. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. The Sensory Striatum Is Permanently Impaired by Transient Developmental Deprivation

    Directory of Open Access Journals (Sweden)

    Todd M. Mowery

    2017-06-01

    Full Text Available Corticostriatal circuits play a fundamental role in regulating many behaviors, and their dysfunction is associated with many neurological disorders. In contrast, sensory disorders, like hearing loss (HL, are commonly linked with processing deficits at or below the level of the auditory cortex (ACx. However, HL can be accompanied by non-sensory deficits, such as learning delays, suggesting the involvement of regions downstream of ACx. Here, we show that transient developmental HL differentially affected the ACx and its downstream target, the sensory striatum. Following HL, both juvenile ACx layer 5 and striatal neurons displayed an excitatory-inhibitory imbalance and lower firing rates. After hearing was restored, adult ACx neurons recovered balanced excitatory-inhibitory synaptic gain and control-like firing rates, but striatal neuron synapses and firing properties did not recover. Thus, a brief period of abnormal cortical activity may induce cellular impairments that persist into adulthood and contribute to neurological disorders that are striatal in origin.

  15. Monetary discounting and ventral striatal dopamine receptor availability in nontreatment-seeking alcoholics and social drinkers.

    Science.gov (United States)

    Oberlin, Brandon G; Albrecht, Daniel S; Herring, Christine M; Walters, James W; Hile, Karen L; Kareken, David A; Yoder, Karmen K

    2015-06-01

    Dopamine (DA) in the ventral striatum (VST) has long been implicated in addiction pathologies, yet its role in temporal decision-making is not well-understood. To determine if VST DA D2 receptor availability corresponds with greater impulsive choice in both nontreatment-seeking alcoholics (NTS) and social drinkers (SD). NTS subjects (n = 10) and SD (n = 13) received PET scans at baseline with the D2/D3 radioligand [(11)C]raclopride (RAC). Outside the scanner, subjects performed a delay discounting procedure with monetary rewards. RAC binding potential (BPND) was estimated voxelwise, and correlations were performed to test for relationships between VST BPND and delay discounting performance. Self-reported impulsivity was also tested for correlations with BPND. Across all subjects, greater impulsive choice for $20 correlated with lower BPND in the right VST. NTS showed greater impulsive choice than SD and were more impulsive by self-report. Across all subjects, the capacity of larger rewards to reduce impulsive choice (the magnitude effect) correlated negatively (p = 0.028) with problematic alcohol use (AUDIT) scores. Self-reported impulsivity did not correlate with BPND in VST. Preference for immediate reinforcement may reflect greater endogenous striatal DA or lower D2 number, or both. Alcoholic status did not mediate significant effects on VST BPND, suggesting minimal effects from alcohol exposure. The apparent lack of BPND correlation with self-reported impulsivity highlights the need for objective behavioral assays in the study of the neurochemical substrates of behavior. Finally, our results suggest that the magnitude effect may be more sensitive to alcohol-induced problems than single discounting measures.

  16. Activation of midbrain and ventral striatal regions implicates salience processing during a modified beads task.

    Directory of Open Access Journals (Sweden)

    Christine Esslinger

    Full Text Available INTRODUCTION: Metacognition, i.e. critically reflecting on and monitoring one's own reasoning, has been linked behaviorally to the emergence of delusions and is a focus of cognitive therapy in patients with schizophrenia. However, little is known about the neural processing underlying metacognitive function. To address this issue, we studied brain activity during a modified beads task which has been used to measure a "Jumping to Conclusions" (JTC bias in schizophrenia patients. METHODS: We used functional magnetic resonance imaging to identify neural systems active in twenty-five healthy subjects when solving a modified version of the "beads task", which requires a probabilistic decision after a variable amount of data has been requested by the participants. We assessed brain activation over the duration of a trial and at the time point of decision making. RESULTS: Analysis of activation during the whole process of probabilistic reasoning showed an extended network including the prefronto-parietal executive functioning network as well as medial parieto-occipital regions. During the decision process alone, activity in midbrain and ventral striatum was detected, as well as in thalamus, medial occipital cortex and anterior insula. CONCLUSIONS: Our data show that probabilistic reasoning shares neural substrates with executive functions. In addition, our finding that brain regions commonly associated with salience processing are active during probabilistic reasoning identifies a candidate mechanism that could underlie the behavioral link between dopamine-dependent aberrant salience and JTC in schizophrenia. Further studies with delusional schizophrenia patients will have to be performed to substantiate this link.

  17. Human V4 and ventral occipital retinotopic maps

    Science.gov (United States)

    Winawer, Jonathan; Witthoft, Nathan

    2016-01-01

    The ventral surface of the human occipital lobe contains multiple retinotopic maps. The most posterior of these maps is considered a potential homolog of macaque V4, and referred to as human V4 (‘hV4’). The location of the hV4 map, its retinotopic organization, its role in visual encoding, and the cortical areas it borders have been the subject of considerable investigation and debate over the last 25 years. We review the history of this map and adjacent maps in ventral occipital cortex, and consider the different hypotheses for how these ventral occipital maps are organized. Advances in neuroimaging, computational modeling, and characterization of the nearby anatomical landmarks and functional brain areas have improved our understanding of where human V4 is and what kind of visual representations it contains. PMID:26241699

  18. Human dorsal striatum encodes prediction errors during observational learning of instrumental actions.

    Science.gov (United States)

    Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others.

  19. Dopamine transporter gene variation modulates activation of striatum in youth with ADHD.

    Science.gov (United States)

    Bédard, Anne-Claude; Schulz, Kurt P; Cook, Edwin H; Fan, Jin; Clerkin, Suzanne M; Ivanov, Iliyan; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2010-11-15

    Polymorphisms in the 3'UTR variable number tandem repeat (VNTR) of exon 15 of the dopamine transporter gene (DAT1) have been linked to attention-deficit hyperactivity disorder (ADHD); moreover, variability in DAT1 3'UTR genotype may contribute to both heterogeneity of the ADHD phenotype and differences in response to stimulant medications. The impact of this VNTR on neuronal function in individuals with ADHD remains unclear despite evidence that the polymorphisms influence dopamine transporter expression. Thus, we used event-related functional magnetic resonance imaging to examine the impact of DAT1 3'UTR genotype on brain activation during response inhibition in unmedicated children and adolescents with ADHD. Twenty-one youth with ADHD who were homozygous for the 10-repeat (10R) allele of the DAT1 3'UTR and 12 youth who were carriers of the 9-repeat (9R) allele were scanned while they performed a Go/No-Go task. Response inhibition was modeled by contrasting activation during correct No-Go trials versus correct Go trials. Participants who were homozygous for the DAT1 3'UTR 10R allele and those who had a single 9R allele did not differ on percent of trials with successful inhibition, which was the primary measure of inhibitory control. Yet, youth with the DAT1 3'UTR 10R/10R genotype had significantly greater inhibitory control-related activation than those with one 9R allele in the left striatum, right dorsal premotor cortex, and bilaterally in the temporoparietal cortical junction. These findings provide preliminary evidence that neural activity related to inhibitory control may differ as a function of DAT1 3'UTR genotype in youth with ADHD. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Crossmodal recruitment of the ventral visual stream in congenital blindness

    DEFF Research Database (Denmark)

    Ptito, Maurice; Matteau, Isabelle; Zhi Wang, Arthur

    2012-01-01

    We used functional MRI (fMRI) to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform......, inferotemporal (IT), cortex, lateral occipital tactile vision area (LOtv), and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic...

  1. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  2. Effects of an acute therapeutic or rewarding dose of amphetamine on acquisition of Pavlovian autoshaping and ventral striatal dopamine signaling.

    Science.gov (United States)

    Schuweiler, D R; Athens, J M; Thompson, J M; Vazhayil, S T; Garris, P A

    2018-01-15

    Rewarding doses of amphetamine increase the amplitude, duration, and frequency of dopamine transients in the ventral striatum. Debate continues at the behavioral level about which component of reward, learning or incentive salience, is signaled by these dopamine transients and thus altered in addiction. The learning hypothesis proposes that rewarding drugs result in pathological overlearning of drug-predictive cues, while the incentive sensitization hypothesis suggests that rewarding drugs result in sensitized attribution of incentive salience to drug-predictive cues. Therapeutic doses of amphetamine, such as those used to treat attention-deficit hyperactivity disorder, are hypothesized to enhance the ventral striatal dopamine transients that are critical for reward-related learning and to enhance Pavlovian learning. However, the effects of therapeutic doses of amphetamine on Pavlovian learning are poorly understood, and the effects on dopamine transients are completely unknown. We determined the effects of an acute pre-training therapeutic or rewarding amphetamine injection on the acquisition of Pavlovian autoshaping in the intact rat. We also determined the effects of these doses on electrically evoked transient-like dopamine signals using fast-scan cyclic voltammetry in the anesthetized rat. The rewarding dose enhanced the amplitude and duration of DA signals, caused acute task disengagement, impaired learning for several days, and triggered incentive sensitization. The therapeutic dose produced smaller enhancements in DA signals but did not have similar behavioral effects. These results underscore the necessity of more studies using therapeutic doses, and suggest a hybrid learning/incentive sensitization model may be required to explain the development of addiction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex.

    Science.gov (United States)

    Lim, Julian; Tan, Jiat Chow; Parimal, Sarayu; Dinges, David F; Chee, Michael W L

    2010-02-05

    Most prior studies on selective attention in the setting of total sleep deprivation (SD) have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW) and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA) activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition.

  4. Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex.

    Directory of Open Access Journals (Sweden)

    Julian Lim

    Full Text Available BACKGROUND: Most prior studies on selective attention in the setting of total sleep deprivation (SD have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. CONCLUSIONS/SIGNIFICANCE: SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition.

  5. Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference.

    Science.gov (United States)

    Kornysheva, Katja; von Anshelm-Schiffer, Anne-Marike; Schubotz, Ricarda I

    2011-08-01

    Behavioral studies suggest that preference for a beat rate (tempo) in auditory sequences is tightly linked to the motor system. However, from a neuroscientific perspective the contribution of motor-related brain regions to tempo preference in the auditory domain remains unclear. A recent fMRI study (Kornysheva et al. [2010]: Hum Brain Mapp 31:48-64) revealed that the activity increase in the left ventral premotor cortex (PMv) is associated with the preference for a tempo of a musical rhythm. The activity increase correlated with how strongly the subjects preferred a tempo. Despite this evidence, it remains uncertain whether an interference with activity in the left PMv affects tempo preference strength. Consequently, we conducted an offline repetitive transcranial magnetic stimulation (rTMS) study, in which the cortical excitability in the left PMv was temporarily reduced. As hypothesized, 0.9 Hz rTMS over the left PMv temporarily affected individual tempo preference strength depending on the individual strength of tempo preference in the control session. Moreover, PMv stimulation temporarily interfered with the stability of individual tempo preference strength within and across sessions. These effects were specific to the preference for tempo in contrast to the preference for timbre, bound to the first half of the experiment following PMv stimulation and could not be explained by an impairment of tempo recognition. Our results corroborate preceding fMRI findings and suggest that activity in the left PMv is part of a network that affects the strength of beat rate preference. Copyright © 2010 Wiley-Liss, Inc.

  6. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task.

    Science.gov (United States)

    Wittmann, Marc; Leland, David S; Paulus, Martin P

    2007-06-01

    Delay discounting refers to the fact that an immediate reward is valued more than the same reward if it occurs some time in the future. To examine the neural substrates underlying this process, we studied 13 healthy volunteers who repeatedly had to decide between an immediate and parametrically varied delayed hypothetical reward using a delay discounting task during event-related functional magnetic resonance imaging. Subject's preference judgments resulted in different discounting slopes for shorter ( or =1 year) delays. Neural activation associated with the shorter delays relative to the longer delays was associated with increased activation in the head of the left caudate nucleus and putamen. When individuals selected the delayed relative to the immediate reward, a strong activation was found in bilateral posterior insular cortex. Several brain areas including the left caudate nucleus showed a correlation between the behaviorally determined discounting and brain activation for the contrast of intervals with delays or =1 year. These results suggest that (1) the posterior insula, which is a critical component of the decision-making neural network, is involved in delaying gratification and (2) the degree of neural activation in the striatum, which plays a fundamental role in reward prediction and in time estimation, may code for the time delay.

  7. [Comparative anatomical study of the ventral brain arteries of the Pudu pudu (Molina, 1782) with those of the cow].

    Science.gov (United States)

    Schweitzer-Delaunoy, W

    1997-06-01

    Comparative anatomical study of the ventral brain arteries of the Pudú pudu (Molina, 1782) with those of the cow. A comparison using the corrosion method was made between Pudú pudu (Molina, 1782) ventral brain arteries and those of the cow. The Pudú's Rete mirabile epidurale rostrale (Nomina Anatomica Veterinaria, 1994) is ventrally formed by branches of the A. maxillaris, and caudally formed by the A. vertebralis. The Hypophysis is surrounded by the Rete mirabile rostrale. The lateral parts are rostrally joined to that gland by a thin vascular bridge and caudally by thick arteries. The Pudú's Circulus arteriosus cerebri asymmetrical, that is, on the right side the A. cerebri rostralis ends in the A. cerebri media. The left-side A. cerebri rostralis irrigates every rostral portion of the encephalon. In the cow, practically the same arteries come out of the Circulus arteriosus cerebri, which is not asymmetrical. The A. cerebri caudalis comes first out of the A. communicans caudalis and then the branches for the Pons, and finally the A. cerebelli rostralis. In this species, there are arterial blocks that are not present in Pudú.

  8. Crossmodal Recruitment of the Ventral Visual Stream in Congenital Blindness

    Directory of Open Access Journals (Sweden)

    Maurice Ptito

    2012-01-01

    Full Text Available We used functional MRI (fMRI to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform a tactile-form recognition task with the tongue display unit (TDU. Both groups learned the task at the same rate. In line with our hypothesis, the fMRI data showed that during nonhaptic shape recognition, blind subjects activated large portions of the ventral visual stream, including the cuneus, precuneus, inferotemporal (IT, cortex, lateral occipital tactile vision area (LOtv, and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic tactile shape discrimination. The activation of LOtv by nonhaptic tactile shape processing in blind and sighted subjects adds further support to the notion that this area subserves an abstract or supramodal representation of shape. Together with our previous findings, our data suggest that the segregation of the efferent projections of the primary visual cortex into a dorsal and ventral visual stream is preserved in individuals blind from birth.

  9. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1) ...

  10. Radiographic identification of the equine ventral conchal bulla.

    Science.gov (United States)

    Finnegan, C M; Townsend, N B; Barnett, T P; Barakzai, S Z

    Involvement of the ventral conchal sinus (VCS) is an important diagnostic and prognostic feature in cases of the equine sinus disease. The authors aimed to ascertain if the caudo-dorsal extension of the VCS, the ventral conchal bulla (VCB) is identifiable on plain radiographs of cadaver skulls without sinus disease. Bilateral frontonasal sinus flaps were made in 10 equine cadaver skulls. Plain lateral, lateral oblique and dorso-ventral radiographs were then obtained followed by the same views taken with stainless steel wire outlining the caudal border of the VCB. Plain radiographs were randomised and blindly evaluated by two observers who marked where they believed the VCB to be positioned. This was then correlated with the true position of the VCB using radiographs with wires in place. The ease of identification of the VCB was classified as 'easy' or 'difficult'. The VCB was correctly identified in 70 per cent of lateral radiographs, but only 45 per cent of lateral oblique radiographs and 17 per cent of dorso-ventral radiographs. If a clinician was confident that he or she could identify the VCB, they were usually correct. Conversely if the clinician judged VCB identification as 'difficult', they usually identified it incorrectly. In the authors' clinical experience, the VCB of horses with sinusitis involving this compartment is more radiologically evident than in clinically normal horses. Knowledge of the normal radiographic anatomy of this structure should aid clinicians in identifying horses with sinusitis affecting the VCS.

  11. Pelvic ventral hernia repair in a pygopagus conjoint twin | Bhullar ...

    African Journals Online (AJOL)

    Pelvic ventral hernia repair in a surviving conjoint twin with multiple congenital anomalies that make surgery a challenge. Conjoint twins are a rare. The incidence is reported to be in the range of 1/50 000 to 1/100 000 live births. Of the conjoint twins, 40% are stillborn and an additional one-third die within 24 h of birth.

  12. Maternal control of the Drosophila dorsal–ventral body axis

    Science.gov (United States)

    Stein, David S.; Stevens, Leslie M.

    2016-01-01

    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. PMID:25124754

  13. Neuroimaging studies of the striatum in cognition Part I: healthy individuals.

    Science.gov (United States)

    Provost, Jean-Sebastien; Hanganu, Alexandru; Monchi, Oury

    2015-01-01

    The striatum has traditionally mainly been associated with playing a key role in the modulation of motor functions. Indeed, lesion studies in animals and studies of some neurological conditions in humans have brought further evidence to this idea. However, better methods of investigation have raised concerns about this notion, and it was proposed that the striatum could also be involved in different types of functions including cognitive ones. Although the notion was originally a matter of debate, it is now well-accepted that the caudate nucleus contributes to cognition, while the putamen could be involved in motor functions, and to some extent in cognitive functions as well. With the arrival of modern neuroimaging techniques in the early 1990, knowledge supporting the cognitive aspect of the striatum has greatly increased, and a substantial number of scientific papers were published studying the role of the striatum in healthy individuals. For the first time, it was possible to assess the contribution of specific areas of the brain during the execution of a cognitive task. Neuroanatomical studies have described functional loops involving the striatum and the prefrontal cortex suggesting a specific interaction between these two structures. This review examines the data up to date and provides strong evidence for a specific contribution of the fronto-striatal regions in different cognitive processes, such as set-shifting, self-initiated responses, rule learning, action-contingency, and planning. Finally, a new two-level functional model involving the prefrontal cortex and the dorsal striatum is proposed suggesting an essential role of the dorsal striatum in selecting between competing potential responses or actions, and in resolving a high level of ambiguity.

  14. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways

    Science.gov (United States)

    Kersey, Alyssa J.; Clark, Tyia S.; Lussier, Courtney A.; Mahon, Bradford Z.; Cantlon, Jessica F.

    2016-01-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4–8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. PMID:26108614

  16. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    2011-01-01

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1...... abdominal wall. A mechanical peel test was performed for each tissue sample. The secondary outcome parameters were grade and strength of adhesions to the mesh, shrinkage and displacement/folding of the mesh and histological parameters. All nine pigs survived without complications until sacrifice. No meshes...... satisfaction. This issue must have first priority in future ventral hernia repair research. It is now documented, that the simple application of fibrin glue instead of titanium tacks for mesh fixation in LVHR of defects

  17. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1...... abdominal wall. A mechanical peel test was performed for each tissue sample. The secondary outcome parameters were grade and strength of adhesions to the mesh, shrinkage and displacement/folding of the mesh and histological parameters. All nine pigs survived without complications until sacrifice. No meshes...... satisfaction. This issue must have first priority in future ventral hernia repair research. It is now documented, that the simple application of fibrin glue instead of titanium tacks for mesh fixation in LVHR of defects

  18. Memory-Guided Attention: Independent Contributions of the Hippocampus and Striatum.

    Science.gov (United States)

    Goldfarb, Elizabeth V; Chun, Marvin M; Phelps, Elizabeth A

    2016-01-20

    Memory can strongly influence how attention is deployed in future encounters. Though memory dependent on the medial temporal lobes has been shown to drive attention, how other memory systems could concurrently and comparably enhance attention is less clear. Here, we demonstrate that both reinforcement learning and context memory facilitate attention in a visual search task. Using functional magnetic resonance imaging, we dissociate the mechanisms by which these memories guide attention: trial by trial, the hippocampus (not the striatum) predicted attention benefits from context memory, while the striatum (not the hippocampus) predicted facilitation from rewarded stimulus-response associations. Responses in these regions were also distinctly correlated with individual differences in each type of memory-guided attention. This study provides novel evidence for the role of the striatum in guiding attention, dissociable from hippocampus-dependent context memory.

  19. Dorsal and ventral changes of the occipital vertebrae

    International Nuclear Information System (INIS)

    Banki, Z.

    1981-01-01

    Based on his own observation and on the literature, the author discusses various types of calcification in the occipital-cervical region, beginning with those situated dorsally and followed by ventral forms. An attempt is made to classify these changes, depending on their morphology and situation, from an embryological point of view. The pro-atlantal and ante pro-atlanto origin of the occipital vertebrae is discussed. Differentiation depends on appearances. (orig.) [de

  20. Mesh versus non-mesh repair of ventral abdominal hernias

    International Nuclear Information System (INIS)

    Jawaid, M.A.; Talpur, A.H.

    2008-01-01

    To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)

  1. Binocular depth processing in the ventral visual pathway.

    Science.gov (United States)

    Verhoef, Bram-Ernst; Vogels, Rufin; Janssen, Peter

    2016-06-19

    One of the most powerful forms of depth perception capitalizes on the small relative displacements, or binocular disparities, in the images projected onto each eye. The brain employs these disparities to facilitate various computations, including sensori-motor transformations (reaching, grasping), scene segmentation and object recognition. In accordance with these different functions, disparity activates a large number of regions in the brain of both humans and monkeys. Here, we review how disparity processing evolves along different regions of the ventral visual pathway of macaques, emphasizing research based on both correlational and causal techniques. We will discuss the progression in the ventral pathway from a basic absolute disparity representation to a more complex three-dimensional shape code. We will show that, in the course of this evolution, the underlying neuronal activity becomes progressively more bound to the global perceptual experience. We argue that these observations most probably extend beyond disparity processing per se, and pertain to object processing in the ventral pathway in general. We conclude by posing some important unresolved questions whose answers may significantly advance the field, and broaden its scope.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Author(s).

  2. Polyester composite versus PTFE in laparoscopic ventral hernia repair.

    Science.gov (United States)

    Colon, Modesto J; Telem, Dana A; Chin, Edward; Weber, Kaare; Divino, Celia M; Nguyen, Scott Q

    2011-01-01

    Both polyester composite (POC) and polytetrafluoroethylene (PTFE) mesh are commonly used for laparoscopic ventral hernia repair. However, sparse information exists comparing perioperative and long-term outcome by mesh repair. A prospective database was utilized to identify 116 consecutive patients who underwent laparoscopic ventral hernia repair at The Mount Sinai Hospital from 2004-2009. Patients were grouped by type of mesh used, PTFE versus POC, and retrospectively compared. Follow-up at a mean of 12 months was achieved by telephone interview and office visit. Of the 116 patients, 66 underwent ventral hernia repair with PTFE and 50 with POC mesh. Patients were well matched by patient demographics. No difference in mean body mass index (BMI) was demonstrated between the PTFE and POC group (31.8 vs. 32.5, respectively; P=NS). Operative time was significantly longer in the PTFE group (136 vs.106 minutes, PPTFE group and none in the POC group (P NS). No other major complications occurred in the immediate postoperative period (30 days). At a mean follow-up of 12 months, no significant difference was demonstrated between the PTFE and POC groups in hernia recurrence (3% vs. 2%), wound complications (1% vs. 0%), mesh infection, requiring removal (3% vs. 0%), bowel obstruction (3% vs. 2%), or persistent pain or discomfort (28% vs. 32%), respectively (P=NS). Our study demonstrated no significant association between types of mesh used and postoperative complications. In the 12-month follow-up, no differences were noted in hernia recurrence.

  3. Habit formation coincides with shifts in reinforcement representations in the sensorimotor striatum.

    Science.gov (United States)

    Smith, Kyle S; Graybiel, Ann M

    2016-03-01

    Evaluating outcomes of behavior is a central function of the striatum. In circuits engaging the dorsomedial striatum, sensitivity to goal value is accentuated during learning, whereas outcome sensitivity is thought to be minimal in the dorsolateral striatum and its habit-related corticostriatal circuits. However, a distinct population of projection neurons in the dorsolateral striatum exhibits selective sensitivity to rewards. Here, we evaluated the outcome-related signaling in such neurons as rats performed an instructional T-maze task for two rewards. As the rats formed maze-running habits and then changed behavior after reward devaluation, we detected outcome-related spike activity in 116 units out of 1,479 recorded units. During initial training, nearly equal numbers of these units fired preferentially either after rewarded runs or after unrewarded runs, and the majority were responsive at only one of two reward locations. With overtraining, as habits formed, firing in nonrewarded trials almost disappeared, and reward-specific firing declined. Thus error-related signaling was lost, and reward signaling became generalized. Following reward devaluation, in an extinction test, postgoal activity was nearly undetectable, despite accurate running. Strikingly, when rewards were then returned, postgoal activity reappeared and recapitulated the original early response pattern, with nearly equal numbers responding to rewarded and unrewarded runs and to single rewards. These findings demonstrate that outcome evaluation in the dorsolateral striatum is highly plastic and tracks stages of behavioral exploration and exploitation. These signals could be a new target for understanding compulsive behaviors that involve changes to dorsal striatum function. Copyright © 2016 the American Physiological Society.

  4. Left heart ventricular angiography

    Science.gov (United States)

    ... blood vessels. These x-ray pictures create a "movie" of the left ventricle as it contracts rhythmically. ... 22578925 www.ncbi.nlm.nih.gov/pubmed/22578925 . Review Date 9/26/2016 Updated by: Michael A. ...

  5. Left heart catheterization

    Science.gov (United States)

    Catheterization - left heart ... to help guide the catheters up into your heart and arteries. Dye (sometimes called "contrast") will be ... in the blood vessels that lead to your heart. The catheter is then moved through the aortic ...

  6. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  7. A multicenter prospective study of patients undergoing open ventral hernia repair with intraperitoneal positioning using the monofilament polyester composite ventral patch

    DEFF Research Database (Denmark)

    Berrevoet, Frederik; Doerhoff, Carl; Muysoms, Filip

    2017-01-01

    PURPOSE: This study assessed the recurrence rate and other safety and efficacy parameters following ventral hernia repair with a polyester composite prosthesis (Parietex™ Composite Ventral Patch [PCO-VP]). PATIENTS AND METHODS: A single-arm, multicenter prospective study of 126 patients undergoing...

  8. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    Science.gov (United States)

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  9. [Single and combining effects of Calculus Bovis and zolpidem on inhibitive neurotransmitter of rat striatum corpora].

    Science.gov (United States)

    Liu, Ping; He, Xinrong; Guo, Mei

    2010-04-01

    To investigate the correlation effects between single or combined administration of Calculus Bovis or zolpidem and changes of inhibitive neurotransmitter in rat striatum corpora. Sampling from rat striatum corpora was carried out through microdialysis. The content of two inhibitive neurotransmitters in rat corpus striatum- glycine (Gly) and gama aminobutyric acid (GABA), was determined by HPLC, which involved pre-column derivation with orthophthaladehyde, reversed-phase gradient elution and fluorescence detection. GABA content of rat striatum corpora in Calculus Bovis group was significantly increased compared with saline group (P Calculus Boris plus zolpidem group were increased largely compared with saline group as well (P Calculus Bovis group was higher than combination group (P Calculus Bovis or zolpidem group was markedly increased compared with saline group or combination group (P Calculus Bovis group, zolpidem group and combination group. The magnitude of increase was lower in combination group than in Calculus Bovis group and Zolpidem group, suggesting that Calculus Bovis promoted encephalon inhibition is more powerful than zolpidem. The increase in two inhibitive neurotransmitters did not show reinforcing effect in combination group, suggesting that Calculus Bovis and zolpidem may compete the same receptors. Therefore, combination of Calculus Bovis containing drugs and zolpidem has no clinical significance. Calculus Bovis shouldn't as an aperture-opening drugs be used for resuscitation therapy.

  10. Materials as regard about ecology and spreading of lycodine striatum bicolor nik in Tajikistan

    International Nuclear Information System (INIS)

    Sattorov, T.S.; Khidirov, Kh.; Mukhammadkulov, M.

    2003-01-01

    In this article is placed new scientific information about biology, ecology and spreading of Lycodine striatum bicolor within the territory of Tajikistan. Finding available in this article concerning spreading of flus snake are considered to be new. This scarce snake was discovered for the first time in Northern part of Tajikistan. This new information will enrich our notions about Reptile fauna of Tajikistan

  11. Extensive training and hippocampus or striatum lesions: effect on place and response strategies.

    Science.gov (United States)

    Jacobson, Tara K; Gruenbaum, Benjamin F; Markus, Etan J

    2012-02-01

    The hippocampus has been linked to spatial navigation and the striatum to response learning. The current study focuses on how these brain regions continue to interact when an animal is very familiar with the task and the environment and must continuously switch between navigation strategies. Rats were trained to solve a plus maze using a place or a response strategy on different trials within a testing session. A room cue (illumination) was used to indicate which strategy should be used on a given trial. After extensive training, animals underwent dorsal hippocampus, dorsal lateral striatum or sham lesions. As expected hippocampal lesions predominantly caused impairment on place but not response trials. Striatal lesions increased errors on both place and response trials. Competition between systems was assessed by determining error type. Pre-lesion and sham animals primarily made errors to arms associated with the wrong (alternative) strategy, this was not found after lesions. The data suggest a qualitative change in the relationship between hippocampal and striatal systems as a task is well learned. During acquisition the two systems work in parallel, competing with each other. After task acquisition, the two systems become more integrated and interdependent. The fact that with extensive training (as something becomes a "habit"), behaviors become dependent upon the dorsal lateral striatum has been previously shown. The current findings indicate that dorsal lateral striatum involvement occurs even when the behavior is spatial and continues to require hippocampal processing. Published by Elsevier Inc.

  12. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  13. Anatomical Inputs From the Sensory and Value Structures to the Tail of the Rat Striatum

    Directory of Open Access Journals (Sweden)

    Haiyan Jiang

    2018-05-01

    Full Text Available The caudal region of the rodent striatum, called the tail of the striatum (TS, is a relatively small area but might have a distinct function from other striatal subregions. Recent primate studies showed that this part of the striatum has a unique function in encoding long-term value memory of visual objects for habitual behavior. This function might be due to its specific connectivity. We identified inputs to the rat TS and compared those with inputs to the dorsomedial striatum (DMS in the same animals. The TS directly received anatomical inputs from both sensory structures and value-coding regions, but the DMS did not. First, inputs from the sensory cortex and sensory thalamus to the TS were found; visual, auditory, somatosensory and gustatory cortex and thalamus projected to the TS but not to the DMS. Second, two value systems innervated the TS; dopamine and serotonin neurons in the lateral part of the substantia nigra pars compacta (SNc and dorsal raphe nucleus projected to the TS, respectively. The DMS received inputs from the separate group of dopamine neurons in the medial part of the SNc. In addition, learning-related regions of the limbic system innervated the TS; the temporal areas and the basolateral amygdala selectively innervated the TS, but not the DMS. Our data showed that both sensory and value-processing structures innervated the TS, suggesting its plausible role in value-guided sensory-motor association for habitual behavior.

  14. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

    Directory of Open Access Journals (Sweden)

    Kevin D. Alloway

    2017-07-01

    Full Text Available The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD and related neurological disorders.

  15. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    NARCIS (Netherlands)

    Vogel, S.; Klumpers, F.; Navarro Schröder, T.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernández, G.

    2017-01-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  16. Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor

    NARCIS (Netherlands)

    Vogel, S.; Klumpers, F.; Navarro Schröder, T.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernandez, G.

    2017-01-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  17. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    NARCIS (Netherlands)

    Vogel, Susanne; Klumpers, Floris; Schroeder, Tobias Navarro; Oplaat, Krista T.; Krugers, Harm J.; Oitzl, Melly S.; Joels, Marian; Doeller, Christian F.; Fernandez, Guillen

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  18. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

    Science.gov (United States)

    Alloway, Kevin D.; Smith, Jared B.; Mowery, Todd M.; Watson, Glenn D. R.

    2017-01-01

    The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS) region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS) region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R) associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf) nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm) nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD) and related neurological disorders. PMID:28790899

  19. Reduced ventral cingulum integrity and increased behavioral problems in children with isolated optic nerve hypoplasia and mild to moderate or no visual impairment.

    Directory of Open Access Journals (Sweden)

    Emma A Webb

    Full Text Available OBJECTIVES: To assess the prevalence of behavioral problems in children with isolated optic nerve hypoplasia, mild to moderate or no visual impairment, and no developmental delay. To identify white matter abnormalities that may provide neural correlates for any behavioral abnormalities identified. PATIENTS AND METHODS: Eleven children with isolated optic nerve hypoplasia (mean age 5.9 years underwent behavioral assessment and brain diffusion tensor imaging, Twenty four controls with isolated short stature (mean age 6.4 years underwent MRI, 11 of whom also completed behavioral assessments. Fractional anisotropy images were processed using tract-based spatial statistics. Partial correlation between ventral cingulum, corpus callosum and optic radiation fractional anisotropy, and child behavioral checklist scores (controlled for age at scan and sex was performed. RESULTS: Children with optic nerve hypoplasia had significantly higher scores on the child behavioral checklist (p<0.05 than controls (4 had scores in the clinically significant range. Ventral cingulum, corpus callosum and optic radiation fractional anisotropy were significantly reduced in children with optic nerve hypoplasia. Right ventral cingulum fractional anisotropy correlated with total and externalising child behavioral checklist scores (r = -0.52, p<0.02, r = -0.46, p<0.049 respectively. There were no significant correlations between left ventral cingulum, corpus callosum or optic radiation fractional anisotropy and behavioral scores. CONCLUSIONS: Our findings suggest that children with optic nerve hypoplasia and mild to moderate or no visual impairment require behavioral assessment to determine the presence of clinically significant behavioral problems. Reduced structural integrity of the ventral cingulum correlated with behavioral scores, suggesting that these white matter abnormalities may be clinically significant. The presence of reduced fractional anisotropy in the optic

  20. Solitary Osteochondroma of the Ventral Scapula Associated with Large Bursa Formation and Pseudowinging of the Scapula: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Kiyohisa Ogawa

    2018-01-01

    Full Text Available Osteochondroma (OC is the most common benign bone tumor and may occur on any bone in which endochondral ossification develops. Although scapular OC accounts for less than 5% of the cases of solitary OC, OC is the most common lesion among the tumors and tumor-like lesions of the scapula. OC that develops near the medial scapular border easily causes friction with the ribcage; hence, almost half the number of cases of OC associated with marked bursa formation develops in the ventral scapula. We report a case of a 27-year-old female with a painful OC of the ventral scapular surface associated with large bursa formation and pseudowinging of the scapula. After l2 years of follow-up with magnetic resonance imaging, we confirm that the accompanied bursa left at surgery disappears.

  1. Ventral hernia repair with poly-4-hydroxybutyrate mesh.

    Science.gov (United States)

    Plymale, Margaret A; Davenport, Daniel L; Dugan, Adam; Zachem, Amanda; Roth, John Scott

    2018-04-01

    Biomaterial research has made available a biologically derived fully resorbable poly-4-hydroxybutyrate (P4HB) mesh for use in ventral and incisional hernia repair (VIHR). This study evaluates outcomes of patients undergoing VIHR with P4HB mesh. An IRB-approved prospective pilot study was conducted to assess clinical and quality of life (QOL) outcomes for patients undergoing VIHR with P4HB mesh. Perioperative characteristics were defined. Clinical outcomes, employment status, QOL using 12-item short form survey (SF-12), and pain assessments were followed for 24 months postoperatively. 31 patients underwent VIHR with bioresorbable mesh via a Rives-Stoppa approach with retrorectus mesh placement. The median patient age was 52 years, median body mass index was 33 kg/m 2 , and just over half of the patients were female. Surgical site occurrences occurred in 19% of patients, most of which were seroma. Hernia recurrence rate was 0% (median follow-up = 414 days). Patients had significantly improved QOL at 24 months compared to baseline for SF-12 physical component summary and role emotional (p < 0.05). Ventral hernia repair with P4HB bioresorbable mesh results in favorable outcomes. Early hernia recurrence was not identified among the patient cohort. Quality of life improvements were noted at 24 months versus baseline for this cohort of patients with bioresorbable mesh. Use of P4HB mesh for ventral hernia repair was found to be feasible in this patient population. (ClinicalTrials.gov Identifier: NCT01863030).

  2. The role of the dorsoanterior striatum in implicit motivation: The case of the need for power

    Directory of Open Access Journals (Sweden)

    Oliver C Schultheiss

    2013-04-01

    Full Text Available Implicit motives like the need for power (nPower scale affective responses to need-specific rewards or punishments and thereby influence activity in motivational-brain structures. In this paper, we review evidence specifically supporting a role of the striatum in nPower. Individual differences in nPower predict (a enhanced implicit learning accuracy, but not speed, on serial-response tasks that are reinforced by power-related incentives (e.g., winning or losing a contest; dominant or submissive emotional expressions in behavioral studies and (b activation of the anterior caudate in response to dominant emotional expressions in brain imaging research. We interpret these findings on the basis of Hikosaka, Nakamura, Sakai, and Nakahara's (2002; Current Opinion in Neurobiology, 12(2, 217-222 model of central mechanisms of motor skill learning. The model assigns a critical role to the dorsoanterior striatum in dopamine-driven learning of spatial stimulus sequences. Based on this model, we suggest that the dorsoanterior striatum is the locus of nPower-dependent reinforcement. However, given the centrality of this structure in a wide range of motivational pursuits, we also propose that activity in the dorsoanterior striatum may not only reflect individual differences in nPower, but also in other implicit motives, like the need for achievement or the need for affiliation, provided that the proper incentives for these motives are present during reinforcement learning. We discuss evidence in support of such a general role of the dorsoanterior striatum in implicit motivation.

  3. Metabotropic Glutamate Receptor 7 Modulates the Rewarding Effects of Cocaine in Rats: Involvement of a Ventral Pallidal GABAergic Mechanism

    Science.gov (United States)

    Li, Xia; Li, Jie; Peng, Xiao-Qing; Spiller, Krista; Gardner, Eliot L; Xi, Zheng-Xiong

    2013-01-01

    The metabotropic glutamate receptor 7 (mGluR7) has received much attention as a potential target for the treatment of epilepsy, major depression, and anxiety. In this study, we investigated the possible involvement of mGluR7 in cocaine reward in animal models of drug addiction. Pretreatment with the selective mGluR7 allosteric agonist N,N’-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082; 1-20 mg/kg, i.p.) dose-dependently inhibited cocaine-induced enhancement of electrical brain-stimulation reward and intravenous cocaine self-administration under both fixed-ratio and progressive-ratio reinforcement conditions, but failed to alter either basal or cocaine-enhanced locomotion or oral sucrose self-administration, suggesting a specific inhibition of cocaine reward. Microinjections of AMN082 (1–5 μg/μl per side) into the nucleus accumbens (NAc) or ventral pallidum (VP), but not dorsal striatum, also inhibited cocaine self-administration in a dose-dependent manner. Intra-NAc or intra-VP co-administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP, 5 μg/μl per side), a selective mGluR7 allosteric antagonist, significantly blocked AMN082’s action, suggesting an effect mediated by mGluR7 in these brain regions. In vivo microdialysis demonstrated that cocaine (10 mg/kg, i.p.) priming significantly elevated extracellular DA in the NAc or VP, while decreasing extracellular GABA in VP (but not in NAc). AMN082 pretreatment selectively blocked cocaine-induced changes in extracellular GABA, but not in DA, in both naive rats and cocaine self-administration rats. These data suggest: (1) mGluR7 is critically involved in cocaine’s acute reinforcement; (2) GABA-, but not DA-, dependent mechanisms in the ventral striatopallidal pathway appear to underlie AMN082’s actions; and (3) AMN082 or other mGluR7-selective agonists may be useful in the treatment of cocaine addiction. PMID:19158667

  4. Nationwide analysis of prolonged hospital stay and readmission after elective ventral hernia repair

    DEFF Research Database (Denmark)

    Helgstrand, Frederik; Rosenberg, Jacob; Kehlet, Henrik

    2011-01-01

    Early outcome after elective ventral hernia repair is unsatisfactory, but detailed analyses are lacking. The aim of this study was to describe the aetiology of prolonged hospital stay (LOS), readmission and death <30 days after elective ventral hernia repair.......Early outcome after elective ventral hernia repair is unsatisfactory, but detailed analyses are lacking. The aim of this study was to describe the aetiology of prolonged hospital stay (LOS), readmission and death

  5. Islet-1 is required for ventral neuron survival in Xenopus

    International Nuclear Information System (INIS)

    Shi, Yu; Zhao, Shuhua; Li, Jiejing; Mao, Bingyu

    2009-01-01

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosis in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.

  6. Effective Connectivity between Ventral Occipito-Temporal and Ventral Inferior Frontal Cortex during Lexico-Semantic Processing. A Dynamic Causal Modeling Study

    Directory of Open Access Journals (Sweden)

    Marcela Perrone-Bertolotti

    2017-06-01

    Full Text Available It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral, the superior temporal gyrus (STG; dorsal, the dorsal inferior frontal gyrus (dIFG; dorsal, and the ventral IFG (vIFG; ventral. We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG regardless of task demands. Moreover, we found that (a during semantic processing (direct ventral pathway the vOTC -> vIFG connection strength specifically increased and (b a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.

  7. No Community Left Behind

    Science.gov (United States)

    Schlechty, Phillip C.

    2008-01-01

    The debate over the reauthorization of No Child Left Behind (NCLB) generally overlooks--or looks past--what may be the most fundamental flaw in that legislation. As the law is now written, decisions regarding what the young should know and be able to do are removed from the hands of parents and local community leaders and turned over to officials…

  8. The Children Left Behind

    Science.gov (United States)

    Gillard, Sarah A.; Gillard, Sharlett

    2012-01-01

    This article explores some of the deficits in our educational system in regard to non-hearing students. It has become agonizingly clear that non-hearing students are being left out of the gallant sweep to enrich our children's educations. The big five areas of literacy, at best, present unique challenges for non-hearing students and, in some…

  9. Left atrial appendage occlusion

    Directory of Open Access Journals (Sweden)

    Ahmad Mirdamadi

    2013-01-01

    Full Text Available Left atrial appendage (LAA occlusion is a treatment strategy to prevent blood clot formation in atrial appendage. Although, LAA occlusion usually was done by catheter-based techniques, especially percutaneous trans-luminal mitral commissurotomy (PTMC, it can be done during closed and open mitral valve commissurotomy (CMVC, OMVC and mitral valve replacement (MVR too. Nowadays, PTMC is performed as an optimal management of severe mitral stenosis (MS and many patients currently are treated by PTMC instead of previous surgical methods. One of the most important contraindications of PTMC is presence of clot in LAA. So, each patient who suffers of severe MS is evaluated by Trans-Esophageal Echocardiogram to rule out thrombus in LAA before PTMC. At open heart surgery, replacement of the mitral valve was performed for 49-year-old woman. Also, left atrial appendage occlusion was done during surgery. Immediately after surgery, echocardiography demonstrates an echo imitated the presence of a thrombus in left atrial appendage area, although there was not any evidence of thrombus in pre-pump TEE. We can conclude from this case report that when we suspect of thrombus of left atrial, we should obtain exact history of previous surgery of mitral valve to avoid misdiagnosis clotted LAA, instead of obliterated LAA. Consequently, it can prevent additional evaluations and treatments such as oral anticoagulation and exclusion or postponing surgeries including PTMC.

  10. A Ventral Visual Stream Reading Center Independent of Sensory Modality and Visual Experience

    Directory of Open Access Journals (Sweden)

    Lior Reich

    2011-10-01

    Full Text Available The Visual Word Form Area (VWFA is a ventral-temporal-visual area that develops expertise for visual reading. It encodes letter-strings irrespective of case, font, or location in the visual-field, with striking anatomical reproducibility across individuals. In the blind, reading can be achieved using Braille, with a comparable level-of-expertise to that of sighted readers. We investigated which area plays the role of the VWFA in the blind. One would expect it to be at either parietal or bilateral occipital cortex, reflecting the tactile nature of the task and crossmodal plasticity, respectively. However, according to the notion that brain areas are task specific rather than sensory-modality specific, we predicted recruitment of the left-hemispheric VWFA, identically to the sighted and independent of visual experience. Using fMRI we showed that activation during Braille reading in congenitally blind individuals peaked in the VWFA, with striking anatomical consistency within and between blind and sighted. The VWFA was reading-selective when contrasted to high-level language and low-level sensory controls. Further preliminary results show that the VWFA is selectively activated also when people learn to read in a new language or using a different modality. Thus, the VWFA is a mutlisensory area specialized for reading regardless of visual experience.

  11. Temporal lobe epilepsy and surgery selectively alter the dorsal, not the ventral, default-mode network

    Directory of Open Access Journals (Sweden)

    Gaelle Eve Doucet

    2014-03-01

    Full Text Available The default-mode network (DMN is a major resting-state network. It can be divided in 2 distinct networks: one is composed of dorsal and anterior regions (referred to as the dorsal DMN, dDMN, while the other involves the more posterior regions (referred to as the ventral DMN, vDMN. To date, no studies have investigated the potentially distinct impact of temporal lobe epilepsy (TLE on these networks. In this context, we explored the effect of TLE and anterior temporal lobectomy (ATL on the dDMN and vDMN. We utilized 2 resting-state fMRI sessions from left, right TLE patients (pre-/post-surgery and normal controls (NCs, sessions 1/2. Using independent component analysis, we identified the 2 networks. We then evaluated for differences in spatial extent for each network between the groups, and across the scanning sessions. The results revealed that, pre-surgery, the dDMN showed larger differences between the three groups than the vDMN, and more particularly between right and left TLE than between the TLE patients and controls. In terms of change post-surgery, in both TLE groups, the dDMN also demonstrated larger changes than the vDMN. For the vDMN, the only changes involved the resected temporal lobe for each ATL group. For the dDMN, the left ATL group showed post-surgical increases in several regions outside the ictal temporal lobe. In contrast, the right ATL group displayed a large reduction in the frontal cortex. The results highlight that the 2 DMNs are not impacted by TLE and ATL in an equivalent fashion. Importantly, the dDMN was the more affected, with right ATL having a more deleterious effects on the dDMN than left ATL. We are the first to highlight that the dDMN more strongly bears the negative impact of TLE than the vDMN, suggesting there is an interaction between the side of pathology and DM subnetwork activity. Our findings have implications for understanding the impact TLE and subsequent ATL on the functions implemented by the distinct

  12. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking.

    Science.gov (United States)

    Cook, Jason B; Hendrickson, Linzy M; Garwood, Grant M; Toungate, Kelsey M; Nania, Christina V; Morikawa, Hitoshi

    2017-01-01

    Similar to drugs of abuse, the hedonic value of food is mediated, at least in part, by the mesostriatal dopamine (DA) system. Prolonged intake of either high calorie diets or drugs of abuse both lead to a blunting of the DA system. Most studies have focused on DAergic alterations in the striatum, but little is known about the effects of high calorie diets on ventral tegmental area (VTA) DA neurons. Since high calorie diets produce addictive-like DAergic adaptations, it is possible these diets may increase addiction susceptibility. However, high calorie diets consistently reduce psychostimulant intake and conditioned place preference in rodents. In contrast, high calorie diets can increase or decrease ethanol drinking, but it is not known how a junk food diet (cafeteria diet) affects ethanol drinking. In the current study, we administered a cafeteria diet consisting of bacon, potato chips, cheesecake, cookies, breakfast cereals, marshmallows, and chocolate candies to male Wistar rats for 3-4 weeks, producing an obese phenotype. Prior cafeteria diet feeding reduced homecage ethanol drinking over 2 weeks of testing, and transiently reduced sucrose and chow intake. Importantly, cafeteria diet had no effect on ethanol metabolism rate or blood ethanol concentrations following 2g/kg ethanol administration. In midbrain slices, we showed that cafeteria diet feeding enhances DA D2 receptor (D2R) autoinhibition in VTA DA neurons. These results show that junk food diet-induced obesity reduces ethanol drinking, and suggest that increased D2R autoinhibition in the VTA may contribute to deficits in DAergic signaling and reward hypofunction observed with obesity.

  13. METHAMPHETAMINE-INDUCED CELL DEATH: SELECTIVE VULNERABILITY IN NEURONAL SUBPOPULATIONS OF THE STRIATUM IN MICE

    Science.gov (United States)

    ZHU, J. P. Q.; XU, W.; ANGULO, J. A.

    2010-01-01

    Methamphetamine (METH) is an illicit and potent psychostimulant, which acts as an indirect dopamine agonist. In the striatum, METH has been shown to cause long lasting neurotoxic damage to dopaminergic nerve terminals and recently, the degeneration and death of striatal cells. The present study was undertaken to identify the type of striatal neurons that undergo apoptosis after METH. Male mice received a single high dose of METH (30 mg/kg, i.p.) and were killed 24 h later. To demonstrate that METH induces apoptosis in neurons, we combined terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining with immunohistofluorescence for the neuronal marker neuron-specific nuclear protein (NeuN). Staining for TUNEL and NeuN was colocalized throughout the striatum. METH induces apoptosis in approximately 25% of striatal neurons. Cell counts of TUNEL-positive neurons in the dorsomedial, ventromedial, dorsolateral and ventrolateral quadrants of the striatum did not reveal anatomical preference. The type of striatal neuron undergoing cell death was determined by combining TUNEL with immunohistofluorescence for selective markers of striatal neurons: dopamine- and cAMP-regulated phosphoprotein, of apparent Mr 32,000, parvalbumin, choline acetyltransferase and somatostatin (SST). METH induces apoptosis in approximately 21% of dopamine- and cAMP-regulated phosphoprotein, of apparent Mr 32,000-positive neurons (projection neurons), 45% of GABA-parvalbumin-positive neurons in the dorsal striatum, and 29% of cholinergic neurons in the dorsal–medial striatum. In contrast, the SST-positive interneurons were refractory to METH-induced apoptosis. Finally, the amount of cell loss determined with Nissl staining correlated with the amount of TUNEL staining in the striatum of METH-treated animals. In conclusion, some of the striatal projection neurons and the GABA-parvalbumin and cholinergic interneurons were removed by apoptosis in the aftermath of METH. This

  14. Hypoplastic left heart syndrome

    Directory of Open Access Journals (Sweden)

    Thiagarajan Ravi

    2007-05-01

    Full Text Available Abstract Hypoplastic left heart syndrome(HLHS refers to the abnormal development of the left-sided cardiac structures, resulting in obstruction to blood flow from the left ventricular outflow tract. In addition, the syndrome includes underdevelopment of the left ventricle, aorta, and aortic arch, as well as mitral atresia or stenosis. HLHS has been reported to occur in approximately 0.016 to 0.036% of all live births. Newborn infants with the condition generally are born at full term and initially appear healthy. As the arterial duct closes, the systemic perfusion becomes decreased, resulting in hypoxemia, acidosis, and shock. Usually, no heart murmur, or a non-specific heart murmur, may be detected. The second heart sound is loud and single because of aortic atresia. Often the liver is enlarged secondary to congestive heart failure. The embryologic cause of the disease, as in the case of most congenital cardiac defects, is not fully known. The most useful diagnostic modality is the echocardiogram. The syndrome can be diagnosed by fetal echocardiography between 18 and 22 weeks of gestation. Differential diagnosis includes other left-sided obstructive lesions where the systemic circulation is dependent on ductal flow (critical aortic stenosis, coarctation of the aorta, interrupted aortic arch. Children with the syndrome require surgery as neonates, as they have duct-dependent systemic circulation. Currently, there are two major modalities, primary cardiac transplantation or a series of staged functionally univentricular palliations. The treatment chosen is dependent on the preference of the institution, its experience, and also preference. Although survival following initial surgical intervention has improved significantly over the last 20 years, significant mortality and morbidity are present for both surgical strategies. As a result pediatric cardiologists continue to be challenged by discussions with families regarding initial decision

  15. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Eun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shim, In Sop [Kyunghee University, Seoul (Korea, Republic of); Chung, June Key; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2002-10-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants.

  16. Effect of ginseng saponina on nicotine-induced dopamine release in the rat nucleus accumbens and striatum

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Shim, In Sop; Chung, June Key; Lee, Myung Chul

    2002-01-01

    We investigated the effect of ginseng total saponin (GTS) on nicotine-induced dopamine (DA) release in the striatum and nucleus accumbens of freely moving rats using in vivo microdialysis technique. Systemic pretreatment with GTS decreased striatal DA release induced by local infusion of nicotine into the striatum. However, GTS had no effect on the resting levels of extracellular DA in the striatum. GTS also blocked nicotine-induced DA release in the nucleus accumbens. The results of the present study suggest that GTS acts on the DA terminals to prevent DA release induced by nicotine. This may reflect the blocking effect of GTS on behavioral hyperactivity induced by psychostimulants

  17. Holmes’ Tremor with Shoulder Pain Treated by Deep Brain Stimulation of Unilateral Ventral Intermediate Thalamic Nucleus and Globus Pallidus Internus

    Directory of Open Access Journals (Sweden)

    Sabri Aydın

    2017-05-01

    Full Text Available A 21-year-old male was admitted with severe right arm and hand tremors after a thalamic hemorrhage caused by a traffic accident. He was also suffering from agonizing pain in his right shoulder that manifested after the tremor. Neurologic examination revealed a disabling, severe, and irregular kinetic and postural tremor in the right arm during target-directed movements. There was also an irregular ipsilateral rest tremor and dystonic movements in the distal part of the right arm. The amplitude was moderate at rest and extremely high during kinetic and intentional movements. The patient underwent left globus pallidum internus and ventral intermediate thalamic nucleus deep brain stimulation. The patient improved by more than 80% as rated by the Fahn-Tolosa-Marin Tremor Rating Scale and Visual Analog Scale six months after surgery.

  18. Ventral simultanagnosia and prosopagnosia for unfamiliar faces due to a right posterior superior temporal sulcus and angular gyrus lesion.

    Science.gov (United States)

    Sakurai, Yasuhisa; Hamada, Kensuke; Tsugawa, Naoya; Sugimoto, Izumi

    2016-01-01

    We report a patient with ventral simultanagnosia, prosopagnosia for "unfamiliar faces" (dorsal prosopagnosia), spatial agraphia, and constructional disorder, particularly on the left spatial side, due to a lesion in the right posterior superior and middle temporal gyri and angular gyrus. The patient showed impairment of fundamental visual and visuospatial recognition, such as in object size, configuration, and horizontal point location, which probably underlay the mechanism of simultanagnosia and prosopagnosia. This case also suggests that the coexistence of simultanagnosia and prosopagnosia results from a right hemispheric insult, and damage to the temporoparietal area interrupts the incorporation of spatial information into object recognition. This disconnection of information flow, together with impaired object recognition per se, may impair the parallel processing of multiple objects, leading to object-by-object or part-by-part recognition.

  19. Corynebacterium striatum infecting a malignant cutaneous lesion: the emergence of an opportunistic pathogen Corynebacterium striatum infectando lesão cutânea maligna: a emergência de um patógeno oportunista

    Directory of Open Access Journals (Sweden)

    Silvana Vargas Superti

    2009-04-01

    Full Text Available We described a case of a 27-year old male patient with skin and soft tissue infection of a neoplastic lesion caused by Corynebacterium striatum, an organism which has been rarely described as a human pathogen. Identification was confirmed by DNA sequencing. Successful treatment with penicillin was achieved. The role of the C. striatum as an emerging opportunistic pathogen is discussed.Descrevemos infecção de lesão neoplásica em paciente masculino de 27 anos, envolvendo pele e partes moles, causada por Corynebacterium striatum, um microrganismo raramente descrito como patógeno humano. A identificação foi confirmada por seqüenciamento de DNA. O paciente foi tratado com penicilina, com sucesso. O papel do C. striatum como patógeno oportunista é discutido.

  20. Isolation and characterization of neural stem cells from human fetal striatum

    International Nuclear Information System (INIS)

    Li Xiaoxia; Xu Jinchong; Bai Yun; Wang Xuan; Dai Xin; Liu Yinan; Zhang Jun; Zou Junhua; Shen Li; Li Lingsong

    2005-01-01

    This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28 h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience

  1. Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats.

    Science.gov (United States)

    Haleagrahara, Nagaraja; Siew, Cheng Jun; Ponnusamy, Kumar

    2013-02-01

    The catecholaminergic neurotoxin 6-hydroxydopamine is used to lesion dopaminergic pathways in the experimental animal models of Parkinson's disease. The present study was aimed to evaluate the combined treatment with bioflavonoid quercetin (QN) and desferrioxamine (DFO) on 6-hydroxydopamine (6-OHDA) - induced neurotoxicity in the striatum of rats. Adult, male Sprague - Dawley rats were divided into control, sham lesion, 6-OHDA treated (300 µg, intracisternal), 6-OHDA with QN (50 mg/kg) treated, 6-OHDA with DFO (50 mg/kg) treated and 6-OHDA with QN and DFO treated groups. Striatal dopamine, protein carbonyl content (PCC), glutathione (GSH) and superoxide dismutase (SOD) were estimated. There was a significant increase (p protection. Combined treatment has a more significant effect (p protecting the neurons and increasing the antioxidant enzymes in the striatum. In conclusion, an antioxidant with iron chelator treatment showed a significant neuroprotective effect against 6-hydroxydopamine (6-OHDA) by preventing dopaminergic neuronal loss and maintaining the striatal dopamine level.

  2. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.

    Science.gov (United States)

    Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting

    2016-10-05

    An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.

  3. SELEKSI RUMPUT LAUT Kappaphycus striatum DALAM UPAYA PENINGKATAN LAJU PERTUMBUHAN BIBIT UNTUK BUDIDAYA

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2017-01-01

    Full Text Available Budidaya rumput laut di Indonesia semakin berkembang seiring dengan peningkatan permintaan bahan baku industri untuk pasar domestik dan eksport. Rumput laut Kappaphycus striatum, salah satu spesies rumput laut komersil, telah intensif dibudidayakan di perairan pantai. Saat ini, masalah utama yang dihadapi pembudidaya adalah rendahnya kualitas bibit yang berasal dari hasil budidaya. Seleksi varietas merupakan salah satu metode yang diharapkan dapat meningkatkan laju pertumbuhan rumput laut. Penelitian ini dilakukan dengan tujuan untuk mengetahui pengaruh seleksi varietas terhadap pertumbuhan rumput laut sehingga dapat dilakukan produksi bibit unggul untuk keperluan budidaya. Budidaya rumput laut K. striatum telah dilakukan di Teluk Laikang, Kabupaten Takalar, Provinsi Sulawesi Selatan dengan menggunakan metode long line. Seleksi varietas dilakukan berdasarkan parameter laju pertumbuhan harian (LPH dan metode seleksi mengacu pada protokol seleksi yang telah dikembangkan pada rumput laut K. alvarezii. Hasil penelitian menunjukkan bahwa LPH bibit hasil seleksi lebih tinggi (P

  4. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia.

    Science.gov (United States)

    Joo, Sung Woo; Chon, Myong-Wuk; Rathi, Yogesh; Shenton, Martha E; Kubicki, Marek; Lee, Jungsun

    2018-02-01

    Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Existence and control of Go/No-Go decision transition threshold in the striatum.

    Directory of Open Access Journals (Sweden)

    Jyotika Bahuguna

    2015-04-01

    Full Text Available A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go' or the `No-Go' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson's disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.

  6. Existence and control of Go/No-Go decision transition threshold in the striatum.

    Science.gov (United States)

    Bahuguna, Jyotika; Aertsen, Ad; Kumar, Arvind

    2015-04-01

    A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs) in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go' or the `No-Go' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson's disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.

  7. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    Science.gov (United States)

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  8. The influence of cannabinoids on learning and memory processes of the dorsal striatum.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2015-11-01

    Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Identification of Functional Clusters in the Striatum Using Infinite Relational Modeling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer Hougaard; Siebner, Hartwig

    2011-01-01

    In this paper we investigate how the Infinite Relational Model can be used to infer functional groupings of the human striatum using resting state fMRI data from 30 healthy subjects. The Infinite Relational Model is a non-parametric Bayesian method for infering community structure in complex netw...... and non-links in the graphs as missing. We find that the model is performing well above chance for all subjects....

  10. Impaired communication between the dorsal and ventral stream: indications from apraxia

    Directory of Open Access Journals (Sweden)

    Carys eEvans

    2016-02-01

    Full Text Available Patients with apraxia perform poorly when demonstrating how an object is used, particularly when pantomiming the action. However, these patients are able to accurately identify, and to pick up and move objects, demonstrating intact ventral and dorsal stream visuomotor processing. Appropriate object manipulation for skilled use is thought to rely on integration of known and visible object properties associated with ‘ventro-dorsal’ stream neural processes. In apraxia, it has been suggested that stored object knowledge from the ventral stream may be less readily available to incorporate into the action plan, leading to an over-reliance on the objects’ visual affordances in object-directed motor behaviour. The current study examined grasping performance in left hemisphere stroke patients with (N = 3 and without (N = 9 apraxia, and in age-matched healthy control participants (N = 14, where participants repeatedly grasped novel cylindrical objects of varying weight distribution. Across two conditions, object weight distribution was indicated by either a memory-associated cue (object colour or visual-spatial cue (visible dot over the weighted end. Participants were required to incorporate object-weight associations to effectively grasp and balance each object. Control groups appropriately adjusted their grasp according to each object’s weight distribution across each condition, whereas throughout the task two of the three apraxic patients performed poorly on both the memory-associated and visual-spatial cue conditions. A third apraxic patient seemed to compensate for these difficulties but still performed differently to control groups. Patients with apraxia performed normally on the neutral control condition when grasping the evenly weighted version. The pattern of behaviour in apraxic patients suggests impaired integration of visible and known object properties attributed to the ventro-dorsal stream: in learning to grasp the weighted object

  11. Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Khuansiri Narajeenron

    2017-04-01

    Full Text Available Audience: The audience for this classic team-based learning (cTBL session is emergency medicine residents, faculty, and students; although this topic is applicable to internal medicine and family medicine residents. Introduction: A left ventricular assist device (LVAD is a mechanical circulatory support device that can be placed in critically-ill patients who have poor left ventricular function. After LVAD implantation, patients have improved quality of life.1 The number of LVAD patients worldwide continues to rise. Left-ventricular assist device patients may present to the emergency department (ED with severe, life-threatening conditions. It is essential that emergency physicians have a good understanding of LVADs and their complications. Objectives: Upon completion of this cTBL module, the learner will be able to: 1 Properly assess LVAD patients’ circulatory status; 2 appropriately resuscitate LVAD patients; 3 identify common LVAD complications; 4 evaluate and appropriately manage patients with LVAD malfunctions. Method: The method for this didactic session is cTBL.

  12. Ventral striatal activity links adversity and reward processing in children.

    Science.gov (United States)

    Kamkar, Niki H; Lewis, Daniel J; van den Bos, Wouter; Morton, J Bruce

    2017-08-01

    Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain's sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The ventral premammillary nucleus links leptin action and reproduction

    Directory of Open Access Journals (Sweden)

    Jose eDonato

    2011-10-01

    Full Text Available The amount of body fat and the energy balance are important factors that influence the timing of puberty and the normal reproductive function. Leptin is a key hormone that conveys to the central nervous system information about the individual energy reserve and modulates the hypothalamus-pituitary-gonad axis. Recent findings suggest that the ventral premammillary nucleus (PMV mediates the effects of leptin as a permissive factor for the onset of puberty and the coordinated secretion of luteinizing hormone during conditions of negative energy balance. Thus, in this review we will summarize the existing literature about the potential role played by PMV neurons in the regulation of the hypothalamus-pituitary-gonad axis.

  14. Ventral striatal activity links adversity and reward processing in children

    Directory of Open Access Journals (Sweden)

    Niki H. Kamkar

    2017-08-01

    Full Text Available Adversity impacts many aspects of psychological and physical development including reward-based learning and decision-making. Mechanisms relating adversity and reward processing in children, however, remain unclear. Here, we show that adversity is associated with potentiated learning from positive outcomes and impulsive decision-making, but unrelated to learning from negative outcomes. We then show via functional magnetic resonance imaging that the link between adversity and reward processing is partially mediated by differences in ventral striatal response to rewards. The findings suggest that early-life adversity is associated with alterations in the brain’s sensitivity to rewards accounting, in part, for the link between adversity and altered reward processing in children.

  15. Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine.

    Science.gov (United States)

    Xue, Bing; Chen, Elton C; He, Nan; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q

    2017-01-01

    Dopamine (DA) and acetylcholine (ACh) signals converge onto protein kinase A (PKA) in medium spiny neurons of the striatum to control cellular and synaptic activities of these neurons, although underlying molecular mechanisms are less clear. Here we measured phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) at a PKA site (S845) as an indicator of AMPAR responses in adult rat brains in vivo to explore how DA and ACh interact to modulate AMPARs. We found that subtype-selective activation of DA D1 receptors (D1Rs), D2 receptors (D2Rs), or muscarinic M4 receptors (M4Rs) induced specific patterns of GluA1 S845 responses in the striatum. These defined patterns support a local multitransmitter interaction model in which D2Rs inhibited an intrinsic inhibitory element mediated by M4Rs to enhance the D1R efficacy in modulating AMPARs. Consistent with this, selective enhancement of M4R activity by a positive allosteric modulator resumed the cholinergic inhibition of D1Rs. In addition, D1R and D2R coactivation recruited GluA1 and PKA preferentially to extrasynaptic sites. In sum, our in vivo data support an existence of a dynamic DA-ACh balance in the striatum which actively modulates GluA1 AMPAR phosphorylation and trafficking. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Haloperidol-induced changes in neuronal activity in the striatum of the freely moving rat

    Directory of Open Access Journals (Sweden)

    Dorin eYael

    2013-12-01

    Full Text Available The striatum is the main input structure of the basal ganglia, integrating input from the cerebral cortex and the thalamus, which is modulated by midbrain dopaminergic input. Dopamine modulators, including agonists and antagonists, are widely used to relieve motor and psychiatric symptoms in a variety of pathological conditions. Haloperidol, a dopamine D2 antagonist, is commonly used in multiple psychiatric conditions and motor abnormalities. This article reports the effects of haloperidol on the activity of three major striatal subpopulations: medium spiny projection neurons (MSNs, fast spiking interneurons (FSIs and tonically active neurons (TANs. We implanted multi-wire electrode arrays in the rat dorsal striatum and recorded the activity of multiple single units in freely moving animals before and after systemic haloperidol injection. Haloperidol decreased the firing rate of FSIs and MSNs while increasing their tendency to fire in an oscillatory manner in the high voltage spindle (HVS frequency range of 7-9 Hz. Haloperidol led to an increased firing rate of TANs but did not affect their non-oscillatory firing pattern and their typical correlated firing activity. Our results suggest that dopamine plays a key role in tuning both single unit activity and the interactions within and between different subpopulations in the striatum in a differential manner. These findings highlight the heterogeneous striatal effects of tonic dopamine regulation via D2 receptors which potentially enable the treatment of diverse pathological states associated with basal ganglia dysfunction.

  17. Re-thinking the role of the dorsal striatum in egocentric/response strategy.

    Science.gov (United States)

    Botreau, Fanny; Gisquet-Verrier, Pascale

    2010-01-01

    Rats trained in a dual-solution cross-maze task, which can be solved by place and response strategies, predominantly used a response strategy after extensive training. This paper examines the involvement of the medial and lateral dorsal striatum (mDS and lDS) in the choice of these strategies after partial and extensive training. Our results show that rats with lDS and mDS lesions used mainly a response strategy from the early phase of training. We replicated these unexpected data in rats with lDS lesions and confirmed their tendency to use the response strategy in a modified cross-maze task. When trained in a dual-solution water-maze task, however, control and lesioned rats consistently used a place strategy, demonstrating that lDS and mDS lesioned rats can use a place strategy and that the shift towards a response strategy did not systematically result from extensive training. The present data did not show any clear dissociation between the mDS and lDS in dual solution tasks. They further indicate that the dorsal striatum seems to determine the strategies adopted in a particular context but cannot be considered as a neural support for the response memory system. Accordingly, the role of the lateral and medial part of the dorsal striatum in egocentric/response memory should be reconsidered.

  18. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    Science.gov (United States)

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  19. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum

    Science.gov (United States)

    Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda

    2016-01-01

    The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891

  20. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    Science.gov (United States)

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  1. Comparative Proteomic Analysis of Carbonylated Proteins from the Striatum and Cortex of Pesticide-Treated Mice

    Directory of Open Access Journals (Sweden)

    Christina Coughlan

    2015-01-01

    Full Text Available Epidemiological studies indicate exposures to the herbicide paraquat (PQ and fungicide maneb (MB are associated with increased risk of Parkinson’s disease (PD. Oxidative stress appears to be a premier mechanism that underlies damage to the nigrostriatal dopamine system in PD and pesticide exposure. Enhanced oxidative stress leads to lipid peroxidation and production of reactive aldehydes; therefore, we conducted proteomic analyses to identify carbonylated proteins in the striatum and cortex of pesticide-treated mice in order to elucidate possible mechanisms of toxicity. Male C57BL/6J mice were treated biweekly for 6 weeks with saline, PQ (10 mg/kg, MB (30 mg/kg, or the combination of PQ and MB (PQMB. Treatments resulted in significant behavioral alterations in all treated mice and depleted striatal dopamine in PQMB mice. Distinct differences in 4-hydroxynonenal-modified proteins were observed in the striatum and cortex. Proteomic analyses identified carbonylated proteins and peptides from the cortex and striatum, and pathway analyses revealed significant enrichment in a variety of KEGG pathways. Further analysis showed enrichment in proteins of the actin cytoskeleton in treated samples, but not in saline controls. These data indicate that treatment-related effects on cytoskeletal proteins could alter proper synaptic function, thereby resulting in impaired neuronal function and even neurodegeneration.

  2. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  3. Suture, synthetic, or biologic in contaminated ventral hernia repair.

    Science.gov (United States)

    Bondre, Ioana L; Holihan, Julie L; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K

    2016-02-01

    Data are lacking to support the choice between suture, synthetic mesh, or biologic matrix in contaminated ventral hernia repair (VHR). We hypothesize that in contaminated VHR, suture repair is associated with the lowest rate of surgical site infection (SSI). A multicenter database of all open VHR performed at from 2010-2011 was reviewed. All patients with follow-up of 1 mo and longer were included. The primary outcome was SSI as defined by the Centers for Disease Control and Prevention. The secondary outcome was hernia recurrence (assessed clinically or radiographically). Multivariate analysis (stepwise regression for SSI and Cox proportional hazard model for recurrence) was performed. A total of 761 VHR were reviewed for a median (range) follow-up of 15 (1-50) mo: there were 291(38%) suture, 303 (40%) low-density and/or mid-density synthetic mesh, and 167(22%) biologic matrix repair. On univariate analysis, there were differences in the three groups including ethnicity, ASA, body mass index, institution, diabetes, primary versus incisional hernia, wound class, hernia size, prior VHR, fascial release, skin flaps, and acute repair. The unadjusted outcomes for SSI (15.1%; 17.8%; 21.0%; P = 0.280) and recurrence (17.8%; 13.5%; 21.5%; P = 0.074) were not statistically different between groups. On multivariate analysis, biologic matrix was associated with a nonsignificant reduction in both SSI and recurrences, whereas synthetic mesh associated with fewer recurrences compared to suture (hazard ratio = 0.60; P = 0.015) and nonsignificant increase in SSI. Interval estimates favored biologic matrix repair in contaminated VHR; however, these results were not statistically significant. In the absence of higher level evidence, surgeons should carefully balance risk, cost, and benefits in managing contaminated ventral hernia repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. High signal of the striatum in sporadic Creutzfeldt-Jakob disease: sequential change on T2-weighted MRI

    International Nuclear Information System (INIS)

    Uemura, A.; O'uchi, T.; Sakamoto, T.; Yashiro, N.

    2002-01-01

    The object of this study is to describe the sequential change of high signal of the striatum on T2-weighted MRI in sporadic Creutzfeldt-Jakob disease (CJD). Three cases of autopsy-proven sporadic CJD and a total of 18 serial MR images are included in this study. The degree of high signal of the striatum on T2-weighted MRI was evaluated by two neuroradiologists and divided into four grades by mutual agreement. Initial MRI of all three cases showed a slightly high signal of the bilateral striatum, and the conspicuity of the high signal became more prominent as the disease progressed. In each case the pathological change of striatum and globus pallidus was compared with the high signal on the last MR image. (orig.)

  5. High signal of the striatum in sporadic Creutzfeldt-Jakob disease: sequential change on T2-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, A.; O' uchi, T.; Sakamoto, T.; Yashiro, N. [Department of Radiology, Kameda Medical Center, Kamogawa, Chiba (Japan)

    2002-04-01

    The object of this study is to describe the sequential change of high signal of the striatum on T2-weighted MRI in sporadic Creutzfeldt-Jakob disease (CJD). Three cases of autopsy-proven sporadic CJD and a total of 18 serial MR images are included in this study. The degree of high signal of the striatum on T2-weighted MRI was evaluated by two neuroradiologists and divided into four grades by mutual agreement. Initial MRI of all three cases showed a slightly high signal of the bilateral striatum, and the conspicuity of the high signal became more prominent as the disease progressed. In each case the pathological change of striatum and globus pallidus was compared with the high signal on the last MR image. (orig.)

  6. Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum?

    Science.gov (United States)

    Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.

    2010-01-01

    We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…

  7. Prey selection of a captive Oystercatcher Haematopus ostralegus hammering Mussels Mytilus edulis from the ventral side

    NARCIS (Netherlands)

    Ens, Bruno J.; Alting, D

    1996-01-01

    We studied prey choice of a captive Oystercatcher:hat hammered Mussels from the ventral side. The results replicate previous findings that ventral hammerers select Mussels of intermediate size, select against thick-shelled Mussels, abandon an increasing proportion of Mussels with increasing size and

  8. Levodopa-induced dyskinesia is associated with increased thyrotropin releasing hormone in the dorsal striatum of hemi-parkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Ippolita Cantuti-Castelvetri

    2010-11-01

    Full Text Available Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition.Quantitative real-time polymerase chain reaction (PCR was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes.TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.

  9. Distinct changes in CREB phosphorylation in frontal cortex and striatum during contingent and non-contingent performance of a visual attention task

    Directory of Open Access Journals (Sweden)

    Mirjana eCarli

    2011-10-01

    Full Text Available The cyclic-AMP response element binding protein (CREB family of transcription factors has been implicated in numerous forms of behavioural plasticity. We investigated CREB phosphorylation along some nodes of corticostriatal circuitry such as frontal cortex (FC and dorsal (caudate putamen, CPu and ventral (nucleus accumbens, NAC striatum in response to the contingent or non-contingent performance of the five-choice serial reaction time task (5-CSRTT used to assess visuospatial attention. Three experimental manipulations were used; an attentional performance group (contingent, master, a group trained previously on the task but for whom the instrumental contingency coupling responding with stimulus detection and reward was abolished (non-contingent, yoked and a control group matched for food deprivation and exposure to the test apparatus (untrained. Rats trained on the 5-CSRTT (both master and yoked had higher levels of CREB protein in the FC, CPu and NAC compared to untrained controls. Despite the divergent behaviour of master and yoked rats CREB activity in the FC was not substantially different. In rats performing the 5-CSRTT (master, CREB activity was completely abolished in the CPu whereas in the NAC it remained unchanged. In contrast, CREB phosphorylation in CPu and NAC increased only when the contingency changed from goal-dependent to goal-independent reinforcement (yoked. The present results indicate that up-regulation of CREB protein expression across cortical and striatal regions possibly reflects the extensive instrumental learning and performance whereas increased CREB activity in striatal regions may signal the unexpected change in the relationship between instrumental action and reinforcement.

  10. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus.

    Science.gov (United States)

    Zhang, Tie-Yuan; Keown, Christopher L; Wen, Xianglan; Li, Junhao; Vousden, Dulcie A; Anacker, Christoph; Bhattacharyya, Urvashi; Ryan, Richard; Diorio, Josie; O'Toole, Nicholas; Lerch, Jason P; Mukamel, Eran A; Meaney, Michael J

    2018-01-19

    Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.

  11. Increased turnover of dopamine in caudate nucleus of detoxified alcoholic patients

    DEFF Research Database (Denmark)

    Kumakura, Yoshitaka; Gjedde, Albert; Caprioli, Daniele

    2013-01-01

    ventral striatum. We conclude that craving is most pronounced in the individuals with relatively rapid dopamine turnover in the left ventral striatum. The blood-brain clearance rate (K), corrected for subsequent loss of radiolabeled molecules from brain, was completely normal throughout the brain...... of the alcoholics, in whom the volume of distribution (V(d)) was found to be significantly lower in the left caudate nucleus. The magnitude of Vd in the left caudate head was reduced by 43% relative to the 16 controls, consistent with a 58% increase of k(loss). We interpret the findings as indicating that a trait...... for rapid dopamine turnover in the ventral striatum subserves craving and reward-dependence, leading to an acquired state of increased dopamine turnover in the dorsal striatum of detoxified alcoholic patients....

  12. The role of the ventral dentate gyrus in olfactory pattern separation.

    Science.gov (United States)

    Weeden, Christy S S; Hu, Nathan J; Ho, Liana U N; Kesner, Raymond P

    2014-05-01

    Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less-understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching-to-sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory-based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  13. Left regular bands of groups of left quotients

    International Nuclear Information System (INIS)

    El-Qallali, A.

    1988-10-01

    A semigroup S which has a left regular band of groups as a semigroup of left quotients is shown to be the semigroup which is a left regular band of right reversible cancellative semigroups. An alternative characterization is provided by using spinned products. These results are applied to the case where S is a superabundant whose set of idempotents forms a left normal band. (author). 13 refs

  14. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Why Dora Left

    DEFF Research Database (Denmark)

    Gammelgård, Judy

    2017-01-01

    The question of why Dora left her treatment before it was brought to a satisfactory end and the equally important question of why Freud chose to publish this problematic and fragmentary story have both been dealt with at great length by Freud’s successors. Dora has been read by analysts, literary...... problem toward femininity, both Dora’s and his own. In Dora, it is argued, Freud took a new stance toward the object of his investigation, speaking from the position of the master. Freud presents himself as the one who knows, in great contrast to the position he takes when unraveling the dream. Here he...

  16. Neutrosophic Left Almost Semigroup

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali

    2014-06-01

    Full Text Available In this paper we extend the theory of neutrosophy to study left almost semigroup shortly LAsemigroup. We generalize the concepts of LA-semigroup to form that for neutrosophic LA-semigroup. We also extend the ideal theory of LA-semigroup to neutrosophy and discuss different kinds of neutrosophic ideals. We also find some new type of neutrosophic ideal which is related to the strong or pure part of neutrosophy. We have given many examples to illustrate the theory of neutrosophic LA-semigroup and display many properties of neutrosophic LA-semigroup in this paper.

  17. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  18. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  19. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    Science.gov (United States)

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  20. Single-minded and the evolution of the ventral midline in arthropods.

    Science.gov (United States)

    Linne, Viktoria; Eriksson, Bo Joakim; Stollewerk, Angelika

    2012-04-01

    In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold. Both in insects and malacostracan crustaceans, the bHLH-PAS transcription factor single-minded is the master regulator of ventral midline development and homology has been suggested for individual midline precursors in these groups. The conserved arrangement of the axonal scaffold as well as the regular pattern of neural precursors in all euarthropod groups raises the question whether the ventral midline system is conserved in this phylum. In the remaining euarthropod groups, the chelicerates and myriapods, a single-minded homologue has been identified in the spider Achaearanea tepidariorum (chelicerate), however, the gene is not expressed in the ventral midline but in the median area of the ventral neuroectoderm. Here we show that At-sim is not required for ventral midline development. Furthermore, we identify sim homologues in representatives of arthropods that have not yet been analysed: the myriapod Strigamia maritima and a representative of an outgroup to the euarthropods, the onychophoran Euperipatoides kanangrensis. We compare the expression patterns to the A. tepidariorum sim homologue expression and furthermore analyse the nature of the arthropod midline cells. Our data suggest that in arthropods unpaired midline precursors evolved from the bilateral median domain of the ventral neuroectoderm in the last common ancestor of Mandibulata (insects, crustaceans, myriapods). We hypothesize that sim was expressed in this domain and recruited to ventral midline development. Subsequently, sim

  1. HIV Distal Neuropathic Pain Is Associated with Smaller Ventral Posterior Cingulate Cortex.

    Science.gov (United States)

    Keltner, John R; Connolly, Colm G; Vaida, Florin; Jenkinson, Mark; Fennema-Notestine, Christine; Archibald, Sarah; Akkari, Cherine; Schlein, Alexandra; Lee, Jisu; Wang, Dongzhe; Kim, Sung; Li, Han; Rennels, Austin; Miller, David J; Kesidis, George; Franklin, Donald R; Sanders, Chelsea; Corkran, Stephanie; Grant, Igor; Brown, Gregory G; Atkinson, J Hampton; Ellis, Ronald J

    2017-03-01

    . Despite modern antiretroviral therapy, HIV-associated neuropathy is one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of distal neuropathic pain is not fully explained by the degree of peripheral nerve damage. A better understanding of brain structure in HIV distal neuropathic pain may help explain why some patients with HIV neuropathy report pain while the majority does not. Previously, we reported that more intense distal neuropathic pain was associated with smaller total cerebral cortical gray matter volumes. The objective of this study was to determine which parts of the cortex are smaller. . HIV positive individuals with and without distal neuropathic pain enrolled in the multisite (N = 233) CNS HIV Antiretroviral Treatment Effects (CHARTER) study underwent structural brain magnetic resonance imaging. Voxel-based morphometry was used to investigate regional brain volumes in these structural brain images. . Left ventral posterior cingulate cortex was smaller for HIV positive individuals with versus without distal neuropathic pain (peak P  = 0.017; peak t = 5.15; MNI coordinates x = -6, y = -54, z = 20). Regional brain volumes within cortical gray matter structures typically associated with pain processing were also smaller for HIV positive individuals having higher intensity ratings of distal neuropathic pain. . The posterior cingulate is thought to be involved in inhibiting the perception of painful stimuli. Mechanistically a smaller posterior cingulate cortex structure may be related to reduced anti-nociception contributing to increased distal neuropathic pain. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Seroma in ventral incisional herniorrhaphy: incidence, predictors and outcome.

    Science.gov (United States)

    Kaafarani, Haytham M A; Hur, Kwan; Hirter, Angie; Kim, Lawrence T; Thomas, Anthony; Berger, David H; Reda, Domenic; Itani, Kamal M F

    2009-11-01

    Factors leading to seroma following ventral incisional herniorrhaphy (VIH) are poorly understood. Between 2004 and 2006, patients were prospectively randomized at 4 Veterans Affairs hospitals to undergo laparoscopic or open VIH. Patients who developed seromas within 8 weeks postoperatively were compared with those who did not. Multivariate analyses were performed to identify predictors of seroma. Of 145 patients who underwent VIH, 24 (16.6%) developed seromas. Patients who underwent open VIH had more seromas than those who underwent laparoscopic VIH (23.3% vs 6.8%, P = .011). Seroma patients had hernias that were never spontaneously reducible (0% vs 21%, P = .015), had more abdominal incisions preoperatively (mean, 2.4 vs 1.8; P = .037), and were less likely to have drain catheters placed than those without seromas (30.0% vs 63.1%, P = .011). In multivariate analyses, open VIH predicted seroma (odds ratio, 5.5; 95% confidence interval, 1.6-18.8), as well as the specific hospital at which the procedure was performed. Spontaneous resolution occurred in 71% of seromas; 29% required aspiration. Procedural characteristics and hernia characteristics rather than patient comorbidities predicted seroma in VIH.

  3. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    Science.gov (United States)

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-Kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Ventral tegmental area GABA neurons and opiate motivation

    Science.gov (United States)

    Vargas-Perez, Hector; Mabey, Jennifer K.; Shin, Samuel I.; Steffensen, Scott C.; van der Kooy, Derek

    2013-01-01

    Rational Past research has demonstrated that when an animal changes from a previously drug-naive to an opiate-dependent and withdrawn state, morphine’s motivational effects are switched from a tegmental pedunculopontine nucleus (TPP)-dependent to a dopamine-dependent pathway. Interestingly, a corresponding change is observed in ventral tegmental area (VTA) GABAA receptors, which change from mediating hyperpolarization of VTA GABA neurons to mediating depolarization. Objectives The present study investigated whether pharmacological manipulation of VTA GABAA receptor activity could directly influence the mechanisms underlying opiate motivation. Results Using an unbiased place conditioning procedure, we demonstrated that in Wistar rats, intra-VTA administration of furosemide, a Cl− cotransporter inhibitor, was able to promote a switch in the mechanisms underlying morphine’s motivational properties, one which is normally observed only after chronic opiate exposure. This behavioral switch was prevented by intra-VTA administration of acetazolamide, an inhibitor of the bicarbonate ion-producing carbonic anhydrase enzyme. Electrophysiological recordings of mouse VTA showed that furosemide reduced the sensitivity of VTA GABA neurons to inhibition by the GABAA receptor agonist muscimol, instead increasing the firing rate of a significant subset of these GABA neurons. Conclusion Our results suggest that the carbonic anhydrase enzyme may constitute part of a common VTA GABA neuron-based biological pathway responsible for controlling the mechanisms underlying opiate motivation, supporting the hypothesis that VTA GABAA receptor hyperpolarization or depolarization is responsible for selecting TPP- or dopamine-dependent motivational outputs, respectively. PMID:23392354

  5. Surfing a spike wave down the ventral stream.

    Science.gov (United States)

    VanRullen, Rufin; Thorpe, Simon J

    2002-10-01

    Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.

  6. Multiplexed Neurochemical Signaling by Neurons of the Ventral Tegmental Area

    Science.gov (United States)

    Barker, David J.; Root, David H.; Zhang, Shiliang; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal diversity in the VTA with a focus on cell phenotypes that participate in ‘multiplexed’ neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or by the integration of glutamate and GABA into a single axon terminal. In addition, we discuss our current understanding of the functional role that these multiplexed signaling pathways have in the lateral habenula and the nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various psychopathologies including drug addiction and depression. PMID:26763116

  7. CB1 cannabinoid receptor expression in the striatum: Association with corticostriatal circuits and developmental regulation

    Directory of Open Access Journals (Sweden)

    Vincent eVan Waes

    2012-03-01

    Full Text Available Corticostriatal circuits mediate various aspects of goal-directed behavior and are critically important for basal ganglia-related disorders. Activity in these circuits is regulated by the endocannabinoid system via stimulation of CB1 cannabinoid receptors. CB1 receptors are highly expressed in projection neurons and select interneurons of the striatum, but expression levels vary considerably between different striatal regions (functional domains. We investigated CB1 receptor expression within specific corticostriatal circuits by mapping CB1 mRNA levels in striatal sectors defined by their cortical inputs in rats. We also assessed changes in CB1 expression in the striatum during development. Our results show that CB1 expression is highest in juveniles (P25 and then progressively decreases towards adolescent (P40 and adult (P70 levels. At every age, CB1 receptors are predominantly expressed in sensorimotor striatal sectors, with considerably lower expression in associative and limbic sectors. Moreover, for most corticostriatal circuits there is an inverse relationship between cortical and striatal expression levels. Thus, striatal sectors with high CB1 expression (sensorimotor sectors tend to receive inputs from cortical areas with low expression, while striatal sectors with low expression (associative/limbic sectors receive inputs from cortical regions with higher expression (medial prefrontal cortex. In so far as CB1 mRNA levels reflect receptor function, our findings suggest differential CB1 signaling between different developmental stages and between sensorimotor and associative/limbic circuits. The regional distribution of CB1 receptor expression in the striatum further suggests that, in sensorimotor sectors, CB1 receptors mostly regulate GABA inputs from local axon collaterals of projection neurons, whereas in associative/limbic sectors, CB1 regulation of GABA inputs from interneurons and glutamate inputs may be more important.

  8. Goal- and retrieval-dependent activity in the striatum during memory recognition.

    Science.gov (United States)

    Clos, Mareike; Schwarze, Ulrike; Gluth, Sebastian; Bunzeck, Nico; Sommer, Tobias

    2015-06-01

    The striatum has been associated with successful memory retrieval but the precise functional link still remains unclear. One hypothesis is that striatal activity reflects an active evaluation process of the retrieval outcome dependent on the current behavioral goals rather than being a consequence of memory reactivation. We have recently shown that the striatum also correlates with confidence in memory recognition, which could reflect high subjective value ascribed to high certainty decisions. To examine whether striatal activity during memory recognition reflects subjective value indeed, we conducted an fMRI study using a recognition memory paradigm in which the participants rated not only the recognition confidence but also indicated the pleasantness associated with the previous memory retrieval. The results demonstrated a high positive correlation between confidence and pleasantness both on the behavioral and brain activation level particularly in the striatum. As almost all of variance in the striatal confidence signal could be explained by experienced pleasantness, this part of the striatal memory recognition response probably corresponds to greater subjective value of high confidence responses. While perceived oldness was also strongly correlated with striatal activity, this activation pattern was clearly distinct from that associated with confidence and pleasantness and thus could not be explained by higher subjective value to detect "old" items. Together, these results show that at least two independent processes contribute to striatal activation in recognition memory: a more flexible evaluation response dependent on context and goals captured by memory confidence and a potentially retrieval-related response captured by perceived oldness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Vasogenic edema in striatum following ingestion of glufosinate-containing herbicide.

    Science.gov (United States)

    Lee, Hui-Young; Song, Seo-Young; Lee, Seung-Hwan; Lee, Seo-Young; Kim, Sung-Hun; Ryu, Sook-Won

    2009-10-01

    Glufosinate-ammonium (GLA) is a broad-spectrum herbicide used worldwide. We report a patient who attempted suicide by ingesting a liquid herbicide containing GLA. A diffusion-weighted MRI showed cytotoxic edema in the hippocampus as well as vasogenic edema in the striata. To our knowledge, vasogenic edema caused by GLA-containing herbicide involving the striatum has not been reported in association with cytotoxic edema in the hippocampus. We assume that this herbicide affected the central nervous system via different mechanisms to produce both cytotoxic and vasogenic edema in the same patient.

  10. Release of /sup 3/H-. cap alpha. -methyl-m-tyramine from rat striatum in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dorris, R L [Baylor College of Dentistry, Dallas, Tex. (USA). Dept. of Pharmacology

    1976-01-01

    Release of /sup 3/H-d-..cap alpha..-methyl-m-tyramine (/sup 3/H-MMTA), a false dopaminergic transmitter from rat striatum was studied in vitro. After its initial uptake, /sup 3/H-MMTA was released by high K/sup +/ and by amphetamine. The release requirements were essentially the same as those known to exist for release of dopamine in vitro. These studies indicate that /sup 3/H-MMTA might serve as a useful tool with which to study dopamine release mechanisms in vitro.

  11. Effects of acute chlorpyrifos exposure on in vivo acetylcholine accumulation in rat striatum

    International Nuclear Information System (INIS)

    Karanth, Subramanya; Liu, Jing; Mirajkar, Nikita; Pope, Carey

    2006-01-01

    This study examined the acute effects of chlorpyrifos (CPF) on cholinesterase inhibition and acetylcholine levels in the striatum of freely moving rats using in vivo microdialysis. Adult, male Sprague-Dawley rats were treated with vehicle (peanut oil, 2 ml/kg) or CPF (84, 156 or 279 mg/kg, sc) and functional signs of toxicity, body weight and motor activity recorded. Microdialysis was conducted at 1, 4 and 7 days after CPF exposure for measurement of acetylcholine levels in striatum. Rats were then sacrificed and the contralateral striatum and diaphragm were collected for biochemical measurements. Few overt signs of cholinergic toxicity were noted in any rats. Body weight gain was significantly affected in the high-dose (279 mg/kg) group only, while motor activity (nocturnal rearing) was significantly reduced in all CPF-treated groups at one day (84 mg/kg) or from 1-4 days (156 and 279 mg/kg) after dosing. Cholinesterase activities in both diaphragm and striatum were markedly inhibited (50-92%) in a time-dependent manner, but there were relatively minimal dose-related changes. In contrast, time- and dose-dependent changes in striatal acetylcholine levels were noted, with significantly higher levels noted in the high-dose group compared to other groups. Maximal increases in striatal acetylcholine levels were observed at 4-7 days after dosing (84 mg/kg, 7-9-fold; 156 mg/kg, 10-13-fold; 279 mg/kg, 35-57-fold). Substantially higher acetylcholine levels were noted when an exogenous cholinesterase inhibitor was included in the perfusion buffer, but CPF treatment-related differences were substantially lower in magnitude under those conditions. The results suggest that marked differences in acetylcholine accumulation can occur with dosages of CPF eliciting relatively similar degrees of cholinesterase inhibition. Furthermore, the minimal expression of classic signs of cholinergic toxicity in the presence of extensive brain acetylcholine accumulation suggests that some

  12. Sexual dimorphism in song-induced ZENK expression in the medial striatum of juvenile zebra finches

    OpenAIRE

    Bailey, David J.; Wade, Juli

    2006-01-01

    In the brains of male zebra finches (Taeniopygia guttata), the nuclei that direct song learning and production are larger than the corresponding regions in females, who do not sing. The dimorphism in Area X of the medial striatum (MSt), an area important for song learning, is even more dramatic in that it is identifiable in males but not females by Nissl stain. In the present study, conspecific song, but not other auditory stimuli, induced expression of the immediate early gene ZENK in the MS...

  13. De novo formation of left-right asymmetry by posterior tilt of nodal cilia.

    Directory of Open Access Journals (Sweden)

    Shigenori Nonaka

    2005-08-01

    Full Text Available In the developing mouse embryo, leftward fluid flow on the ventral side of the node determines left-right (L-R asymmetry. However, the mechanism by which the rotational movement of node cilia can generate a unidirectional flow remains hypothetical. Here we have addressed this question by motion and morphological analyses of the node cilia and by fluid dynamic model experiments. We found that the cilia stand, not perpendicular to the node surface, but tilted posteriorly. We further confirmed that such posterior tilt can produce leftward flow in model experiments. These results strongly suggest that L-R asymmetry is not the descendant of pre-existing L-R asymmetry within each cell but is generated de novo by combining three sources of spatial information: antero-posterior and dorso-ventral axes, and the chirality of ciliary movement.

  14. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke

    Directory of Open Access Journals (Sweden)

    Joseph C. Griffis

    2017-01-01

    Full Text Available Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  15. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  16. Metabolic Disturbances in the Striatum and Substantia Nigra in the Onset and Progression of MPTP-Induced Parkinsonism Model

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2018-02-01

    Full Text Available Metabolic confusion has been linked to the pathogenesis of Parkinson's disease (PD, while the dynamic changes associated with the onset and progression of PD remain unclear. Herein, dynamic changes in metabolites were detected from the initiation to the development of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP -induced Parkinsonism model to elucidate its potential metabolic mechanism. Ex vivo1H nuclear magnetic resonance (NMR spectroscopy was used to measure metabolite changes in the striatum and substantia nigra (SN of mice at 1, 7, and 21 days after injection of MPTP. Metabolomic analysis revealed a clear separation of the overall metabolites between PD and control mice at different time points. Glutamate (Glu in the striatum was significantly elevated at induction PD day 1 mice, which persisted to day 21. N-acetylaspartate (NAA increased in the striatum of induction PD mice on days 1 and 7, but no significant difference was found in striatum on day 21. Myo-Inositol (mI and taurine (Tau were also disturbed in the striatum in induction PD day 1 mice. Additionally, key enzymes in the glutamate-glutamine cycle were significantly increased in PD mice. These findings suggest that neuron loss and motor function impairment in induction PD mice may be linked to overactive glutamate-glutamine cycle and altered membrane metabolism.

  17. Age-related decrease of 11C-N-methylspiperone in vivo binding to human striatum detected by PET

    International Nuclear Information System (INIS)

    Iyo, Masaomi; Yamasaki, Toshiro; Fukuda, Hiroshi

    1989-01-01

    The effect of aging on 11 C-N-methylspiperone binding to living human striatum was demonstrated using positron emission tomography. The ll normal volunteers (22 to 72 years old) participated in this study. The uptake of 11 C-N-methylspiperone in the brain following intravenous injection was highest in the striatum in individual subject. And the uptake in the striatum only gradually increased until the end of the study. The uptake of 11 C-N-methylspiperone in cerebellum peaked within 10 minutes following injection and then rapidly dropped. The association rate constant 'k 3 ' was calculated from the slope of the radioactivity-ratio of striatum to cerebellum versus the equivalent time. The equivalent time was calculated from the radioactivity of cerebellum as an input function. The exponential decrease of the k 3 value with aging was observed. The k 3 value of the youngest subject (22 years old, male) was 0.035/min, while that of the oldest one (72 years old, male) was found to be 0.020/min. These data suggested that the dopaminergic activity through D2 dopamine receptors reduces with aging in human striatum. (author)

  18. [Left-handedness and health].

    Science.gov (United States)

    Milenković, Sanja; Belojević, Goran; Kocijancić, Radojka

    2010-01-01

    Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome), developmental disorders (autism, dislexia and sttutering) and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about "anomalous" cerebral domination, as a consequence of hormonal disbalance.

  19. Motor Skills Training Enhances α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Subunit mRNA Expression in the Ipsilateral Sensorimotor Cortex and Striatum of Rats Following Intracerebral Hemorrhage.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Kazuto; Kawanaka, Kentaro; Takamatsu, Yasuyuki; Tamaki, Hiroyuki

    2017-10-01

    We investigated the effects of acrobatic training (AT) on expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits in the sensorimotor cortex and striatum after intracerebral hemorrhage (ICH). Male Wistar rats were divided into 4 groups: ICH without AT (ICH), ICH with AT (ICH + AT), sham operation without AT (SHAM), and sham operation with AT (SHAM + AT). ICH was induced by collagenase injection into the left striatum. The ICH + AT group performed 5 acrobatic tasks daily on days 4-28 post ICH. Forelimb sensorimotor function was evaluated using the forelimb placing test. On days 14 and 29, mRNA expression levels of AMPAR subunits GluR1-4 were measured by real-time reverse transcription-polymerase chain reaction. Forelimb placing test scores were significantly higher in the ICH + AT group than in the ICH group. Expression levels of all AMPAR subunit mRNAs were significantly higher in the ipsilateral sensorimotor cortex of rats in the ICH + AT group than in that of rats in the ICH group on day 29. GluR3 and GluR4 expression levels were reduced in the ipsilateral striatum of rats in the ICH group compared with that of rats in the SHAM group on day 14. These changes may play a critical role in motor skills training-induced recovery after ICH. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p testosterone...

  1. 'Batman excision' of ventral skin in hypospadias repair, clue to aesthetic repair (point of technique).

    Science.gov (United States)

    Hoebeke, P B; De Kuyper, P; Van Laecke, E

    2002-11-01

    In the hypospadiac penis the ventral skin is poorly developed, while dorsal skin is redundant. The classical Byars' flaps are a way to use the excess dorsal skin to cover the penile shaft. The appearance after Byars' flaps however is not natural. We use a more natural looking skin allocation with superior aesthetic results. The clue in this reconstruction is an inverted triangle shaped excision of ventral skin expanding over the edges of the hooded prepuce (which makes it look like Batman). After excision of the ventral skin it is possible to close the penile skin in the midline, thus mimicking the natural raphe. In case of preputial reconstruction the excised ventral skin makes the prepuce look more natural. The trend of further refining aesthetic appearance of the hypospadiac penis often neglects the penile skin reconstruction. A technique is presented by which the total penile appearances after surgery ameliorates due to better skin reconstruction.

  2. Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream.

    Science.gov (United States)

    Güçlü, Umut; van Gerven, Marcel A J

    2015-07-08

    Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity across the cortical sheet using a deep neural network. Our approach also revealed a fine-grained functional specialization of downstream areas of the ventral stream. Furthermore, it allowed decoding of representations from human brain activity at an unsurpassed degree of accuracy, confirming the quality of the developed approach. Stimulus features that successfully explained neural responses indicate that population receptive fields were explicitly tuned for object categorization. This provides strong support for the hypothesis that object categorization is a guiding principle in the functional organization of the primate ventral stream. Copyright © 2015 the authors 0270-6474/15/3510005-10$15.00/0.

  3. The ventral visual pathway: an expanded neural framework for the processing of object quality.

    Science.gov (United States)

    Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Ungerleider, Leslie G; Mishkin, Mortimer

    2013-01-01

    Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects. Published by Elsevier Ltd.

  4. High-grade hemorrhoids requiring surgical treatment are common after laparoscopic ventral mesh rectopexy

    NARCIS (Netherlands)

    van Iersel, J. J.; Formijne Jonkers, H. A.; Verheijen, P. M.; Draaisma, W. A.; Consten, E. C J; Broeders, I. A M J

    2016-01-01

    Purpose: To describe patients developing grade III and IV hemorrhoids requiring surgery after laparoscopic ventral mesh rectopexy (LVMR) and to explore the relationship between developing such hemorrhoids and recurrence of rectal prolapse after LVMR. Methods: All consecutive patients receiving LVMR

  5. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  6. The role of the dorsal striatum in extinction: A memory systems perspective.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2018-04-01

    The present review describes a role for the dorsal striatum in extinction. Evidence from brain lesion and pharmacological studies indicate that the dorsolateral region of the striatum (DLS) mediates extinction in various maze learning and instrumental learning tasks. Within the context of a multiple memory systems view, the role of the DLS in extinction appears to be selective. Specifically, the DLS mediates extinction of habit memory and is not required for extinction of cognitive memory. Thus, extinction mechanisms mediated by the DLS may involve response-produced inhibition (e.g. inhibition of existing stimulus-response associations or formation of new inhibitory stimulus-response associations), as opposed to cognitive mechanisms (e.g. changes in expectation). Evidence also suggests that NMDA-dependent forms of synaptic plasticity may be part of the mechanism through which the DLS mediates extinction of habit memory. In addition, in some learning situations, DLS inactivation enhances extinction, suggesting a competitive interaction between multiple memory systems during extinction training. Consistent with a multiple memory systems perspective, it is suggested that the DLS represents one of several distinct neural systems that specialize in extinction of different kinds of memory. The relevance of these findings to the development of behavioral and pharmacological therapies that target the maladaptive habit-like symptoms in human psychopathology is also briefly considered. Published by Elsevier Inc.

  7. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  8. Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum.

    Science.gov (United States)

    Granado, Noelia; Lastres-Becker, Isabel; Ares-Santos, Sara; Oliva, Idaira; Martin, Eduardo; Cuadrado, Antonio; Moratalla, Rosario

    2011-12-01

    Oxidative stress that correlates with damage to nigrostriatal dopaminergic neurons and reactive gliosis in the basal ganglia is a hallmark of methamphetamine (METH) toxicity. In this study, we analyzed the protective role of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2), a master regulator of redox homeostasis, in METH-induced neurotoxicity. We found that Nrf2 deficiency exacerbated METH-induced damage to dopamine neurons, shown by an increase in loss of tyrosine hydroxylase (TH)- and dopamine transporter (DAT)-containing fibers in striatum. Consistent with these effects, Nrf2 deficiency potentiated glial activation, indicated by increased striatal expression of markers for microglia (Mac-1 and Iba-1) and astroglia (GFAP) one day after METH administration. At the same time, Nrf2 inactivation dramatically potentiated the increase in TNFα mRNA and IL-15 protein expression in GFAP+ cells in the striatum. In sharp contrast to the potentiation of striatal damage, Nrf2 deficiency did not affect METH-induced dopaminergic neuron death or expression of glial markers or proinflammatory molecules in the substantia nigra. This study uncovers a new role for Nrf2 in protection against METH-induced inflammatory and oxidative stress and striatal degeneration. Copyright © 2011 Wiley‐Liss, Inc.

  9. Striatum-dependent habits are insensitive to both increases and decreases in reinforcer value in mice.

    Science.gov (United States)

    Quinn, Jennifer J; Pittenger, Christopher; Lee, Anni S; Pierson, Jamie L; Taylor, Jane R

    2013-03-01

    The mouse has emerged as an advantageous species for studying the brain circuitry that underlies complex behavior and for modeling neuropsychiatric disease. The transition from flexible, goal-directed actions to inflexible, habitual responses is argued to be a valid and reliable behavioral model for studying a core aspect of corticostriatal systems that is implicated in certain forms of psychopathology. This transition is thought to correspond to a progression of behavioral control from associative to sensorimotor corticobasal ganglia networks. Habits form following extensive training and are characterized by reduced sensitivity of instrumental responding to reinforcer revaluation; few studies have examined this form of behavioral control in mice. Here we examined the involvement of the dorsolateral and dorsomedial striatum in this transition in the C57BL/6 inbred mouse strain. We provided evidence that damage to the dorsolateral striatum disrupted habitual responding, i.e. it preserved sensitivity to changes in outcome value following either outcome devaluation or, shown for the first time in mice, outcome inflation. Together, these data show that instrumental responding in lesioned mice tracks the current value of a reinforcer and provide evidence that neuroanatomical mechanisms underlying habit learning in rats are preserved in the mouse. This will allow for the genetic and molecular dissection of neural factors involved in decision-making and mechanisms of aberrant habit formation. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Inputs to the dorsal striatum of the mouse conserve the parallel circuit architecture of the forebrain

    Directory of Open Access Journals (Sweden)

    Weixing X Pan

    2010-12-01

    Full Text Available The basal ganglia play a critical role in the regulation of voluntary action in vertebrates. Our understanding of the function of the basal ganglia relies heavily upon anatomical information, but continued progress will require an understanding of the specific functional roles played by diverse cell types and their connectivity. An increasing number of mouse lines allow extensive identification, characterization, and, manipulation of specified cell types in the basal ganglia. Despite the promise of genetically modified mice for elucidating the functional roles of diverse cell types, there is relatively little anatomical data obtained directly in the mouse. Here we have characterized the retrograde labeling obtained from a series of tracer injections throughout the dorsal striatum of adult mice. We found systematic variations in input along both the medial-lateral and anterior-posterior neuraxes in close agreement with canonical features of basal ganglia anatomy in the rat. In addition to the canonical features we have provided experimental support for the importance of non-canonical inputs to the striatum from the raphe nuclei and the amygdala. To look for organization at a finer scale we have analyzed the correlation structure of labeling intensity across our entire dataset. Using this analysis we found substantial local heterogeneity within the large-scale order. From this analysis we conclude that individual striatal sites receive varied combinations of cortical and thalamic input from multiple functional areas, consistent with some earlier studies in the rat that have suggested the presence of a combinatorial map.

  11. Inputs to the dorsal striatum of the mouse reflect the parallel circuit architecture of the forebrain.

    Science.gov (United States)

    Pan, Weixing X; Mao, Tianyi; Dudman, Joshua T

    2010-01-01

    The basal ganglia play a critical role in the regulation of voluntary action in vertebrates. Our understanding of the function of the basal ganglia relies heavily upon anatomical information, but continued progress will require an understanding of the specific functional roles played by diverse cell types and their connectivity. An increasing number of mouse lines allow extensive identification, characterization, and manipulation of specified cell types in the basal ganglia. Despite the promise of genetically modified mice for elucidating the functional roles of diverse cell types, there is relatively little anatomical data obtained directly in the mouse. Here we have characterized the retrograde labeling obtained from a series of tracer injections throughout the dorsal striatum of adult mice. We found systematic variations in input along both the medial-lateral and anterior-posterior neuraxes in close agreement with canonical features of basal ganglia anatomy in the rat. In addition to the canonical features we have provided experimental support for the importance of non-canonical inputs to the striatum from the raphe nuclei and the amygdala. To look for organization at a finer scale we have analyzed the correlation structure of labeling intensity across our entire dataset. Using this analysis we found substantial local heterogeneity within the large-scale order. From this analysis we conclude that individual striatal sites receive varied combinations of cortical and thalamic input from multiple functional areas, consistent with some earlier studies in the rat that have suggested the presence of a combinatorial map.

  12. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum.

    Directory of Open Access Journals (Sweden)

    Mariana Raineri

    Full Text Available Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4 × 5 mg/kg, i.p., 2 h apart and modafinil co-administration (2 × 90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections on glial cells (microglia and astroglia. We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.

  13. Induction of Autophagy in the Striatum and Hypothalamus of Mice after 835 MHz Radiofrequency Exposure.

    Directory of Open Access Journals (Sweden)

    Ju Hwan Kim

    Full Text Available The extensive use of wireless mobile phones and associated communication devices has led to increasing public concern about potential biological health-related effects of the exposure to electromagnetic fields (EMFs. EMFs emitted by a mobile phone have been suggested to influence neuronal functions in the brain and affect behavior. However, the affects and phenotype of EMFs exposure are unclear. We applied radiofrequency (RF of 835 MHz at a specific absorption rate (SAR of 4.0 W/kg for 5 hours/day for 4 and 12 weeks to clarify the biological effects on mouse brain. Interestingly, microarray data indicated that a variety of autophagic related genes showed fold-change within small range after 835 MHz RF exposure. qRT-PCR revealed significant up-regulation of the autophagic genes Atg5, LC3A and LC3B in the striatum and hypothalamus after a 12-week RF. In parallel, protein expression of LC3B-II was also increased in both brain regions. Autophagosomes were observed in the striatum and hypothalamus of RF-exposed mice, based on neuronal transmission electron microscopy. Taken together, the results indicate that RF exposure of the brain can induce autophagy in neuronal tissues, providing insight into the protective mechanism or adaptation to RF stress.

  14. Motor Planning under Unpredictable Reward: Modulations of Movement Vigor and Primate Striatum Activity

    Directory of Open Access Journals (Sweden)

    Ioan eOpris

    2011-05-01

    Full Text Available Although reward probability is an important factor that shapes animal behavior, it is not well understood however, how the primate brain translates reward expectation into the vigor of movement (reaction time and speed. To address this question, we trained two monkeys in a reaction time task that required wrist movements in response to vibrotactile and visual stimuli, with a variable reward schedule. Correct performance was rewarded in 75 % of the trials. Monkeys were certain that they would be rewarded only in the trials immediately following withheld rewards. In these trials, the animals responded sooner and moved faster. Single-unit recordings from the dorsal striatum revealed that modulations in striatal neurons reflected such modulations of movement vigor. First, in the trials with certain rewards, striatal neurons modulated their firing rates earlier. Second, magnitudes of changes in neuronal firing rates depended on whether or not monkeys were certain about the reward. Third, these modulations depended on the sensory modality of the cue (visual vs. vibratory and/or movement direction (flexions vs. extensions. We conclude that dorsal striatum may be a part of the mechanism responsible for the modulation of movement vigor in response to changes of reward predictability.

  15. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Science.gov (United States)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  16. Context Dependent Effects of Ventral Tegmental Area Inactivation on Spatial Working Memory

    OpenAIRE

    Martig, Adria K.; Jones, Graham L.; Smith, Kelsey E.; Mizumori, Sheri J.Y.

    2009-01-01

    Rats were tested on a hippocampus dependent win-shift working memory task in familiar or novel environments after receiving bilateral ventral tegmental area infusions of baclofen. Baclofen infusion disrupted working memory performance in both familiar and novel environments. In addition, baclofen infusion selectively disrupted short-term working memory in the novel environment. This experiment confirms selective ventral tegmental area support of accurate performance during a context dependent...

  17. Preputial reconstruction and tubularized incised plate urethroplasty in proximal hypospadias with ventral penile curvature

    OpenAIRE

    Bhat, Amilal; Gandhi, Ajay; Saxena, Gajendra; Choudhary, Gautam Ram

    2010-01-01

    Aims : Objective of this study was to assess the feasibility and results of preputial reconstruction and tubularized incised plate urethroplasty (TIP) in patients of proximal hypospadias with ventral penile curvature. Materials and Methods : Twenty-seven patients of proximal hypospadias who underwent preputioplasty with TIP were evaluated retrospectively. Ventral curvature was corrected by mobilization of the urethral plate with the corpus spongiosum and the proximal urethra; dorsal plica...

  18. Novel structural components of the ventral disc and lateral crest in Giardia intestinalis.

    Directory of Open Access Journals (Sweden)

    Kari D Hagen

    2011-12-01

    Full Text Available Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.

  19. Slits Are Chemorepellents Endogenous to Hypothalamus and Steer Thalamocortical Axons into Ventral Telencephalon

    OpenAIRE

    Braisted, Janet E.; Ringstedt, Thomas; O'Leary, Dennis D. M.

    2009-01-01

    Thalamocortical axons (TCAs) originate in dorsal thalamus, extend ventrally along the lateral thalamic surface, and as they approach hypothalamus make a lateral turn into ventral telencephalon. In vitro studies show that hypothalamus releases a chemorepellent for TCAs, and analyses of knockout mice indicate that Slit chemorepellents and their receptor Robo2 influence TCA pathfinding. We show that Slit chemorepellents are the hypothalamic chemorepellent and act through Robos to steer TCAs into...

  20. Correction of distal hypospadias: ventral adaption of the prepuce and meatal advancement.

    Science.gov (United States)

    Persson-Jünemann, C; Seemann, O; Köhrmann, K U; Potempa, D; Jünemann, K P; Alken, P

    1993-01-01

    In distal hypospadias without chordee, surgical correction has a purely cosmetic character. In contrast to standard techniques focusing on meatal position, parents often regard the redundant dorsal prepuce and its missing ventral fusion as the essential constituent of this malformation. The operative technique, presented in detail, emphasizes on foreskin reconstruction. The ventral adaption of the prepuce (VAP procedure) results in a penis with normal appearance. Complications presented reveal the importance of proper patient selection.

  1. Ventral aspect of the visual form pathway is not critical for the perception of biological motion

    Science.gov (United States)

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene

    2015-01-01

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  2. Change of striatum dopaminergic transporter and content of dopamine in rats with experimental hyperthyroidism

    International Nuclear Information System (INIS)

    Lin Yansong; Wang Huicheng; Zhao Zhiying; Zhu Li; Zhang Yingqiang; Chen Zhengping

    2009-01-01

    Objective: The central dopamine system plays an important role in regulating movement and mood. In our routine clinical practice,we found that patients with hyperthyroidism often show tremor of their hands or legs. Meanwhile they also experienced emotional problems such as anxiety and depression. These reminded us that there might be close relationship between thyroid hormone and dopamine system. Based on our previous works, in this study we evaluated the change of striatum dopamine transporter (DAT) by using 99 Tc m -2β- [N, N'-bis (2-merecaptoethyl) ethylenediamino]methyl, 3β- (4-chlorophenyl) tropane (TRODAT-1) brain biodistribution, and the content of striatum dopamine and its metabolites 3.4-di-hydroxyphenylacetic (DOPAC) by high performace liquid chromatograph-electrochemical detection (HPLC-ECD) in rats with experimental hyperthyroidism. Methods: All 24 rats were randomly divided into two groups, thyroxin group were induced by daily thyroxin infusion for 14 d to be experimental hyperthyroidism, the others were control group which received saline infusion. The blood samples were randomly taken from thyroxine group and control group, and the concentration of TT 3 and TT 4 were detected by radioimmunoassay. After 14 d,both experimental (thyroxine group) and control group were further divided into 2 sub-groups. One was for evaluation of the function of striatum DAT by 99 Tc m -TRODAT-1 biodistribution study and the other was for HPIJC-ECD measurement of the concentration of dopamine and its metabolites DOPAC. Results: Significantly hyperactivity and weight loss [(223.90 ± 8.40) VS (261.60 ± 14.20)g, t=6.98. P 3 and TT 4 after thyroxin infusion was significantly elevated than that of before thyroxin infusion [(2.72 ± 0.29) V8(1.46 ± 0.17) nmol/L, t=10.51, P 3 , and TT 4 after saline infusion showed no statistical significance as compared with before saline infusion [(1.71 ± 0.20) vs (1.54 ± O.09) nmol/L, t=1.68. P>0.05 and (88.38 ± 6.76) vs (98.38 ± 9

  3. Acute effects of three club drugs on the striatum of rats: Evaluation by quantitative autoradiography with [18F]FDOPA

    International Nuclear Information System (INIS)

    Fang, Chun-Kai; Chen, Hong-Wen; Wang, Wei-Hsun; Liu, Ren-Shen; Hwang, Jeng-Jong

    2013-01-01

    In this work, we used quantitative autoradiography to study the acute effect of cocaine, methamphetamine, and ketamine on the uptake of [ 18 F]FDOPA in the striatum of rats. Drugs were treated 0.5 h before (pre-treated), and 1.5 h after (post-treated) [ 18 F]FDOPA injections, rats were then sacrificed at 2 h post [ 18 F]FDOPA injections to determine the striatum/frontal cortex binding ratios in the striatum. The ratios were lower in the post-treated groups than those of the pre-treated groups, suggesting a net effect of inhibition of trapping of the tracer. The order of uptake inhibition is: ketamine>methamphetamine>cocaine

  4. Modified semitendinosus muscle transposition to repair ventral perineal hernia in 14 dogs.

    Science.gov (United States)

    Morello, E; Martano, M; Zabarino, S; Piras, L A; Nicoli, S; Bussadori, R; Buracco, P

    2015-06-01

    To describe a modified technique of semitendinosus muscle transposition for the repair of ventral perineal hernia. Retrospective review of case records of dogs with ventral perineal hernia that were treated by transposing the medial half of the longitudinally split semitendinosus muscle of one limb. The transposition of the internal obturator muscle was used when uni- or bilateral rectal sacculation was also present in addition to ventral perineal hernia; colopexy and vas deferens pexy were also performed. Fourteen dogs were included. In addition to ventral perineal hernia, unilateral and bilateral perineal hernia was also present in five and six of the dogs, respectively. The mean follow-up time was 890 days. Ventral perineal hernia was successfully managed by the modified semitendinosus muscle transposition with minor complications in all the dogs included in the study. Despite the small number of dogs included, the unilateral transposition of the medial half of the longitudinally split semitendinosus muscle consistently supported the ventral rectal enlargement in perineal hernia without obvious adverse effects. © 2015 British Small Animal Veterinary Association.

  5. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder.

    Science.gov (United States)

    Morey, Rajendra A; Haswell, Courtney C; Hooper, Stephen R; De Bellis, Michael D

    2016-02-01

    Posttraumatic stress disorder (PTSD) is considered a disorder of recovery where individuals fail to learn and retain extinction of the traumatic fear response. In maltreated youth, PTSD is common, chronic, and associated with comorbidity. Studies of extinction-related structural volumes (amygdala, hippocampus, anterior cingulate cortex (ACC), and ventral medial prefrontal cortex (vmPFC)) and this stress diathesis, in maltreated youth were not previously investigated. In this cross-sectional study, neuroanatomical volumes associated with extinction in maltreated youth with PTSD (N=31), without PTSD (N=32), and in non-maltreated healthy volunteers (n=57) were examined using magnetic resonance imaging. Groups were sociodemographically similar. Participants underwent extensive assessments for strict inclusion/exclusion criteria and DSM-IV disorders. Maltreated youth with PTSD demonstrated decreased right vmPFC volumes compared with both maltreated youth without PTSD and non-maltreated controls. Maltreated youth without PTSD demonstrated larger left amygdala and right hippocampal volumes compared with maltreated youth with PTSD and non-maltreated control youth. PTSD symptoms inversely correlated with right and left hippocampal and left amygdala volumes. Confirmatory masked voxel base morphometry analyses demonstrated greater medial orbitofrontal cortex gray matter intensity in controls than maltreated youth with PTSD. Volumetric results were not influenced by psychopathology or maltreatment variables. We identified volumetric differences in extinction-related structures between maltreated youth with PTSD from those without PTSD. Alterations of the vmPFC may be one mechanism that mediates the pathway from PTSD to comorbidity. Further longitudinal work is needed to determine neurobiological factors related to chronic and persistent PTSD, and to PTSD resilience despite maltreatment.

  6. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning

    Directory of Open Access Journals (Sweden)

    Julie eBoulanger Bertolus

    2014-05-01

    Full Text Available Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days post-natal during odor-fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.

  7. Antioxidant responses and photosynthetic behaviors of Kappaphycus alvarezii and Kappaphycus striatum (Rhodophyta, Solieriaceae) during low temperature stress.

    Science.gov (United States)

    Li, Hu; Liu, Jianguo; Zhang, Litao; Pang, Tong

    2016-12-01

    Kappaphycus are farmed in tropical countries as raw material for carrageenan, which is widely used in food industry. The sea area available for farming is one limiting factor in the production of seaweeds. Though cultivation is spreading into subtropical regions, the lower seawater temperature is an important problem encountered in subtropical regions for the farming of Kappaphycus. This research of physiological response to low temperature stress will be helpful for screening Kappaphycus strains for growth in a lower temperature environment. Responses of antioxidant systems and photosystem II (PSII) behaviors in Kappaphycus alvarezii and Kappaphycus striatum were evaluated during low temperature treatments (23, 20, 17 °C). Compared with the controls at 26 °C, the H 2 O 2 concentrations increased in both species when the thalli were exposed to low temperatures (23, 20, 17 °C), but these increases were much greater in K. striatum than in K. alvarezii thalli, suggesting that K. striatum suffered more oxidative stress. The activities of some important antioxidant enzymes (e.g. superoxide dismutase and ascorbate peroxidase) and the hydroxyl free radical scavenging capacity were substantially higher at 23, 20 and 17 °C than at the control 26 °C in K. alvarezii, indicating that the antioxidant system of K. alvarezii enhanced its resistance to low temperature. However, no significant increases of antioxidant enzymes activities were observed at 20 and 17 °C in K. striatum. In addition, both the maximal efficiency of PSII photochemistry (F V /F m ) and the performance index (PI ABS ) decreased significantly in K. striatum at 23 °C, indicating that the photosynthetic apparatus was damaged at 23 °C. In contrast, no significant decreases of either F V /F m or PI ABS were observed in K. alvarezii at 23 °C. It is concluded that K. alvarezii has greater tolerance to low temperature than K. striatum.

  8. In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: Implications of MAPK and Akt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heimfarth, Luana; Loureiro, Samanta Oliveira; Dutra, Márcio Ferreira; Andrade, Cláudia; Pettenuzzo, Letícia; Guma, Fátima T. Costa Rodrigues; Gonçalves, Carlos Alberto Saraiva [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil); Batista Teixeira da Rocha, João [Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS Brazil (Brazil); Pessoa-Pureur, Regina, E-mail: rpureur@ufrgs.br [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil)

    2012-10-15

    In the present report 15 day-old Wistar rats were injected with 0.3 μmol of diphenyl ditelluride (PhTe){sub 2}/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6 days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein—GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe){sub 2} significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe){sub 2} provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe){sub 2} treated striatal slices suggested apoptotic cell death. (PhTe){sub 2} exposure decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe){sub 2}-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis. -- Highlights: ► Diphenyl ditelluride causes apoptotic neuronal death in the striatum of young rats. ► Diphenyl ditelluride causes reactive astrogliosis in the striatum of rats. ► Diphenyl ditelluride disrupts the homeostasis of the cytoskeleton of the striatum. ► The actions of diphenyl ditelluride are mediated by MAPK and Akt

  9. Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts

    DEFF Research Database (Denmark)

    Cumming, P; Danielsen, E H; Vafaee, M

    2001-01-01

    , both pre-synaptic markers of dopamine fibres were normal in striatum. Dopamine depletion or grafting were without effect on the cerebral perfusion rate, measured with [15O]-water, did not alter the rate of oxygen metabolism (CMRO2) in brain, and did not alter the binding potential of tracers...... for dopamine D1 or D2 receptors in pig striatum. However, the grafting was associated with a local increase in the binding of [11C]PK 11195, a tracer for reactive gliosis, suggesting that an immunological reaction occurs at the site of graft, which might potentially have reduced the graft patency. However...

  10. Role of Anterior Intralaminar Nuclei of Thalamus Projections to Dorsomedial Striatum in Incubation of Methamphetamine Craving.

    Science.gov (United States)

    Li, Xuan; Witonsky, Kailyn R; Lofaro, Olivia M; Surjono, Felicia; Zhang, Jianjun; Bossert, Jennifer M; Shaham, Yavin

    2018-02-28

    Relapse to methamphetamine (Meth) seeking progressively increases after withdrawal from drug self-administration (incubation of Meth craving). We previously demonstrated a role of dorsomedial striatum (DMS) dopamine D1 receptors (D1Rs) in this incubation. Here, we studied the role of afferent glutamatergic projections into the DMS and local D1R-glutamate interaction in this incubation in male rats. We first measured projection-specific activation on day 30 relapse test by using cholera toxin b (retrograde tracer) + Fos (activity marker) double-labeling in projection areas. Next, we determined the effect of pharmacological reversible inactivation of lateral or medial anterior intralaminar nuclei of thalamus (AIT-L or AIT-M) on incubated Meth seeking on withdrawal day 30. We then used an anatomical asymmetrical disconnection procedure to determine whether an interaction between AIT-L→DMS glutamatergic projections and postsynaptic DMS D1Rs contributes to incubated Meth seeking. We also determined the effect of unilateral inactivation of AIT-L and D1R blockade of DMS on incubated Meth seeking, and the effect of contralateral disconnection of AIT-L→DMS projections on nonincubated Meth seeking on withdrawal day 1. Incubated Meth seeking was associated with selective activation of AIT→DMS projections; other glutamatergic projections to DMS were not activated. AIT-L (but not AIT-M) inactivation or anatomical disconnection of AIT-L→DMS projections decreased incubated Meth seeking. Unilateral inactivation of AIT-L or D1R blockade of the DMS had no effect on incubated Meth craving, and contralateral disconnection of AIT-L→DMS projections had no effect on nonincubated Meth seeking. Our results identify a novel role of AIT-L and AIT-L→DMS glutamatergic projections in incubation of drug craving and drug seeking. SIGNIFICANCE STATEMENT Methamphetamine seeking progressively increases after withdrawal from drug self-administration, a phenomenon termed incubation of

  11. Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience

    Science.gov (United States)

    2016-01-01

    The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue–response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel “other” task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue–response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. SIGNIFICANCE STATEMENT Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate

  12. Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Scheres, A.P.J.; Milham, M.P.; Knutson, B.; Castellanos, F.X.

    2007-01-01

    Background: Although abnormalities in reward processing have been proposed to underlie attention-deficit/hyperactivity disorder (ADHD), this link has not been tested explicitly with neural probes. Methods: This hypothesis was tested by using fMRI to compare neural activity within the striatum in

  13. Left-handedness and health

    Directory of Open Access Journals (Sweden)

    Milenković Sanja

    2010-01-01

    Full Text Available Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome, developmental disorders (autism, dislexia and sttutering and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about 'anomalous' cerebral domination, as a consequence of hormonal disbalance. .

  14. Glucose Injections into the Dorsal Hippocampus or Dorsolateral Striatum of Rats Prior to T-Maze Training: Modulation of Learning Rates and Strategy Selection

    Science.gov (United States)

    Canal, Clinton E.; Stutz, Sonja J.; Gold, Paul E.

    2005-01-01

    The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial…

  15. INCREASES IN FUNCTIONAL CONNECTIVITY BETWEEN PREFRONTAL CORTEX AND STRIATUM DURING CATEGORY LEARNING

    Science.gov (United States)

    Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    SUMMARY Functional connectivity between the prefrontal cortex (PFC) and striatum (STR) is thought critical for cognition, and has been linked to conditions like autism and schizophrenia. We recorded from multiple electrodes in PFC and STR while monkeys acquired new categories. Category learning was accompanied by an increase in beta-band synchronization of LFPs between, but not within, the PFC and STR. After learning, different pairs of PFC-STR electrodes showed stronger synchrony for one or the other category, suggesting category-specific functional circuits. This category-specific synchrony was also seen between PFC spikes and STR LFPs, but not the reverse, reflecting the direct monosynaptic connections from the PFC to STR. However, causal connectivity analyses suggested that the polysynaptic connections from STR to the PFC exerted a stronger overall influence. This supports models positing that the basal ganglia “train” the PFC. Category learning may depend on the formation of functional circuits between the PFC and STR. PMID:24930701

  16. Learning multiple variable-speed sequences in striatum via cortical tutoring.

    Science.gov (United States)

    Murray, James M; Escola, G Sean

    2017-05-08

    Sparse, sequential patterns of neural activity have been observed in numerous brain areas during timekeeping and motor sequence tasks. Inspired by such observations, we construct a model of the striatum, an all-inhibitory circuit where sequential activity patterns are prominent, addressing the following key challenges: (i) obtaining control over temporal rescaling of the sequence speed, with the ability to generalize to new speeds; (ii) facilitating flexible expression of distinct sequences via selective activation, concatenation, and recycling of specific subsequences; and (iii) enabling the biologically plausible learning of sequences, consistent with the decoupling of learning and execution suggested by lesion studies showing that cortical circuits are necessary for learning, but that subcortical circuits are sufficient to drive learned behaviors. The same mechanisms that we describe can also be applied to circuits with both excitatory and inhibitory populations, and hence may underlie general features of sequential neural activity pattern generation in the brain.

  17. Progressive obtundation in a young woman with bilateral corpus striatum infarction: a case report

    Directory of Open Access Journals (Sweden)

    Zangana Hero M

    2011-07-01

    Full Text Available Abstract Background Bilateral ischemic infarction involving the corpus striatum is a rare event which usually results from global cerebral hypoxia, intoxications, and drug abuse. Case presentation We report a 28 year old Caucasian woman who presented with progressive obtundation and later development of severe expressive dysphasia and Parkinsonism after sustaining ischemic stroke of both corpora striata. Hemorrhagic transformation developed on day four of admission. Conclusion This is a rare case of bilateral basal ganglia infarction with hemorrhagic transformation in a young patient. Our patient's work up did not reveal any cause behind this stroke; however, advanced investigations (such as genetic testing and conventional angiography were not done. The damage resulted in motor dysphasia and Parkinsonism. Neither dystonia nor other involuntary movements developed, and cognitive function was not assessed because of the language disorder.

  18. Methamphetamine blocks exercise effects on Bdnf and Drd2 gene expression in frontal cortex and striatum.

    Science.gov (United States)

    Thompson, Andrew B; Stolyarova, Alexandra; Ying, Zhe; Zhuang, Yumei; Gómez-Pinilla, Fernando; Izquierdo, Alicia

    2015-12-01

    Exposure to drugs of abuse can produce many neurobiological changes which may lead to increased valuation of rewards and decreased sensitivity to their costs. Many of these behavioral alterations are associated with activity of D2-expressing medium spiny neurons in the striatum. Additionally, Bdnf in the striatum has been shown to play a role in flexible reward-seeking behavior. Given that voluntary aerobic exercise can affect the expression of these proteins in healthy subjects, and that exercise has shown promise as an anti-addictive therapy, we set out to quantify changes in D2 and Bdnf expression in methamphetamine-exposed rats given access to running wheels. Sixty-four rats were treated for two weeks with an escalating dose of methamphetamine or saline, then either sacrificed, housed in standard cages, or given free access to a running wheel for 6 weeks prior to sacrifice. Rats treated with methamphetamine ran significantly greater distances than saline-treated rats, suggesting an augmentation in the reinforcement value of voluntary wheel running. Transcription of Drd2 and Bdnf was assessed via RT-qPCR. Protein expression levels of D2 and phosphorylation of the TrkB receptor were measured via western blot. Drd2 and Bdnf mRNA levels were impacted independently by exercise and methamphetamine, but exposure to methamphetamine prior to the initiation of exercise blocked the exercise-induced changes seen in rats treated with saline. Expression levels of both proteins were elevated immediately after methamphetamine, but returned to baseline after six weeks, regardless of exercise status. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of the neonicotinoids thiametoxam and clothianidin on in vivo dopamine release in rat striatum.

    Science.gov (United States)

    de Oliveira, Iris Machado; Nunes, Brenda Viviane Ferreira; Barbosa, Durán Rafael; Pallares, Alfonso Miguel; Faro, Lilian Rosana Ferreira

    2010-02-15

    Thiamethoxam (TMX) and clothianidin (CLO) are neonicotinoids insecticides. The main characteristic of these pesticides is their agonist action on nicotinic acetylcholine receptors (nAChRs). In the present work it was studied and characterized the effects of TMX and CLO, in different concentrations, on dopaminergic system of rat striatum using in vivo brain microdialysis coupled to HPLC-EC. Intrastriatal administration of 1mM or 5mM TMX has not produced significant increases on dopamine (DA) levels, nonetheless the infusion of 10mM TMX increases the DA output to 841+/-132%, when compared to basal levels. Infusion of 1mM CLO has not induced a significant increase in DA levels, even so 2, 3.5 and 5mM CLO have produced an increase of 438+/-8%, 2778+/-598% and 4604+/-516%, respectively, every compared to basal levels. Mecamylamine (MEC), a non-competitive nAChRs antagonist, was used to investigate the role of nAChRs on DA release induced by TMX and CLO. The increases in extracellular DA levels induced by TMX and CLO when associated to MEC are 80% and 68% lower than the effect produced by CLO and TMX isolated. These results confirm that TMX and CLO appear to induce in vivo DA increased release in striatum of rats and it seems to be concentration dependent. Moreover, these results indicate that this effect might be related to nAChRs. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  1. Regulation of Pleiotrophin and Fyn in the striatum of rats undergoing L-DOPA-induced dyskinesia.

    Science.gov (United States)

    Gomez, Gimena; Saborido, Mariano D; Bernardi, M Alejandra; Gershanik, Oscar S; Taravini, Irene R; Ferrario, Juan E

    2018-02-14

    L-DOPA is the gold standard pharmacological therapy for symptomatic treatment of Parkinson's disease (PD), however, its long-term use is associated with the emergence of L-DOPA-induced dyskinesia (LID). Understanding the underlying molecular mechanisms of LID is crucial for the development of newer and more effective therapeutic approaches. In previous publications, we have shown that Pleiotrophin (PTN), a developmentally regulated trophic factor, is up-regulated by L-DOPA in the striatum of dopamine denervated rats. We have also shown that both mRNA and protein levels of RPTPζ/β, a PTN receptor, were upregulated in the same experimental condition and expressed in striatal medium spiny neurons. The PTN-RPTPζ/β intracellular pathway has not been fully explored and it might be implicated in the striatal plastic changes triggered by L-DOPA treatment. RPTPζ/β is part of the postsynaptic density zone and modulates Fyn, a Src tyrosine kinase that regulates the NR2A and NR2B subunits of the NMDA receptor and has been singled out as a key molecule in the development of LID. In this study, we evaluated the changes in PTN and Fyn protein levels and Fyn phosphorylation status in the 6-OHDA rat model of PD rendered dyskinetic with L-DOPA. We found an increase in the number of PTN immunoreactive neurons, no changes in the amount of total Fyn but a significant increase in Fyn phosphorylation in the dorsolateral striatum of dyskinetic rats. Our results support the idea that both PTN and Fyn may be involved in the development of LID, further contributing to the understanding of its molecular mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effects of unilatral- and bilateral inhibition of rostral ventral tegmental area and central nucleus of amygdala on morphine-induced place conditioning in male Wistar rat.

    Science.gov (United States)

    Mohammadian, Zahra; Sahraei, Hedayat; Meftahi, Gholam Hossein; Ali-Beik, Hengameh

    2017-03-01

    The rostral ventral tegmental area (VTAR) and central nucleus of amygdala (CeA) are considered the main regions for induction of psychological dependence on abused drugs, such as morphine. The main aim of this study was to investigate the transient inhibition of each right and left side as well as both sides of the VTAR and the CeA by lidocaine (2%) on morphine reward properties using the conditioned place preference (CPP) method. Male Wistar rats (250±20 g) 7 days after recovery from surgery and cannulation were conditioned to morphine (7.5 mg/kg) in CPP apparatus. Five minutes before morphine injection in conditioning phase, lidocaine was administered either uni- or bilaterally into the VTAR (0.25 μL/site) or CeA (0.5 μL/site). The results revealed that lidocaine administration into the left side, but not the right side of the VTAR and the CeA reduced morphine CPP significantly. The reduction was potentiated when lidocaine was injected into both sides of the VTAR and the CeA. The number of compartment crossings was reduced when lidocaine was injected into both sides of the VTAR and the CeA as well as the left side. Rearing was reduced when lidocaine was injected into the right, but not the left side of the VTAR. Sniffing and rearing increased when animals received lidocaine in the right side and reduced in the group that received lidocaine in the left side of the CeA. It was concluded that the right and the left side of VTAR and the CeA play different roles in morphine-induced activity and reward. © 2016 John Wiley & Sons Australia, Ltd.

  3. Dysfunctional mitochondrial respiration in the striatum of the Huntington's disease transgenic R6/2 mouse model

    DEFF Research Database (Denmark)

    Aidt, Frederik Heurlin; Nielsen, Signe Marie Borch; Kanters, Jørgen

    2013-01-01

    Metabolic dysfunction and mitochondrial involvement are recognised as part of the pathology in Huntington's Disease (HD). Post-mortem examinations of the striatum from end-stage HD patients have shown a decrease in the in vitro activity of complexes II, III and IV of the electron transport system...

  4. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  5. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  6. Control of Huntington’s Disease-Associated Phenotypes by the Striatum-Enriched Transcription Factor Foxp2

    Directory of Open Access Journals (Sweden)

    Lea J. Hachigian

    2017-12-01

    Full Text Available Summary: Alteration of corticostriatal glutamatergic function is an early pathophysiological change associated with Huntington’s disease (HD. The factors that regulate the maintenance of corticostriatal glutamatergic synapses post-developmentally are not well understood. Recently, the striatum-enriched transcription factor Foxp2 was implicated in the development of these synapses. Here, we show that, in mice, overexpression of Foxp2 in the adult striatum of two models of HD leads to rescue of HD-associated behaviors, while knockdown of Foxp2 in wild-type mice leads to development of HD-associated behaviors. We note that Foxp2 encodes the longest polyglutamine repeat protein in the human reference genome, and we show that it can be sequestered into aggregates with polyglutamine-expanded mutant Huntingtin protein (mHTT. Foxp2 overexpression in HD model mice leads to altered expression of several genes associated with synaptic function, genes that present additional targets for normalization of corticostriatal dysfunction in HD. : Hachigian et al. demonstrate that manipulating levels of the striatum-enriched transcription factor Foxp2 can either rescue or mimic HD-associated behaviors in vivo. They link Foxp2 to the post-developmental regulation of the structure and function of the corticostriatal synapse. Keywords: Huntington’s disease, Foxp2, striatum, corticostriatal synapse

  7. Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo

    NARCIS (Netherlands)

    W.N. Sloot (W.); J. Korf (Jakob); J.F. Koster (Johan); L.E.A. de Wit (Elly); J.-B.P. Gramsbergen (J. B P)

    1996-01-01

    textabstractThe present studies were aimed at investigating the possible roles of dopamine (DA) and iron in production of hydroxyl radicals (.OH) in rat striatum after Mn2+ intoxication. For this purpose, DA depletions were assessed concomitant with in vivo 2,3- and 2,5-dihydroxybenzoic acid (DHBA)

  8. Amphetamine-enhanced accumulation of [3H]-spiperone in mouse corpus striatum in vivo: Modification by other drugs

    International Nuclear Information System (INIS)

    Dorris, R.L.

    1989-01-01

    Other investigators have reported that amphetamine administered to rodents results in an increase in the in vivo accumulation of either the tritiated dopamine receptor ligand, spiperone or pimozide in the dopaminergic corpus striatum, (specific binding) while not altering that in the sparsely dopaminergically innervated cerebellum (non-specific binding). Experiments were undertaken to determine if the results could be replicated and if some other drugs would modify the effect. Male mice were injected with [ 3 H]-spiperone (20 μCi/Kg, 0.0003 mg/kg) s.c. and killed 2 hrs later for determination of radioactivity in corpus striatum and cerebellum. Amphetamine (20 mg/kg, i.p.) given 15 min before [ 3 H]-spiperone, increased accumulation in striatum but not cerebellum. The increase was inhibited by α - methyltyrosine (α-MT), haloperidol, reserpine or amantadine. It is suggested that the amphetamine-induced increase in accumulation of [ 3 H]-spiperone in corpus striatum (specific binding) depends on release of large amounts of dopamine, which then must be able to interact with the dopamine receptor. The antagonism of the effect by α-MT or reserpine can be explained by dopamine depletion, that of haloperidol by antagonism for binding at the receptor site. It is suggested that amantadine acts by a dual mechanism: (1) as a low efficacy agonist, it competes for binding to the receptor and (2) it has some ability to block dopamine release

  9. Topography and chemoarchitecture of the striatum and pallidum in a monotreme, the short-beaked echidna (Tachyglossus aculeatus).

    Science.gov (United States)

    Ashwell, K W S

    2008-09-01

    The topography and chemoarchitecture of the striatum and pallidum in a monotreme, the short-beaked echidna (Tachyglossus aculeatus) have been studied using Nissl staining in conjunction with myelin staining, enzyme reactivity to acetylcholinesterase and NADPH diaphorase, and immunoreactivity to parvalbumin, calbindin, calretinin, tyrosine hydroxylase, neuropeptide Y, and neurofilament protein (SMI-32 antibody). All those components of the striatum and pallidum found in eutherian mammals could also be identified in the echidna's brain, with broad chemoarchitectural similarities to those regions in eutherian brains also apparent. There was a clear chemoarchitectural gradient visible with parvalbumin immunoreactivity of neurons and fibers, suggesting a subdivision of the echidna caudatoputamen into weakly reactive rostrodorsomedial and strongly reactive caudoventrolateral components. This may, in turn, relate to subdivision into associative versus sensorimotor CPu and reflect homology to the caudate and putamen of primates. Moreover, the chemoarchitecture of the echidna striatum suggested the presence of striosome-matrix architecture. The morphology of identified neuronal groups (i.e., parvalbumin, calbindin, and neuropeptide Y immunoreactive) in the echidna striatum and pallidum showed many similarities to those seen in eutherians, although the pattern of distribution of calbindin immunoreactive neurons was more uniform in the caudatoputamen of the echidna than in therians. These observations indicate that the same broad features of striatal and pallidal organization apply across all mammals and suggest that these common features may have arisen before the divergence of the monotreme and therian lineages.

  10. Chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring of the striatum.

    Science.gov (United States)

    Taylor, S B; Anglin, J M; Paode, P R; Riggert, A G; Olive, M F; Conrad, C D

    2014-11-07

    Chronic stress is an established risk factor in the development of addiction. Addiction is characterized by a progressive transition from casual drug use to habitual and compulsive drug use. The ability of chronic stress to facilitate the transition to addiction may be mediated by increased engagement of the neurocircuitries underlying habitual behavior and addiction. In the present study, striatal morphology was evaluated after 2 weeks of chronic variable stress in male Sprague-Dawley rats. Dendritic complexity of medium spiny neurons was visualized and quantified with Golgi staining in the dorsolateral and dorsomedial striatum, as well as in the nucleus accumbens core and shell. In separate cohorts, the effects of chronic stress on habitual behavior and the acute locomotor response to methamphetamine were also assessed. Chronic stress resulted in increased dendritic complexity in the dorsolateral striatum and nucleus accumbens core, regions implicated in habitual behavior and addiction, while decreased complexity was found in the nucleus accumbens shell, a region critical for the initial rewarding effects of drugs of abuse. Chronic stress did not affect dendritic complexity in the dorsomedial striatum. A parallel shift toward habitual learning strategies following chronic stress was also identified. There was an initial reduction in acute locomotor response to methamphetamine, but no lasting effect as a result of chronic stress exposure. These findings suggest that chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring in the striatum. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Ventral inlay buccal mucosal graft urethroplasty: a novel surgical technique for the management of urethral stricture disease.

    Science.gov (United States)

    Kovell, Robert Caleb; Terlecki, Ryan Patrick

    2015-02-01

    To describe the novel technique of ventral inlay substitution urethroplasty for the management of male anterior urethral stricture disease. A 58-year-old gentleman with multifocal bulbar stricture disease measuring 7 cm in length was treated using a ventral inlay substitution urethroplasty. A dorsal urethrotomy was created, and the ventral urethral plated was incised. The edges of the urethral plate were mobilized without violation of the ventral corpus spongiosum. A buccal mucosa graft was harvested and affixed as a ventral inlay to augment the caliber of the urethra. The dorsal urethrotomy was closed over a foley catheter. No intraoperative or postoperative complications occurred. Postoperative imaging demonstrated a widely patent urethra. After three years of follow-up, the patient continues to do well with no voiding complaints and low postvoid residuals. Ventral inlay substitution urethroplasty appears to be a safe and feasible technique for the management of bulbar urethral strictures.

  12. Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos.

    Science.gov (United States)

    Yamamoto, T S; Takagi, C; Ueno, N

    2000-03-01

    Signaling triggered by polypeptide growth factors leads to the activation of their target genes. Several homeobox genes are known to be induced in response to polypeptide growth factors in early Xenopus development. In particular, Xmsx-1, an amphibian homologue of vertebrate Msx-1, is well characterized as a target gene of bone morphogenetic protein (BMP). Here, using a dominant-negative form of Xmsx-1 (VP-Xmsx-1), which is a fusion protein made with the virus-derived VP16 activation domain, we have examined whether Xmsx-1 activity is required in the endogenous ventralizing pathway. VP-Xmsx-1 induced a secondary body axis, complete with muscle and neural tissues, when overexpressed in ventral blastomeres, suggesting that Xmsx-1 activity is necessary for both mesoderm and ectoderm to be ventralized. We have also examined the epistatic relationship between Xmsx-1 and another ventralizing homeobox protein, Xvent-1, and show that Xmsx-1 is likely to be acting upstream of Xvent-1. We propose that Xmsx-1 is required in the BMP-stimulated ventralization pathway that involves the downstream activation of Xvent-1.

  13. Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 in a dog

    Directory of Open Access Journals (Sweden)

    Harumichi Itoh

    2017-03-01

    Full Text Available Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 were diagnosed in a 6-month-old female Pomeranian with tetraplegia as a clinical sign. Lateral survey radiography of the neck with flexion revealed atlantoaxial subluxation with ventral subluxation of C2. Computed tomography revealed absence of dens and atlanto-occipital overlapping. Magnetic resonance imaging showed compression of the spinal cord and indentation of caudal cerebellum. The diagnosis was Chiari-like malformation, atlantoaxial subluxation with ventral displacement of C2, atlanto-occipital overlapping, and syringomyelia. The dog underwent foramen magnum decompression, dorsal laminectomy of C1, and ventral fixation of the atlantoaxial joint. Soon after the operation, voluntary movements of the legs were recovered. Finally, the dog could stand and walk without assistance. The dog had complicated malformations at the craniocervical junction but foramen magnum decompression and dorsal laminectomy for Chiari-like malformation, and ventral fixation for atlantoaxial subluxation resulted in an excellent clinical outcome.

  14. Opposing dorsal/ventral stream dynamics during figure-ground segregation.

    Science.gov (United States)

    Wokke, Martijn E; Scholte, H Steven; Lamme, Victor A F

    2014-02-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist between the dorsal and the ventral stream. Here, we used TMS and concurrent EEG recordings to explore these interactions between the dorsal and ventral stream during figure-ground segregation. In two separate experiments, we used repetitive TMS and single-pulse TMS to disrupt processing in the dorsal (V5/HMT⁺) and the ventral (lateral occipital area) stream during a motion-defined figure discrimination task. We presented stimuli that made it possible to differentiate between relatively low-level (figure boundary detection) from higher-level (surface segregation) processing steps during figure-ground segregation. Results show that disruption of V5/HMT⁺ impaired performance related to surface segregation; this effect was mainly found when V5/HMT⁺ was perturbed in an early time window (100 msec) after stimulus presentation. Surprisingly, disruption of the lateral occipital area resulted in increased performance scores and enhanced neural correlates of surface segregation. This facilitatory effect was also mainly found in an early time window (100 msec) after stimulus presentation. These results suggest a "push-pull" interaction in which dorsal and ventral extrastriate areas are being recruited or inhibited depending on stimulus category and task demands.

  15. Sizzled controls dorso-ventral polarity by repressing cleavage of the Chordin protein.

    Science.gov (United States)

    Muraoka, Osamu; Shimizu, Takashi; Yabe, Taijiro; Nojima, Hideaki; Bae, Young-Ki; Hashimoto, Hisashi; Hibi, Masahiko

    2006-04-01

    The Bone morphogenetic protein (Bmp) signalling gradient has a major function in the formation of the dorso-ventral axis. The zebrafish ventralized mutant, ogon, encodes Secreted Frizzled (Sizzled). sizzled is ventrally expressed in a Bmp-dependent manner and is required for the suppression of Bmp signalling on the ventral side of zebrafish embryos. However, it remains unclear how Sizzled inhibits Bmp signalling and controls ventro-lateral cell fate. We found that Sizzled stabilizes Chordin, a Bmp antagonist, by binding and inhibiting the Tolloid-family metalloproteinase, Bmp1a, which cleaves and inactivates Chordin. The cysteine-rich domain of Sizzled is required for inhibition of Bmp1a activity. Loss of both Bmp1a and Tolloid-like1 (Tll1; another Tolloid-family metalloproteinase) function leads to a complete suppression and reversal of the ogon mutant phenotype. These results indicate that Sizzled represses the activities of Tolloid-family proteins, thereby creating the Chordin-Bmp activity gradient along the dorso-ventral axis. Here, we describe a previously unrecognized role for a secreted Frizzled-related protein.

  16. Imaging findings in patients with ventral dural defects and herniation of neural tissue

    International Nuclear Information System (INIS)

    Baur, A.; Staebler, A.; Reiser, M.; Psenner, K.; Hamburger, C.

    1997-01-01

    The aim of this paper is to describe clinical and imaging findings in three patients with ventral dural defects and herniation of the spinal cord or cauda equina. The literature is reviewed and the clinical, radiological and operative findings are compared. Three patients with ventral dural defects of different etiologies are presented. One patient gave a longstanding history of ankylosing spondylitis, the second patient presents 37 years after spinal trauma, and the third patient presents with spontaneous spinal cord herniation. All patients had typically slowly progressive neurological symptoms with multiple hospitalizations until diagnosis was made. Characteristic findings in postmyelographic CT included a ventral or ventrolateral displacement with deformation of the spinal cord or the cauda equina. Sagittal MRI showed this abrupt and localized anterior deviation of the spinal cord or the cauda equina to the posterior portions of a vertebral body with or without a bony vertebral defect optimally. Additionally, due to the ventral displacement of the spinal cord, the dorsal subarachnoid space was relatively enlarged without evidence of an arachnoid cyst, in all patients. Magnetic resonance imaging and postmyelographic CT can diagnose ventral dural defects with spinal cord herniation or nerve root entrapment. Dural defects must be considered in the presence of neurological symptoms in cases of longstanding ankylosing spondylitis, late sequelae of fractures of vertebral bodies, and without history of spinal trauma or surgery. (orig.). With 3 figs

  17. Gastric dilatation volvulus: a retrospective study of 203 dogs with ventral midline gastropexy.

    Science.gov (United States)

    Ullmann, B; Seehaus, N; Hungerbühler, S; Meyer-Lindenberg, A

    2016-01-01

    To evaluate the recurrence rate of gastric dilatation volvulus and the incidence of complications in subsequent coeliotomies following ventral midline gastropexy. The medical records of dogs treated for gastric dilatation volvulus by ventral midline gastropexy were retrospectively reviewed. Owners were contacted and invited to complete a questionnaire and to return to the clinic for ultrasonographic and radiographic follow-up. The questionnaire was completed by 203 owners 2 to 123 months postoperatively, 24 of whom attended the follow-up examination. Of the 203 dogs, 13 (6 · 4%) underwent subsequent ventral midline coeliotomy and none developed complications related to the gastropexy site. In 23 of the 24 re-evaluated dogs, the stomach was closely associated with the abdominal on radiography and/or ultrasound. The recurrence rate for clinical signs of gastric dilatation or gastric dilatation volvulus after ventral midline gastropexy was 6 · 4%. This study shows that the recurrence of gastric dilatation volvulus after ventral midline gastropexy is low and adhesion of the stomach to the abdominal wall is persistent in almost all dogs that were re-examined. The gastropexy site did not appear to interfere with subsequent coeliotomy. © 2015 British Small Animal Veterinary Association.

  18. Risk-Assessment Score and Patient Optimization as Cost Predictors for Ventral Hernia Repair.

    Science.gov (United States)

    Saleh, Sherif; Plymale, Margaret A; Davenport, Daniel L; Roth, John Scott

    2018-04-01

    Ventral hernia repair (VHR) is associated with complications that significantly increase healthcare costs. This study explores the associations between hospital costs for VHR and surgical complication risk-assessment scores, need for cardiac or pulmonary evaluation, and smoking or obesity counseling. An IRB-approved retrospective study of patients having undergone open VHR over 3 years was performed. Ventral Hernia Risk Score (VHRS) for surgical site occurrence and surgical site infection, and the Ventral Hernia Working Group grade were calculated for each case. Also recorded were preoperative cardiology or pulmonary evaluations, smoking cessation and weight reduction counseling, and patient goal achievement. Hospital costs were obtained from the cost accounting system for the VHR hospitalization stratified by major clinical cost drivers. Univariate regression analyses were used to compare the predictive power of the risk scores. Multivariable analysis was performed to develop a cost prediction model. The mean cost of index VHR hospitalization was $20,700. Total and operating room costs correlated with increasing CDC wound class, VHRS surgical site infection score, VHRS surgical site occurrence score, American Society of Anesthesiologists class, and Ventral Hernia Working Group (all p variance in costs (p optimization significantly reduced direct and operating room costs (p < 0.05). Cardiac evaluation was associated with increased costs. Ventral hernia repair hospital costs are more accurately predicted by CDC wound class than VHR risk scores. A straightforward 6-factor model predicted most cost variation for VHR. Copyright © 2018 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    Directory of Open Access Journals (Sweden)

    Hiroaki Kawamichi

    2016-11-01

    Full Text Available Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68. Furthermore, we also conducted a voxel-based morphometry (VBM study of the effects of being in a romantic relationship (N = 113. Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward.

  20. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Mathew Jobin

    2009-04-01

    Full Text Available Abstract Acetylcholine (ACh, the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS. Previous reports from our laboratory on streptozotocin (STZ induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax and affinity (Kd of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.

  1. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  2. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  3. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...

  4. Left main percutaneous coronary intervention.

    Science.gov (United States)

    Teirstein, Paul S; Price, Matthew J

    2012-10-23

    The introduction of drug-eluting stents and advances in catheter techniques have led to increasing acceptance of percutaneous coronary intervention (PCI) as a viable alternative to coronary artery bypass graft (CABG) for unprotected left main disease. Current guidelines state that it is reasonable to consider unprotected left main PCI in patients with low to intermediate anatomic complexity who are at increased surgical risk. Data from randomized trials involving patients who are candidates for either treatment strategy provide novel insight into the relative safety and efficacy of PCI for this lesion subset. Herein, we review the current data comparing PCI with CABG for left main disease, summarize recent guideline recommendations, and provide an update on technical considerations that may optimize clinical outcomes in left main PCI. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Optimizing Penile Length in Patients Undergoing Partial Penectomy for Penile Cancer: Novel Application of the Ventral Phalloplasty Oncoplastic Technique

    Directory of Open Access Journals (Sweden)

    Jared J. Wallen

    2014-10-01

    Full Text Available The ventral phalloplasty (VP has been well described in modern day penile prosthesis surgery. The main objectives of this maneuver are to increase perceived length and patient satisfaction and to counteract the natural 1-2 cm average loss in length when performing implantation of an inflatable penile prosthesis. Similarly, this video represents a new adaptation for partial penectomy patients. One can only hope that the addition of the VP for partial penectomy patients with good erectile function will increase their quality of life. The patient in this video is a 56-year-old male who presented with a 4.0x3.5x1.0 cm, pathologic stage T2 squamous cell carcinoma of the glans penis. After partial penectomy with VP and inguinal lymph node dissection, pathological specimen revealed negative margins, 3/5 right superficial nodes and 1/5 left superficial nodes positive for malignancy. The patient has been recommended post-operative systemic chemotherapy (with external beam radiotherapy based on the multiple node positivity and presence of extranodal extension. The patient’s pre-operative penile length was 9.5 cm, and after partial penectomy with VP, penile length is 7 cm.

  6. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Science.gov (United States)

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  7. Medial forebrain bundle lesions fail to structurally and functionally disconnect the ventral tegmental area from many ipsilateral forebrain nuclei: implications for the neural substrate of brain stimulation reward.

    Science.gov (United States)

    Simmons, J M; Ackermann, R F; Gallistel, C R

    1998-10-15

    Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.

  8. Left ventricular apical ballooning syndrome

    International Nuclear Information System (INIS)

    Rahman, N.; Tai, J.; Soofi, A.

    2007-01-01

    The transient left ventricular apical ballooning syndrome, also known as Takotsubo cardiomyopathy, is characterized by transient left ventricular dysfunction in the absence of obstructive epicardial coronary disease. Although the syndrome has been reported in Japan since 1990, it is rare in other regions. Rapid recognition of the syndrome can modify the diagnostic and therapeutic attitude i.e. avoiding thrombolysis and performing catheterization in the acute phase. (author)

  9. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  10. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Tuennerhoff, Johannes

    2015-01-01

    interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants......Adaptive behavior relies on combining bottom-up sensory inputs with top-down control signals to guide responses in line with current goals and task demands. Over the past decade, accumulating evidence has suggested that the dorsal and ventral frontoparietal attentional systems are recruited......-TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection...

  11. Radiographic and ultrasonographic characteristics of ventral abdominal hernia in pigeons (Columba livia).

    Science.gov (United States)

    Amer, Mohammed S; Hassan, Elham A; Torad, Faisal A

    2018-02-20

    Five female egg-laying pigeons presented with painless, reducible, ventral abdominal swellings located between the keel and the pubis, or close to the cloaca. Based on clinical, radiographic, and ultrasonographic examination, these pigeons were diagnosed with ventral abdominal hernia requiring surgical interference. Reduction was successfully performed under general anesthesia. Radiographic and ultrasonographic examinations were beneficial for confirming the diagnosis and visualizing the hernial content for surgical planning. Lateral radiographs were more helpful than ventrodorsal radiographs for identification of the hernial content and its continuation with the abdominal muscles. Ultrasonographic examination offered a non-invasive diagnostic tool that allowed for the differentiation of hernia from other abdominal swellings. In addition, it played a beneficial role in identification of the hernial content and follow up after surgical interference. In conclusion, radiographic and ultrasonographic examinations were beneficial in the diagnosis, surgical planning, and follow up after surgical interference of ventral abdominal hernia in pigeons.

  12. Correlation between early surgical complications and readmission rate after ventral hernia repair

    DEFF Research Database (Denmark)

    Kokotovic, D; Sjølander, H; Gögenur, I

    2017-01-01

    PURPOSE: Postoperative surgical complications arising from ventral hernia repair have been assessed by a variety of outcome measures. The objective of this study was to correlate the Clavien Dindo Classification (CDC) graded complications with the 30-day readmission rate as early outcome measures...... in ventral hernia repair. Secondarily, we wanted to investigate whether the risk factors for Clavien Dindo class ≥1 and 30-day readmission were comparable. METHODS: Single-centre retrospective study including all patients (≥18 years) who underwent ventral hernia repair between January 1, 2009 and September 1......). There was a significant association between a complication graded by the CDC ≥1 and 30-day readmission for both incisional and umbilical/epigastric hernia repair (p readmission. Recurrent...

  13. Right colon cancer: Left behind.

    Science.gov (United States)

    Gervaz, P; Usel, M; Rapiti, E; Chappuis, P; Neyroud-Kaspar, I; Bouchardy, C

    2016-09-01

    Prognosis of colon cancer (CC) has steadily improved during the past three decades. This trend, however, may vary according to proximal (right) or distal (left) tumor location. We studied if improvement in survival was greater for left than for right CC. We included all CC recorded at the Geneva population-based registry between 1980 and 2006. We compared patients, tumor and treatment characteristics between left and right CC by logistic regression and compared CC specific survival by Cox models taking into account putative confounders. We also compared changes in survival between CC location in early and late years of observation. Among the 3396 CC patients, 1334 (39%) had right-sided and 2062 (61%) left-sided tumors. In the early 1980s, 5-year specific survival was identical for right and left CCs (49% vs. 48%). During the study period, a dramatic improvement in survival was observed for patients with left-sided cancers (Hazard ratio [HR]: 0.42, 95% confidence interval [CI]: 0.29-0.62, p colon cancer patients, those with right-sided lesions have by far the worse prognosis. Change of strategic management in this subgroup is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Radiographic appearance of the middle ear after ventral bulla osteotomy in five dogs with otitis media

    International Nuclear Information System (INIS)

    Holt, D.E.; Walker, L.

    1997-01-01

    Radiographs of the middle ear were made in five dogs 60 to 78 months after ventral bulla osteotomy was performed to treat otitis media. The clinical results of surgery were considered satisfactory in four dogs and unsatisfactory in one. In 4 dogs with satisfactory results, radiographs demonstrated complete reformation of the bulla in 3 operated middle ears (3 dogs), with partial bulla reformation in the three middle ears (3 dogs). Radiographs in one dog with unsatisfactory results showed complete bulla reformation with no increase in lumen opacity. The proliferative bony response obliterating the middle ear previously reported in normal dogs after ventral bulla osteotomy was not seen in any of these patients

  15. Ultrasonographic evaluation of the healing of ventral midline abdominal incisions in the horse.

    Science.gov (United States)

    Wilson, D A; Badertscher, R R; Boero, M J; Baker, G J; Foreman, J H

    1989-06-01

    Ultrasonography was used to evaluate the ventral midline incisions of 21 ponies following exploratory laparotomy. The incisions were evaluated before surgery and at weekly intervals from one to seven weeks after surgery. Both 5.0 and 7.5 MHz linear array and 7.5 MHz sector transducers were used for the evaluations. The incisional complications observed were drainage, oedema, suture sinus formation, suture abscess, superficial dehiscence and incisional hernia. Ultrasonographic imaging of the ventral midline incision was an easy, reliable and objective method for detecting and monitoring the progression of incisional complications in a non-invasive manner.

  16. Aphasia following left thalamic hemorrhage

    International Nuclear Information System (INIS)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro.

    1984-01-01

    We reported 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months), and described language disorders examined by Western Aphasia Battery (WAB) and measured cerebral blood flow by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in watershed area that involved the territory between posterior cerebral and middle cerebral arteries in the left temporooccipital region in addition to low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, whose score of repetition (8.4) was higher than that of comprehension (7.4), emission CT showed slight low flow area at the temporo-occipital region similarly as the case with transcortical sensory aphasia. In another case with anomic aphasia, scored 9 on both fluensy and comprehension subtests and 10 on repetition, there was wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. On the other hand, in all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus. (J.P.N.)

  17. Dopamine transporter binding in rat striatum: a comparison of [O-methyl-{sup 11}C]{beta}-CFT and [N-methyl-{sup 11}C]{beta}-CFT

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Karmen K.; Hutchins, Gary D.; Mock, Bruce H.; Fei, Xiangshu; Winkle, Wendy L. [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States); Gitter, Bruce D.; Territo, Paul R. [Lilly Center for Anatomical and Molecular Imaging, Integrative Biology Division, Lilly Research Laboratories, Greenfield, IN 46140 (United States); Zheng Qihuang [Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202 (United States)], E-mail: qzheng@iupui.edu

    2009-01-15

    Introduction: Positron emission tomography scanning with radiolabeled phenyltropane cocaine analogs is important for quantifying the in vivo density of monoamine transporters, including the dopamine transporter (DAT). [{sup 11}C]{beta}-CFT is useful for studying DAT as a marker of dopaminergic innervation in animal models of psychiatric and neurological disorders. [{sup 11}C]{beta}-CFT is commonly labeled at the N-methyl position. However, labeling of [{sup 11}C]{beta}-CFT at the O-methyl position is a simpler procedure and results in a shorter synthesis time [desirable in small-animal studies, where specific activity (SA) is crucial]. In this study, we sought to validate that the O-methylated form of [{sup 11}C]{beta}-CFT provides equivalent quantitative results to that of the more commonly reported N-methyl form. Methods: Four female Sprague-Dawley rats were scanned twice on the IndyPET II small-animal scanner, once with [N-methyl-{sup 11}C]{beta}-CFT and once with [O-methyl-{sup 11}C]{beta}-CFT. DAT binding potentials (BP{identical_to}B'{sub avail}/K{sub d}) were estimated for right and left striata with a nonlinear least-squares algorithm, using a reference region (cerebellum) as the input function. Results: [N-Methyl-{sup 11}C]{beta}-CFT and [O-methyl-{sup 11}C]{beta}-CFT were synthesized with 40-50% radiochemical yields (HPLC purification). Radiochemical purity was >99%. SA at end of bombardment was 258{+-}30 GBq/{mu}mol. Average BP values for right and left striata with [N-methyl-{sup 11}C]{beta}-CFT were 1.16{+-}0.08 and 1.23{+-}0.14, respectively. BP values for [O-methyl-{sup 11}C]{beta}-CFT were 1.18{+-}0.08 (right) and 1.22{+-}0.16 (left). Paired t tests demonstrated that labeling position did not affect striatal DAT BP. Conclusions: These results suggest that [O-methyl-{sup 11}C]{beta}-CFT is quantitatively equivalent to [N-methyl-{sup 11}C]{beta}-CFT in the rat striatum.

  18. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    2010-02-01

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  19. Connexin31.1 deficiency in the mouse impairs object memory and modulates open-field exploration, acetylcholine esterase levels in the striatum, and cAMP response element-binding protein levels in the striatum and piriform cortex.

    Science.gov (United States)

    Dere, E; Zheng-Fischhöfer, Q; Viggiano, D; Gironi Carnevale, U A; Ruocco, L A; Zlomuzica, A; Schnichels, M; Willecke, K; Huston, J P; Sadile, A G

    2008-05-02

    Neuronal gap junctions in the brain, providing intercellular electrotonic signal transfer, have been implicated in physiological and behavioral correlates of learning and memory. In connexin31.1 (Cx31.1) knockout (KO) mice the coding region of the Cx31.1 gene was replaced by a LacZ reporter gene. We investigated the impact of Cx31.1 deficiency on open-field exploration, the behavioral response to an odor, non-selective attention, learning and memory performance, and the levels of memory-related proteins in the hippocampus, striatum and the piriform cortex. In terms of behavior, the deletion of the Cx31.1 coding DNA in the mouse led to increased exploratory behaviors in a novel environment, and impaired one-trial object recognition at all delays tested. Despite strong Cx31.1 expression in the peripheral and central olfactory system, Cx31.1 KO mice exhibited normal behavioral responses to an odor. We found increased levels of acetylcholine esterase (AChE) and cAMP response element-binding protein (CREB) in the striatum of Cx31.1 KO mice. In the piriform cortex the Cx31.1 KO mice had an increased heterogeneity of CREB expression among neurons. In conclusion, gap-junctions featuring the Cx31.1 protein might be involved in open-field exploration as well as object memory and modulate levels of AChE and CREB in the striatum and piriform cortex.

  20. Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens

    International Nuclear Information System (INIS)

    Goeders, N.E.; Kuhar, M.J.

    1987-01-01

    A variety of clinical and animal data suggest that the repeated administration of cocaine and related psychomotor stimulants may be associated with a behavioral sensitization whereby the same dose of the drug results in increasing behavioral pathology. This investigation was designed to determine the effects of chronic cocaine administration on the binding of [ 3 H]sulpiride, a relatively specific ligand for D2 dopaminergic receptors, in the rat brain using in vitro homogenate binding and light microscopic quantitative autoradiographic methodologies. Chronic daily injections of cocaine (10 mg/kg, i.p.) for 15 days resulted in a significant decrease in the maximum concentration of sulpiride binding sites in the striatum and a significant increase in the maximum number of these binding sites in the nucleus accumbens. No significant differences in binding affinity were observed in either brain region. These data suggest that chronic cocaine administration may result in differential effects on D2 receptors in the nigro-striatal and mesolimbic dopaminergic systems

  1. Chronically administered 3-nitropropionic acid produces selective lesions in the striatum and reduces muscle tonus.

    Science.gov (United States)

    Shimano, Y; Kumazaki, M; Sakurai, T; Hida, H; Fujimoto, I; Fukuda, A; Nishino, H

    1995-12-01

    Systemically administered 3-nitropropionic acid (3- NPA), irreversible inhibitor of succinate dehydrogenase, produced characteristic bilateral lesions in the striatum (STR) in the rat. Inside the lesion, neutrophils invaded and strong immunoreaction for IgG as well as complement factor C3b/C4b receptor (C3b/C4br) were observed. The core of the lesion lost the immunoreaction for glial fibrillary acidic protein (GFAP) while the marginal area had abundant GFAP-labeled astrocytes around the vessels. Intoxicated rats often became somnolent and were awkward in cooperative movement on a pole climbing test, but they had a quite good memory retention in a passive avoidance learning. Muscle tonus in some of the intoxicated rats became hypotonic with low voltage electromyogram (EMG) activity, especially in lower limbs. In summary, 3-NPA intoxicated rats had selective bilateral lesions in the STR and exhibited disturbances in a cooperative movement owing to the impairment in muscle tonus, thus it would be a useful animal model to deduce the central pathogenesis of Huntington's disease.

  2. Mindfulness meditation modulates reward prediction errors in the striatum in a passive conditioning task

    Directory of Open Access Journals (Sweden)

    Ulrich eKirk

    2015-02-01

    Full Text Available Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of rewards and cues that predict reward. Evidence indicates that mindfulness-based approaches reduce reward anticipation signal in the striatum to negative and positive incentives suggesting the hypothesis that such training influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error signals. We found diminished positive and negative prediction error-related blood-oxygen level-dependent (BOLD responses in the putamen in meditators compared with controls. In the meditators, this decrease in striatal BOLD responses to reward prediction was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1 were elevated in both meditators and controls. These results provide evidence that experienced mindfulness meditators show attenuated reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

  3. Acylethanolamides and endocannabinoid signaling system in dorsal striatum of rats exposed to perinatal asphyxia.

    Science.gov (United States)

    Holubiec, Mariana I; Romero, Juan I; Blanco, Eduardo; Tornatore, Tamara Logica; Suarez, Juan; Rodríguez de Fonseca, Fernando; Galeano, Pablo; Capani, Francisco

    2017-07-13

    Endocannabinoids (eCBs) and acylethanolamides (AEs) have lately received more attention due to their neuroprotective functions in neurological disorders. Here we analyze the alterations induced by perinatal asphyxia (PA) in the main metabolic enzymes and receptors of the eCBs/AEs in the dorsal striatum of rats. To induce PA, we used a model developed by Bjelke et al. (1991). Immunohistochemical techniques were carried out to determine the expression of neuronal and glial markers (NeuN and GFAP), eCBs/AEs synthesis and degradation enzymes (DAGLα, NAPE-PLD and FAAH) and their receptors (CB1 and PPARα). We found a decrease in NAPE-PLD and PPARα expression. Since NAPE-PLD and PPARα take part in the production and reception of biochemical actions of AEs, such as oleoylethanolamide, these results may suggest that PA plays a key role in the regulation of this system. These data agree with previous results obtained in the hippocampus and encourage us to develop further studies using AEs as potential neuroprotective compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dorsomedial striatum lesions affect adjustment to reward uncertainty, but not to reward devaluation or omission.

    Science.gov (United States)

    Torres, Carmen; Glueck, Amanda C; Conrad, Shannon E; Morón, Ignacio; Papini, Mauricio R

    2016-09-22

    The dorsomedial striatum (DMS) has been implicated in the acquisition of reward representations, a proposal leading to the hypothesis that it should play a role in situations involving reward loss. We report the results of an experiment in which the effects of DMS excitotoxic lesions were tested in consummatory successive negative contrast (reward devaluation), autoshaping training with partial vs. continuous reinforcement (reward uncertainty), and appetitive extinction (reward omission). Animals with DMS lesions exhibited reduced lever pressing responding, but enhanced goal entries, during partial reinforcement training in autoshaping. However, they showed normal negative contrast, acquisition under continuous reinforcement (CR), appetitive extinction, and response facilitation in early extinction trials. Open-field testing also indicated normal motor behavior. Thus, DMS lesions selectively affected the behavioral adjustment to a situation involving reward uncertainty, producing a behavioral reorganization according to which goal tracking (goal entries) became predominant at the expense of sign tracking (lever pressing). This pattern of results shows that the function of the DMS in situations involving reward loss is not general, but restricted to reward uncertainty. We suggest that a nonassociative, drive-related process induced by reward uncertainty requires normal output from DMS neurons. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Chronic Caffeine Treatment Protects Against α-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum.

    Science.gov (United States)

    Luan, Yanan; Ren, Xiangpeng; Zheng, Wu; Zeng, Zhenhai; Guo, Yingzi; Hou, Zhidong; Guo, Wei; Chen, Xingjun; Li, Fei; Chen, Jiang-Fan

    2018-01-01

    Despite converging epidemiological evidence for the inverse relationship of regular caffeine consumption and risk of developing Parkinson's disease (PD) with animal studies demonstrating protective effect of caffeine in various neurotoxin models of PD, whether caffeine can protect against mutant α-synuclein (α-Syn) A53T-induced neurotoxicity in intact animals has not been examined. Here, we determined the effect of chronic caffeine treatment using the α-Syn fibril model of PD by intra-striatal injection of preformed A53T α-Syn fibrils. We demonstrated that chronic caffeine treatment blunted a cascade of pathological events leading to α-synucleinopathy, including pSer129α-Syn-rich aggregates, apoptotic neuronal cell death, microglia, and astroglia reactivation. Importantly, chronic caffeine treatment did not affect autophagy processes in the normal striatum, but selectively reversed α-Syn-induced defects in macroautophagy (by enhancing microtubule-associated protein 1 light chain 3, and reducing the receptor protein sequestosome 1, SQSTM1/p62) and chaperone-mediated autophagy (CMA, by enhancing LAMP2A). These findings support that caffeine-a strongly protective environment factor as suggested by epidemiological evidence-may represent a novel pharmacological therapy for PD by targeting autophagy pathway.

  6. Golgi Study of Medium Spiny Neurons from Dorsolateral Striatum of the Turtle Trachemys scripta elegans.

    Science.gov (United States)

    González, Carolina; Mendoza, Janeth; Avila-Costa, María Rosa; Arias, Juan M; Barral, Jaime

    2013-10-25

    Comparative anatomy has shown similarities between reptilian and mammalian basal ganglia. Here the morphological characteristics of the medium spiny neurons (MSN) in the dorsolateral striatum (DLS) of the turtle are described after staining them with the Golgi technique. The soma of MSN in DLS showed three main forms: spherical, ovoid, and fusiform. The number of primary dendritic branches (3-4 dendrites/cell) was less than observed in mammals. The MSN axon originates mainly from the soma, and randomly it emerges at the beginning of the primary dendrite. The main differences between turtle and mammalian MSN were detected on dendritic spines. Short, thin, bifurcated and fungiform types of dendritic spines were observed in the turtle's MSN, according to their shape. In most of the analyzed spines, it was found that its length considerably exceeded that reported in mammals, with dendritic spines up to 8μm in length. These differences could play an important role in the modulation of motor networks preserved along the vertebrate evolution. Copyright © 2013. Published by Elsevier Ireland Ltd.

  7. Frontal-striatum dysfunction during reward processing: Relationships to amotivation in schizophrenia.

    Science.gov (United States)

    Chung, Yu Sun; Barch, Deanna M

    2016-04-01

    Schizophrenia is characterized by deficits of context processing, thought to be related to dorsolateral prefrontal cortex (DLPFC) impairment. Despite emerging evidence suggesting a crucial role of the DLPFC in integrating reward and goal information, we do not know whether individuals with schizophrenia can represent and integrate reward-related context information to modulate cognitive control. To address this question, 36 individuals with schizophrenia (n = 29) or schizoaffective disorder (n = 7) and 27 healthy controls performed a variant of a response conflict task (Padmala & Pessoa, 2011) during fMRI scanning, in both baseline and reward conditions, with monetary incentives on some reward trials. We used a mixed state-item design that allowed us to examine both sustained and transient reward effects on cognitive control. Different from predictions about impaired DLPFC function in schizophrenia, we found an intact pattern of increased sustained DLPFC activity during reward versus baseline blocks in individuals with schizophrenia at a group level but blunted sustained activations in the putamen. Contrary to our predictions, individuals with schizophrenia showed blunted cue-related activations in several regions of the basal ganglia responding to reward-predicting cues. Importantly, as predicted, individual differences in anhedonia/amotivation symptoms severity were significantly associated with reduced sustained DLPFC activation in the same region that showed overall increased activity as a function of reward. These results suggest that individual differences in motivational impairments in schizophrenia may be related to dysfunction of the DLPFC and striatum in motivationally salient situations. (c) 2016 APA, all rights reserved).

  8. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  9. Inhibition of transcription and translation in the striatum after memory reactivation: Lack of evidence of reconsolidation.

    Science.gov (United States)

    Prado-Alcalá, Roberto A; Medina, Andrea Cristina; Bello-Medina, Paola C; Quirarte, Gina L

    2017-07-01

    It has been found that interference with neural activity after a consolidated memory is retrieved produces an amnestic state; this has been taken has indicative of destabilization of the memory trace that would have been produced by a process of reconsolidation (allowing for maintenance of the original trace). However, a growing body of evidence shows that this is not a reliable effect, and that it is dependent upon some experimental conditions, such as the age of the memory, memory reactivation procedures, the predictability of the reactivation stimulus, and strength of training. In some instances, where post-retrieval treatments induce a retention deficit (which would be suggestive of interference with reconsolidation), memory is rescued by simple passing of time or by repeated retention tests. We now report that post-training and post-retrieval inhibition of transcription and translation in dorsal striatum, a structure where both of these manipulations have not been studied, produce interference with consolidation and a transitory retention deficit, respectively. These results do not give support to the reconsolidation hypothesis and lead to the conclusion that the post-activation deficiencies are due to interference with retrieval of information. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Ventral Tegmental Area and Substantia Nigra Neural Correlates of Spatial Learning

    Science.gov (United States)

    Martig, Adria K.; Mizumori, Sheri J. Y.

    2011-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA…

  11. FETAL PORCINE VENTRAL MESENCEPHALON GRAFTS - DISSECTION PROCEDURE AND CELLULAR CHARACTERIZATION IN CULTURE

    NARCIS (Netherlands)

    VANROON, WMC; COPRAY, JCVM; HOGENESCH, RI; KEMA, [No Value; MEYER, EM; MOLENAAR, G; LUGARD, C; STAAL, MJ; GO, KG

    The objective of this study was to develop an optimal dissection procedure for fetal porcine ventral mesencephalon (VM) grafts and to characterize the cellular composition of such an explant, in particular with respect to the dopaminergic and GABAergic components. We have used a monolayer cell

  12. Blindness alters the microstructure of the ventral but not the dorsal visual stream.

    Science.gov (United States)

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R; Ptito, Maurice; Dyrby, Tim B

    2016-07-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.

  13. Laparoscopic ventral rectopexy for external rectal prolapse improves constipation and avoids de novo constipation.

    Science.gov (United States)

    Boons, P; Collinson, R; Cunningham, C; Lindsey, I

    2010-06-01

    Abdominal rectopexy is ideal for otherwise healthy patients with rectal prolapse because of low recurrence, yet after posterior rectopexy, half of the patients complain of severe constipation. Resection mitigates this dysfunction but risks a pelvic anastomosis. The novel nerve-sparing ventral rectopexy appears to avoid postero-lateral rectal dissection denervation and thus postoperative constipation. We aimed to evaluate our functional results with laparoscopic ventral rectopexy. Consecutive rectal prolapse patients undergoing laparoscopic ventral rectopexy were prospectively assessed (Wexner Constipation and Faecal Incontinence Severity Index scores) pre-, 3 months postoperatively, and late (> 12 months). Sixty-five consecutive patients with external rectal prolapse (median age 72 years, 34% > 80 years, median follow up 19 months) underwent laparoscopic ventral rectopexy. There was one recurrence (2%) and one conversion. Morbidity (17%) and mortality (0%) were low. Median operating time was 140 min and median length of stay 2 days. At 3 months, constipation was improved in 72% and mildly induced in 2% (median pre-and postoperative Wexner scores 9 vs 4, P constipation and incontinence (P constipation and avoidance of de novo constipation appear superior to historical functional results of posterior rectopexy. A laparoscopic approach allows low morbidity and short hospital stay, even in those patients over 80 years of age in whom a perineal approach is usually preferred for safety.

  14. Fetal porcine ventral mesencephalon graft. Determination of the optimal gestational age for implantation in Parkinsonian patients

    NARCIS (Netherlands)

    HogenEsch, RI; Koopmans, J; Copray, JCVM; van Roon, WMC; Kema, [No Value; Molenaar, G; Go, KG; Staal, MJ

    Human fetal ventral mesencephalon tissue has been used as dopaminergic striatal implants in Parkinsonian patients, so far with variable effects. Fetuses from animals that breed in large litters, e.g., pigs, have been considered as alternative donors of dopaminergic tissue. The optimal gestational

  15. Cryopreservation of porcine fetal ventral mesencephalic tissue for intrastriatal transplantation in Parkinson's disease

    NARCIS (Netherlands)

    Koopmans, J.; Hogenesch, I.; Copray, S.; Middel, B.; van Dijk, H.; Go, K-G.; Staal, M.

    2001-01-01

    In this study we examined the efficacy of cryopreserving porcine fetal mesencephalic tissue. After microscopical dissection of the ventral mesencephalon (VM) from E28 pig fetuses, the collection of explants was randomly divided into two equal parts. One part was directly prepared as cell suspension.

  16. Cell cycle regulator E2F4 is essential for the development of the ventral telencephalon.

    Science.gov (United States)

    Ruzhynsky, Vladimir A; McClellan, Kelly A; Vanderluit, Jacqueline L; Jeong, Yongsu; Furimsky, Marosh; Park, David S; Epstein, Douglas J; Wallace, Valerie A; Slack, Ruth S

    2007-05-30

    Early forebrain development is characterized by extensive proliferation of neural precursors coupled with complex structural transformations; however, little is known regarding the mechanisms by which these processes are integrated. Here, we show that deficiency of the cell cycle regulatory protein, E2F4, results in the loss of ventral telencephalic structures and impaired self-renewal of neural precursor cells. The mechanism underlying aberrant ventral patterning lies in a dramatic loss of Sonic hedgehog (Shh) expression specifically in this region. The E2F4-deficient phenotype can be recapitulated by interbreeding mice heterozygous for E2F4 with those lacking one allele of Shh, suggesting a genetic interaction between these pathways. Treatment of E2F4-deficient cells with a Hh agonist rescues stem cell self-renewal and cells expressing the homeodomain proteins that specify the ventral telencephalic structures. Finally, we show that E2F4 deficiency results in impaired activity of Shh forebrain-specific enhancers. In conclusion, these studies establish a novel requirement for the cell cycle regulatory protein, E2F4, in the development of the ventral telencephalon.

  17. Opposing dorsal/ventral stream dynamics during figure-ground segregation

    NARCIS (Netherlands)

    Wokke, M.E.; Scholte, H.S.; Lamme, V.A.F.

    2014-01-01

    The visual system has been commonly subdivided into two segregated visual processing streams: The dorsal pathway processes mainly spatial information, and the ventral pathway specializes in object perception. Recent findings, however, indicate that different forms of interaction (cross-talk) exist

  18. GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE

    Science.gov (United States)

    GENE ARRAY ANALYSIS OF THE VENTRAL PROSTATE IN RATS EXPOSED TO EITHER VINCLOZOLIN OR PROCYMIDONE. MB Rosen, VS Wilson, JE Schmid, and LE Gray Jr. US EPA, ORD, NHEERL, RTP, NC.Vinclozolin (Vi) and procymidone (Pr) are antiandrogenic fungicides. While changes in gene expr...

  19. Watchful waiting as a treatment strategy for patients with a ventral hernia appears to be safe

    DEFF Research Database (Denmark)

    Kokotovic, D; Sjølander, H; Gögenur, I

    2016-01-01

    PURPOSE: Due to risks of postoperative morbidity and recurrence some patients with a ventral hernia are not offered surgical repair. There is limited data on the rate and consequences of a watchful waiting (WW) strategy for these patients. The objective of this cohort study was to analyse outcome...

  20. Inclusions of amyotrophic lateral sclerosis-linked superoxide dismutase in ventral horns, liver, and kidney

    DEFF Research Database (Denmark)

    Jonsson, P.A.; Bergemalm, D.; Andersen, P.M.

    2008-01-01

    Mutant superoxide dismutases type 1 (SOD1s) cause amyotrophic lateral sclerosis by an unidentified toxic property. In a patient carrying the G127X truncation mutation, minute amounts of SOD1 were found in ventral horns using a mutant-specific antibody. Still, both absolute levels and ratios versus...

  1. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation

    NARCIS (Netherlands)

    Matsumaru, D.; Haraguchi, R.; Miyagawa, S.; Motoyama, J.; Nakagata, N.; Meijlink, F.; Yamada, G.

    2011-01-01

    BACKGROUND: An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In

  2. Visualization of nitric oxide production in the earthworm ventral nerve cord.

    Science.gov (United States)

    Kitamura, Y; Naganoma, Y; Horita, H; Tsuji, N; Shimizu, R; Ogawa, H; Oka, K

    2001-06-01

    Distribution of nitric oxide (NO)-producible neurons in the ventral nerve cord (VNC) of the earthworm was investigated by nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry. Some neurons (20-30 microm in diameter) were intensely stained and were localized in areas between the 1st and 2nd lateral nerves in the ventral side of VNC. In contrast, no neurons including giant fibers were stained in the dorsal side. Endogenous NO production from VNC was visualized using a fluorescent dye, diaminofluorescein-2 diacethyl (DAF-2 DA). When VNC was incubated in a saline, a relative high level of NO was produced from the ventral side, especially from NADPH-d-positive neurons. Under high-K+ stimulation, NO was also detected in the giant fibers in the dorsal side of VNC. Our results suggest that the earthworm VNC constantly and relative highly produces NO as a neuromodulator, and that NO produced from the ventral side sometimes reaches and affects the giant fibers. In conclusion, we successfully visualized NO in the earthworm VNC by clarifying both the distribution of NO-producible neurons and the endogenous NO production.

  3. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  4. Feasibility and outcome after laparoscopic ventral hernia repair using Proceed mesh

    DEFF Research Database (Denmark)

    Rosenberg, J.; Burcharth, J.

    2008-01-01

    laparoscopic ventral hernia repair using the Proceed mesh secured with tackers with a double crown technique. Patients were discharged according to standard discharge criteria, and follow-up was performed with a search in the national patient database and with manual search in the patients' files. RESULTS: Our...

  5. Drumming with dopamine neurons : Resonance and synchronization in the Ventral Tegmental Area

    NARCIS (Netherlands)

    van der Velden, L.J.J.

    2018-01-01

    The ventral tegmental area (VTA) is a dopaminergic nucleus in the midbrain with the propensity to exhibit spontaneous intrinsic rhythmic activity in the 1-5 Hz frequency range (ex vivo). Here, we combine in-vitro simultaneous action potential recording from a 60 channel multi-electro-array with

  6. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area

    NARCIS (Netherlands)

    Meye, F.J.; van Zessen, R.; Smidt, M.P.; Adan, R.A.H.; Ramakers, G.M.J.

    2012-01-01

    μ-opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive

  7. Characterization of organotypic ventral mesencephalic cultures from embryonic mice and protection against MPP toxicity by GDNF

    DEFF Research Database (Denmark)

    Jakobsen, B; Gramsbergen, J B; Møller Dall, A

    2005-01-01

    We characterized organotypic ventral mesencephalic (VM) cultures derived from embryonic day 12 (E12) mice (CBL57/bL6) in terms of number of dopaminergic neurons, cell soma size and dopamine production in relation to time in vitro and tested the effects of 1-methyl-4-phenylpyridinium (MPP(+)) and ...

  8. Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome

    Science.gov (United States)

    Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.

    2009-01-01

    Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…

  9. Relative Contributions of the Dorsal vs. Ventral Speech Streams to Speech Perception are Context Dependent: a lesion study

    Directory of Open Access Journals (Sweden)

    Corianne Rogalsky

    2014-04-01

    , (iii two sentence comprehension tasks (sentence-picture matching, plausibility judgments, and (iv two sensory-motor tasks (a non-word repetition task and BDAE repetition subtest. Our results indicate that the neural bases of speech perception are task-dependent. The syllable discrimination and sensory-motor tasks all identified a dorsal temporal-parietal voxel cluster, including area Spt, primary auditory and somatosensory cortex. Conversely, the auditory comprehension task identified left mid-temporal regions. This suggest that syllable discrimination deficits do not stem from impairments in the perceptual analysis of speech sounds but rather involve temporary maintenance of the stimulus trace and/or the similarity comparison process. The ventral stream (anterior and posterior clusters in the superior and middle temporal gyri, were associated with both sentence tasks. However, the dorsal stream’s involvement was more selective: inferior frontal regions were identified in the sentence–to-picture matching task, not the semantic plausibility task. Within the sentence-to-picture matching task, these inferior frontal regions were only identified by the trials with the most difficult sentences. This suggests that the dorsal stream’s contribution to sentence comprehension is not driven by perception per se. These initial findings highlight the task-dependent nature of speech processing, challenge claims regarding any specific motor region being critical for speech perception, and refute the notion that speech perception relies on dorsal stream auditory-motor systems.

  10. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat.

    Science.gov (United States)

    Becker, J B; Rudick, C N; Jenkins, W J

    2001-05-01

    Dopamine in dialysate from the nucleus accumbens (NAcc) increases during sexual and feeding behavior and after administration of drugs of abuse, even those that do not directly activate dopaminergic systems (e.g., morphine or nicotine). These findings and others have led to hypotheses that propose that dopamine is rewarding, predicts that reinforcement will occur, or attributes incentive salience. Examining increases in dopamine in NAcc or striatum during sexual behavior in female rats provides a unique situation to study these relations. This is because, for the female rat, sexual behavior is associated with an increase in NAcc dopamine and conditioned place preference only under certain testing conditions. This experiment was conducted to determine what factors are important for the increase in dopamine in dialysate from NAcc and striatum during sexual behavior in female rats. The factors considered were the number of contacts by the male, the timing of contacts by the male, or the ability of the female to control contacts by the male. The results indicate that increased NAcc dopamine is dependent on the timing of copulatory stimuli, independent of whether the female rat is actively engaged in regulating this timing. For the striatum, the timing of copulatory behavior influences the magnitude of the increase in dopamine in dialysate, but other factors are also involved. We conclude that increased extracellular dopamine in the NAcc and striatum conveys qualitative or interpretive information about the rewarding value of stimuli. Sexual behavior in the female rat is proposed as a model to determine the role of dopamine in motivated behavior.

  11. Antioxidant effect of Spirulina (Arthrospira) maxima in a neurotoxic model caused by 6-OHDA in the rat striatum.

    Science.gov (United States)

    Tobón-Velasco, J C; Palafox-Sánchez, Victoria; Mendieta, Liliana; García, E; Santamaría, A; Chamorro-Cevallos, G; Limón, I Daniel

    2013-08-01

    There is evidence to support that an impaired energy metabolism and the excessive generation of reactive oxygen species (ROS) contribute to brain injury in neurodegenerative disorders such as Parkinson's disease (PD), whereas diets enriched in foods with an antioxidant action may modulate its progression. Several studies have proved that the antioxidant components produced by Spirulina, a microscopic blue-green alga, might prevent cell death by decreasing free radicals, inhibiting lipoperoxidation and upregulating the antioxidant enzyme systems. In our study, we investigated the protective effect of the Spirulina maxima (S. maxima) against the 6-OHDA-caused toxicity in the rat striatum. The S. maxima (700 mg/kg/day, vo) was administered for 40 days before and 20 days after a single injection of 6-OHDA (16 μg/2 μL) into the dorsal striatum. At 20-day postsurgery, the brain was removed and the striatum was obtained to evaluate the indicators of toxicity, such as nitric oxide levels, ROS formation, lipoperoxidation, and mitochondrial activity. These variables were found significantly stimulated in 6-OHDA-treated rats and were accompanied by declines in dopamine levels and motor activity. In contrast, the animals that received the chronic treatment with S. maxima had a restored locomotor activity, which is associated with the decreased levels of nitric oxide, ROS, and lipoperoxidation in the striatum, although mitochondrial functions and dopamine levels remained preserved. These findings suggest that supplementation with antioxidant phytochemicals (such as contained in S. maxima) represents an effective neuroprotective strategy against 6-OHDA-caused neurotoxicity vía free radical production to preserve striatal dopaminergic neurotransmission in vivo.

  12. Differential Arc expression in the hippocampus and striatum during the transition from attentive to automatic navigation on a plus maze

    Science.gov (United States)

    Gardner, Robert S.; Suarez, Daniel F.; Robinson-Burton, Nadira K.; Rudnicky, Christopher J.; Gulati, Asish; Ascoli, Giorgio A.; Dumas, Theodore C.

    2016-01-01

    The strategies utilized to effectively perform a given task change with practice and experience. During a spatial navigation task, with relatively little training, performance is typically attentive enabling an individual to locate the position of a goal by relying on spatial landmarks. These (place) strategies require an intact hippocampus. With task repetition, performance becomes automatic; the same goal is reached using a fixed response or sequence of actions. These (response) strategies require an intact striatum. The current work aims to understand the activation patterns across these neural structures during this experience-dependent strategy transition. This was accomplished by region-specific measurement of activity-dependent immediate early gene expression among rats trained to different degrees on a dual-solution task (i.e., a task that can be solved using either place or response navigation). As expected, rats increased their reliance on response navigation with extended task experience. In addition, dorsal hippocampal expression of the immediate early gene Arc was considerably reduced in rats that used a response strategy late in training (as compared with hippocampal expression in rats that used a place strategy early in training). In line with these data, vicarious trial and error, a behavior linked to hippocampal function, also decreased with task repetition. Although Arc mRNA expression in dorsal medial or lateral striatum alone did not correlate with training stage, the ratio of expression in the medial striatum to that in the lateral striatum was relatively high among rats that used a place strategy early in training as compared with the ratio among over-trained response rats. Altogether, these results identify specific changes in the activation of dissociated neural systems that may underlie the experience-dependent emergence of response-based automatic navigation. PMID:26976088

  13. The brain cytoplasmic RNA BC1 regulates dopamine D-2 receptor-mediated transmission in the striatum

    OpenAIRE

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-01-01

    Dopamine D-2 receptor (D2DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D-2 receptors in this brain area are essentially obscure. We have studied the physiological responses of the D2DR stimulations in mice...

  14. The role of the striatum in effort-based decision-making in the absence of reward.

    Science.gov (United States)

    Schouppe, Nathalie; Demanet, Jelle; Boehler, Carsten N; Ridderinkhof, K Richard; Notebaert, Wim

    2014-02-05

    Decision-making involves weighing costs against benefits, for instance, in terms of the effort it takes to obtain a reward of a given magnitude. This evaluation process has been linked to the dorsal anterior cingulate cortex (dACC) and the striatum, with activation in these brain structures reflecting the discounting effect of effort on reward. Here, we investigate how cognitive effort influences neural choice processes in the absence of an extrinsic reward. Using functional magnetic resonance imaging in humans, we used an effort-based decision-making task in which participants were required to choose between two options for a subsequent flanker task that differed in the amount of cognitive effort. Cognitive effort was manipulated by varying the proportion of incongruent trials associated with each choice option. Choice-locked activation in the striatum was higher when participants chose voluntarily for the more effortful alternative but displayed the opposite trend on forced-choice trials. The dACC revealed a similar, yet only trend-level significant, activation pattern. Our results imply that activation levels in the striatum reflect a cost-benefit analysis, in which a balance is made between effort discounting and the intrinsic motivation to choose a cognitively challenging task. Moreover, our findings indicate that it matters whether this challenge is voluntarily chosen or externally imposed. As such, the present findings contrast with classical findings on effort discounting that found reductions in striatum activation for higher effort by finding enhancements of the same neural circuits when a cognitively challenging task is voluntarily selected and does not entail the danger of losing reward.

  15. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits

    OpenAIRE

    Mowery, Todd M.; Harrold, Jon B.; Alloway, Kevin D.

    2011-01-01

    The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neur...

  16. Inhibiting PKMζ reveals dorsal lateral and dorsal medial striatum store the different memories needed to support adaptive behavior.

    Science.gov (United States)

    Pauli, Wolfgang M; Clark, Alexandra D; Guenther, Heidi J; O'Reilly, Randall C; Rudy, Jerry W

    2012-06-20

    Evidence suggests that two regions of the striatum contribute differential support to instrumental response selection. The dorsomedial striatum (DMS) is thought to support expectancy-mediated actions, and the dorsolateral striatum (DLS) is thought to support habits. Currently it is unclear whether these regions store task-relevant information or just coordinate the learning and retention of these solutions by other brain regions. To address this issue, we developed a two-lever concurrent variable-interval reinforcement operant conditioning task and used it to assess the trained rat's sensitivity to contingency shifts. Consistent with the view that these two regions make different contributions to actions and habits, injecting the NMDA antagonist DL-AP5 into the DMS just prior to the shift impaired the rat's performance but enhanced performance when injected into the DLS. To determine if these regions support memory content, we first trained rats on a biased concurrent schedule (Lever 1: VI 40" and Lever 2: VI 10"). With the intent of "erasing" the memory content stored in striatum, after this training we inhibited the putative memory-maintenance protein kinase C isozyme protein kinase Mζ (PKMζ). Infusing zeta inhibitory peptide (ZIP) into the DLS enhanced the rat's ability to adapt to the contingency shift 2 d later, whereas injecting it into the DMS had the opposite effect. Infusing GluR2(3Y) into the DMS 1 h before ZIP infusions prevented ZIP from impairing the rat's sensitivity to the contingency shift. These results support the hypothesis that the DMS stores information needed to support actions and the DLS stores information needed to support habits.

  17. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    OpenAIRE

    Hiroaki Kawamichi; Hiroaki Kawamichi; Hiroaki Kawamichi; Sho K Sugawara; Yuki H Hamano; Yuki H Hamano; Kai Makita; Masahiro Matsunaga; Hiroki C Tanabe; Yuichi Ogino; Shigeru Saito; Norihiro Sadato; Norihiro Sadato

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that ro...

  18. Being in a Romantic Relationship Is Associated with Reduced Gray Matter Density in Striatum and Increased Subjective Happiness

    OpenAIRE

    Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Matsunaga, Masahiro; Tanabe, Hiroki C.; Ogino, Yuichi; Saito, Shigeru; Sadato, Norihiro

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that ro...

  19. Systolic left ventricular function according to left ventricular concentricity and dilatation in hypertensive patients

    DEFF Research Database (Denmark)

    Bang, Casper; Gerdts, Eva; Aurigemma, Gerard P

    2013-01-01

    Left ventricular hypertrophy [LVH, high left ventricular mass (LVM)] is traditionally classified as concentric or eccentric based on left ventricular relative wall thickness. We evaluated left ventricular systolic function in a new four-group LVH classification based on left ventricular dilatation...... [high left ventricular end-diastolic volume (EDV) index and concentricity (LVM/EDV)] in hypertensive patients....

  20. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.

    Science.gov (United States)

    Vaziri, Siavash; Connor, Charles E

    2016-03-21

    The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like stimuli to objects [2]. Individual neurons did not respond to a single shape class, but to a variety of scene elements that are typically aligned with gravity: large planes in the orientation range of ground surfaces under natural viewing conditions, planes in the orientation range of ceilings, and extended convex and concave edges in the orientation range of wall/floor/ceiling junctions. For a given neuron, these elements tended to share a common alignment in eye-centered coordinates. Thus, each neuron integrated information about multiple gravity-aligned structures as they would be seen from a specific eye and head orientation. This eclectic coding strategy provides only ambiguous information about individual structures but explicit information about the environmental reference frame and the orientation of gravity in egocentric coordinates. In the ventral pathway, this could support perceiving and/or predicting physical events involving objects subject to gravity, recognizing object attributes like animacy based on movement not caused by gravity, and/or stabilizing perception of the world against changes in head orientation [3-5]. Our results, like the recent discovery of object weight representation [6], imply that the ventral pathway is involved not just in recognition, but also in physical understanding of objects and scenes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder ofunderwater trauma

    Directory of Open Access Journals (Sweden)

    Gilad eRitov

    2014-01-01

    Full Text Available Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggest a pivotal role for the ventral hippocampus in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD. Such intrusive recollections are often triggered by reminders associated with the trauma.We examined the impact of exposure to a trauma reminder (under water trauma on the activation of the basolateral amygdala (BLA, dorsal and ventral hippocampus. Rats were exposed to underwater trauma and 24 hours later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the ventral hippocampus and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the ventral hippocampus sub-regions positively correlated with the activation of the BLA.Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the ventral hippocampus. Measured 24 hrs after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD.

  2. Expression and Function of Xmsx-2B in Dorso-Ventral Axis Formation in Gastrula Embryos.

    Science.gov (United States)

    Onitsuka, I; Takeda, M; Maéno, M

    2000-11-01

    Msx is a homeodomain-containing transcriptional factor that plays an essential role in pattern formation in vertebrata and invertebrata embryos. In Xenopus laevis, two msx genes have been identified (Xmsx-1 and Xmsx-2). In the present study, we attempted to elucidate the expression and function of Xmsx-2B (formerly designated as Xhox7.1') in early embryogenesis. Whole mount in situ hybridization analyses showed that the expression pattern of Xmsx-2B at gastrula and neurula stages was very similar to that of Xmsx-1: the transcript of Xmsx-2B was observed in ventral and lateral sides of the embryo. At the tailbud stage, however, the expression pattern of Xmsx-2B in neural tissues was distinct from that of Xmsx-1. An RNA injection experiment revealed that, like BMP-4, Xmsx-2B has a strong ventralizing activity. In the Xmsx-2B -injected embryos, differentiation of axial structures such as the notochord, muscle, and neural tissue was completely suppressed, whereas alpha-globin mRNA, a blood cell marker, was highly expressed. Simultaneous injection of Xmsx-1 and Xmsx-2B RNAs showed that they function in an additive manner. It was also shown that coinjection of Xmsx-2B with a dominant-negative BMP-4 receptor (tBR), which can induce formation of secondary axis when injected alone in ventral blastomeres, suppressed secondary axis formation. Furthermore, Xmsx-2B also suppressed secondary axis formation, which was induced by a dominant-negative form of Xmsx-1 (VP16/msx-1). Therefore, like Xmsx-1, Xmsx-2B is a downstream nuclear factor of the BMP-4-derived ventralizing signal, and these two factors probably share the same target molecules. In conclusion, Xmsx-1 and Xmsx-2B function in dorso-ventral axis formation in early Xenopus laevis development.

  3. Ventral Slit Scrotal Flap: A New Outpatient Surgical Option for Reconstruction of Adult Buried Penis Syndrome.

    Science.gov (United States)

    Westerman, Mary E; Tausch, Timothy J; Zhao, Lee C; Siegel, Jordan A; Starke, Nathan; Klein, Alexandra K; Morey, Allen F

    2015-06-01

    We present a novel technique using ventral slit with scrotal skin flaps (VSSF) for the reconstruction of adult buried penis without skin grafting. An initial ventral slit is made in the phimotic ring, and the penis is exposed. To cover the defect in the ventral shaft skin, local flaps are created by making a ventral midline scrotal incision with horizontal relaxing incisions. The scrotal flaps are rotated to resurface the ventral shaft. Clinical data analyzed included preoperative diagnoses, length of stay, blood loss, and operative outcomes. Complications were also recorded. Fifteen consecutive patients with a penis trapped due to lichen sclerosus (LS) or phimosis underwent repair with VSSF. Each was treated in the outpatient setting with no perioperative complications. Mean age was 51 years (range, 26-75 years), and mean body mass index was 42.6 kg/m(2) (range, 29.8-53.9 kg/m(2)). The majority of patients (13 of 15, 87%) had a pathologic diagnosis of LS. Mean estimated blood loss was 57 cc (range, 25-200 cc), mean operative time was 83 minutes (range, 35-145 minutes), and all patients were discharged on the day of surgery. The majority of patients (11 of 15, 73.3%) remain satisfied with their results and have required no further intervention. Recurrences in 3 of 15 (20.0%) were due to LS, panniculus migration, and concealment by edematous groin tissue; 2 of these patients underwent subsequent successful skin grafting. VSSF is a versatile, safe, and effective reconstructive option in appropriately selected patients with buried penis, which enables reconstruction of penile shaft skin defects without requiring complex skin grafting. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Genetic Analysis of Hedgehog Signaling in Ventral Body Wall Development and the Onset of Omphalocele Formation

    Science.gov (United States)

    Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen

    2011-01-01

    Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes. PMID:21283718

  5. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation.

    Directory of Open Access Journals (Sweden)

    Daisuke Matsumaru

    2011-01-01

    Full Text Available An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear.To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh, GLI-Kruppel family member 3 (Gli3 and Aristaless-like homeobox 4 (Alx4. Introduction of additional Alx4(Lst mutations into the Gli3(Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3(Xt/+; Alx4(Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3(Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles.We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes.

  6. The usefulness of fractional anisotropy maps in localization of lacunar infractions in striatum, internal capsule and thalamus

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.K.; Lee, S.K.; Kim, D.I. [Dept. of Radiology and Research, Yonsei University Coll. of Medicine, Seoul (Korea); JHeo, J.H. [Dept. of Neurology, Yonsei University Coll. of Medicine, Seoul (Korea)

    2005-04-01

    We aimed in this study to assess the clinical usefulness of fractional anisotropy (FA) maps in the evaluation of lacunar infractions in striatum, internal capsule and thalamus. We retrospectively reviewed 28 patients (18 mean, 10 women; mean age 63 years) who had acute lacunar infraction in striatum, internal capsule and thalamus on diffusion weighted MR imaging (DWI). Fractional anisotropy (FA) maps were generated in addition to conventional T2 weigthed images (T2WI) and trace masp of DWI. Two radiologists reviewed the location of infraction was determined by FA maps. i.e. on the white band of internal capsule. Accuracy and inter-observer agreement on determination of the location of interfraction was evaluated. Accuracy of infract localization by T2WI-DWI only was varied from 72 to 91% according to the observers. Inter-observer agreement value was moderate (Kappa=0.446), when images were interpreted by T2WI-DWI only. Clinical manifestation of each lesions wre varied, but sensory motor stroke was mainly observed in thalamic lesion (50%) while pure motor hemiparesis was predominant in the case of infract involving internal capsule, corona radiata (91%) and basal ganglia (83%). The FA maps is useful in the evaluation of lacunar lesions in striatum, internal capsule and thalamus. Clinical presentation varies according to the exact location of lacunar infractions, and more accurate diagnosis can be made by FA maps as well as conventional T2-weighted image and DWI.

  7. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Directory of Open Access Journals (Sweden)

    Monica S Guzman

    2011-11-01

    Full Text Available Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

  8. Altered dopaminergic regulation of the dorsal striatum is able to induce tic-like movements in juvenile rats

    Science.gov (United States)

    Rizzo, Francesca; Boeckers, Tobias; Schulze, Ulrike

    2018-01-01

    Motor tics are sudden, repetitive, involuntary movements representing the hallmark behaviors of the neurodevelopmental disease Tourette’s syndrome (TS). The primary cause of TS remains unclear. The initial observation that dopaminergic antagonists alleviate tics led to the development of a dopaminergic theory of TS etiology which is supported by post mortem and in vivo studies indicating that non-physiological activation of the striatum could generate tics. The striatum controls movement execution through the balanced activity of dopamine receptor D1 and D2-expressing medium spiny neurons of the direct and indirect pathway, respectively. Different neurotransmitters can activate or repress striatal activity and among them, dopamine plays a major role. In this study we introduced a chronic dopaminergic alteration in juvenile rats, in order to modify the delicate balance between direct and indirect pathway. This manipulation was done in the dorsal striatum, that had been associated with tic-like movements generation in animal models. The results were movements resembling tics, which were categorized and scored according to a newly developed rating scale and were reduced by clonidine and riluzole treatment. Finally, post mortem analyses revealed altered RNA expression of dopaminergic receptors D1 and D2, suggesting an imbalanced dopaminergic regulation of medium spiny neuron activity as being causally related to the observed phenotype. PMID:29698507

  9. Lentivirus-mediated delivery of sonic hedgehog into the striatum stimulates neuroregeneration in a rat model of Parkinson disease.

    Science.gov (United States)

    Zhang, Yi; Dong, Weiren; Guo, Suiqun; Zhao, Shu; He, Suifen; Zhang, Lihua; Tang, Yinjuan; Wang, Haihong

    2014-12-01

    Parkinson disease (PD) is a progressive neurodegenerative disorder in which the nigrostriatal pathway, consisting of dopaminergic neuronal projections from the substantia nigra to the striatum, degenerates. Viral transduction is currently the most promising in vivo strategy for delivery of therapeutic proteins into the brain for treatment of PD. Sonic hedgehog (Shh) is necessary for cell proliferation, differentiation and neuroprotection in the central nervous system. In this study, we investigated the effects of overexpressed N-terminal product of SHH (SHH-N) in a PD model rat. A lentiviral vector containing SHH-N was stereotactically injected into the striatum 24 h after a striatal 6-OHDA lesion. We found that overexpressed SHH-N attenuated behavioral deficits and reduced the loss of dopamine neurons in the substantia nigra and the loss of dopamine fibers in the striatum. In addition, fluoro-ruby-labeled nigrostriatal projections were also repaired. Together, our results demonstrate the feasibility and efficacy of using the strategy of lentivirus-mediated Shh-N delivery to delay nigrostriatal pathway degeneration. This strategy holds the potential for therapeutic application in the treatment of PD.

  10. ''Natural'' left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Pati, J.C.

    1975-01-01

    It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed

  11. A fundamental study on accumulation of [125I]IBZM in the rat striatum and on effect of non-labeled ligand

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyoshi; Nakamura, Toshihiko; Satou, Motohiro; Takeda, Tohoru; Wu, Jin; Motoji, Naomi; Shigematsu, Akiyo.

    1995-01-01

    Iodo-125-labeled iodobenzamide ([ 125 I]IBZM) is used as a specific binding radioligand to dopamine D 2 receptors with high affinity and selectivity. The radioligand was homogeneously distributed in the whole brain initially after anministration, and rapidly washed out from the dopamine receptor-poor area followed by persistent retention in the striatum. Regression curve generated from striatum/cortex PSL ratio indicated the constant washout rate from striatum and cortex respectively. In the pretreated rat by cold benzamide (2 mg/kg), the accumulation of the radioligand was significantly suppressed in the striatum (48.8%). Iodine-125-labeled iodo-benzamide has the promise for investigation of dopamine D 2 receptors in the living brain. (author)

  12. Viral Vector Mediated Over-Expression of Estrogen Receptor–α in Striatum Enhances the Estradiol-induced Motor Activity in Female Rats and Estradiol Modulated GABA Release

    Science.gov (United States)

    Schultz, Kristin N.; von Esenwein, Silke A.; Hu, Ming; Bennett, Amy L.; Kennedy, Robert T.; Musatov, Sergei; Toran-Allerand, C. Dominique; Kaplitt, Michael G.; Young, Larry J.; Becker, Jill B.

    2009-01-01

    Classical estrogen receptor signaling mechanisms involve estradiol binding to intracellular nuclear receptors (estrogen receptor-α (ERα) and estrogen receptor-β (ERβ)) to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K+- evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERα located on the membrane of medium spiny GABAergic neurons. This experiment examined whether over-expression of ERα in the striatum would enhance the effect of estradiol on rotational behavior and the K+- evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERα cDNA (AAV.ERα) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERα in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared to controls and exhibited behavioral sensitization of contralateral rotations induced by a low dose of amphetamine. ERα over-expression also enhanced the inhibitory effect of estradiol on K+- evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior. PMID:19211896

  13. Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release.

    Science.gov (United States)

    Schultz, Kristin N; von Esenwein, Silke A; Hu, Ming; Bennett, Amy L; Kennedy, Robert T; Musatov, Sergei; Toran-Allerand, C Dominique; Kaplitt, Michael G; Young, Larry J; Becker, Jill B

    2009-02-11

    Classical estrogen receptor-signaling mechanisms involve estradiol binding to intracellular nuclear receptors [estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta)] to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K(+)-evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERalpha located on the membrane of medium spiny GABAergic neurons. This experiment examined whether overexpression of ERalpha in the striatum would enhance the effect of estradiol on rotational behavior and the K(+)-evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERalpha cDNA (AAV.ERalpha) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERalpha in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared with controls and exhibited behavioral sensitization of contralateral rotations induced by a low-dose of amphetamine. ERalpha overexpression also enhanced the inhibitory effect of estradiol on K(+)-evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior.

  14. L-Tyrosine availability affects basal and stimulated catecholamine indices in prefrontal cortex and striatum of the rat.

    Science.gov (United States)

    Brodnik, Zachary D; Double, Manda; España, Rodrigo A; Jaskiw, George E

    2017-09-01

    We previously found that L-tyrosine (L-TYR) but not D-TYR administered by reverse dialysis elevated catecholamine synthesis in vivo in medial prefrontal cortex (MPFC) and striatum of the rat (Brodnik et al., 2012). We now report L-TYR effects on extracellular levels of catecholamines and their metabolites. In MPFC, reverse dialysis of L-TYR elevated in vivo levels of dihydroxyphenylacetic acid (DOPAC) (L-TYR 250-1000 μM), homovanillic acid (HVA) (L-TYR 1000 μM) and 3-methoxy-4-hydroxyphenylglycol (MHPG) (L-TYR 500-1000 μM). In striatum L-TYR 250 μM elevated DOPAC. We also examined L-TYR effects on extracellular dopamine (DA) and norepinephrine (NE) levels during two 30 min pulses (P2 and P1) of K+ (37.5 mM) separated by t = 2.0 h. L-TYR significantly elevated the ratio P2/P1 for DA (L-TYR 125 μM) and NE (L-TYR 125-250 μM) in MPFC but lowered P2/P1 for DA (L-TYR 250 μM) in striatum. Finally, we measured DA levels in brain slices using ex-vivo voltammetry. Perfusion with L-TYR (12.5-50 μM) dose-dependently elevated stimulated DA levels in striatum. In all the above studies, D-TYR had no effect. We conclude that acute increases within the physiological range of L-TYR levels can increase catecholamine metabolism and efflux in MPFC and striatum. Chronically, such repeated increases in L-TYR availability could induce adaptive changes in catecholamine transmission while amplifying the metabolic cost of catecholamine synthesis and degradation. This has implications for neuropsychiatric conditions in which neurotoxicity and/or disordered L-TYR transport have been implicated. Published by Elsevier Ltd.

  15. Effects of electroacupuncture on metabolic changes in motor cortex and striatum of 6-hydroxydopamine-induced Parkinsonian rats.

    Science.gov (United States)

    Li, Min; Wang, Ke; Su, Wen-Ting; Jia, Jun; Wang, Xiao-Min

    2017-10-06

    To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.

  16. Left ventricular filling under elevated left atrial pressure

    Science.gov (United States)

    Gaddam, Manikantam; Samaee, Milad; Santhanakrishnan, Arvind

    2017-11-01

    Left atrial pressure (LAP) is elevated in diastolic dysfunction, where left ventricular (LV) filling is impaired due to increase in ventricular stiffness. The impact of increasing LAP and LV stiffness on intraventricular filling hemodynamics remains unclear. We conducted particle image velocimetry and hemodynamics measurements in a left heart simulator (LHS) under increasing LAP and LV stiffness at a heart rate of 70 bpm. The LHS consisted of a flexible-walled LV physical model fitted within a fluid-filled chamber. LV wall motion was generated by a piston pump that imparted pressure fluctuations in the chamber. Resistance and compliance elements in the flow loop were adjusted to obtain bulk physiological hemodynamics in the least stiff LV model. Two LV models of increasing stiffness were subsequently tested under unchanged loop settings. LAP was varied between 5-20 mm Hg for each LV model, by adjusting fluid level in a reservoir upstream of the LV. For constant LV stiffness, increasing LAP lowered cardiac output (CO), while ejection fraction (EF) and E/A ratio were increased. For constant LAP, increasing LV stiffness lowered CO and EF, and increased E/A ratio. The implications of these altered hemodynamics on intraventricular filling vortex characteristics will be presented.

  17. Structural changes in left fusiform areas and associated fiber connections in children with abacus training: Evidence from morphometry and tractography

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-07-01

    Full Text Available Evidence supports the notion that the fusiform gyrus (FG, as an integral part of the ventral occipitotemporal junction, is involved widely in cognitive processes as perceiving faces, objects, places or words, and this region also might represent the visual form of an abacus in the abacus-based mental calculation process. The current study uses a combined voxel-based morphometry (VBM and diffusion tensor imaging (DTI analysis to test whether long-term abacus training could induce structural changes in the left FG and in the white matter (WM tracts distribution connecting with this region in school children. We found that, abacus-trained children exhibited significant smaller grey matter (GM volume than controls in the left FG. And the connectivity mapping identified left forceps major as a key pathway connecting left FG with other brain areas in the trained group, but not in the controls. Furthermore, mean fractional anisotropy (FA values within left forceps major were significantly increased in the trained group. Interestingly, a significant negative correlation was found in the trained group between the GM volume in left FG and the mean FA value in left forceps major, suggesting an inverse effect of the reported GM and WM structural changes. In the control group, a positive correlation between left FG GM volume and tract FA was found as well. This analysis visualized the group level differences in GM volume, FA and fiber tract between the abacus-trained children and the controls, and provided the first evidence that GM volume change in the left FG is intimately linked with the micro-structural properties of the left forceps major tracts. The present results demonstrate the structural changes in the left FG from the intracortical GM to the subcortical WM regions and provide insights into the neural mechanism of structural plasticity induced by abacus training.

  18. Glucocorticoid enhancement of dorsolateral striatum-dependent habit memory requires concurrent noradrenergic activity.

    Science.gov (United States)

    Goodman, J; Leong, K-C; Packard, M G

    2015-12-17

    Previous findings indicate that post-training administration of glucocorticoid stress hormones can interact with the noradrenergic system to enhance consolidation of hippocampus- or amygdala-dependent cognitive/emotional memory. The present experiments were designed to extend these findings by examining the potential interaction of glucocorticoid and noradrenergic mechanisms in enhancement of dorsolateral striatum (DLS)-dependent habit memory. In experiment 1, different groups of adult male Long-Evans rats received training in two DLS-dependent memory tasks. In a cued water maze task, rats were released from various start points and were reinforced to approach a visibly cued escape platform. In a response-learning version of the water plus-maze task, animals were released from opposite starting positions and were reinforced to make a consistent egocentric body-turn to reach a hidden escape platform. Immediately post-training, rats received peripheral injections of the glucocorticoid corticosterone (1 or 3 mg/kg) or vehicle solution. In both tasks, corticosterone (3 mg/kg) enhanced DLS-dependent habit memory. In experiment 2, a separate group of animals received training in the response learning version of the water plus-maze task and were given peripheral post-training injections of corticosterone (3 mg/kg), the β-adrenoreceptor antagonist propranolol (3 mg/kg), corticosterone and propranolol concurrently, or control vehicle solution. Corticosterone injections again enhanced DLS-dependent memory, and this effect was blocked by concurrent administration of propranolol. Propranolol administration by itself (3 mg/kg) did not influence DLS-dependent memory. Taken together, the findings indicate an interaction between glucocorticoid and noradrenergic mechanisms in DLS-dependent habit memory. Propranolol administration may be useful in treating stress-related human psychopathologies associated with a dysfunctional DLS-dependent habit memory system. Copyright © 2015

  19. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  20. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  1. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum.

    Science.gov (United States)

    Goodman, Jarid; Ressler, Reed L; Packard, Mark G

    2017-06-03

    The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Biomimetic collagen/elastin meshes for ventral hernia repair in a rat model.

    Science.gov (United States)

    Minardi, Silvia; Taraballi, Francesca; Wang, Xin; Cabrera, Fernando J; Van Eps, Jeffrey L; Robbins, Andrew B; Sandri, Monica; Moreno, Michael R; Weiner, Bradley K; Tasciotti, Ennio

    2017-03-01

    Ventral hernia repair remains a major clinical need. Herein, we formulated a type I collagen/elastin crosslinked blend (CollE) for the fabrication of biomimetic meshes for ventral hernia repair. To evaluate the effect of architecture on the performance of the implants, CollE was formulated both as flat sheets (CollE Sheets) and porous scaffolds (CollE Scaffolds). The morphology, hydrophylicity and in vitro degradation were assessed by SEM, water contact angle and differential scanning calorimetry, respectively. The stiffness of the meshes was determined using a constant stretch rate uniaxial tensile test, and compared to that of native tissue. CollE Sheets and Scaffolds were tested in vitro with human bone marrow-derived mesenchymal stem cells (h-BM-MSC), and finally implanted in a rat ventral hernia model. Neovascularization and tissue regeneration within the implants was evaluated at 6weeks, by histology, immunofluorescence, and q-PCR. It was found that CollE Sheets and Scaffolds were not only biomechanically sturdy enough to provide immediate repair of the hernia defect, but also promoted tissue restoration in only 6weeks. In fact, the presence of elastin enhanced the neovascularization in both sheets and scaffolds. Overall, CollE Scaffolds displayed mechanical properties more closely resembling those of native tissue, and induced higher gene expression of the entire marker genes tested, associated with de novo matrix deposition, angiogenesis, adipogenesis and skeletal muscles, compared to CollE Sheets. Altogether, this data suggests that the improved mechanical properties and bioactivity of CollE Sheets and Scaffolds make them valuable candidates for applications of ventral hernia repair. Due to the elevated annual number of ventral hernia repair in the US, the lack of successful grafts, the design of innovative biomimetic meshes has become a prime focus in tissue engineering, to promote the repair of the abdominal wall, avoid recurrence. Our meshes (Coll

  3. Left Activism, Succour and Selfhood

    DEFF Research Database (Denmark)

    Hughes, Celia Penelope

    2014-01-01

    At the height of mass activity on the Left, the ascendancy of the women's liberation movement (WLM), and the beginnings of real social and personal change for men and women, the 1970s are increasingly seen as the decade when sixties permissiveness began to be truly felt in Britain. This article...... draws upon a personal archive of correspondence from this turbulent decade, between two revolutionary women, Di Parkin and Annie Howells. It argues that the women's letters form an important contribution to new understandings about the construction of the post-war gendered self. The letters represent...... an interchange of motherhood, domesticity, far-left politics, and close female friendship. The article will show how the women's epistolary friendship offers intimate insight into female self-fashioning at a breakthrough social and political moment in 1970s Britain. As they reflected on some of the key political...

  4. Time left in the mouse.

    Science.gov (United States)

    Cordes, Sara; King, Adam Philip; Gallistel, C R

    2007-02-22

    Evidence suggests that the online combination of non-verbal magnitudes (durations, numerosities) is central to learning in both human and non-human animals [Gallistel, C.R., 1990. The Organization of Learning. MIT Press, Cambridge, MA]. The molecular basis of these computations, however, is an open question at this point. The current study provides the first direct test of temporal subtraction in a species in which the genetic code is available. In two experiments, mice were run in an adaptation of Gibbon and Church's [Gibbon, J., Church, R.M., 1981. Time left: linear versus logarithmic subjective time. J. Exp. Anal. Behav. 7, 87-107] time left paradigm in order to characterize typical responding in this task. Both experiments suggest that mice engaged in online subtraction of temporal values, although the generalization of a learned response rule to novel stimulus values resulted in slightly less systematic responding. Potential explanations for this pattern of results are discussed.

  5. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    Science.gov (United States)

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of

  6. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons

    DEFF Research Database (Denmark)

    Jensen, Pia; Ducray, A D; Widmer, H R

    2015-01-01

    shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10days......, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells....... to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which...

  7. Identification of dorsal root synaptic terminals on monkey ventral horn cells by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Ralston, H.J.; Ralston, D.D.

    1979-01-01

    The projection of dorsal root fibres to the motor nucleus of the macaque monkey spinal cord has been examined utilizing light and electron microscopic autoradiography. Light microscopy demonstrates a very sparse labelling of primary afferent fibres in the ventral horn. Silver grains overlying radioactive sources are frequently clustered into small groups, often adjacent to dendritic profiles. Under the electron microscope, myelinated axons and a few large synaptic profiles containing rounded synaptic vesicles were overlain by numerous silver grains. These labelled profiles made synaptic contact with dendrites 1 - 3 micrometers in diameter. The labelled profiles did not contact cell bodies or large proximal dendrites of ventral horn neutrons. Frequently, small synaptic profiles containing flattened vesicles were presynaptic to the large labelled terminals and it is suggested that these axoaxonal synapses may mediate presynaptic inhibition of the primary afferent fibres. The relationship of the present findings to previously published physiological and anatomical studies is discussed. (author)

  8. The clinical effects of closure of the hernia gap after laparoscopic ventral hernia repair:

    DEFF Research Database (Denmark)

    Christoffersen, Mette W; Westen, Mikkel; Assadzadeh, Sami

    2014-01-01

    randomised controlled trials. The primary purpose of this paper is to compare early post-operative activity-related pain in patients undergoing laparoscopic ventral hernia repair with closure of the gap with patients undergoing standard laparoscopic ventral hernia repair (non-closure of the gap). Secondary...... outcomes are patient-rated cosmesis and hernia-specific quality of life. METHODS: A randomised, controlled, double-blinded study is planned. Based on power calculation, we will include 40 patients in each arm. Patients undergoing elective laparoscopic umbilical, epigastric or umbilical trocar-site hernia...... repair at Hvidovre Hospital and Herlev Hospital, Denmark, are invited to participate. CONCLUSION: The gap closure technique may induce more post-operative pain than the non-closure repair, but it may also be superior with regard to other important surgical outcomes. No studies have previously...

  9. Novel insights into the interplay between ventral neck muscles in individuals with whiplash-associated disorders

    Science.gov (United States)

    Peterson, Gunnel; Nilsson, David; Trygg, Johan; Falla, Deborah; Dedering, Åsa; Wallman, Thorne; Peolsson, Anneli

    2015-01-01

    Chronic whiplash-associated disorder (WAD) is common after whiplash injury, with considerable personal, social, and economic burden. Despite decades of research, factors responsible for continuing pain and disability are largely unknown, and diagnostic tools are lacking. Here, we report a novel model of mechanical ventral neck muscle function recorded from non-invasive, real-time, ultrasound measurements. We calculated the deformation area and deformation rate in 23 individuals with persistent WAD and compared them to 23 sex- and age-matched controls. Multivariate statistics were used to analyse interactions between ventral neck muscles, revealing different interplay between muscles in individuals with WAD and healthy controls. Although the cause and effect relation cannot be established from this data, for the first time, we reveal a novel method capable of detecting different neck muscle interplay in people with WAD. This non-invasive method stands to make a major breakthrough in the assessment and diagnosis of people following a whiplash trauma. PMID:26472599

  10. Mucoceles en Cara Ventral de Lengua: Reporte de 6 casos y manejo quirúrgico

    OpenAIRE

    Del Valle, Sol C.

    2002-01-01

    El "Mucocele" como todos sabemos es un término clínico que corresponde histopatológicamente a un fenómeno de retención o extravasación de moco, causado por obstrucción o ruptura del ducto de una glándula salival menor. La localización más frecuente es la mucosa del labio inferior seguida de mucosa bucal, paladar, y pocas veces en cara ventral de lengua. (1-2) Se estudiaron 6 pacientes con diagnóstico clínico de mucocele en cara ventral de lengua que acudieron el Servicio de Patología Clínica ...

  11. Dorsal free graft urethroplasty for urethral stricture by ventral sagittal urethrotomy approach.

    Science.gov (United States)

    Asopa, H S; Garg, M; Singhal, G G; Singh, L; Asopa, J; Nischal, A

    2001-11-01

    To explore the feasibility of applying a dorsal free graft to treat urethral stricture by the ventral sagittal urethrotomy approach without mobilizing the urethra. Twelve patients with long or multiple strictures of the anterior urethra were treated by a dorsal free full-thickness preputial or buccal mucosa graft. The urethra was not separated from the corporal bodies and was opened in the midline over the stricture. The floor of the urethra was incised, and an elliptical raw area was created over the tunica on which a free full-thickness graft of preputial or buccal mucosa was secured. The urethra was retubularized in one stage. After a follow-up of 8 to 40 months, one recurrence developed and required dilation. The ventral sagittal urethrotomy approach for dorsal free graft urethroplasty is not only feasible and successful, but is easy to perform.

  12. Blindness alters the microstructure of the ventral but not the dorsal visual stream

    DEFF Research Database (Denmark)

    Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R

    2016-01-01

    Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher...... pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal......-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal an