WorldWideScience

Sample records for left ventral striatum

  1. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  2. Lateralization and gender differences in the dopaminergic response to unpredictable reward in the human ventral striatum.

    Science.gov (United States)

    Martin-Soelch, Chantal; Szczepanik, Joanna; Nugent, Allison; Barhaghi, Krystle; Rallis, Denise; Herscovitch, Peter; Carson, Richard E; Drevets, Wayne C

    2011-05-01

    Electrophysiological studies have shown that mesostriatal dopamine (DA) neurons increase activity in response to unpredicted rewards. With respect to other functions of the mesostriatal dopaminergic system, dopamine's actions show prominent laterality effects. Whether changes in DA transmission elicited by rewards also are lateralized, however, has not been investigated. Using [¹¹C]raclopride-PET to assess the striatal DA response to unpredictable monetary rewards, we hypothesized that such rewards would induce an asymmetric reduction in [¹¹C]raclopride binding in the ventral striatum, reflecting lateralization of endogenous dopamine release. In 24 healthy volunteers, differences in the regional D₂/₃ receptor binding potential (ΔBP) between an unpredictable reward condition and a sensorimotor control condition were measured using the bolus-plus-constant-infusion [¹¹C]raclopride method. During the reward condition subjects randomly received monetary awards while performing a 'slot-machine' task. The ΔBP between conditions was assessed in striatal regions-of-interest and compared between left and right sides. We found a significant condition × lateralization interaction in the ventral striatum. A significant reduction in binding potential (BP(ND) ) in the reward condition vs. the control condition was found only in the right ventral striatum, and the ΔBP was greater in the right than the left ventral striatum. Unexpectedly, these laterality effects appeared to be partly accounted for by gender differences, as our data showed a significant bilateral BP(ND) reduction in women while in men the reduction reached significance only in the right ventral striatum. These data suggest that DA release in response to unpredictable reward is lateralized in the human ventral striatum, particularly in males. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Opposing Amygdala and Ventral Striatum Connectivity during Emotion Identification

    Science.gov (United States)

    Satterthwaite, Theodore D.; Wolf, Daniel H.; Pinkham, Amy E.; Ruparel, Kosha; Elliott, Mark A.; Valdez, Jeffrey N.; Overton, Eve; Seubert, Janina; Gur, Raquel E.; Gur, Ruben C.; Loughead, James

    2011-01-01

    Lesion and electrophysiological studies in animals provide evidence of opposing functions for subcortical nuclei such as the amygdala and ventral striatum, but the implications of these findings for emotion identification in humans remain poorly described. Here we report a high-resolution fMRI study in a sample of 39 healthy subjects who performed…

  4. Aversive Counterconditioning Attenuates Reward Signaling in the Ventral Striatum.

    Science.gov (United States)

    Kaag, Anne Marije; Schluter, Renée S; Karel, Peter; Homberg, Judith; van den Brink, Wim; Reneman, Liesbeth; van Wingen, Guido A

    2016-01-01

    Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient reward such as food and drugs. We investigate whether aversive counterconditioning can alter reward reinstatement in the ventral striatum in healthy volunteers using functional magnetic resonance imaging (fMRI). In the initial conditioning phase, two different stimuli were reinforced with a monetary reward. In the subsequent counterconditioning phase, one of these stimuli was paired with an aversive shock to the wrist. In the following extinction phase, none of the stimuli were reinforced. In the final reinstatement phase, reward was reinstated by informing the participants that the monetary gain could be doubled. Our fMRI data revealed that reward signaling in the ventral striatum and ventral tegmental area following reinstatement was smaller for the stimulus that was counterconditioned with an electrical shock, compared to the non-counterconditioned stimulus. A functional connectivity analysis showed that aversive counterconditioning strengthened striatal connectivity with the hippocampus and insula. These results suggest that reward signaling in the ventral striatum can be attenuated through aversive counterconditioning, possibly by concurrent retrieval of the aversive association through enhanced connectivity with hippocampus and insula.

  5. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    International Nuclear Information System (INIS)

    Kienast, Thorsten; Rapp, Michael; Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias; Wrase, Jana; Heinz, Andreas; Braus, Dieter F.; Smolka, Michael N.; Mann, Karl; Roesch, Frank; Cumming, Paul; Gruender, Gerhard; Bartenstein, Peter

    2008-01-01

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [ 18 F]DOPA for measurements of dopamine synthesis capacity and [ 18 F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [ 18 F]DOPA net influx constant K in app /[ 18 F]DMFP-binding potential (BP N D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  6. Art for reward's sake: visual art recruits the ventral striatum.

    Science.gov (United States)

    Lacey, Simon; Hagtvedt, Henrik; Patrick, Vanessa M; Anderson, Amy; Stilla, Randall; Deshpande, Gopikrishna; Hu, Xiaoping; Sato, João R; Reddy, Srinivas; Sathian, K

    2011-03-01

    A recent study showed that people evaluate products more positively when they are physically associated with art images than similar non-art images. Neuroimaging studies of visual art have investigated artistic style and esthetic preference but not brain responses attributable specifically to the artistic status of images. Here we tested the hypothesis that the artistic status of images engages reward circuitry, using event-related functional magnetic resonance imaging (fMRI) during viewing of art and non-art images matched for content. Subjects made animacy judgments in response to each image. Relative to non-art images, art images activated, on both subject- and item-wise analyses, reward-related regions: the ventral striatum, hypothalamus and orbitofrontal cortex. Neither response times nor ratings of familiarity or esthetic preference for art images correlated significantly with activity that was selective for art images, suggesting that these variables were not responsible for the art-selective activations. Investigation of effective connectivity, using time-varying, wavelet-based, correlation-purged Granger causality analyses, further showed that the ventral striatum was driven by visual cortical regions when viewing art images but not non-art images, and was not driven by regions that correlated with esthetic preference for either art or non-art images. These findings are consistent with our hypothesis, leading us to propose that the appeal of visual art involves activation of reward circuitry based on artistic status alone and independently of its hedonic value. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Ventral striatum activity when watching preferred pornographic pictures is correlated with symptoms of Internet pornography addiction.

    Science.gov (United States)

    Brand, Matthias; Snagowski, Jan; Laier, Christian; Maderwald, Stefan

    2016-04-01

    One type of Internet addiction is excessive pornography consumption, also referred to as cybersex or Internet pornography addiction. Neuroimaging studies found ventral striatum activity when participants watched explicit sexual stimuli compared to non-explicit sexual/erotic material. We now hypothesized that the ventral striatum should respond to preferred pornographic compared to non-preferred pornographic pictures and that the ventral striatum activity in this contrast should be correlated with subjective symptoms of Internet pornography addiction. We studied 19 heterosexual male participants with a picture paradigm including preferred and non-preferred pornographic materials. Subjects had to evaluate each picture with respect to arousal, unpleasantness, and closeness to ideal. Pictures from the preferred category were rated as more arousing, less unpleasant, and closer to ideal. Ventral striatum response was stronger for the preferred condition compared to non-preferred pictures. Ventral striatum activity in this contrast was correlated with the self-reported symptoms of Internet pornography addiction. The subjective symptom severity was also the only significant predictor in a regression analysis with ventral striatum response as dependent variable and subjective symptoms of Internet pornography addiction, general sexual excitability, hypersexual behavior, depression, interpersonal sensitivity, and sexual behavior in the last days as predictors. The results support the role for the ventral striatum in processing reward anticipation and gratification linked to subjectively preferred pornographic material. Mechanisms for reward anticipation in ventral striatum may contribute to a neural explanation of why individuals with certain preferences and sexual fantasies are at-risk for losing their control over Internet pornography consumption. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The dorsal striatum and ventral striatum play different roles in the programming of social behaviour: a tribute to Lex Cools.

    Science.gov (United States)

    van den Bos, Ruud

    2015-02-01

    Early work by Lex Cools suggested that the caudate nucleus (dorsal striatum) plays a role in programming social behaviour: enhanced activity in the caudate nucleus increased the extent to which ongoing behaviour is controlled by the individual's own behaviour (internal control) rather than by that of its partners (external control). Interestingly, later studies by others have indicated that the ventral striatum plays a role in external rather than internal control. Here, I discuss the role of these different striatal areas - and the emotional (ventral striatum) and cognitive control (dorsal striatum) system in which they are embedded - in the organization of social behaviour in the context of locus of control. Following on from this discussion, I will pay particular attention to individual differences in social behaviour (individuals with more internal or external control), focusing on the role of dopamine, serotonin and the effects of stress-related challenges in relation to their different position in a dominance hierarchy. I will subsequently allude to potential psychological and behavioural problems in the social domain following on from these differences in locus of control ['social obliviousness' (dorsal stratum) and 'social impulsivity' (ventral striatum)]. In doing so, I provide as a tribute a historical account of the early research by Lex Cools.

  9. Net influx of plasma 6-[18F]fluoro-L-DOPA (FDOPA) to the ventral striatum correlates with prefrontal processing of affective stimuli.

    Science.gov (United States)

    Siessmeier, Thomas; Kienast, Thorsten; Wrase, Jana; Larsen, Jennifer Lynne; Braus, Dieter F; Smolka, Michael N; Buchholz, Hans Georg; Schreckenberger, Mathias; Rösch, Frank; Cumming, Paul; Mann, Karl; Bartenstein, Peter; Heinz, Andreas

    2006-07-01

    Dopaminergic neurotransmission in the ventral and dorsal striatum interact with central processing of rewarding and reward-indicating stimuli, and may affect frontocortical-striatal-thalamic circuits regulating goal-directed behaviour. Thirteen healthy male volunteers were investigated with multimodal imaging, using the radioligand 6-[(18)F]fluoro-l-DOPA (FDOPA) for positron emission tomography (PET) measurements of dopamine synthesis capacity, and also functional magnetic resonance imaging (fMRI) in a cognitive activation paradigm. We calculated the correlation between FDOPA net blood-brain influx (; ml/g/min) in the ventral and associative dorsal striatum and BOLD signal changes elicited by standardized affectively positive, negative and neutral visual stimuli. The magnitude of in the ventral striatum was positively correlated with BOLD signal increases in the left anterior cingulate cortex and right insular operculum elicited by positive vs. neutral stimuli, but not negative vs. neutral stimuli. In the dorsal striatum, the magnitude of was positively correlated with processing of positive and negative stimuli in the left dorsolateral prefrontal cortex. These findings suggest that dopamine synthesis capacity in the ventral striatum correlates with the attentional processing of rewarding positive stimuli in the anterior cingulate cortex of healthy subjects. Dopaminergic neurotransmission in the associative dorsal striatum has been associated previously with habit learning. The observed correlation between dopamine synthesis capacity in the dorsal striatum and BOLD signal changes in the dorsolateral prefrontal cortex suggests dopaminergic modulation of processing of emotional stimuli in brain areas associated with motor planning and executive behaviour control.

  10. Hippocampal projections to the ventral striatum: from spatial memory to motivated behavior

    NARCIS (Netherlands)

    van der Meer, M.M.A; Ito, R.; Lansink, C.S.; Pennartz, C.M.A.; Derdikman, D.; Knierim, J.J.

    2014-01-01

    Multiple regions of the hippocampal formation project to the ventral striatum, a central node in brain circuits that subserve aspects of motivation. These projections emphasize information flow from the ventral (temporal) pole of the hippocampus and interact with converging projections and

  11. Ventromedial Prefrontal Cortex Damage Is Associated with Decreased Ventral Striatum Volume and Response to Reward.

    Science.gov (United States)

    Pujara, Maia S; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2016-05-04

    The ventral striatum and ventromedial prefrontal cortex (vmPFC) are two central nodes of the "reward circuit" of the brain. Human neuroimaging studies have demonstrated coincident activation and functional connectivity between these brain regions, and animal studies have demonstrated that the vmPFC modulates ventral striatum activity. However, there have been no comparable data in humans to address whether the vmPFC may be critical for the reward-related response properties of the ventral striatum. In this study, we used fMRI in five neurosurgical patients with focal vmPFC lesions to test the hypothesis that the vmPFC is necessary for enhancing ventral striatum responses to the anticipation of reward. In support of this hypothesis, we found that, compared with age- and gender-matched neurologically healthy subjects, the vmPFC-lesioned patients had reduced ventral striatal activity during the anticipation of reward. Furthermore, we observed that the vmPFC-lesioned patients had decreased volumes of the accumbens subregion of the ventral striatum. Together, these functional and structural neuroimaging data provide novel evidence for a critical role for the vmPFC in contributing to reward-related activity of the ventral striatum. These results offer new insight into the functional and structural interactions between key components of the brain circuitry underlying human affective function and decision-making. Maladaptive decision-making is a common problem across multiple mental health disorders. Developing new pathophysiologically based strategies for diagnosis and treatment thus requires a better understanding of the brain circuits responsible for adaptive decision-making and related psychological subprocesses (e.g., reward valuation, anticipation, and motivation). Animal studies provide evidence that these functions are mediated through direct interactions between two key nodes of a posited "reward circuit," the ventral striatum and the ventromedial prefrontal

  12. Ventral Striatum Functional Connectivity as a Predictor of Adolescent Depressive Disorder in a Longitudinal Community-Based Sample.

    Science.gov (United States)

    Pan, Pedro Mario; Sato, João R; Salum, Giovanni A; Rohde, Luis A; Gadelha, Ary; Zugman, Andre; Mari, Jair; Jackowski, Andrea; Picon, Felipe; Miguel, Eurípedes C; Pine, Daniel S; Leibenluft, Ellen; Bressan, Rodrigo A; Stringaris, Argyris

    2017-11-01

    Previous studies have implicated aberrant reward processing in the pathogenesis of adolescent depression. However, no study has used functional connectivity within a distributed reward network, assessed using resting-state functional MRI (fMRI), to predict the onset of depression in adolescents. This study used reward network-based functional connectivity at baseline to predict depressive disorder at follow-up in a community sample of adolescents. A total of 637 children 6-12 years old underwent resting-state fMRI. Discovery and replication analyses tested intrinsic functional connectivity (iFC) among nodes of a putative reward network. Logistic regression tested whether striatal node strength, a measure of reward-related iFC, predicted onset of a depressive disorder at 3-year follow-up. Further analyses investigated the specificity of this prediction. Increased left ventral striatum node strength predicted increased risk for future depressive disorder (odds ratio=1.54, 95% CI=1.09-2.18), even after excluding participants who had depressive disorders at baseline (odds ratio=1.52, 95% CI=1.05-2.20). Among 11 reward-network nodes, only the left ventral striatum significantly predicted depression. Striatal node strength did not predict other common adolescent psychopathology, such as anxiety, attention deficit hyperactivity disorder, and substance use. Aberrant ventral striatum functional connectivity specifically predicts future risk for depressive disorder. This finding further emphasizes the need to understand how brain reward networks contribute to youth depression.

  13. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Martín-Pérez, Cristina; Vilar-López, Raquel; Verdejo-Garcia, Antonio

    2017-05-01

    The food addiction model proposes that obesity overlaps with addiction in terms of neurobiological alterations in the striatum and related clinical manifestations (i.e., craving and persistence of unhealthy habits). Therefore, we aimed to examine the functional connectivity of the striatum in excess-weight versus normal-weight subjects and to determine the extent of the association between striatum connectivity and individual differences in food craving and changes in body mass index (BMI). Forty-two excess-weight participants (BMI > 25) and 39 normal-weight participants enrolled in the study. Functional connectivity in the ventral and dorsal striatum was indicated by seed-based analyses on resting-state data. Food craving was indicated with subjective ratings of visual cues of high-calorie food. Changes in BMI between baseline and 12 weeks follow-up were assessed in 28 excess-weight participants. Measures of connectivity in the ventral striatum and dorsal striatum were compared between groups and correlated with craving and BMI change. Participants with excess weight displayed increased functional connectivity between the ventral striatum and the medial prefrontal and parietal cortices and between the dorsal striatum and the somatosensory cortex. Dorsal striatum connectivity correlated with food craving and predicted BMI gains. Obesity is linked to alterations in the functional connectivity of dorsal striatal networks relevant to food craving and weight gain. These neural alterations are associated with habit learning and thus compatible with the food addiction model of obesity. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  15. Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder

    NARCIS (Netherlands)

    Holz, N.E.; Boecker-Schlier, R.; Buchmann, A.F.; Blomeyer, D.; Jennen-Steinmetz, C.; Baumeister, S.; Plichta, M.M.; Cattrell, A.; Schumann, G.; Esser, G.; Schmidt, M.; Buitelaar, J.K.; Meyer-Lindenberg, A.; Banaschewski, T.; Brandeis, D.; Laucht, M.

    2017-01-01

    Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At

  16. Interaction of Instrumental and Goal-Directed Learning Modulates Prediction Error Representations in the Ventral Striatum.

    Science.gov (United States)

    Guo, Rong; Böhmer, Wendelin; Hebart, Martin; Chien, Samson; Sommer, Tobias; Obermayer, Klaus; Gläscher, Jan

    2016-12-14

    Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning. Here we provide behavioral, computational, and neuroimaging results from a novel task in which stimulus-response and response-outcome associations are learned simultaneously but dominate behavior at different stages of the experiment. We found that prediction error representations in the ventral striatum depend on which type of learning dominates. Furthermore, the amygdala tracks the time-dependent weighting of stimulus-response versus response-outcome learning. Our findings suggest that the goal-directed and instrumental controllers dynamically engage the ventral striatum in representing prediction errors whenever one of them is dominating choice behavior. Converging evidence in human neuroimaging studies has shown that the reward prediction errors are correlated with activity in the ventral striatum. Our results demonstrate that this region is simultaneously correlated with a stimulus prediction error. Furthermore, the learning system that is currently dominating behavioral choice dynamically engages the ventral striatum for computing its prediction errors. This demonstrates that the prediction error representations are highly dynamic and influenced by various experimental context. This finding points to a general role of the ventral striatum in detecting expectancy violations and encoding error signals regardless of the specific nature of the reinforcer itself. Copyright © 2016 the authors 0270-6474/16/3612650-11$15.00/0.

  17. Craving behavioral intervention for internet gaming disorder: remediation of functional connectivity of the ventral striatum.

    Science.gov (United States)

    Zhang, Jin-Tao; Ma, Shan-Shan; Li, Chiang-Shan R; Liu, Lu; Xia, Cui-Cui; Lan, Jing; Wang, Ling-Jiao; Liu, Ben; Yao, Yuan-Wei; Fang, Xiao-Yi

    2018-01-01

    Psychobehavioral intervention is an effective treatment of Internet addiction, including Internet gaming disorder (IGD). However, the neural mechanisms underlying its efficacy remain unclear. Cortical-ventral striatum (VS) circuitry is a common target of psychobehavioral interventions in drug addiction, and cortical-VS dysfunction has been reported in IGD; hence, the primary aim of the study was to investigate how the VS circuitry responds to psychobehavioral interventions in IGD. In a cross-sectional study, we examined resting-state functional connectivity of the VS in 74 IGD subjects (IGDs) and 41 healthy controls (HCs). In a follow-up craving behavioral intervention (CBI) study, of the 74 IGD subjects, 20 IGD subjects received CBI (CBI+) and 16 IGD subjects did not (CBI-). All participants were scanned twice with similar time interval to assess the effects of CBI. IGD subjects showed greater resting-state functional connectivity of the VS to left inferior parietal lobule (lIPL), right inferior frontal gyrus and left middle frontal gyrus, in positive association with the severity of IGD. Moreover, compared with CBI-, CBI+ showed significantly greater decrease in VS-lIPL connectivity, along with amelioration in addiction severity following the intervention. These findings demonstrated that functional connectivity between VS and lIPL, each presumably mediating gaming craving and attentional bias, may be a potential biomarker of the efficacy of psychobehavioral intervention. These results also suggested that non-invasive techniques such as transcranial magnetic or direct current stimulation targeting the VS-IPL circuitry may be used in the treatment of Internet gaming disorders. © 2016 Society for the Study of Addiction.

  18. Enhanced default mode network connectivity with ventral striatum in subthreshold depression individuals.

    Science.gov (United States)

    Hwang, J W; Xin, S C; Ou, Y M; Zhang, W Y; Liang, Y L; Chen, J; Yang, X Q; Chen, X Y; Guo, T W; Yang, X J; Ma, W H; Li, J; Zhao, B C; Tu, Y; Kong, J

    2016-05-01

    Subthreshold depression (StD) is a highly prevalent condition associated with increased service utilization and social morbidity. Nevertheless, due to limitations in current diagnostic systems that set the boundary for major depressive disorder (MDD), very few brain imaging studies on the neurobiology of StD have been carried out, and its underlying neurobiological mechanism remains unclear. In recent years, accumulating evidence suggests that the disruption of the default mode network (DMN), a network involved in self-referential processing, affective cognition, and emotion regulation, is involved in major depressive disorder. Using independent component analysis, we investigated resting-state default mode network (DMN) functional connectivity (FC) changes in two cohorts of StD patients with different age ranges (young and middle-aged, n = 57) as well as matched controls (n = 79). We found significant FC increase between the DMN and ventral striatum (key region in the reward network), in both cohorts of StD patients in comparison with controls. In addition, we also found the FC between the DMN and ventral striatum was positively and significantly associated with scores on the Center for Epidemiologic Studies Depression Scale (CES-D), a measurement of depressive symptomatology. We speculate that this enhanced FC between the DMN and the ventral striatum may reflect a self-compensation to ameliorate the lowered reward function. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. T151. APATHY AND DIMINISHED EXPRESSION ARE NOT ASSOCIATED WITH VENTRAL OR DORSAL STRIATUM VOLUME IN SCHIZOPHRENIA

    Science.gov (United States)

    Burrer, Achim; Kirschner, Matthias; Seifritz, Erich; Stefan, Kaiser

    2018-01-01

    Abstract Background Negative symptoms are core features of schizophrenia and can be grouped into two domains. These are apathy including anhedonia, avolition and asocialty as well as diminished expression including blunted affect and alogia. A large body of research found that ventral striatal hypoactivation is linked to negative symptoms. In particular, it has been shown that this neural correlate is specific for apathy but not diminished expression. Here, we investigated whether this dissociation can also be found in ventral striatum volume. Methods We included brain structural T1 MRI data of 60 patients diagnosed with schizophrenia (SZ) and 58 healthy controls (HC). Negative symptoms in these groups have been assessed using the Brief Negative Symptom Scale (BNSS). We performed voxel-based morphometry (VBM) using the statistical parametric mapping package (SPM 12; Wellcome Trust Centre for Neuroimaging, London). We performed a region of interest (ROI) analysis of ventral and dorsal striatal volume between patients with schizophrenia and healthy controls. Furthermore, we analyzed the correlation of right and left ventral striatal volume with apathy and diminished expression in patients with schizophrenia. Moreover, we analyzed potential group differences in gray matter volume in an exploratory whole-brain analysis. Finally, we performed an exploratory whole-brain linear regression to identify potential correlations between the two negative symptom dimensions and gray matter volume. (cluster-defining threshold of p < 0.001, cluster-level pFWE < 0.05) Results Patients with schizophrenia showed no differences in ventral striatal volume compared to healthy controls. Apathy or diminished expression did not correlate with ventral or dorsal striatal gray matter volume in patients with schizophrenia. In the exploratory whole-brain analysis we found significant less gray matter volume in the right insula of schizophrenia patients compared to healthy controls (cluster

  20. Separate populations of neurons in ventral striatum encode value and motivation.

    Science.gov (United States)

    Bissonette, Gregory B; Burton, Amanda C; Gentry, Ronny N; Goldstein, Brandon L; Hearn, Taylor N; Barnett, Brian R; Kashtelyan, Vadim; Roesch, Matthew R

    2013-01-01

    Neurons in the ventral striatum (VS) fire to cues that predict differently valued rewards. It is unclear whether this activity represents the value associated with the expected reward or the level of motivation induced by reward anticipation. To distinguish between the two, we trained rats on a task in which we varied value independently from motivation by manipulating the size of the reward expected on correct trials and the threat of punishment expected upon errors. We found that separate populations of neurons in VS encode expected value and motivation.

  1. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Fowler J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi F.

    2012-03-23

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  2. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    International Nuclear Information System (INIS)

    Volkow, N.D.; Fowler, J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi, F.

    2012-01-01

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [ 11 C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([ 11 C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [ 11 C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  3. Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain.

    Science.gov (United States)

    Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S; Logan, Jean; Benveniste, Helene; Kim, Ron; Thanos, Panayotis K; Ferré, Sergi

    2012-05-09

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [(11)C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([(11)C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [(11)C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  4. Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.

    Science.gov (United States)

    Rothenhoefer, Kathryn M; Costa, Vincent D; Bartolo, Ramón; Vicario-Feliciano, Raquel; Murray, Elisabeth A; Averbeck, Bruno B

    2017-07-19

    Learning the values of actions versus stimuli may depend on separable neural circuits. In the current study, we evaluated the performance of rhesus macaques with ventral striatum (VS) lesions on a two-arm bandit task that had randomly interleaved blocks of stimulus-based and action-based reinforcement learning (RL). Compared with controls, monkeys with VS lesions had deficits in learning to select rewarding images but not rewarding actions. We used a RL model to quantify learning and choice consistency and found that, in stimulus-based RL, the VS lesion monkeys were more influenced by negative feedback and had lower choice consistency than controls. Using a Bayesian model to parse the groups' learning strategies, we also found that VS lesion monkeys defaulted to an action-based choice strategy. Therefore, the VS is involved specifically in learning the value of stimuli, not actions. SIGNIFICANCE STATEMENT Reinforcement learning models of the ventral striatum (VS) often assume that it maintains an estimate of state value. This suggests that it plays a general role in learning whether rewards are assigned based on a chosen action or stimulus. In the present experiment, we examined the effects of VS lesions on monkeys' ability to learn that choosing a particular action or stimulus was more likely to lead to reward. We found that VS lesions caused a specific deficit in the monkeys' ability to discriminate between images with different values, whereas their ability to discriminate between actions with different values remained intact. Our results therefore suggest that the VS plays a specific role in learning to select rewarded stimuli. Copyright © 2017 the authors 0270-6474/17/376902-13$15.00/0.

  5. Chemical anatomy of the human ventral striatum and adjacent basal forebrain structures.

    Science.gov (United States)

    Prensa, Lucía; Richard, Sandra; Parent, André

    2003-06-02

    Calbindin D-28k (CB), calretinin (CR), substance P (SP), limbic system-associated membrane protein (LAMP), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE) were used as chemical markers to investigate the organization of the ventral striatum (VST) and adjacent structures in healthy human individuals. No clear boundary could be established between the dorsal striatum and the VST, and the core/shell subdivisions of nucleus accumbens (Acb) could be distinguished only at the midrostrocaudal level of the VST. The CB-poor shell displayed intense immunostaining for SP and CR but only weak staining for LAMP. By contrast, the core was weakly stained for SP and CR and moderately stained for LAMP and CB. There was no difference between shell and core with regard to the cholinergic markers. The Acb harbored numerous ChAT- and CR-immunoreactive cell bodies, the latter being distributed according to a marked, mediolaterally increasing gradient. The size of the ChAT- and CR-immunoreactive perikarya in the Acb varied according to their location in the core and shell. The VST was surrounded by a chemically heterogeneous group of cell clusters referred to as interface islands. The CR-rich caudal portion of the VST merged with the bed nucleus of the stria terminalis dorsally and the diagonal band of Broca ventromedially, the latter two structures displaying complex immunostaining patterns. The claustrum was markedly enriched in LAMP and harbored different types of CR- and CB-immunopositive neurons. These results demonstrate that the neurochemical organization of the human VST is strikingly complex and exhibits a greater heterogeneity than the dorsal striatum. Copyright 2003 Wiley-Liss, Inc.

  6. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples

    NARCIS (Netherlands)

    Pennartz, C.M.A.; Lee, E.; Verheul, J.; Lipa, P.; Barnes, C.A.; Mc. Naughton, B.L.

    2004-01-01

    Previously it has been shown that the hippocampus and neocortex can spontaneously reactivate ensemble activity patterns during post-behavioral sleep and rest periods. Here we examined whether such reactivation also occurs in a subcortical structure, the ventral striatum, which receives a direct

  7. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people.

    Science.gov (United States)

    Myrick, Hugh; Anton, Raymond F; Li, Xingbao; Henderson, Scott; Randall, Patrick K; Voronin, Konstantin

    2008-04-01

    Medication for the treatment of alcoholism is currently not particularly robust. Neuroimaging techniques might predict which medications could be useful in the treatment of alcohol dependence. To explore the effect of naltrexone, ondansetron hydrochloride, or the combination of these medications on cue-induced craving and ventral striatum activation. Functional brain imaging was conducted during alcohol cue presentation. Participants were recruited from the general community following media advertisement. Experimental procedures were performed in the magnetic resonance imaging suite of a major training hospital and medical research institute. Ninety non-treatment-seeking alcohol-dependent (by DSM-IV criteria) and 17 social drinking (Self-ratings of alcohol craving. The combination treatment decreased craving for alcohol. Naltrexone with (P = .02) or without (P = .049) ondansetron decreased alcohol cue-induced activation of the ventral striatum. Ondansetron by itself was similar to naltrexone and the combination in the overall analysis but intermediate in a region-specific analysis. Consistent with animal data that suggest that both naltrexone and ondansetron reduce alcohol-stimulated dopamine output in the ventral striatum, the current study found evidence that these medications, alone or in combination, could decrease alcohol cue-induced activation of the ventral striatum, consistent with their putative treatment efficacy.

  8. Interest in politics modulates neural activity in the amygdala and ventral striatum.

    Science.gov (United States)

    Gozzi, Marta; Zamboni, Giovanna; Krueger, Frank; Grafman, Jordan

    2010-11-01

    Studies on political participation have found that a person's interest in politics contributes to the likelihood that he or she will be involved in the political process. Here, we looked at whether or not interest in politics affects patterns of brain activity when individuals think about political matters. Using functional magnetic resonance imaging (fMRI), we scanned individuals (either interested or uninterested in politics based on a self-report questionnaire) while they were expressing their agreement or disagreement with political opinions. After scanning, participants were asked to rate each political opinion presented in the scanner for emotional valence and emotional intensity. Behavioral results showed that those political opinions participants agreed with were perceived as more emotionally intense and more positive by individuals interested in politics relative to individuals uninterested in politics. In addition, individuals interested in politics showed greater activation in the amygdala and the ventral striatum (ventral putamen) relative to individuals uninterested in politics when reading political opinions in accordance with their own views. This study shows that having an interest in politics elicits activations in emotion- and reward-related brain areas even when simply agreeing with written political opinions. © 2010 Wiley-Liss, Inc.

  9. Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum

    DEFF Research Database (Denmark)

    Deserno, Lorenz; Beck, Anne; Huys, Quentin J. M.

    2015-01-01

    -drug-related stimuli towards drug-related stimuli. Such ‘hijacked’ dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs......Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non......) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N = 27). All participants also underwent 6-[18F]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation...

  10. Ventral striatum and amygdala activity as convergence sites for early adversity and conduct disorder.

    Science.gov (United States)

    Holz, Nathalie E; Boecker-Schlier, Regina; Buchmann, Arlette F; Blomeyer, Dorothea; Jennen-Steinmetz, Christine; Baumeister, Sarah; Plichta, Michael M; Cattrell, Anna; Schumann, Gunter; Esser, Günter; Schmidt, Martin; Buitelaar, Jan; Meyer-Lindenberg, Andreas; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred

    2017-02-01

    Childhood family adversity (CFA) increases the risk for conduct disorder (CD) and has been associated with alterations in regions of affective processing like ventral striatum (VS) and amygdala. However, no study so far has demonstrated neural converging effects of CFA and CD in the same sample. At age 25 years, functional MRI data during two affective tasks, i.e. a reward (N = 171) and a face-matching paradigm (N = 181) and anatomical scans (N = 181) were acquired in right-handed currently healthy participants of an epidemiological study followed since birth. CFA during childhood was determined using a standardized parent interview. Disruptive behaviors and CD diagnoses during childhood and adolescence were obtained by diagnostic interview (2-19 years), temperamental reward dependence was assessed by questionnaire (15 and 19 years).CFA predicted increased CD and amygdala volume. Both exposure to CFA and CD were associated with a decreased VS response during reward anticipation and blunted amygdala activity during face-matching. CD mediated the effect of CFA on brain activity. Temperamental reward dependence was negatively correlated with CFA and CD and positively with VS activity. These findings underline the detrimental effects of CFA on the offspring's affective processing and support the importance of early postnatal intervention programs aiming to reduce childhood adversity factors. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Yearning for connection? Loneliness is associated with increased ventral striatum activity to close others.

    Science.gov (United States)

    Inagaki, Tristen K; Muscatell, Keely A; Moieni, Mona; Dutcher, Janine M; Jevtic, Ivana; Irwin, Michael R; Eisenberger, Naomi I

    2016-07-01

    Loneliness is a distressing state indicating that one's basic need for social connection is not being met. In an effort to satisfy the need for social connection, loneliness may increase the processing of social cues and desire to connect with others. Yet the neural substrates that contribute to the drive for increased connection in response to loneliness are not known. The ventral striatum (VS), previously shown to increase in response to craving food and other rewarding stimuli, may contribute to "social craving" when one is lonely. That is, the VS may track one's 'hunger' for reconnection much as it tracks hunger for food. To examine this, participants reported on their feelings of loneliness before undergoing an fMRI scan where they viewed cues of potential social reconnection (images of a close other). Consistent with the hypothesis that loneliness stems from an unmet need for connection, loneliness was associated with reduced feelings of connection with the close other. Furthermore, greater reported loneliness was associated with increased VS activity to viewing a close other (vs stranger). Results extend the current literature by showing that lonely individuals show increased activity in reward-related regions to their closest loved ones, possibly reflecting an increased desire for social connection. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Aims Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls. Design Pathological Gamblers...... and Healthy Controlswere experimentally compared in a non-gambling (baseline) and gambling condition. Measurements We used Positron Emission Tomography (PET) with the tracer raclopride to measure dopamine D 2/3 receptor availability in the ventral striatum during a non-gambling and gambling condition...... of the Iowa GamblingTask (IGT). After each condition participants rated their excitement level. Setting Laboratory experiment. Participants 18 Pathological Gamblers and 16 Healthy Controls. Findings Pathological Gamblers with dopamine release in the ventral striatum had significantly higher excitement levels...

  13. Stress-related anhedonia is associated with ventral striatum reactivity to reward and transdiagnostic psychiatric symptomatology

    Science.gov (United States)

    Corral-Frías, Nadia S.; Nikolova, Yuliya S.; Michalski, Lindsay J.; Baranger, David A.A.; Hariri, Ahmad R.; Bogdan, Ryan

    2015-01-01

    Background Early life stress (ELS) is consistently associated with increased risk for subsequent psychopathology. Individual differences in neural response to reward may confer vulnerability to stress-related psychopathology. Using data from the ongoing Duke Neurogenetics Study, the present study examined whether reward-related ventral striatum (VS) reactivity moderates the relationship between retrospectively reported ELS and anhedonic symptomatology. We further assessed whether individual differences in reward-related VS reactivity were associated with other depressive symptoms and problematic alcohol use via stress-related anhedonic symptoms and substance use-associated coping. Method Blood oxygen level-dependent functional magnetic resonance imaging (fMRI) was collected while participants (n = 906) completed a card-guessing task, which robustly elicits VS reactivity. ELS, anhedonic symptoms, other depressive symptoms, coping behavior, and alcohol use behavior were assessed with self-report questionnaires. Linear regressions were run to examine whether VS reactivity moderated the relationship between ELS and anhedonic symptoms. Structural equation models examined whether this moderation was indirectly associated with other depression symptoms and problematic alcohol use through its association with anhedonia. Results Analyses of data from 820 participants passing quality control procedures revealed that the VS × ELS interaction was associated with anhedonic symptoms (p = 0.011). Moreover, structural equation models indirectly linked this interaction to non-anhedonic depression symptoms and problematic alcohol use through anhedonic symptoms and substance-related coping. Conclusions These findings suggest that reduced VS reactivity to reward is associated with increased risk for anhedonia in individuals exposed to ELS. Such stress-related anhedonia is further associated with other depressive symptoms and problematic alcohol use through substance-related coping

  14. A multivariate surface-based analysis of the putamen in premature newborns: regional differences within the ventral striatum.

    Directory of Open Access Journals (Sweden)

    Jie Shi

    Full Text Available Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity

  15. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

    Directory of Open Access Journals (Sweden)

    Lanuza Enrique

    2007-11-01

    Full Text Available Abstract Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae. The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. Conclusion The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse.

  16. Investigating the dynamics of the brain response to music: A central role of the ventral striatum/nucleus accumbens.

    Science.gov (United States)

    Mueller, Karsten; Fritz, Thomas; Mildner, Toralf; Richter, Maxi; Schulze, Katrin; Lepsien, Jöran; Schroeter, Matthias L; Möller, Harald E

    2015-08-01

    Ventral striatal activity has been previously shown to correspond well to reward value mediated by music. Here, we investigate the dynamic brain response to music and manipulated counterparts using functional magnetic resonance imaging (fMRI). Counterparts of musical excerpts were produced by either manipulating the consonance/dissonance of the musical fragments or playing them backwards (or both). Results show a greater involvement of the ventral striatum/nucleus accumbens both when contrasting listening to music that is perceived as pleasant and listening to a manipulated version perceived as unpleasant (backward dissonant), as well as in a parametric analysis for increasing pleasantness. Notably, both analyses yielded a ventral striatal response that was strongest during an early phase of stimulus presentation. A hippocampal response to the musical stimuli was also observed, and was largely mediated by processing differences between listening to forward and backward music. This hippocampal involvement was again strongest during the early response to the music. Auditory cortex activity was more strongly evoked by the original (pleasant) music compared to its manipulated counterparts, but did not display a similar decline of activation over time as subcortical activity. These findings rather suggest that the ventral striatal/nucleus accumbens response during music listening is strongest in the first seconds and then declines. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Reading without the left ventral occipito-temporal cortex

    Science.gov (United States)

    Seghier, Mohamed L.; Neufeld, Nicholas H.; Zeidman, Peter; Leff, Alex P.; Mechelli, Andrea; Nagendran, Arjuna; Riddoch, Jane M.; Humphreys, Glyn W.; Price, Cathy J.

    2012-01-01

    The left ventral occipito-temporal cortex (LvOT) is thought to be essential for the rapid parallel letter processing that is required for skilled reading. Here we investigate whether rapid written word identification in skilled readers can be supported by neural pathways that do not involve LvOT. Hypotheses were derived from a stroke patient who acquired dyslexia following extensive LvOT damage. The patient followed a reading trajectory typical of that associated with pure alexia, re-gaining the ability to read aloud many words with declining performance as the length of words increased. Using functional MRI and dynamic causal modelling (DCM), we found that, when short (three to five letter) familiar words were read successfully, visual inputs to the patient’s occipital cortex were connected to left motor and premotor regions via activity in a central part of the left superior temporal sulcus (STS). The patient analysis therefore implied a left hemisphere “reading-without-LvOT” pathway that involved STS. We then investigated whether the same reading-without-LvOT pathway could be identified in 29 skilled readers and whether there was inter-subject variability in the degree to which skilled reading engaged LvOT. We found that functional connectivity in the reading-without-LvOT pathway was strongest in individuals who had the weakest functional connectivity in the LvOT pathway. This observation validates the findings of our patient’s case study. Our findings highlight the contribution of a left hemisphere reading pathway that is activated during the rapid identification of short familiar written words, particularly when LvOT is not involved. Preservation and use of this pathway may explain how patients are still able to read short words accurately when LvOT has been damaged. PMID:23017598

  18. No differences in ventral striatum responsivity between adolescents with a positive family history of alcoholism and controls.

    Science.gov (United States)

    Müller, Kathrin U; Gan, Gabriela; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Ströhle, Andreas; Struve, Maren; Schumann, Gunter; Smolka, Michael N

    2015-05-01

    Individuals with alcohol-dependent parents show an elevated risk of developing alcohol-related problems themselves. Modulations of the mesolimbic reward circuit have been postulated as a pre-existing marker of alcoholism. We tested whether a positive family history of alcoholism is correlated with ventral striatum functionality during a reward task. All participants performed a modified version of the monetary incentive delay task while their brain responses were measured with functional magnetic resonance imaging. We compared 206 healthy adolescents (aged 13-15) who had any first- or second-degree relative with alcoholism to 206 matched controls with no biological relative with alcoholism. Reward anticipation as well as feedback of win recruited the ventral striatum in all participants, but adolescents with a positive family history of alcoholism did not differ from their matched peers. Also we did not find any correlation between family history density and reward anticipation or feedback of win. This finding of no differences did not change when we analyzed a subsample of 77 adolescents with at least one parent with alcohol use disorder and their matched controls. Because this result is in line with another study reporting no differences between children with alcohol-dependent parents and controls at young age, but contrasts with studies of older individuals, one might conclude that at younger age the effect of family history has not yet exerted its influence on the still developing mesolimbic reward circuit. © 2014 Society for the Study of Addiction.

  19. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum.

    Directory of Open Access Journals (Sweden)

    Makoto Ito

    2015-11-01

    Full Text Available Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the "win-stay, lose-switch" strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS, the dorsomedial striatum (DMS, and the ventral striatum (VS identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.

  20. Parallel Representation of Value-Based and Finite State-Based Strategies in the Ventral and Dorsal Striatum.

    Science.gov (United States)

    Ito, Makoto; Doya, Kenji

    2015-11-01

    Previous theoretical studies of animal and human behavioral learning have focused on the dichotomy of the value-based strategy using action value functions to predict rewards and the model-based strategy using internal models to predict environmental states. However, animals and humans often take simple procedural behaviors, such as the "win-stay, lose-switch" strategy without explicit prediction of rewards or states. Here we consider another strategy, the finite state-based strategy, in which a subject selects an action depending on its discrete internal state and updates the state depending on the action chosen and the reward outcome. By analyzing choice behavior of rats in a free-choice task, we found that the finite state-based strategy fitted their behavioral choices more accurately than value-based and model-based strategies did. When fitted models were run autonomously with the same task, only the finite state-based strategy could reproduce the key feature of choice sequences. Analyses of neural activity recorded from the dorsolateral striatum (DLS), the dorsomedial striatum (DMS), and the ventral striatum (VS) identified significant fractions of neurons in all three subareas for which activities were correlated with individual states of the finite state-based strategy. The signal of internal states at the time of choice was found in DMS, and for clusters of states was found in VS. In addition, action values and state values of the value-based strategy were encoded in DMS and VS, respectively. These results suggest that both the value-based strategy and the finite state-based strategy are implemented in the striatum.

  1. Evidence that Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    OpenAIRE

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Benveniste, Helene; Kim, Ron; Thanos, Panayotis K.; Ferré, Sergi

    2012-01-01

    Dopamine D2 receptors are involved with wakefulness but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [11C]raclopride in controls) in striatum, but could not determine if this reflected dopamine increases ([11C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases in...

  2. Reward-Related Ventral Striatum Activity Buffers against the Experience of Depressive Symptoms Associated with Sleep Disturbances.

    Science.gov (United States)

    Avinun, Reut; Nevo, Adam; Knodt, Annchen R; Elliott, Maxwell L; Radtke, Spenser R; Brigidi, Bartholomew D; Hariri, Ahmad R

    2017-10-04

    Sleep disturbances represent one risk factor for depression. Reward-related brain function, particularly the activity of the ventral striatum (VS), has been identified as a potential buffer against stress-related depression. We were therefore interested in testing whether reward-related VS activity would moderate the effect of sleep disturbances on depression in a large cohort of young adults. Data were available from 1129 university students (mean age 19.71 ± 1.25 years; 637 women) who completed a reward-related functional MRI task to assay VS activity and provided self-reports of sleep using the Pittsburgh Sleep Quality Index and symptoms of depression using a summation of the General Distress/Depression and Anhedonic Depression subscales of the Mood and Anxiety Symptoms Questionnaire-short form. Analyses revealed that as VS activity increased the association between sleep disturbances and depressive symptoms decreased. The interaction between sleep disturbances and VS activity was robust to the inclusion of sex, age, race/ethnicity, past or present clinical disorder, early and recent life stress, and anxiety symptoms, as well as the interactions between VS activity and early or recent life stress as covariates. We provide initial evidence that high reward-related VS activity may buffer against depressive symptoms associated with poor sleep. Our analyses help advance an emerging literature supporting the importance of individual differences in reward-related brain function as a potential biomarker of relative risk for depression. SIGNIFICANCE STATEMENT Sleep disturbances are a common risk factor for depression. An emerging literature suggests that reward-related activity of the ventral striatum (VS), a brain region critical for motivation and goal-directed behavior, may buffer against the effect of negative experiences on the development of depression. Using data from a large sample of 1129 university students we demonstrate that as reward-related VS activity

  3. Differential Patterns of Amygdala and Ventral Striatum Activation Predict Gender-Specific Changes in Sexual Risk Behavior

    Science.gov (United States)

    Sansosti, Alexandra A.; Bowman, Hilary C.; Hariri, Ahmad R.

    2015-01-01

    Although the initiation of sexual behavior is common among adolescents and young adults, some individuals express this behavior in a manner that significantly increases their risk for negative outcomes including sexually transmitted infections. Based on accumulating evidence, we have hypothesized that increased sexual risk behavior reflects, in part, an imbalance between neural circuits mediating approach and avoidance in particular as manifest by relatively increased ventral striatum (VS) activity and relatively decreased amygdala activity. Here, we test our hypothesis using data from seventy 18- to 22-year-old university students participating in the Duke Neurogenetics Study. We found a significant three-way interaction between amygdala activation, VS activation, and gender predicting changes in the number of sexual partners over time. Although relatively increased VS activation predicted greater increases in sexual partners for both men and women, the effect in men was contingent on the presence of relatively decreased amygdala activation and the effect in women was contingent on the presence of relatively increased amygdala activation. These findings suggest unique gender differences in how complex interactions between neural circuit function contributing to approach and avoidance may be expressed as sexual risk behavior in young adults. As such, our findings have the potential to inform the development of novel, gender-specific strategies that may be more effective at curtailing sexual risk behavior. PMID:26063921

  4. Metabolomics of Neurotransmitters and Related Metabolites in Post-Mortem Tissue from the Dorsal and Ventral Striatum of Alcoholic Human Brain.

    Science.gov (United States)

    Kashem, Mohammed Abul; Ahmed, Selina; Sultana, Nilufa; Ahmed, Eakhlas U; Pickford, Russell; Rae, Caroline; Šerý, Omar; McGregor, Iain S; Balcar, Vladimir J

    2016-02-01

    We report on changes in neurotransmitter metabolome and protein expression in the striatum of humans exposed to heavy long-term consumption of alcohol. Extracts from post mortem striatal tissue (dorsal striatum; DS comprising caudate nucleus; CN and putamen; P and ventral striatum; VS constituted by nucleus accumbens; NAc) were analysed by high performance liquid chromatography coupled with tandem mass spectrometry. Proteomics was studied in CN by two-dimensional gel electrophoresis followed by mass-spectrometry. Proteomics identified 25 unique molecules expressed differently by the alcohol-affected tissue. Two were dopamine-related proteins and one a GABA-synthesizing enzyme GAD65. Two proteins that are related to apoptosis and/or neuronal loss (BiD and amyloid-β A4 precursor protein-binding family B member 3) were increased. There were no differences in the levels of dopamine (DA), 3,4-dihydrophenylacetic acid (DOPAC), serotonin (5HT), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (HIAA), histamine, L-glutamate (Glu), γ-aminobutyric acid (GABA), tyrosine (Tyr) and tryptophan (Tryp) between the DS (CN and P) and VS (NAc) in control brains. Choline (Ch) and acetylcholine (Ach) were higher and norepinephrine (NE) lower, in the VS. Alcoholic striata had lower levels of neurotransmitters except for Glu (30 % higher in the alcoholic ventral striatum). Ratios of DOPAC/DA and HIAA/5HT were higher in alcoholic striatum indicating an increase in the DA and 5HT turnover. Glutathione was significantly reduced in all three regions of alcohol-affected striatum. We conclude that neurotransmitter systems in both the DS (CN and P) and the VS (NAc) were significantly influenced by long-term heavy alcohol intake associated with alcoholism.

  5. Age-related changes in the intrinsic functional connectivity of the human ventral vs. dorsal striatum from childhood to middle age

    Directory of Open Access Journals (Sweden)

    James N. Porter

    2015-02-01

    Full Text Available The striatum codes motivated behavior. Delineating age-related differences within striatal circuitry can provide insights into neural mechanisms underlying ontogenic behavioral changes and vulnerabilities to mental disorders. To this end, a dual ventral/dorsal model of striatal function was examined using resting state intrinsic functional connectivity (iFC imaging in 106 healthy individuals, ages 9–44. Broadly, the dorsal striatum (DS is connected to prefrontal and parietal cortices and contributes to cognitive processes; the ventral striatum (VS is connected to medial orbitofrontal and anterior cingulate cortices, and contributes to affective valuation and motivation. Findings revealed patterns of age-related changes that differed between VS and DS iFCs. We found an age-related increase in DS iFC with posterior cingulate cortex (pCC that stabilized after the mid-twenties, but a decrease in VS iFC with anterior insula (aIns and dorsal anterior cingulate cortex (dACC that persisted into mid-adulthood. These distinct developmental trajectories of VS vs. DS iFC might underlie adolescents’ unique behavioral patterns and vulnerabilities to psychopathology, and also speaks to changes in motivational networks that extend well past 25 years old.

  6. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task

    Directory of Open Access Journals (Sweden)

    Matthijs A A Van Der Meer

    2009-06-01

    Full Text Available Local field potential (LFP oscillations in the brain reflect organization thought to be important for perception, attention, movement, and memory. In the basal ganglia, including dorsal striatum, dysfunctional LFP states are associated with Parkinson’s disease, while in healthy subjects, dorsal striatal LFPs have been linked to decision-making processes. However, LFPs in ventral striatum have been less studied. We report that in rats running a spatial decision task, prominent gamma-50 (45-55 Hz and gamma-80 (70-85 Hz oscillations in ventral striatum had distinct relationships to behavior, task events, and spiking activity. Gamma-50 power increased sharply following reward delivery and before movement initiation, while in contrast, gamma-80 power ramped up gradually to reward locations. Gamma-50 power was low and contained little structure during early learning, but rapidly developed a stable pattern, while gamma-80 power was initially high before returning to a stable level within a similar timeframe. Putative fast-spiking interneurons (FSIs showed phase, firing rate, and coherence relationships with gamma-50 and gamma-80, indicating that the observed LFP patterns are locally relevant. Furthermore, in a number of FSIs such relationships were specific to gamma-50 or gamma-80, suggesting that partially distinct FSI populations mediate the effects of gamma-50 and gamma-80.

  7. Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity Disorder

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Kollins, S.H.; Wigal, T.L.; Newcorn, J.H.; Telang, F.W.; Fowler, J.S.; Logan, J.; Wong, C.T.; Swanson, J.M.

    2012-01-01

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and ( 11 C)raclopride (D 2 /D 3 receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D 2 /D 3 receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response.

  8. Methylphenidate-Elicited Dopamine Increases in Ventral Striatum Are Associated with Long-Term Symptom Improvement in Adults with Attention Deficit Hyperactivity Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Wang G.; Volkow, N.D.; Wang, G.-J.; Tomasi, D.; Kollins, S.H.; Wigal, T.L.; Newcorn, J.H.; Telang, F.W.; Fowler, J.S.; Logan, J.; Wong, C.T.; Swanson, J.M.

    2012-01-18

    Stimulant medications, such as methylphenidate, which are effective treatments for attention deficit hyperactivity disorder (ADHD), enhance brain dopamine signaling. However, the relationship between regional brain dopamine enhancement and treatment response has not been evaluated. Here, we assessed whether the dopamine increases elicited by methylphenidate are associated with long-term clinical response. We used a prospective design to study 20 treatment-naive adults with ADHD who were evaluated before treatment initiation and after 12 months of clinical treatment with a titrated regimen of oral methylphenidate. Methylphenidate-induced dopamine changes were evaluated with positron emission tomography and [{sup 11}C]raclopride (D{sub 2}/D{sub 3} receptor radioligand sensitive to competition with endogenous dopamine). Clinical responses were assessed using the Conners Adult ADHD Rating Scale and revealed a significant reduction in symptoms of inattention and hyperactivity with long-term methylphenidate treatment. A challenge dose of 0.5 mg/kg intravenous methylphenidate significantly increased dopamine in striatum (assessed as decreases in D{sub 2}/D{sub 3} receptor availability). In the ventral striatum, these dopamine increases were associated with the reductions in ratings of symptoms of inattention with clinical treatment. Statistical parametric mapping additionally showed dopamine increases in prefrontal and temporal cortices with intravenous methylphenidate that were also associated with decreases in symptoms of inattention. Our findings indicate that dopamine enhancement in ventral striatum (the brain region involved with reward and motivation) was associated with therapeutic response to methylphenidate, further corroborating the relevance of the dopamine reward/motivation circuitry in ADHD. It also provides preliminary evidence that methylphenidate-elicited dopamine increases in prefrontal and temporal cortices may also contribute to the clinical response.

  9. PER1 rs3027172 Genotype Interacts with Early Life Stress to Predict Problematic Alcohol Use, but Not Reward-Related Ventral Striatum Activity

    Science.gov (United States)

    Baranger, David A. A.; Ifrah, Chloé; Prather, Aric A.; Carey, Caitlin E.; Corral-Frías, Nadia S.; Drabant Conley, Emily; Hariri, Ahmad R.; Bogdan, Ryan

    2016-01-01

    Increasing evidence suggests that the circadian and stress regulatory systems contribute to alcohol use disorder (AUD) risk, which may partially arise through effects on reward-related neural function. The C allele of the PER1 rs3027172 single nucleotide polymorphism (SNP) reduces PER1 expression in cells incubated with cortisol and has been associated with increased risk for adult AUD and problematic drinking among adolescents exposed to high levels of familial psychosocial adversity. Using data from undergraduate students who completed the ongoing Duke Neurogenetics Study (DNS) (n = 665), we tested whether exposure to early life stress (ELS; Childhood Trauma Questionnaire) moderates the association between rs3027172 genotype and later problematic alcohol use (Alcohol Use Disorders Identification Test) as well as ventral striatum (VS) reactivity to reward (card-guessing task while functional magnetic resonance imaging data were acquired). Initial analyses found that PER1 rs3027172 genotype interacted with ELS to predict both problematic drinking and VS reactivity; minor C allele carriers, who were also exposed to elevated ELS reported greater problematic drinking and exhibited greater ventral striatum reactivity to reward-related stimuli. When gene × covariate and environment × covariate interactions were controlled for, the interaction predicting problematic alcohol use remained significant (p < 0.05, corrected) while the interaction predicting VS reactivity was no longer significant. These results extend our understanding of relationships between PER1 genotype, ELS, and problematic alcohol use, and serve as a cautionary tale on the importance of controlling for potential confounders in studies of moderation including gene × environment interactions. PMID:27065929

  10. Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an Actor/Critic model

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available A critical problem in daily decision making is how to choose actions now in order to bring about rewards later. Indeed, many of our actions have long-term consequences, and it is important to not be myopic in balancing the pros and cons of different options, but rather to take into account both immediate and delayed consequences of actions. Failures to do so may be manifest as persistent, maladaptive decision-making, one example of which is addiction where behavior seems to be driven by the immediate positive experiences with drugs, despite the delayed adverse consequences. A recent study by Takahashi et al. (2007 investigated the effects of cocaine sensitization on decision making in rats and showed that drug use resulted in altered representations in the ventral striatum and the dorsolateral striatum, areas that have been implicated in the neural instantiation of a computational solution to optimal long-term actions selection called the Actor/Critic framework. In this Focus article we discuss their results and offer a computational interpretation in terms of drug-induced impairments in the Critic. We first survey the different lines of evidence linking the subparts of the striatum to the Actor/Critic framework, and then suggest two possible scenarios of breakdown that are suggested by Takahashi et al’s data. As both are compatible with the current data, we discuss their different predictions and how these could be empirically tested in order to further elucidate (and hopefully inch towards curing the neural basis of drug addiction.

  11. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  12. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  13. Functional Specialization within the Striatum along Both the Dorsal/Ventral and Anterior/Posterior Axes during Associative Learning via Reward and Punishment

    Science.gov (United States)

    Mattfeld, Aaron T.; Gluck, Mark A.; Stark, Craig E. L.

    2011-01-01

    The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what…

  14. Treatment for Alexia With Agraphia Following Left Ventral Occipito-Temporal Damage: Strengthening Orthographic Representations Common to Reading and Spelling

    Science.gov (United States)

    Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2015-01-01

    Purpose Damage to left ventral occipito-temporal cortex can give rise to written language impairment characterized by pure alexia/letter-by-letter (LBL) reading, as well as surface alexia and agraphia. The purpose of this study was to examine the therapeutic effects of a combined treatment approach to address concurrent LBL reading with surface alexia/agraphia. Method Simultaneous treatment to address slow reading and errorful spelling was administered to 3 individuals with reading and spelling impairments after left ventral occipito-temporal damage due to posterior cerebral artery stroke. Single-word reading/spelling accuracy, reading latencies, and text reading were monitored as outcome measures for the combined effects of multiple oral re-reading treatment and interactive spelling treatment. Results After treatment, participants demonstrated faster and more accurate single-word reading and improved text-reading rates. Spelling accuracy also improved, particularly for untrained irregular words, demonstrating generalization of the trained interactive spelling strategy. Conclusion This case series characterizes concomitant LBL with surface alexia/agraphia and demonstrates a successful treatment approach to address both the reading and spelling impairment. PMID:26110814

  15. Unimodal and multimodal regions for logographic language processing in left ventral occipitotemporal cortex

    Directory of Open Access Journals (Sweden)

    Yuan eDeng

    2013-09-01

    Full Text Available The human neocortex appears to contain a dedicated visual word form area (VWFA and an adjacent multimodal (visual/auditory area. However, these conclusions are based on functional magnetic resonance imaging (fMRI of alphabetic language processing, languages that have clear grapheme-to-phoneme correspondence (GPC rules that make it difficult to disassociate visual-specific processing from form-to-sound mapping. In contrast, the Chinese language has no clear GPC rules. Therefore, the current study examined whether native Chinese readers also have the same VWFA and multimodal area. Two cross-modal tasks, phonological retrieval of visual words and orthographic retrieval of auditory words, were adopted. Different task requirements were also applied to explore how different levels of cognitive processing modulate activation of putative VWFA-like and multimodal-like regions. Results showed that the left occipitotemporal sulcus responded exclusively to visual inputs and an adjacent region, the left inferior temporal gyrus, showed comparable activation for both visual and auditory inputs. Surprisingly, processing levels did not significantly alter activation of these two regions. These findings indicated that there are both unimodal and multimodal word areas for non-alphabetic language reading, and that activity in these two word-specific regions are independent of task demands at the linguistic level.

  16. The causal role of category-specific neuronal representations in the left ventral premotor cortex (PMv) in semantic processing.

    Science.gov (United States)

    Cattaneo, Zaira; Devlin, Joseph T; Salvini, Francesca; Vecchi, Tomaso; Silvanto, Juha

    2010-02-01

    The left ventral premotor cortex (PMv) is preferentially activated by exemplars of tools, suggestive of category specificity in this region. Here we used state-dependent transcranial magnetic stimulation (TMS) to investigate the causal role of such category-specific neuronal representations in the encoding of tool words. Priming to a category name (either "Tool" or "Animal") was used with the objective of modulating the initial activation state of this region prior to application of TMS and the presentation of the target stimulus. When the target word was an exemplar of the "Tool" category, the effects of TMS applied over PMv (but not PMd) interacted with priming history by facilitating reaction times on incongruent trials while not affecting congruent trials. This congruency/TMS interaction implies that the "Tool" and "Animal" primes had a differential effect on the initial activation state of the left PMv and implies that this region is one neural locus of category-specific behavioral priming for the "Tool" category. TMS applied over PMv had no behavioral effect when the target stimulus was an exemplar of the "Animal" category, regardless of whether the target word was congruent or incongruent with the prime. That TMS applied over the left PMv interacted with a priming effect that extended from the category name ("Tool") to exemplars of that category suggests that this region contains neuronal representation associated with a specific semantic category. Our results also demonstrate that the state-dependent effects obtained in the combination of visual priming and TMS are useful in the study of higher-level cognitive functions. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  17. Ventral striatum, but not cortical volume loss, is related to cognitive dysfunction in type 1 diabetic patients with and without microangiopathy.

    Science.gov (United States)

    van Duinkerken, Eelco; Schoonheim, Menno M; Steenwijk, Martijn D; Klein, Martin; IJzerman, Richard G; Moll, Annette C; Heymans, Martijn W; Snoek, Frank J; Barkhof, Frederik; Diamant, Michaela

    2014-09-01

    Patients with longstanding type 1 diabetes may develop microangiopathy due to high cumulative glucose exposure. Also, chronic hyperglycemia is related to cerebral alterations and cognitive dysfunction. Whether the presence of microangiopathy is conditional to the development of hyperglycemia-related cerebral compromise is unclear. Since subcortical, rather than cortical, volume loss was previously related to cognitive dysfunction in other populations, we measured these brain correlates and cognitive functions in patients with longstanding type 1 diabetes with and without microangiopathy. We evaluated differences in subcortical volume and cortical thickness and volume in type 1 diabetic patients with (n = 51) and without (n = 53) proliferative retinopathy and 49 control subjects and related volume differences to cognitive dysfunction. Analyses were corrected for age, sex, systolic blood pressure, and A1C. Putamen and right thalamic volume loss was noted in both patients with and without proliferative retinopathy compared with control subjects (all P < 0.05). Additionally, in patients with proliferative retinopathy relative to control subjects, volume loss of the bilateral nucleus accumbens was found (all P < 0.05). No differences were observed between the two patient groups. Cortical thickness and volume were not different between groups. In pooled analyses, lower left nucleus accumbens volume was associated with cognitive dysfunction (P < 0.035). This study shows subcortical, but not cortical, volume loss in relation to cognitive dysfunction in patients with longstanding type 1 diabetes, irrespective of microangiopathy. The time course, pathophysiology, and clinical relevance of these findings need to be established in longitudinal and mechanistic studies. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Divergent responses of the amygdala and ventral striatum predict stress-related problem drinking in young adults: Possible differential markers of affective and impulsive pathways of risk for alcohol use disorder

    Science.gov (United States)

    Nikolova, Yuliya S.; Knodt, Annchen R.; Radtke, Spenser R.; Hariri, Ahmad R.

    2015-01-01

    Prior work suggests there may be two distinct pathways of alcohol use disorder (AUD) risk: one associated with positive emotion enhancement and behavioral impulsivity, and one associated with negative emotion relief and coping. We sought to map these two pathways onto individual differences in neural reward and threat processing assessed using BOLD fMRI in a sample of 759 undergraduate students (426 women, mean age 19.65±1.24) participating in the Duke Neurogenetics Study. We demonstrate that problem drinking is highest in the context of stress and in those with one of two distinct neural phenotypes: 1) a combination of relatively low reward-related activity of the ventral striatum (VS) and high threat-related reactivity of the amygdala; or 2) a combination of relatively high VS activity and low amygdala reactivity. In addition, we demonstrate that the relationship between stress and problem alcohol use is mediated by impulsivity, as reflected in monetary delay discounting rates, for those with high VS-low amygdala reactivity, and by anxious/depressive symptomatology for those with the opposite neural risk phenotype. Across both neural phenotypes, we found that greater divergence between VS and amygdala reactivity predicted greater risk for problem drinking. Finally, for those individuals with the low VS-high amygdala risk phenotype we found that stress not only predicted the presence of a DSM-IV diagnosed AUD at the time of neuroimaging, but also subsequent problem drinking reported three months following study completion. These results offer new insight into the neural basis of AUD risk and suggest novel biological targets for early individualized treatment or prevention. PMID:26122584

  19. Association of ventral striatum monoamine oxidase-A binding and functional connectivity in antisocial personality disorder with high impulsivity: A positron emission tomography and functional magnetic resonance imaging study.

    Science.gov (United States)

    Kolla, Nathan J; Dunlop, Katharine; Downar, Jonathan; Links, Paul; Bagby, R Michael; Wilson, Alan A; Houle, Sylvain; Rasquinha, Fawn; Simpson, Alexander I; Meyer, Jeffrey H

    2016-04-01

    Impulsivity is a core feature of antisocial personality disorder (ASPD) associated with abnormal brain function and neurochemical alterations. The ventral striatum (VS) is a key region of the neural circuitry mediating impulsive behavior, and low monoamine oxidase-A (MAO-A) level in the VS has shown a specific relationship to the impulsivity of ASPD. Because it is currently unknown whether phenotypic MAO-A markers can influence brain function in ASPD, we investigated VS MAO-A level and the functional connectivity (FC) of two seed regions, superior and inferior VS (VSs, VSi). Nineteen impulsive ASPD males underwent [(11)C] harmine positron emission tomography scanning to measure VS MAO-A VT, an index of MAO-A density, and resting-state functional magnetic resonance imaging that assessed the FC of bilateral seed regions in the VSi and VSs. Subjects also completed self-report impulsivity measures. Results revealed functional coupling of the VSs with bilateral dorsomedial prefrontal cortex (DMPFC) that was correlated with VS MAO-A VT (r=0.47, p=0.04), and functional coupling of the VSi with right hippocampus that was anti-correlated with VS MAO-A VT (r=-0.55, p=0.01). Additionally, VSs-DMPFC FC was negatively correlated with NEO Personality Inventory-Revised impulsivity (r=-0.49, p=0.03), as was VSi-hippocampus FC with Barratt Impulsiveness Scale-11 motor impulsiveness (r=-0.50, p=0.03). These preliminary results highlight an association of VS MAO-A level with the FC of striatal regions linked to impulsive behavior in ASPD and suggest that phenotype-based brain markers of ASPD have relevance to understanding brain function. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  20. Top-down and bottom-up influences on the left ventral occipito-temporal cortex during visual word recognition: an analysis of effective connectivity.

    Science.gov (United States)

    Schurz, Matthias; Kronbichler, Martin; Crone, Julia; Richlan, Fabio; Klackl, Johannes; Wimmer, Heinz

    2014-04-01

    The functional role of the left ventral occipito-temporal cortex (vOT) in visual word processing has been studied extensively. A prominent observation is higher activation for unfamiliar but pronounceable letter strings compared to regular words in this region. Some functional accounts have interpreted this finding as driven by top-down influences (e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Price and Devlin [2011]: Trends Cogn Sci 15:246-253), while others have suggested a difference in bottom-up processing (e.g., Glezer et al. [2009]: Neuron 62:199-204; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594). We used dynamic causal modeling for fMRI data to test bottom-up and top-down influences on the left vOT during visual processing of regular words and unfamiliar letter strings. Regular words (e.g., taxi) and unfamiliar letter strings of pseudohomophones (e.g., taksi) were presented in the context of a phonological lexical decision task (i.e., "Does the item sound like a word?"). We found no differences in top-down signaling, but a strong increase in bottom-up signaling from the occipital cortex to the left vOT for pseudohomophones compared to words. This finding can be linked to functional accounts which assume that the left vOT contains neurons tuned to complex orthographic features such as morphemes or words [e.g., Dehaene and Cohen [2011]: Trends Cogn Sci 15:254-262; Kronbichler et al. [2007]: J Cogn Neurosci 19:1584-1594]: For words, bottom-up signals converge onto a matching orthographic representation in the left vOT. For pseudohomophones, the propagated signals do not converge, but (partially) activate multiple orthographic word representations, reflected in increased effective connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  1. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.

    Science.gov (United States)

    Piacentino, Michael L; Chung, Oliver; Ramachandran, Janani; Zuch, Daniel T; Yu, Jia; Conaway, Evan A; Reyna, Arlene E; Bradham, Cynthia A

    2016-04-01

    Skeletal patterning in the sea urchin embryo requires coordinated signaling between the pattern-dictating ectoderm and the skeletogenic primary mesenchyme cells (PMCs); recent studies have begun to uncover the molecular basis for this process. Using an unbiased RNA-Seq-based screen, we have previously identified the TGF-ß superfamily ligand, LvBMP5-8, as a skeletal patterning gene in Lytechinus variegatus embryos. This result is surprising, since both BMP5-8 and BMP2/4 ligands have been implicated in sea urchin dorsal-ventral (DV) and left-right (LR) axis specification. Here, we demonstrate that zygotic LvBMP5-8 is required for normal skeletal patterning on the left side, as well as for normal PMC positioning during gastrulation. Zygotic LvBMP5-8 is required for expression of the left-side marker soxE, suggesting that LvBMP5-8 is required for left-side specification. Interestingly, we also find that LvBMP5-8 knockdown suppresses serotonergic neurogenesis on the left side. While LvBMP5-8 overexpression is sufficient to dorsalize embryos, we find that zygotic LvBMP5-8 is not required for normal DV specification or development. In addition, ectopic LvBMP5-8 does not dorsalize LvBMP2/4 morphant embryos, indicating that, in the absence of BMP2/4, BMP5-8 is insufficient to specify dorsal. Taken together, our data demonstrate that zygotic LvBMP5-8 signaling is essential for left-side specification, and for normal left-side skeletal and neural patterning, but not for DV specification. Thus, while both BMP2/4 and BMP5-8 regulate LR axis specification, BMP2/4 but not zygotic BMP5-8 regulates DV axis specification in sea urchin embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. End-to-side anastomosis of the left ventral colon to the small colon in a neonatal foal with segmental agenesis of the large colon.

    Science.gov (United States)

    Biasutti, S; Dart, A J; Dart, C M; Uquillas, E; Jeffcott, L B

    2017-06-01

    A newborn foal was referred for evaluation because it had not passed meconium, despite the administration of four enemas. Abdominal radiographs and ultrasound scans showed generalised gaseous distension of the intestine and there was no observable meconium in the colon. Positive contrast colography showed contrast medium extending to the transverse colon. An exploratory laparotomy confirmed the absence of the left and right dorsal colon and the pelvic and diaphragmatic flexures. An end-to-side anastomosis of the left ventral colon to the midpoint of the small colon was performed. The foal recovered from anaesthesia and surgery uneventfully and immediately began suckling from the mare, with no signs of abdominal pain in the postoperative period. The foal began to pass soft faeces 3 days after surgery and at 6 months after surgery the foal was clinically normal and growing at a similar rate to its cohort. Intestinal atresia is a rare condition in foals, but should be considered as a differential diagnosis in foals that fail to pass meconium. Early recognition and surgical intervention can offer an improved chance of short-term survival in cases where there is adequate intestine to anastomose. An end-to-side anastomosis technique can be used where an end-to-end technique is not practical because of the difference in diameter of the proximal and distal intestinal segments. © 2017 Australian Veterinary Association.

  3. Reduced amygdala and ventral striatal activity to happy faces in PTSD is associated with emotional numbing.

    Directory of Open Access Journals (Sweden)

    Kim L Felmingham

    Full Text Available There has been a growing recognition of the importance of reward processing in PTSD, yet little is known of the underlying neural networks. This study tested the predictions that (1 individuals with PTSD would display reduced responses to happy facial expressions in ventral striatal reward networks, and (2 that this reduction would be associated with emotional numbing symptoms. 23 treatment-seeking patients with Posttraumatic Stress Disorder were recruited from the treatment clinic at the Centre for Traumatic Stress Studies, Westmead Hospital, and 20 trauma-exposed controls were recruited from a community sample. We examined functional magnetic resonance imaging responses during the presentation of happy and neutral facial expressions in a passive viewing task. PTSD participants rated happy facial expression as less intense than trauma-exposed controls. Relative to controls, PTSD participants revealed lower activation to happy (-neutral faces in ventral striatum and and a trend for reduced activation in left amygdala. A significant negative correlation was found between emotional numbing symptoms in PTSD and right ventral striatal regions after controlling for depression, anxiety and PTSD severity. This study provides initial evidence that individuals with PTSD have lower reactivity to happy facial expressions, and that lower activation in ventral striatal-limbic reward networks may be associated with symptoms of emotional numbing.

  4. Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders.

    Science.gov (United States)

    Haznedar, M Mehmet; Buchsbaum, Monte S; Hazlett, Erin A; LiCalzi, Elizabeth M; Cartwright, Charles; Hollander, Eric

    2006-07-01

    In patients with autism, behavioral deficits as well as neuroimaging studies of the anterior cingulate cortex suggest ventral rather than dorsal striatal and thalamic abnormalities in structure and function. The authors used imaging studies to map volumetric and metabolic differences within the entire dorsoventral extent of the striatum and thalamus. Magnetic resonance imaging (MRI) and positron emission tomography (PET) were used to measure volumes and metabolic activity in the thalamus, caudate, and putamen in 17 patients with autism or Asperger's disorder and 17 age- and sex-matched comparison subjects. Subjects performed a serial verbal learning test during the [(18)F]-fluorodeoxyglucose uptake period. The regions of interest were outlined on contiguous axial MRI slices. After PET/MRI coregistration, region-of-interest coordinates were applied to the PET scan for each individual. Between-group differences in metabolism were assessed by three-dimensional statistical probability mapping. The patients with autism spectrum disorders had greater volumes of the right caudate nucleus than comparison subjects as well as a reversal of the expected left-greater-than-right hemispheric asymmetry. Patients also had lower relative glucose metabolic rates bilaterally in the ventral caudate, putamen, and thalamus. Patients with autism had lower metabolic activity in the ventral thalamus than those with Asperger's disorder, but they did not differ from comparison subjects in metabolic activity in the caudate nucleus. These results are consistent with a deficit in the anterior cingulate-ventral striatum-anterior thalamic pathway in patients with autism spectrum disorders. The results also suggest an important role for the caudate in helping support working-memory demands.

  5. Aversive Counterconditioning Attenuates Reward Signaling in the Ventral Striatum

    NARCIS (Netherlands)

    Kaag, Anne Marije; Schluter, Renée S; Karel, Peter; Homberg, Judith; van den Brink, Wim; Reneman, Liesbeth; Van Wingen, G.

    2016-01-01

    Appetitive conditioning refers to the process of learning cue-reward associations and is mediated by the mesocorticolimbic system. Appetitive conditioned responses are difficult to extinguish, especially for highly salient reward such as food and drugs. We investigate whether aversive

  6. Efficient visual object and word recognition relies on high spatial frequency coding in the left posterior fusiform gyrus: evidence from a case-series of patients with ventral occipito-temporal cortex damage.

    Science.gov (United States)

    Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A

    2013-11-01

    Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.

  7. Encoding by synchronization in the primate striatum.

    Science.gov (United States)

    Adler, Avital; Finkes, Inna; Katabi, Shiran; Prut, Yifat; Bergman, Hagai

    2013-03-13

    Information is encoded in the nervous system through the discharge and synchronization of single neurons. The striatum, the input stage of the basal ganglia, is divided into three territories: the putamen, the caudate, and the ventral striatum, all of which converge onto the same motor pathway. This parallel organization suggests that there are multiple and competing systems in the basal ganglia network controlling behavior. To explore which mechanism(s) enables the different striatal domains to encode behavioral events and to control behavior, we compared the neural activity of phasically active neurons [medium spiny neurons (MSNs), presumed projection neurons] and tonically active neurons (presumed cholinergic interneurons) across striatal territories from monkeys during the performance of a well practiced task. Although neurons in all striatal territories displayed similar spontaneous discharge properties and similar temporal modulations of their discharge rates to the behavioral events, their correlation structure was profoundly different. The distributions of signal and noise correlation of pairs of putamen MSNs were strongly shifted toward positive correlations and these two measures were correlated. In contrast, MSN pairs in the caudate and ventral striatum displayed symmetrical, near-zero signal and noise correlation distributions. Furthermore, only putamen MSN pairs displayed different noise correlation dynamics to rewarding versus neutral/aversive cues. Similarly, the noise correlation between tonically active neuron pairs was stronger in the putamen than in the caudate. We suggest that the level of synchronization of the neuronal activity and its temporal dynamics differentiate the striatal territories and may thus account for the different roles that striatal domains play in behavioral control.

  8. Comparison of four methods of measurement on [11C]Raclopride  binding potential using regional specificity in the striatum

    DEFF Research Database (Denmark)

    Peterson, Ericka; Gjedde, Albert; Møller, Arne

    Background: Dopamine transmission in the striatum and especially the ventral striatum (VST), a structure which includes the nucleus  accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and the reinforcing effects of virtually all drugs...... of abuse. Objective/Hypotheses: The sensitivity of the measurement of DA transmission using raclopride as the surrogate marker may be affected by the type of analysis of raclopride binding potential (pB) chosen. Here, we compare striatal pB data obtained using three routine analyses of raclopride data...

  9. Comparison of four methods of measurement on [11C]Raclopride  binding potential using regional specificity in the striatum

    DEFF Research Database (Denmark)

    Peterson, Ericka; Gjedde, Albert; Møller, Arne

    Background: Dopamine transmission in the striatum and especially the ventral striatum (VST), a structure which includes the nucleus  accumbens, ventral caudate, and ventral putamen, plays a critical role in the pathophysiology of psychotic states and the reinforcing  effects of virtually all drugs...... of abuse. Objective/Hypotheses: The sensitivity of the measurement of DA transmission using raclopride  as the surrogate marker may be affected by the type of analysis of raclopride binding potential (pB) chosen. Here, we compare  striatal pB data obtained using three routine analyses of raclopride data...

  10. Basketball training increases striatum volume.

    Science.gov (United States)

    Park, In Sung; Lee, Kea Joo; Han, Jong Woo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah; Rhyu, Im Joo

    2011-02-01

    The striatum is associated with the learning and retention of motor skills. Several studies have shown that motor learning induces neuronal changes in the striatum. We investigated whether macroscopic change in striatum volume occurs in a segment of the human population who learned basketball-related motor skills and practiced them throughout their entire athletic life. Three-dimensional magnetic resonance imaging volumetry was performed in basketball players and healthy controls, and striatum volumes were compared based on basketball proficiency, region and side. We identified morphological enlargement in the striatum of basketball players in comparison with controls. Our results suggest that continued practice and repetitive performance of basketball-related motor skills may induce plastic structural changes in the human striatum. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  12. Functional Connectivity of the Dorsal Striatum in Female Musicians.

    Science.gov (United States)

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    The dorsal striatum (caudate/putamen) is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC) motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians. Resting state functional magnetic resonance imaging (fMRI) data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to functional connectivity analysis and graph theoretical analysis. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum (FO) and between the left caudate nucleus and cerebellum. The graph theoretical analysis of the entire brain revealed that the degrees, which represent the numbers of connections, of the bilateral putamen were significantly lower in musicians than in nonmusicians. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers, suggesting that long-term musical training reshapes the functional network of the dorsal striatum to be less extensive or selective.

  13. Histamine and the striatum.

    Science.gov (United States)

    Bolam, J Paul; Ellender, Tommas J

    2016-07-01

    The neuromodulator histamine is released throughout the brain during periods of wakefulness. Combined with an abundant expression of histamine receptors, this suggests potential widespread histaminergic control of neural circuit activity. However, the effect of histamine on many of these circuits is unknown. In this review we will discuss recent evidence for histaminergic modulation of the basal ganglia circuitry, and specifically its main input nucleus; the striatum. Furthermore, we will discuss recent findings of histaminergic dysfunction in several basal ganglia disorders, including in Parkinson's disease and most prominently, in Tourette's syndrome, which has led to a resurgence of interest in this neuromodulator. Combined, these recent observations not only suggest a central role for histamine in modulating basal ganglia activity and behaviour, but also as a possible target in treating basal ganglia disorders. This article is part of the Special Issue entitled 'Histamine Receptors'. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons.

    Science.gov (United States)

    Cooch, Nisha K; Stalnaker, Thomas A; Wied, Heather M; Bali-Chaudhary, Sheena; McDannald, Michael A; Liu, Tzu-Lan; Schoenbaum, Geoffrey

    2015-05-21

    The ventral striatum has long been proposed as an integrator of biologically significant associative information to drive actions. Although inputs from the amygdala and hippocampus have been much studied, the role of prominent inputs from orbitofrontal cortex (OFC) are less well understood. Here, we recorded single-unit activity from ventral striatum core in rats with sham or ipsilateral neurotoxic lesions of lateral OFC, as they performed an odour-guided spatial choice task. Consistent with prior reports, we found that spiking activity recorded in sham rats during cue sampling was related to both reward magnitude and reward identity, with higher firing rates observed for cues that predicted more reward. Lesioned rats also showed differential activity to the cues, but this activity was unbiased towards larger rewards. These data support a role for OFC in shaping activity in the ventral striatum to represent the biological significance of associative information in the environment.

  15. Ebf1 controls early cell differentiation in the embryonic striatum.

    Science.gov (United States)

    Garel, S; Marín, F; Grosschedl, R; Charnay, P

    1999-12-01

    Ebf1/Olf-1 belongs to a small multigene family encoding closely related helix-loop-helix transcription factors, which have been proposed to play a role in neuronal differentiation. Here we show that Ebf1 controls cell differentiation in the murine embryonic striatum, where it is the only gene of the family to be expressed. Ebf1 targeted disruption affects postmitotic cells that leave the subventricular zone (SVZ) en route to the mantle: they appear to be unable to downregulate genes normally restricted to the SVZ or to activate some mantle-specific genes. These downstream genes encode a variety of regulatory proteins including transcription factors and proteins involved in retinoid signalling as well as adhesion/guidance molecules. These early defects in the SVZ/mantle transition are followed by an increase in cell death, a dramatic reduction in size of the postnatal striatum and defects in navigation and fasciculation of thalamocortical fibres travelling through the striatum. Our data therefore show that Ebf1 plays an essential role in the acquisition of mantle cell molecular identity in the developing striatum and provide information on the genetic hierarchies that govern neuronal differentiation in the ventral telencephalon.

  16. Cholinergic interneurons are differentially distributed in the human striatum.

    Science.gov (United States)

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2007-11-14

    The striatum (caudate nucleus, CN, and putamen, Put) is a group of subcortical nuclei involved in planning and executing voluntary movements as well as in cognitive processes. Its neuronal composition includes projection neurons, which connect the striatum with other structures, and interneurons, whose main roles are maintaining the striatal organization and the regulation of the projection neurons. The unique electrophysiological and functional properties of the cholinergic interneurons give them a crucial modulating function on the overall striatal response. This study was carried out using stereological methods to examine the volume and density (cells/mm(3)) of these interneurons, as visualized by choline acetyltransferase (ChAT) immunoreactivity, in the following territories of the CN and Put of nine normal human brains: 1) precommissural head; 2) postcommissural head; 3) body; 4) gyrus and 5) tail of the CN; 6) precommissural and 7) postcommissural Put. The distribution of ChAT interneurons was analyzed with respect to the topographical, functional and chemical territories of the dorsal striatum. The CN was more densely populated by cholinergic neurons than the Put, and their density increased along the anteroposterior axis of the striatum with the CN body having the highest neuronal density. The associative territory of the dorsal striatum was by far the most densely populated. The striosomes of the CN precommissural head and the postcommissural Put contained the greatest number of ChAT-ir interneurons. The intrastriosomal ChAT-ir neurons were abundant on the periphery of the striosomes throughout the striatum. All these data reveal that cholinergic interneurons are differentially distributed in the distinct topographical and functional territories of the human dorsal striatum, as well as in its chemical compartments. This heterogeneity may indicate that the posterior aspects of the CN require a special integration of information by interneurons

  17. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

    Science.gov (United States)

    Menegas, William; Bergan, Joseph F; Ogawa, Sachie K; Isogai, Yoh; Umadevi Venkataraju, Kannan; Osten, Pavel; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2015-01-01

    Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense ‘clusters’ of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs. DOI: http://dx.doi.org/10.7554/eLife.10032.001 PMID:26322384

  18. Laparoscopic Ventral Hernia Repair

    Science.gov (United States)

    ... heavy straining, aging, obesity, injury or following an infection at that site following surgery. They can occur immediately following surgery ... overall condition. Common advantages may include: Less post-operative ... wound infections Are You a Candidate for Laparoscopic Ventral Hernia ...

  19. Integrating early results on ventral striatal gamma oscillations in the rat

    NARCIS (Netherlands)

    van der Meer, M.A.A.; Kalenscher, T.; Lansink, C.S.; Pennartz, C.M.A.; Berke, J.D.; Redish, A.D.

    2010-01-01

    A vast literature implicates the ventral striatum in the processing of reward-related information and in mediating the impact of such information on behavior. It is characterized by heterogeneity at the local circuit, connectivity, and functional levels. A tool for dissecting this complex structure

  20. Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts Incentive Motivation

    NARCIS (Netherlands)

    de Jong, Johannes W.; Roelofs, Theresia J M; Mol, Frédérique M U; Hillen, Anne E J; Meijboom, Katharina E.; Luijendijk, Mieneke C M; Van Der Eerden, Harrie A M; Garner, Keith M.; Vanderschuren, Louk J M J; Adan, Roger A H

    2015-01-01

    Altered mesolimbic dopamine signaling has been widely implicated in addictive behavior. For the most part, this work has focused on dopamine within the striatum, but there is emerging evidence for a role of the auto-inhibitory, somatodendritic dopamine D2 receptor (D2R) in the ventral tegmental area

  1. Flavor pleasantness processing in the ventral emotion network.

    Directory of Open Access Journals (Sweden)

    Jelle R Dalenberg

    Full Text Available The ventral emotion network-encompassing the amygdala, insula, ventral striatum, and ventral regions of the prefrontal cortex-has been associated with the identification of emotional significance of perceived external stimuli and the production of affective states. Functional magnetic resonance imaging (fMRI studies investigating chemosensory stimuli have associated parts of this network with pleasantness coding. In the current study, we independently analyzed two datasets in which we measured brain responses to flavor stimuli in young adult men. In the first dataset, participants evaluated eight regular off the shelf drinking products while participants evaluated six less familiar oral nutritional supplements (ONS in the second dataset. Participants provided pleasantness ratings 20 seconds after tasting. Using independent component analysis (ICA and mixed effect models, we identified one brain network in the regular products dataset that was associated with flavor pleasantness. This network was very similar to the ventral emotion network. Although we identified an identical network in the ONS dataset using ICA, we found no linear relation between activation of any network and pleasantness scores within this dataset. Our results indicate that flavor pleasantness is processed in a network encompassing amygdala, ventral prefrontal, insular, striatal and parahippocampal regions for familiar drinking products. For more unfamiliar ONS products the association is not obvious, which could be related to the unfamiliarity of these products.

  2. Ventral hernia repair

    Science.gov (United States)

    ... abdomen) that pushes through a hole in the abdominal wall. Ventral hernias often occur at the site of an old ... surgeon will make a surgical cut in your abdomen. Your surgeon will find the hernia and separate it from the tissues around it. ...

  3. BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations.

    Science.gov (United States)

    Costumero, Víctor; Barrós-Loscertales, Alfonso; Fuentes, Paola; Rosell-Negre, Patricia; Bustamante, Juan Carlos; Ávila, César

    2016-09-01

    According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.

  4. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    Science.gov (United States)

    Mattfeld, Aaron T.; Stark, Craig E. L.

    2015-01-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298

  5. Functional interactions between dentate gyrus, striatum and anterior thalamic nuclei on spatial memory retrieval.

    Science.gov (United States)

    Méndez-Couz, M; Conejo, N M; González-Pardo, H; Arias, J L

    2015-04-24

    The standard model of memory system consolidation supports the temporal reorganization of brain circuits underlying long-term memory storage, including interactions between the dorsal hippocampus and extra-hippocampal structures. In addition, several brain regions have been suggested to be involved in the retrieval of spatial memory. In particular, several authors reported a possible role of the ventral portion of the hippocampus together with the thalamus or the striatum in the persistence of this type of memory. Accordingly, the present study aimed to evaluate the contribution of different cortical and subcortical brain regions, and neural networks involved in spatial memory retrieval. For this purpose, we used cytochrome c oxidase quantitative histochemistry as a reliable method to measure brain oxidative metabolism. Animals were trained in a hidden platform task and tested for memory retention immediately after the last training session; one week after completing the task, they were also tested in a memory retrieval probe. Results showed that retrieval of the previously learned task was associated with increased levels of oxidative metabolism in the prefrontal cortex, the dorsal and ventral striatum, the anterodorsal thalamic nucleus and the dentate gyrus of the dorsal and ventral hippocampus. The analysis of functional interactions between brain regions suggest that the dorsal and ventral dentate gyrus could be involved in spatial memory retrieval. In addition, the results highlight the key role of the extended hippocampal system, thalamus and striatum in this process. Our study agrees with previous ones reporting interactions between the dorsal hippocampus and the prefrontal cortex during spatial memory retrieval. Furthermore, novel activation patterns of brain networks involving the aforementioned regions were found. These functional brain networks could underlie spatial memory retrieval evaluated in the Morris water maze task. Copyright © 2015 Elsevier B

  6. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.

    Directory of Open Access Journals (Sweden)

    Miriam Matamales

    Full Text Available Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17% aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the

  7. Cognitive emotion regulation modulates the balance of competing influences on ventral striatal aversive prediction error signals.

    Science.gov (United States)

    Mulej Bratec, Satja; Xie, Xiyao; Wang, Yijun; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2017-02-15

    Cognitive emotion regulation (CER) is a critical human ability to face aversive emotional stimuli in a flexible way, via recruitment of specific prefrontal brain circuits. Animal research reveals a central role of ventral striatum in emotional behavior, for both aversive conditioning, with striatum signaling aversive prediction errors (aPE), and for integrating competing influences of distinct striatal inputs from regions such as the prefrontal cortex (PFC), amygdala, hippocampus and ventral tegmental area (VTA). Translating these ventral striatal findings from animal research to human CER, we hypothesized that successful CER would affect the balance of competing influences of striatal afferents on striatal aPE signals, in a way favoring PFC as opposed to 'subcortical' (i.e., non-isocortical) striatal inputs. Using aversive Pavlovian conditioning with and without CER during fMRI, we found that during CER, superior regulators indeed reduced the modulatory impact of 'subcortical' striatal afferents (hippocampus, amygdala and VTA) on ventral striatal aPE signals, while keeping the PFC impact intact. In contrast, inferior regulators showed an opposite pattern. Our results demonstrate that ventral striatal aPE signals and associated competing modulatory inputs are critical mechanisms underlying successful cognitive regulation of aversive emotions in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    Directory of Open Access Journals (Sweden)

    Paola Fuentes-Claramonte

    Full Text Available Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  9. The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments.

    Science.gov (United States)

    Prensa, L; Parent, A

    2001-09-15

    Axons from dorsal/ventral tiers of substantia nigra pars compacta (SNc), ventral tegmental area (VTA), and retrorubral field (RRF) were traced after injecting their cell body with biotinylated dextran amine. Fifty-three single axons were reconstructed from serial sagittal sections with a camera lucida, and mu-opiate receptor immunostaining served to differentiate the striosome/matrix striatal compartments. Most dorsal tier SNc axons terminate within the matrix of the dorsal striatum, but their patterns of arborization vary markedly; some axons innervate one specific matriceal area, whereas others arborize in multiple discontinuous loci. Some dorsal tier SNc axons also project to both striosomes and matrix. Other dorsal tier SNc axons, as well as VTA axons, innervate the ventral striatum and send collaterals to striosomes lying ventrally in the dorsal striatum or to the ventral sector of the subcallosal streak (SS). Ventral tier SNc axons arborize principally in striosomes, but some ramify in both compartments or in striosomes and the SS. Ventral tier neurons that form deep clusters in substantia nigra pars reticulata innervate principally the matrix and the SS. The amygdala and ventral pallidum receive secondary collaterals from striatal axons of dorsal/ventral tier neurons or RRF neurons. The subthalamic nucleus receives collaterals from striatal axons of SNc clustered neurons, whereas the globus pallidus gets collaterals from striatal axons of dorsal/ventral tier SNc neurons. These findings reveal that the nigrostriatal pathway is composed of several neuronal subsystems, each endowed with a widely distributed axonal arborization that allows them to exert a multifaceted influence on striatal and/or extrastriatal structures.

  10. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  11. Differential effect of quetiapine and lithium on functional connectivity of the striatum in first episode mania.

    Science.gov (United States)

    Dandash, Orwa; Yücel, Murat; Daglas, Rothanthi; Pantelis, Christos; McGorry, Patrick; Berk, Michael; Fornito, Alex

    2018-03-06

    Mood disturbances seen in first-episode mania (FEM) are linked to disturbed functional connectivity of the striatum. Lithium and quetiapine are effective treatments for mania but their neurobiological effects remain largely unknown. We conducted a single-blinded randomized controlled maintenance trial in 61 FEM patients and 30 healthy controls. Patients were stabilized for a minimum of 2 weeks on lithium plus quetiapine then randomly assigned to either lithium (serum level 0.6 mmol/L) or quetiapine (dosed up to 800 mg/day) treatment for 12 months. Resting-state fMRI was acquired at baseline, 3 months (patient only) and 12 months. The effects of treatment group, time and their interaction, on striatal functional connectivity were assessed using voxel-wise general linear modelling. At baseline, FEM patients showed reduced connectivity in the dorsal (p = 0.05) and caudal (p = 0.008) cortico-striatal systems when compared to healthy controls at baseline. FEM patients also showed increased connectivity in a circuit linking the ventral striatum with the medial orbitofrontal cortex, cerebellum and thalamus (p = 0.02). Longitudinally, we found a significant interaction between time and treatment group, such that lithium was more rapid, compared to quetiapine, in normalizing abnormally increased functional connectivity, as assessed at 3-month and 12-month follow-ups. The results suggest that FEM is associated with reduced connectivity in dorsal and caudal corticostriatal systems, as well as increased functional connectivity of ventral striatal systems. Lithium appears to act more rapidly than quetiapine in normalizing hyperconnectivity of the ventral striatum with the cerebellum. The study was registered on the Australian and New Zealand Clinical Trials Registry (ACTRN12607000639426). http://www.anzctr.org.au.

  12. [Compartmentalized organization of human corpus striatum].

    Science.gov (United States)

    Prensa, L; Parent, A; Giménez-Amaya, J M

    The compartmentalization of the human striatum was first established thanks to the pioneer work of Graybiel and Ragsdale in 1978. These authors described in the human striatum, as well as in the cats and primates, zones poorly stained for the enzyme acetylcholinesterase, which they termed striosomes, that lie in more intensely stained matrix. The striosome/matrix subdivision of the striatum is supported by the distribution of a wide variety of transmitter-related substances and by the organization of striatal afferent and efferent connections. The results of many studies performed in different species in the last twenty years have indicated that the chemical heterogeneity of striatum is more complex than the simple subdivision into striosomes and matrix compartments. Thus, a further subdivisions of the dual striosome/matrix system has been proposed on the basis of the results of a huge amount of works combining tract tracing methods with histochemical techniques. The matrix has been demonstrated to be heterogeneous by containing numerous functional modules that were termed matrisomes. Furthermore, the most recent study of the distribution of a wide variety of neurochemical markers in the striosomal compartment of the human striatum, has revealed that the striosomes are themselves heterogeneous, being composed of a central core and a peripheral region. Since it is now twenty years from the first description of the striosome/matrix organization of the striatum, in this review we intend to summarize the major finding regarding the compartmental organization of this subcortical structure that have been obtained during this period of time.

  13. Reward processing dysfunction in ventral striatum and orbitofrontal cortex in Parkinson's disease

    NARCIS (Netherlands)

    du Plessis, Stéfan; Bossert, Meija; Vink, Matthijs; van den Heuvel, Leigh; Bardien, Soraya; Emsley, Robin; Buckle, Chanelle; Seedat, Soraya; Carr, Jonathan

    BACKGROUND: Parkinson's disease is a growing concern as the longevity of the world's population steadily increases. Both ageing and Parkinson's disease have an impact on dopamine neurotransmission. It is therefore important to investigate their relative impact on the fronto-striatal reward system.

  14. Stable immediate early gene expression patterns in medial prefrontal cortex and striatum after long-term cocaine self-administration.

    Science.gov (United States)

    Gao, Ping; Limpens, Jules H W; Spijker, Sabine; Vanderschuren, Louk J M J; Voorn, Pieter

    2017-03-01

    The transition from casual to compulsive drug use is thought to occur as a consequence of repeated drug taking leading to neuroadaptive changes in brain circuitry involved in emotion and cognition. At the basis of such neuroadaptations lie changes in the expression of immediate early genes (IEGs) implicated in transcriptional regulation, synaptic plasticity and intracellular signalling. However, little is known about how IEG expression patterns change during long-term drug self-administration. The present study, therefore, compares the effects of 10 and 60-day self-administration of cocaine and sucrose on the expression of 17 IEGs in brain regions implicated in addictive behaviour, i.e. dorsal striatum, ventral striatum and medial prefrontal cortex (mPFC). Increased expression after cocaine self-administration was found for 6 IEGs in dorsal and ventral striatum (c-fos, Mkp1, Fosb/ΔFosb, Egr2, Egr4, and Arc) and 10 IEGs in mPFC (same 6 IEGs as in striatum, plus Bdnf, Homer1, Sgk1 and Rgs2). Five of these 10 IEGs (Egr2, Fosb/ΔFosb, Bdnf, Homer1 and Jun) and Trkb in mPFC were responsive to long-term sucrose self-administration. Importantly, no major differences were found between IEG expression patterns after 10 or 60 days of cocaine self-administration, except Fosb/ΔFosb in dorsal striatum and Egr2 in mPFC, whereas the amount of cocaine obtained per session was comparable for short-term and long-term self-administration. These steady changes in IEG expression are, therefore, associated with stable self-administration behaviour rather than the total amount of cocaine consumed. Thus, sustained impulses to IEG regulation during prolonged cocaine self-administration may evoke neuroplastic changes underlying compulsive drug use. © 2015 Society for the Study of Addiction.

  15. Dopamine uptake sites in the striatum are distributed differentially in striosome and matrix compartments

    International Nuclear Information System (INIS)

    Graybiel, A.M.; Moratalla, R.

    1989-01-01

    A major mechanism of neurotransmitter inactivation at catecholaminergic synapses in reuptake of released transmitter at high-affinity uptake sites on presynaptic terminals. The authors have analyzed the anatomical distribution of site-selective ligand binding for dopamine uptake sites in the striatum of rat, cat, and monkey. The authors report here that desipramine-sensitive [ 3 H]mazindol binding sites have highly heterogeneous distributions in the dorsal and the ventral striatum. In the caudate nucleus of cat and monkey, [ 3 H]mazindol binding observes striosomal ordering, being reduced in striosomes and heightened in the extrastriosomal matrix. Some local heterogeneity appears in the ventral caudoputamen of the rat. Different subdivisions of the nucleus accumbens also have different binding levels. These findings suggest that some functional effects of psychoactive drugs, such as cocaine, and that bind to the dopamine-uptake complex could be related to the distribution of these specific uptake sites. The findings also raise the possibility that these distributions could result in selective neuronal vulnerability to neurotoxins, such as 1-methyl-4-phenylpyridine (MPP + ), that depend on the dopamine-uptake complex for entry into neurons

  16. Dopamine uptake sites in the striatum are distributed differentially in striosome and matrix compartments.

    Science.gov (United States)

    Graybiel, A M; Moratalla, R

    1989-01-01

    A major mechanism of neurotransmitter inactivation at catecholaminergic synapses is reuptake of released transmitter at high-affinity uptake sites on presynaptic terminals. We have analyzed the anatomical distribution of site-selective ligand binding for dopamine uptake sites in the striatum of rat, cat, and monkey. We report here that desipramine-sensitive [3H]mazindol binding sites have highly heterogeneous distributions in the dorsal and the ventral striatum. In the caudate nucleus of cat and monkey, [3H]mazindol binding observes striosomal ordering, being reduced in striosomes and heightened in the extrastriosomal matrix. Some local heterogeneity appears in the ventral caudoputamen of the rat. Different subdivisions of the nucleus accumbens also have different binding levels. These findings suggest that some functional effects of psychoactive drugs, such as cocaine, that bind to the dopamine-uptake complex could be related to the distribution of these specific uptake sites. The findings also raise the possibility that these distributions could result in selective neuronal vulnerability to neurotoxins, such as 1-methyl-4-phenylpyridine (MPP+), that depend on the dopamine-uptake complex for entry into neurons. Images PMID:2813436

  17. Dopamine uptake sites in the striatum are distributed differentially in striosome and matrix compartments

    Energy Technology Data Exchange (ETDEWEB)

    Graybiel, A.M.; Moratalla, R. (Massachusetts Institute of Technology, Cambridge (USA))

    1989-11-01

    A major mechanism of neurotransmitter inactivation at catecholaminergic synapses in reuptake of released transmitter at high-affinity uptake sites on presynaptic terminals. The authors have analyzed the anatomical distribution of site-selective ligand binding for dopamine uptake sites in the striatum of rat, cat, and monkey. The authors report here that desipramine-sensitive ({sup 3}H)mazindol binding sites have highly heterogeneous distributions in the dorsal and the ventral striatum. In the caudate nucleus of cat and monkey, ({sup 3}H)mazindol binding observes striosomal ordering, being reduced in striosomes and heightened in the extrastriosomal matrix. Some local heterogeneity appears in the ventral caudoputamen of the rat. Different subdivisions of the nucleus accumbens also have different binding levels. These findings suggest that some functional effects of psychoactive drugs, such as cocaine, and that bind to the dopamine-uptake complex could be related to the distribution of these specific uptake sites. The findings also raise the possibility that these distributions could result in selective neuronal vulnerability to neurotoxins, such as 1-methyl-4-phenylpyridine (MPP{sup +}), that depend on the dopamine-uptake complex for entry into neurons.

  18. Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder.

    Science.gov (United States)

    Cai, Chenxi; Yuan, Kai; Yin, Junsen; Feng, Dan; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Jin, Chenwang; Qin, Wei; Tian, Jie

    2016-03-01

    Internet gaming disorder (IGD), identified in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) Section III as a condition warranting more clinical research, may be associated with impaired cognitive control. Previous IGD-related studies had revealed structural abnormalities in the prefrontal cortex, an important part of prefrontal-striatal circuits, which play critical roles in cognitive control. However, little is known about the relationship between the striatal nuclei (caudate, putamen, and nucleus accumbens) volumes and cognitive control deficit in individuals with IGD. Twenty-seven adolescents with IGD and 30 age-, gender- and education-matched healthy controls participated in this study. The volume differences of the striatum were assessed by measuring subcortical volume in FreeSurfer. Meanwhile, the Stroop task was used to detect cognitive control deficits. Correlation analysis was used to investigate the relationship between striatal volumes and performance in the Stroop task as well as severity in IGD. Relative to controls, the IGD committed more incongruent condition response errors during the Stroop task and showed increased volumes of dorsal striatum (caudate) and ventral striatum (nucleus accumbens). In addition, caudate volume was correlated with Stroop task performance and nucleus accumbens (NAc) volume was associated with the internet addiction test (IAT) score in the IGD group. The increased volumes of the right caudate and NAc and their association with behavioral characteristics (i.e., cognitive control and severity) in IGD were detected in the present study. Our findings suggest that the striatum may be implicated in the underlying pathophysiology of IGD.

  19. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2004-01-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2→3.9%, CA: 57.4→14.1%, ST: 17.7→0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction

  20. Task constraints modulate activation in right ventral lateral prefrontal cortex.

    Science.gov (United States)

    Vartanian, Oshin; Goel, Vinod

    2005-10-01

    Lesion data suggest that right prefrontal cortex (PFC) plays a critical role in open-ended problem solving. To test this hypothesis, we scanned fifteen normal subjects with fMRI as they completed three types of anagram problems varying in the level of constraints placed on the search space. On unconstrained trials, they rearranged letters to generate solutions (e.g., Can you make a "Word with ZJAZ?"). On semantically constrained trials, they rearranged letters to generate solutions within particular semantic categories (e.g., Can you make a type of "Music with ZJAZ?"). On baseline trials, they rearranged letters to make specific words (e.g., Can you make the word "JAZZ with ZJAZ?"). As predicted, the critical comparison of unconstrained vs. semantically constrained trials revealed significant activation in right ventral lateral PFC, as well as left superior frontal gyrus, frontopolar cortex, right superior parietal lobe, right post central gyrus, and the occipital-parietal sulcus. Furthermore, activation in right ventral lateral PFC (BA 47) increased as the constraints placed on the anagram search space were reduced. We argue that the activation in right ventral lateral PFC is related to hypothesis generation in unconstrained settings, whereas activation in other structures is related to additional processes linked to anagram problems such as semantic retrieval, semantic categorization, and cognitive monitoring. These results extend the lesion data and imaging studies by demonstrating that a relative absence of constraints on the solution space is sufficient to engage right ventral lateral PFC in hypothesis generation tasks.

  1. Nicotine-induced and D1-receptor-dependent dendritic remodeling in a subset of dorsolateral striatum medium spiny neurons.

    Science.gov (United States)

    Ehlinger, Daniel G; Burke, Julian C; McDonald, Craig G; Smith, Robert F; Bergstrom, Hadley C

    2017-07-25

    Nicotine is one of the most addictive substances known, targeting multiple memory systems, including the ventral and dorsal striatum. One form of neuroplasticity commonly associated with nicotine is dendrite remodeling. Nicotine-induced dendritic remodeling of ventral striatal medium spiny neurons (MSNs) is well-documented. Whether MSN dendrites in the dorsal striatum undergo a similar pattern of nicotine-induced structural remodeling is unknown. A morphometric analysis of Golgi-stained MSNs in rat revealed a natural asymmetry in dendritic morphology across the mediolateral axis, with larger, more complex MSNs found in the dorsolateral striatum (DLS). Chronic nicotine produced a lasting (at least 21day) expansion in the dendritic complexity of MSNs in the DLS, but not dorsomedial striatum (DMS). Given prior evidence that MSN subtypes can be distinguished based on dendritic morphology, MSNs were segregated into morphological subpopulations based on the number of primary dendrites. Analysis of these subpopulations revealed that DLS MSNs with more primary dendrites were selectively remodeled by chronic nicotine exposure and remodeling was specific to the distal-most portions of the dendritic arbor. Co-administration of the dopamine D1 receptor (D1R) antagonist SCH23390 completely reversed the selective effects of nicotine on DLS MSN dendrite morphology, supporting a causal role for dopamine signaling at D1 receptors in nicotine-induced dendrite restructuring. Considering the functional importance of the DLS in shaping and expressing habitual behavior, these data support a model in which nicotine induces persistent and selective changes in the circuit connectivity of the DLS that may promote and sustain addiction-related behavior. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Response inhibition signals and miscoding of direction in dorsomedial striatum

    Directory of Open Access Journals (Sweden)

    Daniel W Bryden

    2012-09-01

    Full Text Available The ability to inhibit action is critical for everyday behavior and is affected by a variety of disorders. Behavioral control and response inhibition is thought to depend on a neural circuit that includes the dorsal striatum, yet the neural signals that lead to response inhibition and its failure are unclear. To address this issue, we recorded from neurons in rat dorsomedial striatum (mDS in a novel task in which rats responded to a spatial cue that signaled that reward would be delivered either to the left or to the right. On 80% of trials rats were instructed to respond in the direction cued by the light (GO. On 20% of trials a second light illuminated instructing the rat to refrain from making the cued movement and move in the opposite direction (STOP. Many neurons in mDS encoded direction, firing more or less strongly for GO movements made ipsilateral or contralateral to the recording electrode. Neurons that fired more strongly for contralateral GO responses were more active when rats were faster, showed reduced activity on STOP trials, and miscoded direction on errors, suggesting that when these neurons were overly active, response inhibition failed. Neurons that decreased firing for contralateral movement were excited during trials in which the rat was required to stop the ipsilateral movement. For these neurons activity was reduced when errors were made and was negatively correlated with movement time suggesting that when these neurons were less active on STOP trials, response inhibition failed. Finally, the activity of a significant number of neurons represented a global inhibitory signal, firing more strongly during response inhibition regardless of response direction. Breakdown by cell type suggests that putative medium spiny neurons tended to fire more strongly under STOP trials, whereas putative interneurons exhibited both activity patterns. 

  3. Ventral striatal activity correlates with memory confidence for old- and new-responses in a difficult recognition test.

    Directory of Open Access Journals (Sweden)

    Ulrike Schwarze

    Full Text Available Activity in the ventral striatum has frequently been associated with retrieval success, i.e., it is higher for hits than correct rejections. Based on the prominent role of the ventral striatum in the reward circuit, its activity has been interpreted to reflect the higher subjective value of hits compared to correct rejections in standard recognition tests. This hypothesis was supported by a recent study showing that ventral striatal activity is higher for correct rejections than hits when the value of rejections is increased by external incentives. These findings imply that the striatal response during recognition is context-sensitive and modulated by the adaptive significance of "oldness" or "newness" to the current goals. The present study is based on the idea that not only external incentives, but also other deviations from standard recognition tests which affect the subjective value of specific response types should modulate striatal activity. Therefore, we explored ventral striatal activity in an unusually difficult recognition test that was characterized by low levels of confidence and accuracy. Based on the human uncertainty aversion, in such a recognition context, the subjective value of all high confident decisions is expected to be higher than usual, i.e., also rejecting items with high certainty is deemed rewarding. In an accompanying behavioural experiment, participants rated the pleasantness of each recognition response. As hypothesized, ventral striatal activity correlated in the current unusually difficult recognition test not only with retrieval success, but also with confidence. Moreover, participants indicated that they were more satisfied by higher confidence in addition to perceived oldness of an item. Taken together, the results are in line with the hypothesis that ventral striatal activity during recognition codes the subjective value of different response types that is modulated by the context of the recognition test.

  4. Ultrastructural changes of compressed lumbar ventral nerve roots following decompression

    International Nuclear Information System (INIS)

    El-Barrany, Wagih G.; Hamdy, Raid M.; Al-Hayani, Abdulmonem A.; Jalalah, Sawsan M.; Al-Sayyad, Mohammad J.

    2006-01-01

    To study whether there will be permanent lumbar nerve rot scanning or degeneration secondary to continuous compression followed by decompression on the nerve roots, which can account for postlaminectomy leg weakness or back pain. The study was performed at the Department of Anatomy, Faulty of Medicine, king Abdulaziz University, Jeddah, Kingdom of Saudi Arabia during 2003-2005. Twenty-six adult male New Zealand rabbits were used in the present study. The ventral roots of the left fourth lumbar nerve were clamped for 2 weeks then decompression was allowed by removal of the clips. The left ventral roots of the fourth lumbar nerve were excised for electron microscopic study. One week after nerve root decompression, the ventral root peripheral to the site of compression showed signs of Wallerian degeneration together with signs of regeneration. Schwann cells and myelinated nerve fibers showed severe degenerative changes. Two weeks after decompression, the endoneurium of the ventral root showed extensive edema with an increase in the regenerating myelinated and unmyentilated nerve fibers, and fibroblasts proliferation. Three weeks after decompression, the endoneurium showed an increase in the regenerating myelinated and unmyelinated nerve fibers with diminution of the endoneurial edema, and number of macrophages and an increase in collagen fibrils. Five and 6 weeks after decompression, the endoneurium showed marked diminution of the edema, macrophages, mast cells and fibroblasts. The enoneurium was filed of myelinated and unmyelinated nerve fibers and collagen fibrils. Decompression of the compressed roots of a spinal nerve is followed by regeneration of the nerve fibers and nerve and nerve recovery without endoneurial scarring. (author)

  5. The Danish ventral hernia database

    DEFF Research Database (Denmark)

    Helgstrand, Frederik; Jorgensen, Lars Nannestad

    2016-01-01

    and beyond. A total of 80% of all ventral hernia repairs performed in Denmark were reported to the DVHD. Main variables: Demographic data (age, sex, and center), detailed hernia description (eg, type, size, surgical priority), and technical aspects (open/laparoscopic and mesh related factors) related...... of operations and is an excellent tool for observing changes over time, including adjustment of several confounders. This national database registry has impacted on clinical practice in Denmark and led to a high number of scientific publications in recent years....

  6. Ventral impressions on the hypopharynx

    International Nuclear Information System (INIS)

    Daschner, H.; Hannig, C.

    1991-01-01

    Two impressions can be seen on the ventral aspect of the hypopharynx and upper oesophagus; on static images it is difficult to differentiate these from small tumours. In order to evaluate this region more accurately, we have examined 150 patients by means of rapid rate cinematography. In 52.6% we found a constant irregular or convex impression formed by the cricoid; in the other cases this was not seen or was quite minimal. In 93% a sub-cricoid impression could be demonstrated which was due to lax mucosa. Characteristically this showed a variable appearance during the passage of a bolus. Only the cricoid impression was associated with dysphagia. (orig.) [de

  7. Monitoring extracellular pH, oxygen, and dopamine during reward delivery in the striatum of primates.

    Science.gov (United States)

    Ariansen, Jennifer L; Heien, Michael L A V; Hermans, Andre; Phillips, Paul E M; Hernadi, Istvan; Bermudez, Maria A; Schultz, Wolfram; Wightman, R Mark

    2012-01-01

    Dopamine projections that extend from the ventral tegmental area to the striatum have been implicated in the biological basis for behaviors associated with reward and addiction. Until recently, it has been difficult to evaluate the complex balance of energy utilization and neural activity in the striatum. Many techniques such as electrophysiology, functional magnetic resonance imaging (fMRI), and fast-scan cyclic voltammetry have been employed to monitor these neurochemical and neurophysiological changes. In this brain region, physiological responses to cues and rewards cause local, transient pH changes. Oxygen and pH are coupled in the brain through a complex system of blood flow and metabolism as a result of transient neural activity. Indeed, this balance is at the heart of imaging studies such as fMRI. To this end, we measured pH and O(2) changes with fast-scan cyclic voltammetry in the striatum as indices of changes in metabolism and blood flow in vivo in three Macaca mulatta monkeys during reward-based behaviors. Specifically, the animals were presented with Pavlovian conditioned cues that predicted different probabilities of liquid reward. They also received free reward without predictive cues. The primary detected change consisted of pH shifts in the striatal extracellular environment following the reward predicting cues or the free reward. We observed three types of cue responses that consisted of purely basic pH shifts, basic pH shifts followed by acidic pH shifts, and purely acidic pH shifts. These responses increased with reward probability, but were not significantly different from each other. The pH changes were accompanied by increases in extracellular O(2). The changes in pH and extracellular O(2) are consistent with current theories of metabolism and blood flow. However, they were of sufficient magnitude that they masked dopamine changes in the majority of cases. The findings suggest a role of these chemical responses in neuronal reward processing.

  8. Urethritis due to corynebacterium striatum: An emerging germ.

    Science.gov (United States)

    Frikh, Mohammed; El Yaagoubi, Imad; Lemnouer, Abdelhay; Elouennass, Mostafa

    2015-01-01

    Corynedbacterium striatum (CS) is a Gram-positive coryneform bacillus that is part of mucous and skin flora. It has been considered as a causative agent of many infections in intensive care, neurology, traumatology and urology, but was never implicated in non-gonococcal urethritis. We report the case of a nosocomial urethritis due to Corynebacterium striatum following resection of an intrameatus condyloma.

  9. N-methyl-D-aspartate receptor-mediated glutamate transmission in nucleus accumbens plays a more important role than that in dorsal striatum in cognitive flexibility

    Directory of Open Access Journals (Sweden)

    Xuekun eDing

    2014-09-01

    Full Text Available Cognitive flexibility is a critical ability for adapting to an ever-changing environment in humans and animals. Deficits in cognitive flexibility are observed in most schizophrenia patients. Previous studies reported that the medial prefrontal cortex-to-ventral striatum and orbital frontal cortex-to-dorsal striatum circuits play important roles in extra- and intra-dimensional strategy switching, respectively. However, the precise function of striatal subregions in flexible behaviors is still unclear. N-methyl-D-aspartate receptors (NMDARs are major glutamate receptors in the striatum that receive glutamatergic projections from the frontal cortex. The membrane insertion of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs depends on NMDAR activation and is required in learning and memory processes. In the present study, we measured set-shifting and reversal learning performance in operant chambers in rats and assessed the effects of blocking NMDARs and Ca2+-permeable AMPARs in striatal subregions on behavioral flexibility. The blockade of NMDARs in the nucleus accumbens (NAc core by AP5 impaired set-shifting ability by causing a failure to modify prior learning. The suppression of NMDAR-mediated transmission in the NAc shell induced a deficit in set-shifting by disrupting the learning and maintenance of novel strategies. During reversal learning, infusions of AP5 into the NAc shell and core impaired the ability to learn and maintain new strategies. However, behavioral flexibility was not significantly affected by blocking NMDARs in the dorsal striatum. We also found that the blockade of Ca2+-permeable AMPARs by NASPM in any subregion of the striatum did not affect strategy switching. These findings suggest that NMDAR-mediated glutamate transmission in the NAc contributes more to cognitive execution compared with the dorsal striatum.

  10. Striatum on the anxiety map: Small detours into adolescence.

    Science.gov (United States)

    Lago, Tiffany; Davis, Andrew; Grillon, Christian; Ernst, Monique

    2017-01-01

    Adolescence is the most sensitive period for the development of pathological anxiety. Moreover, specific neural changes associated with the striatum might be related to adolescent vulnerability to anxiety. Up to now, the study of anxiety has primarily focused on the amygdala, bed nucleus of the stria terminalis (BNST), hippocampus and ventromedial prefrontal cortex (vmPFC), while the striatum has typically not been considered as part of the anxiety system. This review proposes the addition of the striatum, a complex, multi-component structure, to the anxiety network by underscoring two lines of research. First, the co-occurrence of the adolescent striatal development with the peak vulnerability of adolescents to anxiety disorders might potentially reflect a causal relationship. Second, the recognition of the role of the striatum in fundamental behavioral processes that do affect anxiety supports the putative importance of the striatum in anxiety. These behavioral processes include (1) attention, (2) conditioning/prediction error, and (3) motivation. This review proposes a simplistic schematic representation of the anxiety circuitry that includes the striatum, and aims to promote further work in this direction, as the role of the striatum in shaping an anxiety phenotype during adolescence could have critical implications for understanding and preventing the peak onset of anxiety disorders during this period. This article is part of a Special Issue entitled SI: Adolescent plasticity. Published by Elsevier B.V.

  11. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder.

    Science.gov (United States)

    Herbort, Maike C; Soch, Joram; Wüstenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, Jürgen; Walter, Henrik; Roepke, Stefan; Schott, Björn H

    2016-01-01

    Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BPD patients and 23 age-matched female healthy controls using functional magnetic resonance imaging (fMRI). Participants performed a delayed monetary incentive task in which three categories of objects predicted a potential gain, loss, or neutral outcome. Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11). Compared to healthy controls, BPD patients exhibited significantly reduced fMRI responses of the ventral striatum/nucleus accumbens (VS/NAcc) to both reward-predicting and loss-predicting cues. BIS-11 scores showed a significant positive correlation with the VS/NAcc reward anticipation responses in healthy controls, and this correlation, while also nominally positive, failed to reach significance in BPD patients. BPD patients, on the other hand, exhibited a significantly negative correlation between ventral striatal loss anticipation responses and BIS-11 scores, whereas this correlation was significantly positive in healthy controls. Our results suggest that patients with BPD show attenuated anticipation responses in the VS/NAcc and, furthermore, that higher impulsivity in BPD patients might be related to impaired prediction of aversive outcomes.

  12. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder

    Directory of Open Access Journals (Sweden)

    Maike C. Herbort

    2016-01-01

    Full Text Available Patients with borderline personality disorder (BPD frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BPD patients and 23 age-matched female healthy controls using functional magnetic resonance imaging (fMRI. Participants performed a delayed monetary incentive task in which three categories of objects predicted a potential gain, loss, or neutral outcome. Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11. Compared to healthy controls, BPD patients exhibited significantly reduced fMRI responses of the ventral striatum/nucleus accumbens (VS/NAcc to both reward-predicting and loss-predicting cues. BIS-11 scores showed a significant positive correlation with the VS/NAcc reward anticipation responses in healthy controls, and this correlation, while also nominally positive, failed to reach significance in BPD patients. BPD patients, on the other hand, exhibited a significantly negative correlation between ventral striatal loss anticipation responses and BIS-11 scores, whereas this correlation was significantly positive in healthy controls. Our results suggest that patients with BPD show attenuated anticipation responses in the VS/NAcc and, furthermore, that higher impulsivity in BPD patients might be related to impaired prediction of aversive outcomes.

  13. A Framework for Understanding the Emerging Role of Corticolimbic-Ventral Striatal Networks in OCD-Associated Repetitive Behaviors.

    Science.gov (United States)

    Wood, Jesse; Ahmari, Susanne E

    2015-01-01

    Significant interest in the mechanistic underpinnings of obsessive-compulsive disorder (OCD) has fueled research on the neural origins of compulsive behaviors. Converging clinical and preclinical evidence suggests that abnormal repetitive behaviors are driven by dysfunction in cortico-striatal-thalamic-cortical (CSTC) circuits. These findings suggest that compulsive behaviors arise, in part, from aberrant communication between lateral orbitofrontal cortex (OFC) and dorsal striatum. An important body of work focused on the role of this network in OCD has been instrumental to progress in the field. Disease models focused primarily on these regions, however, fail to capture an important aspect of the disorder: affective dysregulation. High levels of anxiety are extremely prevalent in OCD, as is comorbidity with major depressive disorder. Furthermore, deficits in processing rewards and abnormalities in processing emotional stimuli are suggestive of aberrant encoding of affective information. Accordingly, OCD can be partially characterized as a disease in which behavioral selection is corrupted by exaggerated or dysregulated emotional states. This suggests that the networks producing OCD symptoms likely expand beyond traditional lateral OFC and dorsal striatum circuit models, and highlights the need to cast a wider net in our investigation of the circuits involved in generating and sustaining OCD symptoms. Here, we address the emerging role of medial OFC, amygdala, and ventral tegmental area projections to the ventral striatum (VS) in OCD pathophysiology. The VS receives strong innervation from these affect and reward processing regions, and is therefore poised to integrate information crucial to the generation of compulsive behaviors. Though it complements functions of dorsal striatum and lateral OFC, this corticolimbic-VS network is less commonly explored as a potential source of the pathology underlying OCD. In this review, we discuss this network's potential role as

  14. Primary ventral or groin hernia in pregnancy

    DEFF Research Database (Denmark)

    Oma, Erling; Bay-Nielsen, M; Jensen, K K

    2017-01-01

    BACKGROUND: Prevalence, management, and risk of emergency operation for primary ventral or groin hernia in pregnancy are unknown. The objective of this study was to estimate the prevalences of primary ventral or groin hernia in pregnancy and the potential risks for elective and emergency repair...... was conducted to identify patients registered with a primary ventral or groin hernia in pregnancy. Follow-up was conducted by review of medical record notes within the Capital Region of Denmark supplemented with structured telephone interviews on indication. RESULTS: In total, 20,714 pregnant women were...... included in the study cohort. Seventeen (0.08%) and 25 (0.12%) women were registered with a primary ventral and groin hernia, respectively. None underwent elective or emergency repair in pregnancy, and all had uncomplicated childbirth. In 10 women, the groin bulge disappeared spontaneously after delivery...

  15. Native valve endocarditis caused by an organism resembling Corynebacterium striatum.

    OpenAIRE

    Markowitz, S M; Coudron, P E

    1990-01-01

    An organism resembling Corynebacterium striatum was isolated from the blood of a patient with acute aortic valvular insufficiency and no history of valvular heart disease. At autopsy, histopathologic examination of the aortic valve revealed pleomorphic gram-positive bacilli and destruction of valvular tissue. Our isolate differed from other nondiphtherial corynebacteria, including the type strain of C. striatum (ATCC 6940), in its ability to reduce nitrite. Nitrite reduction may be useful for...

  16. Children with ADHD Symptoms Show Decreased Activity in Ventral Striatum during the Anticipation of Reward, Irrespective of ADHD Diagnosis

    Science.gov (United States)

    van Hulst, Branko M.; de Zeeuw, Patrick; Bos, Dienke J.; Rijks, Yvonne; Neggers, Sebastiaan F. W.; Durston, Sarah

    2017-01-01

    Background: Changes in reward processing are thought to be involved in the etiology of attention-deficit/hyperactivity disorder (ADHD), as well as other developmental disorders. In addition, different forms of therapy for ADHD rely on reinforcement principles. As such, improved understanding of reward processing in ADHD could eventually lead to…

  17. Children with ADHD symptoms show decreased activity in ventral striatum during the anticipation of reward, irrespective of ADHD diagnosis

    NARCIS (Netherlands)

    van Hulst, Branko M.; de Zeeuw, Patrick; Bos, Dienke J.; Rijks, Yvonne; Neggers, Sebastiaan F W; Durston, Sarah

    2017-01-01

    Background: Changes in reward processing are thought to be involved in the etiology of attention-deficit/hyperactivity disorder (ADHD), as well as other developmental disorders. In addition, different forms of therapy for ADHD rely on reinforcement principles. As such, improved understanding of

  18. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Møller, Arne; Peterson, Ericka

    2011-01-01

    Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls.......Gambling excitement is believed to be associated with biological measures of pathological gambling. Here, we tested the hypothesis that dopamine release would be associated with increased excitement levels in Pathological Gamblers compared with Healthy Controls....

  19. Major depression in mothers predict reduced ventral striatum activation in adolescent female offspring with and without depression

    Science.gov (United States)

    Prior research has identified reduced reward-related brain activation as a promising endophenotype for the early identification of adolescents with major depressive disorder. However, it is unclear whether reduced reward-related brain activation constitutes a true vulnerability for major depressive ...

  20. Increased ventral-striatal activity during monetary decision making is a marker of problem poker gambling severity.

    Science.gov (United States)

    Brevers, Damien; Noël, Xavier; He, Qinghua; Melrose, James A; Bechara, Antoine

    2016-05-01

    The aim of this study was to examine the impact of different neural systems on monetary decision making in frequent poker gamblers, who vary in their degree of problem gambling. Fifteen frequent poker players, ranging from non-problem to high-problem gambling, and 15 non-gambler controls were scanned using functional magnetic resonance imaging (fMRI) while performing the Iowa Gambling Task (IGT). During IGT deck selection, between-group fMRI analyses showed that frequent poker gamblers exhibited higher ventral-striatal but lower dorsolateral prefrontal and orbitofrontal activations as compared with controls. Moreover, using functional connectivity analyses, we observed higher ventral-striatal connectivity in poker players, and in regions involved in attentional/motor control (posterior cingulate), visual (occipital gyrus) and auditory (temporal gyrus) processing. In poker gamblers, scores of problem gambling severity were positively associated with ventral-striatal activations and with the connectivity between the ventral-striatum seed and the occipital fusiform gyrus and the middle temporal gyrus. Present results are consistent with findings from recent brain imaging studies showing that gambling disorder is associated with heightened motivational-reward processes during monetary decision making, which may hamper one's ability to moderate his level of monetary risk taking. © 2015 Society for the Study of Addiction.

  1. Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.

    Science.gov (United States)

    Diederen, Kelly M J; Ziauddeen, Hisham; Vestergaard, Martin D; Spencer, Tom; Schultz, Wolfram; Fletcher, Paul C

    2017-02-15

    Learning to optimally predict rewards requires agents to account for fluctuations in reward value. Recent work suggests that individuals can efficiently learn about variable rewards through adaptation of the learning rate, and coding of prediction errors relative to reward variability. Such adaptive coding has been linked to midbrain dopamine neurons in nonhuman primates, and evidence in support for a similar role of the dopaminergic system in humans is emerging from fMRI data. Here, we sought to investigate the effect of dopaminergic perturbations on adaptive prediction error coding in humans, using a between-subject, placebo-controlled pharmacological fMRI study with a dopaminergic agonist (bromocriptine) and antagonist (sulpiride). Participants performed a previously validated task in which they predicted the magnitude of upcoming rewards drawn from distributions with varying SDs. After each prediction, participants received a reward, yielding trial-by-trial prediction errors. Under placebo, we replicated previous observations of adaptive coding in the midbrain and ventral striatum. Treatment with sulpiride attenuated adaptive coding in both midbrain and ventral striatum, and was associated with a decrease in performance, whereas bromocriptine did not have a significant impact. Although we observed no differential effect of SD on performance between the groups, computational modeling suggested decreased behavioral adaptation in the sulpiride group. These results suggest that normal dopaminergic function is critical for adaptive prediction error coding, a key property of the brain thought to facilitate efficient learning in variable environments. Crucially, these results also offer potential insights for understanding the impact of disrupted dopamine function in mental illness. SIGNIFICANCE STATEMENT To choose optimally, we have to learn what to expect. Humans dampen learning when there is a great deal of variability in reward outcome, and two brain regions that

  2. White matter anisotropy in the ventral language pathway predicts sound-to-word learning success.

    Science.gov (United States)

    Wong, Francis C K; Chandrasekaran, Bharath; Garibaldi, Kyla; Wong, Patrick C M

    2011-06-15

    According to the dual stream model of auditory language processing, the dorsal stream is responsible for mapping sound to articulation and the ventral stream plays the role of mapping sound to meaning. Most researchers agree that the arcuate fasciculus (AF) is the neuroanatomical correlate of the dorsal steam; however, less is known about what constitutes the ventral one. Nevertheless, two hypotheses exist: one suggests that the segment of the AF that terminates in middle temporal gyrus corresponds to the ventral stream, and the other suggests that it is the extreme capsule that underlies this sound-to-meaning pathway. The goal of this study was to evaluate these two competing hypotheses. We trained participants with a sound-to-word learning paradigm in which they learned to use a foreign phonetic contrast for signaling word meaning. Using diffusion tensor imaging, a brain-imaging tool to investigate white matter connectivity in humans, we found that fractional anisotropy in the left parietal-temporal region positively correlated with the performance in sound-to-word learning. In addition, fiber tracking revealed a ventral pathway, composed of the extreme capsule and the inferior longitudinal fasciculus, that mediated auditory comprehension. Our findings provide converging evidence supporting the importance of the ventral steam, an extreme capsule system, in the frontal-temporal language network. Implications for current models of speech processing are also discussed.

  3. Dopamine Transporters in Striatum Correlate with Deactivation in the Default Mode Network during Visuospatial Attention

    International Nuclear Information System (INIS)

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang L.; Ernst, T.; Fowler, J.S.

    2009-01-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [ 11 C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  4. Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention.

    Directory of Open Access Journals (Sweden)

    Dardo Tomasi

    2009-06-01

    Full Text Available Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN. Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task.For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11C]cocaine used as DAT radiotracer and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7 and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32. With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus.These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness and cingulate gyrus (region deactivated in proportion to emotional interference. These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  5. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  6. Enhanced recovery after giant ventral hernia repair

    DEFF Research Database (Denmark)

    Jensen, K K; Brøndum, T L; Harling, H.

    2016-01-01

    PURPOSE: Giant ventral hernia repair is associated with a high risk of postoperative morbidity and prolonged length of stay (LOS). Enhanced recovery (ERAS) measures have proved to lead to decreased morbidity and LOS after various surgical procedures, but never after giant hernia repair. The current...... study prospectively examined the results of implementation of an ERAS pathway including high-dose preoperative glucocorticoid, and compared the outcome with patients previously treated according to standard care (SC). METHODS: Consecutive patients who underwent giant ventral hernia repair were included......-dose glucocorticoid may lead to low scores of pain, fatigue and nausea after giant ventral hernia repair with reduced LOS compared with patients treated according to SC....

  7. [Information Processing in the Auditory Ventral Stream].

    Science.gov (United States)

    Fukushima, Makoto; Ojima, Hisayuki

    2016-11-01

    The auditory cortex in humans comprises multiple auditory fields organized hierarchically, similar to that in non-human primates. The ventral auditory stream of the macaque consists of several subdivisions on the supratemporal plane (STP) and the superior temporal gyrus (STG). There are two main axes (caudorostral and mediolateral) for processing auditory information in the STP and STG. Here, we review the neural basis of the integration of spectral and temporal auditory information along the two axes of the ventral auditory stream in the macaque.

  8. Subregion-specific modulation of excitatory input and dopaminergic output in the striatum by tonically activated glycine and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Louise eAdermark

    2011-10-01

    Full Text Available The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABAA and glycine receptors in regulating synaptic activity in the dorsolateral (DLS and ventral striatum (nucleus accumbens, nAc. Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABAA receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10 µM, inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10 µM and blocked by GABAA receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50 μM in perfusate only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200 μM in perfusate decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABAA and glycine receptors are tonically activated and modulate striatal transmission in a partially sub-region specific manner.

  9. Learning-related changes of brain activation in the visual ventral stream: an fMRI study of mirror reading skill.

    Science.gov (United States)

    Mochizuki-Kawai, Hiroko; Tsukiura, Takashi; Mochizuki, Satoshi; Kawamura, Mitsuru

    2006-11-29

    A previous neuroimaging study has indicated that the visual dorsal stream may contribute to accurate reading of mirror-reversed words. However, the role of the visual ventral stream in the learning of mirror reading skill remains ambiguous. In the present fMRI study, we investigated learning-related changes in brain activation in the visual ventral stream in a mirror reading task. Subjects participated in three successive runs of the mirror reading task, in each of which they were asked to read mirror-reversed words and normal words as accurately and as quickly as possible. The behavioral data for the mirror reading condition showed significant improvement in reaction time but not in performance accuracy across the three runs. The activation data showed different learning-associated patterns related to the right and left visual ventral streams. On the right side, activity related to the reading of mirror stimuli was significantly greater than that related to normal stimuli in the first run only, whereas on the left side it was greater in all runs. Additional correlation analysis between response time data and percentage signal changes only in the mirror reading condition showed significant correlation on the right visual ventral stream in the first run only, whereas that on the left visual ventral stream was found only in the third run. The dissociable response between the right and left visual ventral streams may reflect learning-related changes in reading strategy and may be critical in improving the speed of reading mirror-reversed words.

  10. Study on microstructure of corpus striatum in patients with idiopathic rapid eye movement sleep behavior disorder using magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Ya-meng ZHANG

    2017-07-01

    Full Text Available Objective To investigate the structure of corpus striatum and the integrity of white matter fiber in patients with Parkinson's disease (PD and idiopathic rapid eye movement sleep behavior disorder (iRBD.  Methods Twelve patients with iRBD, 12 patients with PD and 10 healthy subjects that were well matched in gender, age and education were enrolled in this study. Head MRI examination was performed to all subjects to observe the changes of corpus striatum structure (the gray matter volume and the integrity of white matter fiber [fractional anisotropy (FA] by combining voxel?based morphometry (VBM and diffusion tensor imaging (DTI.  Results Compared with healthy subjects, the gray matter volume of left caudate nucleus was significantly decreased (P < 0.005, and FA values of left caudate nucleus (P < 0.005, right caudate nucleus (P < 0.001 and right putamen (P < 0.05 were all significantly reduced in iRBD patients; FA value of right putamen was significantly decreased in PD patients (P < 0.05. Compared with PD patients, the gray matter volume of left caudate nucleus of iRBD patients was significantly reduced (P < 0.001, FA values of left caudate nucleus (P < 0.01 and right caudate nucleus (P < 0.005 of iRBD patients were significantly reduced.  Conclusions There is atrophy of gray matter volume and extensive white matter fiber impairment in corpus striatum of patients with iRBD, and the white matter fiber impairment was similar to PD, which provides an anatomical evidence for iRBD being presymptom of PD. DOI: 10.3969/j.issn.1672-6731.2017.05.008

  11. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    diffusion of [(18)F]fluorodopamine metabolites from brain. Consequently, time-radioactivity recordings of striatum are progressively influenced by metabolite loss. In linear analyses, the net blood-brain clearance of FDOPA (K(D)(i), ml g(-1) min(-1)) can be corrected for this loss by the elimination rate...... constant k(Lin)(cl) (min(-1)). Similarly, the DOPA decarboxylation rate constant (k(D)(3), min(-1)) calculated by compartmental analysis can also be corrected for metabolite loss by the elimination rate constant k(DA)(9) (min(-1)). To compare the two methods, we calculated the two elimination rate...... of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss...

  12. Neuromuscular blockade during laparoscopic ventral herniotomy

    DEFF Research Database (Denmark)

    Medici, Roar; Madsen, Matias V; Asadzadeh, Sami

    2015-01-01

    INTRODUCTION: Laparoscopic herniotomy is the preferred technique for some ventral hernias. Several factors may influence the surgical conditions, one being the depth of neuromuscular blockade (NMB) applied. We hypothesised that deep neuromuscular blockade defined as a post-tetanic count below eight...

  13. Neuromuscular blockade during laparoscopic ventral herniotomy

    DEFF Research Database (Denmark)

    Medici, Roar; Madsen, Matias V; Asadzadeh, Sami

    2015-01-01

    INTRODUCTION: Laparoscopic herniotomy is the preferred technique for some ventral hernias. Several factors may influence the surgical conditions, one being the depth of neuromuscular blockade (NMB) applied. We hypothesised that deep neuromuscular blockade defined as a post-tetanic count below eig...

  14. Attention modulates the dorsal striatum response to love stimuli.

    Science.gov (United States)

    Langeslag, Sandra J E; van der Veen, Frederik M; Röder, Christian H

    2014-02-01

    In previous functional magnetic resonance imaging (fMRI) studies concerning romantic love, several brain regions including the caudate and putamen have consistently been found to be more responsive to beloved-related than control stimuli. In those studies, infatuated individuals were typically instructed to passively view the stimuli or to think of the viewed person. In the current study, we examined how the instruction to attend to, or ignore the beloved modulates the response of these brain areas. Infatuated individuals performed an oddball task in which pictures of their beloved and friend served as targets and distractors. The dorsal striatum showed greater activation for the beloved than friend, but only when they were targets. The dorsal striatum actually tended to show less activation for the beloved than the friend when they were distractors. The longer the love and relationship duration, the smaller the response of the dorsal striatum to beloved-distractor stimuli was. We interpret our findings in terms of reinforcement learning. By virtue of using a cognitive task with a full factorial design, we show that the dorsal striatum is not activated by beloved-related information per se, but only by beloved-related information that is attended. Copyright © 2012 Wiley Periodicals, Inc.

  15. File list: Pol.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Corpus_Striatum mm9 RNA polymerase Neural Corpus Striatum SRX65717...3,SRX657178,SRX657174,SRX657179 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.AllAg.Corpus_Striatum.bed ...

  16. File list: ALL.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Corpus_Striatum mm9 All antigens Neural Corpus Striatum SRX686035,...033,SRX148353,SRX657170,SRX657175,SRX323781,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.50.AllAg.Corpus_Striatum.bed ...

  17. File list: Unc.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Corpus_Striatum mm9 Unclassified Neural Corpus Striatum SRX148357,...SRX148356 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Corpus_Striatum.bed ...

  18. File list: InP.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Corpus_Striatum mm9 Input control Neural Corpus Striatum SRX686031...,SRX686032,SRX657175,SRX657170 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Corpus_Striatum.bed ...

  19. File list: ALL.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Corpus_Striatum mm9 All antigens Neural Corpus Striatum SRX686034,...355,SRX657170,SRX657175,SRX148352,SRX686037,SRX148353 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Corpus_Striatum.bed ...

  20. File list: Pol.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Corpus_Striatum mm9 RNA polymerase Neural Corpus Striatum SRX65717...4,SRX657179,SRX657173,SRX657178 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Corpus_Striatum.bed ...

  1. File list: His.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Corpus_Striatum mm9 Histone Neural Corpus Striatum SRX686034,SRX68...686038,SRX686037 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Corpus_Striatum.bed ...

  2. File list: ALL.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Corpus_Striatum mm9 All antigens Neural Corpus Striatum SRX686038,...356,SRX148353,SRX148355,SRX657170,SRX657175,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Corpus_Striatum.bed ...

  3. File list: InP.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Corpus_Striatum mm9 Input control Neural Corpus Striatum SRX686031...,SRX686032,SRX657170,SRX657175 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Corpus_Striatum.bed ...

  4. File list: Unc.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Corpus_Striatum mm9 Unclassified Neural Corpus Striatum SRX148357,...SRX148356 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Corpus_Striatum.bed ...

  5. File list: Unc.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Corpus_Striatum mm9 Unclassified Neural Corpus Striatum SRX148357,...SRX148356 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Corpus_Striatum.bed ...

  6. File list: Oth.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.10.AllAg.Corpus_Striatum mm9 TFs and others Neural Corpus Striatum SRX14835...4,SRX148355,SRX148352,SRX148353 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.10.AllAg.Corpus_Striatum.bed ...

  7. File list: InP.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Corpus_Striatum mm9 Input control Neural Corpus Striatum SRX686031...,SRX686032,SRX657170,SRX657175 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Corpus_Striatum.bed ...

  8. File list: Oth.Neu.50.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Corpus_Striatum mm9 TFs and others Neural Corpus Striatum SRX14835...4,SRX148355,SRX148353,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Corpus_Striatum.bed ...

  9. File list: His.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Corpus_Striatum mm9 Histone Neural Corpus Striatum SRX323783,SRX68...686034,SRX686033 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Corpus_Striatum.bed ...

  10. File list: Pol.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Corpus_Striatum mm9 RNA polymerase Neural Corpus Striatum SRX65717...4,SRX657179,SRX657178,SRX657173 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Corpus_Striatum.bed ...

  11. File list: InP.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Corpus_Striatum mm9 Input control Neural Corpus Striatum SRX686032...,SRX686031,SRX657170,SRX657175 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Corpus_Striatum.bed ...

  12. File list: Pol.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Corpus_Striatum mm9 RNA polymerase Neural Corpus Striatum SRX65717...3,SRX657178,SRX657179,SRX657174 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Corpus_Striatum.bed ...

  13. File list: Oth.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Corpus_Striatum mm9 TFs and others Neural Corpus Striatum SRX14835...4,SRX148355,SRX148353,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Corpus_Striatum.bed ...

  14. File list: Oth.Neu.05.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Corpus_Striatum mm9 TFs and others Neural Corpus Striatum SRX14835...4,SRX148353,SRX148355,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Corpus_Striatum.bed ...

  15. File list: Unc.Neu.10.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Corpus_Striatum mm9 Unclassified Neural Corpus Striatum SRX148357,...SRX148356 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Corpus_Striatum.bed ...

  16. File list: ALL.Neu.20.AllAg.Corpus_Striatum [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Corpus_Striatum mm9 All antigens Neural Corpus Striatum SRX323783,...034,SRX686033,SRX148353,SRX657175,SRX657170,SRX148352 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Corpus_Striatum.bed ...

  17. Cognitive performance correlates with the degree of dopaminergic degeneration in the associative part of the striatum in non-demented Parkinson's patients.

    Science.gov (United States)

    Kübler, Dorothee; Schroll, Henning; Buchert, Ralph; Kühn, Andrea A

    2017-09-01

    Parkinson's disease (PD) patients show cognitive deficits that are relevant in terms of prognosis and quality of life. Degeneration of striatal dopaminergic afferents proceeds from dorsal/caudal to anterior/ventral and is discussed to account for some of these symptoms. Treatment with dopamine (DA) has differential effects on cognitive dysfunctions, improving some and worsening others. We hypothesized that cognitive performance during the dopaminergic OFF state correlates with DAT availability in the associative striatum. 16 PD patients underwent motor and cognitive examination ON and OFF DA. Global cognition was measured using the Montréal Cognitive Assessment (MoCA) test and executive functioning using a Stroop test. Nigrostriatal dopaminergic innervation was characterized with [ 123 I]FP-CIT SPECT. A connectivity atlas of the striatum was used to assess DAT availability in functionally defined striatal subregions. Correlations between imaging data and behavioral data OFF medication were calculated. Correlations between DAT availability and MoCA performance in the dopaminergic OFF state was strongest in the associative part of the striatum (r = 0.674, p = 0.004). MoCA test performance did not differ between the ON and the OFF state. There was no correlation of DAT availability with Stroop performance in the OFF state but performance was significantly better during the ON state. Not only motor but also cognitive dysfunctions in PD are associated with striatal dopaminergic depletion. Cognitive decline in non-demented PD patients goes along with nigrostriatal degeneration, most pronounced in the associative subdivision of the striatum. In addition, the present findings suggest that executive dysfunctions are ameliorated by DA whereas global cognition is not improved by dopaminergic medication.

  18. Spike-timing dependent plasticity in the striatum

    Directory of Open Access Journals (Sweden)

    Elodie Fino

    2010-06-01

    Full Text Available The striatum is the major input nucleus of basal ganglia, an ensemble of interconnected sub-cortical nuclei associated with fundamental processes of action-selection and procedural learning and memory. The striatum receives afferents from the cerebral cortex and the thalamus. In turn, it relays the integrated information towards the basal ganglia output nuclei through which it operates a selected activation of behavioral effectors. The striatal output neurons, the GABAergic medium-sized spiny neurons (MSNs, are in charge of the detection and integration of behaviorally relevant information. This property confers to the striatum the ability to extract relevant information from the background noise and select cognitive-motor sequences adapted to environmental stimuli. As long-term synaptic efficacy changes are believed to underlie learning and memory, the corticostriatal long-term plasticity provides a fundamental mechanism for the function of the basal ganglia in procedural learning. Here, we reviewed the different forms of spike-timing dependent plasticity (STDP occurring at corticostriatal synapses. Most of the studies have focused on MSNs and their ability to develop long-term plasticity. Nevertheless, the striatal interneurons (the fast-spiking GABAergic, the NO synthase and cholinergic interneurons also receive monosynaptic afferents from the cortex and tightly regulated corticostriatal information processing. Therefore, it is important to take into account the variety of striatal neurons to fully understand the ability of striatum to develop long-term plasticity. Corticostriatal STDP with various spike-timing dependence have been observed depending on the neuronal sub-populations and experimental conditions. This complexity highlights the extraordinary potentiality in term of plasticity of the corticostriatal pathway.

  19. Differential contributions of the globus pallidus and ventral thalamus to stimulus-response learning in humans.

    Science.gov (United States)

    Schroll, Henning; Horn, Andreas; Gröschel, Christine; Brücke, Christof; Lütjens, Götz; Schneider, Gerd-Helge; Krauss, Joachim K; Kühn, Andrea A; Hamker, Fred H

    2015-11-15

    The ability to learn associations between stimuli, responses and rewards is a prerequisite for survival. Models of reinforcement learning suggest that the striatum, a basal ganglia input nucleus, vitally contributes to these learning processes. Our recently presented computational model predicts, first, that not only the striatum, but also the globus pallidus contributes to the learning (i.e., exploration) of stimulus-response associations based on rewards. Secondly, it predicts that the stable execution (i.e., exploitation) of well-learned associations involves further learning in the thalamus. To test these predictions, we postoperatively recorded local field potentials (LFPs) from patients that had undergone surgery for deep brain stimulation to treat severe movement disorders. Macroelectrodes were placed either in the globus pallidus or in the ventral thalamus. During recordings, patients performed a reward-based stimulus-response learning task that comprised periods of exploration and exploitation. We analyzed correlations between patients' LFP amplitudes and model-based estimates of their reward expectations and reward prediction errors. In line with our first prediction, pallidal LFP amplitudes during the presentation of rewards and reward omissions correlated with patients' reward prediction errors, suggesting pallidal access to reward-based teaching signals. Unexpectedly, the same was true for the thalamus. In further support of this prediction, pallidal LFP amplitudes during stimulus presentation correlated with patients' reward expectations during phases of low reward certainty - suggesting pallidal participation in the learning of stimulus-response associations. In line with our second prediction, correlations between thalamic stimulus-related LFP amplitudes and patients' reward expectations were significant within phases of already high reward certainty, suggesting thalamic participation in exploitation. Copyright © 2015 Elsevier Inc. All rights

  20. Complex Ventral Hernias: A Review of Past to Present.

    Science.gov (United States)

    Trujillo, Charles N; Fowler, Aaron; Al-Temimi, Mohammed H; Ali, Aamna; Johna, Samir; Tessier, Deron

    2018-01-01

    With the incidence of ventral hernias increasing, surgeons are faced with greater complexity in dealing with these conditions. Proper knowledge of the history and the advancements made in managing complex ventral hernias will enhance surgical results. This review article highlights the literature regarding complex ventral hernias, including a shift from a focus that stressed surgical technique toward a multimodal approach, which involves optimization and identification of suboptimal characteristics.

  1. Anti-RAGE antibody selectively blocks acute systemic inflammatory responses to LPS in serum, liver, CSF and striatum.

    Science.gov (United States)

    Gasparotto, Juciano; Ribeiro, Camila Tiefensee; Bortolin, Rafael Calixto; Somensi, Nauana; Fernandes, Henrique Schaan; Teixeira, Alexsander Alves; Guasselli, Marcelo Otavio Rodrigues; Agani, Crepin Aziz Jose O; Souza, Natália Cabral; Grings, Mateus; Leipnitz, Guilhian; Gomes, Henrique Mautone; de Bittencourt Pasquali, Matheus Augusto; Dunkley, Peter R; Dickson, Phillip W; Moreira, José Claudio Fonseca; Gelain, Daniel Pens

    2017-05-01

    Systemic inflammation induces transient or permanent dysfunction in the brain by exposing it to soluble inflammatory mediators. The receptor for advanced glycation endproducts (RAGE) binds to distinct ligands mediating and increasing inflammatory processes. In this study we used an LPS-induced systemic inflammation model in rats to investigate the effect of blocking RAGE in serum, liver, cerebrospinal fluid (CSF) and brain (striatum, prefrontal cortex, ventral tegmental area and substantia nigra). Intraperitoneal injection of RAGE antibody (50μg/kg) was followed after 1h by a single LPS (5mg/kg) intraperitoneal injection. Twenty-four hours later, tissues were isolated for analysis. RAGE antibody reduced LPS-induced inflammatory effects in both serum and liver; the levels of proinflammatory cytokines (TNF-α, IL-1β) were decreased and the phosphorylation/activation of RAGE downstream targets (ERK1/2, IκB and p65) in liver were significantly attenuated. RAGE antibody prevented LPS-induced effects on TNF-α and IL-1β in CSF. In striatum, RAGE antibody inhibited increases in IL-1β, Iba-1, GFAP, phospho-ERK1/2 and phospho-tau (ser202), as well as the decrease in synaptophysin levels. These effects were caused by systemic RAGE inhibition, as RAGE antibody did not cross the blood-brain barrier. RAGE antibody also prevented striatal lipoperoxidation and activation of mitochondrial complex II. In conclusion, blockade of RAGE is able to inhibit inflammatory responses induced by LPS in serum, liver, CSF and brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Chronic pramipexole treatment induces compulsive behavior in rats with 6-OHDA lesions of the substantia nigra and ventral tegmental area.

    Science.gov (United States)

    Dardou, D; Reyrolle, L; Chassain, C; Durif, F

    2017-08-14

    Dopamine replacement therapy (DRT) reduces motor symptoms in Parkinson's disease (PD), but also induces impulsive-compulsive behavior (ICB) in up to 25% of PD patients. These non-motor side effects of DRT generally follow a gradual transition from impulsive to compulsive-like-i.e. repetitive, compelled, and non-pleasurable-behavior. Here, we investigated the effect of chronic pramipexole (PPX) treatment on the onset of compulsive-like behavior, measured via the post-training signal attenuation (PTSA) procedure, in rats with dopaminergic lesions. Accordingly, we aimed to mimic chronic DRT in a PD context, and obtain data on the brain regions that potentially sustain this type of compulsive behavior pattern in rats. We observed that the lesion or treatment alone did not induce compulsive lever pressing in rats. However, rats with lesions of the substantia nigra and ventral tegmental area as well as with chronic PPX treatment developed strong compulsive lever-pressing behavior, as measured via PTSA. Furthermore, when chronic PPX treatment was discontinued before the PTSA test, the lesioned rats showed the same level of compulsive behavior as sham-operated rats. In fact, lesioned, treated, and compulsive-like rats showed significantly higher Fos expression in the orbitofrontal cortex and dorsal striatum. Thus, chronic PPX treatment in PD rats induced a strong compulsive-like behavior. Furthermore, Fos expression mapping suggests that the behavior was sustained via the activation of the orbitofrontal cortex and dorsal striatum. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of motion correction for dynamic [11C]Raclopride brain PET data on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Kim, Yu Kyeong; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun; Choe, Yearn Seong; Kang, Eun Joo

    2005-01-01

    Neuroreceptor PET studies require 60-120 minutes to complete and head motion of the subject during the PET scan increases the uncertainty in measured activity. In this study, we investigated the effects of the data-driven head motion correction on the evaluation of endogenous dopamine release (DAR) in the striatum during the motor task which might have caused significant head motion artifact. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a momentary reward for 40 min. Dynamic frames acquired during the equilibrium condition (pre-task: 30-50 min, task: 70-90 min, post-task:110-120 min) were realigned to the first frame in pre-task condition. Intra-condition registrations between the frames were performed, and average image for each condition was created and registered to the pre-task image (inter-condition registration). Pre-task PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the others. Volumes of interest (VOI) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DAR was calculated as the percent change of BP during and after the task. SPM analyses on the BP parametric images were also performed to explore the regional difference in the effects of head motion on BP and DAR estimation. Changes in position and orientation of the striatum during the PET scans were observed before the head motion correction. BP values at pre-task condition were not changed significantly after the intra-condition registration. However, the BP values during and after the task and DAR were significantly changed after the correction. SPM analysis also showed that the extent and significance of the BP differences were significantly changed by the head motion correction

  4. Quantitative [18F]fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs

    DEFF Research Database (Denmark)

    Dall, Annette Møller; Danielsen, Erik Hvid; Sørensen, Jens Christian

    2002-01-01

    , and again at 3 and 6 months postsurgery, all animals were subjected to quantitative [18F]fluorodopa PET scans and testing for motor impairment. At the end of 6 months, tyrosine hydroxylase (TH)-containing neurons were counted in the grafts by stereological methods. The MPTP poisoning persistently reduced...... treatment, or which received bilateral grafts to the striatum of tissue blocks harvested from E28 fetal pig mesencephalon with and without immunosuppressive treatment after grafting, or with additional co-grafting with immortalized rat neural cells transfected to produce GDNF. In the baseline condition......-expressing HiB5 cells, a rat-derived neural cell line, tended to impair the survival of the grafts with the lowest values for graft volumes, TH-positive cell numbers, behavioral scores, and relative DOPA decarboxylase activity. From the results we conclude that pig ventral mesencephalic allografts can restore...

  5. ARE LEFT HANDED SURGEONS LEFT OUT?

    OpenAIRE

    SriKamkshi Kothandaraman; Balasubramanian Thiagarajan

    2012-01-01

    Being a left-handed surgeon, more specifically a left-handed ENT surgeon, presents a unique pattern of difficulties.This article is an overview of left-handedness and a personal account of the specific difficulties a left-handed ENT surgeon faces.

  6. Loss of metabolites from monkey striatum during PET with FDOPA

    DEFF Research Database (Denmark)

    Cumming, P; Munk, O L; Doudet, D

    2001-01-01

    diffusion of [(18)F]fluorodopamine metabolites from brain. Consequently, time-radioactivity recordings of striatum are progressively influenced by metabolite loss. In linear analyses, the net blood-brain clearance of FDOPA (K(D)(i), ml g(-1) min(-1)) can be corrected for this loss by the elimination rate...... constant k(Lin)(cl) (min(-1)). Similarly, the DOPA decarboxylation rate constant (k(D)(3), min(-1)) calculated by compartmental analysis can also be corrected for metabolite loss by the elimination rate constant k(DA)(9) (min(-1)). To compare the two methods, we calculated the two elimination rate...

  7. The issue of ventral versus dorsal approach in bulbar urethral ...

    African Journals Online (AJOL)

    E. Palminteri

    From surgical point of view, the Barbagli Dorsal Grafting by Dor- sal approach [8] gives a good support for the graft; Barbagli stated that his technique offers a wider augmentation than ventral or dorsal grafting using the ventral approach. The good spongiosum covering seems reduce the risk of fistula; in reality there is a ...

  8. Development of the ventral body wall in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Köhler, S. Eleonore; Lamers, Wouter H.

    2015-01-01

    Migratory failure of somitic cells is the commonest explanation for ventral body wall defects. However, the embryo increases ~ 25-fold in volume in the period that the ventral body wall forms, so that differential growth may, instead, account for the observed changes in topography. Human embryos

  9. The issue of ventral versus dorsal approach in bulbar urethral ...

    African Journals Online (AJOL)

    E. Palminteri

    increased over time the use of Ventral Graft and decreased the use of dorsal graft [7]. From surgical point of view, the Barbagli Dorsal Grafting by Dor- sal approach ... seems reduce the risk of fistula; in reality there is a similar rate of fistula with both ventral and dorsal grafting. The disadvantage of the dorsal approach is that it ...

  10. Human substantia nigra and ventral tegmental area involvement in computing social error signals during the ultimatum game.

    Science.gov (United States)

    Hétu, Sébastien; Luo, Yi; D'Ardenne, Kimberlee; Lohrenz, Terry; Montague, P Read

    2017-12-01

    As models of shared expectations, social norms play an essential role in our societies. Since our social environment is changing constantly, our internal models of it also need to change. In humans, there is mounting evidence that neural structures such as the insula and the ventral striatum are involved in detecting norm violation and updating internal models. However, because of methodological challenges, little is known about the possible involvement of midbrain structures in detecting norm violation and updating internal models of our norms. Here, we used high-resolution cardiac-gated functional magnetic resonance imaging and a norm adaptation paradigm in healthy adults to investigate the role of the substantia nigra/ventral tegmental area (SN/VTA) complex in tracking signals related to norm violation that can be used to update internal norms. We show that the SN/VTA codes for the norm's variance prediction error (PE) and norm PE with spatially distinct regions coding for negative and positive norm PE. These results point to a common role played by the SN/VTA complex in supporting both simple reward-based and social decision making. © The Author (2017). Published by Oxford University Press.

  11. Chemical architecture of the posterior striatum in the human brain.

    Science.gov (United States)

    Bernácer, J; Prensa, L; Giménez-Amaya, J M

    2008-01-01

    The neurochemical organization of the posterior caudate nucleus (CN) (body, gyrus and tail) and putamen (Put) was analyzed in the human brain using adjacent sections stained for acetylcholinesterase (AChE), limbic system-associated membrane protein (LAMP), enkephalin (ENK), parvalbumin (PV), calbindin (CB) and tyrosine hydroxylase (TH). Striosomes were visualized in all striatal regions but the anterior two thirds of the CN tail. They were highly immunoreactive (-ir) for ENK and LAMP, devoid of PV and AChE staining, and surrounded by a ring of tissue with pale TH- and CB-ir neuropil. In the Put, other rings of tissue completely free of ENK labeling surrounded certain striosomes (clear septa). In the CN body, gyrus and tail some markers revealed gradients and heterogeneities along the dorsoventral and mediolateral axes. A rim of striatal tissue densely stained for ENK and LAMP and poorly labeled for PV was noticeable along the lateral edge of the Put and the dorsolateral sector of the CN body. Our results illustrate a chemical architecture in the posterior striatum that is heterogeneous and slightly different from that found in the more anterior striatum.

  12. Social dominance in rats: effects on cocaine self-administration, novelty reactivity and dopamine receptor binding and content in the striatum.

    Science.gov (United States)

    Jupp, Bianca; Murray, Jennifer E; Jordan, Emily R; Xia, Jing; Fluharty, Meg; Shrestha, Saurav; Robbins, Trevor W; Dalley, Jeffrey W

    2016-02-01

    Studies in human and non-human primates demonstrate that social status is an important determinant of cocaine reinforcement. However, it is unclear whether social rank is associated with other traits that also predispose to addiction and whether social status similarly predicts cocaine self-administration in rats. The objective of this study is to investigate whether social ranking assessed using a resource competition task affects (i) the acquisition, maintenance and reinstatement of cocaine self-administration; (ii) the dopaminergic markers in the striatum; and (iii) the expression of ancillary traits for addiction. Social ranking was determined in group-housed rats based upon drinking times during competition for a highly palatable liquid. Rats were then evaluated for cocaine self-administration and cue-induced drug reinstatement or individual levels of impulsivity, anxiety and novelty-induced locomotor activity. Finally, dopamine content, dopamine transporter (DAT) and dopamine D2/D3 (D2/3) receptor binding were measured postmortem in the dorsal and ventral striatum. Rats deemed socially dominant showed enhanced novelty reactivity but were neither more impulsive nor anxious compared with subordinate rats. Dominant rats additionally maintained higher rates of cocaine self-administration but showed no differences in the acquisition, extinction and reinstatement of this behaviour. D2/3 binding was elevated in the nucleus accumbens shell and dorsal striatum of dominant rats when compared to subordinate rats, and was accompanied by elevated DAT and reduced dopamine content in the nucleus accumbens shell. These findings show that social hierarchy influences the rate of self-administered cocaine but not anxiety or impulsivity in rats. Similar to non-human primates, these effects may be mediated by striatal dopaminergic systems.

  13. Basal ganglia and thalamic input from neurons located within the ventral tier cell cluster region of the substantia nigra pars compacta in the rat.

    Science.gov (United States)

    Cebrián, Carolina; Prensa, Lucía

    2010-04-15

    The most caudally located dopaminergic (DA) ventral tier neurons of the substantia nigra pars compacta (SNc) form typical cell clusters that are deeply embedded in the substantia nigra pars reticulata (SNr). Here we examine the efferent projections of 35 neurons located in the SNr region where these SNc cell clusters reside. The neuronal cell body was injected with biotinylated dextran amine so as to trace each complete axon in the sagittal or the coronal plane. Electrophysiological guidance guaranteed that the tracer was ejected among neurons displaying a typical SNc discharge pattern. Furthermore, double immunofluorescence and immunohistochemical labeling ensured that the tracer deposits were placed within the DA cell clusters. Three types of projection neurons occurred in the SNc ventral tier cell cluster region: type I neurons, projecting to basal ganglia; type II neurons, targeting both the basal ganglia and thalamus; and type III neurons, projecting only to the thalamus. The striatum was targeted by most of the type I and II neurons and the innervation reached both the striosome/subcallosal streak and matrix compartments. Many nigrostriatal fibers provided collaterals to the globus pallidus and, less frequently, to the subthalamic nucleus. At a thalamic level, type II and III neurons preferentially targeted the reticular, ventral posterolateral, and ventral medial nuclei. Our results reveal that the SNr region where DA ventral tier cell clusters reside harbors neurons projecting to the basal ganglia and/or the thalamus, thus suggesting that neurodegeneration of nigral neurons in Parkinson's disease might affect various extrastriatal basal ganglia structures and multiple thalamic nuclei. (c) 2009 Wiley-Liss, Inc.

  14. Neuronal migration and ventral subtype identity in the telencephalon depend on SOX1.

    Directory of Open Access Journals (Sweden)

    Antigoni Ekonomou

    2005-06-01

    Full Text Available Little is known about the molecular mechanisms and intrinsic factors that are responsible for the emergence of neuronal subtype identity. Several transcription factors that are expressed mainly in precursors of the ventral telencephalon have been shown to control neuronal specification, but it has been unclear whether subtype identity is also specified in these precursors, or if this happens in postmitotic neurons, and whether it involves the same or different factors. SOX1, an HMG box transcription factor, is expressed widely in neural precursors along with the two other SOXB1 subfamily members, SOX2 and SOX3, and all three have been implicated in neurogenesis. SOX1 is also uniquely expressed at a high level in the majority of telencephalic neurons that constitute the ventral striatum (VS. These neurons are missing in Sox1-null mutant mice. In the present study, we have addressed the requirement for SOX1 at a cellular level, revealing both the nature and timing of the defect. By generating a novel Sox1-null allele expressing beta-galactosidase, we found that the VS precursors and their early neuronal differentiation are unaffected in the absence of SOX1, but the prospective neurons fail to migrate to their appropriate position. Furthermore, the migration of non-Sox1-expressing VS neurons (such as those expressing Pax6 was also affected in the absence of SOX1, suggesting that Sox1-expressing neurons play a role in structuring the area of the VS. To test whether SOX1 is required in postmitotic cells for the emergence of VS neuronal identity, we generated mice in which Sox1 expression was directed to all ventral telencephalic precursors, but to only a very few VS neurons. These mice again lacked most of the VS, indicating that SOX1 expression in precursors is not sufficient for VS development. Conversely, the few neurons in which Sox1 expression was maintained were able to migrate to the VS. In conclusion, Sox1 expression in precursors is not

  15. Ventral striatal hyperconnectivity during rewarded interference control in adolescents with ADHD.

    Science.gov (United States)

    Ma, Ili; van Holstein, Mieke; Mies, Gabry W; Mennes, Maarten; Buitelaar, Jan; Cools, Roshan; Cillessen, Antonius H N; Krebs, Ruth M; Scheres, Anouk

    2016-09-01

    Attention-deficit/hyperactivity disorder (ADHD) is characterized by cognitive deficits (e.g., interference control) and altered reward processing. Cognitive control is influenced by incentive motivation and according to current theoretical models, ADHD is associated with abnormal interactions between incentive motivation and cognitive control. However, the neural mechanisms by which reward modulates cognitive control in individuals with ADHD are unknown. We used event-related functional resonance imaging (fMRI) to study neural responses during a rewarded Stroop color-word task in adolescents (14-17 years) with ADHD (n = 25; 19 boys) and healthy controls (n = 33; 22 boys). Adolescents with ADHD showed increased reward signaling within the superior frontal gyrus and ventral striatum (VS) relative to controls. Importantly, functional connectivity analyses revealed a hyperconnectivity between VS and motor control regions in the ADHD group, as a function of reward-cognitive control integration. Connectivity was associated with performance improvement in controls but not in the ADHD group, suggesting inefficient connectivity. Adolescents with ADHD show increased neural sensitivity to rewards and its interactions with interference control in VS and motor regions, respectively. The findings support theoretical models of altered reward-cognitive control integration in individuals with ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Altered Neuronal Dynamics in the Striatum on the Behavior of Huntingtin Interacting Protein 14 (HIP14 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Ana María Estrada-Sánchez

    2013-11-01

    Full Text Available Huntington’s disease (HD, a neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene, impairs information processing in the striatum, which, as part of the basal ganglia, modulates motor output. Growing evidence suggests that huntingtin interacting protein 14 (HIP14 contributes to HD neuropathology. Here, we recorded local field potentials (LFPs in the striatum as HIP14 knockout mice and wild-type controls freely navigated a plus-shaped maze. Upon entering the choice point of the maze, HIP14 knockouts tend to continue in a straight line, turning left or right significantly less often than wild-types, a sign of motor inflexibility that also occurs in HD mice. Striatal LFP activity anticipates this difference. In wild-types, the power spectral density pattern associated with entry into the choice point differs significantly from the pattern immediately before entry, especially at low frequencies (≤13 Hz, whereas HIP14 knockouts show no change in LFP activity as they enter the choice point. The lack of change in striatal activity may explain the turning deficit in the plus maze. Our results suggest that HIP14 plays a critical role in the aberrant behavioral modulation of striatal neuronal activity underlying motor inflexibility, including the motor signs of HD.

  17. Tracking Training-Related Plasticity by Combining fMRI and DTI: The Right Hemisphere Ventral Stream Mediates Musical Syntax Processing.

    Science.gov (United States)

    Oechslin, Mathias S; Gschwind, Markus; James, Clara E

    2018-04-01

    As a functional homolog for left-hemispheric syntax processing in language, neuroimaging studies evidenced involvement of right prefrontal regions in musical syntax processing, of which underlying white matter connectivity remains unexplored so far. In the current experiment, we investigated the underlying pathway architecture in subjects with 3 levels of musical expertise. Employing diffusion tensor imaging tractography, departing from seeds from our previous functional magnetic resonance imaging study on music syntax processing in the same participants, we identified a pathway in the right ventral stream that connects the middle temporal lobe with the inferior frontal cortex via the extreme capsule, and corresponds to the left hemisphere ventral stream, classically attributed to syntax processing in language comprehension. Additional morphometric consistency analyses allowed dissociating tract core from more dispersed fiber portions. Musical expertise related to higher tract consistency of the right ventral stream pathway. Specifically, tract consistency in this pathway predicted the sensitivity for musical syntax violations. We conclude that enduring musical practice sculpts ventral stream architecture. Our results suggest that training-related pathway plasticity facilitates the right hemisphere ventral stream information transfer, supporting an improved sound-to-meaning mapping in music.

  18. Kinetic diversity of dopamine transmission in the dorsal striatum.

    Science.gov (United States)

    Taylor, I Mitch; Nesbitt, Kathryn M; Walters, Seth H; Varner, Erika L; Shu, Zhan; Bartlow, Kathleen M; Jaquins-Gerstl, Andrea S; Michael, Adrian C

    2015-05-01

    Dopamine (DA), a highly significant neurotransmitter in the mammalian central nervous system, operates on multiple time scales to affect a diverse array of physiological functions. The significance of DA in human health is heightened by its role in a variety of pathologies. Voltammetric measurements of electrically evoked DA release have brought to light the existence of a patchwork of DA kinetic domains in the dorsal striatum (DS) of the rat. Thus, it becomes necessary to consider how these domains might be related to specific aspects of DA's functions. Responses evoked in the fast and slow domains are distinct in both amplitude and temporal profile. Herein, we report that responses evoked in fast domains can be further classified into four distinct types, types 1-4. The DS, therefore, exhibits a total of at least five distinct evoked responses (four fast types and one slow type). All five response types conform to kinetic models based entirely on first-order rate expressions, which indicates that the heterogeneity among the response types arises from kinetic diversity within the DS terminal field. We report also that functionally distinct subregions of the DS express DA kinetic diversity in a selective manner. Thus, this study documents five response types, provides a thorough kinetic explanation for each of them, and confirms their differential association with functionally distinct subregions of this key DA terminal field. The dorsal striatum is composed of five significantly different dopamine domains (types 1-4 and slow, average ± SEM responses to medial forebrain bundle (MFB) stimulation are shown in the figure). Responses from each of these five domains exhibit significantly different ascending and descending kinetic profiles and return to a long lasting elevated dopamine state, termed the dopamine hang-up. All features of these responses are modeled with high correlation using first-order modeling as well as our recently published restricted diffusion

  19. Multifunctional Roles of the Ventral Stream in Language Models: Advanced Segmental Quantification in Post-Stroke Aphasic Patients

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2018-02-01

    Full Text Available In the dual-route language model, the dorsal pathway is known for sound-to-motor mapping, but the role of the ventral stream is controversial. With the goal of enhancing our understanding of language models, this study investigated the diffusion characteristics of candidate tracts in aphasic patients. We evaluated 14 subacute aphasic patients post-stroke and 11 healthy controls with language assessment and diffusion magnetic resonance imaging. Voxel-based lesion-symptom mapping found multiple linguistic associations for the ventral stream, while automated fiber quantification (AFQ showed, via reduced fractional anisotropy (FA and axial diffusivity with increased radial diffusivity (all corrected p < 0.05, that the integrity of both the left dorsal and ventral streams was compromised. The average diffusion metrics of each fascicle provided by AFQ also confirmed that voxels with significant FA-language correlations were located in the ventral tracts, including the left inferior fronto-occipital fascicle (IFOF (comprehension: r = 0.839, p = 0.001; repetition: r = 0.845, p = 0.001; naming: r = 0.813, p = 0.002; aphasia quotient: r = 0.847, p = 0.001 and uncinate fascicle (naming: r = 0.948, p = 0.001. Furthermore, point-wise AFQ revealed that the segment of the left IFOF with the strongest correlations was its narrow stem. The temporal segment of the left inferior longitudinal fascicle was also found to correlate significantly with comprehension (r = 0.663, p = 0.03 and repetition (r = 0.742, p = 0.009. This preliminary study suggests that white matter integrity analysis of the ventral stream may have the potential to reveal aphasic severity and guide individualized rehabilitation. The left IFOF, specifically its narrow stem segment, associates with multiple aspects of language, indicating an important role in semantic processing and multimodal linguistic functions.

  20. Language Processing within the Striatum: Evidence from a PET Correlation Study in Huntington's Disease

    Science.gov (United States)

    Teichmann, Marc; Gaura, Veronique; Demonet, Jean-Francois; Supiot, Frederic; Delliaux, Marie; Verny, Christophe; Renou, Pierre; Remy, Philippe; Bachoud-Levi, Anne-Catherine

    2008-01-01

    The role of sub-cortical structures in language processing, and more specifically of the striatum, remains controversial. In line with psycholinguistic models stating that language processing implies both the recovery of lexical information and the application of combinatorial rules, the striatum has been claimed to be involved either in the…

  1. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

    NARCIS (Netherlands)

    Willuhn, Ingo; Burgeno, Lauren M; Groblewski, Peter A; Phillips, Paul E M

    Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum is thought to assume control over drug seeking. We measured

  2. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum

    NARCIS (Netherlands)

    Willuhn, Ingo; Burgeno, Lauren M.; Groblewski, Peter A.; Phillips, Paul E. M.

    2014-01-01

    Drug addiction is a neuropsychiatric disorder marked by escalating drug use. Dopamine neurotransmission in the ventromedial striatum (VMS) mediates acute reinforcing effects of abused drugs, but with protracted use the dorsolateral striatum is thought to assume control over drug seeking. We measured

  3. Establishment and initial experiences from the Danish Ventral Hernia Database

    DEFF Research Database (Denmark)

    Helgstrand, F; Rosenberg, J; Bay-Nielsen, M

    2010-01-01

    , use of mesh or no mesh, type of suture material, and placement of the mesh. A total of 5,629 elective and 661 acute ventral hernia repairs were registered. After the first 2 years the registration rate was 70%. CONCLUSION: The first national ventral hernia database has been established. Preliminary...... of the Danish Ventral Hernia Database (DVHD). Furthermore, the first 2-year data from 2007 to 2008 are presented. METHODS: Registrations were based on surgeons' web registrations and validated by cross checking with data from the Danish National Patient Register. RESULTS: The DVHD was established in June 2006......% of all hernia repairs as in the Danish Inguinal Hernia Database....

  4. Chemical heterogeneity of the striosomal compartment in the human striatum.

    Science.gov (United States)

    Prensa, L; Giménez-Amaya, J M; Parent, A

    1999-11-01

    The neurochemical organization of the striosomal compartment in the human striatum was analyzed by histochemical and immunohistochemical techniques applied to postmortem tissue from normal individuals. The striosomes were delineated by using the following markers: acetylcholinesterase (AChE), enkephalin (ENK), substance P (SP), calbindin-D28k (CB), parvalbumin (PV), calretinin (CR), limbic system-associated membrane protein (LAMP), choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), and NADPH-diaphorase. Comparisons were made between striosomal boundaries, as outlined by each marker applied on adjacent sections, and particular attention was paid to possible variations in the chemical features of striosomes along the rostrocaudal extent of the striatum. The main findings of this study are as follows: 1) the striosomal compartment is composed of two chemically distinct domains: a core and a peripheral region; 2) the core is largely devoid of CB and displays a less intense staining for ENK and LAMP than the peripheral region; 3) although striosomes are largely devoid of AChE, the activity of this enzyme is slightly higher in the core than in the peripheral region; 4) the core and peripheral regions are weakly stained for PV and intensely stained for SP; 5) ChAT-, CR- and NADPH-diaphorase-positive neurons are preferentially distributed in the peripheral region; 6) at rostral striatal levels, striosomes are largely devoid of TH, whereas the inverse is true caudally; and 7) at caudal striatal levels, the peripheral region of striosomes is intensely stained for CB and ChAT. These results demonstrate that the striosomes in human display a strikingly complex and heterogeneous chemical architecture. Copyright 1999 Wiley-Liss, Inc.

  5. In vitro autoradiography of ionotropic glutamate receptors in hippocampus and striatum of aged Long-Evans rats: relationship to spatial learning

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, M. [Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Bizon, J.L. [Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Nicolle, M.M. [Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States)

    1996-08-02

    Using in vitro autoradiography, we investigated [{sup 3}H]{alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, [{sup 3}H]kainate and [{sup 3}H]N-methyl-d-aspartate binding in two forebrain regions, the hippocampus and striatum, of young (four months of age) and aged (24-25 months of age) Long-Evans rats that had previously been tested for spatial learning ability in the Morris water maze. Although there was substantial preservation of binding in the aged rats, reductions in binding were present in the aged rats that were specific to ligand and anatomical region. In the hippocampus of aged rats, [{sup 3}H]{alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionate binding in CA1 and [{sup 3}H]kainate binding in CA3 were reduced. In contrast, N-methyl-d-aspartate binding was not significantly different between age groups. There was evidence of sprouting in the dentate gyrus molecular layer of aged rats, indicated by changes in the topography of [{sup 3}H]kainate binding. Binding density was analysed with respect to patch/matrix compartmentalization in the striatum. The most striking result was a large decrease in N-methyl-d-aspartate binding in aged rats that was not limited to any dorsal/ventral or patch/matrix area of the striatum. Additionally, [{sup 3}H]kainate binding in striatal matrix was modestly reduced in aged rats. Of these age effects, only N-methyl-d-aspartate binding in the striatum and [{sup 3}H]kainate binding in the CA3 region of the hippocampus were correlated with spatial learning, with lower binding in the aged rats associated with better spatial learning ability.Age-related alterations in ionotropic glutamate receptors differ with respect to the receptor subtype and anatomical region examined. The age effects were not neccessarily indicative of cognitive decline, as only two age-related binding changes were correlated with spatial learning. Interestingly, in these instances, lower binding in the aged rats was associated with preserved spatial

  6. Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians.

    Science.gov (United States)

    Dittinger, Eva; Valizadeh, Seyed Abolfazl; Jäncke, Lutz; Besson, Mireille; Elmer, Stefan

    2018-02-01

    Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning. © 2017 Wiley Periodicals, Inc.

  7. A review of available prosthetics for ventral hernia repair.

    Science.gov (United States)

    Shankaran, Vidya; Weber, Daniel J; Reed, R Lawrence; Luchette, Fred A

    2011-01-01

    To review mesh products currently available for ventral hernia repair and to evaluate their efficacy in complex repair, including contaminated and reoperative fields. Although commonly referenced, the concept of the ideal prosthetic has never been fully realized. With the development of newer prosthetics and approaches to the ventral hernia repair, many surgeons do not fully understand the properties of the available prosthetics or the circumstances that warrant the use of a specific mesh. A systematic review of published literature from 1951 to June of 2009 was conducted to identify articles relating to ventral hernia repairs and the use of prosthetics in herniorrhaphy. Important differences exist between the synthetics, composites, and biologic prosthetics used for ventral hernia repair in terms of mechanics, cost, and the ideal situation in which each should be used. The use of synthetic mesh remains an appropriate solution for most ventral hernia repairs. Laparoscopic ventral hernia repair has created a niche for both expanded polytetrafluoroethylene and composite mesh, as they are suited to intraperitoneal placement. Preliminary studies have demonstrated that the newer biologic prosthetics are reasonable options for hernia repair in contaminated fields and for large abdominal wall defects; however, more studies need to be done before advocating the use of these biologics in other settings.

  8. Inhibiting PKM[zeta] Reveals Dorsal Lateral and Dorsal Medial Striatum Store the Different Memories Needed to Support Adaptive Behavior

    Science.gov (United States)

    Pauli, Wolfgang M.; Clark, Alexandra D.; Guenther, Heidi J.; O'Reilly, Randall C.; Rudy, Jerry W.

    2012-01-01

    Evidence suggests that two regions of the striatum contribute differential support to instrumental response selection. The dorsomedial striatum (DMS) is thought to support expectancy-mediated actions, and the dorsolateral striatum (DLS) is thought to support habits. Currently it is unclear whether these regions store task-relevant information or…

  9. Kinematics of ventrally mediated grasp-to-eat actions: right-hand advantage is dependent on dorsal stream input.

    Science.gov (United States)

    Beke, Clarissa; Flindall, Jason W; Gonzalez, Claudia L R

    2018-03-27

    Studies have suggested a left-hemisphere specialization for visually guided grasp-to-eat actions by way of task-dependent kinematic asymmetries (i.e., smaller maximum grip apertures for right-handed grasp-to-eat movements than for right-handed grasp-to-place movements or left-handed movements of either type). It is unknown, however, whether this left-hemisphere/right-hand kinematic advantage is reliant on the dorsal "vision-for-action" visual stream. The present study investigates the kinematic differences between grasp-to-eat and grasp-to place actions performance during closed-loop (i.e., dorsally mediated) and open-loop delay (i.e., ventrally mediated) conditions. Twenty-one right-handed adult participants were asked to reach to grasp small food items to (1) eat them, or (2) place them in a container below the mouth. Grasps were performed in both closed-loop and open-loop delay conditions, in separate sessions. We show that participants displayed the right-hand grasp-to-eat kinematic advantage in the closed-loop condition, but not in the open-loop delay condition. As no task-dependent kinematic differences were found in ventrally mediated grasps, we posit that the left-hemisphere/right-hand advantage is dependent on dorsal stream processing.

  10. Alleviation of overtraining reversal effect by transient inactivation of the dorsal striatum.

    Science.gov (United States)

    Van Golf Racht-Delatour, B; Massioui, N E

    2000-09-01

    In this study, we investigated the role of the dorsal striatum in the acquisition and the use (retrieval) of a specific learning developed during overtraining. The paradigm was such that rats had to respond differentially to two signals in order to obtain food or to avoid an electrical footshock. Overtraining was aimed at eliciting a facilitative effect on discrimination reversal as compared to simply trained rats. In this way, transient inactivation of the dorsal striatum by lidocaine enabled us to investigate, separately, the role of this structure during overtraining and reversal. The data show that inactivating the dorsal striatum before each reversal session prevented the overtraining reversal effect observed in control rats. Moreover, inactivation of the dorsal striatum during overtraining had no effect on the level of discriminative performance just as it did not affect the subsequent facilitative effect on reversal. These results show that even though the striatum might normally be part of a routine automatic system, clearly its contribution is not essential. Indeed, despite inactivation of the striatum in overtrained rats, their ability to develop an efficient selection process that can be used during reversal was observed. However, the integrity of the striatum became essential in order to mediate the modification of behaviour when this behavioural routine formed during overtraining had to be modified during reversal.

  11. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    Renana eEitan

    2013-10-01

    Full Text Available Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN, an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson’s disease (PD. This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12-30Hz, the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs.In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and

  12. The dorsomedial striatum mediates Pavlovian appetitive conditioning and food consumption.

    Science.gov (United States)

    Cole, Sindy; Stone, Andrew D; Petrovich, Gorica D

    2017-12-01

    The dorsomedial striatum (DMS) is an important sensorimotor region mediating the acquisition of goal-directed instrumental reward learning and behavioral flexibility. However, whether the DMS also regulates Pavlovian cue-food learning is less clear. The current study used excitotoxic lesions to determine whether the DMS is critical in Pavlovian appetitive learning and behavior, using discriminative conditioning and reversal paradigms. The results showed that DMS lesions transiently retarded cue-food learning and subsequent reversal of this learning. Rats with DMS lesions selectively attenuated responding to a food cue but not a control cue, early in training, suggesting the DMS is involved when initial associations are formed. Similarly, initial reversal learning was attenuated in rats with DMS lesions, which suggests impaired flexibility to adjust behavior when the cue meaning is reversed. We also examined the effect of DMS lesions on food intake during tests with access to a highly palatable food along with standard chow diet. Rats with DMS lesions showed an altered pattern of intake, with an initial reduction in high-fat diet followed by an increase in chow consumption. These results demonstrate that the DMS has a role in mediating cue-food learning and its subsequent reversal, as well as changes in food intake when a choice is provided. Together, these results demonstrate the DMS is involved in reward associative learning and reward consumption, when behavioral flexibility is needed to adjust responding or consumption to match the current value. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. The Sensory Striatum Is Permanently Impaired by Transient Developmental Deprivation

    Directory of Open Access Journals (Sweden)

    Todd M. Mowery

    2017-06-01

    Full Text Available Corticostriatal circuits play a fundamental role in regulating many behaviors, and their dysfunction is associated with many neurological disorders. In contrast, sensory disorders, like hearing loss (HL, are commonly linked with processing deficits at or below the level of the auditory cortex (ACx. However, HL can be accompanied by non-sensory deficits, such as learning delays, suggesting the involvement of regions downstream of ACx. Here, we show that transient developmental HL differentially affected the ACx and its downstream target, the sensory striatum. Following HL, both juvenile ACx layer 5 and striatal neurons displayed an excitatory-inhibitory imbalance and lower firing rates. After hearing was restored, adult ACx neurons recovered balanced excitatory-inhibitory synaptic gain and control-like firing rates, but striatal neuron synapses and firing properties did not recover. Thus, a brief period of abnormal cortical activity may induce cellular impairments that persist into adulthood and contribute to neurological disorders that are striatal in origin.

  14. Distinct modulatory effects of satiety and sibutramine on brain responses to food images in humans: a double dissociation across hypothalamus, amygdala, and ventral striatum

    NARCIS (Netherlands)

    Fletcher, P.C.; Napolitano, A.; Skeggs, A.; Miller, S.R.; Delafont, B.; Cambridge, V.C.; de Wit, S.; Nathan, P.J.; Brooke, A.; O'Rahilly, S.; Farooqi, I.S.; Bullmore, E.T.

    2010-01-01

    We used functional magnetic resonance imaging to explore brain responses to food images in overweight humans, examining independently the impact of a prescan meal ("satiety") and the anti-obesity drug sibutramine, a serotonin and noradrenaline reuptake inhibitor. We identified significantly

  15. Mouse and human genetic analyses associate kalirin with ventral striatal activation during impulsivity and with alcohol misuse

    Directory of Open Access Journals (Sweden)

    Yolanda ePeña-Oliver

    2016-04-01

    Full Text Available Impulsivity is associated with a spectrum of psychiatric disorders including drug addiction. To investigate genetic associations with impulsivity and initiation of drug taking, we took a two-step approach. First, we identified genes whose expression level in prefrontal cortex, striatum and accumbens were associated with impulsive behaviour in the 5-choice serial reaction time task across 10 BXD recombinant inbred (BXD RI mouse strains and their progenitor C57BL/6J and DBA2/J strains. Behavioural data were correlated with regional gene expression using GeneNetwork (www.genenetwork.org, to identify 44 genes whose probability of association with impulsivity exceeded a false discovery rate of <0.05. We then interrogated the IMAGEN database of 1423 adolescents for potential associations of SNPs in human homologues of those genes identified in the mouse study, with brain activation during impulsive performance in the Monetary Incentive Delay task, and with novelty seeking scores from the Temperament and Character Inventory, as well as alcohol-experience. There was a significant overall association between the human homologues of impulsivity-related genes and percentage of premature responses in the MID task and with fMRI BOLD-response in ventral striatum (VS during reward anticipation. In contrast, no significant association was found between the polygenic scores and anterior cingulate cortex activation. Univariate association analyses revealed that the G allele (major of the intronic SNP rs6438839 in the KALRN gene was significantly associated with increased VS activation. Additionally, the A-allele (minor of KALRN intronic SNP rs4634050, belonging to the same haplotype block, was associated with increased frequency of binge drinking.

  16. Dorsal-to-Ventral Shift in Midbrain Dopaminergic Projections and Increased Thalamic/Raphe Serotonergic Function in Early Parkinson Disease.

    Science.gov (United States)

    Joutsa, Juho; Johansson, Jarkko; Seppänen, Marko; Noponen, Tommi; Kaasinen, Valtteri

    2015-07-01

    Loss of nigrostriatal neurons leading to dopamine depletion in the dorsal striatum is the pathologic hallmark of Parkinson disease contributing to the primary motor symptoms of the disease. However, Parkinson pathology is more widespread in the brain, affecting also other dopaminergic pathways and neurotransmitter systems, but these changes are less well characterized. This study aimed to investigate the mesencephalic striatal and extrastriatal dopaminergic projections together with extrastriatal serotonin transporter binding in Parkinson disease. Two hundred sixteen patients with Parkinson disease and 204 control patients (patients without neurodegenerative parkinsonism syndromes and normal SPECT imaging) were investigated with SPECT using the dopamine/serotonin transporter ligand (123)I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123)I-FP-CIT) in the clinical setting. The group differences and midbrain correlations were analyzed voxel by voxel over the entire brain. We found that Parkinson patients had lower (123)I-FP-CIT uptake in the striatum and ventral midbrain but higher uptake in the thalamus and raphe nuclei than control patients. In patients with Parkinson disease, the correlation of the midbrain tracer uptake was shifted from the putamen to widespread corticolimbic areas. All findings were highly significant at the voxel level familywise error-corrected P value of less than 0.05. Our findings show that Parkinson disease is associated not only with the degeneration of the nigrostriatal dopamine neurotransmission, but also with a parallel shift toward mesolimbic and mesocortical function. Furthermore, Parkinson disease patients seem to have upregulation of brain serotonin transporter function at the early phase of the disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory.

    Science.gov (United States)

    Akhlaghpour, Hessameddin; Wiskerke, Joost; Choi, Jung Yoon; Taliaferro, Joshua P; Au, Jennifer; Witten, Ilana B

    2016-09-16

    Several lines of evidence suggest that the striatum has an important role in spatial working memory. The neural dynamics in the striatum have been described in tasks with short delay periods (1-4 s), but remain largely uncharacterized for tasks with longer delay periods. We collected and analyzed single unit recordings from the dorsomedial striatum of rats performing a spatial working memory task with delays up to 10 s. We found that neurons were activated sequentially, with the sequences spanning the entire delay period. Surprisingly, this sequential activity was dissociated from stimulus encoding activity, which was present in the same neurons, but preferentially appeared towards the onset of the delay period. These observations contrast with descriptions of sequential dynamics during similar tasks in other brains areas, and clarify the contribution of the striatum to spatial working memory.

  18. Task-specific contribution of the human striatum to perceptual-motor skill learning.

    Science.gov (United States)

    Cavaco, Sara; Anderson, Steven W; Correia, Manuel; Magalhaes, Marina; Pereira, Claudia; Tuna, Assuncao; Taipa, Ricardo; Pinto, Pedro; Pinto, Claudia; Cruz, Romeu; Lima, Antonio Bastos; Castro-Caldas, Alexandre; da Silva, Antonio Martins; Damasio, Hanna

    2011-01-01

    Acquisition of new perceptual-motor skills depends on multiple brain areas, including the striatum. However, the specific contribution of each structure to this type of learning is still poorly understood. Focusing on the striatum, we proposed (a) to replicate the finding of impaired rotary pursuit (RP) and preserved mirror tracing (MT) in Huntington's disease (HD); and (b) to further explore this putative learning dissociation with other human models of striatal dysfunction (i.e., Parkinson's disease and focal vascular damage) and two new paradigms (i.e., Geometric Figures, GF, and Control Stick, CS) of skill learning. Regardless of the etiology, participants with damage to the striatum showed impaired learning of visuomotor tracking skills (i.e., RP and GF), whereas the ability to learn skills that require motor adaptation (i.e., MT and CS) was not affected. These results suggest a task-specific involvement of the striatum in the early stages of skill learning.

  19. Human dorsal striatum encodes prediction errors during observational learning of instrumental actions.

    Science.gov (United States)

    Cooper, Jeffrey C; Dunne, Simon; Furey, Teresa; O'Doherty, John P

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of others. In this study, we investigated the extent to which human dorsal striatum is involved in observational as well as experiential instrumental reward learning. Human participants were scanned with fMRI while they observed a confederate over a live video performing an instrumental conditioning task to obtain liquid juice rewards. Participants also performed a similar instrumental task for their own rewards. Using a computational model-based analysis, we found reward prediction errors in the dorsal striatum not only during the experiential learning condition but also during observational learning. These results suggest a key role for the dorsal striatum in learning instrumental associations, even when those associations are acquired purely by observing others.

  20. Dopaminergic modulation of the functional ventrodorsal architecture of the human striatum

    NARCIS (Netherlands)

    Piray, P.; Ouden, H.E.M. den; Schaaf, M.E. van der; Toni, I.; Cools, R.

    2017-01-01

    Interactions between motivational, cognitive, and motor regions of the striatum are crucial for implementing behavioral control. Work with experimental animals indicates that such interactions are sensitive to modulation by dopamine. Using systematic pharmacological manipulation of dopamine

  1. Prior auditory information shapes visual category-selectivity in ventral occipito-temporal cortex.

    Science.gov (United States)

    Adam, Ruth; Noppeney, Uta

    2010-10-01

    Objects in our natural environment generate signals in multiple sensory modalities. This fMRI study investigated the influence of prior task-irrelevant auditory information on visually-evoked category-selective activations in the ventral occipito-temporal cortex. Subjects categorized pictures as landmarks or animal faces, while ignoring the preceding congruent or incongruent sound. Behaviorally, subjects responded slower to incongruent than congruent stimuli. At the neural level, the lateral and medial prefrontal cortices showed increased activations for incongruent relative to congruent stimuli consistent with their role in response selection. In contrast, the parahippocampal gyri combined visual and auditory information additively: activation was greater for visual landmarks than animal faces and landmark-related sounds than animal vocalizations resulting in increased parahippocampal selectivity for congruent audiovisual landmarks. Effective connectivity analyses showed that this amplification of visual landmark-selectivity was mediated by increased negative coupling of the parahippocampal gyrus with the superior temporal sulcus for congruent stimuli. Thus, task-irrelevant auditory information influences visual object categorization at two stages. In the ventral occipito-temporal cortex auditory and visual category information are combined additively to sharpen visual category-selective responses. In the left inferior frontal sulcus, as indexed by a significant incongruency effect, visual and auditory category information are integrated interactively for response selection. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Monetary discounting and ventral striatal dopamine receptor availability in nontreatment-seeking alcoholics and social drinkers.

    Science.gov (United States)

    Oberlin, Brandon G; Albrecht, Daniel S; Herring, Christine M; Walters, James W; Hile, Karen L; Kareken, David A; Yoder, Karmen K

    2015-06-01

    Dopamine (DA) in the ventral striatum (VST) has long been implicated in addiction pathologies, yet its role in temporal decision-making is not well-understood. To determine if VST DA D2 receptor availability corresponds with greater impulsive choice in both nontreatment-seeking alcoholics (NTS) and social drinkers (SD). NTS subjects (n = 10) and SD (n = 13) received PET scans at baseline with the D2/D3 radioligand [(11)C]raclopride (RAC). Outside the scanner, subjects performed a delay discounting procedure with monetary rewards. RAC binding potential (BPND) was estimated voxelwise, and correlations were performed to test for relationships between VST BPND and delay discounting performance. Self-reported impulsivity was also tested for correlations with BPND. Across all subjects, greater impulsive choice for $20 correlated with lower BPND in the right VST. NTS showed greater impulsive choice than SD and were more impulsive by self-report. Across all subjects, the capacity of larger rewards to reduce impulsive choice (the magnitude effect) correlated negatively (p = 0.028) with problematic alcohol use (AUDIT) scores. Self-reported impulsivity did not correlate with BPND in VST. Preference for immediate reinforcement may reflect greater endogenous striatal DA or lower D2 number, or both. Alcoholic status did not mediate significant effects on VST BPND, suggesting minimal effects from alcohol exposure. The apparent lack of BPND correlation with self-reported impulsivity highlights the need for objective behavioral assays in the study of the neurochemical substrates of behavior. Finally, our results suggest that the magnitude effect may be more sensitive to alcohol-induced problems than single discounting measures.

  3. Activation of midbrain and ventral striatal regions implicates salience processing during a modified beads task.

    Directory of Open Access Journals (Sweden)

    Christine Esslinger

    Full Text Available INTRODUCTION: Metacognition, i.e. critically reflecting on and monitoring one's own reasoning, has been linked behaviorally to the emergence of delusions and is a focus of cognitive therapy in patients with schizophrenia. However, little is known about the neural processing underlying metacognitive function. To address this issue, we studied brain activity during a modified beads task which has been used to measure a "Jumping to Conclusions" (JTC bias in schizophrenia patients. METHODS: We used functional magnetic resonance imaging to identify neural systems active in twenty-five healthy subjects when solving a modified version of the "beads task", which requires a probabilistic decision after a variable amount of data has been requested by the participants. We assessed brain activation over the duration of a trial and at the time point of decision making. RESULTS: Analysis of activation during the whole process of probabilistic reasoning showed an extended network including the prefronto-parietal executive functioning network as well as medial parieto-occipital regions. During the decision process alone, activity in midbrain and ventral striatum was detected, as well as in thalamus, medial occipital cortex and anterior insula. CONCLUSIONS: Our data show that probabilistic reasoning shares neural substrates with executive functions. In addition, our finding that brain regions commonly associated with salience processing are active during probabilistic reasoning identifies a candidate mechanism that could underlie the behavioral link between dopamine-dependent aberrant salience and JTC in schizophrenia. Further studies with delusional schizophrenia patients will have to be performed to substantiate this link.

  4. Crossmodal recruitment of the ventral visual stream in congenital blindness

    DEFF Research Database (Denmark)

    Ptito, Maurice; Matteau, Isabelle; Zhi Wang, Arthur

    2012-01-01

    We used functional MRI (fMRI) to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform...... a tactile-form recognition task with the tongue display unit (TDU). Both groups learned the task at the same rate. In line with our hypothesis, the fMRI data showed that during nonhaptic shape recognition, blind subjects activated large portions of the ventral visual stream, including the cuneus, precuneus......, inferotemporal (IT), cortex, lateral occipital tactile vision area (LOtv), and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic...

  5. From orientations to objects: Configural processing in the ventral stream.

    Science.gov (United States)

    Wilson, Hugh R; Wilkinson, Frances

    2015-01-01

    The ventral or form vision hierarchy comprises a sequence of cortical areas in which successively more complex visual attributes are extracted, beginning with contour orientations in V1 and culminating in face and object representations at the highest levels. In addition, ventral areas exhibit increasing receptive field diameter by a factor of approximately three from area to area, and conversely neuron density decreases. We argue here that this is consistent with configural combination of adjacent orientations to form curves or angles, followed by combination of these to form descriptions of object shapes. Substantial data from psychophysics, functional magnetic resonance imaging (fMRI), and neurophysiology support this organization, and computational models consistent with it have also been proposed. We further argue that a key to the role of the ventral stream is dimensionality reduction in object representations.

  6. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  7. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  8. Topography of methylphenidate (ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides.

    Science.gov (United States)

    Yano, Motoyo; Steiner, Heinz

    2005-05-01

    Dopamine action alters gene regulation in striatal neurons. Methylphenidate increases extracellular levels of dopamine. We investigated the effects of acute methylphenidate treatment on gene expression in the striatum of adult rats. Molecular changes were mapped in 23 striatal sectors mostly defined by their predominant cortical inputs in order to determine the functional domains affected. Acute administration of 5 and 10 mg/kg (i.p.) of methylphenidate produced robust increases in the expression of the transcription factor c-fos and the neuropeptide substance P. Borderline effects were found with 2 mg/kg, but not with 0.5 mg/kg. For 5 mg/kg, c-fos mRNA levels peaked at 40 min and returned to baseline by 3 h after injection, while substance P mRNA levels peaked at 40-60 min and were back near control levels by 24 h. These molecular changes occurred in most sectors of the caudate-putamen, but were maximal in dorsal sectors that receive sensorimotor and medial agranular cortical inputs, on middle to caudal levels. In rostral and ventral striatal sectors, changes in c-fos and substance P expression were weaker or absent. No effects were seen in the nucleus accumbens, with the exception of c-fos induction in the lateral part of the shell. In contrast to c-fos and substance P, acute methylphenidate treatment had minimal effects on the opioid peptides dynorphin and enkephalin. These results demonstrate that acute methylphenidate alters the expression of c-fos and substance P preferentially in the sensorimotor striatum. These molecular changes are similar, but not identical, to those produced by other psychostimulants.

  9. Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex.

    Directory of Open Access Journals (Sweden)

    Julian Lim

    Full Text Available BACKGROUND: Most prior studies on selective attention in the setting of total sleep deprivation (SD have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. CONCLUSIONS/SIGNIFICANCE: SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition.

  10. [Comparative anatomical study of the ventral brain arteries of the Pudu pudu (Molina, 1782) with those of the cow].

    Science.gov (United States)

    Schweitzer-Delaunoy, W

    1997-06-01

    Comparative anatomical study of the ventral brain arteries of the Pudú pudu (Molina, 1782) with those of the cow. A comparison using the corrosion method was made between Pudú pudu (Molina, 1782) ventral brain arteries and those of the cow. The Pudú's Rete mirabile epidurale rostrale (Nomina Anatomica Veterinaria, 1994) is ventrally formed by branches of the A. maxillaris, and caudally formed by the A. vertebralis. The Hypophysis is surrounded by the Rete mirabile rostrale. The lateral parts are rostrally joined to that gland by a thin vascular bridge and caudally by thick arteries. The Pudú's Circulus arteriosus cerebri asymmetrical, that is, on the right side the A. cerebri rostralis ends in the A. cerebri media. The left-side A. cerebri rostralis irrigates every rostral portion of the encephalon. In the cow, practically the same arteries come out of the Circulus arteriosus cerebri, which is not asymmetrical. The A. cerebri caudalis comes first out of the A. communicans caudalis and then the branches for the Pons, and finally the A. cerebelli rostralis. In this species, there are arterial blocks that are not present in Pudú.

  11. Crossmodal Recruitment of the Ventral Visual Stream in Congenital Blindness

    Directory of Open Access Journals (Sweden)

    Maurice Ptito

    2012-01-01

    Full Text Available We used functional MRI (fMRI to test the hypothesis that blind subjects recruit the ventral visual stream during nonhaptic tactile-form recognition. Congenitally blind and blindfolded sighted control subjects were scanned after they had been trained during four consecutive days to perform a tactile-form recognition task with the tongue display unit (TDU. Both groups learned the task at the same rate. In line with our hypothesis, the fMRI data showed that during nonhaptic shape recognition, blind subjects activated large portions of the ventral visual stream, including the cuneus, precuneus, inferotemporal (IT, cortex, lateral occipital tactile vision area (LOtv, and fusiform gyrus. Control subjects activated area LOtv and precuneus but not cuneus, IT and fusiform gyrus. These results indicate that congenitally blind subjects recruit key regions in the ventral visual pathway during nonhaptic tactile shape discrimination. The activation of LOtv by nonhaptic tactile shape processing in blind and sighted subjects adds further support to the notion that this area subserves an abstract or supramodal representation of shape. Together with our previous findings, our data suggest that the segregation of the efferent projections of the primary visual cortex into a dorsal and ventral visual stream is preserved in individuals blind from birth.

  12. Wnt2 regulates progenitor proliferation in the developing ventral midbrain

    Czech Academy of Sciences Publication Activity Database

    Sousa, K.M.; Villaescusa, J.C.; Čajánek, L.; Ondr, J.K.; Castelo-Branco, G.; Hofstra, W.; Bryja, Vítězslav; Palmberg, C.; Bergman, T.; Wainwright, B.; Lang, R.A.; Arenas, E.

    2010-01-01

    Roč. 285, č. 10 (2010), s. 7246-7253 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Wnt2 * ventral midbrain * dopaminergic neuron Subject RIV: BO - Biophysics Impact factor: 5.328, year: 2010

  13. Pelvic ventral hernia repair in a pygopagus conjoint twin | Bhullar ...

    African Journals Online (AJOL)

    Pelvic ventral hernia repair in a surviving conjoint twin with multiple congenital anomalies that make surgery a challenge. Conjoint twins are a rare. The incidence is reported to be in the range of 1/50 000 to 1/100 000 live births. Of the conjoint twins, 40% are stillborn and an additional one-third die within 24 h of birth.

  14. Early Experience of Laparoscopic Ventral Hernia Repair in Kenya ...

    African Journals Online (AJOL)

    Background: Laparoscopic ventral hernia repair (LVHR) is gaining popularity amongst minimal access surgeons with numerous advantages over conventional open repair. We present the first local series of LVHR and analyse morbidity profile of the patients. Methods: Records of all patients who had LVHR were analysed in ...

  15. Experience With Ventral Penile Skin Island Flap urethroplasty | Ntia ...

    African Journals Online (AJOL)

    Background:Island flap techniques currently used in urethroplasty utilize the prepuce and the dorsal penile skin. Our experience with a one-stage island flap urethroplasty for urethral strictures utilizing the ventral penile skin is described. Patients and Method: This is a longitudinal study of seventy six consecutive patients ...

  16. Control of REM sleep by ventral medulla GABAergic neurons.

    Science.gov (United States)

    Weber, Franz; Chung, Shinjae; Beier, Kevin T; Xu, Min; Luo, Liqun; Dan, Yang

    2015-10-15

    Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram and complete skeletal muscle paralysis, and is associated with vivid dreams. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation, and the neural circuits in the pons have since been studied extensively. The medulla also contains neurons that are active during REM sleep, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice. Optogenetic activation of ventral medulla GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin-2-tagged ventral medulla GABAergic neurons showed that they were most active during REM sleep (REMmax), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate ventral medulla neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are probably mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal grey. These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions.

  17. Maternal control of the Drosophila dorsal–ventral body axis

    Science.gov (United States)

    Stein, David S.; Stevens, Leslie M.

    2016-01-01

    The pathway that generates the dorsal–ventral (DV) axis of the Drosophila embryo has been the subject of intense investigation over the previous three decades. The initial asymmetric signal originates during oogenesis by the movement of the oocyte nucleus to an anterior corner of the oocyte, which establishes DV polarity within the follicle through signaling between Gurken, the Drosophila Transforming Growth Factor (TGF)-α homologue secreted from the oocyte, and the Drosophila Epidermal Growth Factor Receptor (EGFR) that is expressed by the follicular epithelium cells that envelop the oocyte. Follicle cells that are not exposed to Gurken follow a ventral fate and express Pipe, a sulfotransferase that enzymatically modifies components of the inner vitelline membrane layer of the eggshell, thereby transferring DV spatial information from the follicle to the egg. These ventrally sulfated eggshell proteins comprise a localized cue that directs the ventrally restricted formation of the active Spätzle ligand within the perivitelline space between the eggshell and the embryonic membrane. Spätzle activates Toll, a transmembrane receptor in the embryonic membrane. Transmission of the Toll signal into the embryo leads to the formation of a ventral-to-dorsal gradient of the transcription factor Dorsal within the nuclei of the syncytial blastoderm stage embryo. Dorsal controls the spatially specific expression of a large constellation of zygotic target genes, the Dorsal gene regulatory network, along the embryonic DV circumference. This article reviews classic studies and integrates them with the details of more recent work that has advanced our understanding of the complex pathway that establishes Drosophila embryo DV polarity. PMID:25124754

  18. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Stable Encoding of Task Structure Coexists With Flexible Coding of Task Events in Sensorimotor Striatum

    Science.gov (United States)

    Kubota, Yasuo; Liu, Jun; Hu, Dan; DeCoteau, William E.; Eden, Uri T.; Smith, Anne C.

    2009-01-01

    The sensorimotor striatum, as part of the brain's habit circuitry, has been suggested to store fixed action values as a result of stimulus-response learning and has been contrasted with a more flexible system that conditionally assigns values to behaviors. The stability of neural activity in the sensorimotor striatum is thought to underlie not only normal habits but also addiction and clinical syndromes characterized by behavioral fixity. By recording in the sensorimotor striatum of mice, we asked whether neuronal activity acquired during procedural learning would be stable even if the sensory stimuli triggering the habitual behavior were altered. Contrary to expectation, both fixed and flexible activity patterns appeared. One, representing the global structure of the acquired behavior, was stable across changes in task cuing. The second, a fine-grain representation of task events, adjusted rapidly. Such dual forms of representation may be critical to allow motor and cognitive flexibility despite habitual performance. PMID:19625536

  20. Chinese Character and English Word processing in children’s ventral occipitotemporal cortex: fMRI evidence for script invariance

    Science.gov (United States)

    Krafnick, Anthony J.; Tan, Li-Hai; Flowers, D. Lynn; Luetje, Megan M.; Napoliello, Eileen M.; Siok, Wai-Ting; Perfetti, Charles; Eden, Guinevere F.

    2016-01-01

    Learning to read is thought to involve the recruitment of left hemisphere ventral occipitotemporal cortex (OTC) by a process of “neuronal recycling”, whereby object processing mechanisms are co-opted for reading. Under the same theoretical framework, it has been proposed that the visual word form area (VWFA) within the OTC processes orthographic stimuli independent of culture and writing systems, suggesting that it is universally involved in written language. However, this “script invariance” has yet to be demonstrated in monolingual readers of two different writing systems studied under the same experimental conditions. Here, using functional magnetic resonance imaging (fMRI), we examined activity in response to English Words and Chinese Characters in 1st graders in the United States and China, respectively. We examined each group separately and found the readers of English as well as the readers of Chinese to activate the left ventral OTC for their respective native writing systems (using both a whole-brain and a bilateral OTC-restricted analysis). Critically, a conjunction analysis of the two groups revealed significant overlap between them for native writing system processing, located in the VWFA and therefore supporting the hypothesis of script invariance. In the second part of the study, we further examined the left OTC region responsive to each group’s native writing system and found it responded equally to Object stimuli (line drawings) in the Chinese-reading children. In English-reading children, the OTC responded much more to Objects than to English Words. Together, these results support the script invariant role of the VWFA and also support the idea that the areas recruited for character or word processing are rooted in object processing mechanisms of the left OTC. PMID:27012502

  1. Development of Tool Representations in the Dorsal and Ventral Visual Object Processing Pathways

    Science.gov (United States)

    Kersey, Alyssa J.; Clark, Tyia S.; Lussier, Courtney A.; Mahon, Bradford Z.; Cantlon, Jessica F.

    2016-01-01

    Tools represent a special class of objects, because they are processed across both the dorsal and ventral visual object processing pathways. Three core regions are known to be involved in tool processing: the left posterior middle temporal gyrus, the medial fusiform gyrus (bilaterally), and the left inferior parietal lobule. A critical and relatively unexplored issue concerns whether, in development, tool preferences emerge at the same time and to a similar degree across all regions of the tool-processing network. To test this issue, we used functional magnetic resonance imaging to measure the neural amplitude, peak location, and the dispersion of tool-related neural responses in the youngest sample of children tested to date in this domain (ages 4–8 years). We show that children recruit overlapping regions of the adult tool-processing network and also exhibit similar patterns of co-activation across the network to adults. The amplitude and co-activation data show that the core components of the tool-processing network are established by age 4. Our findings on the distributions of peak location and dispersion of activation indicate that the tool network undergoes refinement between ages 4 and 8 years. PMID:26108614

  2. Left atrial volume index

    DEFF Research Database (Denmark)

    Poulsen, Mikael K; Dahl, Jordi S; Henriksen, Jan Erik

    2013-01-01

    To determine the prognostic importance of left atrial (LA) dilatation in patients with type 2 diabetes (T2DM) and no history of cardiovascular disease.......To determine the prognostic importance of left atrial (LA) dilatation in patients with type 2 diabetes (T2DM) and no history of cardiovascular disease....

  3. Curvularia microspora sp. nov. associated with leaf diseases of Hippeastrum striatum in China

    Directory of Open Access Journals (Sweden)

    Yin Liang

    2018-01-01

    Full Text Available An undescribed Curvularia sp. was isolated from the leaf spot disease of Barbados Lily (Hippeastrum striatum (Lam. Moore. Phylogenetic analyses of combined ITS, 28S, GPD1 and TEF1 sequence data place nine strains of this species in the trifolii-clade, but they clustered together as an independent lineage with strong support. This species was morphologically compared with related species in the trifolii-clade. Based on differences in morphology and phylogeny, it is concluded that this species is a new taxon, introduced as Curvularia microspora sp. nov. Pathogenicity testing determined the new species to be pathogenic on H. striatum.

  4. Ventral Pallidal Coding of a Learned Taste Aversion

    OpenAIRE

    Itoga, Christy A.; Berridge, Kent C.; Aldridge, J. Wayne

    2015-01-01

    The hedonic value of a sweet food reward, or how much a taste is ?liked?, has been suggested to be encoded by neuronal firing in the posterior ventral pallidum (VP). Hedonic impact can be altered by psychological manipulations, such as taste aversion conditioning, which can make an initially pleasant sweet taste become perceived as disgusting. Pairing nausea-inducing LiCl injection as a Pavlovian unconditioned stimulus (UCS) with a novel taste that is normally palatable as the predictive cond...

  5. Dorsal-Ventral Patterning and Neural Induction in Xenopus Embryos

    OpenAIRE

    De Robertis, Edward M.; Kuroda, Hiroki

    2004-01-01

    We review the current status of research in dorsal-ventral (D-V) patterning in vertebrates. Emphasis is placed on recent work on Xenopus, which provides a paradigm for vertebrate development based on a rich heritage of experimental embryology. D-V patterning starts much earlier than previously thought, under the influence of a dorsal nuclear β-Catenin signal. At mid-blastula two signaling centers are present on the dorsal side: The prospective neuroectoderm expresses bone morphogenetic protei...

  6. Experimental performance of three design factors for ventral nozzles for SSTOVL aircraft

    Science.gov (United States)

    Esker, Barbara S.; Perusek, Gail P.

    1992-01-01

    An experimental study of three variations of a ventral nozzle system for supersonic short-takeoff and vertical-landing (SSTOVL) aircraft was performed at the NASA LeRC Powered Lift Facility. These test results include the effects of an annular duct flow into the ventral duct, a blocked tailpipe, and a short ventral duct length. An analytical study was also performed on the short ventral duct configuration using the PARC3D computational dynamics code. Data presented include pressure losses, thrust and flow performance, internal flow visualization, and pressure distributions at the exit plane of the ventral nozzle.

  7. Polyester composite versus PTFE in laparoscopic ventral hernia repair.

    Science.gov (United States)

    Colon, Modesto J; Telem, Dana A; Chin, Edward; Weber, Kaare; Divino, Celia M; Nguyen, Scott Q

    2011-01-01

    Both polyester composite (POC) and polytetrafluoroethylene (PTFE) mesh are commonly used for laparoscopic ventral hernia repair. However, sparse information exists comparing perioperative and long-term outcome by mesh repair. A prospective database was utilized to identify 116 consecutive patients who underwent laparoscopic ventral hernia repair at The Mount Sinai Hospital from 2004-2009. Patients were grouped by type of mesh used, PTFE versus POC, and retrospectively compared. Follow-up at a mean of 12 months was achieved by telephone interview and office visit. Of the 116 patients, 66 underwent ventral hernia repair with PTFE and 50 with POC mesh. Patients were well matched by patient demographics. No difference in mean body mass index (BMI) was demonstrated between the PTFE and POC group (31.8 vs. 32.5, respectively; P=NS). Operative time was significantly longer in the PTFE group (136 vs.106 minutes, PPTFE group and none in the POC group (P NS). No other major complications occurred in the immediate postoperative period (30 days). At a mean follow-up of 12 months, no significant difference was demonstrated between the PTFE and POC groups in hernia recurrence (3% vs. 2%), wound complications (1% vs. 0%), mesh infection, requiring removal (3% vs. 0%), bowel obstruction (3% vs. 2%), or persistent pain or discomfort (28% vs. 32%), respectively (P=NS). Our study demonstrated no significant association between types of mesh used and postoperative complications. In the 12-month follow-up, no differences were noted in hernia recurrence.

  8. Axonal branching patterns of ventral pallidal neurons in the rat.

    Science.gov (United States)

    Tripathi, Anushree; Prensa, Lucía; Mengual, Elisa

    2013-09-01

    The ventral pallidum (VP) is a key component of the cortico-basal ganglia circuits that process motivational and emotional information, and also a crucial site for reward. Although the main targets of the two VP compartments, medial (VPm) and lateral (VPl) have already been established, the collateralization patterns of individual axons have not previously been investigated. Here we have fully traced eighty-four axons from VPm, VPl and the rostral extension of VP into the olfactory tubercle (VPr), using the anterograde tracer biotinylated dextran amine in the rat. Thirty to fifty percent of axons originating from VPm and VPr collateralized in the mediodorsal thalamic nucleus and lateral habenula, indicating a close association between the ventral basal ganglia-thalamo-cortical loop and the reward network at the single axon level. Additional collateralization of these axons in diverse components of the extended amygdala and corticopetal system supports a multisystem integration that may take place at the basal forebrain. Remarkably, we did not find evidence for a sharp segregation in the targets of axons arising from the two VP compartments, as VPl axons frequently collateralized in the caudal lateral hypothalamus and ventral tegmental area, the well-known targets of VPm, while VPm axons, in turn, also collateralized in typical VPl targets such as the subthalamic nucleus, substantia nigra pars compacta and reticulata, and retrorubral field. Nevertheless, VPl and VPm displayed collateralization patterns that paralleled those of dorsal pallidal components, confirming at the single axon level the parallel organization of functionally different basal ganglia loops.

  9. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  10. Left heart catheterization

    Science.gov (United States)

    Catheterization - left heart ... to help guide the catheters up into your heart and arteries. Dye (sometimes called "contrast") will be ... in the blood vessels that lead to your heart. The catheter is then moved through the aortic ...

  11. Human Dorsal Striatum Encodes Prediction Errors during Observational Learning of Instrumental Actions

    Science.gov (United States)

    Cooper, Jeffrey C.; Dunne, Simon; Furey, Teresa; O'Doherty, John P.

    2012-01-01

    The dorsal striatum plays a key role in the learning and expression of instrumental reward associations that are acquired through direct experience. However, not all learning about instrumental actions require direct experience. Instead, humans and other animals are also capable of acquiring instrumental actions by observing the experiences of…

  12. Anatomical Inputs From the Sensory and Value Structures to the Tail of the Rat Striatum

    Directory of Open Access Journals (Sweden)

    Haiyan Jiang

    2018-05-01

    Full Text Available The caudal region of the rodent striatum, called the tail of the striatum (TS, is a relatively small area but might have a distinct function from other striatal subregions. Recent primate studies showed that this part of the striatum has a unique function in encoding long-term value memory of visual objects for habitual behavior. This function might be due to its specific connectivity. We identified inputs to the rat TS and compared those with inputs to the dorsomedial striatum (DMS in the same animals. The TS directly received anatomical inputs from both sensory structures and value-coding regions, but the DMS did not. First, inputs from the sensory cortex and sensory thalamus to the TS were found; visual, auditory, somatosensory and gustatory cortex and thalamus projected to the TS but not to the DMS. Second, two value systems innervated the TS; dopamine and serotonin neurons in the lateral part of the substantia nigra pars compacta (SNc and dorsal raphe nucleus projected to the TS, respectively. The DMS received inputs from the separate group of dopamine neurons in the medial part of the SNc. In addition, learning-related regions of the limbic system innervated the TS; the temporal areas and the basolateral amygdala selectively innervated the TS, but not the DMS. Our data showed that both sensory and value-processing structures innervated the TS, suggesting its plausible role in value-guided sensory-motor association for habitual behavior.

  13. Materials as regard about ecology and spreading of lycodine striatum bicolor nik in Tajikistan

    International Nuclear Information System (INIS)

    Sattorov, T.S.; Khidirov, Kh.; Mukhammadkulov, M.

    2003-01-01

    In this article is placed new scientific information about biology, ecology and spreading of Lycodine striatum bicolor within the territory of Tajikistan. Finding available in this article concerning spreading of flus snake are considered to be new. This scarce snake was discovered for the first time in Northern part of Tajikistan. This new information will enrich our notions about Reptile fauna of Tajikistan

  14. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

    Directory of Open Access Journals (Sweden)

    Kevin D. Alloway

    2017-07-01

    Full Text Available The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD and related neurological disorders.

  15. Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor

    NARCIS (Netherlands)

    Vogel, S.; Klumpers, F.; Navarro Schröder, T.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernandez, G.

    2017-01-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  16. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    NARCIS (Netherlands)

    Vogel, S.; Klumpers, F.; Navarro Schröder, T.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernández, G.

    2017-01-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  17. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor

    NARCIS (Netherlands)

    Vogel, Susanne; Klumpers, Floris; Schroeder, Tobias Navarro; Oplaat, Krista T.; Krugers, Harm J.; Oitzl, Melly S.; Joels, Marian; Doeller, Christian F.; Fernandez, Guillen

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this

  18. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    Science.gov (United States)

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  19. [Single and combining effects of Calculus Bovis and zolpidem on inhibitive neurotransmitter of rat striatum corpora].

    Science.gov (United States)

    Liu, Ping; He, Xinrong; Guo, Mei

    2010-04-01

    To investigate the correlation effects between single or combined administration of Calculus Bovis or zolpidem and changes of inhibitive neurotransmitter in rat striatum corpora. Sampling from rat striatum corpora was carried out through microdialysis. The content of two inhibitive neurotransmitters in rat corpus striatum- glycine (Gly) and gama aminobutyric acid (GABA), was determined by HPLC, which involved pre-column derivation with orthophthaladehyde, reversed-phase gradient elution and fluorescence detection. GABA content of rat striatum corpora in Calculus Bovis group was significantly increased compared with saline group (P Calculus Boris plus zolpidem group were increased largely compared with saline group as well (P Calculus Bovis group was higher than combination group (P Calculus Bovis or zolpidem group was markedly increased compared with saline group or combination group (P Calculus Bovis group, zolpidem group and combination group. The magnitude of increase was lower in combination group than in Calculus Bovis group and Zolpidem group, suggesting that Calculus Bovis promoted encephalon inhibition is more powerful than zolpidem. The increase in two inhibitive neurotransmitters did not show reinforcing effect in combination group, suggesting that Calculus Bovis and zolpidem may compete the same receptors. Therefore, combination of Calculus Bovis containing drugs and zolpidem has no clinical significance. Calculus Bovis shouldn't as an aperture-opening drugs be used for resuscitation therapy.

  20. A multicenter prospective study of patients undergoing open ventral hernia repair with intraperitoneal positioning using the monofilament polyester composite ventral patch

    DEFF Research Database (Denmark)

    Berrevoet, Frederik; Doerhoff, Carl; Muysoms, Filip

    2017-01-01

    PURPOSE: This study assessed the recurrence rate and other safety and efficacy parameters following ventral hernia repair with a polyester composite prosthesis (Parietex™ Composite Ventral Patch [PCO-VP]). PATIENTS AND METHODS: A single-arm, multicenter prospective study of 126 patients undergoin...

  1. The role of the dorsoanterior striatum in implicit motivation: The case of the need for power

    Directory of Open Access Journals (Sweden)

    Oliver C Schultheiss

    2013-04-01

    Full Text Available Implicit motives like the need for power (nPower scale affective responses to need-specific rewards or punishments and thereby influence activity in motivational-brain structures. In this paper, we review evidence specifically supporting a role of the striatum in nPower. Individual differences in nPower predict (a enhanced implicit learning accuracy, but not speed, on serial-response tasks that are reinforced by power-related incentives (e.g., winning or losing a contest; dominant or submissive emotional expressions in behavioral studies and (b activation of the anterior caudate in response to dominant emotional expressions in brain imaging research. We interpret these findings on the basis of Hikosaka, Nakamura, Sakai, and Nakahara's (2002; Current Opinion in Neurobiology, 12(2, 217-222 model of central mechanisms of motor skill learning. The model assigns a critical role to the dorsoanterior striatum in dopamine-driven learning of spatial stimulus sequences. Based on this model, we suggest that the dorsoanterior striatum is the locus of nPower-dependent reinforcement. However, given the centrality of this structure in a wide range of motivational pursuits, we also propose that activity in the dorsoanterior striatum may not only reflect individual differences in nPower, but also in other implicit motives, like the need for achievement or the need for affiliation, provided that the proper incentives for these motives are present during reinforcement learning. We discuss evidence in support of such a general role of the dorsoanterior striatum in implicit motivation.

  2. Fast and robust segmentation of the striatum using deep convolutional neural networks.

    Science.gov (United States)

    Choi, Hongyoon; Jin, Kyong Hwan

    2016-12-01

    Automated segmentation of brain structures is an important task in structural and functional image analysis. We developed a fast and accurate method for the striatum segmentation using deep convolutional neural networks (CNN). T1 magnetic resonance (MR) images were used for our CNN-based segmentation, which require neither image feature extraction nor nonlinear transformation. We employed two serial CNN, Global and Local CNN: The Global CNN determined approximate locations of the striatum. It performed a regression of input MR images fitted to smoothed segmentation maps of the striatum. From the output volume of Global CNN, cropped MR volumes which included the striatum were extracted. The cropped MR volumes and the output volumes of Global CNN were used for inputs of Local CNN. Local CNN predicted the accurate label of all voxels. Segmentation results were compared with a widely used segmentation method, FreeSurfer. Our method showed higher Dice Similarity Coefficient (DSC) (0.893±0.017 vs. 0.786±0.015) and precision score (0.905±0.018 vs. 0.690±0.022) than FreeSurfer-based striatum segmentation (p=0.06). Our approach was also tested using another independent dataset, which showed high DSC (0.826±0.038) comparable with that of FreeSurfer. Comparison with existing method Segmentation performance of our proposed method was comparable with that of FreeSurfer. The running time of our approach was approximately three seconds. We suggested a fast and accurate deep CNN-based segmentation for small brain structures which can be widely applied to brain image analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Solitary Osteochondroma of the Ventral Scapula Associated with Large Bursa Formation and Pseudowinging of the Scapula: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Kiyohisa Ogawa

    2018-01-01

    Full Text Available Osteochondroma (OC is the most common benign bone tumor and may occur on any bone in which endochondral ossification develops. Although scapular OC accounts for less than 5% of the cases of solitary OC, OC is the most common lesion among the tumors and tumor-like lesions of the scapula. OC that develops near the medial scapular border easily causes friction with the ribcage; hence, almost half the number of cases of OC associated with marked bursa formation develops in the ventral scapula. We report a case of a 27-year-old female with a painful OC of the ventral scapular surface associated with large bursa formation and pseudowinging of the scapula. After l2 years of follow-up with magnetic resonance imaging, we confirm that the accompanied bursa left at surgery disappears.

  4. Attention reduces spatial uncertainty in human ventral temporal cortex

    Science.gov (United States)

    Kay, Kendrick N.; Weiner, Kevin S.; Grill-Spector, Kalanit

    2014-01-01

    SUMMARY Ventral temporal cortex (VTC) is the latest stage of the ventral ‘what’ visual pathway, which is thought to code the identity of a stimulus regardless of its position or size [1, 2]. Surprisingly, recent studies show that position information can be decoded from VTC [3–5]. However, the computational mechanisms by which spatial information is encoded in VTC are unknown. Furthermore, how attention influences spatial representations in human VTC is also unknown because the effect of attention on spatial representations has only been examined in the dorsal ‘where’ visual pathway [6–10]. Here we fill these significant gaps in knowledge using an approach that combines functional magnetic resonance imaging and sophisticated computational methods. We first develop a population receptive field (pRF) model [11, 12] of spatial responses in human VTC. Consisting of spatial summation followed by a compressive nonlinearity, this model accurately predicts responses of individual voxels to stimuli at any position and size, explains how spatial information is encoded, and reveals a functional hierarchy in VTC. We then manipulate attention and use our model to decipher the effects of attention. We find that attention to the stimulus systematically and selectively modulates responses in VTC, but not early visual areas. Locally, attention increases eccentricity, size, and gain of individual pRFs, thereby increasing position tolerance. However, globally, these effects reduce uncertainty regarding stimulus location and actually increase position sensitivity of distributed responses across VTC. These results demonstrate that attention actively shapes and enhances spatial representations in the ventral visual pathway. PMID:25702580

  5. Garner-Interference in left-handed awkward grasping.

    Science.gov (United States)

    Eloka, Owino; Feuerhake, Felix; Janczyk, Markus; Franz, Volker H

    2015-07-01

    The Perception-Action Model (PAM) claims to provide a coherent interpretation of data from all areas of the visual neurosciences, most notably data from neuropsychological patients and from behavioral experiments in healthy people. Here, we tested two claims that are part of the core version of the PAM: (a) certain actions (natural, highly practiced, and right-handed) are controlled by the dorsal vision for action pathway, while other actions (awkward, unpracticed, or left-handed) are controlled by the ventral vision for perception pathway. (b) Only the dorsal pathway operates in an analytical fashion, being able to selectively focus on the task-relevant dimension of an object (Ganel and Goodale, Nature 426(6967):664-667, 2003). We show that one of these claims must be wrong: using the same test for analytical processing as Ganel and Goodale (2003), we found that even an action that should clearly be ventral (left-handed awkward grasping) shows analytical processing just as a dorsal task does (right-handed natural precision grasping). These results are at odds with the PAM and point to an inconsistency of the model.

  6. [Recurrent left atrial myxoma].

    Science.gov (United States)

    Moreno Martínez, Francisco L; Lagomasino Hidalgo, Alvaro; Mirabal Rodríguez, Roger; López Bermúdez, Félix H; López Bernal, Omaida J

    2003-01-01

    Primary cardiac tumors are rare. Mixomas are the most common among them; 75% are located in the left atrium, 20% in the right atrium, and the rest in the ventricles. The seldom appear in atrio-ventricular valves. Recidivant mixoma are also rare, appearing in 1-5% of all patients that have undergone surgical treatment of a mixoma. In this paper we present our experience with a female patient, who 8 years after having been operated of a left atrial mixoma, began with symptoms of mild heart failure. Transthoracic echocardiography revealed recurrence of the tumor, and was therefore subjected to a second open-heart surgery from which she recovered without complications.

  7. Specificity of intraabdominal endoprosthesis of umbilical and postoperative ventral hernias

    Directory of Open Access Journals (Sweden)

    Grigoriev S.G.

    2012-03-01

    Full Text Available The research work objective was to examine the results of intraperitoneal plastics in the hernias of anterior abdominal wall. The experience of treatment of 89 patients with uncomplicated umbilical and postoperative ventral hernias was analized. The surgical treatment included an open intraperitoneal prosthetic hernioplasty. The hernial sac was not removed during the operation. The original techniques of treatment of hernia sac were used. Anatomical and morphological features in the structure of middle ventral hernias and their pathophysiological assessment were revealed. Practical recommendations for technology of intraperitoneal prosthesis were given. The early postoperative complications occurred: seroma (n=2, the outflow of serous fluid drainage for 5 days (n=1, infiltration of the umbilical area (n=3, suppuration of wounds (n=1. Vacuum drainage was performed in 24 patients after removal of large hernial defects. During the period from 6 months to 4 years recurrences were not revealed. The intraperitoneal surgery using a complex of musculo-aponeurotic tissues provided hernial implant fixation. Operation without the removal of the hernial sac reduced the trauma intervention. Method of suturing the surgical wound reduced the time of drainage and reduced the number of wound complications

  8. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking.

    Science.gov (United States)

    Cook, Jason B; Hendrickson, Linzy M; Garwood, Grant M; Toungate, Kelsey M; Nania, Christina V; Morikawa, Hitoshi

    2017-01-01

    Similar to drugs of abuse, the hedonic value of food is mediated, at least in part, by the mesostriatal dopamine (DA) system. Prolonged intake of either high calorie diets or drugs of abuse both lead to a blunting of the DA system. Most studies have focused on DAergic alterations in the striatum, but little is known about the effects of high calorie diets on ventral tegmental area (VTA) DA neurons. Since high calorie diets produce addictive-like DAergic adaptations, it is possible these diets may increase addiction susceptibility. However, high calorie diets consistently reduce psychostimulant intake and conditioned place preference in rodents. In contrast, high calorie diets can increase or decrease ethanol drinking, but it is not known how a junk food diet (cafeteria diet) affects ethanol drinking. In the current study, we administered a cafeteria diet consisting of bacon, potato chips, cheesecake, cookies, breakfast cereals, marshmallows, and chocolate candies to male Wistar rats for 3-4 weeks, producing an obese phenotype. Prior cafeteria diet feeding reduced homecage ethanol drinking over 2 weeks of testing, and transiently reduced sucrose and chow intake. Importantly, cafeteria diet had no effect on ethanol metabolism rate or blood ethanol concentrations following 2g/kg ethanol administration. In midbrain slices, we showed that cafeteria diet feeding enhances DA D2 receptor (D2R) autoinhibition in VTA DA neurons. These results show that junk food diet-induced obesity reduces ethanol drinking, and suggest that increased D2R autoinhibition in the VTA may contribute to deficits in DAergic signaling and reward hypofunction observed with obesity.

  9. A Ventral Visual Stream Reading Center Independent of Sensory Modality and Visual Experience

    Directory of Open Access Journals (Sweden)

    Lior Reich

    2011-10-01

    Full Text Available The Visual Word Form Area (VWFA is a ventral-temporal-visual area that develops expertise for visual reading. It encodes letter-strings irrespective of case, font, or location in the visual-field, with striking anatomical reproducibility across individuals. In the blind, reading can be achieved using Braille, with a comparable level-of-expertise to that of sighted readers. We investigated which area plays the role of the VWFA in the blind. One would expect it to be at either parietal or bilateral occipital cortex, reflecting the tactile nature of the task and crossmodal plasticity, respectively. However, according to the notion that brain areas are task specific rather than sensory-modality specific, we predicted recruitment of the left-hemispheric VWFA, identically to the sighted and independent of visual experience. Using fMRI we showed that activation during Braille reading in congenitally blind individuals peaked in the VWFA, with striking anatomical consistency within and between blind and sighted. The VWFA was reading-selective when contrasted to high-level language and low-level sensory controls. Further preliminary results show that the VWFA is selectively activated also when people learn to read in a new language or using a different modality. Thus, the VWFA is a mutlisensory area specialized for reading regardless of visual experience.

  10. Somatosensory-motor adaptation of orofacial actions in posterior parietal and ventral premotor cortices.

    Directory of Open Access Journals (Sweden)

    Krystyna Grabski

    Full Text Available Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.

  11. Social Function in Boys with Cleft Lip and Palate: Relationship to Ventral Frontal Cortex Morphology

    Science.gov (United States)

    Boes, Aaron D.; Murko, Vesna; Wood, Jessica L.; Langbehn, Douglas R.; Canady, John; Richman, Lynn; Nopoulos, Peg

    2007-01-01

    Isolated clefts of the lip and/or palate (ICLP) are developmental craniofacial abnormalities that have consistently been linked to increased social inhibition or shyness. Two explanations have been proposed: 1) psychosocial factors related to differences in facial appearance may lead to low self-concept and subsequent shyness, or 2) abnormal development of brain structures involved in social function, such as the ventral frontal cortex (VFC), may underlie the difference. To investigate these two possibilities this study was designed to evaluate measures of social function in relation to measures of self-concept and VFC morphology. Subjects included 30 boys (age 7-12) with ICLP and a comparison group of 43 boys without cleft in the same age category. Social function and self-concept were assessed using questionnaires with standardized scoring filled out by subjects and one of their parents. The cortical volume and surface area of the VFC, composed of the orbitofrontal cortex (OFC) and straight gyrus (SG), were evaluated using structural magnetic resonance imaging. The ICLP subjects had significantly impaired social function relative to the comparison group. No difference in self-concept was identified. VFC morphology revealed significant differences between groups, particularly decreased volume and surface area in the left SG of the ICLP group. Moreover, abnormal VFC measures were correlated with social dysfunction but measures of self-concept were not. These results are consistent with the possibility that aberrant VFC development may partially underlie social dysfunction in boys with ICLP. PMID:17537526

  12. Temporal lobe epilepsy and surgery selectively alter the dorsal, not the ventral, default-mode network

    Directory of Open Access Journals (Sweden)

    Gaelle Eve Doucet

    2014-03-01

    Full Text Available The default-mode network (DMN is a major resting-state network. It can be divided in 2 distinct networks: one is composed of dorsal and anterior regions (referred to as the dorsal DMN, dDMN, while the other involves the more posterior regions (referred to as the ventral DMN, vDMN. To date, no studies have investigated the potentially distinct impact of temporal lobe epilepsy (TLE on these networks. In this context, we explored the effect of TLE and anterior temporal lobectomy (ATL on the dDMN and vDMN. We utilized 2 resting-state fMRI sessions from left, right TLE patients (pre-/post-surgery and normal controls (NCs, sessions 1/2. Using independent component analysis, we identified the 2 networks. We then evaluated for differences in spatial extent for each network between the groups, and across the scanning sessions. The results revealed that, pre-surgery, the dDMN showed larger differences between the three groups than the vDMN, and more particularly between right and left TLE than between the TLE patients and controls. In terms of change post-surgery, in both TLE groups, the dDMN also demonstrated larger changes than the vDMN. For the vDMN, the only changes involved the resected temporal lobe for each ATL group. For the dDMN, the left ATL group showed post-surgical increases in several regions outside the ictal temporal lobe. In contrast, the right ATL group displayed a large reduction in the frontal cortex. The results highlight that the 2 DMNs are not impacted by TLE and ATL in an equivalent fashion. Importantly, the dDMN was the more affected, with right ATL having a more deleterious effects on the dDMN than left ATL. We are the first to highlight that the dDMN more strongly bears the negative impact of TLE than the vDMN, suggesting there is an interaction between the side of pathology and DM subnetwork activity. Our findings have implications for understanding the impact TLE and subsequent ATL on the functions implemented by the distinct

  13. Left atrial appendage occlusion

    Directory of Open Access Journals (Sweden)

    Ahmad Mirdamadi

    2013-01-01

    Full Text Available Left atrial appendage (LAA occlusion is a treatment strategy to prevent blood clot formation in atrial appendage. Although, LAA occlusion usually was done by catheter-based techniques, especially percutaneous trans-luminal mitral commissurotomy (PTMC, it can be done during closed and open mitral valve commissurotomy (CMVC, OMVC and mitral valve replacement (MVR too. Nowadays, PTMC is performed as an optimal management of severe mitral stenosis (MS and many patients currently are treated by PTMC instead of previous surgical methods. One of the most important contraindications of PTMC is presence of clot in LAA. So, each patient who suffers of severe MS is evaluated by Trans-Esophageal Echocardiogram to rule out thrombus in LAA before PTMC. At open heart surgery, replacement of the mitral valve was performed for 49-year-old woman. Also, left atrial appendage occlusion was done during surgery. Immediately after surgery, echocardiography demonstrates an echo imitated the presence of a thrombus in left atrial appendage area, although there was not any evidence of thrombus in pre-pump TEE. We can conclude from this case report that when we suspect of thrombus of left atrial, we should obtain exact history of previous surgery of mitral valve to avoid misdiagnosis clotted LAA, instead of obliterated LAA. Consequently, it can prevent additional evaluations and treatments such as oral anticoagulation and exclusion or postponing surgeries including PTMC.

  14. Corynebacterium striatum infecting a malignant cutaneous lesion: the emergence of an opportunistic pathogen Corynebacterium striatum infectando lesão cutânea maligna: a emergência de um patógeno oportunista

    Directory of Open Access Journals (Sweden)

    Silvana Vargas Superti

    2009-04-01

    Full Text Available We described a case of a 27-year old male patient with skin and soft tissue infection of a neoplastic lesion caused by Corynebacterium striatum, an organism which has been rarely described as a human pathogen. Identification was confirmed by DNA sequencing. Successful treatment with penicillin was achieved. The role of the C. striatum as an emerging opportunistic pathogen is discussed.Descrevemos infecção de lesão neoplásica em paciente masculino de 27 anos, envolvendo pele e partes moles, causada por Corynebacterium striatum, um microrganismo raramente descrito como patógeno humano. A identificação foi confirmada por seqüenciamento de DNA. O paciente foi tratado com penicilina, com sucesso. O papel do C. striatum como patógeno oportunista é discutido.

  15. Hypoplastic left heart syndrome

    Directory of Open Access Journals (Sweden)

    Thiagarajan Ravi

    2007-05-01

    Full Text Available Abstract Hypoplastic left heart syndrome(HLHS refers to the abnormal development of the left-sided cardiac structures, resulting in obstruction to blood flow from the left ventricular outflow tract. In addition, the syndrome includes underdevelopment of the left ventricle, aorta, and aortic arch, as well as mitral atresia or stenosis. HLHS has been reported to occur in approximately 0.016 to 0.036% of all live births. Newborn infants with the condition generally are born at full term and initially appear healthy. As the arterial duct closes, the systemic perfusion becomes decreased, resulting in hypoxemia, acidosis, and shock. Usually, no heart murmur, or a non-specific heart murmur, may be detected. The second heart sound is loud and single because of aortic atresia. Often the liver is enlarged secondary to congestive heart failure. The embryologic cause of the disease, as in the case of most congenital cardiac defects, is not fully known. The most useful diagnostic modality is the echocardiogram. The syndrome can be diagnosed by fetal echocardiography between 18 and 22 weeks of gestation. Differential diagnosis includes other left-sided obstructive lesions where the systemic circulation is dependent on ductal flow (critical aortic stenosis, coarctation of the aorta, interrupted aortic arch. Children with the syndrome require surgery as neonates, as they have duct-dependent systemic circulation. Currently, there are two major modalities, primary cardiac transplantation or a series of staged functionally univentricular palliations. The treatment chosen is dependent on the preference of the institution, its experience, and also preference. Although survival following initial surgical intervention has improved significantly over the last 20 years, significant mortality and morbidity are present for both surgical strategies. As a result pediatric cardiologists continue to be challenged by discussions with families regarding initial decision

  16. SELEKSI RUMPUT LAUT Kappaphycus striatum DALAM UPAYA PENINGKATAN LAJU PERTUMBUHAN BIBIT UNTUK BUDIDAYA

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2017-01-01

    Full Text Available Budidaya rumput laut di Indonesia semakin berkembang seiring dengan peningkatan permintaan bahan baku industri untuk pasar domestik dan eksport. Rumput laut Kappaphycus striatum, salah satu spesies rumput laut komersil, telah intensif dibudidayakan di perairan pantai. Saat ini, masalah utama yang dihadapi pembudidaya adalah rendahnya kualitas bibit yang berasal dari hasil budidaya. Seleksi varietas merupakan salah satu metode yang diharapkan dapat meningkatkan laju pertumbuhan rumput laut. Penelitian ini dilakukan dengan tujuan untuk mengetahui pengaruh seleksi varietas terhadap pertumbuhan rumput laut sehingga dapat dilakukan produksi bibit unggul untuk keperluan budidaya. Budidaya rumput laut K. striatum telah dilakukan di Teluk Laikang, Kabupaten Takalar, Provinsi Sulawesi Selatan dengan menggunakan metode long line. Seleksi varietas dilakukan berdasarkan parameter laju pertumbuhan harian (LPH dan metode seleksi mengacu pada protokol seleksi yang telah dikembangkan pada rumput laut K. alvarezii. Hasil penelitian menunjukkan bahwa LPH bibit hasil seleksi lebih tinggi (P

  17. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    2016-07-01

    Full Text Available The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  18. Isolation and characterization of neural stem cells from human fetal striatum

    International Nuclear Information System (INIS)

    Li Xiaoxia; Xu Jinchong; Bai Yun; Wang Xuan; Dai Xin; Liu Yinan; Zhang Jun; Zou Junhua; Shen Li; Li Lingsong

    2005-01-01

    This paper described that neural stem cells (hsNSCs) were isolated and expanded rapidly from human fetal striatum in adherent culture. The population was serum- and growth factor-dependent and expressed neural stem cell markers. They were capable of multi-differentiation into neurons, astrocytes, and oligodendrocytes. When plated in the dopaminergic neuron inducing medium, human striatum neural stem cells could differentiate into tyrosine hydroxylase positive neurons. hsNSCs were morphologically homogeneous and possessed high proliferation ability. The population doubled every 44.28 h and until now it has divided for more than 82 generations in vitro. Normal human diploid karyotype was unchanged throughout the in vitro culture period. Together, this study has exploited a method for continuous and rapid expansion of human neural stem cells as pure population, which maintained the capacity to generate almost fifty percent neurons. The availability of such cells may hold great interest for basic and applied neuroscience

  19. Introducing the Proceed Ventral Patch as a new device in surgical management of umbilical and small ventral hernias: preliminary results.

    Science.gov (United States)

    Tollens, Tim; Struyve, David; Aelvoet, Chris; Vanrijkel, Jean Pierre

    2010-04-01

    Surgical treatment of umbilical and small ventral hernias ranges from a simple suture repair to the placement of large intra-abdominal or retromuscular meshes. Several articles report a lower incidence of recurrence after mesh repair, whether this is positioned onlay, retromuscular, or intraperitoneally. Often, a simple suture repair fails in the longterm, whereas a laparoscopic or retromomuscular approach seems too extensive for these rather small hernias. In between those two treatment options exists a go-between repair that carries the idea of posterior repair without being so aggressive in its approach. In this study, the authors examined a new device called the Proceed Ventral Patch (PVP) (Ethicon, Inc., Sommerville, NJ, USA). It is a self-expanding, partially absorbable, flexible laminate mesh device that allows an easy, quick and minimal invasive, tension-free, and standardized approach to umbilical hernia treatment. No data nor publication exist on this new device. Reported herein is our early and first experience with this novel technique.

  20. Existence and control of Go/No-Go decision transition threshold in the striatum.

    Directory of Open Access Journals (Sweden)

    Jyotika Bahuguna

    2015-04-01

    Full Text Available A typical Go/No-Go decision is suggested to be implemented in the brain via the activation of the direct or indirect pathway in the basal ganglia. Medium spiny neurons (MSNs in the striatum, receiving input from cortex and projecting to the direct and indirect pathways express D1 and D2 type dopamine receptors, respectively. Recently, it has become clear that the two types of MSNs markedly differ in their mutual and recurrent connectivities as well as feedforward inhibition from FSIs. Therefore, to understand striatal function in action selection, it is of key importance to identify the role of the distinct connectivities within and between the two types of MSNs on the balance of their activity. Here, we used both a reduced firing rate model and numerical simulations of a spiking network model of the striatum to analyze the dynamic balance of spiking activities in D1 and D2 MSNs. We show that the asymmetric connectivity of the two types of MSNs renders the striatum into a threshold device, indicating the state of cortical input rates and correlations by the relative activity rates of D1 and D2 MSNs. Next, we describe how this striatal threshold can be effectively modulated by the activity of fast spiking interneurons, by the dopamine level, and by the activity of the GPe via pallidostriatal backprojections. We show that multiple mechanisms exist in the basal ganglia for biasing striatal output in favour of either the `Go' or the `No-Go' pathway. This new understanding of striatal network dynamics provides novel insights into the putative role of the striatum in various behavioral deficits in patients with Parkinson's disease, including increased reaction times, L-Dopa-induced dyskinesia, and deep brain stimulation-induced impulsivity.

  1. Distribution of GABAergic interneurons and dopaminergic cells in the functional territories of the human striatum.

    Science.gov (United States)

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2012-01-01

    The afferent projections of the striatum (caudate nucleus and putamen) are segregated in three territories: associative, sensorimotor and limbic. Striatal interneurons are in part responsible for the integration of these different types of information. Among them, GABAergic interneurons are the most abundant, and can be sorted in three populations according to their content in the calcium binding proteins calretinin (CR), parvalbumin (PV) and calbindin (CB). Conversely, striatal dopaminergic cells (whose role as interneurons is still unclear) are scarce. This study aims to analyze the interneuron distribution in the striatal functional territories, as well as their organization regarding to the striosomal compartment. We used immunohistochemical methods to visualize CR, PV, CB and tyrosine hydroxylase (TH) positive striatal neurons. The interneuronal distribution was assessed by stereological methods applied to every striatal functional territory. Considering the four cell groups altogether, their density was higher in the associative (2120±91 cells/mm(3)) than in the sensorimotor (959±47 cells/mm(3)) or limbic (633±119 cells/mm(3)) territories. CB- and TH-immunoreactive(-ir) cells were distributed rather homogeneously in the three striatal territories. However, the density of CR and PV interneurons were more abundant in the associative and sensorimotor striatum, respectively. Regarding to their compartmental organization, CR-ir interneurons were frequently found in the border between compartments in the associative and sensorimotor territories, and CB-ir interneurons abounded at the striosome/matrix border in the sensorimotor domain. The present study demonstrates that the architecture of the human striatum in terms of its interneuron composition varies in its three functional territories. Furthermore, our data highlight the importance of CR-ir striatal interneurons in the integration of associative information, and the selective role of PV-ir interneurons in

  2. Ventral simultanagnosia and prosopagnosia for unfamiliar faces due to a right posterior superior temporal sulcus and angular gyrus lesion.

    Science.gov (United States)

    Sakurai, Yasuhisa; Hamada, Kensuke; Tsugawa, Naoya; Sugimoto, Izumi

    2016-01-01

    We report a patient with ventral simultanagnosia, prosopagnosia for "unfamiliar faces" (dorsal prosopagnosia), spatial agraphia, and constructional disorder, particularly on the left spatial side, due to a lesion in the right posterior superior and middle temporal gyri and angular gyrus. The patient showed impairment of fundamental visual and visuospatial recognition, such as in object size, configuration, and horizontal point location, which probably underlay the mechanism of simultanagnosia and prosopagnosia. This case also suggests that the coexistence of simultanagnosia and prosopagnosia results from a right hemispheric insult, and damage to the temporoparietal area interrupts the incorporation of spatial information into object recognition. This disconnection of information flow, together with impaired object recognition per se, may impair the parallel processing of multiple objects, leading to object-by-object or part-by-part recognition.

  3. Holmes’ Tremor with Shoulder Pain Treated by Deep Brain Stimulation of Unilateral Ventral Intermediate Thalamic Nucleus and Globus Pallidus Internus

    Directory of Open Access Journals (Sweden)

    Sabri Aydın

    2017-05-01

    Full Text Available A 21-year-old male was admitted with severe right arm and hand tremors after a thalamic hemorrhage caused by a traffic accident. He was also suffering from agonizing pain in his right shoulder that manifested after the tremor. Neurologic examination revealed a disabling, severe, and irregular kinetic and postural tremor in the right arm during target-directed movements. There was also an irregular ipsilateral rest tremor and dystonic movements in the distal part of the right arm. The amplitude was moderate at rest and extremely high during kinetic and intentional movements. The patient underwent left globus pallidum internus and ventral intermediate thalamic nucleus deep brain stimulation. The patient improved by more than 80% as rated by the Fahn-Tolosa-Marin Tremor Rating Scale and Visual Analog Scale six months after surgery.

  4. Effect of electrolytic lesion of the dorsomedial striatum on sexual behaviour and locomotor activity in rats.

    Science.gov (United States)

    Ortiz-Pulido, R; Hernández-Briones, Z S; Tamariz-Rodríguez, A; Hernández, M E; Aranda-Abreu, G E; Coria-Avila, G A; Manzo, J; García, L I

    2017-06-01

    Cortical motor areas are influenced not only by peripheral sensory afferents and prefrontal association areas, but also by the basal ganglia, specifically the striatum. The dorsomedial striatum (DMS) and dorsolateral striatum are involved in both spatial and stimulus-response learning; however, each of these areas may mediate different components of learning. The aim of the study is to determine the effect of electrolytic lesion to the DMS on the learning and performance of sexual behaviour and locomotor activity in male rats. Once the subjects had learned to perform motor tests of balance, maze navigation, ramp ascent, and sexual behaviour, they underwent electrolytic lesion to the DMS. Five days later, the tests were repeated on 2 occasions and researchers compared performance latencies for each test. Average latency values for performance on the maze and balance tests were higher after the lesion. However, the average values for the ramp test and for sexual behaviour did not differ between groups. Electrolytic lesion of the DMS modifies the performance of locomotor activity (maze test and balance), but not of sexual behaviour. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine.

    Science.gov (United States)

    Xue, Bing; Chen, Elton C; He, Nan; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q

    2017-01-01

    Dopamine (DA) and acetylcholine (ACh) signals converge onto protein kinase A (PKA) in medium spiny neurons of the striatum to control cellular and synaptic activities of these neurons, although underlying molecular mechanisms are less clear. Here we measured phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) at a PKA site (S845) as an indicator of AMPAR responses in adult rat brains in vivo to explore how DA and ACh interact to modulate AMPARs. We found that subtype-selective activation of DA D1 receptors (D1Rs), D2 receptors (D2Rs), or muscarinic M4 receptors (M4Rs) induced specific patterns of GluA1 S845 responses in the striatum. These defined patterns support a local multitransmitter interaction model in which D2Rs inhibited an intrinsic inhibitory element mediated by M4Rs to enhance the D1R efficacy in modulating AMPARs. Consistent with this, selective enhancement of M4R activity by a positive allosteric modulator resumed the cholinergic inhibition of D1Rs. In addition, D1R and D2R coactivation recruited GluA1 and PKA preferentially to extrasynaptic sites. In sum, our in vivo data support an existence of a dynamic DA-ACh balance in the striatum which actively modulates GluA1 AMPAR phosphorylation and trafficking. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    Science.gov (United States)

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-05

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons.

  7. Characteristics of fast-spiking neurons in the striatum of behaving monkeys.

    Science.gov (United States)

    Yamada, Hiroshi; Inokawa, Hitoshi; Hori, Yukiko; Pan, Xiaochuan; Matsuzaki, Ryuichi; Nakamura, Kae; Samejima, Kazuyuki; Shidara, Munetaka; Kimura, Minoru; Sakagami, Masamichi; Minamimoto, Takafumi

    2016-04-01

    Inhibitory interneurons are the fundamental constituents of neural circuits that organize network outputs. The striatum as part of the basal ganglia is involved in reward-directed behaviors. However, the role of the inhibitory interneurons in this process remains unclear, especially in behaving monkeys. We recorded the striatal single neuron activity while monkeys performed reward-directed hand or eye movements. Presumed parvalbumin-containing GABAergic interneurons (fast-spiking neurons, FSNs) were identified based on narrow spike shapes in three independent experiments, though they were a small population (4.2%, 42/997). We found that FSNs are characterized by high-frequency and less-bursty discharges, which are distinct from the basic firing properties of the presumed projection neurons (phasically active neurons, PANs). Besides, the encoded information regarding actions and outcomes was similar between FSNs and PANs in terms of proportion of neurons, but the discharge selectivity was higher in PANs than that of FSNs. The coding of actions and outcomes in FSNs and PANs was consistently observed under various behavioral contexts in distinct parts of the striatum (caudate nucleus, putamen, and anterior striatum). Our results suggest that FSNs may enhance the discharge selectivity of postsynaptic output neurons (PANs) in encoding crucial variables for a reward-directed behavior. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    Science.gov (United States)

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  9. Dopamine dynamics and cocaine sensitivity differ between striosome and matrix compartments of the striatum

    Science.gov (United States)

    Salinas, Armando G.; Davis, Margaret I.; Lovinger, David M.; Mateo, Yolanda

    2016-01-01

    The striatum is typically classified according to its major output pathways, which consist of dopamine D1 and D2 receptor-expressing neurons. The striatum is also divided into striosome and matrix compartments, based on the differential expression of a number of proteins, including the mu opioid receptor, dopamine transporter (DAT), and Nr4a1 (nuclear receptor subfamily 4, group A, member 1). Numerous functional differences between the striosome and matrix compartments are implicated in dopamine-related neurological disorders including Parkinson’s disease and addiction. Using Nr4a1-eGFP mice, we provide evidence that electrically evoked dopamine release differs between the striosome and matrix compartments in a regionally-distinct manner. We further demonstrate that this difference is not due to differences in inhibition of dopamine release by dopamine autoreceptors or nicotinic acetylcholine receptors. Furthermore, cocaine enhanced extracellular dopamine in striosomes to a greater degree than in the matrix and concomitantly inhibited dopamine uptake in the matrix to a greater degree than in striosomes. Importantly, these compartment differences in cocaine sensitivity were limited to the dorsal striatum. These findings demonstrate a level of exquisite microanatomical regulation of dopamine by the DAT in striosomes relative to the matrix. PMID:27036891

  10. SSRI antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum

    Science.gov (United States)

    Van Waes, Vincent; Beverley, Joel; Marinelli, Michela; Steiner, Heinz

    2010-01-01

    The psychostimulant methylphenidate (Ritalin) is used in conjunction with selective serotonin reuptake inhibitors (SSRIs) in the treatment of medical conditions such as attention-deficit hyperactivity disorder with anxiety/depression comorbidity and major depression. Co-exposure also occurs in patients on SSRIs that use psychostimulant “cognitive enhancers”. Methylphenidate is a dopamine/norepinephrine reuptake inhibitor that produces altered gene expression in the forebrain; these effects partly mimic gene regulation by cocaine (dopamine/norepinephrine/serotonin reuptake inhibitor). We investigated whether the addition of SSRIs (fluoxetine or citalopram; 5 mg/kg) modified gene regulation by methylphenidate (2–5 mg/kg) in the striatum and cortex of adolescent rats. Our results show that SSRIs potentiate methylphenidate-induced expression of the transcription factors zif 268 and c-fos in the striatum, rendering these molecular changes more cocaine-like. Present throughout most of the striatum, this potentiation was most robust in its sensorimotor parts. The methylphenidate + SSRI combination also enhanced behavioral stereotypies, consistent with dysfunction in sensorimotor striatal circuits. In so far as such gene regulation is implicated in psychostimulant addiction, our findings suggest that SSRIs may enhance the addiction liability of methylphenidate. PMID:20704593

  11. Selective serotonin reuptake inhibitor antidepressants potentiate methylphenidate (Ritalin)-induced gene regulation in the adolescent striatum.

    Science.gov (United States)

    Van Waes, Vincent; Beverley, Joel; Marinelli, Michela; Steiner, Heinz

    2010-08-01

    The psychostimulant methylphenidate (Ritalin) is used in conjunction with selective serotonin reuptake inhibitors (SSRIs) in the treatment of medical conditions such as attention-deficit hyperactivity disorder with anxiety/depression comorbidity and major depression. Co-exposure also occurs in patients on SSRIs who use psychostimulant 'cognitive enhancers'. Methylphenidate is a dopamine/norepinephrine reuptake inhibitor that produces altered gene expression in the forebrain; these effects partly mimic gene regulation by cocaine (dopamine/norepinephrine/serotonin reuptake inhibitor). We investigated whether the addition of SSRIs (fluoxetine or citalopram; 5 mg/kg) modified gene regulation by methylphenidate (2-5 mg/kg) in the striatum and cortex of adolescent rats. Our results show that SSRIs potentiate methylphenidate-induced expression of the transcription factor genes zif268 and c-fos in the striatum, rendering these molecular changes more cocaine-like. Present throughout most of the striatum, this potentiation was most robust in its sensorimotor parts. The methylphenidate + SSRI combination also enhanced behavioral stereotypies, consistent with dysfunction in sensorimotor striatal circuits. In so far as such gene regulation is implicated in psychostimulant addiction, our findings suggest that SSRIs may enhance the addiction potential of methylphenidate.

  12. Re-thinking the role of the dorsal striatum in egocentric/response strategy

    Directory of Open Access Journals (Sweden)

    Fanny BOTREAU

    2010-02-01

    Full Text Available Rats trained in a dual-solution cross-maze task, which can be solved by place and response strategies, predominantly used a response strategy after extensive training. This paper examines the involvement of the medial and lateral dorsal striatum (mDS and lDS in the choice of these strategies after partial and extensive training. Our results show that rats with lDS and mDS lesions used mainly a response strategy from the early phase of training. We replicated these unexpected data in rats with lDS lesions and confirmed their tendency to use the response strategy in a modified cross-maze task. When trained in a dual-solution water maze task, however, control and lesioned rats consistently used a place strategy, demonstrating that lDS and mDS lesioned rats can use a place strategy and that the shift towards a response strategy did not systematically result from extensive training. The present data did not show any clear dissociation between the mDS and lDS in dual solution tasks. They further indicate that the dorsal striatum seems to determine the strategies adopted in a particular context but cannot be considered as a neural support for the response memory system. Accordingly, the role of the lateral and medial part of the dorsal striatum in egocentric/response memory should be reconsidered.

  13. High signal of the striatum in sporadic Creutzfeldt-Jakob disease: sequential change on T2-weighted MRI

    International Nuclear Information System (INIS)

    Uemura, A.; O'uchi, T.; Sakamoto, T.; Yashiro, N.

    2002-01-01

    The object of this study is to describe the sequential change of high signal of the striatum on T2-weighted MRI in sporadic Creutzfeldt-Jakob disease (CJD). Three cases of autopsy-proven sporadic CJD and a total of 18 serial MR images are included in this study. The degree of high signal of the striatum on T2-weighted MRI was evaluated by two neuroradiologists and divided into four grades by mutual agreement. Initial MRI of all three cases showed a slightly high signal of the bilateral striatum, and the conspicuity of the high signal became more prominent as the disease progressed. In each case the pathological change of striatum and globus pallidus was compared with the high signal on the last MR image. (orig.)

  14. High signal of the striatum in sporadic Creutzfeldt-Jakob disease: sequential change on T2-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, A.; O' uchi, T.; Sakamoto, T.; Yashiro, N. [Department of Radiology, Kameda Medical Center, Kamogawa, Chiba (Japan)

    2002-04-01

    The object of this study is to describe the sequential change of high signal of the striatum on T2-weighted MRI in sporadic Creutzfeldt-Jakob disease (CJD). Three cases of autopsy-proven sporadic CJD and a total of 18 serial MR images are included in this study. The degree of high signal of the striatum on T2-weighted MRI was evaluated by two neuroradiologists and divided into four grades by mutual agreement. Initial MRI of all three cases showed a slightly high signal of the bilateral striatum, and the conspicuity of the high signal became more prominent as the disease progressed. In each case the pathological change of striatum and globus pallidus was compared with the high signal on the last MR image. (orig.)

  15. Decreased rates of terpene emissions in Ornithopus compressus L. and Trifolium striatum L. by ozone exposure and nitrogen fertilization.

    Science.gov (United States)

    Llusia, Joan; Bermejo-Bermejo, Victoria; Calvete-Sogo, Héctor; Peñuelas, Josep

    2014-11-01

    Increasing tropospheric ozone (O3) and nitrogen soil availability (N) are two of the main drivers of global change. They both may affect gas exchange, including plant emission of volatiles such as terpenes. We conducted an experiment using open-top chambers to analyze these possible effects on two leguminous species of Mediterranean pastures that are known to have different O3 sensitivity, Ornithopus compressus and Trifolium striatum. O3 exposure and N fertilization did not affect the photosynthetic rates of O. compressus and T. striatum, although O3 tended to induce an increase in the stomatal conductance of both species, especially T. striatum, the most sensitive species. O3 and N soil availability reduced the emission of terpenes in O. compressus and T. striatum. If these responses are confirmed as a general pattern, O3 could affect the competitiveness of these species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Serotonin in the ventral hippocampus modulates anxiety-like behavior during amphetamine withdrawal.

    Science.gov (United States)

    Tu, W; Cook, A; Scholl, J L; Mears, M; Watt, M J; Renner, K J; Forster, G L

    2014-12-05

    Withdrawal from amphetamine is associated with increased anxiety and sensitivity to stressors which are thought to contribute to relapse. Rats undergoing amphetamine withdrawal fail to exhibit stress-induced increases in serotonin (5-HT) release in the ventral hippocampus and show heightened anxiety-like behaviors. Therefore, we tested the hypothesis that reducing 5-HT levels in the ventral hippocampus is a causal mechanism in increasing anxiety-like behaviors during amphetamine withdrawal. First, we tested whether reducing 5-HT levels in the ventral hippocampus directly increases anxiety behavior. Male rats were bilaterally infused with 5,7-dihydroxytryptamine (5,7-DHT) into the ventral hippocampus, which produced a 83% decrease in ventral hippocampus 5-HT content, and were tested on the elevated plus maze (EPM) for anxiety-like behavior. Reducing ventral hippocampus 5-HT levels decreased the time spent in the open arms of the maze, suggesting that diminished ventral hippocampus 5-HT levels increases anxiety-like behavior. Next, we tested whether increasing 5-HT levels in the ventral hippocampus reverses anxiety behavior exhibited by rats undergoing amphetamine withdrawal. Rats were treated daily with either amphetamine (2.5-mg/kg, i.p.) or saline for 2weeks, and at 2weeks withdrawal, were infused with the selective serotonin reuptake inhibitor paroxetine (0.5μM) bilaterally into the ventral hippocampus and tested for anxiety-like behavior on the EPM. Rats pre-treated with amphetamine exhibited increased anxiety-like behavior on the EPM. This effect was reversed by ventral hippocampus infusion of paroxetine. Our results suggest that 5-HT levels in the ventral hippocampus are critical for regulating anxiety behavior. Increasing 5-HT levels during withdrawal may be an effective strategy for reducing anxiety-induced drug relapse. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia.

    Science.gov (United States)

    Joo, Sung Woo; Chon, Myong-Wuk; Rathi, Yogesh; Shenton, Martha E; Kubicki, Marek; Lee, Jungsun

    2018-02-01

    Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cilia in Left-Right Symmetry Breaking.

    Science.gov (United States)

    Shinohara, Kyosuke; Hamada, Hiroshi

    2017-10-03

    Visceral organs of vertebrates show left-right (L-R) asymmetry with regard to their position and morphology. Cilia play essential role in generating L-R asymmetry. A number of genes required for L-R asymmetry have now been identified in vertebrates, including human, many of which contribute to the formation and motility of cilia. In the mouse embryo, breaking of L-R symmetry occurs in the ventral node, where two types of cilia (motile and immotile) are present. Motile cilia are located at the central region of the node, and generate a leftward fluid flow. These motile cilia at the node are unique in that they rotate in the clockwise direction, unlike other immotile cilia such as airway cilia that show planar beating. The second type of cilia essential for L-R asymmetry is immotile cilia that are peripherally located immotile cilia. They sense a flow-dependent signal, which is either chemical or mechanical in nature. Although Ca 2+ signaling is implicated in flow sensing, the precise mechanism remains unknown. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. Impaired communication between the dorsal and ventral stream: indications from apraxia

    Directory of Open Access Journals (Sweden)

    Carys eEvans

    2016-02-01

    Full Text Available Patients with apraxia perform poorly when demonstrating how an object is used, particularly when pantomiming the action. However, these patients are able to accurately identify, and to pick up and move objects, demonstrating intact ventral and dorsal stream visuomotor processing. Appropriate object manipulation for skilled use is thought to rely on integration of known and visible object properties associated with ‘ventro-dorsal’ stream neural processes. In apraxia, it has been suggested that stored object knowledge from the ventral stream may be less readily available to incorporate into the action plan, leading to an over-reliance on the objects’ visual affordances in object-directed motor behaviour. The current study examined grasping performance in left hemisphere stroke patients with (N = 3 and without (N = 9 apraxia, and in age-matched healthy control participants (N = 14, where participants repeatedly grasped novel cylindrical objects of varying weight distribution. Across two conditions, object weight distribution was indicated by either a memory-associated cue (object colour or visual-spatial cue (visible dot over the weighted end. Participants were required to incorporate object-weight associations to effectively grasp and balance each object. Control groups appropriately adjusted their grasp according to each object’s weight distribution across each condition, whereas throughout the task two of the three apraxic patients performed poorly on both the memory-associated and visual-spatial cue conditions. A third apraxic patient seemed to compensate for these difficulties but still performed differently to control groups. Patients with apraxia performed normally on the neutral control condition when grasping the evenly weighted version. The pattern of behaviour in apraxic patients suggests impaired integration of visible and known object properties attributed to the ventro-dorsal stream: in learning to grasp the weighted object

  20. Impaired Communication Between the Dorsal and Ventral Stream: Indications from Apraxia

    Science.gov (United States)

    Evans, Carys; Edwards, Martin G.; Taylor, Lawrence J.; Ietswaart, Magdalena

    2016-01-01

    Patients with apraxia perform poorly when demonstrating how an object is used, particularly when pantomiming the action. However, these patients are able to accurately identify, and to pick up and move objects, demonstrating intact ventral and dorsal stream visuomotor processing. Appropriate object manipulation for skilled use is thought to rely on integration of known and visible object properties associated with “ventro-dorsal” stream neural processes. In apraxia, it has been suggested that stored object knowledge from the ventral stream may be less readily available to incorporate into the action plan, leading to an over-reliance on the objects’ visual affordances in object-directed motor behavior. The current study examined grasping performance in left hemisphere stroke patients with (N = 3) and without (N = 9) apraxia, and in age-matched healthy control participants (N = 14), where participants repeatedly grasped novel cylindrical objects of varying weight distribution. Across two conditions, object weight distribution was indicated by either a memory-associated cue (object color) or visual-spatial cue (visible dot over the weighted end). Participants were required to incorporate object-weight associations to effectively grasp and balance each object. Control groups appropriately adjusted their grasp according to each object’s weight distribution across each condition, whereas throughout the task two of the three apraxic patients performed poorly on both the memory-associated and visual-spatial cue conditions. A third apraxic patient seemed to compensate for these difficulties but still performed differently to control groups. Patients with apraxia performed normally on the neutral control condition when grasping the evenly weighted version. The pattern of behavior in apraxic patients suggests impaired integration of visible and known object properties attributed to the ventro-dorsal stream: in learning to grasp the weighted object accurately, apraxic

  1. Distinct changes in CREB phosphorylation in frontal cortex and striatum during contingent and non-contingent performance of a visual attention task

    Directory of Open Access Journals (Sweden)

    Mirjana eCarli

    2011-10-01

    Full Text Available The cyclic-AMP response element binding protein (CREB family of transcription factors has been implicated in numerous forms of behavioural plasticity. We investigated CREB phosphorylation along some nodes of corticostriatal circuitry such as frontal cortex (FC and dorsal (caudate putamen, CPu and ventral (nucleus accumbens, NAC striatum in response to the contingent or non-contingent performance of the five-choice serial reaction time task (5-CSRTT used to assess visuospatial attention. Three experimental manipulations were used; an attentional performance group (contingent, master, a group trained previously on the task but for whom the instrumental contingency coupling responding with stimulus detection and reward was abolished (non-contingent, yoked and a control group matched for food deprivation and exposure to the test apparatus (untrained. Rats trained on the 5-CSRTT (both master and yoked had higher levels of CREB protein in the FC, CPu and NAC compared to untrained controls. Despite the divergent behaviour of master and yoked rats CREB activity in the FC was not substantially different. In rats performing the 5-CSRTT (master, CREB activity was completely abolished in the CPu whereas in the NAC it remained unchanged. In contrast, CREB phosphorylation in CPu and NAC increased only when the contingency changed from goal-dependent to goal-independent reinforcement (yoked. The present results indicate that up-regulation of CREB protein expression across cortical and striatal regions possibly reflects the extensive instrumental learning and performance whereas increased CREB activity in striatal regions may signal the unexpected change in the relationship between instrumental action and reinforcement.

  2. Outcomes After Emergency Versus Elective Ventral Hernia Repair

    DEFF Research Database (Denmark)

    Helgstrand, Frederik; Rosenberg, Jacob; Kehlet, Henrik

    2013-01-01

    BACKGROUND: Early surgical results after emergency repairs for the most frequent ventral hernias (epigastric, umbilical, and incisional) are not well described. Thus, the aim of present study was to investigate early results and risk factors for poor 30-day outcome after emergency versus elective...... the Danish National Patient Register. RESULTS: In total, 10,041 elective and 935 emergency repairs were included. The risk for 30-day mortality, reoperation, and readmission was significantly higher (by a factor 2-15) after emergency repairs than after elective repairs (p ≤ 0.003). In addition, there were...... significantly more patients with concomitant bowel resection after emergency repairs than after elective repairs (p 2-7 cm, and repair for a primary hernia (vs recurrent hernia) (all p ...

  3. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1...... abdominal wall. A mechanical peel test was performed for each tissue sample. The secondary outcome parameters were grade and strength of adhesions to the mesh, shrinkage and displacement/folding of the mesh and histological parameters. All nine pigs survived without complications until sacrifice. No meshes...... histological parameters. In Study III - a randomised, controlled, double-blinded, multicenter trial - 40 patients with umbilical hernia defects between 1.5-5 cm, were randomly assigned to receive FS or titanium tacks for mesh fixation in LVHR. Patients, care givers and those assessing the outcomes were blinded...

  4. Pain and convalescence following laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, Jens Ravn

    Severe pain is usual after laparoscopic ventral hernia repair (LVHR). Mesh fixation with titanium tacks may play a key role in the development of acute and chronic pain and alternative fixation methods should therefore be investigated. This PhD thesis was based on three studies and aimed too: 1......, and general well-being were obtained from each patient. Follow-up was six months. Average pain from postoperative day (POD) 0-2 and POD 0-6 measured on a 0-100 mm visual analogue scale (VAS) was 61 and 48, respectively. Pain scores reached preoperative values at POD 30. The incidence of severe chronic pain......) assess the intensity and impact of postoperative pain by detailed patient-reported description of pain and convalescence after LVHR (Study I), 2) evaluate the feasibility of fibrin sealant (FS) for mesh fixation in an experimental pig model (Study II), and 3) investigate FS vs. tacks for mesh fixation...

  5. Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Khuansiri Narajeenron

    2017-04-01

    Full Text Available Audience: The audience for this classic team-based learning (cTBL session is emergency medicine residents, faculty, and students; although this topic is applicable to internal medicine and family medicine residents. Introduction: A left ventricular assist device (LVAD is a mechanical circulatory support device that can be placed in critically-ill patients who have poor left ventricular function. After LVAD implantation, patients have improved quality of life.1 The number of LVAD patients worldwide continues to rise. Left-ventricular assist device patients may present to the emergency department (ED with severe, life-threatening conditions. It is essential that emergency physicians have a good understanding of LVADs and their complications. Objectives: Upon completion of this cTBL module, the learner will be able to: 1 Properly assess LVAD patients’ circulatory status; 2 appropriately resuscitate LVAD patients; 3 identify common LVAD complications; 4 evaluate and appropriately manage patients with LVAD malfunctions. Method: The method for this didactic session is cTBL.

  6. A molecular approach towards the taxonomy of fresh water prawns Macrobrachium striatum and M. equidens (Decapoda, Palaemonidae) using mitochondrial markers.

    Science.gov (United States)

    Jose, Deepak; Nidhin, B; Anil Kumar, K P; Pradeep, P J; Harikrishnan, M

    2016-07-01

    Genus Macrobrachium includes freshwater prawns which inhabit most diverse habitats ranging from low saline areas to inland hill streams and impounded water bodies. Being morphologically conserved, this genus has been exposed to severe disputes related to their taxonomy, systematics and phylogeny. Macrobrachium striatum and M. equidens represent two morphologically related congeneric species within this genus. Earlier, M. striatum was considered as a striped form of M. equidens. Though these species are now well-described morphologically and differentiated into two species, no molecular level investigation has been carried out in support of their speciation. We report a study on M. striatum and M. equidens with emphasis to their molecular data through mitochondrial markers (16S ribosomal RNA and cytochrome oxidase subunit I). Results obtained from developed molecular markers of the two species revealed considerable genetic differentiation between them. Phylogram generated using Minimum evolution and Neighbour joining analyses differentiated M. striatum and M. equidens as two independent species. Genetic distance data showed high interspecific divergence (ranging from 3.9% to 17.0% for 16S rRNA sequences and 13.8% to 21.0% for COI sequences) between M. striatum and M. equidens confirming the findings of phylogram. Hence, it could be delineated that M. striatum and M. equidens represent two distinct species within genus Macrobrachium with emphasis to their morphology and genetics.

  7. Early effects of estrogen on the rat ventral prostate

    Directory of Open Access Journals (Sweden)

    García-Flórez M.

    2005-01-01

    Full Text Available Complex interactions between androgen and estrogen (E2 regulate prostatic development and physiology. We analyzed the early effects of a high single dose of E2 (25 mg/kg body weight and castration (separately or combined on the adult 90-day-old male Wistar rat ventral prostate. Androgen levels, prostate weight, and the variation in the relative and absolute volume of tissue compartments and apoptotic indices were determined for 7 days. Castration and exogenous E2 markedly reduced ventral prostate weight (about 50% of the control, with a significant reduction in the epithelial compartment and increased stroma. The final volume of the epithelium was identical at day 7 for all treatments (58.5% of the control. However, E2 had an immediate effect, causing a reduction in epithelial volume as early as day 1. An increase in smooth muscle cell volume resulted from the concentration of these cells around the regressing epithelium. The treatments resulted in differential kinetics in epithelial cell apoptosis. Castration led to a peak in apoptosis at day 3, with 5% of the epithelial cells presenting signs of apoptosis, whereas E2 caused an immediate increase (observed on day 1 and a sustained (up to day 7 effect. E2 administration to castrated rats significantly increased the level of apoptosis by day 3, reaching 9% of the epithelial cells. The divergent kinetics between treatments resulted in the same levels of epithelial regression after 7 days (~30% of control. These results show that E2 has an immediate and possibly direct effect on the prostate, and anticipates epithelial cell death before reducing testosterone to levels as low as those of castrated rats. In addition, E2 and androgen deprivation apparently cause epithelial cell death by distinct and independent pathways.

  8. Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum?

    Science.gov (United States)

    Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.

    2010-01-01

    We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…

  9. Prey selection of a captive Oystercatcher Haematopus ostralegus hammering Mussels Mytilus edulis from the ventral side

    NARCIS (Netherlands)

    Ens, Bruno J.; Alting, D

    1996-01-01

    We studied prey choice of a captive Oystercatcher:hat hammered Mussels from the ventral side. The results replicate previous findings that ventral hammerers select Mussels of intermediate size, select against thick-shelled Mussels, abandon an increasing proportion of Mussels with increasing size and

  10. Environmental enrichment increases transcriptional and epigenetic differentiation between mouse dorsal and ventral dentate gyrus.

    Science.gov (United States)

    Zhang, Tie-Yuan; Keown, Christopher L; Wen, Xianglan; Li, Junhao; Vousden, Dulcie A; Anacker, Christoph; Bhattacharyya, Urvashi; Ryan, Richard; Diorio, Josie; O'Toole, Nicholas; Lerch, Jason P; Mukamel, Eran A; Meaney, Michael J

    2018-01-19

    Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.

  11. An Easy-to-Implement Protocol for Preparing Postnatal Ventral Mesencephalic Cultures

    Directory of Open Access Journals (Sweden)

    Janin Lautenschläger

    2018-03-01

    Full Text Available Postnatally derived cultures of ventral mesencephalic neurons offer several crucial advantages over embryonic ventral mesencephalic cultures, including a higher content of TH-positive cells and the ability to derive cells from the substantia nigra, which contains the neurons most vulnerable to Parkinson’s disease. On the other hand, these cultures are more challenging to produce consistently. Here, we provide an easy-to-implement protocol for culturing postnatal ventral mesencephalic cells from the substantia nigra (SN and the ventral tegmental area using commercially available media, dishes, and general lab equipment, avoiding extensive material and equipment purchases. The protocol can be completed in about 5 h and provides ventral midbrain neuron cultures on cortex glia feeder layers in three weeks’ time. The protocol uses an optimized protease digestion, tissue storage in Hibernate A during dissection and purification of neurons on an OptiPrep density gradient.

  12. The role of the ventral dentate gyrus in olfactory pattern separation.

    Science.gov (United States)

    Weeden, Christy S S; Hu, Nathan J; Ho, Liana U N; Kesner, Raymond P

    2014-05-01

    Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less-understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching-to-sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory-based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  13. Left Ventricular Pseudoaneurysm Perceived as a Left Lung Mass

    Directory of Open Access Journals (Sweden)

    Ugur Gocen

    2013-02-01

    Full Text Available Left ventricular pseudo-aneurysm is a rare complication of aneurysmectomy. We present a case of surgically-treated left ventricular pseudo-aneurysm which was diagnosed three years after coronary artery bypass grafting and left ventricular aneurysmectomy. The presenting symptoms, diagnostic evaluation and surgical repair are described. [Cukurova Med J 2013; 38(1.000: 123-125

  14. Differential Sampling of Visual Space in Ventral and Dorsal Early Visual Cortex.

    Science.gov (United States)

    Silson, Edward H; Reynolds, Richard C; Kravitz, Dwight J; Baker, Chris I

    2018-02-28

    A fundamental feature of cortical visual processing is the separation of visual processing for the upper and lower visual fields. In early visual cortex (EVC), the upper visual field is processed ventrally, with the lower visual field processed dorsally. This distinction persists into several category-selective regions of occipitotemporal cortex, with ventral and lateral scene-, face-, and object-selective regions biased for the upper and lower visual fields, respectively. Here, using an elliptical population receptive field (pRF) model, we systematically tested the sampling of visual space within ventral and dorsal divisions of human EVC in both male and female participants. We found that (1) pRFs tend to be elliptical and oriented toward the fovea with distinct angular distributions for ventral and dorsal divisions of EVC, potentially reflecting a radial bias; and (2) pRFs in ventral areas were larger (∼1.5×) and more elliptical (∼1.2×) than those in dorsal areas. These differences potentially reflect a tendency for receptive fields in ventral temporal cortex to overlap the fovea with less emphasis on precise localization and isotropic representation of space compared with dorsal areas. Collectively, these findings suggest that ventral and dorsal divisions of EVC sample visual space differently, likely contributing to and/or stemming from the functional differentiation of visual processing observed in higher-level regions of the ventral and dorsal cortical visual pathways. SIGNIFICANCE STATEMENT The processing of visual information from the upper and lower visual fields is separated in visual cortex. Although ventral and dorsal divisions of early visual cortex (EVC) are commonly assumed to sample visual space equivalently, we demonstrate systematic differences using an elliptical population receptive field (pRF) model. Specifically, we demonstrate that (1) ventral and dorsal divisions of EVC exhibit diverging distributions of pRF angle, which are biased

  15. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.

    Science.gov (United States)

    Paraouty, Nihaad; Stasiak, Arkadiusz; Lorenzi, Christian; Varnet, Léo; Winter, Ian M

    2018-04-25

    Frequency modulation (FM) is a common acoustic feature of natural sounds and is known to play a role in robust sound source recognition. Auditory neurons show precise stimulus-synchronized discharge patterns that may be used for the representation of low-rate FM. However, it remains unclear whether this representation is based on synchronization to slow temporal envelope (ENV) cues resulting from cochlear filtering or phase locking to faster temporal fine structure (TFS) cues. To investigate the plausibility of those encoding schemes, single units of the ventral cochlear nucleus of guinea pigs of either sex were recorded in response to sine FM tones centered at the unit's best frequency (BF). The results show that, in contrast to high-BF units, for modulation depths within the receptive field, low-BF units (modulation depths extending beyond the receptive field, the discharge patterns follow the ENV and fluctuate at the modulation rate. The receptive field proved to be a good predictor of the ENV responses for most primary-like and chopper units. The current in vivo data also reveal a high level of diversity in responses across unit types. TFS cues are mainly conveyed by low-frequency and primary-like units and ENV cues by chopper and onset units. The diversity of responses exhibited by cochlear nucleus neurons provides a neural basis for a dual-coding scheme of FM in the brainstem based on both ENV and TFS cues. SIGNIFICANCE STATEMENT Natural sounds, including speech, convey informative temporal modulations in frequency. Understanding how the auditory system represents those frequency modulations (FM) has important implications as robust sound source recognition depends crucially on the reception of low-rate FM cues. Here, we recorded 115 single-unit responses from the ventral cochlear nucleus in response to FM and provide the first physiological evidence of a dual-coding mechanism of FM via synchronization to temporal envelope cues and phase locking to temporal

  16. Effects of systemic carbidopa on dopamine synthesis in rat hypothalamus and striatum

    Science.gov (United States)

    Kaakkola, S.; Tuomainen, P.; Wurtman, R. J.; Mannisto, P. T.

    1992-01-01

    Significant concentrations of carbidopa (CD) were found in rat hypothalamus, striatum, and in striatal microdialysis efflux after intraperitoneal administration of the drug. Efflux levels peaked one hour after administration of 100 mg/kg at 0.37 micrograms/ml, or about 2% of serum levels. Concurrent CD levels in hypothalamus and striatum were about 2.5% and 1.5%, respectively, of corresponding serum levels. Levels of dopamine and its principal metabolites in striatal efflux were unaffected. The removal of the brain blood by saline perfusion decreased the striatal and hypothalamic CD concentrations only by 33% and 16%, respectively. In other rats receiving both CD and levodopa (LD), brain L-dopa, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after one hour tended to be proportionate to LD dose. When the LD dose remained constant, increasing the CD dose dose-dependently enhanced L-dopa levels in the hypothalamus and striatum. However dopamine levels did not increase but, in contrast, decreased dose-dependently (although significantly only in the hypothalamus). CD also caused dose-dependent decrease in striatal 3-O-methyldopa (3-OMD) and in striatal and hypothalamic homovanillic acid (HVA), when the LD dose was 50 mg/kg. We conclude that, at doses exceeding 50 mg/kg, sufficient quantities of CD enter the brain to inhibit dopamine formation, especially in the hypothalamus. Moreover, high doses of LD/CD, both of which are themselves catechols, can inhibit the O-methylation of brain catecholamines formed from the LD.

  17. Atypical and typical neuroleptic treatments induce distinct programs of transcription factor expression in the striatum.

    Science.gov (United States)

    Hiroi, N; Graybiel, A M

    1996-10-07

    Atypical and typical neuroleptics, when administered chronically, can bring about profound but contrasting changes in schizophrenic symptoms and motor activation and dramatically modulate brain neurochemistry. To explore the transcriptional events that might be involved in this neurochemical regulation, we used immunohistochemistry and immunoblotting to examine the expression patterns of two bZip transcription factors, c-Fos and FosB, in the striatum of rats treated acutely and chronically with neuroleptic drugs of different classes. Typical and atypical neuroleptic drugs produced contrasting regulatory effects on a FosB-like protein of ca. 36-39 kDa, the molecular weight of truncated FosB (delta FosB). Chronic treatments with two typical neuroleptics, haloperidol and metoclopramide, but not with the atypical neuroleptic clozapine, led to markedly enhanced FosB-like immunoreactivity in the caudoputamen. Further, c-Fos-like protein in the striatum, considered a marker for the induction of antipsychotic actions by neuroleptic treatments, was downregulated by chronic treatment with the two potent antipsychotic drugs tested, but not by chronic treatment with metoclopramide, which has low antipsychotic efficacy but induces extrapyramidal side effects. These results suggest that chronic treatments with neuroleptics having different effects on cognitive and motor behavior induce different long-term changes in transcription factor expression in the striatum. Nevertheless, we found that neuroleptics of both classes regulated transcription factor expression in overlapping populations of striatal neurons expressing enkephalin or DARPP-32. Contrasting patterns of transcriptional regulation in these neurons may thus contribute to the distinct neurochemical and behavioral effects that characterize neuroleptics of different classes.

  18. Morphological features of neurons containing calcium-binding proteins in the human striatum.

    Science.gov (United States)

    Prensa, L; Giménez-Amaya, J M; Parent, A

    1998-01-26

    An immunohistochemical approach was used to characterize the morphological phenotype of neurons containing the calcium-binding proteins calretinin (CR), parvalbumin (PV), or calbindin-D28k (CB) in the normal human striatum. The protein CR occurs in at least four morphologically distinct types of neurons. Apart from the numerous medium-sized aspiny interneurons and the less abundant giant aspiny interneurons, CR also labels some medium-sized spiny neurons morphologically identical to striatal projection neurons. This finding indicates that CR is not only confined to striatal interneurons but also may be involved in the function of certain projection neurons. Some small and peculiar bushy-like aspiny neurons also are enriched with CR. These neurons could correspond to the dwarf or neurogliform neurons first described by Ramón y Cajal (1911). Three types of PV-immunoreactive striatal neurons can be visualized in the human striatum: 1) the common medium-sized aspiny leptodendritic neurons, 2) some smaller and profusely arborized aspiny neurons, and 3) a few large and intensely stained neurons with conspicuously beaded and poorly branched dendrites. The protein CB labels virtually all medium-sized spiny projection neurons located in the striatal matrix but also identifies a small subset of large and more intensely immunostained aspiny neurons. The latter finding indicates that CB is not entirely confined to striatal projection neurons but also may play a role in local circuit neurons. These normative data should help our understanding of the chemical anatomy of the human striatum in both health and disease.

  19. Caffeine stimulates cytochrome oxidase expression and activity in the striatum in a sexually dimorphic manner.

    Science.gov (United States)

    Jones, Frederick S; Jing, Jie; Stonehouse, Anthony H; Stevens, Anthony; Edelman, Gerald M

    2008-09-01

    Epidemiological studies indicate that caffeine consumption reduces the risk of Parkinson's disease (PD) in men, and antagonists of the adenosine 2A receptor ameliorate the motor symptoms of PD. These findings motivated us to identify proteins whose expression is regulated by caffeine in a sexually dimorphic manner. Using mass spectroscopy, we found that Cox7c, a nuclear-encoded subunit of the mitochondrial enzyme cytochrome oxidase, is up-regulated in the striatum of male but not female mice after receiving a single dose of caffeine. The expression of two other Cox subunits, Cox1 and Cox4, was also stimulated by caffeine in a male-specific fashion. This up-regulation of Cox subunits by caffeine was accompanied by an increase in Cox enzyme activity in the male striatum. Caffeine-induced stimulation of Cox expression and activity were reproduced using the adenosine 2A receptor (A2AR)-specific antagonist 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-epsilon]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261), and coadministration of the A2AR-specific agonist 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680) counteracted the elevation of Cox expression and activity by caffeine. Caffeine also increased Cox activity in PC-12 cells. In contrast, small interfering RNA (siRNA) knockdown of Cox7c expression in PC-12 cells blunted Cox activity, and this was counteracted by caffeine treatment. Caffeine was also found to increase Cox7c mRNA expression in the striatum and in PC-12 cells. This occurred at the level of transcription and was mediated by a segment of the Cox7c promoter. Overall, these findings indicate that cytochrome oxidase is a metabolic target of caffeine and that stimulation of Cox activity by caffeine via blockade of A2AR signaling may be an important mechanism underlying the therapeutic benefits of caffeine in PD.

  20. Nicotinic Receptors in the Dorsal and Ventral Hippocampus Differentially Modulate Contextual Fear Conditioning

    Science.gov (United States)

    Kenney, Justin W.; Raybuck, Jonathan D.; Gould, Thomas J.

    2012-01-01

    Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning. PMID:22271264

  1. Identification of Functional Clusters in the Striatum Using Infinite Relational Modeling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer Hougaard; Siebner, Hartwig

    2011-01-01

    In this paper we investigate how the Infinite Relational Model can be used to infer functional groupings of the human striatum using resting state fMRI data from 30 healthy subjects. The Infinite Relational Model is a non-parametric Bayesian method for infering community structure in complex...... are involved in the same neural computations. The reproducibility of the groupings found are assessed by calculating mutual information between half splits of the subject sample for various hyperparameter values. Finally, the model's ability to predict unobserved links is assessed by randomly treating links...

  2. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    DEFF Research Database (Denmark)

    Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul

    2010-01-01

    Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D(2/3) receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability...... to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials....

  3. Laparoscopic versus open ventral hernia repair: longitudinal outcomes and cost analysis using statewide claims data.

    Science.gov (United States)

    Ecker, Brett L; Kuo, Lindsay E Y; Simmons, Kristina D; Fischer, John P; Morris, Jon B; Kelz, Rachel R

    2016-03-01

    There is still considerable debate regarding the best operative approach to ventral hernia repair. Using two large statewide databases, this study sought to evaluate the longitudinal outcomes and associated costs of laparoscopic and open ventral hernia repair. All patients undergoing elective ventral hernia repair from 2007-2011 were identified from inpatient discharge data from California and New York. In-hospital morbidity, in-hospital mortality, incidence of readmission, and incidence of revisional ventral hernia repair were evaluated as a function of surgical technique. The associated costs of medical care for laparoscopic versus open ventral hernia repair were evaluate for both the index procedure and all subsequent admissions and procedures within the study period. A total of 13,567 patients underwent elective ventral hernia repair with mesh; 9228 (69%) underwent OVHR and 4339 (31%) underwent LVHR. At time of the index procedure, LVHR was associated with a lower incidence of reoperation (OR 0.29, CI 0.12-0.58, p = 0.001), wound disruption (OR 0.35, CI 0.16-0.78, p = 0.01), wound infection (OR 0.50, CI 0.25-0.70, p Open ventral hernia repair was associated with a higher incidence of perioperative complications, postoperative readmissions and need for revisional hernia repair when compared to laparoscopic ventral hernia repair, even when controlling for patient sociodemographics. In congruence, open ventral hernia repair was associated with higher costs for both the index hernia repair and tallied over the length of follow-up for readmissions and revisional hernia repair.

  4. Single-minded and the evolution of the ventral midline in arthropods.

    Science.gov (United States)

    Linne, Viktoria; Eriksson, Bo Joakim; Stollewerk, Angelika

    2012-04-01

    In insects and crustaceans, ventral midline cells are present that subdivide the CNS into bilateral symmetric halves. In both arthropod groups unpaired midline neurons and glial cells have been identified that contribute to the embryonic patterning mechanisms. In the fruitfly Drosophila melanogaster, for example, the midline cells are involved in neural cell fate specification along the dorso-ventral axis but also in axonal pathfinding and organisation of the axonal scaffold. Both in insects and malacostracan crustaceans, the bHLH-PAS transcription factor single-minded is the master regulator of ventral midline development and homology has been suggested for individual midline precursors in these groups. The conserved arrangement of the axonal scaffold as well as the regular pattern of neural precursors in all euarthropod groups raises the question whether the ventral midline system is conserved in this phylum. In the remaining euarthropod groups, the chelicerates and myriapods, a single-minded homologue has been identified in the spider Achaearanea tepidariorum (chelicerate), however, the gene is not expressed in the ventral midline but in the median area of the ventral neuroectoderm. Here we show that At-sim is not required for ventral midline development. Furthermore, we identify sim homologues in representatives of arthropods that have not yet been analysed: the myriapod Strigamia maritima and a representative of an outgroup to the euarthropods, the onychophoran Euperipatoides kanangrensis. We compare the expression patterns to the A. tepidariorum sim homologue expression and furthermore analyse the nature of the arthropod midline cells. Our data suggest that in arthropods unpaired midline precursors evolved from the bilateral median domain of the ventral neuroectoderm in the last common ancestor of Mandibulata (insects, crustaceans, myriapods). We hypothesize that sim was expressed in this domain and recruited to ventral midline development. Subsequently, sim

  5. Why Dora Left

    DEFF Research Database (Denmark)

    Gammelgård, Judy

    2017-01-01

    The question of why Dora left her treatment before it was brought to a satisfactory end and the equally important question of why Freud chose to publish this problematic and fragmentary story have both been dealt with at great length by Freud’s successors. Dora has been read by analysts, literary...... critics, and not least by feminists. The aim of this paper is to point out the position Freud took toward his patient. Dora stands out as the one case among Freud’s 5 great case stories that has a female protagonist, and reading the case it becomes clear that Freud stumbled because of an unresolved...... problem toward femininity, both Dora’s and his own. In Dora, it is argued, Freud took a new stance toward the object of his investigation, speaking from the position of the master. Freud presents himself as the one who knows, in great contrast to the position he takes when unraveling the dream. Here he...

  6. Seroma in ventral incisional herniorrhaphy: incidence, predictors and outcome.

    Science.gov (United States)

    Kaafarani, Haytham M A; Hur, Kwan; Hirter, Angie; Kim, Lawrence T; Thomas, Anthony; Berger, David H; Reda, Domenic; Itani, Kamal M F

    2009-11-01

    Factors leading to seroma following ventral incisional herniorrhaphy (VIH) are poorly understood. Between 2004 and 2006, patients were prospectively randomized at 4 Veterans Affairs hospitals to undergo laparoscopic or open VIH. Patients who developed seromas within 8 weeks postoperatively were compared with those who did not. Multivariate analyses were performed to identify predictors of seroma. Of 145 patients who underwent VIH, 24 (16.6%) developed seromas. Patients who underwent open VIH had more seromas than those who underwent laparoscopic VIH (23.3% vs 6.8%, P = .011). Seroma patients had hernias that were never spontaneously reducible (0% vs 21%, P = .015), had more abdominal incisions preoperatively (mean, 2.4 vs 1.8; P = .037), and were less likely to have drain catheters placed than those without seromas (30.0% vs 63.1%, P = .011). In multivariate analyses, open VIH predicted seroma (odds ratio, 5.5; 95% confidence interval, 1.6-18.8), as well as the specific hospital at which the procedure was performed. Spontaneous resolution occurred in 71% of seromas; 29% required aspiration. Procedural characteristics and hernia characteristics rather than patient comorbidities predicted seroma in VIH.

  7. Open, intraperitoneal, ventral hernia repair: lessons learned from laparoscopy.

    Science.gov (United States)

    Ponsky, Todd A; Nam, Arthur; Orkin, Bruce A; Lin, Paul P

    2006-03-01

    Recent literature suggests that laparoscopic repair of ventral hernias may have very low recurrence rates. However, laparoscopy may not be feasible in certain situations. We describe an open technique that uses the tension-free retrofascial principles of laparoscopic repair without the need for subcutaneous flaps. Through an incision in the hernia, the peritoneum is entered and adhesions are taken down. A piece of DualMesh (W.L. Gore & Associates, Inc, Newark, Del) is trimmed to fit with a 5-cm circumferential overlap. A vertical incision is made in the mid portion of the mesh. The mesh is fixed in an intraperitoneal retrofascial position using GORE-TEX sutures (W.L. Gore & Associates, Inc). The sutures are brought through the abdominal wall using a laparoscopic suture passer and tied into place on one side of the mesh. That side is then tacked to the posterior fascia with a spiral tacking device. The other side is sutured into place in a similar fashion and then tacked to the fascia by passing the spiral tacking device through the incision in the mesh. The mesh incision is closed with a running GORE-TEX suture. The overlying tissues are closed in layers.

  8. Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area

    Directory of Open Access Journals (Sweden)

    Huikun Wang

    2015-09-01

    Full Text Available Cocaine is a highly addictive drug that acts upon the brain’s reward circuitry via the inhibition of monoamine uptake. Endogenous cannabinoids (eCB are lipid molecules released from midbrain dopamine (DA neurons that modulate cocaine’s effects through poorly understood mechanisms. We find that cocaine stimulates release of the eCB, 2-arachidonoylglycerol (2-AG, in the rat ventral midbrain to suppress GABAergic inhibition of DA neurons, through activation of presynaptic cannabinoid CB1 receptors. Cocaine mobilizes 2-AG via inhibition of norepinephrine uptake and promotion of a cooperative interaction between Gq/11-coupled type-1 metabotropic glutamate and α1-adrenergic receptors to stimulate internal calcium stores and activate phospholipase C. The disinhibition of DA neurons by cocaine-mobilized 2-AG is also functionally relevant because it augments DA release in the nucleus accumbens in vivo. Our results identify a mechanism through which the eCB system can regulate the rewarding and addictive properties of cocaine.

  9. GABA modulates baroreflex in the ventral tegmental area in rat.

    Science.gov (United States)

    Hatam, Masoumeh; Rasoulpanah, Minoo; Nasimi, Ali

    2015-12-01

    There are some reports demonstrating the cardiovascular functions of the ventral tegmental area (VTA). About 20-30% of the VTA neurons are GABAergic, which might play a role in baroreflex modulation. This study was performed to find the effects of GABA(A), GABA(B) receptors and reversible synaptic blockade of the VTA on baroreflex. Drugs were microinjected into the VTA of urethane anesthetized rats, and the maximum change of blood pressure and the gain of the reflex bradycardia in response to intravenous phenylephrine (Phe) injection were compared with the preinjection and the control values. Microinjection of bicuculline methiodide (BMI, 100 pmol/100 nl), a GABA(A) antagonist, into the VTA strongly decreased the Phe-induced hypertension, indicating that GABA itself attenuated the baroreflex. Muscimol, a GABA(A) agonist (30 mM, 100 nl), produced no significant changes. Baclofen, a GABA(B) receptor agonist (1000 pmole/100 nl), moderately attenuated the baroreflex, however phaclofen, a GABA(B) receptor antagonist (1000 pmole/100 nl), had no significant effect. In conclusion, for the first time, we demonstrated that GABA(A) receptors of the VTA strongly attenuate and GABA(B) receptors of the VTA moderately attenuate baroreflex in rat. © 2015 Wiley Periodicals, Inc.

  10. Laparoscopic ventral hernia repair: defining the learning curve.

    Science.gov (United States)

    Al-Harazi, Arwa; Goel, Rajat; Tan, Charles T K; Cheah, Wei Keat; Lomanto, Davide

    2014-12-01

    Between 2004 and June 2011, 181 patients underwent laparoscopic ventral hernia repair. Three main surgeons, all experienced in laparoscopic procedures, performed all the cases. After analyzing the operative time (OT) for 3 main surgeons, within the first 20 cases the overall performance plateaued. Data from 60 patients (50F, 10M), with a mean age of 42.3 years (range, 26 to 88 y) and a mean hernia defect size of 6.5 cm (range, 4 to 18 y), were evaluated. No significant differences were recorded among the 3 surgeons in OT and intraoperative or postoperative complications. But 3 (5%, P<0.03) patients had complications, and the recurrence rate was 6.6% with a mean follow-up of 54 months (range, 42 to 70 mo). One had prolonged postoperative ileus, the second had bowel serosal tear, and the last had port-site incarcerated hernia. Our results showed that the OT of 98.9 minutes (range, 48 to 205 min) stabilized in 12 cases.

  11. Metabolic Disturbances in the Striatum and Substantia Nigra in the Onset and Progression of MPTP-Induced Parkinsonism Model.

    Science.gov (United States)

    Lu, Yi; Zhang, Xiaoxia; Zhao, Liangcai; Yang, Changwei; Pan, Linlin; Li, Chen; Liu, Kun; Bai, Guanghui; Gao, Hongchang; Yan, Zhihan

    2018-01-01

    Metabolic confusion has been linked to the pathogenesis of Parkinson's disease (PD), while the dynamic changes associated with the onset and progression of PD remain unclear. Herein, dynamic changes in metabolites were detected from the initiation to the development of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) -induced Parkinsonism model to elucidate its potential metabolic mechanism. Ex vivo 1 H nuclear magnetic resonance (NMR) spectroscopy was used to measure metabolite changes in the striatum and substantia nigra (SN) of mice at 1, 7, and 21 days after injection of MPTP. Metabolomic analysis revealed a clear separation of the overall metabolites between PD and control mice at different time points. Glutamate (Glu) in the striatum was significantly elevated at induction PD day 1 mice, which persisted to day 21. N-acetylaspartate (NAA) increased in the striatum of induction PD mice on days 1 and 7, but no significant difference was found in striatum on day 21. Myo-Inositol (mI) and taurine (Tau) were also disturbed in the striatum in induction PD day 1 mice. Additionally, key enzymes in the glutamate-glutamine cycle were significantly increased in PD mice. These findings suggest that neuron loss and motor function impairment in induction PD mice may be linked to overactive glutamate-glutamine cycle and altered membrane metabolism.

  12. Serotonin agonists reduce dopamine synthesis in the striatum only when the impulse flow of nigro-striatal neurons is intact.

    Science.gov (United States)

    Spampinato, U; Esposito, E; Samanin, R

    1985-09-01

    The effects of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) and m-chlorophenylpiperazine (CPP), two 5-hydroxytryptamine (5-HT, serotonin) agonists, on the accumulation of 3,4-dihydroxyphenylalanine (DOPA] were studied in the striatum of rats treated with gamma-butyrolactone (GBL). Unlike 2 mg/kg i.p. apomorphine, neither 5 mg/kg i.p. 5-MeO-DMT nor 2.5 mg/kg i.p. CPP significantly reduced the GBL-induced increase in DOPA accumulation in the striatum. 5-MeO-DMT and CPP significantly reduced DOPA accumulation in animals that had received the aromatic amino acid decarboxylase inhibitor Ro 4-4602 but not GBL. 5-HT (10 micrograms in 0.5 microliter) injected in the substantia nigra, pars compacta, like GBL, significantly increased Ro 4-4602-induced accumulation of DOPA in the striatum. The data indicate that 5-HT agonists can reduce 3,4-dihydroxyphenylethylamine (DA, dopamine) synthesis in the striatum of rats only when the impulse flow of DA neurons is intact. An indirect effect through mechanisms controlling DA synthesis in the striatum, for instance cholinergic and GABA-ergic neurons, is suggested.

  13. Traumatic ileal perforation in post-traumatic ventral hernia: adding insult to injury

    International Nuclear Information System (INIS)

    Rab, A.Z.U.; Fakir, S.B.; Peethambaran, M.S.

    2007-01-01

    Rupture of abdominal wall with formation of ventral hernia is a rare complication following blunt abdominal trauma. Small intestinal rupture within such a hernial sac, resulting from a subsequent blunt trauma is rarer still. Ventral hernias often go untreated in developing countries because of their seemingly innocuous nature, ignorance and financial constraints. Blunt trauma in patients with hernia warrants a thorough clinical examination along with evaluation for intestinal injury, since even trivial trauma can cause potentially serious intra-peritoneal visceral injury. A case of fatal traumatic ileal perforation in pre-existing post-traumatic ventral hernia (from blunt trauma sustained 10 years earlier) is being reported. (author)

  14. Comparison of air sac volume, lung volume, and lung densities determined by use of computed tomography in conscious and anesthetized Humboldt penguins (Spheniscus humboldti) positioned in ventral, dorsal, and right lateral recumbency.

    Science.gov (United States)

    Nevitt, Benjamin N; Langan, Jennifer N; Adkesson, Michael J; Mitchell, Mark A; Henzler, Margaret; Drees, Randi

    2014-08-01

    To determine the effects of recumbency on air sac volume, lung volume, and lung densities in CT images of healthy, conscious and anesthetized spontaneously breathing Humboldt penguins (Spheniscus humboldti). 25 adult (13 male and 12 female) Humboldt penguins. CT images of conscious penguins in ventral recumbency and anesthetized penguins in dorsal, ventral, and right lateral recumbency were obtained. Air sac volume, lung volume, and lung densities in CT images were calculated. A paired samples t test was used to determine whether right and left lung densities differed among recumbencies. Repeated-measures ANOVA (controlled for sex and order of recumbencies during CT) was used to determine whether air sac or lung volumes differed among recumbencies. Recumbency had a significant effect on air sac volume but not lung volume. Air sac volume was largest in conscious penguins in ventral recumbency (mean ± SD, 347.2 ± 103.1 cm(3)) and lowest in anesthetized penguins in dorsal recumbency (median, 202.0 cm(3); 10th to 90th percentile, 129.2 to 280.3 cm(3)). Lung densities were highest in anesthetized penguins in dorsal recumbency (right lung median, 0.522 g/cm(3); left lung median, 0.511 g/cm(3)) and lowest in anesthetized penguins in ventral recumbency (right lung median, 0.488 g/cm(3); left lung median, 0.482 g/cm(3)). Results indicated that anesthetized Humboldt penguins had the lowest air sac volume and highest lung densities in dorsal recumbency. Therefore, this recumbency may not be recommended. Minimal changes in lung volume were detected among recumbencies or between conscious and anesthetized penguins.

  15. De novo formation of left-right asymmetry by posterior tilt of nodal cilia.

    Directory of Open Access Journals (Sweden)

    Shigenori Nonaka

    2005-08-01

    Full Text Available In the developing mouse embryo, leftward fluid flow on the ventral side of the node determines left-right (L-R asymmetry. However, the mechanism by which the rotational movement of node cilia can generate a unidirectional flow remains hypothetical. Here we have addressed this question by motion and morphological analyses of the node cilia and by fluid dynamic model experiments. We found that the cilia stand, not perpendicular to the node surface, but tilted posteriorly. We further confirmed that such posterior tilt can produce leftward flow in model experiments. These results strongly suggest that L-R asymmetry is not the descendant of pre-existing L-R asymmetry within each cell but is generated de novo by combining three sources of spatial information: antero-posterior and dorso-ventral axes, and the chirality of ciliary movement.

  16. Distinct roles of left inferior frontal regions that explain individual differences in second language acquisition.

    Science.gov (United States)

    Sakai, Kuniyoshi L; Nauchi, Arihito; Tatsuno, Yoshinori; Hirano, Kazuyoshi; Muraishi, Yukimasa; Kimura, Masakazu; Bostwick, Mike; Yusa, Noriaki

    2009-08-01

    Second language (L2) acquisition is more susceptible to environmental and idiosyncratic factors than first language acquisition. Here, we used functional magnetic resonance imaging for L2 learners of different ages of first exposure (mean: 12.6 and 5.6 years) in a formal school environment, and compared the cortical activations involved in processing English sentences containing either syntactic or spelling errors, where the testing ages and task performances of both groups were matched. We found novel activation patterns in two regions of the left inferior frontal gyrus (IFG) that correlated differentially with the performances of the late and early learners. Specifically, activations of the dorsal and ventral triangular part (F3t) of the left IFG correlated positively with the accuracy of the syntactic task for the late learners, whereas activations of the left ventral F3t correlated negatively with the accuracy for the early learners. In contrast, other cortical regions exhibited differential correlation patterns with the reaction times (RTs) of the syntactic task. Namely, activations of the orbital part (F3O) of the left IFG, as well as those of the left angular gyrus, correlated positively with the RTs for the late learners, whereas those activations correlated negatively with the RTs for the early learners. Moreover, the task-selective activation of the left F3O was maintained for both the late and early learners. These results explain individual differences in L2 acquisition, such that the acquisition of linguistic knowledge in L2 is subserved by at least two distinct inferior frontal regions of the left F3t and F3O. (c) 2008 Wiley-Liss, Inc.

  17. Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner.

    Science.gov (United States)

    Ketzef, Maya; Spigolon, Giada; Johansson, Yvonne; Bonito-Oliva, Alessandra; Fisone, Gilberto; Silberberg, Gilad

    2017-05-17

    Parkinson's disease (PD) is a movement disorder caused by the loss of dopaminergic innervation, particularly to the striatum. PD patients often exhibit sensory impairments, yet the underlying network mechanisms are unknown. Here we examined how dopamine (DA) depletion affects sensory processing in the mouse striatum. We used the optopatcher for online identification of direct and indirect pathway projection neurons (MSNs) during in vivo whole-cell recordings. In control mice, MSNs encoded the laterality of sensory inputs with larger and earlier responses to contralateral than ipsilateral whisker deflection. This laterality coding was lost in DA-depleted mice due to adaptive changes in the intrinsic and synaptic properties, mainly, of direct pathway MSNs. L-DOPA treatment restored laterality coding by increasing the separation between ipsilateral and contralateral responses. Our results show that DA depletion impairs bilateral tactile acuity in a pathway-dependent manner, thus providing unexpected insights into the network mechanisms underlying sensory deficits in PD. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Induction of Autophagy in the Striatum and Hypothalamus of Mice after 835 MHz Radiofrequency Exposure

    Science.gov (United States)

    Kim, Hak Rim

    2016-01-01

    The extensive use of wireless mobile phones and associated communication devices has led to increasing public concern about potential biological health-related effects of the exposure to electromagnetic fields (EMFs). EMFs emitted by a mobile phone have been suggested to influence neuronal functions in the brain and affect behavior. However, the affects and phenotype of EMFs exposure are unclear. We applied radiofrequency (RF) of 835 MHz at a specific absorption rate (SAR) of 4.0 W/kg for 5 hours/day for 4 and 12 weeks to clarify the biological effects on mouse brain. Interestingly, microarray data indicated that a variety of autophagic related genes showed fold-change within small range after 835 MHz RF exposure. qRT-PCR revealed significant up-regulation of the autophagic genes Atg5, LC3A and LC3B in the striatum and hypothalamus after a 12-week RF. In parallel, protein expression of LC3B-II was also increased in both brain regions. Autophagosomes were observed in the striatum and hypothalamus of RF-exposed mice, based on neuronal transmission electron microscopy. Taken together, the results indicate that RF exposure of the brain can induce autophagy in neuronal tissues, providing insight into the protective mechanism or adaptation to RF stress. PMID:27073885

  19. Inputs to the dorsal striatum of the mouse conserve the parallel circuit architecture of the forebrain

    Directory of Open Access Journals (Sweden)

    Weixing X Pan

    2010-12-01

    Full Text Available The basal ganglia play a critical role in the regulation of voluntary action in vertebrates. Our understanding of the function of the basal ganglia relies heavily upon anatomical information, but continued progress will require an understanding of the specific functional roles played by diverse cell types and their connectivity. An increasing number of mouse lines allow extensive identification, characterization, and, manipulation of specified cell types in the basal ganglia. Despite the promise of genetically modified mice for elucidating the functional roles of diverse cell types, there is relatively little anatomical data obtained directly in the mouse. Here we have characterized the retrograde labeling obtained from a series of tracer injections throughout the dorsal striatum of adult mice. We found systematic variations in input along both the medial-lateral and anterior-posterior neuraxes in close agreement with canonical features of basal ganglia anatomy in the rat. In addition to the canonical features we have provided experimental support for the importance of non-canonical inputs to the striatum from the raphe nuclei and the amygdala. To look for organization at a finer scale we have analyzed the correlation structure of labeling intensity across our entire dataset. Using this analysis we found substantial local heterogeneity within the large-scale order. From this analysis we conclude that individual striatal sites receive varied combinations of cortical and thalamic input from multiple functional areas, consistent with some earlier studies in the rat that have suggested the presence of a combinatorial map.

  20. Inputs to the dorsal striatum of the mouse reflect the parallel circuit architecture of the forebrain.

    Science.gov (United States)

    Pan, Weixing X; Mao, Tianyi; Dudman, Joshua T

    2010-01-01

    The basal ganglia play a critical role in the regulation of voluntary action in vertebrates. Our understanding of the function of the basal ganglia relies heavily upon anatomical information, but continued progress will require an understanding of the specific functional roles played by diverse cell types and their connectivity. An increasing number of mouse lines allow extensive identification, characterization, and manipulation of specified cell types in the basal ganglia. Despite the promise of genetically modified mice for elucidating the functional roles of diverse cell types, there is relatively little anatomical data obtained directly in the mouse. Here we have characterized the retrograde labeling obtained from a series of tracer injections throughout the dorsal striatum of adult mice. We found systematic variations in input along both the medial-lateral and anterior-posterior neuraxes in close agreement with canonical features of basal ganglia anatomy in the rat. In addition to the canonical features we have provided experimental support for the importance of non-canonical inputs to the striatum from the raphe nuclei and the amygdala. To look for organization at a finer scale we have analyzed the correlation structure of labeling intensity across our entire dataset. Using this analysis we found substantial local heterogeneity within the large-scale order. From this analysis we conclude that individual striatal sites receive varied combinations of cortical and thalamic input from multiple functional areas, consistent with some earlier studies in the rat that have suggested the presence of a combinatorial map.

  1. Modafinil Abrogates Methamphetamine-Induced Neuroinflammation and Apoptotic Effects in the Mouse Striatum

    Science.gov (United States)

    Goitia, Belen; Garcia-Rill, Edgar; Krasnova, Irina N.; Cadet, Jean Lud; Urbano, Francisco J.; Bisagno, Veronica

    2012-01-01

    Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4×5 mg/kg, i.p., 2 h apart) and modafinil co-administration (2×90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections) on glial cells (microglia and astroglia). We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum. PMID:23056363

  2. The role of the dorsal striatum in extinction: A memory systems perspective.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2018-04-01

    The present review describes a role for the dorsal striatum in extinction. Evidence from brain lesion and pharmacological studies indicate that the dorsolateral region of the striatum (DLS) mediates extinction in various maze learning and instrumental learning tasks. Within the context of a multiple memory systems view, the role of the DLS in extinction appears to be selective. Specifically, the DLS mediates extinction of habit memory and is not required for extinction of cognitive memory. Thus, extinction mechanisms mediated by the DLS may involve response-produced inhibition (e.g. inhibition of existing stimulus-response associations or formation of new inhibitory stimulus-response associations), as opposed to cognitive mechanisms (e.g. changes in expectation). Evidence also suggests that NMDA-dependent forms of synaptic plasticity may be part of the mechanism through which the DLS mediates extinction of habit memory. In addition, in some learning situations, DLS inactivation enhances extinction, suggesting a competitive interaction between multiple memory systems during extinction training. Consistent with a multiple memory systems perspective, it is suggested that the DLS represents one of several distinct neural systems that specialize in extinction of different kinds of memory. The relevance of these findings to the development of behavioral and pharmacological therapies that target the maladaptive habit-like symptoms in human psychopathology is also briefly considered. Published by Elsevier Inc.

  3. Volumetry of striatum and pallidum in man--anatomy, cytoarchitecture, connections, MRI and aging.

    Science.gov (United States)

    Brabec, J; Krásený, J; Petrovický, P

    2003-01-01

    For comparing of the pathological and normal healthy state it is essential to obtain sufficient amount of the volumetric data. Nevertheless most of the publicized works use only few healthy controls opposite to the patients for the measuring of the basal ganglia volume. Further essential condition is to take into account the effect of age to the basal ganglia volume in such analysis. The goal of our study was (1) to give the current review of the structure, neurotransmitters, connections and general integration of the basal ganglia in the pathways of the central nervous system, (2) aggregate sufficient amount of volumetric data by virtue of MRI and post-mortem studies, and appoint volumes of the striatum and pallidum, (3) evaluate aging of these structures in adult healthy patients. Another goal was (4) to inspect the correlations between the size of the basal ganglia and volume characteristics of the brain, cranial capacity or frequently measured dimensions within CNS. In the spite of the fact that it is not possible to measure all of these dimensions for clinicians who want to determine if the structure is "normal" or not. Another goal was (5) to find a simple measure, which could serve as the indicator of the real size of structure of the interest. By virtue of the classical anatomical methods and MRI examination we appointed volumes of the striatum (furthermore divided into the complex of the caudatum--nucleus accumbens--CD-Acc and putamen) and pallidum in the sample of 108 healthy adults (18-89 years old). From another measurements we calculated the cranial capacity and volume characteristics of each brain. In a general view that does not respect changes due to age neither volumetric difference between two sexes nor interhemispheric difference was significant for absolute volumes of the striatum, CD-Acc complex, putamen and pallidum. In the case of the striatum, significant correlation between size and age was found (p complex CD-Acc (p = 0.061). Age related

  4. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  5. In vivo [11C]dihydrotetrabenazine binding in rat striatum: sensitivity to dopamine concentrations

    International Nuclear Information System (INIS)

    Kilbourn, Michael R.; Butch, Elizabeth R.; Desmond, Timothy; Sherman, Phillip; Harris, Paul E.; Frey, Kirk A.

    2010-01-01

    Introduction: The sensitivity of the in vivo binding of [ 11 C]dihydrotetrabenazine ([ 11 C]DTBZ) and [ 11 C]methylphenidate ([ 11 C]MPH) to their respective targets - vesicular monoamine transporter type 2 (VMAT2) and neuronal membrane dopamine transporter - after alterations in endogenous levels of dopamine was examined in the rat brain. Methods: In vivo binding of [ 11 C]DTBZ and [ 11 C]MPH was determined using a bolus+infusion protocol. The in vitro number of VMAT2 binding sites was determined by autoradiography. Results: Repeated dosing with α-methyl-p-tyrosine (AMPT) at doses that significantly (-75%) depleted brain tissue dopamine levels resulted in increased (+36%) in vivo [ 11 C]DTBZ binding to VMAT2 in the striatum. The increase in binding could be completely reversed via treatment with L-DOPA/benserazide to restore dopamine levels. There were no changes in the total number of VMAT2 binding sites, as measured using in vitro autoradiography. No changes were observed for in vivo [ 11 C]MPH binding to the dopamine transporter in the striatum following AMPT pretreatment. Conclusion: These results indicate that large reductions in dopamine concentrations in the rat brain can produce modest but significant changes in the binding of radioligands to VMAT2, which can be reversed by replenishment of dopamine using exogenous L-DOPA.

  6. Motor Planning under Unpredictable Reward: Modulations of Movement Vigor and Primate Striatum Activity

    Directory of Open Access Journals (Sweden)

    Ioan eOpris

    2011-05-01

    Full Text Available Although reward probability is an important factor that shapes animal behavior, it is not well understood however, how the primate brain translates reward expectation into the vigor of movement (reaction time and speed. To address this question, we trained two monkeys in a reaction time task that required wrist movements in response to vibrotactile and visual stimuli, with a variable reward schedule. Correct performance was rewarded in 75 % of the trials. Monkeys were certain that they would be rewarded only in the trials immediately following withheld rewards. In these trials, the animals responded sooner and moved faster. Single-unit recordings from the dorsal striatum revealed that modulations in striatal neurons reflected such modulations of movement vigor. First, in the trials with certain rewards, striatal neurons modulated their firing rates earlier. Second, magnitudes of changes in neuronal firing rates depended on whether or not monkeys were certain about the reward. Third, these modulations depended on the sensory modality of the cue (visual vs. vibratory and/or movement direction (flexions vs. extensions. We conclude that dorsal striatum may be a part of the mechanism responsible for the modulation of movement vigor in response to changes of reward predictability.

  7. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum.

    Directory of Open Access Journals (Sweden)

    Mariana Raineri

    Full Text Available Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4 × 5 mg/kg, i.p., 2 h apart and modafinil co-administration (2 × 90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections on glial cells (microglia and astroglia. We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.

  8. Individual differences in striatum activity to food commercials predict weight gain in adolescents.

    Science.gov (United States)

    Yokum, Sonja; Gearhardt, Ashley N; Harris, Jennifer L; Brownell, Kelly D; Stice, Eric

    2014-12-01

    Adolescents view thousands of food commercials annually, but little is known about how individual differences in neural response to food commercials relate to weight gain. To add to our understanding of individual risk factors for unhealthy weight gain and environmental contributions to the obesity epidemic, we tested the associations between reward region (striatum and orbitofrontal cortex [OFC]) responsivity to food commercials and future change in body mass index (BMI). Adolescents (N = 30) underwent a scan session at baseline while watching a television show edited to include 20 food commercials and 20 nonfood commercials. BMI was measured at baseline and 1-year follow-up. Activation in the striatum, but not OFC, in response to food commercials relative to nonfood commercials and in response to food commercials relative to the television show was positively associated with change in BMI over 1-year follow-up. Baseline BMI did not moderate these effects. The results suggest that there are individual differences in neural susceptibility to food advertising. These findings highlight a potential mechanism for the impact of food marketing on adolescent obesity. © 2014 The Obesity Society.

  9. Comparison of characteristics of dopamine uptake and mazindol binding in mouse striatum.

    Science.gov (United States)

    Zimányi, I; Lajtha, A; Reith, M E

    1989-12-01

    Biochemical and pharmacological studies suggest that the binding of [3H]mazindol is functionally related to the dopamine uptake carrier complex in rodent striatum. In order to study further the relationship between the substrate recognition site for dopamine uptake and the high-affinity binding site for mazindol the uptake of [3H]dopamine and the binding of [3H]mazindol was studied in BALB/cBy mouse striatum in various buffers (Tris, HEPES, bicarbonate-phosphate). Kinetic analysis showed that the Kd of the binding of [3H]mazindol and the Km of the uptake of [3H]dopamine was changed by different sodium concentrations and/or by the presence of Tris, while the Bmax and the Vmax remained essentially the same. However, the shape of the Na+ dependency curves was not the same for mazindol binding and dopamine uptake in the various buffers. The inhibitory effect of other cations such as K+ and Tris was also different on binding and uptake under similar experimental circumstances. Dopamine did not slow down the dissociation of mazindol from its site and this effect was not sodium-sensitive. These complexities can be accommodated by a model that involves overlapping sites for mazindol and dopamine on the dopamine uptake carrier complex, and translocation-reorientation steps.

  10. Neuronal Adaptation to Amphetamine and Dopamine: Molecular Mechanisms of Prodynorphin Gene Regulation in Rat Striatum

    Science.gov (United States)

    Cole, Rebecca L.; Konradi, Christine; Douglass, James; Hyman, Steven E.

    2014-01-01

    Summary Induction of prodynorphin gene expression by psychostimulant drugs may represent a compensatory adaptation to excessive dopamine stimulation and may contribute to the aversive aspects of withdrawal. We therefore investigated the molecular mechanisms by which dopamine psychostimulant drugs induce prodynorphin gene expression in vivo and in rat primary striatal cultures. We demonstrate that three recently described cAMP response elements (CREs), rather than a previously reported noncanonical AP-1 site, are critical for dopamine induction of the prodynorphin gene in striatal neurons. CRE-binding protein (CREB) binds to these CREs in striatal cell extracts and is phosphorylated on Ser-133 after dopamine stimulation in a D1 dopamine receptor-dependent manner. Surprisingly, following chronic administration of amphetamine, levels of phosphorylated CREB are increased above basal in rat striatum in vivo, whereas c-fos mRNA is suppressed below basal levels. D1 receptor-mediated CREB phosphorylation appears to mediate adaptations to psychostimulant drugs in the striatum. PMID:7718243

  11. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  12. Modelo experimental de hérnia ventral em ratos Experimental model of ventral hernia in rats

    Directory of Open Access Journals (Sweden)

    Yara Juliano

    2002-03-01

    Full Text Available O objetivo deste experimento foi estudar o comportamento de defeitos provocados na parede abdominal, com a finalidade de estabelecer um modelo de hérnia ventral em ratos. Cem ratos com peso entre 230 e 260 g e idade de três meses foram distribuídos em dois grupos. No grupo I, os animais foram submetidos a uma incisão padronizada na linha alba. No grupo II, os animais foram submetidos à exérese padronizada músculo-aponeurótica da região anterior do abdome. Em ambos os grupos, os animais foram redistribuídos em três subgrupos (A, B e C, conforme o tempo de observação de 15, 30 e 45 dias, respectivamente. Nas hérnias desenvolvidas, foram analisados dimensões lineares e volume, presença de aderências e aspectos histológicos de fragmentos do saco herniário. Para análise de resultados, foram empregados testes estatísticos. Os animais dos subgrupos I A, I B e I C, respectivamente, 93,3%, 45% e 53,3%, e dos subgrupos II A, II B e II C, respectivamente, 66,7%, 35% e 47,7%, desenvolveram hérnias. Em ambos os grupos, as medidas do eixo maior dos ânulos herniários ultrapassaram 3 centímetros e os volumes, em média, superiores a 3 mL, classificando-as como hérnias de grandes dimensões. Aderências foram encontradas praticamente em todos os animais. A mortalidade pós-operatória foi em média de 8%, no grupo I, e de 18%, no grupo II, sendo a evisceração a causa dos óbitos. O estudo histológico mostrou maturação do saco herniário aos 30 dias de observação em ambos os grupos. De acordo com os resultados obtidos, o modelo incisão (grupo I foi o mais adequado para simular hérnia ventral no rato, apesar de não ter havido desenvolvimento de hérnia em todos os animais.The behavior of the defect provoked in the abdominal wall, with the purpose of establishing a model of ventral hernia in rats, was the objective of this study. Hundred and thirteen rats weighting from 230 to 260g and 3 months fase were distributed in two groups

  13. Mechanical discordance between left atrium and left atrial appendage

    Directory of Open Access Journals (Sweden)

    Arash Khamooshian

    2018-01-01

    Full Text Available During standard transesophageal echocardiographic examinations in sinus rhythm (SR patients, the left atrial appendage (LAA is not routinely assessed with Doppler. Despite having a SR, it is still possible to have irregular activity in the LAA. This situation is even more important for SR patients where assessment of the left atrium is often foregone. We describe a case where we encountered this situation and briefly review how to assess the left atrium and its appendage in such a case scenario.

  14. Acute effects of three club drugs on the striatum of rats: Evaluation by quantitative autoradiography with [18F]FDOPA

    International Nuclear Information System (INIS)

    Fang, Chun-Kai; Chen, Hong-Wen; Wang, Wei-Hsun; Liu, Ren-Shen; Hwang, Jeng-Jong

    2013-01-01

    In this work, we used quantitative autoradiography to study the acute effect of cocaine, methamphetamine, and ketamine on the uptake of [ 18 F]FDOPA in the striatum of rats. Drugs were treated 0.5 h before (pre-treated), and 1.5 h after (post-treated) [ 18 F]FDOPA injections, rats were then sacrificed at 2 h post [ 18 F]FDOPA injections to determine the striatum/frontal cortex binding ratios in the striatum. The ratios were lower in the post-treated groups than those of the pre-treated groups, suggesting a net effect of inhibition of trapping of the tracer. The order of uptake inhibition is: ketamine>methamphetamine>cocaine

  15. A multicenter prospective study of patients undergoing open ventral hernia repair with intraperitoneal positioning using the monofilament polyester composite ventral patch

    DEFF Research Database (Denmark)

    Berrevoet, Frederik; Doerhoff, Carl; Muysoms, Filip

    2017-01-01

    PURPOSE: This study assessed the recurrence rate and other safety and efficacy parameters following ventral hernia repair with a polyester composite prosthesis (Parietex™ Composite Ventral Patch [PCO-VP]). PATIENTS AND METHODS: A single-arm, multicenter prospective study of 126 patients undergoing....... Mean operative time was 36.2 ±15.6 minutes, with a mean mesh positioning time of 8.1 ± 3.4 minutes. Surgeons reported satisfaction with mesh ease of use in 95% of surgeries. The cumulative hernia recurrence rate at 1 year was 2.8% (3/106). Numeric Rating Scale (NRS) pain scores showed improvement from...

  16. [Left-handedness and health].

    Science.gov (United States)

    Milenković, Sanja; Belojević, Goran; Kocijancić, Radojka

    2010-01-01

    Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome), developmental disorders (autism, dislexia and sttutering) and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about "anomalous" cerebral domination, as a consequence of hormonal disbalance.

  17. Confocal imaging reveals three-dimensional fine structure difference between ventral and dorsal nerve roots

    Science.gov (United States)

    Wu, Yuxiang; Sui, Tao; Cao, Xiaojian; Lv, Xiaohua; Zeng, Shaoqun; Sun, Peng

    2011-05-01

    Peripheral nerve injury repair is one of the most challenging problems in neurosurgery, partially due to lack of knowledge of three-dimensional (3-D) fine structure and organization of peripheral nerves. In this paper, we explored the structures of nerve fibers in ventral and dorsal nerves with a laser scanning confocal microscopy. Thick tissue staining results suggested that nerve fibers have a different 3-D structure in ventral and dorsal nerves, and reconstruction from serial sectioning images showed that in ventral nerves the nerve fibers travel in a winding form, while in dorsal nerves, the nerve fibers form in a parallel cable pattern. These structural differences could help surgeons to differentiate ventral and dorsal nerves in peripheral nerve injury repair, and also facilitate scientists to get a deeper understanding about nerve fiber organization.

  18. Feasibility and outcome after laparoscopic ventral hernia repair using Proceed mesh

    DEFF Research Database (Denmark)

    Rosenberg, J.; Burcharth, J.

    2008-01-01

    BACKGROUND: There are many different meshes available for laparoscopic repair of ventral hernias. A relatively new product is the Proceed mesh with a bioresorbable layer against the bowels and a polypropylene layer against the abdominal wall. There are, however, no human data available. The aim...... of this study was to evaluate the feasibility and outcome after laparoscopic ventral hernia repair using the Proceed mesh in humans. METHODS: Patients presenting for laparoscopic ventral hernia repair in our department from September 2004 to October 2006 were included in the study. All patients had a standard...... laparoscopic ventral hernia repair using the Proceed mesh secured with tackers with a double crown technique. Patients were discharged according to standard discharge criteria, and follow-up was performed with a search in the national patient database and with manual search in the patients' files. RESULTS: Our...

  19. 'Batman excision' of ventral skin in hypospadias repair, clue to aesthetic repair (point of technique).

    Science.gov (United States)

    Hoebeke, P B; De Kuyper, P; Van Laecke, E

    2002-11-01

    In the hypospadiac penis the ventral skin is poorly developed, while dorsal skin is redundant. The classical Byars' flaps are a way to use the excess dorsal skin to cover the penile shaft. The appearance after Byars' flaps however is not natural. We use a more natural looking skin allocation with superior aesthetic results. The clue in this reconstruction is an inverted triangle shaped excision of ventral skin expanding over the edges of the hooded prepuce (which makes it look like Batman). After excision of the ventral skin it is possible to close the penile skin in the midline, thus mimicking the natural raphe. In case of preputial reconstruction the excised ventral skin makes the prepuce look more natural. The trend of further refining aesthetic appearance of the hypospadiac penis often neglects the penile skin reconstruction. A technique is presented by which the total penile appearances after surgery ameliorates due to better skin reconstruction.

  20. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  1. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Tuennerhoff, Johannes

    2015-01-01

    -TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection...... interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants...... demonstrate that IPS-TMS exerts profound directional causal influences not only on visual areas but also on the TPJ as a critical component of the ventral attentional system. They reveal a complex interplay between dorsal and ventral attentional systems during target detection under sustained spatial...

  2. Antioxidant responses and photosynthetic behaviors of Kappaphycus alvarezii and Kappaphycus striatum (Rhodophyta, Solieriaceae) during low temperature stress.

    Science.gov (United States)

    Li, Hu; Liu, Jianguo; Zhang, Litao; Pang, Tong

    2016-12-01

    Kappaphycus are farmed in tropical countries as raw material for carrageenan, which is widely used in food industry. The sea area available for farming is one limiting factor in the production of seaweeds. Though cultivation is spreading into subtropical regions, the lower seawater temperature is an important problem encountered in subtropical regions for the farming of Kappaphycus. This research of physiological response to low temperature stress will be helpful for screening Kappaphycus strains for growth in a lower temperature environment. Responses of antioxidant systems and photosystem II (PSII) behaviors in Kappaphycus alvarezii and Kappaphycus striatum were evaluated during low temperature treatments (23, 20, 17 °C). Compared with the controls at 26 °C, the H 2 O 2 concentrations increased in both species when the thalli were exposed to low temperatures (23, 20, 17 °C), but these increases were much greater in K. striatum than in K. alvarezii thalli, suggesting that K. striatum suffered more oxidative stress. The activities of some important antioxidant enzymes (e.g. superoxide dismutase and ascorbate peroxidase) and the hydroxyl free radical scavenging capacity were substantially higher at 23, 20 and 17 °C than at the control 26 °C in K. alvarezii, indicating that the antioxidant system of K. alvarezii enhanced its resistance to low temperature. However, no significant increases of antioxidant enzymes activities were observed at 20 and 17 °C in K. striatum. In addition, both the maximal efficiency of PSII photochemistry (F V /F m ) and the performance index (PI ABS ) decreased significantly in K. striatum at 23 °C, indicating that the photosynthetic apparatus was damaged at 23 °C. In contrast, no significant decreases of either F V /F m or PI ABS were observed in K. alvarezii at 23 °C. It is concluded that K. alvarezii has greater tolerance to low temperature than K. striatum.

  3. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning

    Directory of Open Access Journals (Sweden)

    Julie eBoulanger Bertolus

    2014-05-01

    Full Text Available Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days post-natal during odor-fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.

  4. In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: Implications of MAPK and Akt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heimfarth, Luana; Loureiro, Samanta Oliveira; Dutra, Márcio Ferreira; Andrade, Cláudia; Pettenuzzo, Letícia; Guma, Fátima T. Costa Rodrigues; Gonçalves, Carlos Alberto Saraiva [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil); Batista Teixeira da Rocha, João [Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS Brazil (Brazil); Pessoa-Pureur, Regina, E-mail: rpureur@ufrgs.br [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil)

    2012-10-15

    In the present report 15 day-old Wistar rats were injected with 0.3 μmol of diphenyl ditelluride (PhTe){sub 2}/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6 days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein—GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe){sub 2} significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe){sub 2} provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe){sub 2} treated striatal slices suggested apoptotic cell death. (PhTe){sub 2} exposure decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe){sub 2}-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis. -- Highlights: ► Diphenyl ditelluride causes apoptotic neuronal death in the striatum of young rats. ► Diphenyl ditelluride causes reactive astrogliosis in the striatum of rats. ► Diphenyl ditelluride disrupts the homeostasis of the cytoskeleton of the striatum. ► The actions of diphenyl ditelluride are mediated by MAPK and Akt

  5. Electrophysiological measurements on the ventral nerve photoreceptor of Limulus polyphemus

    Energy Technology Data Exchange (ETDEWEB)

    ClaBen-Linke, I.

    1982-03-01

    A set-up for intra- and extracellular electrophysiological measurements on the Limulus ventral nerve photoreceptor was built up. The time course of dark adaptation following light adaptation by a bright 1 or 5 s illumination was measured. The time course of dark adaptation was characterized by two different phases, a fast and a slow one. The influence of the extracellular Ca/sup 2 +/-concentration on the dark adaptation process was investigated. Only the first phase of dark adaptation was strongly dependent on the changed extracellular Ca/sup 2 +/-concentration while the second phase of dark adaptation was nearly Ca/sup 2 +/-independent. Calcium can only control the sensitivity of the cell when the intracellular concentration of Ca/sup 2 +/-ions exceeds a certain threshold. This is only true in the first relatively light-adapted phase (strong light intensity, short dark adaptation time). In the second relatively dark-adapted phase (weak light intensity, long dark adaptation time) other mechanisms such as the metabolism of the cell or action of enzymes control the sensitivity of the photoreceptor cell. The two adaptation processes are correlated to the appearance of the two components C/sub 1/ and C/sub 2/ of the receptor potential, which are influenced differently by the state of adaptation. Spike-like, regenerative signals were observed during the depolarization following the hyperpolarization which was caused by the strong light adaptation. A similar dependence of changed extracellular calcium concentration on the dark adaptation process could also be observed in those cells with regenerative events. Using the suction electrode, localization effects were investigated. Positive or negative signals could be recorded depending on the position of the suction electrode on the photoreceptor. This effect indicates that there are different membrane areas with different electrical properties.

  6. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Science.gov (United States)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  7. The emergence of semantic meaning in the ventral temporal pathway.

    Science.gov (United States)

    Carlson, Thomas A; Simmons, Ryan A; Kriegeskorte, Nikolaus; Slevc, L Robert

    2014-01-01

    In the ventral visual pathway, early visual areas encode light patterns on the retina in terms of image properties, for example, edges and color, whereas higher areas encode visual information in terms of objects and categories. At what point does semantic knowledge, as instantiated in human language, emerge? We examined this question by studying whether semantic similarity in language relates to the brain's organization of object representations in inferior temporal cortex (ITC), an area of the brain at the crux of several proposals describing how the brain might represent conceptual knowledge. Semantic relationships among words can be viewed as a geometrical structure with some pairs of words close in their meaning (e.g., man and boy) and other pairs more distant (e.g., man and tomato). ITC's representation of objects similarly can be viewed as a complex structure with some pairs of stimuli evoking similar patterns of activation (e.g., man and boy) and other pairs evoking very different patterns (e.g., man and tomato). In this study, we examined whether the geometry of visual object representations in ITC bears a correspondence to the geometry of semantic relationships between word labels used to describe the objects. We compared ITC's representation to semantic structure, evaluated by explicit ratings of semantic similarity and by five computational measures of semantic similarity. We show that the representational geometry of ITC-but not of earlier visual areas (V1)-is reflected both in explicit behavioral ratings of semantic similarity and also in measures of semantic similarity derived from word usage patterns in natural language. Our findings show that patterns of brain activity in ITC not only reflect the organization of visual information into objects but also represent objects in a format compatible with conceptual thought and language.

  8. Ventral aspect of the visual form pathway is not critical for the perception of biological motion

    Science.gov (United States)

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene

    2015-01-01

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  9. Preputial reconstruction and tubularized incised plate urethroplasty in proximal hypospadias with ventral penile curvature

    OpenAIRE

    Bhat, Amilal; Gandhi, Ajay; Saxena, Gajendra; Choudhary, Gautam Ram

    2010-01-01

    Aims : Objective of this study was to assess the feasibility and results of preputial reconstruction and tubularized incised plate urethroplasty (TIP) in patients of proximal hypospadias with ventral penile curvature. Materials and Methods : Twenty-seven patients of proximal hypospadias who underwent preputioplasty with TIP were evaluated retrospectively. Ventral curvature was corrected by mobilization of the urethral plate with the corpus spongiosum and the proximal urethra; dorsal plica...

  10. Modulation of the visceromotor reflex by a lumbosacral ventral root avulsion injury and repair in rats

    OpenAIRE

    Chang, Huiyi H.; Havton, Leif A.

    2012-01-01

    Increased abdominal muscle wall activity may be part of a visceromotor reflex (VMR) response to noxious stimulation of the bladder. However, information is sparse regarding the effects of cauda equina injuries on the VMR in experimental models. We studied the effects of a unilateral L6-S1 ventral root avulsion (VRA) injury and acute ventral root reimplantation (VRI) into the spinal cord on micturition reflexes and electromyographic activity of the abdominal wall in rats. Cystometrogram (CMG) ...

  11. Modified semitendinosus muscle transposition to repair ventral perineal hernia in 14 dogs.

    Science.gov (United States)

    Morello, E; Martano, M; Zabarino, S; Piras, L A; Nicoli, S; Bussadori, R; Buracco, P

    2015-06-01

    To describe a modified technique of semitendinosus muscle transposition for the repair of ventral perineal hernia. Retrospective review of case records of dogs with ventral perineal hernia that were treated by transposing the medial half of the longitudinally split semitendinosus muscle of one limb. The transposition of the internal obturator muscle was used when uni- or bilateral rectal sacculation was also present in addition to ventral perineal hernia; colopexy and vas deferens pexy were also performed. Fourteen dogs were included. In addition to ventral perineal hernia, unilateral and bilateral perineal hernia was also present in five and six of the dogs, respectively. The mean follow-up time was 890 days. Ventral perineal hernia was successfully managed by the modified semitendinosus muscle transposition with minor complications in all the dogs included in the study. Despite the small number of dogs included, the unilateral transposition of the medial half of the longitudinally split semitendinosus muscle consistently supported the ventral rectal enlargement in perineal hernia without obvious adverse effects. © 2015 British Small Animal Veterinary Association.

  12. Contrasting the dorsal and ventral visual systems: guidance of movement versus decision making.

    Science.gov (United States)

    Passingham, R E; Toni, I

    2001-07-01

    It is widely accepted that the ventral visual pathways are involved in the identification of objects and the dorsal visual pathways in the visual guidance of reaching and grasping movements. But there are also situations, such as in a choice reaction time task, in which the subjects must select between actions on the basis of visual cues. This paper uses brain imaging to explore the pathways that are involved. Studies using PET and fMRI show that when subjects learn which actions are appropriate given the visual context, there are learning-related increases in the inferotemporal cortex and the ventral prefrontal cortex to which it projects. An event-related fMRI study shows that the activity in the inferotemporal cortex is time-locked to the presentation of the visual cue and the activity in the ventral prefrontal cortex to the response. Finally two PET studies directly compare the dorsal and ventral systems. In the second of these the subjects either move their finger on a moving target or identify the direction of movement and press one of two buttons to report the direction. When the subjects report the direction there is activity in the middle temporal gyrus and ventral prefrontal cortex. It is suggested that, when subjects must consciously identify the context and decide on the appropriate action, ventral pathways are involved. Copyright 2001 Academic Press.

  13. Role of Anterior Intralaminar Nuclei of Thalamus Projections to Dorsomedial Striatum in Incubation of Methamphetamine Craving.

    Science.gov (United States)

    Li, Xuan; Witonsky, Kailyn R; Lofaro, Olivia M; Surjono, Felicia; Zhang, Jianjun; Bossert, Jennifer M; Shaham, Yavin

    2018-02-28

    Relapse to methamphetamine (Meth) seeking progressively increases after withdrawal from drug self-administration (incubation of Meth craving). We previously demonstrated a role of dorsomedial striatum (DMS) dopamine D1 receptors (D1Rs) in this incubation. Here, we studied the role of afferent glutamatergic projections into the DMS and local D1R-glutamate interaction in this incubation in male rats. We first measured projection-specific activation on day 30 relapse test by using cholera toxin b (retrograde tracer) + Fos (activity marker) double-labeling in projection areas. Next, we determined the effect of pharmacological reversible inactivation of lateral or medial anterior intralaminar nuclei of thalamus (AIT-L or AIT-M) on incubated Meth seeking on withdrawal day 30. We then used an anatomical asymmetrical disconnection procedure to determine whether an interaction between AIT-L→DMS glutamatergic projections and postsynaptic DMS D1Rs contributes to incubated Meth seeking. We also determined the effect of unilateral inactivation of AIT-L and D1R blockade of DMS on incubated Meth seeking, and the effect of contralateral disconnection of AIT-L→DMS projections on nonincubated Meth seeking on withdrawal day 1. Incubated Meth seeking was associated with selective activation of AIT→DMS projections; other glutamatergic projections to DMS were not activated. AIT-L (but not AIT-M) inactivation or anatomical disconnection of AIT-L→DMS projections decreased incubated Meth seeking. Unilateral inactivation of AIT-L or D1R blockade of the DMS had no effect on incubated Meth craving, and contralateral disconnection of AIT-L→DMS projections had no effect on nonincubated Meth seeking. Our results identify a novel role of AIT-L and AIT-L→DMS glutamatergic projections in incubation of drug craving and drug seeking. SIGNIFICANCE STATEMENT Methamphetamine seeking progressively increases after withdrawal from drug self-administration, a phenomenon termed incubation of

  14. Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience

    Science.gov (United States)

    2016-01-01

    The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue–response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel “other” task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue–response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. SIGNIFICANCE STATEMENT Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate

  15. Herniation of duodenum into the right ventral hepatic peritoneal cavity with groove formation at the ventral hepatic surface in a 2-week-old chicken.

    Science.gov (United States)

    Haridy, Mohie; Sasaki, Jun; Goryo, Masanobu

    2013-10-01

    Internal hernia in avian species is very rare. A necropsy of a 2-week-old SPF White Leghorn chicken revealed that a loop of the duodenum and part of the pancreas (4 × 2 × 1 cm) was protruding through the abnormal foramen (2.5 cm in diameter) in the right posthepatic septum into the right ventral hepatic peritoneal cavity. The herniated loop was located underneath the ventral hepatic surface, leaving a groove on the right hepatic lobe (2 × 1.5 × 0.4 cm). The part of the pancreas involved in the hernia was grossly enlarged. Microscopically, a zone of pressure atrophy of hepatic tissue was characterized by crowdedness of hepatocytes with pyknotic nuclei and faint eosinophilic cytoplasm and indistinct narrow sinusoids. The pancreas revealed hypertrophy of the acinar cells with an increase in the secretory granules and basophilic cytoplasm. This is the first report of duodenum herniation into the right ventral hepatic peritoneal cavity resulting in groove formation on the ventral hepatic surface in a 2-week-old chicken.

  16. Left dorsal speech stream components and their contribution to phonological processing.

    Science.gov (United States)

    Murakami, Takenobu; Kell, Christian A; Restle, Julia; Ugawa, Yoshikazu; Ziemann, Ulf

    2015-01-28

    Models propose an auditory-motor mapping via a left-hemispheric dorsal speech-processing stream, yet its detailed contributions to speech perception and production are unclear. Using fMRI-navigated repetitive transcranial magnetic stimulation (rTMS), we virtually lesioned left dorsal stream components in healthy human subjects and probed the consequences on speech-related facilitation of articulatory motor cortex (M1) excitability, as indexed by increases in motor-evoked potential (MEP) amplitude of a lip muscle, and on speech processing performance in phonological tests. Speech-related MEP facilitation was disrupted by rTMS of the posterior superior temporal sulcus (pSTS), the sylvian parieto-temporal region (SPT), and by double-knock-out but not individual lesioning of pars opercularis of the inferior frontal gyrus (pIFG) and the dorsal premotor cortex (dPMC), and not by rTMS of the ventral speech-processing stream or an occipital control site. RTMS of the dorsal stream but not of the ventral stream or the occipital control site caused deficits specifically in the processing of fast transients of the acoustic speech signal. Performance of syllable and pseudoword repetition correlated with speech-related MEP facilitation, and this relation was abolished with rTMS of pSTS, SPT, and pIFG. Findings provide direct evidence that auditory-motor mapping in the left dorsal stream causes reliable and specific speech-related MEP facilitation in left articulatory M1. The left dorsal stream targets the articulatory M1 through pSTS and SPT constituting essential posterior input regions and parallel via frontal pathways through pIFG and dPMC. Finally, engagement of the left dorsal stream is necessary for processing of fast transients in the auditory signal. Copyright © 2015 the authors 0270-6474/15/351411-12$15.00/0.

  17. Progressive obtundation in a young woman with bilateral corpus striatum infarction: a case report

    Directory of Open Access Journals (Sweden)

    Zangana Hero M

    2011-07-01

    Full Text Available Abstract Background Bilateral ischemic infarction involving the corpus striatum is a rare event which usually results from global cerebral hypoxia, intoxications, and drug abuse. Case presentation We report a 28 year old Caucasian woman who presented with progressive obtundation and later development of severe expressive dysphasia and Parkinsonism after sustaining ischemic stroke of both corpora striata. Hemorrhagic transformation developed on day four of admission. Conclusion This is a rare case of bilateral basal ganglia infarction with hemorrhagic transformation in a young patient. Our patient's work up did not reveal any cause behind this stroke; however, advanced investigations (such as genetic testing and conventional angiography were not done. The damage resulted in motor dysphasia and Parkinsonism. Neither dystonia nor other involuntary movements developed, and cognitive function was not assessed because of the language disorder.

  18. GABA and Glutamate Synaptic Coadaptations to Chronic Ethanol in the Striatum.

    Science.gov (United States)

    Carlson, Verginia C Cuzon

    2018-02-20

    Alcohol (ethanol) is a widely used and abused drug with approximately 90% of adults over the age of 18 consuming alcohol at some point in their lifetime. Alcohol exerts its actions through multiple neurotransmitter systems within the brain, most notably the GABAergic and glutamatergic systems. Alcohol's actions on GABAergic and glutamatergic neurotransmission have been suggested to underlie the acute behavioral effects of ethanol. The striatum is the primary input nucleus of the basal ganglia that plays a role in motor and reward systems. The effect of ethanol on GABAergic and glutamatergic neurotransmission within striatal circuitry has been thought to underlie ethanol taking, seeking, withdrawal and relapse. This chapter reviews the effects of ethanol on GABAergic and glutamatergic transmission, highlighting the dynamic changes in striatal circuitry from acute to chronic exposure and withdrawal.

  19. Savoring the past: Positive memories evoke value representations in the striatum

    Science.gov (United States)

    Speer, Megan E.; Bhanji, Jamil P.; Delgado, Mauricio R.

    2014-01-01

    Summary Reminders of happy memories can bring back pleasant feelings tied to the original experience, suggesting an intrinsic value in reminiscing about the positive past. However, the neural circuitry underlying the rewarding aspects of autobiographical memory is poorly understood. Using fMRI, we observed enhanced activity during the recall of positive relative to neutral autobiographical memories in corticostriatal circuits that also responded to monetary rewards. Enhanced activity in the striatum and medial prefrontal cortex was associated with increases in positive emotion during recall and striatal engagement further correlated with individual measures of resiliency. Striatal response to the recall of positive memories was greater in individuals whose mood improved after the task. Notably, participants were willing to sacrifice more tangible monetary rewards in order to reminisce about positive past experiences. Our findings suggest that recalling positive autobiographical memories is intrinsically valuable, which may be adaptive for regulating positive emotion and promoting better well-being. PMID:25451197

  20. Myxoma of the Left Ventricle

    Science.gov (United States)

    Novoa, José; Delgado, Antonio; Alonso, Ana

    2014-01-01

    This report concerns a 69-year-old woman who presented with an asymptomatic myxoma in the left ventricle. The tumor was successfully excised. We provide a very brief review of 72 other published cases of surgically treated left ventricular myxoma. PMID:25120392

  1. Left ventricular hypertrophy in athletes.

    Science.gov (United States)

    Douglas, P S; O'Toole, M L; Katz, S E; Ginsburg, G S; Hiller, W D; Laird, R H

    1997-11-15

    Left ventricular wall thickness >1.3 cm, septal-to-posterior wall ratios > 1.5, diastolic left ventricular size >6.0 cm, and eccentric or concentric remodeling are rare in athletes. Values outside of these cutoffs in an athlete of any age probably represent a pathologic state.

  2. The Left-Handed Writer.

    Science.gov (United States)

    Bloodsworth, James Gaston

    Contrary to the beliefs of many, right-handedness is not a single factor existing in almost all people, with a few exceptions termed left-handed: neither extreme exists independently of the other. During the first 4 years of life there is a period of fluctuation between right and left-handed dominance. Statistics and findings vary in determining…

  3. Two Lefts in Latin America?

    DEFF Research Database (Denmark)

    Christensen, Steen Fryba

    In this working paper I list five researchers' categorizations of the Latin American left in power (april 2006) in a schematic form. The most important criteria for the categorizations are given.......In this working paper I list five researchers' categorizations of the Latin American left in power (april 2006) in a schematic form. The most important criteria for the categorizations are given....

  4. A Giant Left Atrial Myxoma

    Directory of Open Access Journals (Sweden)

    Medhat F. Zaher

    2014-01-01

    Full Text Available Atrial myxomas are the most common primary cardiac tumors. Patients with left atrial myxomas generally present with mechanical obstruction of blood flow, systemic embolization, and constitutional symptoms. We present a case of an unusually large left atrial myxoma discovered incidentally in a patient with longstanding dyspnea being managed as bronchial asthma.

  5. Effects of the neonicotinoids thiametoxam and clothianidin on in vivo dopamine release in rat striatum.

    Science.gov (United States)

    de Oliveira, Iris Machado; Nunes, Brenda Viviane Ferreira; Barbosa, Durán Rafael; Pallares, Alfonso Miguel; Faro, Lilian Rosana Ferreira

    2010-02-15

    Thiamethoxam (TMX) and clothianidin (CLO) are neonicotinoids insecticides. The main characteristic of these pesticides is their agonist action on nicotinic acetylcholine receptors (nAChRs). In the present work it was studied and characterized the effects of TMX and CLO, in different concentrations, on dopaminergic system of rat striatum using in vivo brain microdialysis coupled to HPLC-EC. Intrastriatal administration of 1mM or 5mM TMX has not produced significant increases on dopamine (DA) levels, nonetheless the infusion of 10mM TMX increases the DA output to 841+/-132%, when compared to basal levels. Infusion of 1mM CLO has not induced a significant increase in DA levels, even so 2, 3.5 and 5mM CLO have produced an increase of 438+/-8%, 2778+/-598% and 4604+/-516%, respectively, every compared to basal levels. Mecamylamine (MEC), a non-competitive nAChRs antagonist, was used to investigate the role of nAChRs on DA release induced by TMX and CLO. The increases in extracellular DA levels induced by TMX and CLO when associated to MEC are 80% and 68% lower than the effect produced by CLO and TMX isolated. These results confirm that TMX and CLO appear to induce in vivo DA increased release in striatum of rats and it seems to be concentration dependent. Moreover, these results indicate that this effect might be related to nAChRs. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum.

    Science.gov (United States)

    Muñiz, Javier A; Gomez, Gimena; González, Betina; Rivero-Echeto, María Celeste; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J; Bisagno, Veronica

    2016-05-01

    Caffeine is the world's most popular psychoactive drug and is also an active adulterant found in many drugs of abuse, including seized cocaine samples. Despite several studies which examine the effects of caffeine or cocaine administered as single agents, little data are available for these agents when given in combination. The purpose of the present study was to determine if combined intake of both psychostimulants can lead to maladaptive changes in striatal function. Mice were injected with a binge regimen (intermittent treatment for 13 days) of caffeine (3 × 5 mg/kg), cocaine (3 × 10 mg/kg), or combined administration. We found that chronic caffeine potentiated locomotion induced by cocaine and that both caffeine-treated groups showed sensitization. Striatal tissue was obtained 24 h and 7 days after last injection (withdrawal) for immunohistochemistry and mRNA expression. Our results show that combined intake of both psychostimulants can increase GFAP immunoreactivity in the striatum at both times post treatment. Gene expression analysis, targeted at dopamine, adenosine, and glutamate receptor subunit genes, revealed significant transcript down-regulation in the dorsal striatum of AMPA, NMDA, D1 and D2 receptor subunit mRNA expression in the group that received combined treatment, but not after individual administration. At withdrawal, we found increased D1 receptor mRNA expression along with increased A1, AMPA, NMDA, and metabotropic subunit expression. A2A mRNA showed decreased expression after both times in all experimental groups. Our study provides evidence that there are striatal alterations mediated by combined caffeine and cocaine administration, and highlights negative outcomes of chronic intake of both psychostimulants.

  7. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  8. Changes in the development of striatum are involved in repetitive behavior in autism.

    Science.gov (United States)

    Langen, Marieke; Bos, Dienke; Noordermeer, Siri D S; Nederveen, Hilde; van Engeland, Herman; Durston, Sarah

    2014-09-01

    Repetitive behavior is a core feature of autism and has been linked to differences in striatum. In addition, the brain changes associated with autism appear to vary with age. However, most studies investigating striatal differences in autism are cross-sectional, limiting inferences on development. In this study, we set out to 1) investigate striatal development in autism, using a longitudinal design; and 2) examine the relationship between striatal development and repetitive behavior. We acquired longitudinal structural magnetic resonance imaging scans from 86 individuals (49 children with autism, 37 matched control subjects). Each individual was scanned twice, with a mean scan interval time of 2.4 years. Mean age was 9.9 years at time 1 and 12.3 years at time 2. Striatal structures were traced manually with high reliability. Multivariate analyses of variance were used to investigate differences in brain development between diagnostic groups. To examine the relationship with behavior, correlations between changes in brain volumes and clinical measures were calculated. Our results showed an increase in the growth rate of striatal structures for individuals with autism compared with control subjects. The effect was specific to caudate nucleus, where growth rate was doubled. Second, faster striatal growth was correlated with more severe repetitive behavior (insistence on sameness) at the preschool age. This longitudinal study of brain development in autism confirms the involvement of striatum in repetitive behavior. Furthermore, it underscores the significance of brain development in autism, as the severity of repetitive behavior was related to striatal growth, rather than volume per se. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Functional Connectivity in the Left Dorsal Stream Facilitates Simultaneous Language Translation: an EEG Study

    Directory of Open Access Journals (Sweden)

    Stefan eElmer

    2016-02-01

    Full Text Available Cortical speech processing is dependent on the mutual interdependence of two distinctive processing streams supporting sound-to-meaning (i.e., ventral stream and sound-to-articulation (i.e., dorsal stream mapping. Here, we compared the strengths of intracranial functional connectivity between two main hubs of the dorsal stream, namely the left auditory-related cortex (ARC and Broca’s region, in a sample of simultaneous interpreters (SIs and multilingual control subjects while the participants performed a mixed and unmixed auditory semantic decision task. Under normal listening conditions such kind of tasks are known to initiate a spread of activation along the ventral stream. However, due to extensive and specific training, here we predicted that SIs will more strongly recruit the dorsal pathway in order to pre-activate the speech codes of the corresponding translation. In line with this reasoning, EEG results demonstrate increased left-hemispheric theta phase synchronization in SLI compared to multilingual control subjects during early task-related processing stages. In addition, within the SI group functional connectivity strength in the left dorsal pathway was positively related to the cumulative number of training hours across lifespan, and inversely correlated with the age of training commencement. Hence, we propose that the alignment of neuronal oscillations between brain regions involved in hearing and speaking results from an intertwining of training, sensitive period, and predisposition.

  10. Antipsychotic drugs classified by their effects on the release of dopamine and noradrenaline in the prefrontal cortex and striatum

    NARCIS (Netherlands)

    Westerink, B.H.C.; Kawahara, Y; de Boer, P; Geels, C; de Vries, J.B; Wikström, H.V; van Kalkeren, A; van Vliet, B; Kruse, C.H; Long, S.K

    2001-01-01

    Dose-effect curves were established for the effects of the antipsychotic drugs haloperidol, clozapine, olanzapine, risperidone and ziprasidone on extracellular levels of dopamine and noradrenaline in the medial prefrontal cortex, and of dopamine in the striatum. Haloperidol was more effective in

  11. Dysfunctional mitochondrial respiration in the striatum of the Huntington's disease transgenic R6/2 mouse model

    DEFF Research Database (Denmark)

    Aidt, Frederik Heurlin; Nielsen, Signe Marie Borch; Kanters, Jørgen

    2013-01-01

    Metabolic dysfunction and mitochondrial involvement are recognised as part of the pathology in Huntington's Disease (HD). Post-mortem examinations of the striatum from end-stage HD patients have shown a decrease in the in vitro activity of complexes II, III and IV of the electron transport system...

  12. Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training.

    Science.gov (United States)

    Bello-Medina, Paola C; Flores, Gonzalo; Quirarte, Gina L; McGaugh, James L; Prado Alcalá, Roberto A

    2016-10-18

    A growing body of evidence indicates that treatments that typically impair memory consolidation become ineffective when animals are given intense training. This effect has been obtained by treatments interfering with the neural activity of several brain structures, including the dorsal striatum. The mechanisms that mediate this phenomenon are unknown. One possibility is that intense training promotes the transfer of information derived from the enhanced training to a wider neuronal network. We now report that inhibitory avoidance (IA) induces mushroom spinogenesis in the medium spiny neurons (MSNs) of the dorsal striatum in rats, which is dependent upon the intensity of the foot-shock used for training; that is, the effect is seen only when high-intensity foot-shock is used in training. We also found that the relative density of thin spines was reduced. These changes were evident at 6 h after training and persisted for at least 24 h afterward. Importantly, foot-shock alone did not increase spinogenesis. Spine density in MSNs in the accumbens was also increased, but the increase did not correlate with the associative process involved in IA; rather, it resulted from the administration of the aversive stimulation alone. These findings suggest that mushroom spines of MSNs of the dorsal striatum receive afferent information that is involved in the integrative activity necessary for memory consolidation, and that intense training facilitates transfer of information from the dorsal striatum to other brain regions through augmented spinogenesis.

  13. Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice.

    Science.gov (United States)

    Achour, Mayada; Le Gras, Stéphanie; Keime, Céline; Parmentier, Frédéric; Lejeune, François-Xavier; Boutillier, Anne-Laurence; Néri, Christian; Davidson, Irwin; Merienne, Karine

    2015-06-15

    Huntington's disease (HD) is a neurodegenerative disease associated with extensive down-regulation of genes controlling neuronal function, particularly in the striatum. Whether altered epigenetic regulation underlies transcriptional defects in HD is unclear. Integrating RNA-sequencing (RNA-seq) and chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq), we show that down-regulated genes in HD mouse striatum associate with selective decrease in H3K27ac, a mark of active enhancers, and RNA Polymerase II (RNAPII). In addition, we reveal that decreased genes in HD mouse striatum display a specific epigenetic signature, characterized by high levels and broad patterns of H3K27ac and RNAPII. Our results indicate that this signature is that of super-enhancers, a category of broad enhancers regulating genes defining tissue identity and function. Specifically, we reveal that striatal super-enhancers display extensive H3K27 acetylation within gene bodies, drive transcription characterized by low levels of paused RNAPII, regulate neuronal function genes and are enriched in binding motifs for Gata transcription factors, such as Gata2 regulating striatal identity genes. Together, our results provide evidence for preferential down-regulation of genes controlled by super-enhancers in HD striatum and indicate that enhancer topography is a major parameter determining the propensity of a gene to be deregulated in a neurodegenerative disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Histamine H3R receptor activation in the dorsal striatum triggers stereotypies in a mouse model of tic disorders.

    Science.gov (United States)

    Rapanelli, M; Frick, L; Pogorelov, V; Ohtsu, H; Bito, H; Pittenger, C

    2017-01-24

    Tic disorders affect ~5% of the population and are frequently comorbid with obsessive-compulsive disorder, autism, and attention deficit disorder. Histamine dysregulation has been identified as a rare genetic cause of tic disorders; mice with a knockout of the histidine decarboxylase (Hdc) gene represent a promising pathophysiologically grounded model. How alterations in the histamine system lead to tics and other neuropsychiatric pathology, however, remains unclear. We found elevated expression of the histamine H3 receptor in the striatum of Hdc knockout mice. The H3 receptor has significant basal activity even in the absence of ligand and thus may modulate striatal function in this knockout model. We probed H3R function using specific agonists. The H3 agonists R-aminomethylhistamine (RAMH) and immepip produced behavioral stereotypies in KO mice, but not in controls. H3 agonist treatment elevated intra-striatal dopamine in KO mice, but not in controls. This was associated with elevations in phosphorylation of rpS6, a sensitive marker of neural activity, in the dorsal striatum. We used a novel chemogenetic strategy to demonstrate that this dorsal striatal activity is necessary and sufficient for the development of stereotypy: when RAMH-activated cells in the dorsal striatum were chemogenetically activated (in the absence of RAMH), stereotypy was recapitulated in KO animals, and when they were silenced the ability of RAMH to produce stereotypy was blocked. These results identify the H3 receptor in the dorsal striatum as a contributor to repetitive behavioral pathology.

  15. Left-handedness and health

    Directory of Open Access Journals (Sweden)

    Milenković Sanja

    2010-01-01

    Full Text Available Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome, developmental disorders (autism, dislexia and sttutering and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about 'anomalous' cerebral domination, as a consequence of hormonal disbalance. .

  16. Left ventricular wall stress compendium.

    Science.gov (United States)

    Zhong, L; Ghista, D N; Tan, R S

    2012-01-01

    Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models.

  17. Depressive symptoms related to low fractional anisotropy of white matter underlying the right ventral anterior cingulate in older adults with atherosclerotic vascular disease

    Directory of Open Access Journals (Sweden)

    Kelly Rowe Bijanki

    2015-07-01

    Full Text Available We sought to characterize the relationship between integrity of the white matter underlying the ventral anterior cingulate (vAC and depressive symptoms in older adults with atherosclerotic vascular disease (AVD, a condition associated with preferential degeneration of the white matter. The ventral anterior cingulate was defined as including white matter underlying ventral Brodmann Area 24 and Brodmann Area 25, corresponding with the subcallosal and subgenual cingulate respectively. This region of interest was chosen based on the preponderance of evidence that the white matter in the region plays a critical role in the manifestation of depressive symptoms. Participants had current unequivocal diagnoses of AVD and were between 55 and 90 years old. Fractional anisotropy (FA was used as an index of white matter integrity and organization. Whole-brain mean diffusivity (MD was used as an index of global white matter lesion burden. Depressive symptoms were measured using the Symptom Checklist-90-Revised (SCL-90-R Depression Scale. Depressive symptoms were significantly related to low FA in the right vAC (r=-.356, DF=30, p=.045 but not the left vAC (r=.024, DF=30, p=.896 after controlling for total brain MD (a statistical control for global white matter lesion burden. Further, depressive symptoms were significantly related to low FA in the right vAC (r=-0.361, DF=31, p=.039, but not the left vAC (r=.259, DF=31, p=.145 when controlled for the contralateral vAC FA. The correlation coefficients for this follow-up analysis were found to be significantly different between left and right vAC (Z=2.310, p=.021.Poor white matter health in the vAC may be a biological mechanism for depressive symptoms in older adults with vascular disease. Further studies may corroborate that the right vAC plays a unique role in depressive symptom manifestation in cases where the white matter is preferentially affected, as is the case in AVD. This could lead to future targeting of

  18. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    Directory of Open Access Journals (Sweden)

    Hiroaki Kawamichi

    2016-11-01

    Full Text Available Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68. Furthermore, we also conducted a voxel-based morphometry (VBM study of the effects of being in a romantic relationship (N = 113. Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward.

  19. Being in a Romantic Relationship Is Associated with Reduced Gray Matter Density in Striatum and Increased Subjective Happiness

    Science.gov (United States)

    Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Matsunaga, Masahiro; Tanabe, Hiroki C.; Ogino, Yuichi; Saito, Shigeru; Sadato, Norihiro

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68). Furthermore, we also conducted a voxel-based morphometry study of the effects of being in a romantic relationship (N = 113). Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward. PMID:27895606

  20. Morphological and immunohistochemical comparison of three rat prostate lobes (lateral, dorsal and ventral in experimental hyperprolactinemia.

    Directory of Open Access Journals (Sweden)

    Dariusz Gącarzewicz

    2010-11-01

    Full Text Available The prolactin plays an important role in the regulation of growth and differentiation of prostate gland besides androgens. The goal of this study was to reveal the influence of elevated prolactin concentration on epithelial cells of prostate. We compared the morphology of epithelial cells of prostate dorsal, lateral and ventral lobes and expression of androgen receptors in these cells in rats with hyperprolactinemia and in control rats. We used sexually mature male Wistar rats. The experimental rats received metoclopramide; the control group received saline in the same way. The prostate dorsal, lateral and ventral lobes were collected routinely for light and electron microscopy. The intensity of immunohistochemical reaction of androgen receptor in epithelial cells of dorsal, lateral and ventral lobes was evaluated by measure of optical density with computer image analysis. The light and electron (transmission and scanning microscopes were used for morphological observations. Results: In experimental rats twofold increase in prolactin and twofold decrease in testosterone found. In experimental group the expression of androgen receptor was lower in columnar epithelial cells of dorsal and ventral lobes but higher in lateral one. We observed morphological abnormalities in columnar epithelial cells of lateral and dorsal lobes. The columnar epithelial cells of ventral lobes didn't show any morphological changes in hyperprolactinemia.

  1. Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 in a dog

    Directory of Open Access Journals (Sweden)

    Harumichi Itoh

    2017-03-01

    Full Text Available Craniocervical junction abnormalities with atlantoaxial subluxation caused by ventral subluxation of C2 were diagnosed in a 6-month-old female Pomeranian with tetraplegia as a clinical sign. Lateral survey radiography of the neck with flexion revealed atlantoaxial subluxation with ventral subluxation of C2. Computed tomography revealed absence of dens and atlanto-occipital overlapping. Magnetic resonance imaging showed compression of the spinal cord and indentation of caudal cerebellum. The diagnosis was Chiari-like malformation, atlantoaxial subluxation with ventral displacement of C2, atlanto-occipital overlapping, and syringomyelia. The dog underwent foramen magnum decompression, dorsal laminectomy of C1, and ventral fixation of the atlantoaxial joint. Soon after the operation, voluntary movements of the legs were recovered. Finally, the dog could stand and walk without assistance. The dog had complicated malformations at the craniocervical junction but foramen magnum decompression and dorsal laminectomy for Chiari-like malformation, and ventral fixation for atlantoaxial subluxation resulted in an excellent clinical outcome.

  2. Microelectrode array recordings from the ventral roots in chronically implanted cats

    Directory of Open Access Journals (Sweden)

    Shubham eDebnath

    2014-07-01

    Full Text Available The ventral spinal roots contain the axons of spinal motoneurons and provide the only location in the peripheral nervous system where recorded neural activity can be assured to be motor rather than sensory. This study demonstrates recordings of single unit activity from these ventral root axons using floating microelectrode arrays (FMAs. Ventral root recordings were characterized by examining single unit yield and signal-to-noise ratios (SNR with 32-channel FMAs implanted chronically in the L6 and L7 spinal roots of 9 cats. Single unit recordings were performed for implant periods of up to 12 weeks. Motor units were identified based on active discharge during locomotion and inactivity under anesthesia. Motor unit yield and SNR were calculated for each electrode, and results were grouped by electrode site size, which were varied systematically between 25-160 μm to determine effects on signal quality. The unit yields and SNR did not differ significantly across this wide range of electrode sizes. Both SNR and yield decayed over time, but electrodes were able to record spikes with SNR > 2 up to 12 weeks post-implant. These results demonstrate that it is feasible to record single unit activity from multiple isolated motor units with penetrating microelectrode arrays implanted chronically in the ventral spinal roots. This approach could be useful for creating a spinal nerve interface for advanced neural prostheses, and results of this study will be used to improve design of microelectrodes for chronic neural recording in the ventral spinal roots.

  3. Imaging findings in patients with ventral dural defects and herniation of neural tissue

    International Nuclear Information System (INIS)

    Baur, A.; Staebler, A.; Reiser, M.; Psenner, K.; Hamburger, C.

    1997-01-01

    The aim of this paper is to describe clinical and imaging findings in three patients with ventral dural defects and herniation of the spinal cord or cauda equina. The literature is reviewed and the clinical, radiological and operative findings are compared. Three patients with ventral dural defects of different etiologies are presented. One patient gave a longstanding history of ankylosing spondylitis, the second patient presents 37 years after spinal trauma, and the third patient presents with spontaneous spinal cord herniation. All patients had typically slowly progressive neurological symptoms with multiple hospitalizations until diagnosis was made. Characteristic findings in postmyelographic CT included a ventral or ventrolateral displacement with deformation of the spinal cord or the cauda equina. Sagittal MRI showed this abrupt and localized anterior deviation of the spinal cord or the cauda equina to the posterior portions of a vertebral body with or without a bony vertebral defect optimally. Additionally, due to the ventral displacement of the spinal cord, the dorsal subarachnoid space was relatively enlarged without evidence of an arachnoid cyst, in all patients. Magnetic resonance imaging and postmyelographic CT can diagnose ventral dural defects with spinal cord herniation or nerve root entrapment. Dural defects must be considered in the presence of neurological symptoms in cases of longstanding ankylosing spondylitis, late sequelae of fractures of vertebral bodies, and without history of spinal trauma or surgery. (orig.). With 3 figs

  4. Differential modulation of visual object processing in dorsal and ventral stream by stimulus visibility.

    Science.gov (United States)

    Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido

    2016-10-01

    As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A rare arterial branch distributing to the thymus, ectopic intrathymic parathyroid, and thyroid glands which passed ventral to the right common carotid artery: a case report.

    Science.gov (United States)

    Watanabe, Yuko; Terashima, Toshio; Arakawa, Takamitsu

    2017-06-01

    The intrathymic parathyroid has been reported that this variation might be related with the hyperthyroidism. In this study, the arterial pattern supplying the intrathymic parathyroid was examined in detail in the human cadaver (67-year-old, female, right side). The ectopic parathyroid was only detected on the right side, but not on the left side. This ectopic intrathymic parathyroid was supplied by the supernumerary arterial branch that originated from the inferior thyroid artery and passed ventral to the common carotid artery. This supernumerary branch further divided into two thin branches: (1) the one distributing the intrathymic parathyroid and the right lobe of the thyroid gland and (2) the other descending toward the thoracic cavity to supply the mediastinum organs. Other arteries supplying the thyroid gland and thymus of both sides were normal. In the surgical resection of the ectopic intrathymic parathyroid, physicians should pay attention to arteries ventral to the common carotid artery. This supernumerary branch distributing to the intrathymic parathyroid may be caused by incomplete division into the primordium for the inferior parathyroid and the primordium for the thymus on the developmental process.

  6. Optimizing Penile Length in Patients Undergoing Partial Penectomy for Penile Cancer: Novel Application of the Ventral Phalloplasty Oncoplastic Technique

    Directory of Open Access Journals (Sweden)

    Jared J. Wallen

    2014-10-01

    Full Text Available The ventral phalloplasty (VP has been well described in modern day penile prosthesis surgery. The main objectives of this maneuver are to increase perceived length and patient satisfaction and to counteract the natural 1-2 cm average loss in length when performing implantation of an inflatable penile prosthesis. Similarly, this video represents a new adaptation for partial penectomy patients. One can only hope that the addition of the VP for partial penectomy patients with good erectile function will increase their quality of life. The patient in this video is a 56-year-old male who presented with a 4.0x3.5x1.0 cm, pathologic stage T2 squamous cell carcinoma of the glans penis. After partial penectomy with VP and inguinal lymph node dissection, pathological specimen revealed negative margins, 3/5 right superficial nodes and 1/5 left superficial nodes positive for malignancy. The patient has been recommended post-operative systemic chemotherapy (with external beam radiotherapy based on the multiple node positivity and presence of extranodal extension. The patient’s pre-operative penile length was 9.5 cm, and after partial penectomy with VP, penile length is 7 cm.

  7. Left main percutaneous coronary intervention.

    Science.gov (United States)

    Teirstein, Paul S; Price, Matthew J

    2012-10-23

    The introduction of drug-eluting stents and advances in catheter techniques have led to increasing acceptance of percutaneous coronary intervention (PCI) as a viable alternative to coronary artery bypass graft (CABG) for unprotected left main disease. Current guidelines state that it is reasonable to consider unprotected left main PCI in patients with low to intermediate anatomic complexity who are at increased surgical risk. Data from randomized trials involving patients who are candidates for either treatment strategy provide novel insight into the relative safety and efficacy of PCI for this lesion subset. Herein, we review the current data comparing PCI with CABG for left main disease, summarize recent guideline recommendations, and provide an update on technical considerations that may optimize clinical outcomes in left main PCI. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  9. Dabigatran for left ventricular thrombus

    Directory of Open Access Journals (Sweden)

    Satishkumar Kolekar

    2015-09-01

    Dabigatran is a reversible direct thrombin inhibitor and currently approved for the prevention of thromboembolic episodes in non-valvar atrial fibrillation. This case demonstrates possible thrombolytic properties of dabigatran in resolution of left ventricular thrombus.

  10. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  11. Left ventricular apical ballooning syndrome

    International Nuclear Information System (INIS)

    Rahman, N.; Tai, J.; Soofi, A.

    2007-01-01

    The transient left ventricular apical ballooning syndrome, also known as Takotsubo cardiomyopathy, is characterized by transient left ventricular dysfunction in the absence of obstructive epicardial coronary disease. Although the syndrome has been reported in Japan since 1990, it is rare in other regions. Rapid recognition of the syndrome can modify the diagnostic and therapeutic attitude i.e. avoiding thrombolysis and performing catheterization in the acute phase. (author)

  12. Radiographic and ultrasonographic characteristics of ventral abdominal hernia in pigeons (Columba livia).

    Science.gov (United States)

    Amer, Mohammed S; Hassan, Elham A; Torad, Faisal A

    2018-02-20

    Five female egg-laying pigeons presented with painless, reducible, ventral abdominal swellings located between the keel and the pubis, or close to the cloaca. Based on clinical, radiographic, and ultrasonographic examination, these pigeons were diagnosed with ventral abdominal hernia requiring surgical interference. Reduction was successfully performed under general anesthesia. Radiographic and ultrasonographic examinations were beneficial for confirming the diagnosis and visualizing the hernial content for surgical planning. Lateral radiographs were more helpful than ventrodorsal radiographs for identification of the hernial content and its continuation with the abdominal muscles. Ultrasonographic examination offered a non-invasive diagnostic tool that allowed for the differentiation of hernia from other abdominal swellings. In addition, it played a beneficial role in identification of the hernial content and follow up after surgical interference. In conclusion, radiographic and ultrasonographic examinations were beneficial in the diagnosis, surgical planning, and follow up after surgical interference of ventral abdominal hernia in pigeons.

  13. Acute pancreatitis: pancreas divisum with ventral duct intraductal papillary mucinous neoplasms.

    Science.gov (United States)

    Gurram, Krishna C; Czapla, Agata; Thakkar, Shyam

    2014-10-07

    Acute recurrent pancreatitis occurs rarely in individuals with pancreas divisum. A 39-year-old woman with no significant history presented with pancreatitis. CT scan and MRI suggested acute on chronic pancreatitis with calcifications and pancreatic divisum. An endoscopic ultrasound demonstrated complete pancreas divisum. A large calcification measuring 12 mm × 6 mm was seen in the head of the pancreas with associated dilation of the ventral pancreatic duct. Fine-needle aspiration of the dilated ventral pancreatic duct showed an amylase level of 36,923 U/L and a carcinoembryonic antigen of 194. A ventral duct intraductal papillary mucinous neoplasm was suspected and a pancreaticoduodenectomy procedure was recommended. After the procedure, pathology demonstrated an intraductal papillary lesion in the main duct with moderate dysplasia. A pancreatic intraepithelial neoplasia, grade 2 was also present. Margins of resection were clear. This case represents the importance of assessing for secondary causes of pancreatitis in pancreas divisum. 2014 BMJ Publishing Group Ltd.

  14. Left Main Coronary Artery Aneurysm

    Directory of Open Access Journals (Sweden)

    Hossein Doustkami

    2016-07-01

    Full Text Available Aneurysms of the left main coronary artery are exceedingly rare clinical entities, encountered incidentally in approximately 0.1% of patients who undergo routine angiography. The most common cause of coronary artery aneurysms is atherosclerosis. Angiography is the gold standard for diagnosis and treatment. Depending on the severity of the coexisting coronary stenosis, patients with left main coronary artery aneurysms can be effectively managed either surgically or pharmacologically. We herein report a case of left main coronary artery aneurysm in a 72-year-old man with a prior history of hypertension presenting to our hospital because of unstable angina. The electrocardiogram showed ST-segment depression and T-wave inversion in the precordial leads. All the data of blood chemistry were normal. Echocardiography showed akinetic anterior wall, septum, and apex, mild mitral regurgitation and ejection fraction of 45%. Coronary angiography revealed a saccular aneurysm of the left main coronary artery with significant stenosis in the left anterior descending, left circumflex, and right coronary artery. The patient immediately underwent coronary artery bypass grafting and ligation of the aneurysm. At six months’ follow-up, he remained asymptomatic.

  15. Right colon cancer: Left behind.

    Science.gov (United States)

    Gervaz, P; Usel, M; Rapiti, E; Chappuis, P; Neyroud-Kaspar, I; Bouchardy, C

    2016-09-01

    Prognosis of colon cancer (CC) has steadily improved during the past three decades. This trend, however, may vary according to proximal (right) or distal (left) tumor location. We studied if improvement in survival was greater for left than for right CC. We included all CC recorded at the Geneva population-based registry between 1980 and 2006. We compared patients, tumor and treatment characteristics between left and right CC by logistic regression and compared CC specific survival by Cox models taking into account putative confounders. We also compared changes in survival between CC location in early and late years of observation. Among the 3396 CC patients, 1334 (39%) had right-sided and 2062 (61%) left-sided tumors. In the early 1980s, 5-year specific survival was identical for right and left CCs (49% vs. 48%). During the study period, a dramatic improvement in survival was observed for patients with left-sided cancers (Hazard ratio [HR]: 0.42, 95% confidence interval [CI]: 0.29-0.62, p colon cancer patients, those with right-sided lesions have by far the worse prognosis. Change of strategic management in this subgroup is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Diversity matters - heterogeneity of dopaminergic neurons in the ventral mesencephalon and its relation to Parkinson's Disease.

    Science.gov (United States)

    Vogt Weisenhorn, Daniela Maria; Giesert, Florian; Wurst, Wolfgang

    2016-10-01

    Dopaminergic neurons in the ventral mesencephalon (the ventral mesencephalic dopaminergic complex) are known for their role in a multitude of behaviors, including cognition, reward, addiction and voluntary movement. Dysfunctions of these neurons are the underlying cause of various neuropsychiatric disorders, such as depression, addiction and schizophrenia. In addition, Parkinson's disease (PD), which is the second most common degenerative disease in developed countries, is characterized by the degeneration of dopaminergic neurons, leading to the core motor symptoms of the disease. However, only a subset of dopaminergic neurons in the ventral mesencephalon is highly vulnerable to the disease process. Indeed, research over several decades revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group with respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in different diseases. Here, we review how the concept of dopaminergic neuron diversity, assisted by the advent and application of new technologies, evolved and was refined over time and how it shaped our understanding of PD pathogenesis. Understanding this diversity of neurons in the ventral mesencephalic dopaminergic complex at all levels is imperative for the development of new and more selective drugs for both PD and various other neuropsychiatric diseases. Several decades of research revealed that the neurons in the ventral mesencephalic dopaminergic complex do not form a homogeneous group in respect to anatomy, physiology, function, molecular identity or vulnerability/dysfunction in diseases like Parkinson's disease (PD). Here, we review how this concept evolved and was refined over time and how it shaped our understanding of the pathogenesis of PD. Source of the midbrain image: www.wikimd.org/wiki/index.php/The_Midbrain_or_Mesencephalon; downloaded 28.01.2016. See also Figures and of the paper. This article is part of a

  17. Effects of lentivirus-mediated CREB expression in the dorsolateral striatum: memory enhancement and evidence for competitive and cooperative interactions with the hippocampus.

    Science.gov (United States)

    Kathirvelu, Balachandar; Colombo, Paul J

    2013-11-01

    Neural systems specialized for memory may interact during memory formation or recall, and the results of interactions are important determinants of how systems control behavioral output. In two experiments, we used lentivirus-mediated expression of the transcription factor CREB (LV-CREB) to test if localized manipulations of cellular plasticity influence interactions between the hippocampus and dorsolateral striatum. In Experiment 1, we tested the hypothesis that infusion of LV-CREB in the dorsolateral striatum facilitates memory for response learning, and impairs memory for place learning. LV-CREB in the dorsolateral striatum had no effect on response learning, but impaired place memory; a finding consistent with competition between the striatum and hippocampus. In Experiment 2, we tested the hypothesis that infusion of LV-CREB in the dorsolateral striatum facilitates memory for cue learning, and impairs memory for contextual fear conditioning. LV-CREB in the dorsolateral striatum enhanced memory for cue learning and, in contrast to our prediction, also enhanced memory for contextual fear conditioning, consistent with a cooperative interaction between the striatum and hippocampus. Overall, the current experiments demonstrate that infusion of LV-CREB in the dorsolateral striatum (1) increases levels of CREB protein locally, (2) does not alter acquisition of place, response, cue, or contextual fear conditioning, (3) facilitates memory for cue learning and contextual fear conditioning, and (4) impairs memory for place learning. Taken together, the present results provide evidence that LV-CREB in the dorsolateral striatum can enhance memory formation and cause both competitive and cooperative interactions with the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  18. The Neurotrophic Factor Receptor p75 in the Rat Dorsolateral Striatum Drives Excessive Alcohol Drinking

    Science.gov (United States)

    Darcq, Emmanuel; Morisot, Nadege; Phamluong, Khanhky; Warnault, Vincent; Jeanblanc, Jerome; Longo, Frank M.; Massa, Stephen M.

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) signaling in the dorsolateral striatum (DLS) keeps alcohol intake in moderation. For example, activation of the BDNF receptor tropomyosin receptor kinase B (TrkB) in the DLS reduces intake in rats that consume moderate amounts of alcohol. Here, we tested whether long-term excessive consumption of alcohol produces neuroadaptations in BDNF signaling in the rat DLS. We found that BDNF was no longer able to gate alcohol self-administration after a history of repeated cycles of binge alcohol drinking and withdrawal. We then elucidated the possible neuroadaptations that could block the ability of BDNF to keep consumption of alcohol in moderation. We report that intermittent access to 20% alcohol in a two-bottle choice paradigm that models excessive alcohol drinking produces a mobilization of DLS p75 neurotrophin receptor (p75NTR), whose activities oppose those of the Trk receptors, including TrkB. These neuroadaptations were not observed in the DLS of rats exposed to continuous access to 10% alcohol or in rats consuming sucrose. Furthermore, short hairpin RNA (shRNA)-mediated knockdown of the p75NTR gene in the DLS, as well as intra-DLS infusion or systemic administration of the p75NTR modulator, LM11A-31, significantly reduced binge drinking of alcohol. Together, our results suggest that excessive alcohol consumption produces a change in BDNF signaling in the DLS, which is mediated by the recruitment of p75NTR. Our data also imply that modulators of p75NTR signaling could be developed as medications for alcohol abuse disorders. SIGNIFICANCE STATEMENT Neuroadaptations gate or drive excessive, compulsive alcohol drinking. We previously showed that brain-derived neurotrophic factor and its receptor, TrkB, in the dorsolateral striatum (DLS), are part of an endogenous system that keeps alcohol drinking in moderation. Here, we show that a history of excessive alcohol intake produces neuroadaptations in the DLS that preclude BDNF

  19. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning.

    Science.gov (United States)

    Klanker, Marianne; Fellinger, Lisanne; Feenstra, Matthijs; Willuhn, Ingo; Denys, Damiaan

    2017-03-14

    Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a previous study, we showed that phasic DA release patterns in the ventromedial striatum (VMS) rapidly adapt during reversal learning. However, it is unknown how DA dynamics in the dorsolateral striatum (DLS) are modulated during such adaptive behavior. Here, we used fast-scan cyclic voltammetry to measure phasic DA release in the DLS during spatial reversal learning. In the DLS, we observed minor DA release after the onset of a visual cue signaling reward availability, followed by more pronounced DA release during more proximal reward cues (e.g., lever extension) and execution of the operant response (i.e., lever press), both in rewarded and non-rewarded trials. These release dynamics (minor DA after onset of the predictive visual cue, prominent DA during the operant response) did not change significantly during or following a reversal of response-reward contingencies. Notably, the DA increase to the lever press did not reflect a general signal related to the initiation of any motivated motor response, as we did not observe DA release when rats initiated nose pokes into the food receptacle during inter-trial intervals. This suggests that DA release in the DLS occurs selectively during the initiation and execution of a learned operant response. Together with our previous results obtained in the VMS, these findings reveal distinct phasic DA release patterns during adaptation of established behavior in DLS and VMS. The VMS DA signal, which is highly sensitive to reversal of response-reward contingences, may provide a teaching signal to guide reward-related learning and facilitate behavioral adaptation, whereas DLS DA may reflect a 'response execution signal' largely

  20. Pain, quality of life and recovery after laparoscopic ventral hernia repair

    DEFF Research Database (Denmark)

    Eriksen, J R; Poornoroozy, P; Jørgensen, L N

    2009-01-01

    BACKGROUND: Laparoscopic ventral hernia repair (LVHR) is a well established procedure in the treatment of ventral hernias. It is our clinical experience that patients suffer intense postoperative pain, but this issue and other recovery parameters have not been studied in detail. METHODS: Thirty......-five patients with hernias >3 cm prospectively underwent LVHR using "double-crown" titanium tack mesh fixation. Pre- and postoperative pain was measured on a 0-100-mm visual analogue scale (VAS) and health-related quality of life was measured using the Short Form 36 questionnaire (SF-36). Several other recovery...

  1. Aphasia following left thalamic hemorrhage

    International Nuclear Information System (INIS)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro.

    1984-01-01

    We reported 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months), and described language disorders examined by Western Aphasia Battery (WAB) and measured cerebral blood flow by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in watershed area that involved the territory between posterior cerebral and middle cerebral arteries in the left temporooccipital region in addition to low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, whose score of repetition (8.4) was higher than that of comprehension (7.4), emission CT showed slight low flow area at the temporo-occipital region similarly as the case with transcortical sensory aphasia. In another case with anomic aphasia, scored 9 on both fluensy and comprehension subtests and 10 on repetition, there was wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. On the other hand, in all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus. (J.P.N.)

  2. Acylethanolamides and endocannabinoid signaling system in dorsal striatum of rats exposed to perinatal asphyxia.

    Science.gov (United States)

    Holubiec, Mariana I; Romero, Juan I; Blanco, Eduardo; Tornatore, Tamara Logica; Suarez, Juan; Rodríguez de Fonseca, Fernando; Galeano, Pablo; Capani, Francisco

    2017-07-13

    Endocannabinoids (eCBs) and acylethanolamides (AEs) have lately received more attention due to their neuroprotective functions in neurological disorders. Here we analyze the alterations induced by perinatal asphyxia (PA) in the main metabolic enzymes and receptors of the eCBs/AEs in the dorsal striatum of rats. To induce PA, we used a model developed by Bjelke et al. (1991). Immunohistochemical techniques were carried out to determine the expression of neuronal and glial markers (NeuN and GFAP), eCBs/AEs synthesis and degradation enzymes (DAGLα, NAPE-PLD and FAAH) and their receptors (CB1 and PPARα). We found a decrease in NAPE-PLD and PPARα expression. Since NAPE-PLD and PPARα take part in the production and reception of biochemical actions of AEs, such as oleoylethanolamide, these results may suggest that PA plays a key role in the regulation of this system. These data agree with previous results obtained in the hippocampus and encourage us to develop further studies using AEs as potential neuroprotective compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens

    International Nuclear Information System (INIS)

    Goeders, N.E.; Kuhar, M.J.

    1987-01-01

    A variety of clinical and animal data suggest that the repeated administration of cocaine and related psychomotor stimulants may be associated with a behavioral sensitization whereby the same dose of the drug results in increasing behavioral pathology. This investigation was designed to determine the effects of chronic cocaine administration on the binding of [ 3 H]sulpiride, a relatively specific ligand for D2 dopaminergic receptors, in the rat brain using in vitro homogenate binding and light microscopic quantitative autoradiographic methodologies. Chronic daily injections of cocaine (10 mg/kg, i.p.) for 15 days resulted in a significant decrease in the maximum concentration of sulpiride binding sites in the striatum and a significant increase in the maximum number of these binding sites in the nucleus accumbens. No significant differences in binding affinity were observed in either brain region. These data suggest that chronic cocaine administration may result in differential effects on D2 receptors in the nigro-striatal and mesolimbic dopaminergic systems

  4. Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics

    Directory of Open Access Journals (Sweden)

    Daniil eSarkisyan

    2015-05-01

    Full Text Available The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN and proenkephalin (PENK mRNAs (by qRT-PCR, and dynorphins and enkephalins (by radioimmunoassay in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.

  5. Differential effects of neural inactivation of the dorsolateral striatum on response and latent extinction.

    Science.gov (United States)

    Goodman, Jarid; Gabriele, Amanda; Packard, Mark G

    2017-04-01

    The present study examined the role of the dorsolateral striatum (DLS) in extinction behavior. Male Long-Evans rats were initially trained on the straight alley maze, in which they were reinforced to traverse a straight runway and retrieve food reward at the opposite end of the maze. After initial acquisition, animals were given extinction training using 1 of 2 distinct protocols: response extinction or latent extinction. For response extinction, the animal was released from the same starting position and had the opportunity to perform the originally reinforced approach response to the goal end of the maze, which no longer contained food. For latent extinction, the animal was confined to the original goal location without food, allowing the animal to form a new cognitive expectation (i.e., that the goal location is no longer reinforced). Immediately before response or latent extinction training, animals received bilateral intra-DLS administration of the sodium channel blocker bupivacaine or control injections of physiological saline. Results indicated that neural inactivation of the DLS with bupivacaine impaired response extinction, but did not influence latent extinction. The dissociation observed indicates that the DLS selectively mediates extinction mechanisms involving suppression of the original response, as opposed to cognitive mechanisms involving a change in expectation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Huntington disease: a single-gene degenerative disorder of the striatum.

    Science.gov (United States)

    Nopoulos, Peggy C

    2016-03-01

    Huntington disease (HD) is an autosomal dominant, neurodegenerative disorder with a primary etiology of striatal pathology. The Huntingtin gene (HTT) has a unique feature of a DNA trinucleotide (triplet) repeat, with repeat length ranging from 10 to 35 in the normal population. Repeat lengths between 36 and 39 cause HD at reduced penetrance (some will get the disease, others won't) and when expanded to 40 or more repeats (mHTT), causes HD at full penetrance (every person with this length or beyond will definitely develop the disease). The symptoms of HD may be motor, cognitive, and psychiatric, and are consistent with the pathophysiology of frontostriatal circuitry malfunction. Expressed ubiquitously and throughout the entire life cycle (development through adulthood), mHTT causes initial dysfunction and eventual death of a specific cell population within the striatum. Although all areas of the brain are eventually affected, the primary pathology of the disease is regionally specific. As a single-gene disorder, HD has the distinction of having the potential of treatment that is aimed directly at the known pathogenic mechanism by gene silencing, providing hope for neuroprotection and ultimately, prevention.

  7. [The action of epidermal growth factor on the development of cultured striatum cells].

    Science.gov (United States)

    Castillo-Díaz, L; Castellano-Benítez, O; Soto-Alonso, J; Rosillo-Martí, J C; de la Cuétara-Bernal, K

    1997-10-01

    Epidermic growth factor (EGF) has a neurotrophic mitogenic effect on different cell populations in the nervous system. This is modulated by the stage of development and microenvironment of the cells. In this paper we describe the action of EGF on embryonic striatum cells of a culture system dissociated from neurons and glias. The cell culture is prepared from 16-17 day rat embryos. In the system used, the cell population was cultured for 20-24 hours in a medium containing serum. This medium was later replaced by a mixture of specific nutrients and treated for 6 days with 20 mg/ml of EGF. The substitution of serum during the initial period of development led to an appreciable reduction in the living cells in the treated cultures and in the controls. The surviving cells were mainly cellular precursors, taking into account their morphological characteristics and capacity for proliferation. The effect of EGF was seen in an increase in the number of cells and was shown to be a stimulus to the proliferation of neuronal and astrocyte precursors. The specific activity of choline acetyl-transferases determined in the cultures at 16 days showed differentiation of a cholinergic neurons subpopulation, which responded to treatment with nerve growth factor with an increase in the activity of this enzyme.

  8. Tetrodotoxin effects in the stimulated acetylcholine release by agonist of glutamate in mice striatum tissue

    International Nuclear Information System (INIS)

    Paes, Paulo Cesar de Arruda; Camillo, Maria A.P.; Rogero, Jose Roberto; Troncone, Lanfranco R.P.

    2002-01-01

    The toxins of animal venoms have been used as important tools for biochemical studies of physiological and pathological processes of diverse systems. In this work we used the action of tetrodotoxin on sodium channels to map the localization of glutamate receptors in cholinergic neurons from striatum tissue of rats. All glutamate receptors are exciting, so they promote the release of other neurotransmitters. In this work we focus on acetylcholine. The localization of glutamate receptor, on the soma or on the excitatory terminal, may contribute for a better understanding of its function. For this work we applied the in vitro method of tritiated neurotransmitter release. The agonists of glutamate receptors chosen were glutamic acid 500μM, NMDA 100μM, kainic acid 300μM, quisqualic acid 300μM and AMPA 1mM. In the first part of the assay the basal and stimulated releases were measured and in the second, the same protocol was performed in the presence of tetrodotoxin 1μM. The reductions observed in basal and stimulated release in the presence of tetrodotoxin suggested that the receptors type AMPA and NMDA were located in soma of cholinergic cell preferentially and the other ones presented a more equilibrate distribution among the axons and the soma. (author)

  9. Mindfulness meditation modulates reward prediction errors in the striatum in a passive conditioning task

    Directory of Open Access Journals (Sweden)

    Ulrich eKirk

    2015-02-01

    Full Text Available Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of rewards and cues that predict reward. Evidence indicates that mindfulness-based approaches reduce reward anticipation signal in the striatum to negative and positive incentives suggesting the hypothesis that such training influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error signals. We found diminished positive and negative prediction error-related blood-oxygen level-dependent (BOLD responses in the putamen in meditators compared with controls. In the meditators, this decrease in striatal BOLD responses to reward prediction was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1 were elevated in both meditators and controls. These results provide evidence that experienced mindfulness meditators show attenuated reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

  10. N-Acetylaspartate distribution in rat brain striatum during acute brain ischemia

    DEFF Research Database (Denmark)

    Sager, T.N.; Laursen, H; Fink-Jensen, A

    1999-01-01

    is distributed within the ischemic area. Rats were exposed to middle cerebral artery occlusion. Preischemic values of [NAA] in striatum were 11 mmol/L by 1H-MRS and 8 mmol/kg by HPLC. The methods showed a comparable reduction during the 8 hours of ischemia. The interstitial level of [NAA] ([NAA]e) was determined......]e increased linearly to 4 mmol/L after 3 hours and this level was maintained for the next 4 h. From the change in in vivo recovery of the interstitial space volume marker [14C]mannitol, the relative amount of NAA distributed in the interstitial space was calculated to be 0.2% of the total brain NAA during...... normal conditions and only 2 to 6% during ischemia. It was concluded that the majority of brain NAA is intracellularly located during ischemia despite large increases of interstitial [NAA]. Thus, MR quantification of NAA during acute ischemia reflects primarily changes in intracellular levels of NAA...

  11. Selective destruction of nigrostriatal dopaminergic neurons does not alter [3H]-ryanodine binding in rat striatum

    Directory of Open Access Journals (Sweden)

    Noël F.

    2000-01-01

    Full Text Available Dopamine nigrostriatal neurons are important for motor control and may contain a particularly dense population of ryanodine receptors involved in the control of dopamine release. To test this hypothesis, we used a classical model of unilateral selective lesion of these neurons in rats based on 6-hydroxydopamine (6-OHDA injection into the substantia nigra. Binding of [3H]-GBR 12935, used as a presynaptic marker since it labels specifically the dopamine uptake complex, was dramatically decreased by 83-100% in striatum homogenates after 6-OHDA lesion. On the contrary, no reduction of [3H]-ryanodine binding was observed. The present data indicate that [3H]-ryanodine binding sites present in rat striatum are not preferentially localized in dopaminergic terminals.

  12. Glucocorticoid administration into the dorsolateral but not dorsomedial striatum accelerates the shift from a spatial toward procedural memory.

    Science.gov (United States)

    Siller-Pérez, Cristina; Serafín, Norma; Prado-Alcalá, Roberto A; Roozendaal, Benno; Quirarte, Gina L

    2017-05-01

    Glucocorticoid stress hormones are known to enhance the consolidation of hippocampus-dependent spatial and contextual memory. Recent findings indicate that glucocorticoids also enhance the consolidation of procedural memory that relies on the dorsal striatum. The dorsal striatum can be functionally subdivided into the dorsolateral striatum (DLS), which is primarily implicated in shaping procedural memories, and the dorsomedial striatum (DMS), which is engaged in spatial memory. Here, we investigated the hypothesis that posttraining glucocorticoid administration into the DLS promotes the formation of a procedural memory that will normally take place only with extensive training. Male Wistar rats were trained to find a reward in a cross maze that can be solved through either place or response learning. Rats received four trials per day for 5days, a probe trial on Day 6, further training on Days 7-13, and an additional probe trial on Day 14. On Days 2-4 of training, they received posttraining infusions of corticosterone (10 or 30ng) or vehicle into either the DLS or DMS. Rats treated with vehicle into either the DLS or DMS displayed place learning on Day 6 and response learning on Day 14, indicating a shift in control of learned behavior toward a habit-like procedural strategy with extended training. Rats administered corticosterone (10ng) into the DLS displayed response learning on both Days 6 and 14, indicating an accelerated shift to response learning. In contrast, corticosterone administered posttraining into the DMS did not significantly alter the shift from place to response learning. These findings indicate that glucocorticoid administration into the DLS enhances memory consolidation of procedural learning and thereby influences the timing of the switch from the use of spatial/contextual memory to habit-like procedural memory to guide behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Inhibiting PKMζ reveals dorsal lateral and dorsal medial striatum store the different memories needed to support adaptive behavior.

    Science.gov (United States)

    Pauli, Wolfgang M; Clark, Alexandra D; Guenther, Heidi J; O'Reilly, Randall C; Rudy, Jerry W

    2012-06-20

    Evidence suggests that two regions of the striatum contribute differential support to instrumental response selection. The dorsomedial striatum (DMS) is thought to support expectancy-mediated actions, and the dorsolateral striatum (DLS) is thought to support habits. Currently it is unclear whether these regions store task-relevant information or just coordinate the learning and retention of these solutions by other brain regions. To address this issue, we developed a two-lever concurrent variable-interval reinforcement operant conditioning task and used it to assess the trained rat's sensitivity to contingency shifts. Consistent with the view that these two regions make different contributions to actions and habits, injecting the NMDA antagonist DL-AP5 into the DMS just prior to the shift impaired the rat's performance but enhanced performance when injected into the DLS. To determine if these regions support memory content, we first trained rats on a biased concurrent schedule (Lever 1: VI 40" and Lever 2: VI 10"). With the intent of "erasing" the memory content stored in striatum, after this training we inhibited the putative memory-maintenance protein kinase C isozyme protein kinase Mζ (PKMζ). Infusing zeta inhibitory peptide (ZIP) into the DLS enhanced the rat's ability to adapt to the contingency shift 2 d later, whereas injecting it into the DMS had the opposite effect. Infusing GluR2(3Y) into the DMS 1 h before ZIP infusions prevented ZIP from impairing the rat's sensitivity to the contingency shift. These results support the hypothesis that the DMS stores information needed to support actions and the DLS stores information needed to support habits.

  14. Differential Arc expression in the hippocampus and striatum during the transition from attentive to automatic navigation on a plus maze

    Science.gov (United States)

    Gardner, Robert S.; Suarez, Daniel F.; Robinson-Burton, Nadira K.; Rudnicky, Christopher J.; Gulati, Asish; Ascoli, Giorgio A.; Dumas, Theodore C.

    2016-01-01

    The strategies utilized to effectively perform a given task change with practice and experience. During a spatial navigation task, with relatively little training, performance is typically attentive enabling an individual to locate the position of a goal by relying on spatial landmarks. These (place) strategies require an intact hippocampus. With task repetition, performance becomes automatic; the same goal is reached using a fixed response or sequence of actions. These (response) strategies require an intact striatum. The current work aims to understand the activation patterns across these neural structures during this experience-dependent strategy transition. This was accomplished by region-specific measurement of activity-dependent immediate early gene expression among rats trained to different degrees on a dual-solution task (i.e., a task that can be solved using either place or response navigation). As expected, rats increased their reliance on response navigation with extended task experience. In addition, dorsal hippocampal expression of the immediate early gene Arc was considerably reduced in rats that used a response strategy late in training (as compared with hippocampal expression in rats that used a place strategy early in training). In line with these data, vicarious trial and error, a behavior linked to hippocampal function, also decreased with task repetition. Although Arc mRNA expression in dorsal medial or lateral striatum alone did not correlate with training stage, the ratio of expression in the medial striatum to that in the lateral striatum was relatively high among rats that used a place strategy early in training as compared with the ratio among over-trained response rats. Altogether, these results identify specific changes in the activation of dissociated neural systems that may underlie the experience-dependent emergence of response-based automatic navigation. PMID:26976088

  15. Cocaine challenge enhances release of neuroprotective amino acid taurine in the striatum of chronic cocaine treated rats: a microdialysis study

    OpenAIRE

    Yablonsky-Alter, Elena; Agovic, Mervan S.; Gashi, Eleonora; Lidsky, Theodore I.; Friedman, Eitan; Banerjee, Shailesh P.

    2009-01-01

    Drug addiction is a serious public health problem. There is increasing evidence on the involvement of augmented glutamatergic transmission in cocaine-induced addiction and neurotoxicity. We investigated effects of acute or chronic cocaine administration and cocaine challenge following chronic cocaine exposure on the release of excitotoxic glutamate and neuroprotective taurine in the rat striatum by microdialysis. Cocaine challenge, following withdrawal after repeated cocaine exposure markedly...

  16. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    OpenAIRE

    Hiroaki Kawamichi; Hiroaki Kawamichi; Hiroaki Kawamichi; Sho K Sugawara; Yuki H Hamano; Yuki H Hamano; Kai Makita; Masahiro Matsunaga; Hiroki C Tanabe; Yuichi Ogino; Shigeru Saito; Norihiro Sadato; Norihiro Sadato

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that ro...

  17. Being in a Romantic Relationship Is Associated with Reduced Gray Matter Density in Striatum and Increased Subjective Happiness

    OpenAIRE

    Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Matsunaga, Masahiro; Tanabe, Hiroki C.; Ogino, Yuichi; Saito, Shigeru; Sadato, Norihiro

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that ro...

  18. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis.

    Directory of Open Access Journals (Sweden)

    Dragana Antic

    2010-02-01

    Full Text Available Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2 in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

  19. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Directory of Open Access Journals (Sweden)

    Monica S Guzman

    2011-11-01

    Full Text Available Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

  20. Prenatal ethanol exposure alters synaptic plasticity in the dorsolateral striatum of rat offspring via changing the reactivity of dopamine receptor.

    Directory of Open Access Journals (Sweden)

    Rong Zhou

    Full Text Available Prenatal exposure to high-level ethanol (EtOH has been reported to produce hyperlocomotion in offspring. Previous studies have demonstrated synaptic plasticity in cortical afferent to the dorsolateral (DL striatum is involved in the pathogensis of hyperlocomotion. Here, prenatal EtOH-exposed rat offspring were used to investigate whether maternal EtOH exposure affected synaptic plasticity in the DL striatum. We found high-frequency stimulation (HFS induced a weaker long-term potentiation (LTP in EtOH rats than that in control rats at postnatal day (PD 15. The same protocol of HFS induced long-term depression (LTD in control group but still LTP in EtOH group at PD 30 or PD 40. Furthermore, enhancement of basal synaptic transmission accompanied by the decrease of pair-pulse facilitation (PPF was observed in PD 30 EtOH offspring. The perfusion with D1-type receptors (D1R antagonist SCH23390 recovered synaptic transmission and blocked the induction of abnormal LTP in PD 30 EtOH offspring. The perfusion with D2-type receptors (D2R agonist quinpirole reversed EtOH-induced LTP into D1R- and metabotropic glutamate receptor-dependent LTD. The data provide the functional evidence that prenatal ethanol exposure led to the persistent abnormal synaptic plasticity in the DL striatum via disturbing the balance between D1R and D2R.

  1. Segmentation of the Striatum from MR Brain Images to Calculate the -TRODAT-1 Binding Ratio in SPECT Images

    Directory of Open Access Journals (Sweden)

    Ching-Fen Jiang

    2013-01-01

    Full Text Available Quantification of regional -TRODAT-1 binding ratio in the striatum regions in SPECT images is essential for differential diagnosis between Alzheimer's and Parkinson's diseases. Defining the region of the striatum in the SPECT image is the first step toward success in the quantification of the TRODAT-1 binding ratio. However, because SPECT images reveal insufficient information regarding the anatomical structure of the brain, correct delineation of the striatum directly from the SPECT image is almost impossible. We present a method integrating the active contour model and the hybrid registration technique to extract regions from MR T1-weighted images and map them into the corresponding SPECT images. Results from three normal subjects suggest that the segmentation accuracy using the proposed method was compatible with the expert decision but has a higher efficiency and reproducibility than manual delineation. The binding ratio derived by this method correlated well (R2 = 0.76 with those values calculated by commercial software, suggesting the feasibility of the proposed method.

  2. Inclusions of amyotrophic lateral sclerosis-linked superoxide dismutase in ventral horns, liver, and kidney

    DEFF Research Database (Denmark)

    Jonsson, P.A.; Bergemalm, D.; Andersen, P.M.

    2008-01-01

    Mutant superoxide dismutases type 1 (SOD1s) cause amyotrophic lateral sclerosis by an unidentified toxic property. In a patient carrying the G127X truncation mutation, minute amounts of SOD1 were found in ventral horns using a mutant-specific antibody. Still, both absolute levels and ratios versus...

  3. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  4. Genetic analysis of Hedgehog signaling in ventral body wall development and the onset of omphalocele formation

    NARCIS (Netherlands)

    Matsumaru, D.; Haraguchi, R.; Miyagawa, S.; Motoyama, J.; Nakagata, N.; Meijlink, F.; Yamada, G.

    2011-01-01

    BACKGROUND: An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In

  5. Watchful waiting as a treatment strategy for patients with a ventral hernia appears to be safe

    DEFF Research Database (Denmark)

    Kokotovic, D; Sjølander, H; Gögenur, I

    2016-01-01

    PURPOSE: Due to risks of postoperative morbidity and recurrence some patients with a ventral hernia are not offered surgical repair. There is limited data on the rate and consequences of a watchful waiting (WW) strategy for these patients. The objective of this cohort study was to analyse outcome...

  6. Tyrosine hydroxylase protein expression in ventral nerve cord of Neotropical freshwater crab.

    Science.gov (United States)

    Ponzoni, Silvia

    2014-12-01

    Given the importance of catecholamines in coordinating physiological and behavioral responses in brachyurans, the present study was designed to investigate the distribution of tyrosine hydroxylase (TH)-positive cells and fibers in the ventral nerve cord of Dilocarcinus pagei the Neotropical freshwater crab. TH immunoreactivity was visualized in adult crabs of both sexes, during the intermolt period. We found TH-positive cells that have not been previously described in brachyurans. Specifically, we found a pair of TH-positive cells in the ventral region of the thoracic ganglion, and in ventral and dorsal regions of the abdominal (pleonic) ganglion, suggesting catecholaminergic modulation of claws' function and abdominal structures. In addition, great population of TH-positive cells was observed in the subesophageal ganglion, indicating conservation during evolution of catecholamines in this ganglion of decapods. Dopamine is present in cells and fiber tracts of brachyuran ventral nerve cord, projecting to endocrine, cardiac and digestive structures, suggesting widespread modulation and control of physiological functions and behavior. Dopamine plays a central role in movement and psychiatric disorders in humans. Information on dopaminergic function in the nervous system of invertebrates should improve the understanding of its function in more complex systems, such as human beings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The use of PROCEED mesh in ventral hernias: A pilot study on 22 cases

    Directory of Open Access Journals (Sweden)

    Almoutaz A Eltayeb

    2013-01-01

    Full Text Available Background: The management of major omphalocoele and large incisional hernias is a common problem and constitutes a great challenge for paediatric surgeons. In most cases, the abdominal cavity is so small and does not allow immediate reduction. Prosthetic materials are becoming increasingly popular for such repair, but direct contact between the bowel and these synthetic materials carries the risk of adhesions and intestinal obstruction. The relatively new PROCEED mesh with absorbable layer in contact with the bowel and another polypropylene non-absorbable layer against the abdominal wall may not produce such adhesions. The aim of this study is to evaluate the feasibility and outcome of this relatively new prosthetic mesh for repair of ventral hernia . Patients and Methods: Between June 2009 and December 2012, a pilot study was conducted on 22 cases with large ventral hernias subjected to open surgical repair using PROCEED mesh. The inclusion criterion was cases with large ventral hernias (>4 cm. The evaluating parameters were all the early and late postoperative complications. Results: The defect size ranged from 5 to 12 cm. The early postoperative complication (≤1 month was seroma discharged from the wound in four cases, while the late complications were recurrent herniation and stitch sinus that occurred in three cases. No manifestations of intestinal obstruction, enterocutaneous fistula or mortality were encountered in any of the 22 cases. Conclusion: The use of PROCEED composite mesh in ventral hernias is feasible and has minimal complication rates.

  8. Differential roles of the dorsal and ventral hippocampus in predator odor contextual fear conditioning.

    Science.gov (United States)

    Wang, Melissa E; Fraize, Nicolas P; Yin, Linda; Yuan, Robin K; Petsagourakis, Despina; Wann, Ellen G; Muzzio, Isabel A

    2013-06-01

    The study of fear memory is important for understanding various anxiety disorders in which patients experience persistent recollections of traumatic events. These memories often involve associations of contextual cues with aversive events; consequently, Pavlovian classical conditioning is commonly used to study contextual fear learning. The use of predator odor as a fearful stimulus in contextual fear conditioning has become increasingly important as an animal model of anxiety disorders. Innate fear responses to predator odors are well characterized and reliable; however, attempts to use these odors as unconditioned stimuli in fear conditioning paradigms have proven inconsistent. Here we characterize a contextual fear conditioning paradigm using coyote urine as the unconditioned stimulus. We found that contextual conditioning induced by exposure to coyote urine produces long-term freezing, a stereotypic response to fear observed in mice. This paradigm is context-specific and parallels shock-induced contextual conditioning in that it is responsive to extinction training and manipulations of predator odor intensity. Region-specific lesions of the dorsal and ventral hippocampus indicate that both areas are independently required for the long-term expression of learned fear. These results in conjunction with c-fos immunostaining data suggest that while both the dorsal and ventral hippocampus are required for forming a contextual representation, the ventral region also modulates defensive behaviors associated with predators. This study provides information about the individual contributions of the dorsal and ventral hippocampus to ethologically relevant fear learning. Copyright © 2013 Wiley Periodicals, Inc.

  9. Surgery for ventral intradural thoracic spinal tumors with a posterolateral transpedicular approach.

    Science.gov (United States)

    Ito, Kiyoshi; Aoyama, Tatsuro; Miyaoka, Yoshinari; Seguchi, Tatsuya; Horiuchi, Tetsuyoshi; Hongo, Kazuhiro

    2016-08-01

    Surgery for ventrally seated thoracic tumors requires an anatomically specific approach that is distinct from cervical or lumbar spinal cord surgery as the narrower spinal canal of the thoracic spinal cord makes it sensitive to surgical procedures. However, reports describing this operative technique are few. To obtain a wide operative field and minimize thoracic spinal cord retraction, we employed a posterolateral transpedicular approach in ventral-located tumors and investigated the efficacy and limitations of this technique. Eighteen patients with lesions (meningioma or neurinoma) located in the ventral intradural thoracic region were surgically treated between 2009 and 2014. The relationship among the clinical outcome, tumor location, and postoperative spinal alignment was analyzed. Postoperative neurological function improved in all patients, namely those with meningioma (p = 0.012) and schwannoma (p = 0.018). One patient who underwent removal of two facet joints suffered a postoperative compression fracture. Removal of two facet joints and pedicles resulted in a worsening of spinal alignment (p = 0.03), while this was not the case for the removal of one facet joint and pedicle (p = 0.72). This case series clarified the benefits of the posterolateral transpedicular approach for resection of ventral intradural extramedullary tumors. Removal of one pedicle and facet joint seems to be more beneficial.

  10. Role of the Ventral Tegmental Area in Methamphetamine Extinction: AMPA Receptor-Mediated Neuroplasticity

    Science.gov (United States)

    Chen Han-Ting; Chen, Jin-Chung

    2015-01-01

    The molecular mechanisms underlying drug extinction remain largely unknown, although a role for medial prefrontal cortex (mPFC) glutamate neurons has been suggested. Considering that the mPFC sends glutamate efferents to the ventral tegmental area (VTA), we tested whether the VTA is involved in methamphetamine (METH) extinction via conditioned…

  11. Behavioral detectability of single-cell stimulation in the ventral posterior medial nucleus of the thalamus

    NARCIS (Netherlands)

    B.C. Voigt (Birgit); M. Brecht (Michael); A.R. Houweling (Arthur)

    2008-01-01

    textabstractIn mammals, most sensory information passes through the thalamus before reaching cortex. In the rat whisker system, each macrovibrissa is represented by ∼250 neurons in the ventral posterior medial nucleus (VPM) of the thalamus and ∼10,000 neurons in a cortical barrel column. Here we

  12. Drumming with dopamine neurons : Resonance and synchronization in the Ventral Tegmental Area

    NARCIS (Netherlands)

    van der Velden, L.J.J.

    2018-01-01

    The ventral tegmental area (VTA) is a dopaminergic nucleus in the midbrain with the propensity to exhibit spontaneous intrinsic rhythmic activity in the 1-5 Hz frequency range (ex vivo). Here, we combine in-vitro simultaneous action potential recording from a 60 channel multi-electro-array with

  13. Ventral Tegmental Area and Substantia Nigra Neural Correlates of Spatial Learning

    Science.gov (United States)

    Martig, Adria K.; Mizumori, Sheri J. Y.

    2011-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA…

  14. Temporal and spatial requirements of Smoothened in ventral midbrain neuronal development

    OpenAIRE

    Tang, Mianzhi; Luo, Sarah X; Tang, Vivian; Huang, Eric J

    2013-01-01

    Abstract Background Several studies have indicated that Sonic hedgehog (Shh) regulates the expansion of dopaminergic (DA) progenitors and the subsequent generation of mature DA neurons. This prevailing view has been based primarily on in vitro culture results, and the exact in vivo function of Shh signaling in the patterning and neurogenesis of the ventral midbrain (vMB) remains unclear. Methods We characteriz...

  15. Direct and Recurrent Inguinal Hernias are Associated with Ventral Hernia Repair

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Sorensen, Lars T; Bay-Nielsen, Morten

    2013-01-01

    A systemically altered connective tissue metabolism has been demonstrated in patients with abdominal wall hernias. The most pronounced connective tissue changes are found in patients with direct or recurrent inguinal hernias as opposed to patients with indirect inguinal hernias. The aim...... of the present study was to assess whether direct or recurrent inguinal hernias are associated with an elevated rate of ventral hernia surgery....

  16. Synthetic Versus Biological Mesh-Related Erosion After Laparoscopic Ventral Mesh Rectopexy: A Systematic Review.

    Science.gov (United States)

    Balla, Andrea; Quaresima, Silvia; Smolarek, Sebastian; Shalaby, Mostafa; Missori, Giulia; Sileri, Pierpaolo

    2017-04-01

    This review reports the incidence of mesh-related erosion after ventral mesh rectopexy to determine whether any difference exists in the erosion rate between synthetic and biological mesh. A systematic search of the MEDLINE and the Ovid databases was conducted to identify suitable articles published between 2004 and 2015. The search strategy capture terms were laparoscopic ventral mesh rectopexy, laparoscopic anterior rectopexy, robotic ventral rectopexy, and robotic anterior rectopexy. Eight studies (3,956 patients) were included in this review. Of those patients, 3,517 patients underwent laparoscopic ventral rectopexy (LVR) using synthetic mesh and 439 using biological mesh. Sixty-six erosions were observed with synthetic mesh (26 rectal, 32 vaginal, 8 recto-vaginal fistulae) and one (perineal erosion) with biological mesh. The synthetic and the biological mesh-related erosion rates were 1.87% and 0.22%, respectively. The time between rectopexy and diagnosis of mesh erosion ranged from 1.7 to 124 months. No mesh-related mortalities were reported. The incidence of mesh-related erosion after LVR is low and is more common after the placement of synthetic mesh. The use of biological mesh for LVR seems to be a safer option; however, large, multicenter, randomized, control trials with long follow-ups are required if a definitive answer is to be obtained.

  17. Early White-Matter Abnormalities of the Ventral Frontostriatal Pathway in Fragile X Syndrome

    Science.gov (United States)

    Haas, Brian W.; Barnea-Goraly, Naama; Lightbody, Amy A.; Patnaik, Swetapadma S.; Hoeft, Fumiko; Hazlett, Heather; Piven, Joseph; Reiss, Allan L.

    2009-01-01

    Aim: Fragile X syndrome is associated with cognitive deficits in inhibitory control and with abnormal neuronal morphology and development. Method: In this study, we used a diffusion tensor imaging (DTI) tractography approach to reconstruct white-matter fibers in the ventral frontostriatal pathway in young males with fragile X syndrome (n = 17;…

  18. Scene segmentation in early visual cortex during suppression of ventral stream regions.

    Science.gov (United States)

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2017-02-01

    A growing body of literature suggests that feedback modulation of early visual processing is ubiquitous and central to cortical computation. In particular stimuli with high-level content that invariably activate ventral object responsive regions have been shown to suppress early visual cortex. This suppression was typically interpreted in the framework of predictive coding and feedback from ventral regions. Here we examined early visual modulation during perception of a bistable Gestalt illusion that has previously been shown to be mediated by dorsal parietal cortex rather than by ventral regions that were not activated. The bistable dynamic stimulus consisted of moving dots that could either be perceived as corners of a large moving cube (global Gestalt) or as distributed sets of locally moving elements. We found that perceptual binding of local moving elements into an illusory Gestalt led to spatially segregated differential modulations in both, V1 and V2: representations of illusory lines and foreground were enhanced, while inducers and background were suppressed. Furthermore, correlation analyses suggest that distinct mechanisms govern fore- and background modulation. Our results demonstrate that motion-induced Gestalt perception differentially modulates early visual cortex in the absence of ventral stream activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area

    NARCIS (Netherlands)

    Meye, F.J.; van Zessen, R.; Smidt, M.P.; Adan, R.A.H.; Ramakers, G.M.J.

    2012-01-01

    μ-opioid receptors (MORs) in the ventral tegmental area (VTA) are pivotally involved in addictive behavior. While MORs are typically activated by opioids, they can also become constitutively active in the absence of any agonist. In the current study, we present evidence that MOR constitutive

  20. A fundamental study on accumulation of [125I]IBZM in the rat striatum and on effect of non-labeled ligand

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyoshi; Nakamura, Toshihiko; Satou, Motohiro; Takeda, Tohoru; Wu, Jin; Motoji, Naomi; Shigematsu, Akiyo.

    1995-01-01

    Iodo-125-labeled iodobenzamide ([ 125 I]IBZM) is used as a specific binding radioligand to dopamine D 2 receptors with high affinity and selectivity. The radioligand was homogeneously distributed in the whole brain initially after anministration, and rapidly washed out from the dopamine receptor-poor area followed by persistent retention in the striatum. Regression curve generated from striatum/cortex PSL ratio indicated the constant washout rate from striatum and cortex respectively. In the pretreated rat by cold benzamide (2 mg/kg), the accumulation of the radioligand was significantly suppressed in the striatum (48.8%). Iodine-125-labeled iodo-benzamide has the promise for investigation of dopamine D 2 receptors in the living brain. (author)

  1. Relative Contributions of the Dorsal vs. Ventral Speech Streams to Speech Perception are Context Dependent: a lesion study

    Directory of Open Access Journals (Sweden)

    Corianne Rogalsky

    2014-04-01

    , (iii two sentence comprehension tasks (sentence-picture matching, plausibility judgments, and (iv two sensory-motor tasks (a non-word repetition task and BDAE repetition subtest. Our results indicate that the neural bases of speech perception are task-dependent. The syllable discrimination and sensory-motor tasks all identified a dorsal temporal-parietal voxel cluster, including area Spt, primary auditory and somatosensory cortex. Conversely, the auditory comprehension task identified left mid-temporal regions. This suggest that syllable discrimination deficits do not stem from impairments in the perceptual analysis of speech sounds but rather involve temporary maintenance of the stimulus trace and/or the similarity comparison process. The ventral stream (anterior and posterior clusters in the superior and middle temporal gyri, were associated with both sentence tasks. However, the dorsal stream’s involvement was more selective: inferior frontal regions were identified in the sentence–to-picture matching task, not the semantic plausibility task. Within the sentence-to-picture matching task, these inferior frontal regions were only identified by the trials with the most difficult sentences. This suggests that the dorsal stream’s contribution to sentence comprehension is not driven by perception per se. These initial findings highlight the task-dependent nature of speech processing, challenge claims regarding any specific motor region being critical for speech perception, and refute the notion that speech perception relies on dorsal stream auditory-motor systems.

  2. Viral Vector Mediated Over-Expression of Estrogen Receptor–α in Striatum Enhances the Estradiol-induced Motor Activity in Female Rats and Estradiol Modulated GABA Release

    Science.gov (United States)

    Schultz, Kristin N.; von Esenwein, Silke A.; Hu, Ming; Bennett, Amy L.; Kennedy, Robert T.; Musatov, Sergei; Toran-Allerand, C. Dominique; Kaplitt, Michael G.; Young, Larry J.; Becker, Jill B.

    2009-01-01

    Classical estrogen receptor signaling mechanisms involve estradiol binding to intracellular nuclear receptors (estrogen receptor-α (ERα) and estrogen receptor-β (ERβ)) to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K+- evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERα located on the membrane of medium spiny GABAergic neurons. This experiment examined whether over-expression of ERα in the striatum would enhance the effect of estradiol on rotational behavior and the K+- evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERα cDNA (AAV.ERα) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERα in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared to controls and exhibited behavioral sensitization of contralateral rotations induced by a low dose of amphetamine. ERα over-expression also enhanced the inhibitory effect of estradiol on K+- evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior. PMID:19211896

  3. Viral vector-mediated overexpression of estrogen receptor-alpha in striatum enhances the estradiol-induced motor activity in female rats and estradiol-modulated GABA release.

    Science.gov (United States)

    Schultz, Kristin N; von Esenwein, Silke A; Hu, Ming; Bennett, Amy L; Kennedy, Robert T; Musatov, Sergei; Toran-Allerand, C Dominique; Kaplitt, Michael G; Young, Larry J; Becker, Jill B

    2009-02-11

    Classical estrogen receptor-signaling mechanisms involve estradiol binding to intracellular nuclear receptors [estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta)] to promote changes in protein expression. Estradiol can also exert effects within seconds to minutes, however, a timescale incongruent with genomic signaling. In the brain, estradiol rapidly potentiates stimulated dopamine release in the striatum of female rats and enhances spontaneous rotational behavior. Furthermore, estradiol rapidly attenuates the K(+)-evoked increase of GABA in dialysate. We hypothesize that these rapid effects of estradiol in the striatum are mediated by ERalpha located on the membrane of medium spiny GABAergic neurons. This experiment examined whether overexpression of ERalpha in the striatum would enhance the effect of estradiol on rotational behavior and the K(+)-evoked increase in GABA in dialysate. Ovariectomized female rats were tested for rotational behavior or underwent microdialysis experiments after unilateral intrastriatal injections of a recombinant adeno-associated virus (AAV) containing the human ERalpha cDNA (AAV.ERalpha) into the striatum; controls received either the same vector into areas outside the striatum or an AAV containing the human alkaline phosphatase gene into the striatum (AAV.ALP). Animals that received AAV.ERalpha in the striatum exhibited significantly greater estradiol-induced contralateral rotations compared with controls and exhibited behavioral sensitization of contralateral rotations induced by a low-dose of amphetamine. ERalpha overexpression also enhanced the inhibitory effect of estradiol on K(+)-evoked GABA release suggesting that disinhibition of dopamine release from terminals in the striatum resulted in the enhanced rotational behavior.

  4. Representation of Gravity-Aligned Scene Structure in Ventral Pathway Visual Cortex.

    Science.gov (United States)

    Vaziri, Siavash; Connor, Charles E

    2016-03-21

    The ventral visual pathway in humans and non-human primates is known to represent object information, including shape and identity [1]. Here, we show the ventral pathway also represents scene structure aligned with the gravitational reference frame in which objects move and interact. We analyzed shape tuning of recently described macaque monkey ventral pathway neurons that prefer scene-like stimuli to objects [2]. Individual neurons did not respond to a single shape class, but to a variety of scene elements that are typically aligned with gravity: large planes in the orientation range of ground surfaces under natural viewing conditions, planes in the orientation range of ceilings, and extended convex and concave edges in the orientation range of wall/floor/ceiling junctions. For a given neuron, these elements tended to share a common alignment in eye-centered coordinates. Thus, each neuron integrated information about multiple gravity-aligned structures as they would be seen from a specific eye and head orientation. This eclectic coding strategy provides only ambiguous information about individual structures but explicit information about the environmental reference frame and the orientation of gravity in egocentric coordinates. In the ventral pathway, this could support perceiving and/or predicting physical events involving objects subject to gravity, recognizing object attributes like animacy based on movement not caused by gravity, and/or stabilizing perception of the world against changes in head orientation [3-5]. Our results, like the recent discovery of object weight representation [6], imply that the ventral pathway is involved not just in recognition, but also in physical understanding of objects and scenes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ventral Slit Scrotal Flap: A New Outpatient Surgical Option for Reconstruction of Adult Buried Penis Syndrome.

    Science.gov (United States)

    Westerman, Mary E; Tausch, Timothy J; Zhao, Lee C; Siegel, Jordan A; Starke, Nathan; Klein, Alexandra K; Morey, Allen F

    2015-06-01

    We present a novel technique using ventral slit with scrotal skin flaps (VSSF) for the reconstruction of adult buried penis without skin grafting. An initial ventral slit is made in the phimotic ring, and the penis is exposed. To cover the defect in the ventral shaft skin, local flaps are created by making a ventral midline scrotal incision with horizontal relaxing incisions. The scrotal flaps are rotated to resurface the ventral shaft. Clinical data analyzed included preoperative diagnoses, length of stay, blood loss, and operative outcomes. Complications were also recorded. Fifteen consecutive patients with a penis trapped due to lichen sclerosus (LS) or phimosis underwent repair with VSSF. Each was treated in the outpatient setting with no perioperative complications. Mean age was 51 years (range, 26-75 years), and mean body mass index was 42.6 kg/m(2) (range, 29.8-53.9 kg/m(2)). The majority of patients (13 of 15, 87%) had a pathologic diagnosis of LS. Mean estimated blood loss was 57 cc (range, 25-200 cc), mean operative time was 83 minutes (range, 35-145 minutes), and all patients were discharged on the day of surgery. The majority of patients (11 of 15, 73.3%) remain satisfied with their results and have required no further intervention. Recurrences in 3 of 15 (20.0%) were due to LS, panniculus migration, and concealment by edematous groin tissue; 2 of these patients underwent subsequent successful skin grafting. VSSF is a versatile, safe, and effective reconstructive option in appropriately selected patients with buried penis, which enables reconstruction of penile shaft skin defects without requiring complex skin grafting. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder ofunderwater trauma

    Directory of Open Access Journals (Sweden)

    Gilad eRitov

    2014-01-01

    Full Text Available Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggest a pivotal role for the ventral hippocampus in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD. Such intrusive recollections are often triggered by reminders associated with the trauma.We examined the impact of exposure to a trauma reminder (under water trauma on the activation of the basolateral amygdala (BLA, dorsal and ventral hippocampus. Rats were exposed to underwater trauma and 24 hours later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the ventral hippocampus and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the ventral hippocampus sub-regions positively correlated with the activation of the BLA.Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the ventral hippocampus. Measured 24 hrs after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD.

  7. Relationship between ventral hernia defect area and intra-abdominal pressure: dynamic in vivo measurement.

    Science.gov (United States)

    Qandeel, Haitham; O'Dwyer, Patrick J

    2016-04-01

    It is an acceptable concept that the ventral hernia defect area will increase with a rise in intra-abdominal pressure (IAP). The literature lacks the evidence about how much this increase is in vivo. The aim of this study was to objectively measure the change in the ventral hernia defect area with increasing intra-abdominal pressure. In a prospective study of laparoscopic ventral hernia repair, the area of hernia defect was measured from inside the abdomen using a sterile paper ruler. The horizontal (width) and vertical (length) measurements of the defect were taken at two pressure points: (IAP = 8 mmHg) and (IAP = 15 mmHg). The hernia defect area was calculated as an oval shape using a standard formula. Eighteen consecutive patients with a ventral hernia were included in this study (8 males: 10 females). Median age was 60 years (30-81), body mass index (BMI) was 29.9 (22.6-37.6). Changing the IAP significantly, (P hernia defect. The median calculated defect area, as an oval shape, was 5.6 cm(2) (Q1-Q3 = 3.5-15.5) and 6.9 cm(2) (Q1-Q3 = 4.5-18.7) at 8 and 15 mmHg IAP, respectively. The calculated area of mesh required to cover the defect with a 5 cm overlap increased by a median of 5% (Q1-Q3 = 3-6%). The change in defect area did not differ significantly between obese and non-obese patients (P = 0.5). Dynamic, rather than static, measurements of ventral hernia area during laparoscopy provide a simple way of in vivo objective measurement that helps the surgeon choose the appropriate area of mesh. When choosing mesh area, we support the trend toward a larger overlap of at least 5 cm if less precise methods of measuring defect area are been used.

  8. Resting state functional connectivity of the ventral auditory pathway in musicians with absolute pitch.

    Science.gov (United States)

    Kim, Seung-Goo; Knösche, Thomas R

    2017-08-01

    Absolute pitch (AP) is the ability to recognize pitch chroma of tonal sound without external references, providing a unique model of the human auditory system (Zatorre: Nat Neurosci 6 () 692-695). In a previous study (Kim and Knösche: Hum Brain Mapp () 3486-3501), we identified enhanced intracortical myelination in the right planum polare (PP) in musicians with AP, which could be a potential site for perceptional processing of pitch chroma information. We speculated that this area, which initiates the ventral auditory pathway, might be crucially involved in the perceptual stage of the AP process in the context of the "dual pathway hypothesis" that suggests the role of the ventral pathway in processing nonspatial information related to the identity of an auditory object (Rauschecker: Eur J Neurosci 41 () 579-585). To test our conjecture on the ventral pathway, we investigated resting state functional connectivity (RSFC) using functional magnetic resonance imaging (fMRI) from musicians with varying degrees of AP. Should our hypothesis be correct, RSFC via the ventral pathway is expected to be stronger in musicians with AP, whereas such group effect is not predicted in the RSFC via the dorsal pathway. In the current data, we found greater RSFC between the right PP and bilateral anteroventral auditory cortices in musicians with AP. In contrast, we did not find any group difference in the RSFC of the planum temporale (PT) between musicians with and without AP. We believe that these findings support our conjecture on the critical role of the ventral pathway in AP recognition. Hum Brain Mapp 38:3899-3916, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. A key role for nectin-1 in the ventral hippocampus in contextual fear memory.

    Directory of Open Access Journals (Sweden)

    Martina Fantin

    Full Text Available Nectins are cell adhesion molecules that are widely expressed in the brain. Nectin expression shows a dynamic spatiotemporal regulation, playing a role in neural migratory processes during development. Nectin-1 and nectin-3 and their heterophilic trans-interactions are important for the proper formation of synapses. In the hippocampus, nectin-1 and nectin-3 localize at puncta adherentia junctions and may play a role in synaptic plasticity, a mechanism essential for memory and learning. We evaluated the potential involvement of nectin-1 and nectin-3 in memory consolidation using an emotional learning paradigm. Rats trained for contextual fear conditioning showed transient nectin-1-but not nectin-3-protein upregulation in synapse-enriched hippocampal fractions at about 2 h posttraining. The upregulation of nectin-1 was found exclusively in the ventral hippocampus and was apparent in the synaptoneurosomal fraction. This upregulation was induced by contextual fear conditioning but not by exposure to context or shock alone. When an antibody against nectin-1, R165, was infused in the ventral-hippocampus immediately after training, contextual fear memory was impaired. However, treatment with the antibody in the dorsal hippocampus had no effect in contextual fear memory formation. Similarly, treatment with the antibody in the ventral hippocampus did not interfere with acoustic memory formation. Further control experiments indicated that the effects of ventral hippocampal infusion of the nectin-1 antibody in contextual fear memory cannot be ascribed to memory non-specific effects such as changes in anxiety-like behavior or locomotor behavior. Therefore, we conclude that nectin-1 recruitment to the perisynaptic environment in the ventral hippocampus plays an important role in the formation of contextual fear memories. Our results suggest that these mechanisms could be involved in the connection of emotional and contextual information processed in the

  10. Genetic Analysis of Hedgehog Signaling in Ventral Body Wall Development and the Onset of Omphalocele Formation

    Science.gov (United States)

    Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen

    2011-01-01

    Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes. PMID:21283718

  11. A detailed, hierarchical study of Giardia lamblia's ventral disc reveals novel microtubule-associated protein complexes.

    Directory of Open Access Journals (Sweden)

    Cindi L Schwartz

    Full Text Available Giardia lamblia is a flagellated, unicellular parasite of mammals infecting over one billion people worldwide. Giardia's two-stage life cycle includes a motile trophozoite stage that colonizes the host small intestine and an infectious cyst form that can persist in the environment. Similar to many eukaryotic cells, Giardia contains several complex microtubule arrays that are involved in motility, chromosome segregation, organelle transport, maintenance of cell shape and transformation between the two life cycle stages. Giardia trophozoites also possess a unique spiral microtubule array, the ventral disc, made of approximately 50 parallel microtubules and associated microribbons, as well as a variety of associated proteins. The ventral disc maintains trophozoite attachment to the host intestinal epithelium. With the help of a combined SEM/microtome based slice and view method called 3View® (Gatan Inc., Pleasanton, CA, we present an entire trophozoite cell reconstruction and describe the arrangement of the major cytoskeletal elements. To aid in future analyses of disc-mediated attachment, we used electron-tomography of freeze-substituted, plastic-embedded trophozoites to explore the detailed architecture of ventral disc microtubules and their associated components. Lastly, we examined the disc microtubule array in three dimensions in unprecedented detail using cryo-electron tomography combined with internal sub-tomogram volume averaging of repetitive domains. We discovered details of protein complexes stabilizing microtubules by attachment to their inner and outer wall. A unique tri-laminar microribbon structure is attached vertically to the disc microtubules and is connected to neighboring microribbons via crossbridges. This work provides novel insight into the structure of the ventral disc microtubules, microribbons and associated proteins. Knowledge of the components comprising these structures and their three-dimensional organization is

  12. Left Activism, Succour and Selfhood

    DEFF Research Database (Denmark)

    Hughes, Celia Penelope

    2014-01-01

    an interchange of motherhood, domesticity, far-left politics, and close female friendship. The article will show how the women's epistolary friendship offers intimate insight into female self-fashioning at a breakthrough social and political moment in 1970s Britain. As they reflected on some of the key political...

  13. Methyllycaconitine prevents methamphetamine-induced effects in mouse striatum: involvement of alpha7 nicotinic receptors.

    Science.gov (United States)

    Escubedo, Elena; Chipana, Carlos; Pérez-Sánchez, Mónica; Camarasa, Jordi; Pubill, David

    2005-11-01

    In a previous study, we demonstrated that in rat striatal synaptosomes, methamphetamine (METH)-induced reactive oxygen species (ROS) production was prevented by methyllycaconitine (MLA), a specific antagonist of alpha7 neuronal nicotinic acetylcholine receptors (alpha7 nAChR). The aim of this study was to test the influence of MLA on acute METH effects and neurotoxicity in mice, using both in vivo and in vitro models. MLA inhibited METH-induced climbing behavior by 50%. Acute effects after 30-min preincubation with 1 microM METH also included a decrease in striatal synaptosome dopamine (DA) uptake, which was prevented by MLA. METH-induced neurotoxicity was assessed in vivo in terms of loss of striatal dopaminergic terminals (73%) and of tyrosine hydroxylase levels (by 90%) at 72 h post-treatment, which was significantly attenuated by MLA. Microglial activation [measured as 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide binding] was also present at 24 h post-treatment and was fully prevented by MLA, tending to confirm its neuroprotective activity. MLA had no effect on METH-induced hyperthermia. Additionally, flow cytometry assays showed that METH-induced ROS generation occurs inside synaptosomes from mouse striatum. This effect implied release of vesicular DA and was calcium-, neuronal nitric-oxide synthase-, and protein kinase C-dependent. MLA and alpha-bungarotoxin, but not dihydro-beta-erythroidine (an antagonist that blocks nAChR-containing beta2 subunits), fully prevented METH-induced ROS production without affecting vesicular DA uptake. The importance of this study lies not only in the neuroprotective effect elicited by the blockade of the alpha7 nicotinic receptors by MLA but also in that it proposes a new mechanism with which to study METH-induced acute and long-term effects.

  14. Enhancing and impairing extinction of habit memory through modulation of NMDA receptors in the dorsolateral striatum.

    Science.gov (United States)

    Goodman, Jarid; Ressler, Reed L; Packard, Mark G

    2017-06-03

    The present experiments investigated the involvement of N-methyl-d-aspartate (NMDA) receptors of the dorsolateral striatum (DLS) in consolidation of extinction in a habit memory task. Adult male Long-Evans rats were initially trained in a food-reinforced response learning version of a plus-maze task and were subsequently given extinction training in which the food was removed from the maze. In experiment 1, immediately after the first day of extinction training, rats received bilateral intra-DLS injections of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5; 2µg/side) or physiological saline. In experiment 2, immediately following the first day of extinction training, animals were given intra-DLS injections of NMDA receptor partial agonist d-cycloserine (DCS; 10 or 20µg/side) or saline. In both experiments, the number of perseverative trials (a trial in which a rat made the same previously reinforced body-turn response) and latency to reach the previously correct food well were used as measures of extinction behavior. Results indicated that post-training intra-DLS injections of AP5 impaired extinction. In contrast, post-training intra-DLS infusions of DCS (20µg) enhanced extinction. Intra-DLS administration of AP5 or DCS given two hours after extinction training did not influence extinction of response learning, indicating that immediate post-training administration of AP5 and DCS specifically influenced consolidation of the extinction memory. The present results indicate a critical role for DLS NMDA receptors in modulating extinction of habit memory and may be relevant to developing therapeutic approaches to combat the maladaptive habits observed in human psychopathologies in which DLS-dependent memory has been implicated (e.g. drug addiction and relapse and obsessive compulsive disorder). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  16. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  17. Post-training cocaine administration facilitates habit learning and requires the infralimbic cortex and dorsolateral striatum.

    Science.gov (United States)

    Schmitzer-Torbert, Neil; Apostolidis, Steven; Amoa, Romeo; O'Rear, Connor; Kaster, Michael; Stowers, Josh; Ritz, Robert

    2015-02-01

    Human drug addiction is a complex disorder, in which exogenous substances are able to recruit and maintain behaviors involved in drug taking. Many drugs that are addictive in humans are able to act on natural brain systems for learning and memory, and while many memory systems may be affected by addictive drugs, work with operant tasks has shown that addictive drugs (e.g. cocaine and alcohol) are particularly effective in recruiting habit learning systems, compared to natural rewards. It is currently unknown if the ability of addictive drugs to facilitate habit learning depends on a direct action on habit learning systems in the brain, versus the rewarding properties of drug administration. To differentiate between these options, rats were trained to perform two actions (lever pressing), each of which was rewarded with a different natural reward. After acquiring the behavior, rats received three training sessions which were followed by post-training injections of saline or cocaine (5 or 10mg/kg, i.p.). Using sensory-specific satiety, extinction tests revealed that lever pressing for actions which were paired with saline were sensitive to devaluation (typical of goal-directed behaviors) while actions which were paired with cocaine were not sensitive to devaluation (typical of habitual behaviors). Lesions of the infralimbic or dorsolateral striatum were able to block the action of post-training cocaine injections. These data indicate that, within individual rats, cocaine injections facilitate the transition of behavior to habitual control for actions that have been recently performed, without a general facilitation of habit learning, and that this action of cocaine requires brain areas that are critical for learning natural habits. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Glucocorticoid enhancement of dorsolateral striatum-dependent habit memory requires concurrent noradrenergic activity.

    Science.gov (United States)

    Goodman, J; Leong, K-C; Packard, M G

    2015-12-17

    Previous findings indicate that post-training administration of glucocorticoid stress hormones can interact with the noradrenergic system to enhance consolidation of hippocampus- or amygdala-dependent cognitive/emotional memory. The present experiments were designed to extend these findings by examining the potential interaction of glucocorticoid and noradrenergic mechanisms in enhancement of dorsolateral striatum (DLS)-dependent habit memory. In experiment 1, different groups of adult male Long-Evans rats received training in two DLS-dependent memory tasks. In a cued water maze task, rats were released from various start points and were reinforced to approach a visibly cued escape platform. In a response-learning version of the water plus-maze task, animals were released from opposite starting positions and were reinforced to make a consistent egocentric body-turn to reach a hidden escape platform. Immediately post-training, rats received peripheral injections of the glucocorticoid corticosterone (1 or 3 mg/kg) or vehicle solution. In both tasks, corticosterone (3 mg/kg) enhanced DLS-dependent habit memory. In experiment 2, a separate group of animals received training in the response learning version of the water plus-maze task and were given peripheral post-training injections of corticosterone (3 mg/kg), the β-adrenoreceptor antagonist propranolol (3 mg/kg), corticosterone and propranolol concurrently, or control vehicle solution. Corticosterone injections again enhanced DLS-dependent memory, and this effect was blocked by concurrent administration of propranolol. Propranolol administration by itself (3 mg/kg) did not influence DLS-dependent memory. Taken together, the findings indicate an interaction between glucocorticoid and noradrenergic mechanisms in DLS-dependent habit memory. Propranolol administration may be useful in treating stress-related human psychopathologies associated with a dysfunctional DLS-dependent habit memory system. Copyright © 2015

  19. A multicenter prospective study of patients undergoing open ventral hernia repair with intraperitoneal positioning using the monofilament polyester composite ventral patch: interim results of the PANACEA study.

    Science.gov (United States)

    Berrevoet, Frederik; Doerhoff, Carl; Muysoms, Filip; Hopson, Steven; Muzi, Marco Gallinella; Nienhuijs, Simon; Kullman, Eric; Tollens, Tim; Schwartz, Mark R; LeBlanc, Karl; Velanovich, Vic; Jørgensen, Lars Nannestad

    2017-01-01

    This study assessed the recurrence rate and other safety and efficacy parameters following ventral hernia repair with a polyester composite prosthesis (Parietex™ Composite Ventral Patch [PCO-VP]). A single-arm, multicenter prospective study of 126 patients undergoing open ventral hernia repair with the PCO-VP was performed. Patient outcomes were assessed at discharge and at 10 days, 1, 6, 12, and 24 months postoperative. All patients had hernioplasty for umbilical (n = 110, 87.3%) or epigastric hernia (n = 16, 12.7%). Mean hernia diameter was 1.8 ± 0.8 cm. Mean operative time was 36.2 ±15.6 minutes, with a mean mesh positioning time of 8.1 ± 3.4 minutes. Surgeons reported satisfaction with mesh ease of use in 95% of surgeries. The cumulative hernia recurrence rate at 1 year was 2.8% (3/106). Numeric Rating Scale (NRS) pain scores showed improvement from 2.1 ± 2.0 at preoperative baseline to 0.5 ± 0.7 at 1 month postoperative ( P < 0.001), and this low pain level was maintained at 12 months postsurgery ( P < 0.001). The mean global Carolina's Comfort Scale ® (CCS) score improved postoperatively from 3.8 ± 6.2 at 1 month to 1.6 ± 3.5 at 6 months ( P < 0.001). One patient was unsatisfied with the procedure. This 1-year interim analysis using PCO-VP for primary umbilical and epigastric defects shows promising results in terms of mesh ease of use, postoperative pain, and patient satisfaction. Recurrence rate is low, but, as laparoscopic evaluation shows a need for patch repositioning in some cases, an accurate surgical technique remains of utmost importance.

  20. Increased facilitatory connectivity from the pre-SMA to the left dorsal premotor cortex during pseudoword repetition

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    repetition. The optimal model was identified with Bayesian model selection and reflected a network with driving input to pre-SMA and an increase in facilitatory drive from pre-SMA to PMd during repetition of pseudowords. The task-specific increase in effective connectivity from pre-SMA to left PMd suggests......Previous studies have demonstrated that the repetition of pseudowords engages a network of premotor areas for articulatory planning and articulation. However, it remains unclear how these premotor areas interact and drive one another during speech production. We used fMRI with dynamic causal...... were common to repetition in both modalities. We thus obtained three seed regions: the bilateral pre-SMA, left dorsal premotor cortex (PMd), and left ventral premotor cortex that were used to test 63 different models of effective connectivity in the premotor network for pseudoword relative to word...

  1. Structural changes in left fusiform areas and associated fiber connections in children with abacus training: Evidence from morphometry and tractography

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-07-01

    Full Text Available Evidence supports the notion that the fusiform gyrus (FG, as an integral part of the ventral occipitotemporal junction, is involved widely in cognitive processes as perceiving faces, objects, places or words, and this region also might represent the visual form of an abacus in the abacus-based mental calculation process. The current study uses a combined voxel-based morphometry (VBM and diffusion tensor imaging (DTI analysis to test whether long-term abacus training could induce structural changes in the left FG and in the white matter (WM tracts distribution connecting with this region in school children. We found that, abacus-trained children exhibited significant smaller grey matter (GM volume than controls in the left FG. And the connectivity mapping identified left forceps major as a key pathway connecting left FG with other brain areas in the trained group, but not in the controls. Furthermore, mean fractional anisotropy (FA values within left forceps major were significantly increased in the trained group. Interestingly, a significant negative correlation was found in the trained group between the GM volume in left FG and the mean FA value in left forceps major, suggesting an inverse effect of the reported GM and WM structural changes. In the control group, a positive correlation between left FG GM volume and tract FA was found as well. This analysis visualized the group level differences in GM volume, FA and fiber tract between the abacus-trained children and the controls, and provided the first evidence that GM volume change in the left FG is intimately linked with the micro-structural properties of the left forceps major tracts. The present results demonstrate the structural changes in the left FG from the intracortical GM to the subcortical WM regions and provide insights into the neural mechanism of structural plasticity induced by abacus training.

  2. Structural changes in left fusiform areas and associated fiber connections in children with abacus training: evidence from morphometry and tractography.

    Science.gov (United States)

    Li, Yongxin; Wang, Yunqi; Hu, Yuzheng; Liang, Yurong; Chen, Feiyan

    2013-01-01

    Evidence supports the notion that the fusiform gyrus (FG), as an integral part of the ventral occipitotemporal junction, is involved widely in cognitive processes as perceiving faces, objects, places or words, and this region also might represent the visual form of an abacus in the abacus-based mental calculation process. The current study uses a combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis to test whether long-term abacus training could induce structural changes in the left FG and in the white matter (WM) tracts distribution connecting with this region in school children. We found that, abacus-trained children exhibited significant smaller gray matter (GM) volume than controls in the left FG. And the connectivity mapping identified left forceps major as a key pathway connecting left FG with other brain areas in the trained group, but not in the controls. Furthermore, mean fractional anisotropy (FA) values within left forceps major were significantly increased in the trained group. Interestingly, a significant negative correlation was found in the trained group between the GM volume in left FG and the mean FA value in left forceps major, suggesting an inverse effect of the reported GM and WM structural changes. In the control group, a positive correlation between left FG GM volume and tract FA was found as well. This analysis visualized the group level differences in GM volume, FA and fiber tract between the abacus-trained children and the controls, and provided the first evidence that GM volume change in the left FG is intimately linked with the micro-structural properties of the left forceps major tracts. The present results demonstrate the structural changes in the left FG from the intracortical GM to the subcortical WM regions and provide insights into the neural mechanism of structural plasticity induced by abacus training.

  3. Left ventricular diastolic performance of left ventricular hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Ikezono, Tohru; Ozaki, Masaharu; Yamagishi, Takashi; Shimizu, Tatsuro; Furutani, Yuji; Kusukawa, Reizo

    1987-02-01

    To study left ventricular diastolic performance in different forms of left ventricular hypertrophy, ECG gated cardiac blood pool scan was performed in 11 patients with hypertrophic nonobstructive cardiomyopathy (HCM) and in 19 patients with hypertension (HT), and left ventricular volume curve (LVVC) was analyzed and compared with those of 13 normal subjects (N). Ejection fraction (EF) and early filling volume ratio (the ratio of volume increment of 100 msec later than the zero point in the first derivative of LVVC to the end diastolic volume) (%EFV) were computed from LVVC. Peak ejection rate (PER) and peak filling rate (PFR) were obtained from the first derivative of LVVC. Peak ejection acceleration (PEA) and peak filling acceleration (PFA) were calculated from the second derivative of LVVC. EF, PER and PEA did not show any difference between these 3 groups. PFR was lower in HT (2.6 +- 0.5) compared with those in HCM (3.0 +- 0.5) (p < 0.05) and in N (3.4 +- 0.5) (p < 0.001), but the %EFV in HCM (4.9 +- 1.8) was lower than those in HT (6.9 +- 1.9) (p < 0.01) and in N (11.4 +- 1.4) (p < 0.001). Moreover, PFA in HCM (27.9 +- 7.2) was increased than those in HT (20.2 +- 5.4) (p < 0.01) with no differences between HCM and N (29.4 +- 8.1). Significant correlation was observed between PFR and PFA (Y = 0.06X + 1.4. r = 0.856. p < 0.001). These result indicate that, in HCM, reduced increase in early left ventricular volume is compensated by a greater filling acceleration. In contrast, there is no compensation by filling acceleration in HT.

  4. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    This thesis is the first comprehensive research work conducted on the Beirut based TV station, an important representative of the post-2011 generation of Arab satellite news media. The launch of al-Mayadeen in June 2012 was closely linked to the political developments across the Arab world...... members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...

  5. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    Science.gov (United States)

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of

  6. Speech-induced striatal dopamine release is left lateralized and coupled to functional striatal circuits in healthy humans: A combined PET, fMRI and DTI study

    Science.gov (United States)

    Simonyan, Kristina; Herscovitch, Peter; Horwitz, Barry

    2013-01-01

    Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D2/D3 receptor radioligand [11C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in its both associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech. PMID:23277111

  7. Morphological aspects of tympanic bulla after ventral osteotomy in cats Aspectos morfológicos da bulla tympanica de gatos após osteotomia ventral

    Directory of Open Access Journals (Sweden)

    Adelina Maria da Silva

    2009-06-01

    Full Text Available PURPOSE: To evaluate tympanic bulla healing after experimental ventral osteotomy in cats. METHODS: Twenty adult cats were submitted to unilateral ventral bulla osteotomy and divided into two groups: cats of A1 group (n=10 were euthanized at 8 weeks and cats of A2 group (n=10, at 16 weeks postoperative. RESULTS: Signs of Horner's syndrome or damage to the inner ear were not found. Open-mouth radiographs taken in the immediate postoperative showed interruption in the contour of the larger compartment of the operated bulla. The result of Mcnemar'test was significant in A2 group (*p=0.0156. Macroscopic exams revealed that the operated bullae were similar to the normal ones, with preservation of the tympanic cavity. Connective tissue at the osteotomy site of the larger compartment was significantly found in the operated bullae in both groups (McNemar test: A1 p=0.0020*; A2 p=0.0078*. Histomorphometric analyses showed that the connective tissue length at the osteotomy site was shorter in A2 group than in the A1 group (Mann-Whitney test: p=0.0021*. CONCLUSIONS: Experimental ventral osteotomy did not alter significantly the tympanic bulla conformation and complete regeneration of tympanic bulla frequently did not occur before 16 weeks of postoperative period.OBJETIVO: Avaliar a morfologia da bulla tympanica de gatos após osteotomia ventral unilateral. MÉTODOS: Foram utilizados 20 gatos distribuídos em dois grupos de 10 animais cada, de acordo com o período de observação: A1 (8 semanas e A2 (16 semanas. RESULTADOS: Nenhum animal apresentou síndrome de Horner ou lesão do ouvido interno. Nas radiografias em projeção com a boca aberta realizadas no pós-operatório imediato observou-se a interrupção do compartimento maior da bulla tympanica operada, resultado significante no grupo A2 (McNemar, p=0,0156*. Os exames macroscópicos revelaram que a bulla tympanica operada apresentava conformação semelhante a da bulla tympanica normal, com preserva

  8. Clinical Study of 23 Male Patients with Congenital Ventral Penile Angulation without Hypospadias

    Directory of Open Access Journals (Sweden)

    Ioannis Patoulias

    2017-02-01

    Full Text Available Congenital ventral penile angulation without hypospadias is a rare disease and causes great anxiety to the parents. The aim of our study is the presentation of this disease, especially the indications of surgical treatment and the protocol applied in our clinic. We retrospectively studied 23 male patients aged 2.5 to 7 years old (av 5.2 y with important penile angulation (over 45° without hypospadias, treated during the past 15 years in our department. In 9 patients the cause was the skin chordee (fibrosis of the ventral part of the prepuce, in 4 the fibrotic fascia (incomplete development of dartos and Buck’s fascia and in 10 the disproportion of the corpora cavernosa. No case of congenital short urethra was reported. In our opinion, the appliance of the algorithm suggested by Donnahoo KK et al. in uncomplicated cases, along with the experience of the surgical team, results in satisfactory treatment and avoidance of complications.

  9. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    . Neurons responded to electrical stimulation by monosynaptic EPSCs (excitatory monosynaptic postsynaptic currents). We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single...... by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters...... by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice...

  10. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons

    DEFF Research Database (Denmark)

    Jensen, Pia; Ducray, A D; Widmer, H R

    2015-01-01

    , suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells....... shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10days...... to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which...

  11. Angiotensin II suppresses water absorption through the ventral skin of Japanese tree-frogs in vitro.

    Science.gov (United States)

    Tokuda, C; Kimura, K; Kamishima, Y

    1995-04-01

    We previously described two different water absorption systems in the ventral skin of the Japanese tree-frog, Hyla arborea japonica: i.e., a rapid enhanced flow, which is observed in dehydrated tree-frogs or those stimulated by adrenaline beta-agonists or vasotocin, and a slow basal flow, which is observed in normally hydrated frogs during the non-breeding season. The rapid flow is completely blocked by ouabain, which has no effects on the slow basal flow. In the present experiment, we show that the vaso-constrictive hormone angiotensin II completely inhibits basal water absorption, but has no effect on rapid water absorption. These results confirm our previous finding that the two water absorption systems in the ventral skin of the Japanese tree-frog are independent of each other.

  12. A Method to Make a Craniotomy on the Ventral Skull of Neonate Rodents

    Science.gov (United States)

    Rodríguez-Contreras, Adrián; Shi, Lingyan; Fu, Bingmei M.

    2014-01-01

    The use of a craniotomy for in vivo experiments provides an opportunity to investigate the dynamics of diverse cellular processes in the mammalian brain in adulthood and during development. Although most in vivo approaches use a craniotomy to study brain regions located on the dorsal side, brainstem regions such as the pons, located on the ventral side remain relatively understudied. The main goal of this protocol is to facilitate access to ventral brainstem structures so that they can be studied in vivo using electrophysiological and imaging methods. This approach allows study of structural changes in long-range axons, patterns of electrical activity in single and ensembles of cells, and changes in blood brain barrier permeability in neonate animals. Although this protocol has been used mostly to study the auditory brainstem in neonate rats, it can easily be adapted for studies in other rodent species such as neonate mice, adult rodents and other brainstem regions. PMID:24894439

  13. Reelin signaling in the migration of ventral brain stem and spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Sandra eBlaess

    2016-03-01

    Full Text Available The extracellular matrix protein Reelin is an important orchestrator of neuronal migration during the development of the central nervous system. While its role and mechanism of action have been extensively studied and reviewed in the formation of dorsal laminar brain structures like the cerebral cortex, hippocampus, and cerebellum, its functions during the neuronal migration events that result in the nuclear organization of the ventral central nervous system are less well understood. In an attempt to delineate an underlying pattern of Reelin action in the formation of neuronal cell clusters, this review highlights the role of Reelin signaling in the migration of neuronal populations that originate in the ventral brain stem and the spinal cord.

  14. Atlantooccipital overlapping and its effect on outcomes after ventral fixation in dogs with atlantoaxial instability.

    Science.gov (United States)

    Takahashi, Fumitaka; Hakozaki, Takaharu; Kouno, Shigenori; Suzuki, Shuji; Sato, Asaka; Kanno, Nobuo; Harada, Yasuji; Yamaguchi, Shinya; Hara, Yasushi

    2018-02-05

    We compared clinical outcomes after ventral fixation in dogs with atlantoaxial instability (AAI) on the basis of the presence or absence of atlantooccipital overlapping (AOO). Of 41 dogs diagnosed with AAI and treated ventral fixation, 12 exhibited AOO (AOO group), whereas 29 did not (non-AOO group). The AOO group had significantly higher neurological scores before (P=0.024) and 1 month after (P=0.033) surgery compared with the non-AOO group; however, no significant differences were observed between the groups 2 months after surgery. The presence of complicating AOO affected the clinical signs for dogs with AAI, but did not directly affect the outcome of surgical stabilization of AAI.

  15. Left and right brain-oriented hemisity subjects show opposite behavioral preferences

    Directory of Open Access Journals (Sweden)

    Bruce Eldine Morton

    2012-11-01

    Full Text Available Introduction: Recently, three independent, intercorrelated biophysical measures have provided the first quantitative measures of a binary form of behavioral laterality called Hemisity, a term referring to inherent opposite right or left brain-oriented differences in thinking and behavioral styles. Crucially, the right or left brain-orientation of individuals assessed by these methods was later found to be essentially congruent with the thicker side of their ventral gyrus of the anterior cingulate cortex (vgACC as revealed by a 3 minute MRI procedure. Laterality of this putative executive structural element has thus become the primary standard defining individual hemisity. Methods: Here, the behavior of 150 subjects, whose hemisity had been calibrated by MRI, was assessed using five MRI-calibrated preference questionnaires, two of which were new.Results: Right and left brain-oriented subjects selected opposite answers (p > 0.05 for 47 of the 107 either-or, forced choice type preference questionnaire items. Hemisity subtype preference differences were present in several areas. They were in: a. logical orientation, b. type of consciousness, c. fear level and sensitivity, d. social-professional orientation, and e. pair bonding-spousal dominance style.Conclusions: The right and left brain-oriented hemisity subtype subjects, sorted on the anatomical basis of upon which brain side their vgACC was thickest, showed numerous significant differences in their either-or type of behavioral preferences.

  16. Enhanced neural synchrony between left auditory and premotor cortex is associated with successful phonetic categorization.

    Science.gov (United States)

    Alho, Jussi; Lin, Fa-Hsuan; Sato, Marc; Tiitinen, Hannu; Sams, Mikko; Jääskeläinen, Iiro P

    2014-01-01

    The cortical dorsal auditory stream has been proposed to mediate mapping between auditory and articulatory-motor representations in speech processing. Whether this sensorimotor integration contributes to speech perception remains an open question. Here, magnetoencephalography was used to examine connectivity between auditory and motor areas while subjects were performing a sensorimotor task involving speech sound identification and overt repetition. Functional connectivity was estimated with inter-areal phase synchrony of electromagnetic oscillations. Structural equation modeling was applied to determine the direction of information flow. Compared to passive listening, engagement in the sensorimotor task enhanced connectivity within 200 ms after sound onset bilaterally between the temporoparietal junction (TPJ) and ventral premotor cortex (vPMC), with the left-hemisphere connection showing directionality from vPMC to TPJ. Passive listening to noisy speech elicited stronger connectivity than clear speech between left auditory cortex (AC) and vPMC at ~100 ms, and between left TPJ and dorsal premotor cortex (dPMC) at ~200 ms. Information flow was estimated from AC to vPMC and from dPMC to TPJ. Connectivity strength among the left AC, vPMC, and TPJ correlated positively with the identification of speech sounds within 150 ms after sound onset, with information flowing from AC to TPJ, from AC to vPMC, and from vPMC to TPJ. Taken together, these findings suggest that sensorimotor integration mediates the categorization of incoming speech sounds through reciprocal auditory-to-motor and motor-to-auditory projections.

  17. Aberrant topology of striatum's connectivity is associated with the number of episodes in depression.

    Science.gov (United States)

    Meng, Chun; Brandl, Felix; Tahmasian, Masoud; Shao, Junming; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Bäuml, Josef; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2014-02-01

    In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter

  18. The Danish Ventral Hernia Database – a valuable tool for quality assessment and research

    Directory of Open Access Journals (Sweden)

    Helgstrand F

    2016-10-01

    Full Text Available Frederik Helgstrand,1 Lars Nannestad Jorgensen2 1Department of Surgery, Køge Hospital, University of Copenhagen, Køge, Denmark; 2Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark Aim: The Danish Ventral Hernia Database (DVHD provides national surveillance of current surgical practice and clinical postoperative outcomes. The intention is to reduce postoperative morbidity and hernia recurrence, evaluate new treatment strategies, and facilitate nationwide implementation of evidence-based treatment strategies. This paper describes the design and purpose of DVHD. Study population: Adult (≥18 years patients with a Danish Civil Registration Number and undergoing surgery under elective or emergency conditions for ventral hernia in a Danish surgical department from 2007 and beyond. A total of 80% of all ventral hernia repairs performed in Denmark were reported to the DVHD. Main variables: Demographic data (age, sex, and center, detailed hernia description (eg, type, size, surgical priority, and technical aspects (open/laparoscopic and mesh related factors related to the surgical repair are recorded. Data registration is mandatory. Data may be merged with other Danish health registries and information from patient questionnaires or clinical examinations. Descriptive data: More than 37,000 operations have been registered. Data have demonstrated high agreement with patient files. The data allow technical proposals for surgical improvement with special emphasis on reduced incidences of postoperative complications, hernia recurrence, and chronic pain. Conclusion: DVHD is a prospective and mandatory registration system for Danish surgeons. It has collected a high number of operations and is an excellent tool for observing changes over time, including adjustment of several confounders. This national database registry has impacted on clinical practice in Denmark and led to a high number of scientific publications

  19. Biologic mesh in ventral hernia repair: Outcomes, recurrence, and charge analysis.

    Science.gov (United States)

    Huntington, Ciara R; Cox, Tiffany C; Blair, Laurel J; Schell, Samuel; Randolph, David; Prasad, Tanushree; Lincourt, Amy; Heniford, B Todd; Augenstein, Vedra A

    2016-12-01

    Biologic mesh choice in ventral hernia repair is challenging due to lack of prospective data. This study examines long-term, single-center biologic mesh outcomes. Prospective operative outcomes data was queried for open ventral hernia repair with biologic mesh. Univariate and multivariate analysis were used to compare mesh outcomes. In the study, 223 patients underwent open ventral hernia repair with biologic mesh, including 40 with Alloderm, 23 AlloMax, 70 FlexHD, 68 Strattice, and 22 Xenmatrix. Overall, 9.8% had an American Society of Anesthesiology classification of 4, 54.6% with a classification of 3, and 35.6% with a classification of 1 or 2. Operative time averaged 241 minutes with estimated blood loss of 202 mL. Hernia defects averaged 257 ± 245 cm 2 with mesh size 384 cm 2 . Biologic mesh was used as a fascial bridge in 19.6%, component separation was performed in 47.5%, and 82% had concomitant procedure. Inpatient mortality was 1.4%. Hernia recurrence varied significantly by mesh type: 35% Alloderm, 34.5% AlloMax, 37.1% FlexHD, 14.7% Strattice, and 59.1% Xenmatrix (P = .001). The mean follow-up was 18.2 months. After multivariate analysis comparing to Strattice, AlloMax had a 3.4 higher odds ratio for recurrence, FlexHD a 2.9 odds ratio, and Xenmatrix a 7.8 odds ratio. The rate of mesh infections requiring explantation was biologic mesh at a tertiary care institution, Strattice, a porcine acellular dermal mesh, had significantly lower odds of hernia recurrence compared with AlloMax, FlexHD, and Xenmatrix. Choice of biologic mesh affects long-term postoperative outcomes in ventral hernia repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder

    OpenAIRE

    Herbort, Maike C.; Soch, Joram; W?stenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, J?rgen; Walter, Henrik; Roepke, Stefan; Schott, Bj?rn H.

    2016-01-01

    Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BP...

  1. Wrist ultrasound examination – scanning technique and ultrasound anatomy. Part 2: Ventral wrist

    Directory of Open Access Journals (Sweden)

    Cyprian Olchowy

    2017-06-01

    Full Text Available Ultrasound imaging of the musculoskeletal system is an important element of the diagnostic and therapeutic protocol. Clinical decisions, including those regarding surgical procedures, are often based solely on ultrasound imaging. However, detailed knowledge on the anatomy and a correct scanning technique are crucial for an accurate diagnosis. Modern ultrasonographic equipment allows obtaining detailed anatomical images of muscle tendons, ligaments, nerves and vessels of the carpal area. Ventral wrist ultrasound is one of the most common diagnostic procedures in patients with suspected carpal tunnel syndrome. Ventral wrist evaluation is also often performed in patients with wrist pain of unclear etiology, rheumatic diseases, wrist injuries or symptoms of ulnar neuropathy. The aim of this paper is to present ultrasound images with corresponding anatomical schemes. The technique of ultrasound examination of the ventral wrist along with practical guidance to help obtain highly diagnostic images is also discussed. The present paper is the second part of an article devoted to ultrasound anatomy and wrist ultrasound technique – the part discussing the dorsal side of the wrist was published in the Journal of Ultrasonography, Vol. 15, No 61. The following anatomical structures should be visualized during an ultrasound examination of the ventral wrist, both in the carpal tunnel as well as proximally and distally to it: four flexor digitorum superficialis tendons, four flexor digitorum profundus tendons, flexor pollicis longus, flexor carpi radialis tendon, median nerve and flexor retinaculum; in the carpal tunnel as well as proximally and distally to it: the ulnar nerve, ulnar artery and veins; the tendon of the flexor carpi ulnaris muscle; carpal joints.

  2. Ventral and dorsal root injury after oxygen-ozone therapy for lumbar disk herniation.

    Science.gov (United States)

    Ginanneschi, Federica; Cervelli, Carlo; Milani, Paolo; Rossi, Alessandro

    2006-12-01

    O2O3 therapy has become a largely diffused treatment for lumbar disk herniation; this procedure is considered generally risk-free. We report a case of ventral and dorsal root injury occurring after transcutaneous intradiscal infiltration of O2O3 for L4-L5 disk herniation. Until randomized controlled trials on efficacy and short-term safety have been carried out, we think that physicians should be informed about the risk of potential complications when recommending this procedure.

  3. Dorsal-ventral patterning in amphioxus: current understanding, unresolved issues, and future directions

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Yu, J.K.

    2017-01-01

    Roč. 61, č. 10-12 (2017), s. 601-610 ISSN 0214-6282 R&D Projects: GA ČR GC15-21285J Institutional support: RVO:68378050 Keywords : dorsal-ventral patterning * organizer * signaling pathway * chordate * evolution Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 1.981, year: 2016

  4. Representation of body identity and body actions in extrastriate body area and ventral premotor cortex.

    Science.gov (United States)

    Urgesi, Cosimo; Candidi, Matteo; Ionta, Silvio; Aglioti, Salvatore M

    2007-01-01

    Although inherently linked, body form and body action may be represented in separate neural substrates. Using repetitive transcranial magnetic stimulation in healthy individuals, we show that interference with the extrastriate body area impairs the discrimination of bodily forms, and interference with the ventral premotor cortex impairs the discrimination of bodily actions. This double dissociation suggests that whereas extrastriate body area mainly processes actors' body identity, premotor cortex is crucial for visual discriminations of actions.

  5. Quality of Life after Ventral Hernia Repair with Endoscopic Component Separation Technique

    DEFF Research Database (Denmark)

    Thomsen, C Ø; Brøndum, T L; Jørgensen, Lars Nannestad

    2016-01-01

    of the hernia size. Demographic data, operative information, and postoperative complications were recorded. All patients completed two similar questionnaires regarding their function level, cosmetic satisfaction, analgesic medication, alcohol consumption, and self-estimated physical and mental health before......, cosmetic satisfaction, and self-estimated physical and mental health improved significantly. Alcohol consumption was significantly reduced. Endoscopic components separation is a reliable method to repair large ventral hernias, although further studies are required to determine the exact benefits...

  6. Combined Dorsal Plus Ventral Double-Graft Urethroplasty in Anterior Urethral Reconstruction.

    Science.gov (United States)

    Jiang, Jianchun; Zhu, Yuchun; Jiang, Lihai; Luo, Deyi; Wei, Xin; Wazir, Romel; Li, Hong; Wang, Kunjie

    2015-12-01

    This study aims to investigate the effect of combined dorsal plus ventral double-graft urethroplasty in anterior urethral reconstruction. Patients who underwent graft urethroplasty for anterior urethral strictures at West China Hospital from 2005 to 2010 were followed up with clinical evaluation. According to the site of graft fixed, patients were divided into single-onlay group (dorsal or ventral) and double-onlay group (dorsal plus ventral). Success rate and complications were compared between the two groups and were analyzed using t test and chi-square. A total of 77 patients completed the follow-up, 51 in single-onlay group and 26 in double group. There was no statistical difference in terms of age, length, site, stricture reason, and the type of graft used between the two groups. The mean follow-up time was 15.6 months (range from 4 to 33 months) in double group and 39.5 months (range from 15 to 59 months) in single group. The total success rate was 72.5 % in single-onlay group and 88.5 % in double-onlay group; no statistical difference existed (p > 0.05). Subgroup analysis shows the success rate was higher for double-onlay urethroplasty for the stricture of penoscrotal junction (88.9 vs 60.9 %, p  0.05). Combined dorsal plus ventral double-graft urethroplasty showed a high success and low complication rate for anterior urethral strictures, especially for the penoscrotal junction.

  7. Sound-identity processing in early areas of the auditory ventral stream in the macaque.

    Science.gov (United States)

    Kuśmierek, Paweł; Ortiz, Michael; Rauschecker, Josef P

    2012-02-01

    Auditory cortical processing is thought to be accomplished along two processing streams. The existence of a posterior/dorsal stream dealing, among others, with the processing of spatial aspects of sound has been corroborated by numerous studies in several species. An anterior/ventral stream for the processing of nonspatial sound qualities, including the identification of sounds such as species-specific vocalizations, has also received much support. Originally discovered in anterolateral belt cortex, most recent work on the anterior/ventral pathway has been performed on far anterior superior temporal (ST) areas and on ventrolateral prefrontal cortex (VLPFC). Regions of the anterior/ventral stream near its origin in early auditory areas have been less explored. In the present study, we examined three early auditory regions with different anteroposterior locations (caudal, middle, and rostral) in awake rhesus macaques. We analyzed how well classification based on sound-evoked activity patterns of neuronal populations replicates the original stimulus categories. Of the three regions, the rostral region (rR), which included core area R and medial belt area RM, yielded the greatest classification success across all stimulus classes or between classes of natural sounds. Starting from ∼80 ms past stimulus onset, clustering based on the population response in rR became clearly more successful than clustering based on responses from any other region. Our study demonstrates that specialization for sound-identity processing can be found very early in the auditory ventral stream. Furthermore, the fact that this processing develops over time can shed light on underlying mechanisms. Finally, we show that population analysis is a more sensitive method for revealing functional specialization than conventional types of analysis.

  8. Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1Receptor Heteromers in the Dorsal Striatum.

    Science.gov (United States)

    Moreno, Estefanía; Chiarlone, Anna; Medrano, Mireia; Puigdellívol, Mar; Bibic, Lucka; Howell, Lesley A; Resel, Eva; Puente, Nagore; Casarejos, María J; Perucho, Juan; Botta, Joaquín; Suelves, Nuria; Ciruela, Francisco; Ginés, Silvia; Galve-Roperh, Ismael; Casadó, Vicent; Grandes, Pedro; Lutz, Beat; Monory, Krisztina; Canela, Enric I; Lluís, Carmen; McCormick, Peter J; Guzmán, Manuel

    2018-04-01

    The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A 2A receptor (A 2A R) and cannabinoid CB 1 receptor (CB 1 R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A 2A R and CB 1 R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A 2A R-CB 1 R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A 2A R-CB 1 R heteromers in the dorsal striatum. Specifically, our data unveil that the A 2A R-CB 1 R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.

  9. Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum.

    Science.gov (United States)

    Brown, Holden D; McCutcheon, James E; Cone, Jackson J; Ragozzino, Michael E; Roitman, Mitchell F

    2011-12-01

    Phasic changes in dopamine activity play a critical role in learning and goal-directed behavior. Unpredicted reward and reward-predictive cues evoke phasic increases in the firing rate of the majority of midbrain dopamine neurons--results that predict uniformly broadcast increases in dopamine concentration throughout the striatum. However, measurement of dopamine concentration changes during reward has cast doubt on this prediction. We systematically measured phasic changes in dopamine in four striatal subregions [nucleus accumbens shell and core (Core), dorsomedial (DMS) and dorsolateral striatum] in response to stimuli known to activate a majority of dopamine neurons. We used fast-scan cyclic voltammetry in awake and behaving rats, which measures changes in dopamine on a similar timescale to the electrophysiological recordings that established a relationship between phasic dopamine activity and reward. Unlike the responses of midbrain dopamine neurons, unpredicted food reward and reward-predictive cues evoked a phasic increase in dopamine that was subregion specific. In rats with limited experience, unpredicted food reward evoked an increase exclusively in the Core. In rats trained on a discriminative stimulus paradigm, both unpredicted reward and reward-predictive cues evoked robust phasic dopamine in the Core and DMS. Thus, phasic dopamine release in select target structures is dynamic and dependent on context and experience. Because the four subregions assayed receive different inputs and have differential projection targets, the regional selectivity of phasic changes in dopamine has important implications for information flow through the striatum and plasticity that underlies learning and goal-directed behavior. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  10. Inability to acquire spatial information and deploy spatial search strategies in mice with lesions in dorsomedial striatum.

    Science.gov (United States)

    Pooters, Tine; Gantois, Ilse; Vermaercke, Ben; D'Hooge, Rudi

    2016-02-01

    Dorsal striatum has been shown to contribute to spatial learning and memory, but the role of striatal subregions in this important aspect of cognitive functioning remains unclear. Moreover, the spatial-cognitive mechanisms that underlie the involvement of these regions in spatial navigation have scarcely been studied. We therefore compared spatial learning and memory performance in mice with lesions in dorsomedial (DMS) and dorsolateral striatum (DLS) using the hidden-platform version of the Morris water maze (MWM) task. Compared to sham-operated controls, animals with DMS damage were impaired during MWM acquisition training. These mice displayed delayed spatial learning, increased thigmotaxis, and increased search distance to the platform, in the absence of major motor dysfunction, working memory defects or changes in anxiety or exploration. They failed to show a preference for the target quadrant during probe trials, which further indicates that spatial reference memory was impaired in these animals. Search strategy analysis moreover demonstrated that DMS-lesioned mice were unable to deploy cognitively advanced spatial search strategies. Conversely, MWM performance was barely affected in animals with lesions in DLS. In conclusion, our results indicate that DMS and DLS display differential functional involvement in spatial learning and memory. Our results show that DMS, but not DLS, is crucial for the ability of mice to acquire spatial information and their subsequent deployment of spatial search strategies. These data clearly identify DMS as a crucial brain structure for spatial learning and memory, which could explain the occurrence of neurocognitive impairments in brain disorders that affect the dorsal striatum. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals?

    Science.gov (United States)

    Apicella, Paul

    2017-09-30

    Cholinergic interneurons provide rich local innervation of the striatum and play an important role in controlling behavior, as evidenced by the variety of movement and psychiatric disorders linked to disrupted striatal cholinergic transmission. Much progress has been made in recent years regarding our understanding of how these interneurons contribute to the processing of information in the striatum. In particular, investigation of the activity of presumed striatal cholinergic interneurons, identified as tonically active neurons or TANs in behaving animals, has pointed to their role in the signaling and learning of the motivational relevance of environmental stimuli. Although the bulk of this work has been conducted in monkeys, several studies have also been carried out in behaving rats, but information remains rather disparate across studies and it is still questionable whether rodent TANs correspond to TANs described in monkeys. Consequently, our current understanding of the function of cholinergic transmission in the striatum is challenged by the rapidly growing, but often confusing literature on the relationship between TAN activity and specific behaviors. As regards the precise nature of the information conveyed by the cholinergic TANs, a recent influential view emphasized that these local circuit neurons may play a special role in the processing of contextual information that is important for reinforcement learning and selection of appropriate actions. This review provides a summary of recent progress in TAN physiology from which it is proposed that striatal cholinergic interneurons are crucial elements for flexible switching of behaviors under changing environmental conditions. Copyright © 2017 IBRO. Published b