WorldWideScience

Sample records for left prefrontal activation

  1. Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by NIRS

    Science.gov (United States)

    Zhang, Zhili; Li, Ting; Zheng, Yi; Luo, Qingming; Song, Ranran; Gong, Hui

    2006-02-01

    Developmental dyslexia, a kind of prevalent psychological disease, represents that dyslexic children have unexpected difficulties in phonological processing and recognition test of Chinese characters. Some functional imaging technologies, such as fMRI and PET, have been used to study the brain activities of the children with dyslexia whose first language is English. In this paper, a portable, 16-channel, continuous-wave (CW) NIRS instrument was used to monitor the concentration changes of each hemoglobin species when Chinese children did the task of phonological processing and recognition test. The NIRS recorded the hemodynamic changes in the left prefrontal cortex of the children. 20 dyslexia-reading children (10~12 years old) and 20 normal-reading children took part in the phonological processing of Chinese characters including the phonological awareness section and the phonological decoding section. During the phonological awareness section, the changed concentration of deoxy-hemoglobin in dyslexia-reading children were significantly higher (p<0.05) than normal-reading children in the left ventrolateral prefrontal cortex (VLPFC). While in the phonological decoding section, both normal and dyslexic reading children had more activity in the left VLPFC, but only normal-reading children had activity in the left middorsal prefrontal cortex. In conclusion, both dyslexic and normal-reading children have activity in the left prefrontal cortex, but the degree and the areas of the prefrontal cortex activity are different between them when they did phonological processing.

  2. Left Prefrontal Activity Reflects the Ability of Vicarious Fear Learning: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Qingguo Ma

    2013-01-01

    Full Text Available Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants’ hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being was receiving a classical fear conditioning. A neutral colored square paired with shocks (CSshock and another colored square paired with no shocks (CSno-shock were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CSshock compared with that exposed to CSno-shock. In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others’ mental state, is associated with social fear transmission.

  3. Left prefrontal activity reflects the ability of vicarious fear learning: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ma, Qingguo; Huang, Yujing; Wang, Lei

    2013-01-01

    Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants' hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being) was receiving a classical fear conditioning. A neutral colored square paired with shocks (CS(shock)) and another colored square paired with no shocks (CS(no-shock)) were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CS(shock) compared with that exposed to CS(no-shock). In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others' mental state, is associated with social fear transmission.

  4. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings...... of a regulatory effect of the PFC on the emotional control of our actions....

  5. Low Dose Propofol-induced Amnesia Is Not Due to a Failure of Encoding: Left Inferior Prefrontal Cortex Is Still Active

    Science.gov (United States)

    Veselis, Robert A.; Pryor, Kane O.; Reinsel, Ruth A.; Mehta, Meghana; Pan, Hong; Johnson, Ray

    2008-01-01

    Background Propofol may produce amnesia by affecting encoding. The hypothesis that propofol weakens encoding was tested by measuring regional cerebral blood flow during verbal encoding. Methods 17 volunteer participants (12 M, 30.4±6.5 years old) had regional cerebral blood flow measured using H2O15 positron emission tomography during complex and simple encoding tasks (deep vs. shallow level of processing), to identify a region of interest in the left inferior prefrontal cortex (LIPFC). The effect of either propofol (n=6, 0.9 mcg/ml target concentration), placebo with a divided attention task (n=5), or thiopental at sedative doses (n=6, 3 mcg/ml) on regional cerebral blood flow activation in the LIPFC was tested. The divided attention task was expected to decrease activation in the LIPFC. Results Propofol did not impair encoding performance or reaction times, but impaired recognition memory of deeply encoded words 4 hours later (median recognition of 35% (17–54 interquartile) of words presented during propofol versus 65% (38–91) before drug, pdeep encoding was present in this region of interest in each group before drug (T>4.41, pprocesses. PMID:18648230

  6. Low-dose propofol-induced amnesia is not due to a failure of encoding: left inferior prefrontal cortex is still active.

    Science.gov (United States)

    Veselis, Robert A; Pryor, Kane O; Reinsel, Ruth A; Mehta, Meghana; Pan, Hong; Johnson, Ray

    2008-08-01

    Propofol may produce amnesia by affecting encoding. The hypothesis that propofol weakens encoding was tested by measuring regional cerebral blood flow during verbal encoding. Seventeen volunteer participants (12 men; aged 30.4 +/- 6.5 yr) had regional cerebral blood flow measured using H2O positron emission tomography during complex and simple encoding tasks (deep vs. shallow level of processing) to identify a region of interest in the left inferior prefrontal cortex (LIPFC). The effect of either propofol (n = 6, 0.9 microg/ml target concentration), placebo with a divided attention task (n = 5), or thiopental at sedative doses (n = 6, 3 microg/ml) on regional cerebral blood flow activation in the LIPFC was tested. The divided attention task was expected to decrease activation in the LIPFC. Propofol did not impair encoding performance or reaction times, but impaired recognition memory of deeply encoded words 4 h later (median recognition of 35% [interquartile range, 17-54%] of words presented during propofol vs. 65% [38-91%] before drug; P deep encoding was present in this region of interest in each group before drug (T > 4.41, P memory processes.

  7. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  8. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  9. Left prefrontal repetitive transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Holi, Matti M; Eronen, Markku; Toivonen, Kari; Toivonen, Päivi; Marttunen, Mauri; Naukkarinen, Hannu

    2004-01-01

    In a double-blind, controlled study, we examined the therapeutic effects of high-frequency left prefrontal repetitive transcranial magnetic stimulation (rTMS) on schizophrenia symptoms. A total of 22 chronic hospitalized schizophrenia patients were randomly assigned to 2 weeks (10 sessions) of real or sham rTMS. rTMS was given with the following parameters: 20 trains of 5-second 10-Hz stimulation at 100 percent motor threshold, 30 seconds apart. Effects on positive and negative symptoms, self-reported symptoms, rough neuropsychological functioning, and hormones were assessed. Although there was a significant improvement in both groups in most of the symptom measures, no real differences were found between the groups. A decrease of more than 20 percent in the total PANSS score was found in 7 control subjects but only 1 subject from the real rTMS group. There was no change in hormone levels or neuropsychological functioning, measured by the MMSE, in either group. Left prefrontal rTMS (with the used parameters) seems to produce a significant nonspecific effect of the treatment procedure but no therapeutic effect in the most chronic and severely ill schizophrenia patients.

  10. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Science.gov (United States)

    Prendergast, Garreth; Limbrick-Oldfield, Eve; Ingamells, Ed; Gathercole, Susan; Baddeley, Alan; Green, Gary G R

    2013-01-01

    The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG). Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  11. Differential patterns of prefrontal MEG activation during verbal & visual encoding and retrieval.

    Directory of Open Access Journals (Sweden)

    Garreth Prendergast

    Full Text Available The spatiotemporal profile of activation of the prefrontal cortex in verbal and non-verbal recognition memory was examined using magnetoencephalography (MEG. Sixteen neurologically healthy right-handed participants were scanned whilst carrying out a modified version of the Doors and People Test of recognition memory. A pattern of significant prefrontal activity was found for non-verbal and verbal encoding and recognition. During the encoding, verbal stimuli activated an area in the left ventromedial prefrontal cortex, and non-verbal stimuli activated an area in the right. A region in the left dorsolateral prefrontal cortex also showed significant activation during the encoding of non-verbal stimuli. Both verbal and non-verbal stimuli significantly activated an area in the right dorsomedial prefrontal cortex and the right anterior prefrontal cortex during successful recognition, however these areas showed temporally distinct activation dependent on material, with non-verbal showing activation earlier than verbal stimuli. Additionally, non-verbal material activated an area in the left anterior prefrontal cortex during recognition. These findings suggest a material-specific laterality in the ventromedial prefrontal cortex during encoding for verbal and non-verbal but also support the HERA model for verbal material. The discovery of two process dependent areas during recognition that showed patterns of temporal activation dependent on material demonstrates the need for the application of more temporally sensitive techniques to the involvement of the prefrontal cortex in recognition memory.

  12. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Science.gov (United States)

    Vanderhasselt, Marie-Anne; De Raedt, Rudi; Brunoni, Andre R; Campanhã, Camila; Baeken, Chris; Remue, Jonathan; Boggio, Paulo S

    2013-01-01

    Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP) as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation), we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right) prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  13. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Directory of Open Access Journals (Sweden)

    Marie-Anne Vanderhasselt

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation, we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  14. Monetary reward activates human prefrontal cortex

    International Nuclear Information System (INIS)

    Thut, G.; Roelcke, U.; Nienhusmeier, M.; Missimer, J.; Maguire, R.P.; Leenders, K.L.; Schultz, W.

    1997-01-01

    We present a rCBF PET activation study, in which we demonstrated that reward processing in humans activates a cortical-subcortical network including dorsolateral prefrontal, orbital frontal, thalamic and midbrain regions. It is suggested that, as found for non-human primates, the basal ganglia-thalamo-cortical system is implicated in reward processing. (author) 1 fig., 3 refs

  15. Differential contribution of left and right prefrontal cortex to associative cued-recall memory: a parametric PET study.

    Science.gov (United States)

    Lepage, Martin

    2004-03-01

    Several brain imaging studies have implicated prefrontal regions bilaterally during cued-recall memory tasks and yet the functional significance of these regions remains poorly understood. Using PET, we examined the neural activity in prefrontal regions of 15 subjects while they performed three cued-recall tasks differing in pre-experimental semantic associations between cues and targets. This manipulation produced varying levels of retrieval performance when one member (a semantic category name) of the triad was used as a cue for the retrieval of the other two members. The percentage of items correctly recalled was 10, 46, and 70 in the low, medium, and high cued-recall conditions, respectively. Linear contrast analyses of the PET data identified brain regions where neural activity varied with the number of items retrieved from memory. A left lateral prefrontal region showed maximal activity during the high cued-recall condition, which likely reflects processes involved in retrieval success and possibly in the generation of memory responses. Three right prefrontal regions (anterior and dorsolateral) showed maximal activity during the low cued-recall condition, which likely reflects processes involved in memory search/monitoring. These findings add further support for a bilateral prefrontal contribution to memory cued-recall tasks and point to differential roles of the two hemispheres.

  16. Prefrontal activity and impaired memory encoding strategies in schizophrenia.

    Science.gov (United States)

    Guimond, Synthia; Hawco, Colin; Lepage, Martin

    2017-08-01

    Schizophrenia patients have significant memory difficulties that have far-reaching implications in their daily life. These impairments are partly attributed to an inability to self-initiate effective memory encoding strategies, but its core neurobiological correlates remain unknown. The current study addresses this critical gap in our knowledge of episodic memory impairments in schizophrenia. Schizophrenia patients (n = 35) and healthy controls (n = 23) underwent a Semantic Encoding Memory Task (SEMT) during an fMRI scan. Brain activity was examined for conditions where participants were a) prompted to use semantic encoding strategies, or b) not prompted but required to self-initiate such strategies. When prompted to use semantic encoding strategies, schizophrenia patients exhibited similar recognition performance and brain activity as healthy controls. However, when required to self-initiate these strategies, patients had significant reduced recognition performance and brain activity in the left dorsolateral prefrontal cortex, as well as in the left temporal gyrus, left superior parietal lobule, and cerebellum. When patients were divided based on performance on the SEMT, the subgroup with more severe deficits in self-initiation also showed greater reduction in left dorsolateral prefrontal activity. These results suggest that impaired self-initiation of elaborative encoding strategies is a driving feature of memory deficits in schizophrenia. We also identified the neural correlates of impaired self-initiation of semantic encoding strategies, in which a failure to activate the left dorsolateral prefrontal cortex plays a key role. These findings provide important new targets in the development of novel treatments aiming to improve memory and ultimately patients' outcome. Copyright © 2017. Published by Elsevier Ltd.

  17. Effect of Bilateral Prefrontal rTMS on Left Prefrontal NAA and Glx Levels in Schizophrenia Patients with Predominant Negative Symptoms: An Exploratory Study.

    Science.gov (United States)

    Dlabac-de Lange, Jozarni J; Liemburg, Edith J; Bais, Leonie; van de Poel-Mustafayeva, Aida T; de Lange-de Klerk, Elly S M; Knegtering, Henderikus; Aleman, André

    Prefrontal repetitive Transcranial Magnetic Stimulation (rTMS) may improve negative symptoms in patients with schizophrenia, but few studies have investigated the underlying neural mechanism. This study aims to investigate changes in the levels of glutamate and glutamine (Glx, neurotransmitter and precursor) and N-Acetyl Aspartate (NAA) in the left dorsolateral prefrontal cortex of patients with schizophrenia treated with active bilateral prefrontal rTMS as compared to sham-rTMS, as measured with 1 H-Magnetic Resonance Spectroscopy ( 1 H-MRS). Patients were randomized to a 3-week course of active or sham high-frequency rTMS. Pre-treatment and post-treatment 1 H-MRS data were available for 24 patients with schizophrenia with moderate to severe negative symptoms (Positive and Negative Syndrome Scale (PANSS) negative subscale ≥ 15). Absolute metabolite concentrations were calculated using LCModel with the water peak as reference. To explore the association between treatment condition and changes in concentration of Glx and NAA, we applied a linear regression model. We observed an increase of Glx concentration in the active treatment group and a decrease of Glx concentration in the group receiving sham treatment. The association between changes in Glx concentration and treatment condition was significant. No significant associations between changes in NAA and treatment condition were found. Noninvasive neurostimulation with high-frequency bilateral prefrontal rTMS may influence Glx concentration in the prefrontal cortex of patients with schizophrenia. Larger studies are needed to confirm these findings and further elucidate the underlying neural working mechanism of rTMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Transcranial direct current stimulation of the left dorsolateral prefrontal cortex shifts preference of moral judgments.

    Directory of Open Access Journals (Sweden)

    Maria Kuehne

    Full Text Available Attitude to morality, reflecting cultural norms and values, is considered unique to human social behavior. Resulting moral behavior in a social environment is controlled by a widespread neural network including the dorsolateral prefrontal cortex (DLPFC, which plays an important role in decision making. In the present study we investigate the influence of neurophysiological modulation of DLPFC reactivity by means of transcranial direct current stimulation (tDCS on moral reasoning. For that purpose we administered anodal, cathodal, and sham stimulation of the left DLPFC while subjects judged the appropriateness of hard moral personal dilemmas. In contrast to sham and cathodal stimulation, anodal stimulation induced a shift in judgment of personal moral dilemmas towards more non-utilitarian actions. Our results demonstrate that alterations of left DLPFC activity can change moral judgments and, in consequence, provide a causal link between left DLPFC activity and moral reasoning. Most important, the observed shift towards non-utilitarian actions suggests that moral decision making is not a permanent individual trait but can be manipulated; consequently individuals with boundless, uncontrollable, and maladaptive moral behavior, such as found in psychopathy, might benefit from neuromodulation-based approaches.

  19. rTMS on left prefrontal cortex contributes to memories for positive emotional cues: a comparison between pictures and words.

    Science.gov (United States)

    Balconi, M; Cobelli, C

    2015-02-26

    The present research explored the cortical correlates of emotional memories in response to words and pictures. Subjects' performance (Accuracy Index, AI; response times, RTs; RTs/AI) was considered when a repetitive Transcranial Magnetic Stimulation (rTMS) was applied on the left dorsolateral prefrontal cortex (LDLPFC). Specifically, the role of LDLPFC was tested by performing a memory task, in which old (previously encoded targets) and new (previously not encoded distractors) emotional pictures/words had to be recognized. Valence (positive vs. negative) and arousing power (high vs. low) of stimuli were also modulated. Moreover, subjective evaluation of emotional stimuli in terms of valence/arousal was explored. We found significant performance improving (higher AI, reduced RTs, improved general performance) in response to rTMS. This "better recognition effect" was only related to specific emotional features, that is positive high arousal pictures or words. Moreover no significant differences were found between stimulus categories. A direct relationship was also observed between subjective evaluation of emotional cues and memory performance when rTMS was applied to LDLPFC. Supported by valence and approach model of emotions, we supposed that a left lateralized prefrontal system may induce a better recognition of positive high arousal words, and that evaluation of emotional cue is related to prefrontal activation, affecting the recognition memories of emotions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. The left dorsolateral prefrontal cortex and caudate pathway: New evidence for cue-induced craving of smokers.

    Science.gov (United States)

    Yuan, Kai; Yu, Dahua; Bi, Yanzhi; Wang, Ruonan; Li, Min; Zhang, Yajuan; Dong, Minghao; Zhai, Jinquan; Li, Yangding; Lu, Xiaoqi; Tian, Jie

    2017-09-01

    Although the activation of the prefrontal cortex (PFC) and the striatum had been found in smoking cue induced craving task, whether and how the functional interactions and white matter integrity between these brain regions contribute to craving processing during smoking cue exposure remains unknown. Twenty-five young male smokers and 26 age- and gender-matched nonsmokers participated in the smoking cue-reactivity task. Craving related brain activation was extracted and psychophysiological interactions (PPI) analysis was used to specify the PFC-efferent pathways contributed to smoking cue-induced craving. Diffusion tensor imaging (DTI) and probabilistic tractography was used to explore whether the fiber connectivity strength facilitated functional coupling of the circuit with the smoking cue-induced craving. The PPI analysis revealed the negative functional coupling of the left dorsolateral prefrontal cortex (DLPFC) and the caudate during smoking cue induced craving task, which positively correlated with the craving score. Neither significant activation nor functional connectivity in smoking cue exposure task was detected in nonsmokers. DTI analyses revealed that fiber tract integrity negatively correlated with functional coupling in the DLPFC-caudate pathway and activation of the caudate induced by smoking cue in smokers. Moreover, the relationship between the fiber connectivity integrity of the left DLPFC-caudate and smoking cue induced caudate activation can be fully mediated by functional coupling strength of this circuit in smokers. The present study highlighted the left DLPFC-caudate pathway in smoking cue-induced craving in smokers, which may reflect top-down prefrontal modulation of striatal reward processing in smoking cue induced craving processing. Hum Brain Mapp 38:4644-4656, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Deficit in rewarding mechanisms and prefrontal left/right cortical effect in vulnerability for internet addiction.

    Science.gov (United States)

    Balconi, Michela; Finocchiaro, Roberta

    2016-10-01

    The present research explored the cortical correlates of rewarding mechanisms and cortical 'unbalance' effect in internet addiction (IA) vulnerability. Internet Addiction Inventory (IAT) and personality trait (Behavioural Inhibition System, BIS; Behavioural Activation System, BAS) were applied to 28 subjects. Electroencephalographic (EEG, alpha frequency band) and response times (RTs) were registered during a Go-NoGo task execution in response to different online stimuli: gambling videos, videogames or neutral stimuli. Higher-IAT (more than 50 score, with moderate or severe internet addiction) and lower-IAT (internet addiction). Alpha band and RTs were affected by IAT, with significant bias (reduced RTs) for high-IAT in response to gambling videos and videogames; and by BAS, BAS-Reward subscale (BAS-R), since not only higher-IAT, but also BAS and BAS-R values determined an increasing of left prefrontal cortex (PFC) activity (alpha reduction) in response to videogames and gambling stimuli for both Go and NoGo conditions, in addition to decreased RTs for these stimuli categories. The increased PFC responsiveness and the lateralisation (left PFC hemisphere) effect in NoGo condition was explained on the basis of a 'rewarding bias' towards more rewarding cues and a deficit in inhibitory control in higher-IAT and higher-BAS subjects. In contrast lower-IAT and lower-BAS predicted a decreased PFC response and increased RTs for NoGo (inhibitory mechanism). These results may support the significance of personality (BAS) and IAT measures for explaining future internet addiction behaviour based on this observed 'vulnerability'.

  2. Single Session Low Frequency Left Dorsolateral Prefrontal Transcranial Magnetic Stimulation Changes Neurometabolite Relationships in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Nathaniel R. Bridges

    2018-03-01

    Full Text Available Background: Dorsolateral prefrontal cortex (DLPFC low frequency repetitive transcranial magnetic stimulation (LF-rTMS has shown promise as a treatment and investigative tool in the medical and research communities. Researchers have made significant progress elucidating DLPFC LF-rTMS effects—primarily in individuals with psychiatric disorders. However, more efforts investigating underlying molecular changes and establishing links to functional and behavioral outcomes in healthy humans are needed.Objective: We aimed to quantify neuromolecular changes and relate these to functional changes following a single session of DLPFC LF-rTMS in healthy participants.Methods: Eleven participants received sham-controlled neuronavigated 1 Hz rTMS to the region most activated by a 7-letter Sternberg working memory task (SWMT within the left DLPFC. We quantified SWMT performance, functional magnetic resonance activation and proton Magnetic resonance spectroscopy (MRS neurometabolite measure changes before and after stimulation.Results: A single LF-rTMS session was not sufficient to change DLPFC neurometabolite levels and these changes did not correlate with DLPFC activation changes. Real rTMS, however, significantly altered neurometabolite correlations (compared to sham rTMS, both with baseline levels and between the metabolites themselves. Additionally, real rTMS was associated with diminished reaction time (RT performance improvements and increased activation within the motor, somatosensory and lateral occipital cortices.Conclusion: These results show that a single session of LF-rTMS is sufficient to influence metabolite relationships and causes widespread activation in healthy humans. Investigating correlational relationships may provide insight into mechanisms underlying LF-rTMS.

  3. Tempering Proactive Cognitive Control by Transcranial Direct Current Stimulation of the Right (but Not the Left Lateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Carlos J. Gómez-Ariza

    2017-05-01

    Full Text Available Behavioral and neuroimaging data support the distinction of two different modes of cognitive control: proactive, which involves the active and sustained maintenance of task-relevant information to bias behavior in accordance with internal goals; and reactive, which entails the detection and resolution of interference at the time it occurs. Both control modes may be flexibly deployed depending on a variety of conditions (i.e., age, brain alterations, motivational factors, prior experience. Critically, and in line with specific predictions derived from the dual mechanisms of control account (Braver, 2012, findings from neuroimaging studies indicate that the same lateral prefrontal regions (i.e., left dorsolateral cortex and right inferior frontal junction may implement different control modes on the basis of temporal dynamics of activity, which would be modulated in response to external or internal conditions. In the present study, we aimed to explore whether transcraneal direct current stimulation over either the left dorsolateral prefrontal cortex or the right inferior frontal junction would differentially modulate performance on the AX-CPT, a well-validated task that provides sensitive and reliable behavioral indices of proactive/reactive control. The study comprised six conditions of real stimulation [3 (site: left dorsolateral, right dorsolateral and right inferior frontal junction × 2 (polarity: anodal and cathodal], and one sham condition. The reference electrode was always placed extracephalically. Performance on the AX-CPT was assessed through two blocks of trials. The first block took place while stimulation was being delivered, whereas the second block was administered after stimulation completion. The results indicate that both offline cathodal stimulation of the right dorsolateral prefrontal cortex and online anodal stimulation of the right inferior frontal junction led participants to be much less proactive, with such a dissociation

  4. Predicting risk-taking behavior from prefrontal resting-state activity and personality.

    Directory of Open Access Journals (Sweden)

    Bettina Studer

    Full Text Available Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants' trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers' brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior.

  5. Predicting Risk-Taking Behavior from Prefrontal Resting-State Activity and Personality

    Science.gov (United States)

    Studer, Bettina; Pedroni, Andreas; Rieskamp, Jörg

    2013-01-01

    Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants’ trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers’ brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior. PMID:24116176

  6. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity.

    Science.gov (United States)

    Demb, J B; Desmond, J E; Wagner, A D; Vaidya, C J; Glover, G H; Gabrieli, J D

    1995-09-01

    Prefrontal cortical function was examined during semantic encoding and repetition priming using functional magnetic resonance imaging (fMRI), a noninvasive technique for localizing regional changes in blood oxygenation, a correlate of neural activity. Words studied in a semantic (deep) encoding condition were better remembered than words studied in both easier and more difficult nonsemantic (shallow) encoding conditions, with difficulty indexed by response time. The left inferior prefrontal cortex (LIPC) (Brodmann's areas 45, 46, 47) showed increased activation during semantic encoding relative to nonsemantic encoding regardless of the relative difficulty of the nonsemantic encoding task. Therefore, LIPC activation appears to be related to semantic encoding and not task difficulty. Semantic encoding decisions are performed faster the second time words are presented. This represents semantic repetition priming, a facilitation in semantic processing for previously encoded words that is not dependent on intentional recollection. The same LIPC area activated during semantic encoding showed decreased activation during repeated semantic encoding relative to initial semantic encoding of the same words. This decrease in activation during repeated encoding was process specific; it occurred when words were semantically reprocessed but not when words were nonsemantically reprocessed. The results were apparent in both individual and averaged functional maps. These findings suggest that the LIPC is part of a semantic executive system that contributes to the on-line retrieval of semantic information.

  7. Changes in prefrontal and amygdala activity during olanzapine treatment in schizophrenia.

    Science.gov (United States)

    Blasi, Giuseppe; Popolizio, Teresa; Taurisano, Paolo; Caforio, Grazia; Romano, Raffaella; Di Giorgio, Annabella; Sambataro, Fabio; Rubino, Valeria; Latorre, Valeria; Lo Bianco, Luciana; Fazio, Leonardo; Nardini, Marcello; Weinberger, Daniel R; Bertolino, Alessandro

    2009-07-15

    Earlier imaging studies in schizophrenia have reported abnormal amygdala and prefrontal cortex activity during emotion processing. We investigated with functional magnetic resonance imaging (fMRI) during emotion processing changes in activity of the amygdala and of prefrontal cortex in patients with schizophrenia during 8 weeks of olanzapine treatment. Twelve previously drug-free/naive patients with schizophrenia were treated with olanzapine for 8 weeks and underwent two fMRI scans after 4 and 8 weeks of treatment during implicit and explicit emotional processing. Twelve healthy subjects were also scanned twice to control for potential repetition effects. Results showed a diagnosis by time interaction in left amygdala and a diagnosis by time by task interaction in right ventrolateral prefrontal cortex. In particular, activity in left amygdala was greater in patients than in controls at the first scan during both explicit and implicit processing, while it was lower in patients at the second relative to the first scan. Furthermore, during implicit processing, right ventrolateral prefrontal cortex activity was lower in patients than controls at the first scan, while it was greater in patients at the second relative to the first scan. These results suggest that longitudinal treatment with olanzapine may be associated with specific changes in activity of the amygdala and prefrontal cortex during emotional processing in schizophrenia.

  8. Near-Infrared Spectroscopy Reveals Abnormal Hemodynamics in the Left Dorsolateral Prefrontal Cortex of Menopausal Depression Patients

    Directory of Open Access Journals (Sweden)

    Xiang-Yun Ma

    2017-01-01

    Full Text Available Background/Objective. Menopausal depression (MD is characterized by depressive symptoms along with hormonal fluctuations. We investigate brain function alteration between major depressive disorder (MDD and MD. Methods. The difference in oxygenated hemoglobin (Oxy-Hb for the prefrontal cortex (PFC was compared retrospectively among 90 females presented with 30 MDD, 30 MD, and 30 healthy controls (HCs using verbal fluency task (VFT with near-infrared spectroscopy (NIRS. Results. We observed a significant difference in Oxy-Hb alteration in the left dorsolateral PFC (DLPFC using VFT with NIRS (channel 18, P=0.007 between the MD and MDD groups. A significant difference in Oxy-Hb levels was observed among the three groups in the bilateral DLPFC (channels 18, 27, 33, 39, 41, and 45; P<0.05. Compared to the HCs, the MD group presented lower Oxy-Hb activation in the right DLPFC (channel 41; P=0.048 and the left DLPFC (channels 18, 39, and 45; P<0.05, and the MDD group presented lower Oxy-Hb activation in the right DLPFC (channels 27, 33, and 41; P<0.05 and the left DLPFC (channels 39 and 45; P<0.05. Conclusion. Abnormal hemodynamics of the left DLPFC can differentiate MD from MDD by NIRS.

  9. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  10. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    Science.gov (United States)

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Lesions to the left lateral prefrontal cortex impair decision threshold adjustment for lexical selection.

    Science.gov (United States)

    Anders, Royce; Riès, Stéphanie; Van Maanen, Leendert; Alario, F-Xavier

    Patients with lesions in the left prefrontal cortex (PFC) have been shown to be impaired in lexical selection, especially when interference between semantically related alternatives is increased. To more deeply investigate which computational mechanisms may be impaired following left PFC damage due to stroke, a psychometric modelling approach is employed in which we assess the cognitive parameters of the patients from an evidence accumulation (sequential information sampling) modelling of their response data. We also compare the results to healthy speakers. Analysis of the cognitive parameters indicates an impairment of the PFC patients to appropriately adjust their decision threshold, in order to handle the increased item difficulty that is introduced by semantic interference. Also, the modelling contributes to other topics in psycholinguistic theory, in which specific effects are observed on the cognitive parameters according to item familiarization, and the opposing effects of priming (lower threshold) and semantic interference (lower drift) which are found to depend on repetition. These results are developed for the blocked-cyclic picture naming paradigm, in which pictures are presented within semantically homogeneous (HOM) or heterogeneous (HET) blocks, and are repeated several times per block. Overall, the results are in agreement with a role of the left PFC in adjusting the decision threshold for lexical selection in language production.

  12. Motor facilitation during observation of implied motion: Evidence for a role of the left dorsolateral prefrontal cortex.

    Science.gov (United States)

    Mineo, Ludovico; Fetterman, Alexander; Concerto, Carmen; Warren, Michael; Infortuna, Carmenrita; Freedberg, David; Chusid, Eileen; Aguglia, Eugenio; Battaglia, Fortunato

    2018-06-01

    The phenomenon of motor resonance (the increase in motor cortex excitability during observation of actions) has been previously described. Transcranial magnetic stimulation (TMS) studies have demonstrated a similar effect during perception of implied motion (IM). The left dorsolateral prefrontal cortex (DLPFC) seems to be activated during action observation. Furthermore, the role of this brain area in motor resonance to IM is yet to be investigated. Fourteen healthy volunteers were enrolled into the study. We used transcranial direct current stimulation (tDCS) to stimulate DLPFC aiming to investigate whether stimulation with different polarities would affect the amplitude of motor evoked potential collected during observation of images with and without IM. The results of our experiment indicated that Cathodal tDCS over the left DLPFC prevented motor resonance during observation of IM. On the contrary, anodal and sham tDCS did not significantly modulate motor resonance to IM. The current study expands the understanding of the neural circuits engaged during observation of IM. Our results are consistent with the hypothesis that action understanding requires the interaction of large networks and that the left DLPFC plays a crucial role in generating motor resonance to IM. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Left prefrontal neuronavigated electrode localization in tDCS : 10–20 EEG system versus MRI-guided neuronavigation

    NARCIS (Netherlands)

    De Witte, Sara; Klooster, Debby; Dedoncker, Josefien; Duprat, Romain; Remue, Jonathan; Baeken, Chris

    2018-01-01

    Transcranial direct current stimulation (tDCS) involves positioning two electrodes at specifically targeted locations on the human scalp. In neuropsychiatric research, the anode is often placed over the left dorsolateral prefrontal cortex (DLPFC), while the cathode is positioned over a contralateral

  14. Categorization is modulated by transcranial direct current stimulation over left prefrontal cortex.

    Science.gov (United States)

    Lupyan, Gary; Mirman, Daniel; Hamilton, Roy; Thompson-Schill, Sharon L

    2012-07-01

    Humans have an unparalleled ability to represent objects as members of multiple categories. A given object, such as a pillow may be-depending on current task demands-represented as an instance of something that is soft, as something that contains feathers, as something that is found in bedrooms, or something that is larger than a toaster. This type of processing requires the individual to dynamically highlight task-relevant properties and abstract over or suppress object properties that, although salient, are not relevant to the task at hand. Neuroimaging and neuropsychological evidence suggests that this ability may depend on cognitive control processes associated with the left inferior prefrontal gyrus. Here, we show that stimulating the left inferior frontal cortex using transcranial direct current stimulation alters performance of healthy subjects on a simple categorization task. Our task required subjects to select pictures matching a description, e.g., "click on all the round things." Cathodal stimulation led to poorer performance on classification trials requiring attention to specific dimensions such as color or shape as opposed to trials that required selecting items belonging to a more thematic category such as objects that hold water. A polarity reversal (anodal stimulation) lowered the threshold for selecting items that were more weakly associated with the target category. These results illustrate the role of frontally-mediated control processes in categorization and suggest potential interactions between categorization, cognitive control, and language. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Categorization is modulated by transcranical direct current stimulation over left prefrontal cortex

    Science.gov (United States)

    Lupyan, Gary; Mirman, Daniel; Hamilton, Roy; Thompson-Schill, Sharon L.

    2013-01-01

    Humans have an unparalleled ability to represent objects as members of multiple categories. A given object, such as a pillow may be—depending on current task demands—represented as an instance of something that is soft, as something that contains feathers, as something that is found in bedrooms, or something that is larger than a toaster. This type of processing requires the individual to dynamically highlight task-relevant properties and abstract over or suppress object properties that, although salient, are not relevant to the task at hand. Neuroimaging and neuropsychological evidence suggests that this ability may depend on cognitive control processes associated with the left inferior prefrontal gyrus. Here, we show that stimulating the left inferior frontal cortex using transcranial direct current stimulation alters performance of healthy subjects on a simple categorization task. Our task required subjects to select pictures matching a description, e.g., “click on all the round things.“ Cathodal stimulation led to poorer performance on classification trials requiring attention to specific dimensions such as color or shape as opposed to trials that required selecting items belonging to a more thematic category such as objects that hold water. A polarity reversal (anodal stimulation) lowered the threshold for selecting items that were more weakly associated with the target category. These results illustrate the role of frontally-mediated control processes in categorization and suggest potential interactions between categorization, cognitive control, and language. PMID:22578885

  16. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  17. Brain activation during fast driving in a driving simulator: the role of the lateral prefrontal cortex.

    Science.gov (United States)

    Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela

    2008-07-16

    Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.

  18. Role of Prefrontal Persistent Activity in Working Memory

    Science.gov (United States)

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  19. Semantic strategy training increases memory performance and brain activity in patients with prefrontal cortex lesions.

    Science.gov (United States)

    Miotto, Eliane C; Savage, Cary R; Evans, Jonathan J; Wilson, Barbara A; Martin, Maria G M; Balardin, Joana B; Barros, Fabio G; Garrido, Griselda; Teixeira, Manoel J; Amaro Junior, Edson

    2013-03-01

    Memory deficit is a frequent cognitive disorder following acquired prefrontal cortex lesions. In the present study, we investigated the brain correlates of a short semantic strategy training and memory performance of patients with distinct prefrontal cortex lesions using fMRI and cognitive tests. Twenty-one adult patients with post-acute prefrontal cortex (PFC) lesions, twelve with left dorsolateral PFC (LPFC) and nine with bilateral orbitofrontal cortex (BOFC) were assessed before and after a short cognitive semantic training using a verbal memory encoding paradigm during scanning and neuropsychological tests outside the scanner. After the semantic strategy training both groups of patients showed significant behavioral improvement in verbal memory recall and use of semantic strategies. In the LPFC group, greater activity in left inferior and medial frontal gyrus, precentral gyrus and insula was found after training. For the BOFC group, a greater activation was found in the left parietal cortex, right cingulated and precuneus after training. The activation of these specific areas in the memory and executive networks following cognitive training was associated to compensatory brain mechanisms and application of the semantic strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Daily left prefrontal repetitive transcranial magnetic stimulation for medication-resistant burning mouth syndrome.

    Science.gov (United States)

    Umezaki, Y; Badran, B W; Gonzales, T S; George, M S

    2015-08-01

    Burning mouth syndrome (BMS) is a persistent and chronic burning sensation in the mouth in the absence of any abnormal organic findings. The pathophysiology of BMS is unclear and its treatment is not fully established. Although antidepressant medication is commonly used for treatment, there are some medication-resistant patients, and a new treatment for medication-resistant BMS is needed. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technology approved by the US Food and Drug Administration (FDA) for the treatment of depression. Recent studies have found beneficial effects of TMS for the treatment of pain. A case of BMS treated successfully with daily left prefrontal rTMS over a 2-week period is reported here. Based on this patient's clinical course and a recent pain study, the mechanism by which TMS may act to decrease the burning pain is discussed. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Left Activism, Succour and Selfhood

    DEFF Research Database (Denmark)

    Hughes, Celia Penelope

    2014-01-01

    At the height of mass activity on the Left, the ascendancy of the women's liberation movement (WLM), and the beginnings of real social and personal change for men and women, the 1970s are increasingly seen as the decade when sixties permissiveness began to be truly felt in Britain. This article...... draws upon a personal archive of correspondence from this turbulent decade, between two revolutionary women, Di Parkin and Annie Howells. It argues that the women's letters form an important contribution to new understandings about the construction of the post-war gendered self. The letters represent...... an interchange of motherhood, domesticity, far-left politics, and close female friendship. The article will show how the women's epistolary friendship offers intimate insight into female self-fashioning at a breakthrough social and political moment in 1970s Britain. As they reflected on some of the key political...

  2. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  3. Prefrontal activation may predict working-memory training gain in normal aging and mild cognitive impairment.

    Science.gov (United States)

    Vermeij, Anouk; Kessels, Roy P C; Heskamp, Linda; Simons, Esther M F; Dautzenberg, Paul L J; Claassen, Jurgen A H R

    2017-02-01

    Cognitive training has been shown to result in improved behavioral performance in normal aging and mild cognitive impairment (MCI), yet little is known about the neural correlates of cognitive plasticity, or about individual differences in responsiveness to cognitive training. In this study, 21 healthy older adults and 14 patients with MCI received five weeks of adaptive computerized working-memory (WM) training. Before and after training, functional Near-Infrared Spectroscopy (fNIRS) was used to assess the hemodynamic response in left and right prefrontal cortex during performance of a verbal n-back task with varying levels of WM load. After training, healthy older adults demonstrated decreased prefrontal activation at high WM load, which may indicate increased processing efficiency. Although MCI patients showed improved behavioral performance at low WM load after training, no evidence was found for training-related changes in prefrontal activation. Whole-group analyses showed that a relatively strong hemodynamic response at low WM load was related to worse behavioral performance, while a relatively strong hemodynamic response at high WM load was related to higher training gain. Therefore, a 'youth-like' prefrontal activation pattern at older age may be associated with better behavioral outcome and cognitive plasticity.

  4. Prefrontal cortex activity during swallowing in dysphagia patients.

    Science.gov (United States)

    Lee, Jun; Yamate, Chisato; Taira, Masato; Shinoda, Masamichi; Urata, Kentaro; Maruno, Mitsuru; Ito, Reio; Saito, Hiroto; Gionhaku, Nobuhito; Iinuma, Toshimitsu; Iwata, Koichi

    2018-05-24

    Prefrontal cortex activity is modulated by flavor and taste stimuli and changes during swallowing. We hypothesized that changes in the modulation of prefrontal cortex activity by flavor and taste were associated with swallowing movement and evaluated brain activity during swallowing in patients with dysphagia. To evaluate prefrontal cortex activity in dysphagia patients during swallowing, change in oxidized hemoglobin (z-score) was measured with near-infrared spectroscopy while dysphagia patients and healthy controls swallowed sweetened/unsweetened and flavored/unflavored jelly. Total z-scores were positive during swallowing of flavored/unsweetened jelly and negative during swallowing of unflavored/sweetened jelly in controls but negative during swallowing of sweetened/unsweetened and flavored/unflavored jelly in dysphagia patients. These findings suggest that taste and flavor during food swallowing are associated with positive and negative z-scores, respectively. Change in negative and positive z-scores may be useful in evaluating brain activity of dysphagia patients during swallowing of sweetened and unsweetened food.

  5. Acute pharmacogenetic activation of medial prefrontal cortex ...

    Indian Academy of Sciences (India)

    Sthitapranjya Pati

    2018-01-24

    Jan 24, 2018 ... Exclusively Activated by Designer Drugs (DREADDs) have provided novel ... ad libitum access to food and water. ... testing. 2.3 Drug treatment and behavioural tests .... IL cortex (figure 3E, two-way ANOVA: interaction effect,.

  6. Equivalent brain SPECT perfusion changes underlying therapeutic efficiency in pharmacoresistant depression using either high-frequency left or low-frequency right prefrontal rTMS.

    Science.gov (United States)

    Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric

    2012-12-03

    Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (pleft- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (pbrain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Directory of Open Access Journals (Sweden)

    Stefania Balzarotti

    Full Text Available The dorsolateral prefrontal cortex (DLPFC is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  8. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Science.gov (United States)

    Balzarotti, Stefania; Colombo, Barbara

    2016-01-01

    The dorsolateral prefrontal cortex (DLPFC) is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant) pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  9. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  11. The role of the left ventrolateral prefrontal cortex in online sentence processing

    Directory of Open Access Journals (Sweden)

    Nazbanou Nozari

    2014-04-01

    Full Text Available Introduction: Patients with damage to the left ventrolateral prefrontal cortex (VLPFC are often not impaired in understanding simple sentences. It is, however, possible that the damage may cause subclinical effects. If VLPFC has a role in biasing competition towards what is relevant to the task, we would expect patients with VLPFC damage to be slower in using the relevant information and discarding the irrelevant information when they process sentences online. Methods: Nine patients, five with lesions limited to VLPFC, and four with lesions sparing VLPFC participated. The groups were matched in age, education, WAB-AQ and total lesion volume. Two experiments explored processing of online cues during sentence comprehension by tracking eye fixations in a Visual World paradigm with four pictures. Participants only listened to the sentences and looked at the pictures. Experiment 1 investigated how quickly cues can be used for target identification using a simple “She will [verb] the [target].” sentence structure. The verbs in the restrictive condition were compatible with only one of the four pictures (e.g., “eat”; target “apple” + three inedible competitors. The verbs in the control conditions were matched to the restrictive verbs in length and frequency, but did not point to a unique target (e.g., “see”. If VLPFC is critical for quickly biasing competition towards the relevant target, the VLPFC patients should to be slower than the non-VLPFC patients in fixating the noun when the verb is restrictive. Experiment 2 probed how effectively irrelevant cues are suppressed. A similar Visual World paradigm was used, but all verbs were restrictive, and one of the distractors was also compatible with the verb (e.g., “banana”. The sentences contained an adjective that ruled out one of verb-compatible pictures (e.g., “red”. The critical manipulation involved a third picture (the adjective competitor which was compatible with the

  12. Anodal transcranial direct current stimulation of the left dorsolateral prefrontal cortex enhances emotion recognition in depressed patients and controls.

    Science.gov (United States)

    Brennan, Sean; McLoughlin, Declan M; O'Connell, Redmond; Bogue, John; O'Connor, Stephanie; McHugh, Caroline; Glennon, Mark

    2017-05-01

    Transcranial direct current stimulation (tDCS) can enhance a range of neuropsychological functions but its efficacy in addressing clinically significant emotion recognition deficits associated with depression is largely untested. A randomized crossover placebo controlled study was used to investigate the effects of tDCS over the left dorsolateral prefrontal cortex (L-DLPFC) on a range of neuropsychological variables associated with depression as well as neural activity in the associated brain region. A series of computerized tests was administered to clinical (n = 17) and control groups (n = 20) during sham and anodal (1.5 mA) stimulation. Anodal tDCS led to a significant main effect for overall emotion recognition (p = .02), with a significant improvement in the control group (p = .04). Recognition of disgust was significantly greater in the clinical group (p = .01). Recognition of anger was significantly improved for the clinical group (p = .04) during anodal stimulation. Differences between groups for each of the six emotions at varying levels of expression found that at 40% during anodal stimulation, happy recognition significantly improved for the clinical group (p = .01). Anger recognition at 80% during anodal stimulation significantly improved for the clinical group (p = .02). These improvements were observed in the absence of any change in psychomotor speed or trail making ability during anodal stimulation. Working memory significantly improved during anodal stimulation for the clinical group but not for controls (p = .03). The tentative findings of this study indicate that tDCS can have a neuromodulatory effect on a range of neuropsychological variables. However, it is clear that there was a wide variation in responses to tDCS and that individual difference and different approaches to testing and stimulation have a significant impact on final outcomes. Nonetheless, tDCS remains a promising tool for future neuropsychological research.

  13. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Directory of Open Access Journals (Sweden)

    Takehiro Minamoto

    Full Text Available Different people make different responses when they face a frustrating situation: some punish others (extrapunitive, while others punish themselves (intropunitive. Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9 showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9 showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  14. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Science.gov (United States)

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  15. Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention

    Directory of Open Access Journals (Sweden)

    Paul eSauseng

    2011-10-01

    Full Text Available Visual attention can be shifted in space without moving the eyes. Amplitude decrease of rhythmical brain activity around 10 Hz (so called alpha activity at contralateral posterior sites has been reported during covert shifts of visuospatial attention to one visual hemifield. Alpha amplitude increase, on the other hand, can be found at ipsilateral visual cortex. There is some evidence suggesting an involvement of prefrontal brain areas during the control of attention-related anticipatory alpha amplitude asymmetry. However, the exact neural mechanism by which prefrontal cortex influences visual processing has not been completely clear yet. This open question has been studied in detail using a multimodal approach combining transcranial magnetic stimulation (TMS and multichannel electroencephalography (EEG in healthy humans. Slow (1 Hz repetitive TMS inducing an inhibitory effect at the stimulation site was delivered either to right frontal eye field or a control site (vertex. Subsequently, participants had to perform a spatial cueing task in which covert shifts of attention were required to either the left or the right visual hemi-field. After stimulation at the vertex (control condition a pattern of anticipatory, attention-related ipsilateral alpha increase / contralateral alpha decrease over posterior recording sites could be obtained. Additionally, there was pronounced coupling between (in particular right FEF and posterior brain sites. When, however, the right prefrontal cortex had been virtually lesioned preceding the task, these EEG correlates of visuospatial attention were attenuated. Notably, the effect of TMS at the right FEF on interregional fronto-parietal alpha coupling predicted the effect on response times. This suggests that visual attention processes associated with posterior EEG alpha activity are at least partly top-down controlled by the prefrontal cortex.

  16. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns

    Directory of Open Access Journals (Sweden)

    Meyer Martin

    2009-07-01

    Full Text Available Abstract Background Little is known about the contribution of transcranial direct current stimulation (tDCS to the exploration of memory functions. The aim of the present study was to examine the behavioural effects of right or left-hemisphere frontal direct current delivery while committing to memory auditory presented nouns on short-term learning and subsequent long-term retrieval. Methods Twenty subjects, divided into two groups, performed an episodic verbal memory task during anodal, cathodal and sham current application on the right or left dorsolateral prefrontal cortex (DLPFC. Results Our results imply that only cathodal tDCS elicits behavioural effects on verbal memory performance. In particular, left-sided application of cathodal tDCS impaired short-term verbal learning when compared to the baseline. We did not observe tDCS effects on long-term retrieval. Conclusion Our results imply that the left DLPFC is a crucial area involved in short-term verbal learning mechanisms. However, we found further support that direct current delivery with an intensity of 1.5 mA to the DLPFC during short-term learning does not disrupt longer lasting consolidation processes that are mainly known to be related to mesial temporal lobe areas. In the present study, we have shown that the tDCS technique has the potential to modulate short-term verbal learning mechanism.

  17. Negative emotion modulates prefrontal cortex activity during a working memory task: A NIRS study

    Directory of Open Access Journals (Sweden)

    Sachiyo eOzawa

    2014-02-01

    Full Text Available This study investigated the neural processing underlying the cognitive control of emotions induced by the presentation of task-irrelevant emotional pictures before a working memory task. Previous studies have suggested that the cognitive control of emotion involves the prefrontal regions. Therefore, we measured the hemodynamic responses that occurred in the prefrontal region with a 16-channel near-infrared spectroscopy (NIRS system. In our experiment, participants observed two negative or two neutral pictures in succession immediately before a 1-back or 3-back task. Pictures were selected from the International Affective Picture System. We measured the changes in the concentration of oxygenated hemoglobin (oxyHb during picture presentation and during the n-back task. The emotional valence of the picture affected the oxyHb changes in anterior parts of the medial prefrontal cortex (located in the left and right superior frontal gyrus and left inferior frontal gyrus during the n-back task; the oxyHb changes during the task were significantly greater following negative rather than neutral stimulation. As indicated in a number of previous studies, and the time courses of the oxyHb changes in our study, activation in these locations is possibly led by cognitive control of emotion, though we cannot deny it may simply be emotional responses. There were no effects of emotion on oxyHb changes during picture presentation or on n-back task performance. Although further studies are necessary to confirm this interpretation, our findings suggest that NIRS can be used to investigate neural processing during emotional control.

  18. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  19. Functional magnetic resonance imaging (fMRI) in patients with gliomas adjacent to classical language areas. Lateralization of activated prefrontal cortex is important in determining the dominant hemisphere

    International Nuclear Information System (INIS)

    Karibe, Hiroshi; Kumabe, Toshihiro; Shirane, Reizo; Yoshimoto, Takashi

    2003-01-01

    In patients with gliomas adjacent to classical language areas, lateralized activation of prefrontal cortex was assessed to determine language dominant hemisphere using functional magnetic resonance imaging (fMRI). Twelve patients presented with aphasias were studied. In all patients, either the left frontal operculum or left superior temporal gyri were adjacent to gliomas, suggesting all patients had left lateralization in hemispheric language dominance. Functional MRI was performed with a 1.5T scanner, with the sequence of gradient-echo type echo-planar imaging. As specific language tasks, verb, word, and capping generations were used. Using a cross-correlation analysis method, primary activation maps were generated using pixels with a correlation coefficient of >0.7. The lateralized activation of frontal operculum, superior temporal gyrus, and prefrontal cortex were assessed by calculating laterality index. Successful activation of frontal operculum was imaged in 11 of 12, in the superior temporal gyrus or prefrontal cortex. Three out of 11 cases had apparent activation lateralized in the right frontal operculum on fMRI, while 3 out of 12 cases showed activation in the superior temporal gyrus. On the other hand, all cases had apparent activation lateralized to the left prefrontal cortex. Significant activation of true language area may not be obtained in some cases with gliomas adjacent to classical language areas. In such cases, lateralization of apparent activation of prefrontal cortex may reflect lateralization in the dominant hemisphere. These result suggest that the assessment of apparent activation of prefrontal cortex lateralization is useful to determine the language dominant hemisphere. (author)

  20. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    Science.gov (United States)

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  1. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    Directory of Open Access Journals (Sweden)

    Laura eFerreri

    2013-11-01

    Full Text Available Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC. 22 healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  2. Guanfacine modulates the influence of emotional cues on prefrontal cortex activation for cognitive control.

    Science.gov (United States)

    Schulz, Kurt P; Clerkin, Suzanne M; Fan, Jin; Halperin, Jeffrey M; Newcorn, Jeffrey H

    2013-03-01

    Functional interactions between limbic regions that process emotions and frontal networks that guide response functions provide a substrate for emotional cues to influence behavior. Stimulation of postsynaptic α₂ adrenoceptors enhances the function of prefrontal regions in these networks. However, the impact of this stimulation on the emotional biasing of behavior has not been established. This study tested the effect of the postsynaptic α₂ adrenoceptor agonist guanfacine on the emotional biasing of response execution and inhibition in prefrontal cortex. Fifteen healthy young adults were scanned twice with functional magnetic resonance imaging while performing a face emotion go/no-go task following counterbalanced administration of single doses of oral guanfacine (1 mg) and placebo in a double-blind, cross-over design. Lower perceptual sensitivity and less response bias for sad faces resulted in fewer correct responses compared to happy and neutral faces but had no effect on correct inhibitions. Guanfacine increased the sensitivity and bias selectively for sad faces, resulting in response accuracy comparable to happy and neutral faces, and reversed the valence-dependent variation in response-related activation in left dorsolateral prefrontal cortex (DLPFC), resulting in enhanced activation for response execution cued by sad faces relative to happy and neutral faces, in line with other frontoparietal regions. These results provide evidence that guanfacine stimulation of postsynaptic α₂ adrenoceptors moderates DLPFC activation associated with the emotional biasing of response execution processes. The findings have implications for the α₂ adrenoceptor agonist treatment of attention-deficit hyperactivity disorder.

  3. Association of Oxytocin and Parental Prefrontal Activation during Reunion with Infant: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Jun Ito

    2017-12-01

    Full Text Available Although previous studies have revealed the role of oxytocin (OT in parental behavior, the role of OT has not been investigated through the direct assessment of prefrontal brain activation during parenting. By using functional near-infrared spectroscopy, we aimed to show the relationship between parental [maternal (N = 15 and paternal (N = 21] OT levels and the activation of the prefrontal cortex (PFC, while holding their infants after separation. Baseline OT levels were measured in the subjects’ saliva samples before the experiment. Prefrontal brain activation was assessed in participants sitting alone on a chair (i.e., separation from their infant for 120 s and during the target period (i.e., holding their infant for 45 s, which was done in triplicate. The oxygen hemoglobin (oxy-Hb dissociation curve significantly increased in 9 out of 22 channels on the PFC when maternal and paternal samples were combined. However, only the fathers showed a correlation between salivary OT and oxy-Hb signal. Furthermore, while holding their infants, high-OT fathers showed left hemispheric dominance compared to low-OT fathers, while high-OT mothers showed right hemispheric dominance compared to low-OT mothers. This study showed that fathers with high-OT levels showed neural activation with left hemispheric dominance, while holding their infants, suggesting that increase of OT level might activate paternal PFC related to parenting behavior, although the same is not true for mothers.

  4. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Prefrontal cortex activation during obstacle negotiation: What's the effect size and timing?

    Science.gov (United States)

    Maidan, Inbal; Shustak, Shiran; Sharon, Topaz; Bernad-Elazari, Hagar; Geffen, Nimrod; Giladi, Nir; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-04-01

    Obstacle negotiation is a daily activity that requires the integration of sensorimotor and cognitive information. Recent studies provide evidence for the important role of prefrontal cortex during obstacle negotiation. We aimed to explore the effects of obstacle height and available response time on prefrontal activation. Twenty healthy young adults (age: 30.1 ± 1.0 years; 50% women) walked in an obstacle course while negotiating anticipated and unanticipated obstacles at heights of 50 mm and 100 mm. Prefrontal activation was measured using a functional near-infrared spectroscopy system. Kinect cameras measured the obstacle negotiation strategy. Prefrontal activation was defined based on mean level of HbO 2 before, during and after obstacle negotiation and the HbO 2 slope from gait initiation and throughout the task. Changes between types of obstacles were assessed using linear-mix models and partial correlation analyses evaluated the relationship between prefrontal activation and the distance between the feet as the subjects traversed the obstacles. Different obstacle heights showed similar changes in prefrontal activation measures (p > 0.210). However, during unanticipated obstacles, the slope of the HbO 2 response was steeper (p = 0.048), as compared to anticipated obstacles. These changes in prefrontal activation during negotiation of unanticipated obstacles were correlated with greater distance of the leading foot after the obstacles (r = 0.831, p = 0.041). These findings are the first to show that the pattern of prefrontal activation depends on the nature of the obstacle. More specifically, during unanticipated obstacles the recruitment of the prefrontal cortex is faster and greater than during negotiating anticipated obstacles. These results provide evidence of the important role of the prefrontal cortex and the ability of healthy young adults to tailor the activation pattern to different types of obstacles. Copyright © 2018

  6. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    Science.gov (United States)

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Impact of Anodal and Cathodal Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex during Attention Bias Modification: An Eye-Tracking Study.

    Directory of Open Access Journals (Sweden)

    Alexandre Heeren

    Full Text Available People with anxiety disorders show an attentional bias for threat (AB, and Attention Bias Modification (ABM procedures have been found to reduce this bias. However, the underlying processes accounting for this effect remain poorly understood. One explanation suggests that ABM requires the modification of attention control, driven by the recruitment of the dorsolateral prefrontal cortex (DLPFC. In the present double-blind study, we examined whether modifying left DLPFC activation influences the effect of ABM on AB. We used transcranial direct current stimulation (tDCS to directly modulate cortical excitability of the left DLPFC during an ABM procedure designed to reduce AB to threat. Anodal tDCS increases excitability, whereas cathodal tDCS decreases it. We randomly assigned highly trait-anxious individuals to one of three conditions: 1 ABM combined with cathodal tDCS, 2 ABM combined with anodal tDCS, or 3 ABM combined with sham tDCS. We assessed the effects of these manipulations on both reaction times and eye-movements on a task indexing AB. Results indicate that combining ABM and anodal tDCS over the left DLPFC reduces the total duration that participants' gaze remains fixated on threat, as assessed using eye-tracking measurement. However, in contrast to previous studies, there were no changes in AB from baseline to post-training for participants that received ABM without tDCS. As the tendency to maintain attention to threat is known to play an important role in the maintenance of anxiety, the present findings suggest that anodal tDCS over the left DLPFC may be considered as a promising tool to reduce the maintenance of gaze to threat. Implications for future translational research combining ABM and tDCS are discussed.

  8. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.

    Science.gov (United States)

    Clerkin, Suzanne M; Schulz, Kurt P; Halperin, Jeffrey M; Newcorn, Jeffrey H; Ivanov, Iliyan; Tang, Cheuk Y; Fan, Jin

    2009-08-15

    Warning signals evoke an alert state of readiness that prepares for a rapid response by priming a thalamo-frontal-striatal network that includes the dorsolateral prefrontal cortex (DLPFC). Animal models indicate that noradrenergic input is essential for this stimulus-driven activation of DLPFC, but the precise mechanisms involved have not been determined. We tested the role that postsynaptic alpha(2A) adrenoceptors play in the activation of DLPFC evoked by warning cues using a placebo-controlled challenge with the alpha(2A) agonist guanfacine. Sixteen healthy young adults were scanned twice with event-related functional magnetic resonance imaging (fMRI), while performing a simple cued reaction time (RT) task following administration of a single dose of oral guanfacine (1 mg) and placebo in counterbalanced order. The RT task temporally segregates the neural effects of warning cues and motor responses and minimizes mnemonic demands. Warning cues produced a marked reduction in RT accompanied by significant activation in a distributed thalamo-frontal-striatal network, including bilateral DLPFC. Guanfacine selectively increased the cue-evoked activation of the left DLPFC and right anterior cerebellum, although this increase was not accompanied by further reductions in RT. The effects of guanfacine on DLPFC activation were specifically associated with the warning cue and were not seen for visual- or target-related activation. Guanfacine produced marked increases in the cue-evoked activation of DLPFC that correspond to the well-described actions of postsynaptic alpha(2) adrenoceptor stimulation. The current procedures provide an opportunity to test postsynaptic alpha(2A) adrenoceptor function in the prefrontal cortex in the pathophysiology of several psychiatric disorders.

  9. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, Cleo L.; Kaag, Anne Marije; van den Munkhof, Hanna E.; Reneman, Liesbeth; Homberg, Judith R.; Sabbe, Bernard; van den Brink, Wim; van Wingen, Guido

    2015-01-01

    Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the prefrontal

  10. Effect of Bilateral Prefrontal rTMS on Left Prefrontal NAA and Glx Levels in Schizophrenia Patients with Predominant Negative Symptoms : An Exploratory Study

    NARCIS (Netherlands)

    Dlabac-de Lange, Jozarni J.; Liemburg, Edith J.; Bais, Leonie; van de Poel-Mustafayeva, Aida T.; de Lange-de Klerk, Elly S. M.; Knegtering, Henderikus; Aleman, Andre

    2017-01-01

    Background: Prefrontal repetitive Transcranial Magnetic Stimulation (rTMS) may improve negative symptoms in patients with schizophrenia, but few studies have investigated the underlying neural mechanism. Objective: This study aims to investigate changes in the levels of glutamate and glutamine (Glx,

  11. Co-activation-based parcellation of the lateral prefrontal cortex delineates the inferior frontal junction area

    OpenAIRE

    Muhle-Karbe, Paul Simon; Derrfuss, Jan; Lynn, Maggie; Neubert, Franz Xaver; Fox, Peter; Brass, Marcel; Eickhoff, Simon

    2016-01-01

    The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal ...

  12. Changes in self-regulation-related prefrontal activities in eating disorders: a near infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Chihiro Sutoh

    Full Text Available OBJECTIVE: The aim of this study is to clarify the symptomatology of the eating disorders examining the prefrontal function and activity associated with self-regulation among participants with or without eating disorders. METHODS: Ten patients with anorexia nervosa, fourteen with bulimia nervosa, and fourteen healthy control participants performed two cognitive tasks assessing self-regulatory functions, an auditorily distracted word fluency task and a rock-paper-scissors task under the measurements on prefrontal oxyhemoglobin concentration with near infrared spectroscopy. The psychiatric symptoms of patient groups were assessed with several questionnaires. RESULTS: Patients with bulimia nervosa showed decreased performances and prefrontal hyper activation patterns. Prefrontal activities showed a moderate negative correlation with task performances not in the patient groups but only in the healthy participants. The prefrontal activities of the patient groups showed positive correlations with some symptom scale aspects. CONCLUSIONS: The decreased cognitive abilities and characteristic prefrontal activation patterns associated with self-regulatory functions were shown in patients with bulimia nervosa, which correlated with their symptoms. These findings suggest inefficient prefrontal self-regulatory function of bulimia nervosa that associate with its symptoms.

  13. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  14. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  15. A face to remember: emotional expression modulates prefrontal activity during memory formation.

    Science.gov (United States)

    Sergerie, Karine; Lepage, Martin; Armony, Jorge L

    2005-01-15

    Emotion can exert a modulatory role on episodic memory. Several studies have shown that negative stimuli (e.g., words, pictures) are better remembered than neutral ones. Although facial expressions are powerful emotional stimuli and have been shown to influence perception and attention processes, little is known about their effect on memory. We used functional magnetic resonance imaging (fMRI) in humans to investigate the effects of expression (happy, neutral, and fearful) on prefrontal cortex (PFC) activity during the encoding of faces, using a subsequent memory effect paradigm. Our results show that activity in right PFC predicted memory for faces, regardless of expression, while a homotopic region in the left hemisphere was associated with successful encoding only for faces with an emotional expression. These findings are consistent with the proposed role of right dorsolateral PFC in successful encoding of nonverbal material, but also suggest that left DLPFC may be a site where integration of memory and emotional processes occurs. This study sheds new light on the current controversy regarding the hemispheric lateralization of PFC in memory encoding.

  16. Low-frequency brain stimulation to the left dorsolateral prefrontal cortex increases the negative impact of social exclusion among those high in personal distress.

    Science.gov (United States)

    Fitzgibbon, Bernadette Mary; Kirkovski, Melissa; Bailey, Neil Wayne; Thomson, Richard Hilton; Eisenberger, Naomi; Enticott, Peter Gregory; Fitzgerald, Paul Bernard

    2017-06-01

    The dorsolateral prefrontal cortex (DLPFC) is thought to play a key role in the cognitive control of emotion and has therefore, unsurprisingly, been implicated in the regulation of physical pain perception. This brain region may also influence the experience of social pain, which has been shown to activate similar neural networks as seen in response to physical pain. Here, we applied sham or active low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC, previously shown to exert bilateral effects in pain perception, in healthy participants. Following stimulation, participants played the "Cyberball Task"; an online ball-tossing game in which the subject participant is included or excluded. Compared to sham, rTMS did not modulate behavioural response to social exclusion. However, within the active rTMS group only, greater trait personal distress was related to enhanced negative outcomes to social exclusion. These results add further support to the notion that the effect of brain stimulation is not homogenous across individuals, and indicates the need to consider baseline individual differences when assessing response to brain stimulation. This seems particularly relevant in social neuroscience investigations, where trait factors may have a meaningful effect.

  17. Does rTMS Alter Neurocognitive Functioning in Patients with Panic Disorder/Agoraphobia? An fNIRS-Based Investigation of Prefrontal Activation during a Cognitive Task and Its Modulation via Sham-Controlled rTMS

    Directory of Open Access Journals (Sweden)

    Saskia Deppermann

    2014-01-01

    Full Text Available Objectives. Neurobiologically, panic disorder (PD is supposed to be characterised by cerebral hypofrontality. Via functional near-infrared spectroscopy (fNIRS, we investigated whether prefrontal hypoactivity during cognitive tasks in PD-patients compared to healthy controls (HC could be replicated. As intermittent theta burst stimulation (iTBS modulates cortical activity, we furthermore investigated its ability to normalise prefrontal activation. Methods. Forty-four PD-patients, randomised to sham or verum group, received 15 iTBS-sessions above the left dorsolateral prefrontal cortex (DLPFC in addition to psychoeducation. Before first and after last iTBS-treatment, cortical activity during a verbal fluency task was assessed via fNIRS and compared to the results of 23 HC. Results. At baseline, PD-patients showed hypofrontality including the DLPFC, which differed significantly from activation patterns of HC. However, verum iTBS did not augment prefrontal fNIRS activation. Solely after sham iTBS, a significant increase of measured fNIRS activation in the left inferior frontal gyrus (IFG during the phonological task was found. Conclusion. Our results support findings that PD is characterised by prefrontal hypoactivation during cognitive performance. However, verum iTBS as an “add-on” to psychoeducation did not augment prefrontal activity. Instead we only found increased fNIRS activation in the left IFG after sham iTBS application. Possible reasons including task-related psychophysiological arousal are discussed.

  18. Does rTMS alter neurocognitive functioning in patients with panic disorder/agoraphobia? An fNIRS-based investigation of prefrontal activation during a cognitive task and its modulation via sham-controlled rTMS.

    Science.gov (United States)

    Deppermann, Saskia; Vennewald, Nadja; Diemer, Julia; Sickinger, Stephanie; Haeussinger, Florian B; Notzon, Swantje; Laeger, Inga; Arolt, Volker; Ehlis, Ann-Christine; Zwanzger, Peter; Fallgatter, Andreas J

    2014-01-01

    Neurobiologically, panic disorder (PD) is supposed to be characterised by cerebral hypofrontality. Via functional near-infrared spectroscopy (fNIRS), we investigated whether prefrontal hypoactivity during cognitive tasks in PD-patients compared to healthy controls (HC) could be replicated. As intermittent theta burst stimulation (iTBS) modulates cortical activity, we furthermore investigated its ability to normalise prefrontal activation. Forty-four PD-patients, randomised to sham or verum group, received 15 iTBS-sessions above the left dorsolateral prefrontal cortex (DLPFC) in addition to psychoeducation. Before first and after last iTBS-treatment, cortical activity during a verbal fluency task was assessed via fNIRS and compared to the results of 23 HC. At baseline, PD-patients showed hypofrontality including the DLPFC, which differed significantly from activation patterns of HC. However, verum iTBS did not augment prefrontal fNIRS activation. Solely after sham iTBS, a significant increase of measured fNIRS activation in the left inferior frontal gyrus (IFG) during the phonological task was found. Our results support findings that PD is characterised by prefrontal hypoactivation during cognitive performance. However, verum iTBS as an "add-on" to psychoeducation did not augment prefrontal activity. Instead we only found increased fNIRS activation in the left IFG after sham iTBS application. Possible reasons including task-related psychophysiological arousal are discussed.

  19. Exercising self-control increases relative left frontal cortical activation.

    Science.gov (United States)

    Schmeichel, Brandon J; Crowell, Adrienne; Harmon-Jones, Eddie

    2016-02-01

    Self-control refers to the capacity to override or alter a predominant response tendency. The current experiment tested the hypothesis that exercising self-control temporarily increases approach motivation, as revealed by patterns of electrical activity in the prefrontal cortex. Participants completed a writing task that did vs did not require them to exercise self-control. Then they viewed pictures known to evoke positive, negative or neutral affect. We assessed electroencephalographic (EEG) activity while participants viewed the pictures, and participants reported their trait levels of behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivity at the end of the study. We found that exercising (vs not exercising) self-control increased relative left frontal cortical activity during picture viewing, particularly among individuals with relatively higher BAS than BIS, and particularly during positive picture viewing. A similar but weaker pattern emerged during negative picture viewing. The results suggest that exercising self-control temporarily increases approach motivation, which may help to explain the aftereffects of self-control (i.e. ego depletion). © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia.

    Science.gov (United States)

    Enomoto, Takeshi; Tse, Maric T; Floresco, Stan B

    2011-03-01

    Perturbations in gamma-aminobutyric acid (GABA)-related markers have been reported in the prefrontal cortex of schizophrenic patients. However, a preclinical assessment of how suppression of prefrontal cortex GABA activity may reflect behavioral and cognitive pathologies observed in schizophrenia is forthcoming. We assessed the effects of pharmacologic blockade of prefrontal cortex GABA(A) receptors in rats on executive functions and other behaviors related to schizophrenia, as well as neural activity of midbrain dopamine neurons. Blockade of prefrontal cortex GABA(A) receptors with bicuculline (12.5-50 ng) did not affect working memory accuracy but did increase response latencies, resembling speed of processing deficits observed in schizophrenia. Prefrontal cortex GABA(A) blockade did not impede simple discrimination or reversal learning but did impair set-shifting in a manner dependent on when these treatments were given. Reducing GABA activity before the set-shift impaired the ability to acquire a novel strategy, whereas treatment before the initial discrimination increased perseveration during the shift. Latent inhibition was unaffected by bicuculline infusions before the preexposure/conditioning phases, suggesting that reduced prefrontal cortex GABA activity does not impair "learned irrelevance." GABA(A) blockade increased locomotor activity and showed synergic effects with a subthreshold dose of amphetamine. Furthermore, reducing medial prefrontal cortex GABA activity selectively increased phasic burst firing of ventral tegmental area dopamine neurons, without altering the their overall population activity. These results suggest that prefrontal cortex GABA hypofunction may be a key contributing factor to deficits in speed of processing, cognitive flexibility, and enhanced phasic dopamine activity observed in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Comparison of Metabolite Concentrations in the Left Dorsolateral Prefrontal Cortex, the Left Frontal White Matter, and the Left Hippocampus in Patients in Stable Schizophrenia Treated with Antipsychotics with or without Antidepressants. 1H-NMR Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Dominik Strzelecki

    2015-10-01

    Full Text Available Managing affective, negative, and cognitive symptoms remains the most difficult therapeutic problem in stable phase of schizophrenia. Efforts include administration of antidepressants. Drugs effects on brain metabolic parameters can be evaluated by means of proton nuclear magnetic resonance (1H-NMR spectroscopy. We compared spectroscopic parameters in the left prefrontal cortex (DLPFC, the left frontal white matter (WM and the left hippocampus and assessed the relationship between treatment and the spectroscopic parameters in both groups. We recruited 25 patients diagnosed with schizophrenia (DSM-IV-TR, with dominant negative symptoms and in stable clinical condition, who were treated with antipsychotic and antidepressive medication for minimum of three months. A group of 25 patients with schizophrenia, who were taking antipsychotic drugs but not antidepressants, was matched. We compared metabolic parameters (N-acetylaspartate (NAA, myo-inositol (mI, glutamatergic parameters (Glx, choline (Cho, and creatine (Cr between the two groups. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS and the Calgary Depression Scale for Schizophrenia (CDSS. In patients receiving antidepressants we observed significantly higher NAA/Cr and NAA/Cho ratios within the DLPFC, as well as significantly higher mI/Cr within the frontal WM. Moreover, we noted significantly lower values of parameters associated with the glutamatergic transmission—Glx/Cr and Glx/Cho in the hippocampus. Doses of antipsychotic drugs in the group treated with antidepressants were also significantly lower in the patients showing similar severity of psychopathology.

  2. Positive effect of acute mild exercise on executive function via arousal-related prefrontal activations: an fNIRS study.

    Science.gov (United States)

    Byun, Kyeongho; Hyodo, Kazuki; Suwabe, Kazuya; Ochi, Genta; Sakairi, Yosuke; Kato, Morimasa; Dan, Ippeita; Soya, Hideaki

    2014-09-01

    Despite the practical implication of mild exercise, little is known about its influence on executive function and its neural substrates. To address these issues, the present study examined the effect of an acute bout of mild exercise on executive function and attempted to identify potential neural substrates using non-invasive functional near-infrared spectroscopy (fNIRS). Twenty-five young individuals performed a color-word matching Stroop task (CWST) and a two-dimensional scale to measure changes of psychological mood states both before and after a 10-minute exercise session on a cycle ergometer at light intensity (30% v(·)o2peak) and, for the control session, without exercise. Cortical hemodynamic changes in the prefrontal area were monitored with fNIRS during the CWST in both sessions. The acute bout of mild exercise led to improved Stroop performance, which was positively correlated with increased arousal levels. It also evoked cortical activations regarding Stroop interference on the left dorsolateral prefrontal cortex and frontopolar area. These activations significantly corresponded with both improved cognitive performance and increased arousal levels. Concurrently, this study provides empirical evidence that an acute bout of mild exercise improves executive function mediated by the exercise-induced arousal system, which intensifies cortical activation in task-related prefrontal sub-regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Transcranial Direct Current Stimulation (tDCS) Targeting Left Dorsolateral Prefrontal Cortex Modulates Task-Induced Acute Pain in Healthy Volunteers.

    Science.gov (United States)

    Mariano, Timothy Y; Van't Wout, Mascha; Garnaat, Sarah L; Rasmussen, Steven A; Greenberg, Benjamin D

    2016-04-01

    Current chronic pain treatments target nociception rather than affective "suffering" and its associated functional and psychiatric comorbidities. The left dorsolateral prefrontal cortex (DLPFC) has been implicated in affective, cognitive, and attentional aspects of pain and is a primary target of neuromodulation for affective disorders. Transcranial direct current stimulation (tDCS) can non-invasively modulate cortical activity. The present study tests whether anodal tDCS targeting the left DLPFC will increase tolerability of acute painful stimuli vs cathodal tDCS. Forty tDCS-naive healthy volunteers received anodal and cathodal stimulation targeting the left DLPFC in two randomized and counterbalanced sessions. During stimulation, each participant performed cold pressor (CP) and breath holding (BH) tasks. We measured pain intensity with the Defense and Veterans Pain Rating Scale (DVPRS) before and after each task. Mixed ANOVA revealed no main effect of stimulation polarity for mean CP threshold, tolerance, or endurance, or mean BH time (allP > 0.27). However, DVPRS rise associated with CP was significantly smaller with anodal vs cathodal tDCS (P = 0.024). We further observed a significant tDCS polarity × stimulation order interaction (P = 0.042) on CP threshold, suggesting task sensitization. Although our results do not suggest that polarity of tDCS targeting the left DLPFC differentially modulates the tolerability of CP- and BH-related pain distress in healthy volunteers, there was a significant effect on DVPRS pain ratings. This contrasts with our previous findings that tDCS targeting the left dorsal anterior cingulate cortex showed a trend toward higher mean CP tolerance with cathodal vs anodal stimulation. The present results may suggest tDCS-related effects on nociception or DLPFC-mediated attention, or preferential modulation of the affective valence of pain as captured by the DVPRS. Sham-controlled clinical studies are needed. © 2015

  4. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Adding Sarcosine to Antipsychotic Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and Glial Metabolites in the Left Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Strzelecki, Dominik; Podgórski, Michał; Kałużyńska, Olga; Stefańczyk, Ludomir; Kotlicka-Antczak, Magdalena; Gmitrowicz, Agnieszka; Grzelak, Piotr

    2015-10-15

    The glutamatergic system is a key point in pathogenesis of schizophrenia. Sarcosine (N-methylglycine) is an exogenous amino acid that acts as a glycine transporter inhibitor. It modulates glutamatergic transmission by increasing glycine concentration around NMDA (N-methyl-d-aspartate) receptors. In patients with schizophrenia, the function of the glutamatergic system in the prefrontal cortex is impaired, which may promote negative and cognitive symptoms. Proton nuclear magnetic resonance (¹H-NMR) spectroscopy is a non-invasive imaging method enabling the evaluation of brain metabolite concentration, which can be applied to assess pharmacologically induced changes. The aim of the study was to evaluate the influence of a six-month course of sarcosine therapy on the concentration of metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left dorso-lateral prefrontal cortex (DLPFC) in patients with stable schizophrenia. Fifty patients with schizophrenia, treated with constant antipsychotics doses, in stable clinical condition were randomly assigned to administration of sarcosine (25 patients) or placebo (25 patients) for six months. Metabolite concentrations in DLPFC were assessed with 1.5 Tesla ¹H-NMR spectroscopy. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS). The first spectroscopy revealed no differences in metabolite concentrations between groups. After six months, NAA/Cho, mI/Cr and mI/Cho ratios in the left DLPFC were significantly higher in the sarcosine than the placebo group. In the sarcosine group, NAA/Cr, NAA/Cho, mI/Cr, mI/Cho ratios also significantly increased compared to baseline values. In the placebo group, only the NAA/Cr ratio increased. The addition of sarcosine to antipsychotic therapy for six months increased markers of neurons viability (NAA) and neurogilal activity (mI) with simultaneous improvement

  6. Adding Sarcosine to Antipsychotic Treatment in Patients with Stable Schizophrenia Changes the Concentrations of Neuronal and Glial Metabolites in the Left Dorsolateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Dominik Strzelecki

    2015-10-01

    Full Text Available The glutamatergic system is a key point in pathogenesis of schizophrenia. Sarcosine (N-methylglycine is an exogenous amino acid that acts as a glycine transporter inhibitor. It modulates glutamatergic transmission by increasing glycine concentration around NMDA (N-methyl-d-aspartate receptors. In patients with schizophrenia, the function of the glutamatergic system in the prefrontal cortex is impaired, which may promote negative and cognitive symptoms. Proton nuclear magnetic resonance (1H-NMR spectroscopy is a non-invasive imaging method enabling the evaluation of brain metabolite concentration, which can be applied to assess pharmacologically induced changes. The aim of the study was to evaluate the influence of a six-month course of sarcosine therapy on the concentration of metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine and γ-aminobutyric acid (GABA; mI, myo-inositol; Cr, creatine; Cho, choline in the left dorso-lateral prefrontal cortex (DLPFC in patients with stable schizophrenia. Fifty patients with schizophrenia, treated with constant antipsychotics doses, in stable clinical condition were randomly assigned to administration of sarcosine (25 patients or placebo (25 patients for six months. Metabolite concentrations in DLPFC were assessed with 1.5 Tesla 1H-NMR spectroscopy. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS. The first spectroscopy revealed no differences in metabolite concentrations between groups. After six months, NAA/Cho, mI/Cr and mI/Cho ratios in the left DLPFC were significantly higher in the sarcosine than the placebo group. In the sarcosine group, NAA/Cr, NAA/Cho, mI/Cr, mI/Cho ratios also significantly increased compared to baseline values. In the placebo group, only the NAA/Cr ratio increased. The addition of sarcosine to antipsychotic therapy for six months increased markers of neurons viability (NAA and neurogilal activity (mI with simultaneous

  7. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited

    Directory of Open Access Journals (Sweden)

    Shintaro eFunahashi

    2015-02-01

    Full Text Available Working memory is one of key concepts to understand functions of the prefrontal cortex. Delay-period activity is an important neural correlate to understand the role of working memory in prefrontal functions. The importance of delay-period activity is that this activity can encode not only visuospatial information but also a variety of information including non-spatial visual features, auditory and tactile stimuli, task rules, expected reward, and numerical quantity. This activity also participates in a variety of information processing including sensory-to-motor information transformation. These mnemonic features of delay-period activity enable to perform various important operations that the prefrontal cortex participates in, such as executive controls, and therefore, support the notion that working memory is an important function to understand prefrontal functions. On the other hand, although experiments using manual versions of the delayed-response task had revealed many important findings, an oculomotor version of this task enabled us to use multiple cue positions, exclude postural orientation during the delay period, and further prove the importance of mnemonic functions of the prefrontal cortex. In addition, monkeys with unilateral lesions exhibited specific impairment only in the performance of memory-guided saccades directed toward visual cues in the visual field contralateral to the lesioned hemisphere. This result indicates that memories for visuospatial coordinates in each hemifield are processed primarily in the contralateral prefrontal cortex. This result further strengthened the idea of mnemonic functions of the prefrontal cortex. Thus, the mnemonic functions of the prefrontal cortex and delay-period activity may not need to be reconsidered, but should be emphasized.

  8. An exploratory study of the effects of spatial working-memory load on prefrontal activation in low- and high-performing elderly.

    Science.gov (United States)

    Vermeij, Anouk; van Beek, Arenda H E A; Reijs, Babette L R; Claassen, Jurgen A H R; Kessels, Roy P C

    2014-01-01

    Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load. Eighteen healthy older adults (70.8 ± 5.0 years; MMSE 29.3 ± 0.9) performed a spatial working-memory task (n-back). Oxygenated ([O2Hb]) and deoxygenated ([HHb]) hemoglobin concentration changes were registered by two functional Near-Infrared Spectroscopy (fNIRS) channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition. [O2Hb] increased with rising working-memory load in both fNIRS channels. Based on the performance in the high working-memory load condition, the group was divided into low and high performers. A significant interaction effect of performance level and hemisphere on [O2Hb] increase was found, indicating that high performers were better able to keep the right prefrontal cortex engaged under high cognitive demand. Furthermore, in the low performers group, individuals with a larger decline in task performance from the control to the high working-memory load condition had a larger bilateral increase of [O2Hb]. The high performers did not show a correlation between performance decline and working-memory load related prefrontal activation changes. Thus, additional bilateral prefrontal activation in low performers did not necessarily result in better cognitive performance. Our study showed that bilateral prefrontal activation may not always be successfully compensatory. Individual behavioral performance should be taken into account to be able to distinguish successful and unsuccessful compensation or declined neural efficiency.

  9. Repetitive transcranial magnetic stimulation of the left premotor/dorsolateral prefrontal cortex does not have analgesic effect on central poststroke pain.

    Science.gov (United States)

    de Oliveira, Rogério Adas Ayres; de Andrade, Daniel Ciampi; Mendonça, Melina; Barros, Rafael; Luvisoto, Tatiana; Myczkowski, Martin Luiz; Marcolin, Marco Antonio; Teixeira, Manoel Jacobsen

    2014-12-01

    Central poststroke pain (CPSP) is caused by an encephalic vascular lesion of the somatosensory pathways and is commonly refractory to current pharmacologic treatments. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) can change thermal pain threshold toward analgesia in healthy subjects and has analgesic effects in acute postoperative pain as well as in fibromyalgia patients. However, its effect on neuropathic pain and in CPSP, in particular, has not been assessed. The aim of this prospective, double-blind, placebo-controlled study was to evaluate the analgesic effect of PMC/DLPFC rTMS in CPSP patients. Patients were randomized into 2 groups, active (a-) rTMS and sham (s-) rTMS, and were treated with 10 daily sessions of rTMS over the left PMC/DLPFC (10 Hz, 1,250 pulses/d). Outcomes were assessed at baseline, during the stimulation phase, and at 1, 2, and 4 weeks after the last stimulation. The main outcome was pain intensity changes measured by the visual analog scale on the last stimulation day compared to baseline. Interim analysis was scheduled when the first half of the patients completed the study. The study was terminated because of a significant lack of efficacy of the active arm after 21 patients completed the whole treatment and follow-up phases. rTMS of the left PMC/DLPFC did not improve pain in CPSP. The aim of this double-blind, placebo-controlled study was to evaluate the analgesic effects of rTMS to the PMC/DLPFC in CPSP patients. An interim analysis showed a consistent lack of analgesic effect, and the study was terminated. rTMS of the PMC/DLPFC is not effective in relieving CPSP. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. Reduced prefrontal dopaminergic activity in valproic acid-treated mouse autism model.

    Science.gov (United States)

    Hara, Yuta; Takuma, Kazuhiro; Takano, Erika; Katashiba, Keisuke; Taruta, Atsuki; Higashino, Kosuke; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2015-08-01

    Previous studies suggest that dysfunction of neurotransmitter systems is associated with the pathology of autism in humans and the disease model rodents, but the precise mechanism is not known. Rodent offspring exposed prenatally to VPA shows autism-related behavioral abnormalities. The present study examined the effect of prenatal VPA exposure on brain monoamine neurotransmitter systems in male and female mice. The prenatal VPA exposure did not affect the levels of dopamine (DA), noradrenaline (NA), serotonin (5-HT) and their metabolites in the prefrontal cortex and striatum, while it significantly reduced methamphetamine (METH) (1.0 mg/kg)-induced hyperlocomotion in male offspring. In vivo microdialysis study demonstrated that prenatal VPA exposure attenuated METH-induced increases in extracellular DA levels in the prefrontal cortex, while it did not affect those in extracellular NA and 5-HT levels. Prenatal VPA exposure also decreased METH-induced c-Fos expression in the prefrontal cortex and the mRNA levels of DA D1 and D2 receptors in the prefrontal cortex. These effects of VPA were not observed in the striatum. In contrast to male offspring, prenatal VPA exposure did not affect METH-induced increases in locomotor activity and prefrontal DA levels and the D1 and D2 receptor mRNA levels in the prefrontal cortex in female offspring. These findings suggest that prenatal VPA exposure causes hypofunction of prefrontal DA system in a sex-dependent way. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.

    Science.gov (United States)

    Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen

    2018-09-17

    Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  13. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults

    Directory of Open Access Journals (Sweden)

    Ayaka Ishii-Takahashi

    2014-01-01

    Full Text Available The differential diagnosis of autism spectrum disorders (ASDs and attention deficit hyperactivity disorder (ADHD based solely on symptomatic and behavioral assessments can be difficult, even for experts. Thus, the development of a neuroimaging marker that differentiates ASDs from ADHD would be an important contribution to this field. We assessed the differences in prefrontal activation between adults with ASDs and ADHD using an entirely non-invasive and portable neuroimaging tool, near-infrared spectroscopy. This study included 21 drug-naïve adults with ASDs, 19 drug-naïve adults with ADHD, and 21 healthy subjects matched for age, sex, and IQ. Oxygenated hemoglobin concentration changes in the prefrontal cortex were assessed during a stop signal task and a verbal fluency task. During the stop signal task, compared to the control group, the ASDs group exhibited lower activation in a broad prefrontal area, whereas the ADHD group showed underactivation of the right premotor area, right presupplementary motor area, and bilateral dorsolateral prefrontal cortices. Significant differences were observed in the left ventrolateral prefrontal cortex between the ASDs and ADHD groups during the stop signal task. The leave-one-out cross-validation method using mean oxygenated hemoglobin changes yielded a classification accuracy of 81.4% during inhibitory control. These results were task specific, as the brain activation pattern observed during the verbal fluency task did not differentiate the ASDs and ADHD groups significantly. This study therefore provides evidence of a difference in left ventrolateral prefrontal activation during inhibitory control between adults with ASDs and ADHD. Thus, near-infrared spectroscopy may be useful as an auxiliary tool for the differential diagnosis of such developmental disorders.

  14. High-definition transcranial direct current stimulation (HD-tDCS) of left dorsolateral prefrontal cortex affects performance in Balloon Analogue Risk Task (BART).

    Science.gov (United States)

    Guo, Heng; Zhang, Zhuoran; Da, Shu; Sheng, Xiaotian; Zhang, Xichao

    2018-02-01

    Studies on risk preferences have long been of great concern and have examined the neural basis underlying risk-based decision making. However, studies using conventional transcranial direct current stimulation (tDCS) revealed that bilateral stimulation could change risk propensity with limited evidence of precisely focalized unilateral high-definition transcranial direct current stimulation (HD-tDCS). The aim of this experiment was to investigate the effect of HD-tDCS focalizing the left dorsal lateral prefrontal cortex (DLPFC) on risk-taking behavior during the Balloon Analogue Risk Task (BART). This study was designed as a between-subject, single-blind, sham-controlled experiment. University students were randomly assigned to three groups: the anodal group (F3 anode, AF3, F1, F5, FC3 returned), the cathodal group (F3 cathodal, AF3, F1, F5, FC3 returned) and the sham group. Subsequently, 1.5-mA 20-min HD-tDCS was applied during the BART, and the Positive Affect and Negative Affect Scale (PANAS), the Sensation Seeking Scale-5 (SSS-5), and the Behavioral Inhibition System and Behavioral Approach System scale (BIS/BAS) were measured as control variables. The cathodal group earned less total money than the sham group, and no significant difference was observed between the anodal group and the sham group. These results showed that, to some extent, focalized unilateral cathodal HD-tDCS on left DLPFC could change performance during risky tasks and diminish risky decision making. Further studies are needed to investigate the dose effect and electrode distribution of HD-tDCS during risky tasks and examine synchronous brain activity to show the neural basis.

  15. Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion.

    Science.gov (United States)

    Luethi, Matthias S; Friese, Malte; Binder, Julia; Boesiger, Peter; Luechinger, Roger; Rasch, Björn

    2016-10-01

    Self-control is key to success in life. Initial acts of self-control temporarily impair subsequent self-control performance. Why such self-control failures occur is unclear, with prominent models postulating a loss of a limited resource vs a loss of motivation, respectively. Here, we used functional magnetic resonance imaging to identify the neural correlates of motivation-induced benefits on self-control. Participants initially exerted or did not exert self-control. In a subsequent Stroop task, participants performed worse after exerting self-control, but not if they were motivated to perform well by monetary incentives. On the neural level, having exerted self-control resulted in decreased activation in the left inferior frontal gyrus. Increasing motivation resulted in a particularly strong activation of this area specifically after exerting self-control. Thus, after self-control exertion participants showed more prefrontal neural activity without improving performance beyond baseline level. These findings suggest that impaired performance after self-control exertion may not exclusively be due to a loss of motivation. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Verbal fluency as a prefrontal activation probe: a validation study using 99mTc-ECD brain SPET

    International Nuclear Information System (INIS)

    Audenaert, K.; Brans, B.; Laere, K. van; Versijpt, J.; Dierckx, R.; Lahorte, P.; Heeringen, K. van

    2000-01-01

    This study aimed to investigate the feasibility of brain single-photon emission tomography (SPET) in the letter and category fluency paradigm of the Controlled Oral Word Association (COWA) test in healthy volunteers. Two groups each comprising ten right-handed healthy volunteers were injected twice with 370 MBq technetium-99m ethyl cysteinate dimer following a split-dose paradigm (resting and activation condition). Statistical parametric mapping (SPM96) was used to determine voxelwise significant changes. The letter fluency and the category fluency activation paradigm had a differential brain activation pattern. The posterior part of the left inferior prefrontal cortex (LIPC) was activated in both paradigms, with the category fluency task having an extra activation in the anterior LIPC. In the category fluency task, but not the letter fluency task, an activation in the right inferior prefrontal cortex was found. These findings confirm to a large extent the results of previous functional magnetic resonance imaging and positron emission tomography studies in semantic and phonological activation paradigms. The choice and validity of various methodological characteristics of the experimental design leading to these results are critically discussed. It is concluded that brain SPET activation with the letter fluency and category fluency paradigm under standard neuropsychological conditions in healthy volunteers is both technically and practically feasible. (orig.)

  17. Verbal fluency as a prefrontal activation probe: a validation study using {sup 99m}Tc-ECD brain SPET

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Department of Psychiatry and Medical Psychology, Ghent University Hospital and Ghent University (Belgium); Brans, B.; Laere, K. van; Versijpt, J.; Dierckx, R. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Lahorte, P. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Laboratory of Subatomic and Radiation Physics, Ghent University (Belgium); Heeringen, K. van [Department of Psychiatry and Medical Psychology, Ghent University Hospital and Ghent University (Belgium)

    2000-12-01

    This study aimed to investigate the feasibility of brain single-photon emission tomography (SPET) in the letter and category fluency paradigm of the Controlled Oral Word Association (COWA) test in healthy volunteers. Two groups each comprising ten right-handed healthy volunteers were injected twice with 370 MBq technetium-99m ethyl cysteinate dimer following a split-dose paradigm (resting and activation condition). Statistical parametric mapping (SPM96) was used to determine voxelwise significant changes. The letter fluency and the category fluency activation paradigm had a differential brain activation pattern. The posterior part of the left inferior prefrontal cortex (LIPC) was activated in both paradigms, with the category fluency task having an extra activation in the anterior LIPC. In the category fluency task, but not the letter fluency task, an activation in the right inferior prefrontal cortex was found. These findings confirm to a large extent the results of previous functional magnetic resonance imaging and positron emission tomography studies in semantic and phonological activation paradigms. The choice and validity of various methodological characteristics of the experimental design leading to these results are critically discussed. It is concluded that brain SPET activation with the letter fluency and category fluency paradigm under standard neuropsychological conditions in healthy volunteers is both technically and practically feasible. (orig.)

  18. Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories

    OpenAIRE

    Antzoulatos, Evan G.; Miller, Earl K.

    2011-01-01

    Learning to classify diverse experiences into meaningful groups, like categories, is fundamental to normal cognition. To understand its neural basis, we simultaneously recorded from multiple electrodes in the lateral prefrontal cortex and dorsal striatum, two interconnected brain structures critical for learning. Each day, monkeys learned to associate novel, abstract dot-based categories with a right vs. left saccade. Early on, when they could acquire specific stimulus-response associations, ...

  19. Effects of aging on working memory performance and prefrontal cortex activity:A time-resolved spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Jie Shi; Wenjing Zhou; Tongchao Geng; Huancong Zuo; Masahiro Tanida; Kaoru Sakatani

    2016-01-01

    Objective:This study aimed to employ time‐resolved spectroscopy (TRS) to explore age‐related differences in prefrontal cortex (PFC) activity while subjects performed a working memory task. Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory (WM) task. All subjects performed the Sternberg test (ST) in which the memory‐set size varied between one and six digits. Using TRS, we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task. In order to identify left/right asymmetry of PFC activity during the working memory task, we calculated the laterality score, i.e.,Δoxy‐Hb (rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC, while negative values indicate greater activity in the left PFC. Results:During the ST, statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load. In high memory‐load tasks, however, older subjects were slower than younger subjects (P Conclusions: The present results are consistent with the hemispheric asymmetry reduction in older adults (HAROLD) model;working memory tasks cause asymmetrical PFC activation in younger adults, while older adults tend to show reduced hemispheric lateralization.

  20. Transcranial magnetic stimulation of the dorsal lateral prefrontal cortex inhibits medial orbitofrontal activity in smokers.

    Science.gov (United States)

    Li, Xingbao; Sahlem, Gregory L; Badran, Bashar W; McTeague, Lisa M; Hanlon, Colleen A; Hartwell, Karen J; Henderson, Scott; George, Mark S

    2017-12-01

    Several studies have shown that repetitive transcranial magnetic stimulation (rTMS), applied to the dorsolateral prefrontal cortex (DLPFC), can reduce cue-elicited craving in smokers. Currently, the mechanism of this effect is unknown. We used functional magnetic resonance imaging (fMRI) to explore the effect of a single treatment of rTMS on cortical and sub-cortical neural activity in non-treatment seeking nicotine-dependent participants. We conducted a randomized, counterbalanced, crossover trial in which participants attended two experimental visits separated by at least 1 week. On the first visit, participants received either active, or sham rTMS (10 Hz, 5 s-on, 10 s-off, 100% motor threshold, 3,000 pulses) over the left DLPFC, and on the second visit they received the opposite condition (active or sham). Cue craving fMRI scans were completed before and after each rTMS session. A total of 11 non-treatment seeking nicotine-dependent cigarette smokers were enrolled in the study [six female, average age 39.7 ± 13.2, average cigarettes per day 17.3 ± 5.9]. Active rTMS decreased activity in the contralateral medial orbitofrontal cortex (mOFC) and ipsilateral nucleus accumbens (NAc) compared to sham rTMS. This preliminary data suggests that one session of rTMS applied to the DLPFC decreases brain activity in the NAc and mOFC in smokers. rTMS may exert its anti-craving effect by decreasing activity in the NAc and mOFC in smokers. Despite a small sample size, these findings warrant future rTMS/fMRI studies in addictions. (Am J Addict 2017;26:788-794). © 2017 American Academy of Addiction Psychiatry.

  1. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics.

    Science.gov (United States)

    Versace, Amelia; Almeida, Jorge R C; Hassel, Stefanie; Walsh, Nicholas D; Novelli, Massimiliano; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2008-09-01

    Diffusion tensor imaging (DTI) studies in adults with bipolar disorder (BD) indicate altered white matter (WM) in the orbitomedial prefrontal cortex (OMPFC), potentially underlying abnormal prefrontal corticolimbic connectivity and mood dysregulation in BD. To use tract-based spatial statistics (TBSS) to examine WM skeleton (ie, the most compact whole-brain WM) in subjects with BD vs healthy control subjects. Cross-sectional, case-control, whole-brain DTI using TBSS. University research institute. Fifty-six individuals, 31 having a DSM-IV diagnosis of BD type I (mean age, 35.9 years [age range, 24-52 years]) and 25 controls (mean age, 29.5 years [age range, 19-52 years]). Fractional anisotropy (FA) longitudinal and radial diffusivities in subjects with BD vs controls (covarying for age) and their relationships with clinical and demographic variables. Subjects with BD vs controls had significantly greater FA (t > 3.0, P left uncinate fasciculus (reduced radial diffusivity distally and increased longitudinal diffusivity centrally), left optic radiation (increased longitudinal diffusivity), and right anterothalamic radiation (no significant diffusivity change). Subjects with BD vs controls had significantly reduced FA (t > 3.0, P right uncinate fasciculus (greater radial diffusivity). Among subjects with BD, significant negative correlations (P right anterothalamic radiation, as well as between medication load and FA in the left optic radiation. Decreased FA (P left optic radiation and in the right anterothalamic radiation among subjects with BD taking vs those not taking mood stabilizers, as well as in the left optic radiation among depressed vs remitted subjects with BD. Subjects having BD with vs without lifetime alcohol or other drug abuse had significantly decreased FA in the left uncinate fasciculus. To our knowledge, this is the first study to use TBSS to examine WM in subjects with BD. Subjects with BD vs controls showed greater WM FA in the left OMPFC that

  2. Perceptual difficulty in source memory encoding and retrieval: prefrontal versus parietal electrical brain activity.

    Science.gov (United States)

    Kuo, Trudy Y; Van Petten, Cyma

    2008-01-01

    It is well established that source memory retrieval--remembering relationships between a core item and some additional attribute of an event--engages prefrontal cortex (PFC) more than simple item memory. In event-related potentials (ERPs), this is manifest in a late-onset difference over PFC between studied items which mandate retrieval of a second attribute, and unstudied items which can be immediately rejected. Although some sorts of attribute conjunctions are easier to remember than others, the role of source retrieval difficulty on prefrontal activity has received little attention. We examined memory for conjunctions of object shape and color when color was an integral part of the depicted object, and when monochrome objects were surrounded by colored frames. Source accuracy was reliably worse when shape and color were spatially separated, but prefrontal activity did not vary across the object-color and frame-color conditions. The insensitivity of prefrontal ERPs to this perceptual manipulation of difficulty stands in contrast to their sensitivity to encoding task: deliberate voluntary effort to integrate objects and colors during encoding reduced prefrontal activity during retrieval, but perceptual organization of stimuli did not. The amplitudes of ERPs over parietal cortex were larger for frame-color than object-color stimuli during both study and test phases of the memory task. Individual variability in parietal ERPs was strongly correlated with memory accuracy, which we suggest reflects a contribution of visual working memory to long-term memory. We discuss multiple bottlenecks for source memory performance.

  3. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  4. Short-Term Memory Impairment and Left Dorsolateral Prefrontal Cortex Dysfunction in the Orthostatic Position: A Single Case Study of Sinking Skin Flap Syndrome

    Directory of Open Access Journals (Sweden)

    Luca Sebastianelli

    2015-01-01

    Full Text Available We describe the case of a patient who underwent craniectomy for hemorrhage of the left parietal lobe. Three weeks later, orthostatic memory impairment was detected as initial symptom of sinking skin flap syndrome (SSFS. This deficit was examined by neuropsychological testing and associated with a posture-dependent increase in the delta/alpha ratio at the F3 electrode, an electroencephalographic (EEG index related to brain hypoperfusion. This EEG spectral alteration was detected in a brain region that includes the left dorsolateral prefrontal cortex, an area known to be involved in memory processing; therefore we hypothesize that SSFS induced reversible hypoperfusion of this otherwise undamaged cortical region. Neither of these findings was present after cranioplasty. This case suggests that SSFS may induce neuropsychological deficits potentially influencing outcome in the postacute phase and is further evidence supporting the clinical benefits of early cranioplasty.

  5. Effects of aging on working memory performance and prefrontal cortex activity: A time-resolved spectroscopy study

    Institute of Scientific and Technical Information of China (English)

    Jie Shi; Wenjing Zhou; Tongchao Geng; Huancong Zuo; Masahiro Tanida; Kaoru Sakatani

    2016-01-01

    Objective:This study aimed to employ time‐resolved spectroscopy(TRS)to explore age‐related differences in prefrontal cortex(PFC)activity while subjects performed a working memory task.Methods:We employed TRS to measure PFC activity in ten healthy younger and ten healthy older subjects while they performed a working memory(WM)task.All subjects performed the Sternberg test(ST)in which the memory‐set size varied between one and six digits.Using TRS,we recorded changes in cerebral blood oxygenation as a measure of changes in PFC activity during the task.In order to identify left/right asymmetry of PFC activity during the working memory task,we calculated the laterality score,i.e.,Δoxy‐Hb(rightΔoxy‐Hb—leftΔoxy‐Hb);positive values indicate greater activity in the right PFC,while negative values indicate greater activity in the left PFC.Results:During the ST,statistical analyses showed no significant differences between the younger and older groups in accuracy for low memory‐load and high memory‐load.In high memory‐load tasks,however,older subjects were slower than younger subjects(P<0.05).We found that the younger group showed right lateral responses with a stronger right than left activation in the frontal pole,whereas the older group showed bilateral responses(P<0.05).Conclusions:The present results are consistent with the hemispheric asymmetry reduction in older adults(HAROLD)model;working memory tasks cause asymmetrical PFC activation in younger adults,while older adults tend to show reduced hemispheric lateralization.

  6. Anticipatory activity in rat medial prefrontal cortex during a working memory task

    Institute of Scientific and Technical Information of China (English)

    Wenwen Bai; Tiaotiao Liu; Hu Yi; Shuangyan Li; Xin Tian

    2012-01-01

    Objective Working memory is a key cognitive function in which the prefrontal cortex plays a crucial role.This study aimed to show the firing patterns of a neuronal population in the prefrontal cortex of the rat in a working memory task and to explore how a neuronal ensemble encodes a working memory event.Methods Sprague-Dawley rats were trained in a Y-maze until they reached an 80% correct rate in a working memory task.Then a 16-channel microelectrode array was implanted in the prefrontal cortex.After recovery,neuronal population activity was recorded during the task,using the Cerebus data-acquisition system.Spatio-temporal trains of action potentials were obtained from the original neuronal population signals.Results During the Y-maze working memory task,some neurons showed significantly increased firing rates and evident neuronal ensemble activity.Moreover,the anticipatory activity was associated with the delayed alternate choice of the upcoming movement.In correct trials,the averaged pre-event firing rate (10.86 ± 1.82 spikes/bin) was higher than the post-event rate (8.17 ± 1.15 spikes/bin) (P <0.05).However,in incorrect trials,the rates did not differ.Conclusion The results indicate that the anticipatory activity of a neuronal ensemble in the prefrontal cortex may play a role in encoding working memory events.

  7. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    Science.gov (United States)

    Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.

    2012-01-01

    Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…

  8. Ventrolateral prefrontal activation during a N-back task assessed with multichannel functional near-infrared spectroscopy

    Science.gov (United States)

    Zhou, Yuan; Zhu, Ye; Jiang, Tianzi

    2007-05-01

    Functional near-infrared spectroscopy (fNIRS) has been used to investigate the changes in the concentration of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin in brain issue during several cognitive tasks. In the present study, by means of multichannel dual wavelength light-emitting diode continuous-wave (CW) NIRS, we investigated the blood oxygenation changes of prefrontal cortex in 18 healthy subjects while performing a verbal n-back task (0-back and 2-back), which has been rarely investigated by fNIRS. Compared to the 0-back task (control task), we found a significant increase of O2Hb and total amount of hemoglobin (THb) in left and right ventrolateral prefrontal cortex (VLPFC) during the execution of the 2-back task compared to the 0-back task (pdominance. In addition, the effects of gender and its interaction with task performance on O2Hb concentration change were suggested in the present study. Our findings not only confirm that multichannel fNIRS is suitable to detect spatially specific activation during the performance of cognitive tasks; but also suggest that it should be cautious of gender-dependent difference in cerebral activation when interpreting the fNIRS data during cognitive tasks.

  9. Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left dorso-lateral prefrontal cortex.

    Science.gov (United States)

    Shang, Yuan-Qi; Xie, Jun; Peng, Wei; Zhang, Jian; Chang, Da; Wang, Ze

    2018-04-01

    The repetitive application of transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) has been consistently shown to be beneficial for treating various neuropsychiatric or neuropsychological disorders, but its neural mechanisms still remain unclear. The purpose of this study was to measure the effects of high-frequency left DLPFC rTMS using cerebral blood flow (CBF) collected from 40 young healthy subjects before and after applying 20 Hz left DLPFC rTMS or SHAM stimulations. Relative CBF (rCBF) changes before and after 20 Hz rTMS or SHAM were assessed with paired-t test. The results show that 20 Hz DLPFC rTMS induced CBF redistribution in the default mode network, including increased rCBF in left medial temporal cortex (MTC)/hippocampus, but reduced rCBF in precuneus and cerebellum. Meanwhile, SHAM stimulation didn't produce any rCBF changes. After controlling SHAM effects, only the rCBF increase in MTC/hippocampus remained. Those data suggest that the beneficial effects of high-frequency rTMS may be through a within-network rCBF redistribution. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. No Effects of Stimulating the Left Ventrolateral Prefrontal Cortex with tDCS on Verbal Working Memory Updating

    Directory of Open Access Journals (Sweden)

    Karolina M. Lukasik

    2018-01-01

    Full Text Available The effects of transcranial direct current stimulation (tDCS on dorsolateral prefrontal cortex functions, such as working memory (WM, have been examined in a number of studies. However, much less is known about the behavioral effects of tDCS over other important WM-related brain regions, such as the ventrolateral prefrontal cortex (VLPFC. In a counterbalanced within-subjects design with 33 young healthy participants, we examined whether online and offline single-session tDCS over VLPFC affects WM updating performance as measured by a digit 3-back task. We compared three conditions: anodal, cathodal and sham. We observed no significant tDCS effects on participants' accuracy or reaction times during or after the stimulation. Neither did we find any differences between anodal and cathodal stimulation. Largely similar results were obtained when comparing subgroups of high- and low-performing participants. Possible reasons for the lack of effects, including individual differences in responsiveness to tDCS, features of montage, task and sample characteristics, and the role of VLPFC in WM, are discussed.

  11. Schizotypal traits in healthy women predict prefrontal activation patterns during a verbal fluency task: a near-infrared spectroscopy study.

    Science.gov (United States)

    Hori, Hiroaki; Nagamine, Mitsue; Soshi, Takahiro; Okabe, Shigeo; Kim, Yoshiharu; Kunugi, Hiroshi

    2008-01-01

    Previous functional neuroimaging studies have reported that patients with schizophrenia show reduced prefrontal activation during cognitive tasks whereas patients with schizotypal personality disorder (SPD) show preserved or even increased right prefrontal activation, compared to healthy controls; on the other hand, reduced hemispheric laterality is considered to be common to these two disorders. The aim of this study was to examine the possible association between schizotypal traits at a nonclinical level and prefrontal activation patterns during a letter version of the verbal fluency task (VFT). We examined the relationships of schizotypal traits as measured by the Schizotypal Personality Questionnaire (SPQ) in a nonclinical female population with prefrontal activation patterns during the VFT, using near-infrared spectroscopy. Twenty-seven healthy participants were divided into high (n = 14) and low (n = 13) SPQ groups by the median split of the total SPQ score. Compared to the low SPQ group, the high SPQ group showed significantly larger right prefrontal activation during the performance of the VFT, leading to more bilateral activation. Our results suggest that schizotypal traits at a nonclinical level may be related to relative right prefrontal laterality with overall prefrontal activation being preserved, consistent with previous findings obtained by studies of patients with SPD. 2008 S. Karger AG, Basel.

  12. Activation of prefrontal cortex and anterior thalamus in alcoholic subjects on exposure to alcohol-specific cues.

    Science.gov (United States)

    George, M S; Anton, R F; Bloomer, C; Teneback, C; Drobes, D J; Lorberbaum, J P; Nahas, Z; Vincent, D J

    2001-04-01

    Functional imaging studies have recently demonstrated that specific brain regions become active in cocaine addicts when they are exposed to cocaine stimuli. To test whether there are regional brain activity differences during alcohol cue exposure between alcoholic subjects and social drinkers, we designed a functional magnetic resonance imaging (fMRI) protocol involving alcohol-specific cues. Ten non-treatment-seeking adult alcoholic subjects (2 women) (mean [SD] age, 29.9 [9.9] years) as well as 10 healthy social drinking controls of similar age (2 women) (mean [SD] age, 29.4 [8.9] years) were recruited, screened, and scanned. In the 1.5-T magnetic resonance imaging scanner, subjects were serially rated for alcohol craving before and after a sip of alcohol, and after a 9-minute randomized presentation of pictures of alcoholic beverages, control nonalcoholic beverages, and 2 different visual control tasks. During picture presentation, changes in regional brain activity were measured with the blood oxygen level-dependent technique. Alcoholic subjects, compared with the social drinking subjects, reported higher overall craving ratings for alcohol. After a sip of alcohol, while viewing alcohol cues compared with viewing other beverage cues, only the alcoholic subjects had increased activity in the left dorsolateral prefrontal cortex and the anterior thalamus. The social drinkers exhibited specific activation only while viewing the control beverage pictures. When exposed to alcohol cues, alcoholic subjects have increased brain activity in the prefrontal cortex and anterior thalamus-brain regions associated with emotion regulation, attention, and appetitive behavior.

  13. Pedophilia is linked to reduced activation in hypothalamus and lateral prefrontal cortex during visual erotic stimulation.

    Science.gov (United States)

    Walter, Martin; Witzel, Joachim; Wiebking, Christine; Gubka, Udo; Rotte, Michael; Schiltz, Kolja; Bermpohl, Felix; Tempelmann, Claus; Bogerts, Bernhard; Heinze, Hans Jochen; Northoff, Georg

    2007-09-15

    Although pedophilia is of high public concern, little is known about underlying neural mechanisms. Although pedophilic patients are sexually attracted to prepubescent children, they show no sexual interest toward adults. This study aimed to investigate the neural correlates of deficits of sexual and emotional arousal in pedophiles. Thirteen pedophilic patients and 14 healthy control subjects were tested for differential neural activity during visual stimulation with emotional and erotic pictures with functional magnetic resonance imaging. Regions showing differential activations during the erotic condition comprised the hypothalamus, the periaqueductal gray, and dorsolateral prefrontal cortex, the latter correlating with a clinical measure. Alterations of emotional processing concerned the amygdala-hippocampus and dorsomedial prefrontal cortex. Hypothesized regions relevant for processing of erotic stimuli in healthy individuals showed reduced activations during visual erotic stimulation in pedophilic patients. This suggests an impaired recruitment of key structures that might contribute to an altered sexual interest of these patients toward adults.

  14. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    Science.gov (United States)

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. Copyright © 2015. Published by Elsevier Ltd.

  15. Prefrontal Hemodynamics of Physical Activity and Environmental Complexity During Cognitive Work.

    Science.gov (United States)

    McKendrick, Ryan; Mehta, Ranjana; Ayaz, Hasan; Scheldrup, Melissa; Parasuraman, Raja

    2017-02-01

    The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.

  16. Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia.

    Science.gov (United States)

    Grot, Stéphanie; Légaré, Virginie Petel; Lipp, Olivier; Soulières, Isabelle; Dolcos, Florin; Luck, David

    2017-10-01

    Working memory deficits have been widely reported in schizophrenia, and may result from inefficient binding processes. These processes, and their neural correlates, remain understudied in schizophrenia. Thus, we designed an FMRI study aimed at investigating the neural correlates of both passive and active binding in working memory in schizophrenia. Nineteen patients with schizophrenia and 23 matched controls were recruited to perform a working memory binding task, in which they were instructed to memorize three letters and three spatial locations. In the passive binding condition, letters and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were instructed to intentionally create associations between them. Patients exhibited a similar performance to the controls for the passive binding condition, but a significantly lower performance for the active binding. FMRI analyses revealed that this active binding deficit was related to aberrant activity in the posterior parietal cortex and the ventrolateral prefrontal cortex. This study provides initial evidence of a specific deficit for actively binding information in schizophrenia, which is linked to dysfunctions in the neural networks underlying attention, manipulation of information, and encoding strategies. Together, our results suggest that all these dysfunctions may be targets for neuromodulation interventions known to improve cognitive deficits in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Science.gov (United States)

    Bertolino, Alessandro; Taurisano, Paolo; Pisciotta, Nicola Marco; Blasi, Giuseppe; Fazio, Leonardo; Romano, Raffaella; Gelao, Barbara; Lo Bianco, Luciana; Lozupone, Madia; Di Giorgio, Annabella; Caforio, Grazia; Sambataro, Fabio; Niccoli-Asabella, Artor; Papp, Audrey; Ursini, Gianluca; Sinibaldi, Lorenzo; Popolizio, Teresa; Sadee, Wolfgang; Rubini, Giuseppe

    2010-02-22

    Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known. Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory. Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT. Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  18. Genetically determined measures of striatal D2 signaling predict prefrontal activity during working memory performance.

    Directory of Open Access Journals (Sweden)

    Alessandro Bertolino

    2010-02-01

    Full Text Available Variation of the gene coding for D2 receptors (DRD2 has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560 predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic and D2L (mainly post-synaptic. However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.Thirty-seven healthy subjects were genotyped for rs1076560 (G>T and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors, as well as BOLD fMRI during N-Back working memory.Subjects carrying the T allele (previously associated with reduced D2S expression had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.

  19. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    Science.gov (United States)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  20. The Medial Temporal Lobe and the Left Inferior Prefrontal Cortex Jointly Support Interference Resolution in Verbal Working Memory

    Science.gov (United States)

    Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian

    2009-01-01

    During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…

  1. High social desirability and prefrontal cortical activity in cancer patients: a preliminary study.

    Science.gov (United States)

    Tashiro, Manabu; Juengling, Freimut D; Moser, Ernst; Reinhardt, Michael J; Kubota, Kazuo; Yanai, Kazuhiko; Sasaki, Hidetada; Nitzsche, Egbert U; Kumano, Hiroaki; Itoh, Masatoshi

    2003-04-01

    Social desirability is sometimes associated with poor prognosis in cancer patients. Psycho-neuro-immune interaction has been hypothesized as an underlying mechanism of the negative clinical outcome. Purpose of this study was to examine possible effects of high social desirability on the regional brain activity in patients with malignant diseases. Brain metabolism of 16 patients with various malignant diseases was measured by PET with 18F-fluorodeoxyglucose (FDG). Patients were divided into 2 groups using median split on Marlowe & Crown's Social Desirability Scale (MC), controlling for age, gender, and for severity of depression and anxiety, the possible two major influential factors. A group comparison of the regional cerebral activity was calculated on a voxel-by-voxel basis using statistical parametric mapping (SPM). The subgroup comparison showed that the high social desirability was associated with relatively increased metabolism in the cortical regions in the prefrontal, temporal and occipital lobes as well as in the anterior cingulate gyrus. High social desirability seems to be associated with increased activity in the prefrontal and other cortical areas. The finding is in an accordance with previous studies that demonstrated an association between prefrontal damage and anti-social behavior. Functional neuroimaging seems to be useful not only for psychiatric evaluation of major factors such as depression and anxiety but also for further psychosocial factors in cancer patients.

  2. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control.

    Science.gov (United States)

    Silton, Rebecca Levin; Heller, Wendy; Towers, David N; Engels, Anna S; Spielberg, Jeffrey M; Edgar, J Christopher; Sass, Sarah M; Stewart, Jennifer L; Sutton, Bradley P; Banich, Marie T; Miller, Gregory A

    2010-04-15

    A network of brain regions has been implicated in top-down attentional control, including left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC). The present experiment evaluated predictions of the cascade-of-control model (Banich, 2009), which predicts that during attentionally-demanding tasks, LDLPFC imposes a top-down attentional set which precedes late-stage selection performed by dACC. Furthermore, the cascade-of-control model argues that dACC must increase its activity to compensate when top-down control by LDLPFC is poor. The present study tested these hypotheses using fMRI and dense-array ERP data collected from the same 80 participants in separate sessions. fMRI results guided ERP source modeling to characterize the time course of activity in LDLPFC and dACC. As predicted, dACC activity subsequent to LDLPFC activity distinguished congruent and incongruent conditions on the Stroop task. Furthermore, when LDLPFC activity was low, the level of dACC activity was related to performance outcome. These results demonstrate that dACC responds to attentional demand in a flexible manner that is dependent on the level of LDLPFC activity earlier in a trial. Overall, results were consistent with the temporal course of regional brain function proposed by the cascade-of-control model. Copyright 2009 Elsevier Inc. All rights reserved.

  3. No change in N-acetyl aspartate in first episode of moderate depression after antidepressant treatment: 1H magnetic spectroscopy study of left amygdala and left dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Bajs Janović M

    2014-09-01

    Full Text Available Maja Bajs Janović,1,3 Petra Kalember,2 Špiro Janović,1,3 Pero Hrabač,2 Petra Folnegović Grošić,1 Vladimir Grošić,4 Marko Radoš,5 Neven Henigsberg2,61University Department of Psychiatry, Clinical Hospital Center Zagreb, Zagreb, 2Polyclinic Neuron, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, 3University North, Varaždin, 4Psychiatric Hospital Sveti Ivan, Zagreb, 5University Department of Radiology, Clinical Hospital Center Zagreb, Zagreb, 6Psychiatric Clinic Vrapče, Zagreb, CroatiaBackground: The role of brain metabolites as biological correlates of the intensity, symptoms, and course of major depression has not been determined. It has also been inconclusive whether the change in brain metabolites, measured with proton magnetic spectroscopy, could be correlated with the treatment outcome. Methods: Proton magnetic spectroscopy was performed in 29 participants with a first episode of moderate depression occurring in the left dorsolateral prefrontal cortex and left amygdala at baseline and after 8 weeks of antidepressant treatment with escitalopram. The Montgomery-Asberg Depression Rating Scale, the Hamilton Rating Scale for Depression, and the Beck Depression Inventory were used to assess the intensity of depression at baseline and at the endpoint of the study. At endpoint, the participants were identified as responders (n=17 or nonresponders (n=12 to the antidepressant therapy. Results: There was no significant change in the N-acetyl aspartate/creatine ratio (NAA/Cr after treatment with antidepressant medication. The baseline and endpoint NAA/Cr ratios were not significantly different between the responder and nonresponder groups. The correlation between NAA/Cr and changes in the scores of clinical scales were not significant in either group. Conclusion: This study could not confirm any significant changes in NAA after antidepressant treatment in the first episode of moderate depression, or in

  4. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats.

    Science.gov (United States)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole; Sotty, Florence

    2017-08-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of this study was to determine how administration of the NMDAR antagonist phencyclidine (PCP) during neurodevelopment affects functional network activity within the hippocampus and medial prefrontal cortex (mPFC). We recorded field potentials in vivo after electrical brain stem stimulation and observed a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia. NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead to suppressed evoked theta oscillations in ventral hippocampus in adult rats, while evoked gamma oscillations are enhanced and hypersensitive to an acute challenge with a NMDA receptor antagonist in prefrontal cortex. These observations reveal the significance of neurodevelopmental disturbances in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease. Copyright © 2017 the American Physiological Society.

  5. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    Science.gov (United States)

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  6. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants

    Directory of Open Access Journals (Sweden)

    Sin-Ae Park

    2017-09-01

    Full Text Available The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV, prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD method and a profile of mood state questionnaire (POMS. Results showed that the natural logarithmic (ln ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2–3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  7. Central as well as peripheral attentional bottlenecks in dual-task performance activate lateral prefrontal cortices

    Directory of Open Access Journals (Sweden)

    Andre J Szameitat

    2016-03-01

    Full Text Available Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage as well as peripheral limitations (i.e., bottleneck at response initiation both demand executive functions located in the lateral prefrontal cortex. For this, we re-analysed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP during fMRI. In one study (N=17, the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group. In the other study (N=16, the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group. Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect. Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices. Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns suggest that the executive functions resolving

  8. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    Science.gov (United States)

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  9. Using fMRI to investigate a component process of reflection: prefrontal correlates of refreshing a just-activated representation.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Greene, Erich J; Cunningham, William A; Sanislow, Charles A

    2005-09-01

    Using fMRI, we investigated the functional organization of prefrontal cortex (PFC) as participants briefly thought of a single just-experienced item (i.e., refreshed an active representation). The results of six studies, and a meta-analysis including previous studies, identified regions in left dorsolateral, anterior, and ventrolateral PFC associated in varying degrees with refreshing different types of information (visual and auditory words, drawings, patterns, people, places, or locations). In addition, activity increased in anterior cingulate with selection demands and in orbitofrontal cortex when a nonselected item was emotionally salient, consistent with a role for these areas in cognitive control (e.g., overcoming "mental rubbernecking"). We also found evidence that presenting emotional information disrupted an anterior component of the refresh circuit. We suggest that refreshing accounts for some neural activity observed in more complex tasks, such as working memory, long-term memory, and problem solving, and that its disruption (e.g., from aging or emotion) could have a broad impact.

  10. Enhanced activation of the left hemisphere promotes normative decision making.

    Science.gov (United States)

    Corser, Ryan; Jasper, John D

    2014-01-01

    Previous studies have reported that enhanced activation of the left cerebral hemisphere reduces risky-choice, attribute, and goal-framing effects relative to enhanced activation of the right cerebral hemisphere. The present study sought to extend these findings and show that enhanced activation of the left hemisphere also reduces violations of other normative principles, besides the invariance principle. Participants completed ratio bias (Experiment 1, N = 296) and base rate neglect problems (Experiment 2, N = 145) under normal (control) viewing or with the right or left hemisphere primarily activated by imposing a unidirectional gaze. In Experiment 1 we found that enhanced left hemispheric activation reduced the ratio bias relative to normal viewing and a group experiencing enhanced right hemispheric activation. In Experiment 2 enhanced left hemispheric activation resulted in using base rates more than normal viewing, but not significantly more than enhanced right hemispheric activation. Results suggest that hemispheric asymmetries can affect higher-order cognitive processes, such as decision-making biases. Possible theoretical accounts are discussed as well as implications for dual-process theories.

  11. Medial Prefrontal Cortex Activation Is Commonly Invoked by Reputation of Self and Romantic Partners

    Science.gov (United States)

    Kawamichi, Hiroaki; Sasaki, Akihiro T.; Matsunaga, Masahiro; Yoshihara, Kazufumi; Takahashi, Haruka K.; Tanabe, Hiroki C.; Sadato, Norihiro

    2013-01-01

    The reputation of others influences partner selection in human cooperative behaviors through verbal reputation representation. Although the way in which humans represent the verbal reputations of others is a pivotal issue for social neuroscience, the neural correlates underlying the representation of verbal reputations of others are unclear. Humans primarily depend on self-evaluation when assessing reputation of self. Likewise, humans might primarily depend on self-evaluation of others when representing their reputation. As interaction promotes the formation of more nuanced, individualized impressions of an interaction partner, humans tend to form self-evaluations of persons with whom they are intimate in their daily life. Thus, we hypothesized that the representation of reputation of others is modulated by intimacy due to one’s own evaluation formation of that person. To test this hypothesis, we conducted a functional magnetic resonance imaging experiment with 11 pairs of romantic partners while they viewed an evaluation of a target person (self, partner [intimate other], or stranger [non-intimate other]), made by other evaluators. When compared with strangers, viewing evaluations of self and partner activated overlapping regions in the medial prefrontal cortex. Verbal reputation of self-specific activation was found in the precuneus, which represents self-related processing. The data suggest that midline structures represent reputation of self. In addition, intimacy-modulated activation in the medial prefrontal cortex suggests that the verbal reputation of intimate others is represented similarly to reputation of self. These results suggest that the reputation representation in the medial prefrontal cortex is engaged by verbal reputation of self and intimate others stemming from both own and other evaluators’ judgments. PMID:24086409

  12. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Anthony Charles Ruocco

    2016-05-01

    Full Text Available Self-harm is a potentially lethal symptom of borderline personality disorder (BPD that often improves with dialectical behavior therapy (DBT. While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, twenty-nine actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex during impulse control prior to beginning DBT and after seven months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex prior to beginning treatment, and they showed the greatest increases in activity within this region after seven months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial prefrontal cortex and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right dorsolateral prefrontal cortex even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the prefrontal cortex underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT.

  13. Modulating activity in the prefrontal cortex changes decision-making for risky gains and losses: a transcranial direct current stimulation study.

    Science.gov (United States)

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Luo, Jun

    2015-06-01

    When making choices under uncertainty, people usually consider both the risks and benefits of each option. Previous studies have found that weighing of risks and benefits during decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC), but the causal effect of this network on risk decision-making has remained unclear. This experiment was based on a risk-measurement table designed to provide a direct measure of risk preference, with a weighted value of the choices (denoted as weighted risk aversion, WRA) as an index of the participant's degree of risk aversion. We studied whether bifrontal transcranial direct current stimulation (tDCS) applied over the right and left prefrontal cortex can change the balance of risky vs. safe responses under both gain frame and loss frame. A total of 60 volunteers performed risk tasks while receiving either anodal over the right with cathodal over the left DLPFC, anodal over the left with cathodal over the right DLPFC, or sham stimulation. The participants tended to choose more risky options in the gain frame and more safe options in the loss frame after the right anodal/left cathodal tDCS. We also found that right anodal/left cathodal tDCS significantly decreased the WRA values compared with those associated with sham stimulation. These findings extend the notion that DLPFC activity is critical for risk decision-making, indicating an asymmetric role of the right DLPFC in the gain frame vs. the loss frame of risk decision-making. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Beatrix Barth

    2016-12-01

    Full Text Available Neurofeedback is a promising tool for treatment and rehabilitation of several patient groups. In this proof of principle study, near-infrared spectroscopy (NIRS based neurofeedback of frontal cortical areas was investigated in healthy adults. Main aims were the assessment of learning, the effects on performance in a working memory (n-back task and the impact of applied strategies on regulation.13 healthy participants underwent 8 sessions of NIRS based neurofeedback within two weeks to learn to voluntarily up-regulate hemodynamic activity in prefrontal areas. An n-back task in pre-/post measurements was used to monitor neurocognitive changes. Mean oxygenated hemoglobin (O2Hb amplitudes over the course of the sessions as well as during the n-back task were evaluated. 12 out of 13 participants were able to regulate their frontal hemodynamic response via NIRS neurofeedback. However, no systematic learning effects were observed in frontal O2Hb amplitudes over the training course in our healthy sample. We found an impact of applied strategies in only 5 out of 13 subjects. Regarding the n-back task, neurofeedback appeared to induce more focused and specific brain activation compared to pre-training measurement. NIRS based neurofeedback is a feasible and potentially effective method, with an impact on activation patterns in a working memory task. Ceiling effects might explain the lack of a systematic learning pattern in healthy subjects. Clinical studies are needed to show effects in patients exhibiting pathological deviations in prefrontal function.

  15. Changes in prefrontal neuronal activity after learning to perform a spatial working memory task.

    Science.gov (United States)

    Qi, Xue-Lian; Meyer, Travis; Stanford, Terrence R; Constantinidis, Christos

    2011-12-01

    The prefrontal cortex is considered essential for learning to perform cognitive tasks though little is known about how the representation of stimulus properties is altered by learning. To address this issue, we recorded neuronal activity in monkeys before and after training on a task that required visual working memory. After the subjects learned to perform the task, we observed activation of more prefrontal neurons and increased activity during working memory maintenance. The working memory-related increase in firing rate was due mostly to regular-spiking putative pyramidal neurons. Unexpectedly, the selectivity of neurons for stimulus properties and the ability of neurons to discriminate between stimuli decreased as the information about stimulus properties was apparently present in neural firing prior to training and neuronal selectivity degraded after training in the task. The effect was robust and could not be accounted for by differences in sampling sites, selection of neurons, level of performance, or merely the elapse of time. The results indicate that, in contrast to the effects of perceptual learning, mastery of a cognitive task degrades the apparent stimulus selectivity as neurons represent more abstract information related to the task. This effect is countered by the recruitment of more neurons after training.

  16. Real-time monitoring prefrontal activities during online video game playing by functional near-infrared spectroscopy.

    Science.gov (United States)

    Li, Yue; Zhang, Lei; Long, Kehong; Gong, Hui; Lei, Hao

    2018-02-16

    A growing body of literature has suggested that video game playing can induce functional and structural plasticity of the brain. The underlying mechanisms, however, remain poorly understood. In this study, functional near-infrared spectroscopy (fNIRS) was used to record prefrontal activities in 24 experienced game players when they played a massively multiplayer online battle arena video game, League of Legends (LOL), under naturalistic conditions. It was observed that game onset was associated with significant activations in the ventrolateral prefrontal cortex (VLPFC) and concomitant deactivations in the dorsolateral prefrontal cortex (DLPFC) and frontal pole area (FPA). Game events, such as slaying an enemy and being slain by an enemy evoked region-specific time-locked hemodynamic/oxygenation responses in the prefrontal cortex (PFC). It was proposed that the VLPFC activities during LOL playing are likely responses to visuo-motor task load of the game, while the DLPFC/FPA activities may be involved in the constant shifts of attentional states and allocation of cognitive resources required by game playing. The present study demonstrated that it is feasible to use fNIRS to monitor real-time prefrontal activity during online video game playing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Exergame and Balance Training modulate Prefrontal Brain Activity during Walking and enhance Executive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Patrick eEggenberger

    2016-04-01

    Full Text Available Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE or balance and stretching training (BALANCE. The 8-week intervention included three sessions of 30 minutes per week and was completed by 33 participants (mean age 74.9±6.9 years. Prefrontal cortex (PFC activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < .05 or trend, r = .25 to .36, while DANCE showed a larger reduction at the end of the 30-second walking task compared to BALANCE in the left PFC (F(1, 31 = 3.54, p = .035, r = .32. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < .05 or trend, r = .31 to .50. The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults.

  18. Prenatal Protein Malnutrition Decreases KCNJ3 and 2DG Activity in Rat Prefrontal Cortex

    Science.gov (United States)

    Amaral, A.C.; Jakovcevski, M.; McGaughy, J.A.; Calderwood, S.K.; Mokler, D.J.; Rushmore, R.J.; Galler, J.R.; Akbarian, S.A.; Rosene, D.L.

    2014-01-01

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with 14C-2-deoxyglucose. Results showed decreased activation in PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  19. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity.

    Science.gov (United States)

    Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric

    2017-12-01

    Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  1. Medial prefrontal brain activation to anticipated reward and loss in obsessive-compulsive disorder.

    Science.gov (United States)

    Kaufmann, C; Beucke, J C; Preuße, F; Endrass, T; Schlagenhauf, F; Heinz, A; Juckel, G; Kathmann, N

    2013-01-01

    Obsessive-compulsive disorder (OCD) is associated with dysfunctional brain activity in several regions which are also involved in the processing of motivational stimuli. Processing of reward and punishment appears to be of special importance to understand clinical symptoms. There is evidence for higher sensitivity to punishment in patients with OCD which raises the question how avoidance of punishment relates to activity within the brain's reward circuitry. We employed the monetary incentive delay task paradigm optimized for modeling the anticipation phase of immediate reward and punishment, in the context of a cross-sectional event-related FMRI study comparing OCD patients and healthy control participants (n = 19 in each group). While overall behavioral performance was similar in both groups, patients showed increased activation upon anticipated losses in a medial and superior frontal cortex region extending into the cingulate cortex, and decreased activation upon anticipated rewards. No evidence was found for altered activation of dorsal or ventral striatal regions. Patients also showed more delayed responses for anticipated rewards than for anticipated losses whereas the reverse was true in healthy participants. The medial prefrontal cortex has been shown to implement a domain-general process comprising negative affect, pain and cognitive control. This process uses information about punishment to control aversively motivated actions by integrating signals arriving from subcortical regions. Our results support the notion that OCD is associated with altered sensitivity to anticipated rewards and losses in a medial prefrontal region whereas there is no significant aberrant activation in ventral or dorsal striatal brain regions during processing of reinforcement anticipation.

  2. Prefrontal activity and diagnostic monitoring of memory retrieval: FMRI of the criterial recollection task.

    Science.gov (United States)

    Gallo, David A; Kensinger, Elizabeth A; Schacter, Daniel L

    2006-01-01

    According to the distinctiveness heuristic, subjects rely more on detailed recollections (and less on familiarity) when memory is tested for pictures relative to words, leading to reduced false recognition. If so, then neural regions that have been implicated in effortful postretrieval monitoring (e.g., dorsolateral prefrontal cortex) might be recruited less heavily when trying to remember pictures. We tested this prediction with the criterial recollection task. Subjects studied black words, paired with either the same word in red font or a corresponding colored picture. Red words were repeated at study to equate recognition hits for red words and pictures. During fMRI scanning, alternating red word memory tests and picture memory tests were given, using only white words as test stimuli (say "yes" only if you recollect a corresponding red word or picture, respectively). These tests were designed so that subjects had to rely on memory for the criterial information. Replicating prior behavioral work, we found enhanced rejection of lures on the picture test compared to the red word test, indicating that subjects had used a distinctiveness heuristic. Critically, dorsolateral prefrontal activity was reduced when rejecting familiar lures on the picture test, relative to the red word test. These findings indicate that reducing false recognition via the distinctiveness heuristic is not heavily dependent on frontally mediated postretrieval monitoring processes.

  3. Egalitarian reward contingency in competitive games and primate prefrontal neuronal activity.

    Science.gov (United States)

    Hosokawa, Takayuki; Watanabe, Masataka

    2015-01-01

    How people work to obtain a reward depends on the context of the reward delivery, such as the presence/absence of competition and the contingency of reward delivery. Since resources are limited, winning a competition is critically important for organisms' obtaining a reward. People usually expect ordinary performance-reward contingency, with better performers obtaining better rewards. Unordinary reward contingency, such as egalitarianism (equal rewards/no-rewards to both good and poor performers), dampens people's motivation. We previously reported that monkeys were more motivated, and neurons in the lateral prefrontal cortex (LPFC) showed higher outcome-related activity in a competitive than in a noncompetitive game (Hosokawa and Watanabe, 2012). However, monkey's behavior and LPFC neuronal activity have not been examined in a competitive situation with an unordinary performance-reward contingency. Also, the fixed performance-reward contingency in the previous study did not allow us to examine effects of win/loss separately from those of reward/no-reward on prefrontal neuronal activity. Here, we employed the egalitarian competitive situation in which both the winner and loser, or neither of them, got a reward as well as the normal competitive situation in which only the winner got a reward. Monkey's behavioral performance greatly deteriorated in trials with the egalitarian outcome conditions. LPFC neurons showed activities that reflected the normal or egalitarian outcome condition while very few neurons coded win/loss independent of reward/no-reward. Importantly, we found neurons that showed reward-related activity in the normal, but not in the egalitarian outcome conditions, even though the same reward was given to the animal. These results indicate that LPFC may play an important role in monitoring the current reward contingency and integrating it with the performance outcome (win-loss) for better performing the competitive game, and thus for better survival.

  4. Attention, emotion, and deactivation of default activity in inferior medial prefrontal cortex

    DEFF Research Database (Denmark)

    Geday, Jacob; Gjedde, Albert

    2008-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC...... with positron emission tomography (PET) of labeled water (H(15)2O) uptake in brain of 14 healthy subjects. The subjects performed either a less demanding or a more demanding task of attention while they watched neutral and emotive images of people in realistic indoor or outdoor situations. In the less demanding...... cortices, revealed significant activation in the fusiform gyrus, independently of the task. In contrast, we found no effect of emotional content in the IMPC, where emotions failed to override the effect of the task. The results are consistent with a role of the IMPC in the selection among competitive...

  5. Reduced prefrontal cortex activation in the color-word Stroop task for Chinese dyslexic children: a near-infrared spectroscopy study

    International Nuclear Information System (INIS)

    Sun Jinyan; Zhai Jiahuan; Gong Hui; Song Ranran; Zou Li

    2011-01-01

    Behavioral studies have investigated the performance of children with developmental dyslexia in conflict resolution, a function connected with the prefrontal cortex (PFC) closely. However, little is known about the prefrontal activation in conflict resolution for dyslexic children. In the present study, the involvement of the PFC in resolving conflict was evaluated for Chinese dyslexic children by means of near-infrared spectroscopy (NIRS). The NIRS instrument is a portable, continuous-wave system and can measure concentration changes of hemodynamic parameters (including oxy-, deoxy-, and total hemoglobin). Considering better sensitivity, the oxy-hemoglobin (oxy-Hb) was chosen to indicate the prefrontal activation. Ten dyslexic children and 11 normal children were recruited to perform the Chinese-character color-word Stroop task, which included the neutral and color (incongruent) tasks. In behavioral performance, both groups showed significant Stroop effect, longer response time or higher error rate for the color task. In particular, the Stroop interference effect was marginally larger for dyslexic children than normal children in response time. What's more, the two groups showed distinct pattern of oxy-Hb activation during the Stroop tasks. The normal group recruited the bilateral PFC to perform the tasks, while the dyslexic group couldn't activate the bilateral PFC in the difficult color task. Moreover, significantly less color Stroop effect was found in the left PFC for the dyslexic group, showing their disability in coping with the Stroop interference. These findings suggest that the PFC is dysfunctional in conflict resolution for Chinese dyslexic children and that NIRS can be an effective tool in neurological research and clinical application.

  6. Reduced prefrontal cortex activation in the color-word Stroop task for Chinese dyslexic children: a near-infrared spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinyan; Zhai Jiahuan; Gong Hui [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074 (China); Song Ranran; Zou Li, E-mail: huigong@mail.hust.edu.cn [Department of Child and Adolescent Health and Maternal Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-01

    Behavioral studies have investigated the performance of children with developmental dyslexia in conflict resolution, a function connected with the prefrontal cortex (PFC) closely. However, little is known about the prefrontal activation in conflict resolution for dyslexic children. In the present study, the involvement of the PFC in resolving conflict was evaluated for Chinese dyslexic children by means of near-infrared spectroscopy (NIRS). The NIRS instrument is a portable, continuous-wave system and can measure concentration changes of hemodynamic parameters (including oxy-, deoxy-, and total hemoglobin). Considering better sensitivity, the oxy-hemoglobin (oxy-Hb) was chosen to indicate the prefrontal activation. Ten dyslexic children and 11 normal children were recruited to perform the Chinese-character color-word Stroop task, which included the neutral and color (incongruent) tasks. In behavioral performance, both groups showed significant Stroop effect, longer response time or higher error rate for the color task. In particular, the Stroop interference effect was marginally larger for dyslexic children than normal children in response time. What's more, the two groups showed distinct pattern of oxy-Hb activation during the Stroop tasks. The normal group recruited the bilateral PFC to perform the tasks, while the dyslexic group couldn't activate the bilateral PFC in the difficult color task. Moreover, significantly less color Stroop effect was found in the left PFC for the dyslexic group, showing their disability in coping with the Stroop interference. These findings suggest that the PFC is dysfunctional in conflict resolution for Chinese dyslexic children and that NIRS can be an effective tool in neurological research and clinical application.

  7. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity.

    Science.gov (United States)

    Ursini, Gianluca; Bollati, Valentina; Fazio, Leonardo; Porcelli, Annamaria; Iacovelli, Luisa; Catalani, Assia; Sinibaldi, Lorenzo; Gelao, Barbara; Romano, Raffaella; Rampino, Antonio; Taurisano, Paolo; Mancini, Marina; Di Giorgio, Annabella; Popolizio, Teresa; Baccarelli, Andrea; De Blasi, Antonio; Blasi, Giuseppe; Bertolino, Alessandro

    2011-05-04

    DNA methylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val(158) allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val(158) allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively with WM performance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val(158) allele with stress, gene expression, WM performance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.

  8. The Analgesic and Anxiolytic Effect of Souvenaid, a Novel Nutraceutical, Is Mediated by Alox15 Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Shalini, Suku-Maran; Herr, Deron R; Ong, Wei-Yi

    2017-10-01

    Pain and anxiety have a complex relationship and pain is known to share neurobiological pathways and neurotransmitters with anxiety. Top-down modulatory pathways of pain have been shown to originate from cortical and subcortical regions, including the dorsolateral prefrontal cortex. In this study, a novel docosahexaenoic acid (DHA)-containing nutraceutical, Souvenaid, was administered to mice with infraorbital nerve ligation-induced neuropathic pain and behavioral responses recorded. Infraorbital nerve ligation resulted in increased face wash strokes of the face upon von Frey hair stimulation, indicating increased nociception. Part of this response involves general pain sensitization that is dependent on the CNS, since increased nociception was also found in the paws during the hot plate test. Mice receiving oral gavage of Souvenaid, a nutraceutical containing DHA; choline; and other cell membrane components, showed significantly reduced pain sensitization. The mechanism of Souvenaid's activity involves supraspinal antinociception, originating in the prefrontal cortex, since inhibition of the DHA-metabolizing enzyme 15-lipoxygenase (Alox15) in the prefrontal cortex attenuated the antinociceptive effect of Souvenaid. Alox15 inhibition also modulated anxiety behavior associated with pain after infraorbital nerve ligation. The effects of Souvenaid components and Alox15 on reducing central sensitization of pain may be due to strengthening of a known supraspinal antinociceptive pathway from the prefrontal cortex to the periaqueductal gray. Together, results indicate the importance of the prefrontal cortex and DHA/Alox15 in central antinociceptive pathways and suggest that Souvenaid may be a novel therapeutic for neuropathic pain.

  9. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference.

    Science.gov (United States)

    Zeithamova, Dagmar; Dominick, April L; Preston, Alison R

    2012-07-12

    Memory enables flexible use of past experience to inform new behaviors. Although leading theories hypothesize that this fundamental flexibility results from the formation of integrated memory networks relating multiple experiences, the neural mechanisms that support memory integration are not well understood. Here, we demonstrate that retrieval-mediated learning, whereby prior event details are reinstated during encoding of related experiences, supports participants' ability to infer relationships between distinct events that share content. Furthermore, we show that activation changes in a functionally coupled hippocampal and ventral medial prefrontal cortical circuit track the formation of integrated memories and successful inferential memory performance. These findings characterize the respective roles of these regions in retrieval-mediated learning processes that support relational memory network formation and inferential memory in the human brain. More broadly, these data reveal fundamental mechanisms through which memory representations are constructed into prospectively useful formats. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Language experience differentiates prefrontal and subcortical activation of the cognitive control network in novel word learning.

    Science.gov (United States)

    Bradley, Kailyn A L; King, Kelly E; Hernandez, Arturo E

    2013-02-15

    The purpose of this study was to examine the cognitive control mechanisms in adult English speaking monolinguals compared to early sequential Spanish-English bilinguals during the initial stages of novel word learning. Functional magnetic resonance imaging during a lexico-semantic task after only 2h of exposure to novel German vocabulary flashcards showed that monolinguals activated a broader set of cortical control regions associated with higher-level cognitive processes, including the supplementary motor area (SMA), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC), as well as the caudate, implicated in cognitive control of language. However, bilinguals recruited a more localized subcortical network that included the putamen, associated more with motor control of language. These results suggest that experience managing multiple languages may differentiate the learning strategy and subsequent neural mechanisms of cognitive control used by bilinguals compared to monolinguals in the early stages of novel word learning. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine.

    Science.gov (United States)

    Gelao, Barbara; Fazio, Leonardo; Selvaggi, Pierluigi; Di Giorgio, Annabella; Taurisano, Paolo; Quarto, Tiziana; Romano, Raffaella; Porcelli, Annamaria; Mancini, Marina; Masellis, Rita; Ursini, Gianluca; De Simeis, Giuseppe; Caforio, Grazia; Ferranti, Laura; Lo Bianco, Luciana; Rampino, Antonio; Todarello, Orlando; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2014-06-01

    Pharmacological stimulation of D2 receptors modulates prefrontal neural activity associated with working memory (WM) processing. The T allele of a functional single-nucleotide polymorphism (SNP) within DRD2 (rs1076560 G > T) predicts reduced relative expression of the D2S receptor isoform and less efficient neural cortical responses during WM tasks. We used functional MRI to test the hypothesis that DRD2 rs1076560 genotype interacts with pharmacological stimulation of D2 receptors with bromocriptine on prefrontal responses during different loads of a spatial WM task (N-Back). Fifty-three healthy subjects (38 GG and 15 GT) underwent two 3-T functional MRI scans while performing the 1-, 2- and 3-Back versions of the N-Back WM task. Before the imaging sessions, either bromocriptine or placebo was administered to all subjects in a counterbalanced order. A factorial repeated-measures ANOVA within SPM8 (p < 0.05, family-wise error corrected) was used. On bromocriptine, GG subjects had reduced prefrontal activity at 3-Back together with a significant decrement in performance, compared with placebo. On the other hand, GT subjects had lower activity for the same level of performance at 1-Back but a trend for reduced behavioral performance in the face of unchanged activity at 2-Back. These results indicate that bromocriptine stimulation modulates prefrontal activity in terms of disengagement or of efficiency depending on DRD2 genotype and working memory load.

  12. Improved Prefrontal Activity and Chewing Performance as Function of Wearing Denture in Partially Edentulous Elderly Individuals: Functional Near-Infrared Spectroscopy Study

    Science.gov (United States)

    Kamiya, Kazunobu; Narita, Noriyuki; Iwaki, Sunao

    2016-01-01

    The purpose of this study was to elucidate the effects of wearing a denture on prefrontal activity during chewing performance. We specifically examined that activity in 12 elderly edentulous subjects [63.1±6.1 years old (mean ± SD)] and 12 young healthy controls (22.1±2.3 years old) using functional near-infrared spectroscopy (fNIRS) in order to evaluate the quality of prefrontal functionality during chewing performance under the conditions of wearing a denture and tooth loss, and then compared the findings with those of young healthy controls. fNIRS and electromyography were used simultaneously to detect prefrontal and masticatory muscle activities during chewing, while occlusal force and masticatory score were also examined by use of a food intake questionnaire. A significant increase in prefrontal activity was observed during chewing while wearing a denture, which was accompanied by increased masticatory muscle activity, occlusal force, and masticatory score, as compared with the tooth loss condition. Prefrontal activation during chewing while wearing a denture in the elderly subjects was not much different from that in the young controls. In contrast, tooth loss in the elderly group resulted in marked prefrontal deactivation, accompanied by decreased masticatory muscle activity, occlusal force, and masticatory score, as compared with the young controls. We concluded that intrinsic prefrontal activation during chewing with a denture may prevent prefrontal depression induced by tooth loss in elderly edentulous patients. PMID:27362255

  13. Prefrontal cortex activity is associated with biobehavioral components of the stress response

    Directory of Open Access Journals (Sweden)

    Muriah D Wheelock

    2016-11-01

    Full Text Available Contemporary theory suggests that prefrontal cortex (PFC function is associated with individual variability in the psychobiology of the stress response. Advancing our understanding of this complex biobehavioral pathway has potential to provide insight into processes that determine individual differences in stress susceptibility. The present study used functional magnetic resonance imaging (fMRI to examine brain activity during a variation of the Montreal Imaging Stress Task (MIST in fifty-three young adults. Salivary cortisol was assessed as an index of the stress response, trait anxiety was assessed as an index of an individual’s disposition towards negative affectivity, and self-reported stress was assessed as an index of an individual’s subjective psychological experience. Heart rate and skin conductance responses were also assessed as additional measures of physiological reactivity. Dorsomedial PFC, dorsolateral PFC, and inferior parietal lobule demonstrated differential activity during the MIST. Further, differences in salivary cortisol reactivity to the MIST were associated with ventromedial PFC and posterior cingulate activity, while trait anxiety and self-reported stress were associated with dorsomedial and ventromedial PFC activity respectively. These findings underscore that PFC activity regulates behavioral and psychobiological components of the stress response.

  14. Reduced Prefrontal Cortex Activation in Children with Attention-Deficit/Hyperactivity Disorder during Go/No-Go Task: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Shuo Miao

    2017-06-01

    Full Text Available Objective: Attention-deficit/hyperactivity disorder (ADHD is one of the most common neuropsychiatric disorders in children and affects 3 to 5% of school-aged children. This study is to demonstrate whether functional near-infrared spectroscopy (fNIRS can detect the changes in the concentration of oxygenated hemoglobin (oxy-HB in children with ADHD and typically developing children (TD children.Method: In this study, 14 children with ADHD and 15 TD children were studied. Metabolic signals of functional blood oxygen were recorded by using fNIRS during go/no-go task. A statistic method is used to compare the fNIRS between the ADHD children and controls.Results: A significant oxy-HB increase in the left frontopolar cortex (FPC in control subjects but not in children with ADHD during inhibitory tasks. Moreover, ADHD children showed reduced activation in left FPC relative to TD children.Conclusion: Functional brain imaging using fNIRS showed reduced activation in the left prefrontal cortex (PFC of children with ADHD during the inhibition task. The fNIRS could be a promising tool for differentiating children with ADHD and TD children.

  15. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Science.gov (United States)

    Fazio, Leonardo; Logroscino, Giancarlo; Taurisano, Paolo; Amico, Graziella; Quarto, Tiziana; Antonucci, Linda Antonella; Barulli, Maria Rosaria; Mancini, Marina; Gelao, Barbara; Ferranti, Laura; Popolizio, Teresa; Bertolino, Alessandro; Blasi, Giuseppe

    2016-01-01

    Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  16. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Leonardo Fazio

    Full Text Available Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions.Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia.Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior.These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  17. Ventromedial Prefrontal Cortex Activation Is Associated with Memory Formation for Predictable Rewards

    Science.gov (United States)

    Bialleck, Katharina A.; Schaal, Hans-Peter; Kranz, Thorsten A.; Fell, Juergen; Elger, Christian E.; Axmacher, Nikolai

    2011-01-01

    During reinforcement learning, dopamine release shifts from the moment of reward consumption to the time point when the reward can be predicted. Previous studies provide consistent evidence that reward-predicting cues enhance long-term memory (LTM) formation of these items via dopaminergic projections to the ventral striatum. However, it is less clear whether memory for items that do not precede a reward but are directly associated with reward consumption is also facilitated. Here, we investigated this question in an fMRI paradigm in which LTM for reward-predicting and neutral cues was compared to LTM for items presented during consumption of reliably predictable as compared to less predictable rewards. We observed activation of the ventral striatum and enhanced memory formation during reward anticipation. During processing of less predictable as compared to reliably predictable rewards, the ventral striatum was activated as well, but items associated with less predictable outcomes were remembered worse than items associated with reliably predictable outcomes. Processing of reliably predictable rewards activated the ventromedial prefrontal cortex (vmPFC), and vmPFC BOLD responses were associated with successful memory formation of these items. Taken together, these findings show that consumption of reliably predictable rewards facilitates LTM formation and is associated with activation of the vmPFC. PMID:21326612

  18. Lateral prefrontal cortex activity during cognitive control of emotion predicts response to social stress in schizophrenia

    Directory of Open Access Journals (Sweden)

    Laura M. Tully, PhD

    2014-01-01

    Full Text Available LPFC dysfunction is a well-established neural impairment in schizophrenia and is associated with worse symptoms. However, how LPFC activation influences symptoms is unclear. Previous findings in healthy individuals demonstrate that lateral prefrontal cortex (LPFC activation during cognitive control of emotional information predicts mood and behavior in response to interpersonal conflict, thus impairments in these processes may contribute to symptom exacerbation in schizophrenia. We investigated whether schizophrenia participants show LPFC deficits during cognitive control of emotional information, and whether these LPFC deficits prospectively predict changes in mood and symptoms following real-world interpersonal conflict. During fMRI, 23 individuals with schizophrenia or schizoaffective disorder and 24 healthy controls completed the Multi-Source Interference Task superimposed on neutral and negative pictures. Afterwards, schizophrenia participants completed a 21-day online daily-diary in which they rated the extent to which they experienced mood and schizophrenia-spectrum symptoms, as well as the occurrence and response to interpersonal conflict. Schizophrenia participants had lower dorsal LPFC activity (BA9 during cognitive control of task-irrelevant negative emotional information. Within schizophrenia participants, DLPFC activity during cognitive control of emotional information predicted changes in positive and negative mood on days following highly distressing interpersonal conflicts. Results have implications for understanding the specific role of LPFC in response to social stress in schizophrenia, and suggest that treatments targeting LPFC-mediated cognitive control of emotion could promote adaptive response to social stress in schizophrenia.

  19. Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity

    Directory of Open Access Journals (Sweden)

    Gaia Tavoni

    2017-10-01

    Full Text Available Functional coupling networks are widely used to characterize collective patterns of activity in neural populations. Here, we ask whether functional couplings reflect the subtle changes, such as in physiological interactions, believed to take place during learning. We infer functional network models reproducing the spiking activity of simultaneously recorded neurons in prefrontal cortex (PFC of rats, during the performance of a cross-modal rule shift task (task epoch, and during preceding and following sleep epochs. A large-scale study of the 96 recorded sessions allows us to detect, in about 20% of sessions, effective plasticity between the sleep epochs. These coupling modifications are correlated with the coupling values in the task epoch, and are supported by a small subset of the recorded neurons, which we identify by means of an automatized procedure. These potentiated groups increase their coativation frequency in the spiking data between the two sleep epochs, and, hence, participate to putative experience-related cell assemblies. Study of the reactivation dynamics of the potentiated groups suggests a possible connection with behavioral learning. Reactivation is largely driven by hippocampal ripple events when the rule is not yet learned, and may be much more autonomous, and presumably sustained by the potentiated PFC network, when learning is consolidated. Cell assemblies coding for memories are widely believed to emerge through synaptic modification resulting from learning, yet their identification from activity is very arduous. We propose a functional-connectivity-based approach to identify experience-related cell assemblies from multielectrode recordings in vivo, and apply it to the prefrontal cortex activity of rats recorded during a task epoch and the preceding and following sleep epochs. We infer functional couplings between the recorded cells in each epoch. Comparisons of the functional coupling networks across the epochs allow us

  20. Dynamic ErbB4 Activity in Hippocampal-Prefrontal Synchrony and Top-Down Attention in Rodents.

    Science.gov (United States)

    Tan, Zhibing; Robinson, Heath L; Yin, Dong-Min; Liu, Yu; Liu, Fang; Wang, Hongsheng; Lin, Thiri W; Xing, Guanglin; Gan, Lin; Xiong, Wen-Cheng; Mei, Lin

    2018-04-18

    Top-down attention is crucial for meaningful behaviors and impaired in various mental disorders. However, its underpinning regulatory mechanisms are poorly understood. We demonstrate that the hippocampal-prefrontal synchrony associates with levels of top-down attention. Both attention and synchrony are reduced in mutant mice of ErbB4, a receptor of neuregulin-1. We used chemical genetic and optogenetic approaches to inactivate ErbB4 kinase and ErbB4+ interneurons, respectively, both of which reduce gamma-aminobutyric acid (GABA) activity. Such inhibitions in the hippocampus impair both hippocampal-prefrontal synchrony and top-down attention, whereas those in the prefrontal cortex alter attention, but not synchrony. These observations identify a role of ErbB4-dependent GABA activity in the hippocampus in synchronizing the hippocampal-prefrontal pathway and demonstrate that acute, dynamic ErbB4 signaling is required to command top-down attention. Because both neuregulin-1 and ErbB4 are susceptibility genes of schizophrenia and major depression, our study contributes to a better understanding of these disorders. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults.

    Science.gov (United States)

    Moisala, M; Salmela, V; Hietajärvi, L; Salo, E; Carlson, S; Salonen, O; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2016-07-01

    The current generation of young people indulges in more media multitasking behavior (e.g., instant messaging while watching videos) in their everyday lives than older generations. Concerns have been raised about how this might affect their attentional functioning, as previous studies have indicated that extensive media multitasking in everyday life may be associated with decreased attentional control. In the current study, 149 adolescents and young adults (aged 13-24years) performed speech-listening and reading tasks that required maintaining attention in the presence of distractor stimuli in the other modality or dividing attention between two concurrent tasks. Brain activity during task performance was measured using functional magnetic resonance imaging (fMRI). We studied the relationship between self-reported daily media multitasking (MMT), task performance and brain activity during task performance. The results showed that in the presence of distractor stimuli, a higher MMT score was associated with worse performance and increased brain activity in right prefrontal regions. The level of performance during divided attention did not depend on MMT. This suggests that daily media multitasking is associated with behavioral distractibility and increased recruitment of brain areas involved in attentional and inhibitory control, and that media multitasking in everyday life does not translate to performance benefits in multitasking in laboratory settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Activation of dorsolateral prefrontal cortex in a dual neuropsychological screening test: An fMRI approach

    Directory of Open Access Journals (Sweden)

    Tachibana Atsumichi

    2012-05-01

    Full Text Available Abstract Background The Kana Pick-out Test (KPT, which uses Kana or Japanese symbols that represent syllables, requires parallel processing of discrete (pick-out and continuous (reading dual tasks. As a dual task, the KPT is thought to test working memory and executive function, particularly in the prefrontal cortex (PFC, and is widely used in Japan as a clinical screen for dementia. Nevertheless, there has been little neurological investigation into PFC activity during this test. Methods We used functional magnetic resonance imaging (fMRI to evaluate changes in the blood oxygenation level-dependent (BOLD signal in young healthy adults during performance of a computerized KPT dual task (comprised of reading comprehension and picking out vowels and compared it to its single task components (reading or vowel pick-out alone. Results Behavioral performance of the KPT degraded compared to its single task components. Performance of the KPT markedly increased BOLD signal intensity in the PFC, and also activated sensorimotor, parietal association, and visual cortex areas. In conjunction analyses, bilateral BOLD signal in the dorsolateral PFC (Brodmann's areas 45, 46 was present only in the KPT. Conclusions Our results support the central bottleneck theory and suggest that the dorsolateral PFC is an important mediator of neural activity for both short-term storage and executive processes. Quantitative evaluation of the KPT with fMRI in healthy adults is the first step towards understanding the effects of aging or cognitive impairment on KPT performance.

  3. Activation of dorsolateral prefrontal cortex in a dual neuropsychological screening test: an fMRI approach.

    Science.gov (United States)

    Tachibana, Atsumichi; Noah, J Adam; Bronner, Shaw; Ono, Yumie; Hirano, Yoshiyuki; Niwa, Masami; Watanabe, Kazuko; Onozuka, Minoru

    2012-05-28

    The Kana Pick-out Test (KPT), which uses Kana or Japanese symbols that represent syllables, requires parallel processing of discrete (pick-out) and continuous (reading) dual tasks. As a dual task, the KPT is thought to test working memory and executive function, particularly in the prefrontal cortex (PFC), and is widely used in Japan as a clinical screen for dementia. Nevertheless, there has been little neurological investigation into PFC activity during this test. We used functional magnetic resonance imaging (fMRI) to evaluate changes in the blood oxygenation level-dependent (BOLD) signal in young healthy adults during performance of a computerized KPT dual task (comprised of reading comprehension and picking out vowels) and compared it to its single task components (reading or vowel pick-out alone). Behavioral performance of the KPT degraded compared to its single task components. Performance of the KPT markedly increased BOLD signal intensity in the PFC, and also activated sensorimotor, parietal association, and visual cortex areas. In conjunction analyses, bilateral BOLD signal in the dorsolateral PFC (Brodmann's areas 45, 46) was present only in the KPT. Our results support the central bottleneck theory and suggest that the dorsolateral PFC is an important mediator of neural activity for both short-term storage and executive processes. Quantitative evaluation of the KPT with fMRI in healthy adults is the first step towards understanding the effects of aging or cognitive impairment on KPT performance.

  4. Humor Appreciation Involves Parametric and Synchronized Activity in the Medial Prefrontal Cortex and Hippocampus.

    Science.gov (United States)

    Iidaka, Tetsuya

    2017-12-01

    Humor perception is a ubiquitous phenomenon in human societies. In theories of humor perception, three factors, non-seriousness, social context, and incongruity, have been implicated in humor. In another theory, however, elaboration and reinterpretation of contexts are considered to play a role in eliciting humor. Although the neural correlates of humor appreciation have been investigated using neuroimaging methods, only a few studies have conducted such experiments under natural conditions. In the present study, two functional magnetic resonance imaging experiments, using a comedy movie as a stimulus, were conducted to investigate the neural correlates of humor under natural conditions. The subjects' brain activity was measured while watching and enjoying a movie. In experiment 1, a parametric analysis showed that the medial prefrontal cortex (MPFC) and hippocampus/amygdala had a positive relationship with the subjective rating of funniness. In experiment 2, intersubject correlation was analyzed to investigate synchronized activity across all participants. Signal synchronization that paralleled increased funniness ratings was observed in the MPFC and hippocampus. Thus, it appears that both parametric and synchronized activity in the MPFC and hippocampus are important during humor appreciation. The present study has revealed the brain regions that are predominantly involved in humor sensation under natural condition. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The regional neuronal activity in left posterior middle temporal gyrus is correlated with the severity of chronic aphasia.

    Science.gov (United States)

    Li, Jianlin; Du, Dunren; Gao, Wei; Sun, Xichun; Xie, Haizhu; Zhang, Gang; Li, Jian; Li, Honglun; Li, Kefeng

    2017-01-01

    Aphasia is one of the most disabling cognitive deficits affecting >2 million people in the USA. The neuroimaging characteristics of chronic aphasic patients (>6 months post onset) remain largely unknown. The objective of this study was to investigate the regional signal changes of spontaneous neuronal activity of brain and the inter-regional connectivity in chronic aphasia. Resting-state blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) was used to obtain fMRI data from 17 chronic aphasic patients and 20 healthy control subjects in a Siemens Verio 3.0T MR Scanner. The amplitude of low-frequency fluctuation (ALFF) was determined, which directly reflects the regional neuronal activity. The functional connectivity (FC) of fMRI was assessed using a seed voxel linear correlation approach. The severity of aphasia was evaluated by aphasia quotient (AQ) scores obtained from Western Aphasia Battery test. Compared with normal subjects, aphasic patients showed decreased ALFF values in the regions of left posterior middle temporal gyrus (PMTG), left medial prefrontal gyrus, and right cerebellum. The ALFF values in left PMTG showed strong positive correlation with the AQ score (coefficient r =0.79, P temporal gyrus (BA20), fusiform gyrus (BA37), and inferior frontal gyrus (BA47\\45\\44). Left PMTG might play an important role in language dysfunction of chronic aphasia, and ALFF value might be a promising indicator to evaluate the severity of aphasia.

  6. Decreased medial prefrontal cortex activation during self-referential processing in bipolar mania.

    Science.gov (United States)

    Herold, Dorrit; Usnich, Tatiana; Spengler, Stephanie; Sajonz, Bastian; Bauer, Michael; Bermpohl, Felix

    2017-09-01

    Patients with bipolar disorder in mania exhibit symptoms pointing towards altered self-referential processing, such as decreased self-focus, flight of ideas and high distractibility. In depression, the opposite pattern of symptoms has been connected to increased activation of medial prefrontal cortex (mPFC) during self-referential processing. In this study, we hypothesized that (1) patients with mania will exhibit decreased activation in the mPFC during self-referential processing and (2) will be more alexithymic and that levels of alexithymia will correlate negatively with mPFC activation. The neural response to standardized pictures was compared in 14 patients with bipolar I disorder in mania to 14 healthy controls using blood oxygen level dependent contrast magnetic resonance imaging. Participants were asked to indicate with button press during the scanning session for each picture whether the pictures personally related to them or not. Toronto alexithymia scale (TAS) scores were recorded from all participants. In the group analysis, patients with mania exhibited decreased activation in a predefined region of interest in the mPFC during self-referential processing compared to healthy controls. Patients with mania showed significantly higher levels of alexithymia, attributable to difficulties in identifying and describing emotions. Activation in the mPFC correlated negatively with levels of alexithymia. Results presented here should be replicated in a larger group, potentially including unmedicated patients. The finding of decreased mPFC activation during self-referential processing in mania may reflect decreased self-focus and high distractibility. Support for this view comes from the negative correlation between higher alexithymia scores and decreased mPFC activation. These findings represent an opposite clinical and neuroimaging pattern to findings in depression. Copyright © 2017. Published by Elsevier B.V.

  7. Changes in cue-induced, prefrontal cortex activity with video-game play.

    Science.gov (United States)

    Han, Doug Hyun; Kim, Yang Soo; Lee, Yong Sik; Min, Kyung Joon; Renshaw, Perry F

    2010-12-01

    Brain responses, particularly within the orbitofrontal and cingulate cortices, to Internet video-game cues in college students are similar to those observed in patients with substance dependence in response to the substance-related cues. In this study, we report changes in brain activity between baseline and following 6 weeks of Internet video-game play. We hypothesized that subjects with high levels of self-reported craving for Internet video-game play would be associated with increased activity in the prefrontal cortex, particularly the orbitofrontal and anterior cingulate cortex. Twenty-one healthy university students were recruited. At baseline and after a 6-week period of Internet video-game play, brain activity during presentation of video-game cues was assessed using 3T blood oxygen level dependent functional magnetic resonance imaging. Craving for Internet video-game play was assessed by self-report on a 7-point visual analogue scale following cue presentation. During a standardized 6-week video-game play period, brain activity in the anterior cingulate and orbitofrontal cortex of the excessive Internet game-playing group (EIGP) increased in response to Internet video-game cues. In contrast, activity observed in the general player group (GP) was not changed or decreased. In addition, the change of craving for Internet video games was positively correlated with the change in activity of the anterior cingulate in all subjects. These changes in frontal-lobe activity with extended video-game play may be similar to those observed during the early stages of addiction.

  8. New strict left bundle branch block criteria reflect left ventricular activation differences

    DEFF Research Database (Denmark)

    Emerek, Kasper Janus Grønn; Risum, Niels; Hjortshøj, Søren Pihlkjær

    2015-01-01

    AIMS: Pacing lead electrical delays and strict left bundle branch block (LBBB) criteria were assessed against cardiac resynchronization therapy (CRT) outcome. METHODS: Forty-nine patients with LBBB and QRS duration >130 milliseconds underwent CRT-implantation. Sensed right ventricular to left ven....... CONCLUSION: Interventricular electrical delay predicts left ventricular remodeling after CRT and new, strict ECG criteria of LBBB are superior in predicting remodeling.......AIMS: Pacing lead electrical delays and strict left bundle branch block (LBBB) criteria were assessed against cardiac resynchronization therapy (CRT) outcome. METHODS: Forty-nine patients with LBBB and QRS duration >130 milliseconds underwent CRT-implantation. Sensed right ventricular to left...... ventricular electrical delay (RV-LV-IED) was measured. Response to CRT was defined as ≥15% decrease in left ventricular end-systolic volume. RESULTS: Eighteen of 20 (90%) patients with non-ischemic dilated cardiomyopathy (DCM) and 18 of 29 (62%) with ischemic heart disease (IHD) responded to CRT, p

  9. Functional co-activation within the prefrontal cortex supports the maintenance of behavioural performance in fear-relevant situations before an iTBS modulated virtual reality challenge in participants with spider phobia.

    Science.gov (United States)

    Deppermann, S; Notzon, S; Kroczek, A; Rosenbaum, D; Haeussinger, F B; Diemer, J; Domschke, K; Fallgatter, A J; Ehlis, A-C; Zwanzger, P

    2016-07-01

    A number of studies/meta-analyses reported moderate antidepressant effects of activating repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex (PFC). Regarding the treatment of anxiety, study outcomes are inconsistent, probably because of the heterogenity of anxiety disorders/study designs. To specifically evaluate the impact of rTMS on emotion regulation in fear-relevant situations we applied a sham-controlled activating protocol (intermittent Theta Burst Stimulation/iTBS) over the left PFC (F3) succeeded by a virtual reality (VR) challenge in n=41 participants with spider phobia and n=42 controls. Prior to/after iTBS and following VR prefrontal activation was assessed by functional near-infrared spectroscopy during an emotional Stroop paradigm. Performance (reaction times/error rates) was evaluated. Stimuli were rated regarding valence/arousal at both measurements. We found diminished activation in the left inferior frontal gyrus (IFG) of participants with spider phobia compared to controls, particularly elicited by emotionally-irrelevant words. Simultaneously, a functional connectivity analysis showed increased co-activation between the left IFG and the contra-lateral hemisphere. Behavioural performance was unimpaired. After iTBS/VR no significant differences in cortical activation between the phobic and control group remained. However, verum-iTBS did not cause an additional augmentation. We interpreted our results in terms of a prefrontal network which gets activated by emotionally-relevant stimuli and supports the maintenance of adequate behavioural reactions. The missing add-on effects of iTBS might be due to a ceiling effect of VR, thereby supporting its potential during exposure therapy. Concurrently, it implies that the efficient application of iTBS in the context of emotion regulation still needs to be studied further. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area

    Science.gov (United States)

    Jo, Yong Sang; Lee, Jane; Mizumori, Sheri J.Y.

    2013-01-01

    Dopamine (DA) cells have been suggested to signal discrepancies between expected and actual rewards in reinforcement learning. DA cells in the ventral tegmental area (VTA) receive direct projections from the medial prefrontal cortex (mPFC), a structure that is known as one of the brain areas that represent expected future rewards. To investigate whether the mPFC contributes to generating reward prediction error signals of DA cells, we recorded VTA cells from rats foraging for different amounts of reward in a spatial working memory task. Our results showed that DA cells initially responded after the acquisition of rewards, but over training, they exhibited phasic responses when rats detected sensory cues originating from the rewards before obtaining them. We also observed two separate groups of non-DA cells that were activated in expectation of upcoming rewards or during reward consumption. Bilateral injections of muscimol, a GABAA agonist, into the mPFC significantly decreased the non-DA activity that encoded reward expectation. By contrast, the same manipulation of the mPFC elevated DA responses to reward-predicting cues. However, neither DA nor non-DA responses that were elicited after reward acquisition were affected by mPFC inactivation. These results suggest that the mPFC provides the information about expected rewards to the VTA, and its functional loss elevates DA responses to reward-predicting cues by altering expectations about forthcoming rewards. PMID:23658156

  11. Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers.

    Science.gov (United States)

    Raine, A; Meloy, J R; Bihrle, S; Stoddard, J; LaCasse, L; Buchsbaum, M S

    1998-01-01

    There appear to be no brain imaging studies investigating which brain mechanisms subserve affective, impulsive violence versus planned, predatory violence. It was hypothesized that affectively violent offenders would have lower prefrontal activity, higher subcortical activity, and reduced prefrontal/subcortical ratios relative to controls, while predatory violent offenders would show relatively normal brain functioning. Glucose metabolism was assessed using positron emission tomography in 41 comparisons, 15 predatory murderers, and nine affective murderers in left and right hemisphere prefrontal (medial and lateral) and subcortical (amygdala, midbrain, hippocampus, and thalamus) regions. Affective murderers relative to comparisons had lower left and right prefrontal functioning, higher right hemisphere subcortical functioning, and lower right hemisphere prefrontal/subcortical ratios. In contrast, predatory murderers had prefrontal functioning that was more equivalent to comparisons, while also having excessively high right subcortical activity. Results support the hypothesis that emotional, unplanned impulsive murderers are less able to regulate and control aggressive impulses generated from subcortical structures due to deficient prefrontal regulation. It is hypothesized that excessive subcortical activity predisposes to aggressive behaviour, but that while predatory murderers have sufficiently good prefrontal functioning to regulate these aggressive impulses, the affective murderers lack such prefrontal control over emotion regulation.

  12. Prefrontal activity during response inhibition decreases over time in the postpartum period.

    Science.gov (United States)

    Bannbers, Elin; Gingnell, Malin; Engman, Jonas; Morell, Arvid; Sylvén, Sara; Skalkidou, Alkistis; Kask, Kristiina; Bäckström, Torbjörn; Wikström, Johan; Poromaa, Inger Sundström

    2013-03-15

    The postpartum period is characterized by complex hormonal changes, but human imaging studies in the postpartum period have thus far predominantly focused on the neural correlates of maternal behavior or postpartum depression, whereas longitudinal studies on neural correlates of cognitive function across the postpartum period in healthy women are lacking. The aim of this study was to longitudinally examine response inhibition, as a measure of executive function, during the postpartum period and its neural correlates in healthy postpartum women and non-postpartum controls. Thirteen healthy postpartum women underwent event-related functional magnetic resonance imaging while performing a Go/NoGo task. The first assessment was made within 48 h of delivery, and the second at 4-7 weeks postpartum. In addition, 13 healthy women examined twice during the menstrual cycle were included as non-postpartum controls. In postpartum women region of interest analyses revealed task-related decreased activations in the right inferior frontal gyrus, right anterior cingulate, and bilateral precentral gyri at the late postpartum assessment. Generally, postpartum women displayed lower activity during response inhibition in the bilateral inferior frontal gyri and precentral gyri compared to non-postpartum controls. No differences in performance on the Go/NoGo task were found between time-points or between groups. In conclusion, this study has discovered that brain activity in prefrontal areas during a response inhibition task decreases throughout the course of the first postpartum weeks and is lower than in non-postpartum controls. Further studies on the normal adaptive brain activity changes that occur during the postpartum period are warranted. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Effects of selective REM sleep deprivation on prefrontal gamma activity and executive functions.

    Science.gov (United States)

    Corsi-Cabrera, M; Rosales-Lagarde, A; del Río-Portilla, Y; Sifuentes-Ortega, R; Alcántara-Quintero, B

    2015-05-01

    Given that the dorsolateral prefrontal cortex is involved in executive functions and is deactivated and decoupled from posterior associative regions during REM sleep, that Gamma temporal coupling involved in information processing is enhanced during REM sleep, and that adult humans spend about 90 min of every 24h in REM sleep, it might be expected that REM sleep deprivation would modify Gamma temporal coupling and have a deteriorating effect on executive functions. We analyzed EEG Gamma activity and temporal coupling during implementation of a rule-guided task before and after REM sleep deprivation and its effect on verbal fluency, flexible thinking and selective attention. After two nights in the laboratory for adaptation, on the third night subjects (n=18) were randomly assigned to either selective REM sleep deprivation effectuated by awakening them at each REM sleep onset or, the same number of NREM sleep awakenings as a control for unspecific effects of sleep interruptions. Implementation of abstract rules to guide behavior required greater activation and synchronization of Gamma activity in the frontopolar regions after REM sleep reduction from 20.6% at baseline to just 3.93% of total sleep time. However, contrary to our hypothesis, both groups showed an overall improvement in executive task performance and no effect on their capacity to sustain selective attention. These results suggest that after one night of selective REM sleep deprivation executive functions can be compensated by increasing frontal activation and they still require the participation of supervisory control by frontopolar regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  15. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance?

    Science.gov (United States)

    Kim, Kyungmi; Johnson, Marcia K

    2015-04-01

    Well-being and subjective experience of a coherent world depend on our sense of 'self' and relations between the self and the environment (e.g. people, objects and ideas). The ventromedial prefrontal cortex (vMPFC) is involved in self-related processing, and disrupted vMPFC activity is associated with disruptions of emotional/social functioning (e.g. depression and autism). Clarifying precise function(s) of vMPFC in self-related processing is an area of active investigation. In this study, we sought to more specifically characterize the function of vMPFC in self-related processing, focusing on two alternative accounts: (i) assignment of positive subjective value to self-related information and (ii) assignment of personal significance to self-related information. During functional magnetic resonance imaging (fMRI), participants imagined owning objects associated with either their perceived ingroup or outgroup. We found that for ingroup-associated objects, vMPFC showed greater activity for objects with increased than decreased post-ownership preference. In contrast, for outgroup-associated objects, vMPFC showed greater activity for objects with decreased than increased post-ownership preference. Our findings support the idea that the function of vMPFC in self-related processing may not be to represent/evaluate the 'positivity' or absolute preference of self-related information but to assign personal significance to it based on its meaning/function for the self. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  16. Reduced prefrontal activation in pediatric patients with obsessive-compulsive disorder during verbal episodic memory encoding.

    Science.gov (United States)

    Batistuzzo, Marcelo Camargo; Balardin, Joana Bisol; Martin, Maria da Graça Morais; Hoexter, Marcelo Queiroz; Bernardes, Elisa Teixeira; Borcato, Sonia; Souza, Marina de Marco E; Querido, Cicero Nardini; Morais, Rosa Magaly; de Alvarenga, Pedro Gomes; Lopes, Antonio Carlos; Shavitt, Roseli Gedanke; Savage, Cary R; Amaro, Edson; Miguel, Euripedes C; Polanczyk, Guilherme V; Miotto, Eliane C

    2015-10-01

    Patients with obsessive-compulsive disorder (OCD) often present with deficits in episodic memory, and there is evidence that these difficulties may be secondary to executive dysfunction, that is, impaired selection and/or application of memory-encoding strategies (mediation hypothesis). Semantic clustering is an effective strategy to enhance encoding of verbal episodic memory (VEM) when word lists are semantically related. Self-initiated mobilization of this strategy has been associated with increased activity in the prefrontal cortex, particularly the orbitofrontal cortex, a key region in the pathophysiology of OCD. We therefore studied children and adolescents with OCD during uncued semantic clustering strategy application in a VEM functional magnetic resonance imaging (fMRI)-encoding paradigm. A total of 25 pediatric patients with OCD (aged 8.1-17.5 years) and 25 healthy controls (HC, aged 8.1-16.9) matched for age, gender, handedness, and IQ were evaluated using a block design VEM paradigm that manipulated semantically related and unrelated words. The semantic clustering strategy score (SCS) predicted VEM performance in HC (p semantic clustering in OCD. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. The Influence of Televised Food Commercials on Children's Food Choices: Evidence from Ventromedial Prefrontal Cortex Activations.

    Science.gov (United States)

    Bruce, Amanda S; Pruitt, Stephen W; Ha, Oh-Ryeong; Cherry, J Bradley C; Smith, Timothy R; Bruce, Jared M; Lim, Seung-Lark

    2016-10-01

    To investigate how food commercials influence children's food choices. Twenty-three children ages 8-14 years provided taste and health ratings for 60 food items. Subsequently, these children were scanned with the use of functional magnetic resonance imaging while making food choices (ie, "eat" or "not eat") after watching food and nonfood television commercials. Our results show that watching food commercials changes the way children consider the importance of taste when making food choices. Children did not use health values for their food choices, indicating children's decisions were largely driven by hedonic, immediate rewards (ie, "tastiness"); however, children placed significantly more importance on taste after watching food commercials compared with nonfood commercials. This change was accompanied by faster decision times during food commercial trials. The ventromedial prefrontal cortex, a reward valuation brain region, showed increased activity during food choices after watching food commercials compared with after watching nonfood commercials. Overall, our results suggest watching food commercials before making food choices may bias children's decisions based solely on taste, and that food marketing may systematically alter the psychological and neurobiologic mechanisms of children's food decisions. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation

    Science.gov (United States)

    Anderson, Rachel M.; Cosme, Caitlin V.; Glanz, Ryan M.; Miller, Mary C.; Romig-Martin, Sara A.; LaLumiere, Ryan T.

    2015-01-01

    The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation of the stress-responsive hypothalamo-pituitary-adrenal axis raises the possibility that cocaine-related impairments in mPFC functioning may be manifested by similar changes in neuronal architecture in mPFC. Nevertheless, previous studies have generally identified increases, rather than decreases, in structural plasticity in mPFC after cocaine self-administration. Here, we use 3D imaging and analysis of dendritic spine morphometry to show that chronic cocaine self-administration leads to mild decreases of apical dendritic branching, prominent dendritic spine attrition in PL pyramidal neurons, and working memory deficits. Importantly, these impairments were largely accounted for in groups of rats that self-administered cocaine compared with yoked-cocaine- and saline-matched counterparts. Follow-up experiments failed to demonstrate any effects of either experimenter-administered cocaine or food self-administration on structural alterations in PL neurons. Finally, we verified that the cocaine self-administration group was distinguished by more protracted increases in adrenocortical activity compared with yoked-cocaine- and saline-matched controls. These studies suggest a mechanism whereby increased adrenocortical activity resulting from chronic cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity. SIGNIFICANCE STATEMENT Stress, aging, and mental illness are each linked to decreased prefrontal plasticity. Here, we show that chronic

  19. Cell-Type Specific Development of the Hyperpolarization-Activated Current, Ih, in Prefrontal Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sha-Sha Yang

    2018-05-01

    Full Text Available H-current, also known as hyperpolarization-activated current (Ih, is an inward current generated by the hyperpolarization-activated cyclic nucleotide-gated (HCN cation channels. Ih plays an essential role in regulating neuronal properties, synaptic integration and plasticity, and synchronous activity in the brain. As these biological factors change across development, the brain undergoes varying levels of vulnerability to disorders like schizophrenia that disrupt prefrontal cortex (PFC-dependent function. However, developmental changes in Ih in PFC neurons remains untested. Here, we examine Ih in pyramidal neurons vs. gamma-aminobutyric acid (GABAergic parvalbumin-expressing (PV+ interneurons in developing mouse PFC. Our findings show that the amplitudes of Ih in these cell types are identical during the juvenile period but differ at later time points. In pyramidal neurons, Ih amplitude significantly increases from juvenile to adolescence and follows a similar trend into adulthood. In contrast, the amplitude of Ih in PV+ interneurons decreases from juvenile to adolescence, and does not change from adolescence to adulthood. Moreover, the kinetics of HCN channels in pyramidal neurons is significantly slower than in PV+ interneurons, with a gradual decrease in pyramidal neurons and a gradual increase in PV+ cells across development. Our study reveals distinct developmental trajectories of Ih in pyramidal neurons and PV+ interneurons. The cell-type specific alteration of Ih during the critical period from juvenile to adolescence reflects the contribution of Ih to the maturation of the PFC and PFC-dependent function. These findings are essential for a better understanding of normal PFC function, and for elucidating Ih’s crucial role in the pathophysiology of neurodevelopmental disorders.

  20. Pharmacological Modulation of Long-Term Potentiation-Like Activity in the Dorsolateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bahar Salavati

    2018-04-01

    Full Text Available Background: Long-term potentiation (LTP depends on glutamatergic neurotransmission and is modulated by cholinergic, dopaminergic and GABAergic inputs. Paired associative stimulation (PAS is a neurostimulation paradigm that, when combined with electroencephalography (EEG, assesses LTP-like activity (PAS-induced LTP in the dorsolateral prefrontal cortex (DLPFC. Thus, we conducted a study to assess the role of cholinergic, dopaminergic, GABAergic and glutamatergic neurotransmission on PAS-induced LTP in the DLPFC. We hypothesized that increasing the dopaminergic tone with L-DOPA and the cholinergic tone with rivastigmine will enhance PAS-induced LTP, while increasing the GABAergic tone with baclofen and inhibiting glutamatergic neurotransmission with dextromethorphan will reduce it compared to placebo.Methods: In this randomized controlled, double-blind cross-over within-subject study, 12 healthy participants received five sessions of PAS to the DLPFC in a random order, each preceded by the administration of placebo or one of the four active drugs. PAS-induced LTP was assessed after each drug administration and compared to PAS-induced LTP after placebo.Results: As predicted, L-DOPA and rivastigmine resulted in enhanced PAS-induced LTP in the DLPFC and dextromethorphan inhibited it compared to placebo. In contrast, baclofen did not significantly suppress PAS-induced LTP compared to placebo.Conclusions: This study provides a novel approach to study DLPFC neuroplasticity and its modulation in patients with brain disorders that are associated with abnormalities in these neurochemical systems. This study was based on a single dose administration of each drug. Given that these drugs are typically administered chronically, future studies should assess the effects of chronic administration.

  1. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    Energy Technology Data Exchange (ETDEWEB)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi [Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000, Ghent (Belgium); Audenaert, Kurt [Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent (Belgium)

    2004-03-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  2. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi; Audenaert, Kurt

    2004-01-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  3. Differences in time course activation of dorsolateral prefrontal cortex associated with low or high risk choicesin a gambling task

    Directory of Open Access Journals (Sweden)

    Stefano eBembich

    2014-06-01

    Full Text Available Prefrontal cortex plays an important role in decision making (DM, supporting choices in the ordinary uncertainty of everyday life. To assess DM in an unpredictable situation, a playing card task, such as the Iowa Gambling Task (IGT, has been proposed. This task is supposed to specifically test emotion-based learning, linked to the integrity of the ventromedial prefrontal cortex (VMPFC. However, the dorsolateral prefrontal cortex (DLPFC has demonstrated a role in IGT performance too. Our aim was to study, by multichannel near-infrared spectroscopy, the contribution of DLPFC to the IGT execution over time. We tested the hypothesis that low and high risk choices would differentially activate DLPFC, as IGT execution progressed. We enrolled 11 healthy adults. To identify DLPFC activation associated with IGT choices, we compared regional differences in oxy-haemoglobin variation, from baseline to the event. The time course of task execution was divided in four periods, each one consisting of 25 choices, and DLPFC activation was distinctly analyzed for low and high risk choices in each period. We found different time courses in DLPFC activation, associated with low or high risk choices. During the first period, a significant DLPFC activation emerged with low risk choices, whereas, during the second period, we found a cortical activation with high risk choices. Then, DLPFC activation decreased to non-significant levels during the third and fourth period. This study shows that DLPFC involvement in IGT execution is differentiated over time and according to choice risk level. DLPFC is activated only in the first half of the task, earlier by low risk and later by high risk choices. We speculate that DLPFC may sustain initial and more cognitive functions, such as attention shifting and response inhibition. The lack of DLPFC activation, as the task progresses, may be due to VMPFC activation, not detectable by fNIRS, which takes over the IGT execution in its

  4. Glutamate and GABA contributions to medial prefrontal cortical activity to emotion: implications for mood disorders.

    Science.gov (United States)

    Stan, Ana D; Schirda, Claudiu V; Bertocci, Michele A; Bebko, Genna M; Kronhaus, Dina M; Aslam, Haris A; LaBarbara, Eduard J; Tanase, Costin; Lockovich, Jeanette C; Pollock, Myrna H; Stiffler, Richelle S; Phillips, Mary L

    2014-09-30

    The dorsomedial prefrontal cortex (MdPFC) and anterior cingulate cortices (ACC) play a critical role in implicit emotion regulation; however the understanding of the specific neurotransmitters that mediate such role is lacking. In this study, we examined relationships between MdPFC concentrations of two neurotransmitters, glutamate and γ-amino butyric acid (GABA), and BOLD activity in ACC during performance of an implicit facial emotion-processing task. Twenty healthy volunteers, aged 20-35 years, were scanned while performing an implicit facial emotion-processing task, whereby presented facial expressions changed from neutral to one of the four emotions: happy, anger, fear, or sad. Glutamate concentrations were measured before and after the emotion-processing task in right MdPFC using magnetic resonance spectroscopy (MRS). GABA concentrations were measured in bilateral MdPFC after the emotion-processing task. Multiple regression models were run to determine the relative contribution of glutamate and GABA concentration, age, and gender to BOLD signal in ACC to each of the four emotions. Multiple regression analyses revealed a significant negative correlation between MdPFC GABA concentration and BOLD signal in subgenual ACC (psad versus shape contrast. For the anger versus shape contrast, there was a significant negative correlation between age and BOLD signal in pregenual ACC (p<0.05, corrected) and a positive correlation between MdPFC glutamate concentration (pre-task) and BOLD signal in pregenual ACC (p<0.05, corrected). Our findings are the first to provide insight into relationships between MdPFC neurotransmitter concentrations and ACC BOLD signal, and could further understanding of molecular mechanisms underlying emotion processing in healthy and mood-disordered individuals. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Activation of the Prefrontal Cortex While Performing a Task at Preferred Slow Pace and Metronome Slow Pace: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Kaori Shimoda

    2014-01-01

    Full Text Available Individuals have a preferred pace at which they perform voluntary repetitive movements. Previous studies have reported that greater activation of the prefrontal cortex was observed during self-initiated movements than during externally triggered movements. The purpose of the present study is to compare the activation of the prefrontal cortex induced when the subjects performed a peg-board task at their preferred slow pace (PSP, the self-initiated condition with that induced when they performed the same task at metronome slow pace (MSP, the externally triggered condition using functional near-infrared spectroscopy. Healthy subjects performed the task while sitting in a chair. By assessing the activated channels individually, we confirmed that all of the prefrontal regions of interest were activated by both tasks. In the second-level analyses, we found that the activation detected in the frontopolar cortex (FPPFC; Brodmann area 10 was higher during the PSP task than during the MSP task. The FPPFC is known to be at the top of prefrontal hierarchy, and specifically involved in evaluating self-generated information. In addition, the FPPFC plays a role in coordinating lateral prefrontal cortex. In the present study, the subjects evaluated and managed the internally generated PSP by coordinating the activity of other lower level prefrontal regions.

  6. Activation of the prefrontal cortex while performing a task at preferred slow pace and metronome slow pace: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Shimoda, Kaori; Moriguchi, Yoshiya; Tsuchiya, Kenji; Katsuyama, Shiori; Tozato, Fusae

    2014-01-01

    Individuals have a preferred pace at which they perform voluntary repetitive movements. Previous studies have reported that greater activation of the prefrontal cortex was observed during self-initiated movements than during externally triggered movements. The purpose of the present study is to compare the activation of the prefrontal cortex induced when the subjects performed a peg-board task at their preferred slow pace (PSP, the self-initiated condition) with that induced when they performed the same task at metronome slow pace (MSP, the externally triggered condition) using functional near-infrared spectroscopy. Healthy subjects performed the task while sitting in a chair. By assessing the activated channels individually, we confirmed that all of the prefrontal regions of interest were activated by both tasks. In the second-level analyses, we found that the activation detected in the frontopolar cortex (FPPFC; Brodmann area 10) was higher during the PSP task than during the MSP task. The FPPFC is known to be at the top of prefrontal hierarchy, and specifically involved in evaluating self-generated information. In addition, the FPPFC plays a role in coordinating lateral prefrontal cortex. In the present study, the subjects evaluated and managed the internally generated PSP by coordinating the activity of other lower level prefrontal regions.

  7. Changes of the Prefrontal EEG (Electroencephalogram) Activities According to the Repetition of Audio-Visual Learning.

    Science.gov (United States)

    Kim, Yong-Jin; Chang, Nam-Kee

    2001-01-01

    Investigates the changes of neuronal response according to a four time repetition of audio-visual learning. Obtains EEG data from the prefrontal (Fp1, Fp2) lobe from 20 subjects at the 8th grade level. Concludes that the habituation of neuronal response shows up in repetitive audio-visual learning and brain hemisphericity can be changed by…

  8. Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics

    Directory of Open Access Journals (Sweden)

    Ji Guangchen

    2012-10-01

    Full Text Available Abstract Background The medial prefrontal cortex (mPFC serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders such as PTSD and with cognitive decision-making deficits in neuropsychiatric disorders and persistent pain. Controlling mPFC output is a desirable therapeutic goal in neuropsychiatric disorders but functional differences of cell types (pyramidal cells and interneurons and regions (infralimbic and prelimbic represent a challenge. This electrophysiological study used optogenetics for the cell- and region-specific modulation of mPFC pyramidal output in the intact anesthetized animal. Results Extracellular single-unit recordings were made from infralimbic (IL pyramidal cells, IL interneurons and prelimbic (PL pyramidal cells 2–3 weeks after intra-IL injection of a viral vector encoding channel rhodopsin 2 (ChR2 under the control of the CaMKII promoter (rAAV5/CaMKIIa-ChR2(H134R-EYFP or a control vector that lacked the ChR2 sequence (rAAV5/CaMKIIa-EYFP. Optical stimulation with laser-generated blue light pulses delivered through an optical fiber to the IL increased spontaneous and evoked action potential firing of ChR2 expressing IL pyramidal cells but had no effect on IL interneurons that were distinguished from pyramidal cells based on their higher firing rate and shorter spike duration. Optical activation of IL pyramidal cells also inhibited PL pyramidal cells, suggesting that IL output controls PL output. The effects were light intensity-dependent and reversible. Confocal microscopy confirmed ChR2-EYFP or control vector expression in mPFC pyramidal cells but not in GABAergic cells. Conclusions The novelty of our study is the analysis of optogenetic effects on background and evoked activity of defined cell types in different mPFC regions. The

  9. Prefrontal cortex activation upon a demanding virtual hand-controlled task: a new frontier for neuroergonomics

    Directory of Open Access Journals (Sweden)

    Marika eCarrieri

    2016-02-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC in subjects while performing a demanding VR hand-controlled task (HCT. Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3D hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB over a virtual route (VROU reproducing a 42-m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2±37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  10. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics.

    Science.gov (United States)

    Carrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  11. Effect of stimulation by foliage plant display images on prefrontal cortex activity: a comparison with stimulation using actual foliage plants.

    Science.gov (United States)

    Igarashi, Miho; Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi

    2015-01-01

    Natural scenes like forests and flowers evoke neurophysiological responses that can suppress anxiety and relieve stress. We examined whether images of natural objects can elicit neural responses similar to those evoked by real objects by comparing the activation of the prefrontal cortex during presentation of real foliage plants with a projected image of the same foliage plants. Oxy-hemoglobin concentrations in the prefrontal cortex were measured using time-resolved near-infrared spectroscopy while the subjects viewed the real plants or a projected image of the same plants. Compared with a projected image of foliage plants, viewing the actual foliage plants significantly increased oxy-hemoglobin concentrations in the prefrontal cortex. However, using the modified semantic differential method, subjective emotional response ratings ("comfortable vs. uncomfortable" and "relaxed vs. awakening") were similar for both stimuli. The frontal cortex responded differently to presentation of actual plants compared with images of these plants even when the subjective emotional response was similar. These results may help explain the physical and mental health benefits of urban, domestic, and workplace foliage. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  12. Passive and active ventricular elastances of the left ventricle

    Directory of Open Access Journals (Sweden)

    Ng Eddie YK

    2005-02-01

    Full Text Available Abstract Background Description of the heart as a pump has been dominated by models based on elastance and compliance. Here, we are presenting a somewhat new concept of time-varying passive and active elastance. The mathematical basis of time-varying elastance of the ventricle is presented. We have defined elastance in terms of the relationship between ventricular pressure and volume, as: dP = EdV + VdE, where E includes passive (Ep and active (Ea elastance. By incorporating this concept in left ventricular (LV models to simulate filling and systolic phases, we have obtained the time-varying expression for Ea and the LV-volume dependent expression for Ep. Methods and Results Using the patient's catheterization-ventriculogram data, the values of passive and active elastance are computed. Ea is expressed as: ; Epis represented as: . Ea is deemed to represent a measure of LV contractility. Hence, Peak dP/dt and ejection fraction (EF are computed from the monitored data and used as the traditional measures of LV contractility. When our computed peak active elastance (Ea,max is compared against these traditional indices by linear regression, a high degree of correlation is obtained. As regards Ep, it constitutes a volume-dependent stiffness property of the LV, and is deemed to represent resistance-to-filling. Conclusions Passive and active ventricular elastance formulae can be evaluated from a single-beat P-V data by means of a simple-to-apply LV model. The active elastance (Ea can be used to characterize the ventricle's contractile state, while passive elastance (Ep can represent a measure of resistance-to-filling.

  13. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    Science.gov (United States)

    Ruocco, Anthony C.; Rodrigo, Achala H.; McMain, Shelley F.; Page-Gould, Elizabeth; Ayaz, Hasan; Links, Paul S.

    2016-01-01

    Self-harm is a potentially lethal symptom of borderline personality disorder (BPD) that often improves with dialectical behavior therapy (DBT). While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, 29 actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex (PFC) during impulse control prior to beginning DBT and after 7 months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex (DLPFC) prior to beginning treatment, and they showed the greatest increases in activity within this region after 7 months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial PFC and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right DLPFC even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the PFC underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT. PMID:27242484

  14. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study.

    Science.gov (United States)

    Ruocco, Anthony C; Rodrigo, Achala H; McMain, Shelley F; Page-Gould, Elizabeth; Ayaz, Hasan; Links, Paul S

    2016-01-01

    Self-harm is a potentially lethal symptom of borderline personality disorder (BPD) that often improves with dialectical behavior therapy (DBT). While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, 29 actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex (PFC) during impulse control prior to beginning DBT and after 7 months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex (DLPFC) prior to beginning treatment, and they showed the greatest increases in activity within this region after 7 months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial PFC and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right DLPFC even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the PFC underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT.

  15. Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics

    Directory of Open Access Journals (Sweden)

    Ming-I Brandon Lin

    2016-05-01

    Full Text Available BackgroundIncreasing evidence suggests that walking while performing a concurrent task negatively influences gait performance. However, it remains unclear how higher-level cognitive processes and coordination of limb movements are altered in challenging walking environments. This study investigated the influence of cognitive task complexity and walking road condition on the neutral correlates of executive function and postural control in dual-task walking. MethodsTwenty-four healthy young adults completed a series of overground walks with three walking road conditions (wide, narrow, with obstacles with and without the concurrent n-back working memory tasks of two complexity levels (1-back and 3-back. Prefrontal brain activation was assessed by functional near-infrared spectroscopy. A three-dimensional motion analysis system was used simultaneously to measure gait performance and lower-extremity kinematics. Repeated measures analysis of variance were performed to examine the differences between the conditions. ResultsIn comparison with standing still, participants showed lower n-back task accuracy while walking, with the worst performance from the road with obstacles. Spatiotemporal gait parameters, lower-extremity joint movements, and the relative changes in oxygenated hemoglobin (HbO concentration levels were all significantly different across the task complexity and walking path conditions. While dual-tasking participants were found to flex their hips and knees less, leading to a slower gait speed, longer stride time, shorter step length, and greater gait variability than during normal walking. For narrow-road walking, smaller ankle dorsiflexion and larger hip flexion were observed, along with a reduced gait speed. Obstacle negotiation was mainly characterized by increased gait variability than other conditions. HbO levels appeared to be lower during dual-task walking than normal walking. Compared to wide and obstacle conditions, walking on

  16. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure.

    Science.gov (United States)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana

    2017-05-30

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT 2A receptor (5-HT 2A R) dependent. Here, we further investigated how blockade of 5-HT 2A Rs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT 2A R blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT 2A R activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT 2A R blockade does not seem to affect the amygdala-striatal projection. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. DAT by perceived MC interaction on human prefrontal activity and connectivity during emotion processing.

    Science.gov (United States)

    Taurisano, Paolo; Blasi, Giuseppe; Romano, Raffaella; Sambataro, Fabio; Fazio, Leonardo; Gelao, Barbara; Ursini, Gianluca; Lo Bianco, Luciana; Di Giorgio, Annabella; Ferrante, Francesca; Papazacharias, Apostolos; Porcelli, Annamaria; Sinibaldi, Lorenzo; Popolizio, Teresa; Bertolino, Alessandro

    2013-12-01

    Maternal care (MC) and dopamine modulate brain activity during emotion processing in inferior frontal gyrus (IFG), striatum and amygdala. Reuptake of dopamine from the synapse is performed by the dopamine transporter (DAT), whose abundance is predicted by variation in its gene (DAT 3'VNTR; 10 > 9-repeat alleles). Here, we investigated the interaction between perceived MC and DAT 3'VNTR genotype on brain activity during processing of aversive facial emotional stimuli. Sixty-one healthy subjects were genotyped for DAT 3'VNTR and categorized in low and high MC individuals. They underwent functional magnetic resonance imaging while performing a task requiring gender discrimination of facial stimuli with angry, fearful or neutral expressions. An interaction between facial expression, DAT genotype and MC was found in left IFG, such that low MC and homozygosity for the 10-repeat allele are associated with greater activity during processing of fearful faces. This greater activity was also inversely correlated with a measure of emotion control as scored with the Big Five Questionnaire. Moreover, MC and DAT genotype described a double dissociation on functional connectivity between IFG and amygdala. These findings suggest that perceived early parental bonding may interact with DAT 3'VNTR genotype in modulating brain activity during emotionally relevant inputs.

  18. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole

    2017-01-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of...... in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease.......Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim...... that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead...

  19. Awareness of Emotional Stimuli Determines the Behavioral Consequences of Amygdala Activation and Amygdala-Prefrontal Connectivity

    Science.gov (United States)

    Lapate, R. C.; Rokers, B.; Tromp, D. P. M.; Orfali, N. S.; Oler, J. A.; Doran, S. T.; Adluru, N.; Alexander, A. L.; Davidson, R. J.

    2016-01-01

    Conscious awareness of negative cues is thought to enhance emotion-regulatory capacity, but the neural mechanisms underlying this effect are unknown. Using continuous flash suppression (CFS) in the MRI scanner, we manipulated visual awareness of fearful faces during an affect misattribution paradigm, in which preferences for neutral objects can be biased by the valence of a previously presented stimulus. The amygdala responded to fearful faces independently of awareness. However, when awareness of fearful faces was prevented, individuals with greater amygdala responses displayed a negative bias toward unrelated novel neutral faces. In contrast, during the aware condition, inverse coupling between the amygdala and prefrontal cortex reduced this bias, particularly among individuals with higher structural connectivity in the major white matter pathway connecting the prefrontal cortex and amygdala. Collectively, these results indicate that awareness promotes the function of a critical emotion-regulatory network targeting the amygdala, providing a mechanistic account for the role of awareness in emotion regulation. PMID:27181344

  20. Effects of transcranial direct current stimulation of the motor cortex on prefrontal cortex activation during a neuromuscular fatigue task: an fNIRS study.

    Science.gov (United States)

    Muthalib, Makii; Kan, Benjamin; Nosaka, Kazunori; Perrey, Stephane

    2013-01-01

    This study investigated whether manipulation of motor cortex excitability by transcranial direct current stimulation (tDCS) modulates neuromuscular fatigue and functional near-infrared spectroscopy (fNIRS)-derived prefrontal cortex (PFC) activation. Fifteen healthy men (27.7 ± 8.4 years) underwent anodal (2 mA, 10 min) and sham (2 mA, first 30 s only) tDCS delivered to the scalp over the right motor cortex. Subjects initially performed a baseline sustained submaximal (30 % maximal voluntary isometric contraction, MVC) isometric contraction task (SSIT) of the left elbow flexors until task failure, which was followed 50 min later by either an anodal or sham treatment condition, then a subsequent posttreatment SSIT. Endurance time (ET), torque integral (TI), and fNIRS-derived contralateral PFC oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentration changes were determined at task failure. Results indicated that during the baseline and posttreatment SSIT, there were no significant differences in TI and ET, and increases in fNIRS-derived PFC activation at task failure were observed similarly regardless of the tDCS conditions. This suggests that the PFC neuronal activation to maintain muscle force production was not modulated by anodal tDCS.

  1. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure

    DEFF Research Database (Denmark)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo

    2017-01-01

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field...... of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5 mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time...... spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin...

  2. Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI.

    Science.gov (United States)

    Diwadkar, V A; Carpenter, P A; Just, M A

    2000-07-01

    Functional MRI was used to determine how the constituents of the cortical network subserving dynamic spatial working memory respond to two types of increases in task complexity. Participants mentally maintained the most recent location of either one or three objects as the three objects moved discretely in either a two- or three-dimensional array. Cortical activation in the dorsolateral prefrontal (DLPFC) and the parietal cortex increased as a function of the number of object locations to be maintained and the dimensionality of the display. An analysis of the response characteristics of the individual voxels showed that a large proportion were activated only when both the variables imposed the higher level of demand. A smaller proportion were activated specifically in response to increases in task demand associated with each of the independent variables. A second experiment revealed the same effect of dimensionality in the parietal cortex when the movement of objects was signaled auditorily rather than visually, indicating that the additional representational demands induced by 3-D space are independent of input modality. The comodulation of activation in the prefrontal and parietal areas by the amount of computational demand suggests that the collaboration between areas is a basic feature underlying much of the functionality of spatial working memory. Copyright 2000 Academic Press.

  3. Single unit activity in the medial prefrontal cortex during Pavlovian heart rate conditioning: Effects of peripheral autonomic blockade.

    Science.gov (United States)

    Powell, D A; Ginsberg, Jay P

    2005-11-01

    Electrical activity was recorded from single neurons in the medial prefrontal cortex of rabbits during differential Pavlovian heart rate (HR) conditioning. A heterogeneous population of cells were found, some of which showed CS-evoked increases and others CS-evoked decreases in discharge, while some cells were biphasic. A subset of cells also showed trial-related changes in discharge that were related to acquisition of the HR discrimination between the reinforced CS+ and non-reinforced CS-. Administration of the peripheral cholinergic antagonist, methylscopolamine, and the andrenergic antagonist, atenolol, either increased or decreased maintained baseline activity of many cells, but had little or no effect on the CS-evoked activity of these cells. Waveform changes also did not result from administration of these drugs. This finding suggests that CS-evoked mPFC activity is not being driven by cardiac afferent input to CNS cardiac control centers. Previous studies have shown that ibotenic acid lesions of this area greatly decreases the magnitude of decelerative heart rate conditioned responses; the latter finding, plus the results of the present study, suggest that processing of CS/US contingencies by the prefrontal cortex contributes to the acquisition of autonomic changes during Pavlovian conditioning.

  4. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms.

    Directory of Open Access Journals (Sweden)

    Olle Eriksson

    Full Text Available To investigate potential quantitative and qualitative differences in brain serotonergic activity between women with Premenstrual Dysphoria (PMD and asymptomatic controls.Serotonin-augmenting drugs alleviate premenstrual mood symptoms in the majority of women with PMD while serotonin-depleting diets worsen PMD symptoms, both indicating intrinsic differences in brain serotonergic activity in women with PMD compared to asymptomatic women.Positron-emission tomography with the immediate precursor of serotonin, 5-hydroxytryptophan (5-HTP, radiolabelled by 11C in the beta-3 position, was performed in the follicular and luteal phases for 12 women with PMD and 8 control women. Brain radioactivity-a proxy for serotonin precursor uptake and synthesis-was measured in 9 regions of interest (ROIs: the right and left sides of the medial prefrontal cortex, dorsolateral prefrontal cortex, putamen and caudate nucleus, and the single "whole brain".There were no significant quantitative differences in brain 5-HTP-derived activity between the groups in either of the menstrual phases for any of the 9 ROIs. However, multivariate analysis revealed a significant quantitative and qualitative difference between the groups. Asymptomatic control women showed a premenstrual right sided relative increase in dorsolateral prefrontal cortex 5-HTP derived activity, whereas PMD women displayed the opposite (p = 0.0001. Menstrual phase changes in this asymmetry (premenstrual-follicular correlated with changes in self ratings of 'irritability' for the entire group (rs = -0.595, p = 0.006. The PMD group showed a strong inverse correlation between phase changes (premenstrual-follicular in plasma levels of estradiol and phase changes in the laterality (dx/sin of radiotracer activity in the dorsolateral prefrontal ROI (rs = -0.635; 0.027. The control group showed no such correlation.Absence of increased premenstrual right-sided relative 5-HTP-derived activity of the dorsolateral

  5. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Basso Moro, Sara; Bisconti, Silvia; Muthalib, Makii; Spezialetti, Matteo; Cutini, Simone; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2014-01-15

    Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11

  6. The effects of left and right monocular viewing on hemispheric activation.

    Science.gov (United States)

    Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M

    2018-03-01

    Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.

  7. Transcranial direct current stimulation over prefrontal cortex diminishes degree of risk aversion.

    Science.gov (United States)

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Jia, Yongmin; Luo, Jun

    2015-06-26

    Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.

    Science.gov (United States)

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2016-02-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. © The Author(s) 2015.

  9. Activity in inferior parietal and medial prefrontal cortex signals the accumulation of evidence in a probability learning task.

    Directory of Open Access Journals (Sweden)

    Mathieu d'Acremont

    Full Text Available In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI, young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

  10. Perceived Occupational Stress is associated with Decreased Cortical Activity of the Prefrontal Cortex: A Multichannel Near-infrared Spectroscopy Study.

    Science.gov (United States)

    Chou, Po-Han; Lin, Wei-Hao; Hung, Chao-An; Chang, Chiung-Chih; Li, Wan-Rung; Lan, Tsuo-Hung; Huang, Min-Wei

    2016-12-13

    Despite an increasing number of reports on the associations between chronic occupational stress and structural and functional changes of the brain, the underlying neural correlates of perceived occupational stress is still not clear. Perceived stress reflects the extents to which situations are appraised as stressful at a given point in one's life. Using near-infrared spectroscopy, we investigated the associations between perceived occupational stress and cortical activity over the bilateral frontotemporal regions during a verbal fluency test. Sixty-eight participants (17 men, 51 women), 20-62 years of age were recruited. Perceived occupational stress was measured using the Chinese version of Job Content Questionnaire, and the Chinese version of the Copenhagen Burnout Inventory. We found statistically significant negative associations between occupational burnout and brain cortical activity over the fronto-polar and dorsolateral prefrontal cortex during the VFT (r = -0.343 to -0.464). In conclusion, our research demonstrated a possible neural basis of perceived occupational stress that are distributed across the prefrontal cortex.

  11. Can neural activation in dorsolateral prefrontal cortex predict responsiveness to information? An application to egg production systems and campaign advertising.

    Directory of Open Access Journals (Sweden)

    Brandon R McFadden

    Full Text Available Consumers prefer to pay low prices and increase animal welfare; however consumers are typically forced to make tradeoffs between price and animal welfare. Campaign advertising (i.e., advertising used during the 2008 vote on Proposition 2 in California may affect how consumers make tradeoffs between price and animal welfare. Neuroimaging data was used to determine the effects of brain activation in dorsolateral prefrontal cortex (dlPFC on choices making a tradeoff between price and animal welfare and responsiveness to campaign advertising. Results indicated that activation in the dlPFC was greater when making choices that forced a tradeoff between price and animal welfare, compared to choices that varied only by price or animal welfare. Furthermore, greater activation differences in right dlPFC between choices that forced a tradeoff and choices that did not, indicated greater responsiveness to campaign advertising.

  12. Can neural activation in dorsolateral prefrontal cortex predict responsiveness to information? An application to egg production systems and campaign advertising.

    Science.gov (United States)

    McFadden, Brandon R; Lusk, Jayson L; Crespi, John M; Cherry, J Bradley C; Martin, Laura E; Aupperle, Robin L; Bruce, Amanda S

    2015-01-01

    Consumers prefer to pay low prices and increase animal welfare; however consumers are typically forced to make tradeoffs between price and animal welfare. Campaign advertising (i.e., advertising used during the 2008 vote on Proposition 2 in California) may affect how consumers make tradeoffs between price and animal welfare. Neuroimaging data was used to determine the effects of brain activation in dorsolateral prefrontal cortex (dlPFC) on choices making a tradeoff between price and animal welfare and responsiveness to campaign advertising. Results indicated that activation in the dlPFC was greater when making choices that forced a tradeoff between price and animal welfare, compared to choices that varied only by price or animal welfare. Furthermore, greater activation differences in right dlPFC between choices that forced a tradeoff and choices that did not, indicated greater responsiveness to campaign advertising.

  13. Reduced prefrontal activation during verbal fluency task in chronic insomnia disorder: a multichannel near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sun JJ

    2017-06-01

    Full Text Available Jing-Jing Sun,1,2 Xiao-Min Liu,2 Chen-Yu Shen,2 Xiao-Qian Zhang,1,2 Gao-Xiang Sun,2 Kun Feng,2 Bo Xu,2 Xia-Jin Ren,1,2 Xiang-Yun Ma,1,2 Po-Zi Liu2 1Medical Center, Tsinghua University, Beijing, China, 2Department of Psychiatry, YuQuan Hospital, Tsinghua University, Beijing, China Purpose: Daytime complaints such as memory and attention deficits and failure to accomplish daily tasks are common in insomnia patients. However, objective psychological tests to detect cognitive impairment are equivocal. Neural function associated with cognitive performance may explain the discrepancy. The aim of this study was to investigate the hemodynamic response patterns of patients with chronic insomnia disorder (CID using the noninvasive and low-cost functional neuroimaging technique of multichannel near-infrared spectroscopy (NIRS in order to identify changes of neural function associated with cognitive performance.Patients and methods: Twenty-four CID patients and twenty-five healthy controls matched for age, right-hand dominance, educational level, and gender were examined during verbal fluency tasks (VFT using NIRS. A covariance analysis was conducted to analyze differences of oxygenated hemoglobin (oxy-Hb changes in prefrontal cortex (PFC between the two groups and reduce the influence of the severity of depression. Pearson correlation coeffcients were calculated to examine the relationship between the oxy-Hb changes, with the severity of insomnia and depressive symptoms assessed by the Pittsburgh Sleep Quality Index (PSQI and the Hamilton Rating Scale for Depression (HAMD.Results: The number of words generated during the VFT in CID groups showed no statistical differences with healthy controls. CID patients showed hypoactivation in the PFC during the cognitive task. In addition, we found that the function of left orbitofrontal cortex (OFC during the VFT was significantly negatively correlated with the PSQI scores and the function of right dorsolateral PFC

  14. Brain Activation Associated with Practiced Left Hand Mirror Writing

    Science.gov (United States)

    Kushnir, T.; Arzouan, Y.; Karni, A.; Manor, D.

    2013-01-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated…

  15. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device.

    Science.gov (United States)

    Nieuwhof, Freek; Reelick, Miriam F; Maidan, Inbal; Mirelman, Anat; Hausdorff, Jeffrey M; Olde Rikkert, Marcel G M; Bloem, Bastiaan R; Muthalib, Makii; Claassen, Jurgen A H R

    2016-01-01

    Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity. We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O 2 Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured. Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O 2 Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12-0.81, right PFC 0.49 μmol/L, 95 % CI 0.14-0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03-0.70, right PFC 0.44 μmol/L, 95 % CI 0.09-0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest. These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual

  16. Recovery from Unrecognized Sleep Loss Accumulated in Daily Life Improved Mood Regulation via Prefrontal Suppression of Amygdala Activity

    Directory of Open Access Journals (Sweden)

    Yuki Motomura

    2017-06-01

    Full Text Available Many modern people suffer from sleep debt that has accumulated in everyday life but is not subjectively noticed [potential sleep debt (PSD]. Our hypothesis for this study was that resolution of PSD through sleep extension optimizes mood regulation by altering the functional connectivity between the amygdala and prefrontal cortex. Fifteen healthy male participants underwent an experiment consisting of a baseline (BL evaluation followed by two successive interventions, namely, a 9-day sleep extension followed by one night of total sleep deprivation (TSD. Tests performed before and after the interventions included a questionnaire on negative mood and neuroimaging with arterial spin labeling MRI for evaluating regional cerebral blood flow (rCBF and functional connectivity. Negative mood and amygdala rCBF were significantly reduced after sleep extension compared with BL. The amygdala had a significant negative functional connectivity with the medial prefrontal cortex (FCamg–MPFC, and this negative connectivity was greater after sleep extension than at BL. After TSD, these indices reverted to the same level as at BL. An additional path analysis with structural equation modeling showed that the FCamg–MPFC significantly explained the amygdala rCBF and that the amygdala rCBF significantly explained the negative mood. These findings suggest that the use of our sleep extension protocol normalized amygdala activity via negative amygdala–MPFC functional connectivity. The resolution of unnoticed PSD may improve mood by enhancing frontal suppression of hyperactivity in the amygdala caused by PSD accumulating in everyday life.

  17. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder.

    Science.gov (United States)

    Le, Thang M; Borghi, John A; Kujawa, Autumn J; Klein, Daniel N; Leung, Hoi-Chung

    2017-01-01

    The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by

  18. Differences in prefrontal cortex activation and deactivation during strategic episodic verbal memory encoding in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Joana Bisol Balardin

    2015-08-01

    Full Text Available In this study we examined differences in fMRI activation and deactivation patterns during episodic verbal memory encoding between individuals with MCI (n=18 and healthy controls (n=17. Participants were scanned in two different sessions during the application of self-initiated or directed instructions to apply semantic strategies at encoding of word lists. MCI participants showed reduced free recall scores when using self-initiated encoding strategies that were increased to baseline controls’ level after directed instructions were provided. During directed strategic encoding, greater recruitment of frontoparietal regions was observed in both MCI and control groups; group differences between sessions were observed in the ventromedial prefrontal cortex and the right superior frontal gyrus. This study provides evidence suggesting that differences of activity in these regions may be related to encoding deficits in MCI, possibly mediating executive functions during task performance.

  19. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study.

    Science.gov (United States)

    Dickerson, B C; Miller, S L; Greve, D N; Dale, A M; Albert, M S; Schacter, D L; Sperling, R A

    2007-01-01

    The ability to spontaneously recall recently learned information is a fundamental mnemonic activity of daily life, but has received little study using functional neuroimaging. We developed a functional MRI (fMRI) paradigm to study regional brain activity during encoding that predicts free recall. In this event-related fMRI study, ten lists of fourteen pictures of common objects were shown to healthy young individuals and regional brain activity during encoding was analyzed based on subsequent free recall performance. Free recall of items was predicted by activity during encoding in hippocampal, fusiform, and inferior prefrontal cortical regions. Within-subject variance in free recall performance for the ten lists was predicted by a linear combination of condition-specific inferior prefrontal, hippocampal, and fusiform activity. Recall performance was better for lists in which prefrontal activity was greater for all items of the list and hippocampal and fusiform activity were greater specifically for items that were recalled from the list. Thus, the activity of medial temporal, fusiform, and prefrontal brain regions during the learning of new information is important for the subsequent free recall of this information. These fronto-temporal brain regions act together as a large-scale memory-related network, the components of which make distinct yet interacting contributions during encoding that predict subsequent successful free recall performance.

  20. Abnormal functional activation and maturation of ventromedial prefrontal cortex and cerebellum during temporal discounting in autism spectrum disorder.

    Science.gov (United States)

    Murphy, Clodagh M; Christakou, Anastasia; Giampietro, Vincent; Brammer, Michael; Daly, Eileen M; Ecker, Christine; Johnston, Patrick; Spain, Debbie; Robertson, Dene M; Murphy, Declan G; Rubia, Katya

    2017-11-01

    People with autism spectrum disorder (ASD) have poor decision-making and temporal foresight. This may adversely impact on their everyday life, mental health, and productivity. However, the neural substrates underlying poor choice behavior in people with ASD, or its' neurofunctional development from childhood to adulthood, are unknown. Despite evidence of atypical structural brain development in ASD, investigation of functional brain maturation in people with ASD is lacking. This cross-sectional developmental fMRI study investigated the neural substrates underlying performance on a temporal discounting (TD) task in 38 healthy (11-35 years old) male adolescents and adults with ASD and 40 age, sex, and IQ-matched typically developing healthy controls. Most importantly, we assessed group differences in the neurofunctional maturation of TD across childhood and adulthood. Males with ASD had significantly poorer task performance and significantly lower brain activation in typical regions that mediate TD for delayed choices, in predominantly right hemispheric regions of ventrolateral/dorsolateral prefrontal cortices, ventromedial prefrontal cortex, striatolimbic regions, and cerebellum. Importantly, differential activation in ventromedial frontal cortex and cerebellum was associated with abnormal functional brain maturation; controls, in contrast to people with ASD, showed progressively increasing activation with increasing age in these regions; which furthermore was associated with performance measures and clinical ASD measures (stereotyped/restricted interests). Findings provide first cross-sectional evidence that reduced activation of TD mediating brain regions in people with ASD during TD is associated with abnormal functional brain development in these regions between childhood and adulthood, and this is related to poor task performance and clinical measures of ASD. Hum Brain Mapp 38:5343-5355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Prefrontal θ-Burst Stimulation Disrupts the Organizing Influence of Active Short-Term Retrieval on Episodic Memory.

    Science.gov (United States)

    Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J

    2018-01-01

    Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.

  2. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction.

    Directory of Open Access Journals (Sweden)

    Jörg Lesting

    Full Text Available Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction.

  3. From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms.

    Science.gov (United States)

    Buckholtz, Joshua W; Martin, Justin W; Treadway, Michael T; Jan, Katherine; Zald, David H; Jones, Owen; Marois, René

    2015-09-23

    The social welfare provided by cooperation depends on the enforcement of social norms. Determining blameworthiness and assigning a deserved punishment are two cognitive cornerstones of norm enforcement. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in norm-based judgments, the relative contribution of this region to blameworthiness and punishment decisions remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and fMRI to determine the specific role of DLPFC function in norm-enforcement behavior. DLPFC rTMS reduced punishment for wrongful acts without affecting blameworthiness ratings, and fMRI revealed punishment-selective DLPFC recruitment, suggesting that these two facets of norm-based decision making are neurobiologically dissociable. Finally, we show that DLPFC rTMS affects punishment decision making by altering the integration of information about culpability and harm. Together, these findings reveal a selective, causal role for DLPFC in norm enforcement: representational integration of the distinct information streams used to make punishment decisions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Prefrontal and striatal activity related to values of objects and locations

    Directory of Open Access Journals (Sweden)

    Soyoun eKim

    2012-07-01

    Full Text Available The value of an object acquired by a particular action often determines the motivation to produce that action. Previous studies found neural signals related to the values of different objects or goods in the orbitofrontal cortex, while the values of outcomes expected from different actions are broadly represented in multiple brain areas implicated in movement planning. However, how the brain combines the values associated with various objects and the information about their locations is not known. In this study, we tested whether the neurons in the dorsolateral prefrontal cortex (DLPFC and striatum in rhesus monkeys might contribute to translating the value signals between multiple frames of reference. Monkeys were trained to perform an oculomotor intertemporal choice in which the color of a saccade target and the number of its surrounding dots signaled the magnitude of reward and its delay, respectively. In both DLPFC and striatum, temporally discounted values associated with specific target colors and locations were encoded by partially overlapping populations of neurons. In the DLPFC, the information about reward delays and temporally discounted values of rewards available from specific target locations emerged earlier than the corresponding signals for target colors. Similar results were reproduced by a simple network model built to compute temporally discounted values of rewards in different locations. Therefore, DLPFC might play an important role in estimating the values of different actions by combining the previously learned values of objects and their present locations.

  5. Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex.

    Science.gov (United States)

    Sun, Ninglei; Chi, Ning; Lauzon, Nicole; Bishop, Stephanie; Tan, Huibing; Laviolette, Steven R

    2011-12-01

    The medial prefrontal cortex (mPFC) comprises an important component in the neural circuitry underlying drug-related associative learning and memory processing. Neuronal activation within mPFC circuits is correlated with the recall of opiate-related drug-taking experiences in both humans and other animals. Using an unbiased associative place conditioning procedure, we recorded mPFC neuronal populations during the acquisition, recall, and extinction phases of morphine-related associative learning and memory. Our analyses revealed that mPFC neurons show increased activity both in terms of tonic and phasic activity patterns during the acquisition phase of opiate reward-related memory and demonstrate stimulus-locked associative activity changes in real time, during the recall of opiate reward memories. Interestingly, mPFC neuronal populations demonstrated divergent patterns of bursting activity during the acquisition versus recall phases of newly acquired opiate reward memory, versus the extinction of these memories, with strongly increased bursting during the recall of an extinction memory and no associative bursting during the recall of a newly acquired opiate reward memory. Our results demonstrate that neurons within the mPFC are involved in both the acquisition, recall, and extinction of opiate-related reward memories, showing unique patterns of tonic and phasic activity patterns during these separate components of the opiate-related reward learning and memory recall.

  6. Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder. A regional cerebral blood flow study

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Friberg, L

    1991-01-01

    To measure prefrontal and subcortical activity during a cognitive task, we examined 19 newly diagnosed schizophrenics and patients with schizophreniform psychosis. Seven healthy volunteers served as controls. The patients were drug naive or had received neuroleptics for a few days only. Cerebral ...

  7. How stable is activation in the amygdala and prefrontal cortex in adolescence? A study of emotional face processing across three measurements

    NARCIS (Netherlands)

    van den Bulk, B.G.; Koolschijn, P.C.M.P.; Meens, P.H.F.; van Lang, N.D.J.; van der Wee, N.J.A.; Rombouts, S.A.R.B.; Vermeiren, R.R.J.M.; Crone, E.A.

    2013-01-01

    Prior developmental functional magnetic resonance imaging (fMRI) studies have demonstrated elevated activation patterns in the amygdala and prefrontal cortex (PFC) in response to viewing emotional faces. As adolescence is a time of substantial variability in mood and emotional responsiveness, the

  8. Preserved speech abilities and compensation following prefrontal damage.

    Science.gov (United States)

    Buckner, R L; Corbetta, M; Schatz, J; Raichle, M E; Petersen, S E

    1996-02-06

    Lesions to left frontal cortex in humans produce speech production impairments (nonfluent aphasia). These impairments vary from subject to subject and performance on certain speech production tasks can be relatively preserved in some patients. A possible explanation for preservation of function under these circumstances is that areas outside left prefrontal cortex are used to compensate for the injured brain area. We report here a direct demonstration of preserved language function in a stroke patient (LF1) apparently due to the activation of a compensatory brain pathway. We used functional brain imaging with positron emission tomography (PET) as a basis for this study.

  9. Neural activity in ventral medial prefrontal cortex is modulated more before approach than avoidance during reinforced and extinction trial blocks.

    Science.gov (United States)

    Gentry, Ronny N; Roesch, Matthew R

    2018-04-16

    Ventromedial prefrontal cortex (vmPFC) is thought to provide regulatory control over Pavlovian fear responses and has recently been implicated in appetitive approach behavior, but much less is known about its role in contexts where appetitive and aversive outcomes can be obtained and avoided, respectively. To address this issue, we recorded from single neurons in vmPFC while male rats performed our combined approach and avoidance task under reinforced and non-reinforced (extinction) conditions. Surprisingly, we found that cues predicting reward modulated cell firing in vmPFC more often and more robustly than cues preceding avoidable shock; additionally, firing of vmPFC neurons was both response (press or no-press) and outcome (reinforced or extinction) selective. These results suggest a complex role for vmPFC in regulating behavior and supports its role in appetitive contexts during both reinforced and non-reinforced conditions. SIGNIFICANCE STATEMENT Selecting context-appropriate behaviors to gain reward or avoid punishment is critical for survival. While the role of ventromedial prefrontal cortex (vmPFC) in mediating fear responses is well-established, vmPFC has also been implicated in the regulation of reward-guided approach and extinction. Many studies have used indirect methods and simple behavioral procedures to study vmPFC, which leaves the literature incomplete. We recorded vmFPC neural activity during a complex cue-driven combined approach and avoidance task and during extinction. Surprisingly, we found very little vmPFC modulation to cues predicting avoidable shock, while cues predicting reward approach robustly modulated vmPFC firing in a response- and outcome-selective manner. This suggests a more complex role for vmPFC than current theories suggest, specifically regarding context-specific behavioral optimization. Copyright © 2018 the authors.

  10. Reduced prefrontal activation during working and long-term memory tasks and impaired patient-reported cognition among cancer survivors postchemotherapy compared with healthy controls.

    Science.gov (United States)

    Wang, Lei; Apple, Alexandra C; Schroeder, Matthew P; Ryals, Anthony J; Voss, Joel L; Gitelman, Darren; Sweet, Jerry J; Butt, Zeeshan A; Cella, David; Wagner, Lynne I

    2016-01-15

    Patients who receive adjuvant chemotherapy have reported cognitive impairments that may last for years after the completion of treatment. Working memory-related and long-term memory-related changes in this population are not well understood. The objective of this study was to demonstrate that cancer-related cognitive impairments are associated with the under recruitment of brain regions involved in working and recognition memory compared with controls. Oncology patients (n = 15) who were receiving adjuvant chemotherapy and had evidence of cognitive impairment according to neuropsychological testing and self-report and a group of age-matched, education group-matched, cognitively normal control participants (n = 14) underwent functional magnetic resonance imaging. During functional magnetic resonance imaging, participants performed a nonverbal n-back working memory task and a visual recognition task. On the working memory task, when 1-back and 2-back data were averaged and contrasted with 0-back data, significantly reduced activation was observed in the right dorsolateral prefrontal cortex for oncology patients versus controls. On the recognition task, oncology patients displayed decreased activity of the left-middle hippocampus compared with controls. Neuroimaging results were not associated with patient-reported cognition. Decreased recruitment of brain regions associated with the encoding of working memory and recognition memory was observed in the oncology patients compared with the control group. These results suggest that there is a reduction in neural functioning postchemotherapy and corroborate patient-reported cognitive difficulties after cancer treatment, although a direct association was not observed. Cancer 2016;122:258-268. © 2015 American Cancer Society. © 2015 American Cancer Society.

  11. Right prefrontal activity reflects the ability to overcome sleepiness during working memory tasks: a functional near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Motoyasu Honma

    Full Text Available It has been speculated that humans have an inherent ability to overcome sleepiness that counteracts homeostatic sleep pressure. However, it remains unclear which cortical substrate activities are involved in the ability to overcome sleepiness during the execution of cognitive tasks. Here we sought to confirm that this ability to overcome sleepiness in task execution improves performance on cognitive tasks, showing activation of neural substrates in the frontal cortex, by using a modified n-back (2- and 0-back working memory task and functional near-infrared spectroscopy. The change in alertness was just correlated with performances on the 2-back task. Activity in the right prefrontal cortex changed depending on alertness changes on the 2- and 0-back tasks independently, which indicates that activity in this region clearly reflects the ability to overcome sleepiness; it may contribute to the function of providing sufficient activity to meet the task load demands. This study reveals characteristics of the ability to overcome sleepiness during the n-back working memory task which goes beyond the attention-control function traditionally proposed.

  12. Political ideology and activism in football fan culture in Spain: a view from the far left

    NARCIS (Netherlands)

    Spaaij, R.; Viñas, C.

    2013-01-01

    This study examines how left-wing ideology is articulated, displayed and enacted among organized groups of football fans in Spain. The left-wing political space in Spanish football fan culture is occupied by multiple autonomous but often interconnected points of organizational and activist activity

  13. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    Science.gov (United States)

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  15. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    Science.gov (United States)

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly

    Directory of Open Access Journals (Sweden)

    Ruud H. Knols

    2017-11-01

    Full Text Available Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON. Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model were assessed together with measures of the achieved game level, reaction times, (in- correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02% assessed with functional near infrared spectroscopy (fNIRS (n = 5 and EEG power (n = 10 was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1–7 of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8–10, for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1, where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p < 0.001 lower, compared to the left prefrontal cortex. Four participants yielded significant lower rS02% measures after exergaming with the ALERT games (p < 0.000, but not with the SELECT games. EEG recordings of theta power significantly decreased in the averaged ~0.25–0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively

  17. I think therefore I am: Rest-related prefrontal cortex neural activity is involved in generating the sense of self.

    Science.gov (United States)

    Gruberger, M; Levkovitz, Y; Hendler, T; Harel, E V; Harari, H; Ben Simon, E; Sharon, H; Zangen, A

    2015-05-01

    The sense of self has always been a major focus in the psychophysical debate. It has been argued that this complex ongoing internal sense cannot be explained by any physical measure and therefore substantiates a mind-body differentiation. Recently, however, neuro-imaging studies have associated self-referential spontaneous thought, a core-element of the ongoing sense of self, with synchronous neural activations during rest in the medial prefrontal cortex (PFC), as well as the medial and lateral parietal cortices. By applying deep transcranial magnetic stimulation (TMS) over human PFC before rest, we disrupted activity in this neural circuitry thereby inducing reports of lowered self-awareness and strong feelings of dissociation. This effect was not found with standard or sham TMS, or when stimulation was followed by a task instead of rest. These findings demonstrate for the first time a critical, causal role of intact rest-related PFC activity patterns in enabling integrated, enduring, self-referential mental processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Reduced but broader prefrontal activity in patients with schizophrenia during n-back working memory tasks: a multi-channel near-infrared spectroscopy study.

    Science.gov (United States)

    Koike, Shinsuke; Takizawa, Ryu; Nishimura, Yukika; Kinou, Masaru; Kawasaki, Shingo; Kasai, Kiyoto

    2013-09-01

    Caudal regions of the prefrontal cortex, including the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex, are involved in essential cognitive functions such as working memory. In contrast, more rostral regions, such as the frontopolar cortex (FpC), have integrative functions among cognitive functions and thereby contribute crucially to real-world social activity. Previous functional magnetic resonance imaging studies have shown patients with schizophrenia had different DLPFC activity pattern in response to cognitive load changes compared to healthy controls; however, the spatial relationship between the caudal and rostral prefrontal activation has not been evaluated under less-constrained conditions. Twenty-six patients with schizophrenia and 26 age-, sex-, and premorbid-intelligence-matched healthy controls participated in this study. Hemodynamic changes during n-back working memory tasks with different cognitive loads were measured using multi-channel near-infrared spectroscopy (NIRS). Healthy controls showed significant task-related activity in the bilateral VLPFC and significant task-related decreased activity in the DLPFC, with greater signal changes when the task required more cognitive load. In contrast, patients with schizophrenia showed activation in the more rostral regions, including bilateral DLPFC and FpC. Neither decreased activity nor greater activation in proportion to elevated cognitive load occurred. This multi-channel NIRS study demonstrated that activation intensity did not increase in patients with schizophrenia associated with cognitive load changes, suggesting hypo-frontality as cognitive impairment in schizophrenia. On the other hand, patients had broader prefrontal activity in areas such as the bilateral DLPFC and FpC regions, thus suggesting a hyper-frontality compensatory response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. High Neuromagnetic Activation in the Left Prefrontal and Frontal Cortices Correlates with Better Memory Performance for Abstract Words

    Science.gov (United States)

    Chen, Tzu-Ching; Lin, Yung-Yang

    2012-01-01

    The present study aimed to clarify the spatiotemporal characteristics of memory processing for abstract and concrete words. Neuromagnetic responses to memory encoding and recognition tasks of abstract and concrete nouns were obtained in 18 healthy adults using a whole-head neuromagnetometer. During memory encoding, abstract words elicited larger…

  20. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly.

    Science.gov (United States)

    Knols, Ruud H; Swanenburg, Jaap; De Bon, Dino; Gennaro, Federico; Wolf, Martin; Krüger, Bernard; Bettex, Dominique; de Bruin, Eling D

    2017-01-01

    Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model) were assessed together with measures of the achieved game level, reaction times, (in-) correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02%) assessed with functional near infrared spectroscopy (fNIRS) ( n = 5) and EEG power ( n = 10) was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1-7) of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8-10), for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1), where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly ( p games ( p games. EEG recordings of theta power significantly decreased in the averaged ~0.25-0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively. Further results indicate that video gaming may be an effective measure to affect prefrontal cortical functioning in elderly. The results warrant a clinical explorative study investigating the

  1. Contralateral white noise selectively changes left human auditory cortex activity in a lexical decision task.

    Science.gov (United States)

    Behne, Nicole; Wendt, Beate; Scheich, Henning; Brechmann, André

    2006-04-01

    In a previous study, we hypothesized that the approach of presenting information-bearing stimuli to one ear and noise to the other ear may be a general strategy to determine hemispheric specialization in auditory cortex (AC). In that study, we confirmed the dominant role of the right AC in directional categorization of frequency modulations by showing that fMRI activation of right but not left AC was sharply emphasized when masking noise was presented to the contralateral ear. Here, we tested this hypothesis using a lexical decision task supposed to be mainly processed in the left hemisphere. Subjects had to distinguish between pseudowords and natural words presented monaurally to the left or right ear either with or without white noise to the other ear. According to our hypothesis, we expected a strong effect of contralateral noise on fMRI activity in left AC. For the control conditions without noise, we found that activation in both auditory cortices was stronger on contralateral than on ipsilateral word stimulation consistent with a more influential contralateral than ipsilateral auditory pathway. Additional presentation of contralateral noise did not significantly change activation in right AC, whereas it led to a significant increase of activation in left AC compared with the condition without noise. This is consistent with a left hemispheric specialization for lexical decisions. Thus our results support the hypothesis that activation by ipsilateral information-bearing stimuli is upregulated mainly in the hemisphere specialized for a given task when noise is presented to the more influential contralateral ear.

  2. Self-distancing improves interpersonal perceptions and behavior by decreasing medial prefrontal cortex activity during the provision of criticism.

    Science.gov (United States)

    Leitner, Jordan B; Ayduk, Ozlem; Mendoza-Denton, Rodolfo; Magerman, Adam; Amey, Rachel; Kross, Ethan; Forbes, Chad E

    2017-04-01

    Previous research suggests that people show increased self-referential processing when they provide criticism to others, and that this self-referential processing can have negative effects on interpersonal perceptions and behavior. The current research hypothesized that adopting a self-distanced perspective (i.e. thinking about a situation from a non-first person point of view), as compared with a typical self-immersed perspective (i.e. thinking about a situation from a first-person point of view), would reduce self-referential processing during the provision of criticism, and in turn improve interpersonal perceptions and behavior. We tested this hypothesis in an interracial context since research suggests that self-referential processing plays a role in damaging interracial relations. White participants prepared for mentorship from a self-immersed or self-distanced perspective. They then conveyed negative and positive evaluations to a Black mentee while electroencephalogram (EEG) was recorded. Source analysis revealed that priming a self-distanced (vs self-immersed) perspective predicted decreased activity in regions linked to self-referential processing (medial prefrontal cortex; MPFC) when providing negative evaluations. This decreased MPFC activity during negative evaluations, in turn, predicted verbal feedback that was perceived to be more positive, warm and helpful. Results suggest that self-distancing can improve interpersonal perceptions and behavior by decreasing self-referential processing during the provision of criticism. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness.

    Science.gov (United States)

    Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg

    2016-02-01

    Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Effects of prefrontal ablations on the reaction of the active choice of feeder under different probability and value of the reinforcement on dog].

    Science.gov (United States)

    Preobrazhenskaia, L A; Ioffe, M E; Mats, V N

    2004-01-01

    The role of the prefrontal cortex was investigated on the reaction of the active choice of the two feeders under changes value and probability reinforcement. The experiments were performed on 2 dogs with prefrontal ablation (g. proreus). Before the lesions the dogs were taught to receive food in two different feeders to conditioned stimuli with equally probable alimentary reinforcement. After ablation in the inter-trial intervals the dogs were running from the one feeder to another. In the answer to conditioned stimuli for many times the dogs choose the same feeder. The disturbance of the behavior after some times completely restored. In the experiments with competition of probability events and values of reinforcement the dogs chose the feeder with low-probability but better quality of reinforcement. In the experiments with equal value but different probability the intact dogs chose the feeder with higher probability. In our experiments the dogs with prefrontal lesions chose the each feeder equiprobably. Thus in condition of free behavior one of different functions of the prefrontal cortex is the reactions choose with more probability of reinforcement.

  5. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, C.L.; Kaag, A.M.; van den Munkhof, H.E.; Reneman, L.; Homberg, J.R.; Sabbe, B.; van den Brink, W.; van Wingen, G.

    2015-01-01

    OBJECTIVES: Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the

  6. Adolescent Social Stress Produces an Enduring Activation of the Rat Locus Coeruleus and Alters its Coherence with the Prefrontal Cortex

    Science.gov (United States)

    Zitnik, Gerard A; Curtis, Andrè L; Wood, Susan K; Arner, Jay; Valentino, Rita J

    2016-01-01

    Early life stress is associated with the development of psychiatric disorders. Because the locus coeruleus-norepinephrine (LC-NE) system is a major stress-response system that is implicated in psychopathology, developmental differences in the response of this system to stress may contribute to increased vulnerability. Here LC single unit and network activity were compared between adult and adolescent rats during resident-intruder stress. In some rats, LC and medial prefrontal cortex (mPFC) coherence was quantified. The initial stress tonically activated LC neurons and induced theta oscillations, while simultaneously decreasing LC auditory-evoked responses in both age groups. Stress increased LC-mPFC coherence within the theta range. With repeated exposures, adolescent LC neuronal and network activity remained elevated even in the absence of the stressor and were unresponsive to stressor presentation. In contrast, LC neurons of adult rats exposed to repeated social stress were relatively inhibited in the absence of the stressor and mounted robust responses upon stressor presentation. LC sensory-evoked responses were selectively blunted in adolescent rats exposed to repeated social stress. Finally, repeated stress decreased LC-mPFC coherence in the high frequency range (beta and gamma) while maintaining strong coherence in the theta range, selectively in adolescents. Together, these results suggest that adaptive mechanisms that promote stress recovery and maintain basal activity of the brain norepinephrine system in the absence of stress are not fully developed or are vulnerable stress-induced impairments in adolescence. The resulting sustained activation of the LC-NE system after repeated social stress may adversely impact cognition and future social behavior of adolescents. PMID:26361057

  7. Mediodorsal Thalamic Neurons Mirror the Activity of Medial Prefrontal Neurons Responding to Movement and Reinforcement during a Dynamic DNMTP Task.

    Science.gov (United States)

    Miller, Rikki L A; Francoeur, Miranda J; Gibson, Brett M; Mair, Robert G

    2017-01-01

    The mediodorsal nucleus (MD) interacts with medial prefrontal cortex (mPFC) to support learning and adaptive decision-making. MD receives driver (layer 5) and modulatory (layer 6) projections from PFC and is the main source of driver thalamic projections to middle cortical layers of PFC. Little is known about the activity of MD neurons and their influence on PFC during decision-making. We recorded MD neurons in rats performing a dynamic delayed nonmatching to position (dDNMTP) task and compared results to a previous study of mPFC with the same task (Onos et al., 2016). Criterion event-related responses were observed for 22% (254/1179) of neurons recorded in MD, 237 (93%) of which exhibited activity consistent with mPFC response types. More MD than mPFC neurons exhibited responses related to movement (45% vs. 29%) and reinforcement (51% vs. 27%). MD had few responses related to lever presses, and none related to preparation or memory delay, which constituted 43% of event-related activity in mPFC. Comparison of averaged normalized population activity and population response times confirmed the broad similarity of common response types in MD and mPFC and revealed differences in the onset and offset of some response types. Our results show that MD represents information about actions and outcomes essential for decision-making during dDNMTP, consistent with evidence from lesion studies that MD supports reward-based learning and action-selection. These findings support the hypothesis that MD reinforces task-relevant neural activity in PFC that gives rise to adaptive behavior.

  8. Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia

    Directory of Open Access Journals (Sweden)

    Federica Meconi

    2016-01-01

    Full Text Available Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ. Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ. Brain oscillations represent spectral fingerprints of specific neurocognitive operations and are therefore a promising tool to identify neurocognitive mechanisms that are affected by SZ. Healthy controls showed a prominent suppression of left prefrontal beta oscillatory activity during successful memory formation, which replicates several previous oscillatory memory studies. In contrast, patients failed to exhibit such a left prefrontal beta power suppression. Utilizing a new topographical pattern similarity approach, we further demonstrate that the degree of similarity between a patient's beta power decrease to that of the controls reliably predicted memory performance. This relationship between beta power decreases and memory was such that the patients' memory performance improved as they showed a more similar topographical beta desynchronization pattern compared to that of healthy controls. Together, these findings support left prefrontal beta desynchronization as the spectral fingerprint of verbal episodic memory formation, likely indicating deep semantic processing of verbal material. These findings also demonstrate that left prefrontal beta power suppression (or lack thereof during memory encoding are a reliable biomarker for the observed encoding impairments in SZ in verbal memory.

  9. Aberrant prefrontal beta oscillations predict episodic memory encoding deficits in schizophrenia.

    Science.gov (United States)

    Meconi, Federica; Anderl-Straub, Sarah; Raum, Heidelore; Landgrebe, Michael; Langguth, Berthold; Bäuml, Karl-Heinz T; Hanslmayr, Simon

    Verbal episodic memory is one of the core cognitive functions affected in patients with schizophrenia (SZ). Although this verbal memory impairment in SZ is a well-known finding, our understanding about its underlying neurophysiological mechanisms is rather scarce. Here we address this issue by recording brain oscillations during a memory task in a sample of healthy controls and patients with SZ. Brain oscillations represent spectral fingerprints of specific neurocognitive operations and are therefore a promising tool to identify neurocognitive mechanisms that are affected by SZ. Healthy controls showed a prominent suppression of left prefrontal beta oscillatory activity during successful memory formation, which replicates several previous oscillatory memory studies. In contrast, patients failed to exhibit such a left prefrontal beta power suppression. Utilizing a new topographical pattern similarity approach, we further demonstrate that the degree of similarity between a patient's beta power decrease to that of the controls reliably predicted memory performance. This relationship between beta power decreases and memory was such that the patients' memory performance improved as they showed a more similar topographical beta desynchronization pattern compared to that of healthy controls. Together, these findings support left prefrontal beta desynchronization as the spectral fingerprint of verbal episodic memory formation, likely indicating deep semantic processing of verbal material. These findings also demonstrate that left prefrontal beta power suppression (or lack thereof) during memory encoding are a reliable biomarker for the observed encoding impairments in SZ in verbal memory.

  10. Prefrontal cortical and striatal activity to happy and fear faces in bipolar disorder is associated with comorbid substance abuse and eating disorder.

    Science.gov (United States)

    Hassel, Stefanie; Almeida, Jorge R; Frank, Ellen; Versace, Amelia; Nau, Sharon A; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2009-11-01

    The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. BD individuals scored significantly higher on these spectrum measures than healthy individuals (pright PFC activity to intense happy faces (pright caudate nucleus activity to neutral faces (pright ventral putamen activity to intense happy (pabuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD.

  11. Silent left ventricular dysfunction during routine activity after thrombolytic therapy for acute myocardial infarction

    International Nuclear Information System (INIS)

    Kayden, D.S.; Wackers, F.J.; Zaret, B.L.

    1990-01-01

    To investigate prospectively the occurrence and significance of postinfarction transient left ventricular dysfunction, 33 ambulatory patients who underwent thrombolytic therapy after myocardial infarction were monitored continuously for 187 +/- 56 min during normal activity with a radionuclide left ventricular function detector at the time of hospital discharge. Twelve patients demonstrated 19 episodes of transient left ventricular dysfunction (greater than 0.05 decrease in ejection fraction, lasting greater than or equal to 1 min), with no change in heart rate. Only two episodes in one patient were associated with chest pain and electrocardiographic changes. The baseline ejection fraction was 0.52 +/- 0.12 in patients with transient left ventricular dysfunction and 0.51 +/- 0.13 in patients without dysfunction (p = NS). At follow-up study (19.2 +/- 5.4 months), cardiac events (unstable angina, myocardial infarction or death) occurred in 8 of 12 patients with but in only 3 of 21 patients without transient left ventricular dysfunction (p less than 0.01). During submaximal supine bicycle exercise, only two patients demonstrated a decrease in ejection fraction greater than or equal to 0.05 at peak exercise; neither had a subsequent cardiac event. These data suggest that transient episodes of silent left ventricular dysfunction at hospital discharge in patients treated with thrombolysis after myocardial infarction are common and associated with a poor outcome. Continuous left ventricular function monitoring during normal activity may provide prognostic information not available from submaximal exercise test results

  12. Medial Prefrontal Cortex Activation Facilitates Re-Extinction of Fear in Rats

    Science.gov (United States)

    Chang, Chun-hui; Maren, Stephen

    2011-01-01

    It has been suggested that reduced infralimbic (IL) cortical activity contributes to impairments of fear extinction. We therefore explored whether pharmacological activation of the IL would facilitate extinction under conditions it normally fails (i.e., immediate extinction). Rats received auditory fear conditioning 1 h before extinction training.…

  13. The relationship between dorsolateral prefrontal activation and speech performance-based social anxiety using functional near infrared spectroscopy.

    Science.gov (United States)

    Glassman, Lisa H; Kuster, Anootnara T; Shaw, Jena A; Forman, Evan M; Izzetoglu, Meltem; Matteucci, Alyssa; Herbert, James D

    2017-06-01

    Functional near-infrared (fNIR) spectroscopy is a promising new technology that has demonstrated utility in the study of normal human cognition. We utilized fNIR spectroscopy to examine the effect of social anxiety and performance on hemodynamic activity in the dorsolateral prefrontal cortex (DLPFC). Socially phobic participants and non-clinical participants with varying levels of social anxiety completed a public speaking task in front of a small virtual audience while the DLPFC was being monitored by the fNIR device. The relationship between anxiety and both blood volume (BV) and deoxygenated hemoglobin (Hb) varied significantly as a function of speech performance, such that individuals with low social anxiety who performed well showed an increase in DLPFC activation relative to those who did not perform well. This result suggests that effortful thinking and/or efficient top-down inhibitory control may have been required to complete an impromptu speech task with good performance. In contrast, good performers who were highly socially anxious showed lower DLPFC activation relative to good performers who were low in social anxiety, suggesting autopilot thinking or less-effortful thinking. In poor performers, slight increases in DLPFC activation were observed from low to highly anxious individuals, which may reflect a shift from effortless thinking to heightened self-focused attention. Heightened self-focused attention, poor inhibitory control resulting in excessive fear or anxiety, or low motivation may lower performance. These results suggest that there can be different underlying mechanisms in the brain that affect the level of speech performance in individuals with varying degrees of social anxiety. This study highlights the utility of the fNIR device in the assessment of changes in DLPFC in response to exposure to realistic phobic stimuli, and further supports the potential utility of this technology in the study of the neurophysiology of anxiety disorders.

  14. Increased activity in the right prefrontal cortex measured using near-infrared spectroscopy during a flower arrangement task.

    Science.gov (United States)

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2018-03-01

    Flower arrangement program (FAP) horticultural therapy promotes psychological, social and physiological wellness and recovery. Moreover, FAPs have been used to evaluate the outcomes related to visuospatial working memory; yet, most of these studies used subjective outcome measures such as behavioural observations and questionnaires. Few studies report objective evaluations of FAP effects in humans. In the present study, we measured the effects of an FAP task on frontal lobe activity in healthy participants using near-infrared spectroscopy. We quantified salivary amylase levels as an indicator of stress level during the FAP. The FAP task involved a predetermined arrangement pattern of natural materials (flowers and leaves) that required the participants to identify where a given material should be placed and temporarily memorise the designated position to complete the flower arrangement. The FAP task was compared to the block-tapping task (BTT), which is routinely used to evaluate visuospatial working memory. Both the FAP task and BTT positively stimulated the right prefrontal cortex; however, stress was more effectively limited during the performance of the FAP task. Our data suggest that FAP therapy may be useful for the rehabilitation of patients who are sensitive to stress.

  15. Medial prefrontal cortex activation facilitates re-extinction of fear in rats

    OpenAIRE

    Chang, Chun-hui; Maren, Stephen

    2011-01-01

    It has been suggested that reduced infralimbic (IL) cortical activity contributes to impairments of fear extinction. We therefore explored whether pharmacological activation of the IL would facilitate extinction under conditions it normally fails (i.e., immediate extinction). Rats received auditory fear conditioning 1 h before extinction training. Immediately prior to extinction, rats received microinfusions into the IL of the GABAA receptor antagonist, picrotoxin, or the NMDA receptor partia...

  16. Acupuncture on GB34 activates the precentral gyrus and prefrontal cortex in Parkinson's disease

    NARCIS (Netherlands)

    Yeo, Sujung; Choe, I.H.; Noort, M.W.M.L. van den; Bosch, M.P.C.; Jahng, G.H.; Rosen, B.; Kim, S.H.; Lim, S.

    2014-01-01

    Background Acupuncture is increasingly used as an additional treatment for patients with Parkinson’s disease (PD). Methods In this functional magnetic resonance imaging study, brain activation in response to acupuncture in a group of 12 patients with PD was compared with a group of 12 healthy

  17. PREFRONTAL CORTEX ACTIVATION DURING STORY ENCODING/RETRIEVAL: A MULTI-CHANNEL FUNCTIONAL NEAR-INFRARED SPECTROSCOPY STUDY

    Directory of Open Access Journals (Sweden)

    Sara eBasso Moro

    2013-12-01

    Full Text Available Encoding, storage and retrieval constitute three fundamental stages in information processing and memory. They allow for the creation of new memory traces, the maintenance and the consolidation of these traces over time, and the access and recover of the stored information from short or long-term memory. Functional near-infrared spectroscopy (fNIRS is a non-invasive neuroimaging technique that measures concentration changes of oxygenated-hemoglobin (O2Hb and deoxygenated-hemoglobin (HHb in cortical microcirculation blood vessels by means of the characteristic absorption spectra of hemoglobin in the near-infrared range. In the present study, we monitored, using a sixteen-channel fNIRS system, the hemodynamic response during the encoding and retrieval processes (EP and RP, respectively over the prefrontal cortex (PFC of thirteen healthy subjects (27.2±2.6 y. while were performing the Logical Memory Test (LMT of the Wechsler Memory Scale. A LMT-related PFC activation was expected; specifically, it was hypothesized a neural dissociation between EP and RP. The results showed a heterogeneous O2Hb/HHb response over the mapped area during the EP and the RP, with a O2Hb progressive and prominent increment in ventrolateral PFC since the beginning of the EP. During the RP a broader activation, including the ventrolateral PFC, the dorsolateral PFC and the frontopolar cortex, was observed. This could be explained by the different contributions of the PFC regions in the EP and the RP. Considering the fNIRS applicability for the hemodynamic monitoring during the LMT performance, this study has demonstrated that fNIRS could be utilized as a valuable clinical diagnostic tool, and that it has the potential to be adopted in patients with cognitive disorders or slight working memory deficits.

  18. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    OpenAIRE

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hy...

  19. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    Science.gov (United States)

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release.

  20. Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Lee, Hweeling

    2017-01-01

    -parietal areas integrating the evidence into a decision variable that is compared to a decisional threshold. This concurrent transcranial magnetic stimulation (TMS)-fMRI study applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS) to investigate the causal influence of IPS...... affect participants' performance accuracy, it affected how observers adjusted their response times after making an error. We therefore suggest that activation increases in superior frontal gyri for misses relative to correct responses may not be critical for signal detection performance, but rather...

  1. Dopamine modulates persistent synaptic activity and enhances the signal-to-noise ratio in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sven Kroener

    2009-08-01

    Full Text Available The importance of dopamine (DA for prefrontal cortical (PFC cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA neurons.We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (> or = 1 microM concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 microM had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1-1 microM of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA's effects in an active network.Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning.

  2. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  3. Evidence for a neural correlate of a framing effect: bias-specific activity in the ventromedial prefrontal cortex during credibility judgments.

    Science.gov (United States)

    Deppe, M; Schwindt, W; Krämer, J; Kugel, H; Plassmann, H; Kenning, P; Ringelstein, E B

    2005-11-15

    Neural processes within the medial prefrontal cortex play a crucial role in assessing and integrating emotional and other implicit information during decision-making. Phylogenetically, it was important for the individual to assess the relevance of all kinds of environmental stimuli in order to adapt behavior in a flexible manner. Consequently, we can in principle not exclude that environmental information covertly influences the evaluation of actually decision relevant facts ("framing effect"). To test the hypothesis that the medial prefrontal cortex is involved into a framing effect we employed functional magnetic resonance imaging (fMRI) during a binary credibility judgment task. Twenty-one subjects were asked to judge 30 normalized news magazine headlines by forced answers as "true" or "false". To confound the judgments by formally irrelevant framing information we presented each of the headlines in four different news magazines characterized by varying credibility. For each subject the susceptibility to the judgment confounder (framing information) was assessed by magazine-specific modifications of the answers given. We could show that individual activity changes of the ventromedial prefrontal cortex during the judgments correlate with the degree of an individual's susceptibility to the framing information. We found (i) a neural correlate of a framing effect as postulated by behavioral decision theorists that (ii) reflects interindividual differences in the degree of the susceptibility to framing information.

  4. Removing the effect of response time on brain activity reveals developmental differences in conflict processing in the posterior medial prefrontal cortex.

    Science.gov (United States)

    Carp, Joshua; Fitzgerald, Kate Dimond; Taylor, Stephan F; Weissman, Daniel H

    2012-01-02

    In functional magnetic resonance imaging (fMRI) studies, researchers often attempt to ensure that group differences in brain activity are not confounded with group differences in mean reaction time (RT). However, even when groups are matched for performance, they may differ in terms of the RT-BOLD relationship: the degree to which brain activity varies with RT on a trial-by-trial basis. Group activation differences might therefore be influenced by group differences in the relationship between brain activity and time on task. Here, we investigated whether correcting for this potential confound alters group differences in brain activity. Specifically, we reanalyzed data from a functional MRI study of response conflict in children and adults, in which conventional analyses indicated that conflict-related activity did not differ between groups. We found that the RT-BOLD relationship was weaker in children than in adults. Consequently, after removing the effect of RT on brain activity, children exhibited greater conflict-related activity than adults in both the posterior medial prefrontal cortex and the right dorsolateral prefrontal cortex. These results identify the RT-BOLD relationship as an important potential confound in fMRI studies of group differences. They also suggest that the magnitude of the RT-BOLD relationship may be a useful biomarker of brain maturity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Differential effects of the transient outward K(+) current activator NS5806 in the canine left ventricle

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Soltysinska, Ewa; Jespersen, Thomas

    2009-01-01

    To examine the electrophysiological and molecular properties of the transient outward current (I(to)) in canine left ventricle using a novel I(to) activator, NS5806, I(to) was measured in isolated epicardial (Epi), midmyocardial (Mid) and endocardial (Endo) cells using whole-cell patch-clamp tech...

  6. Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Guillaume Martel

    Full Text Available Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD. Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR. Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.

  7. Prefrontal activity during working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and correlates with frequency of cannabis use.

    Science.gov (United States)

    Taurisano, Paolo; Antonucci, Linda A; Fazio, Leonardo; Rampino, Antonio; Romano, Raffaella; Porcelli, Annamaria; Masellis, Rita; Colizzi, Marco; Quarto, Tiziana; Torretta, Silvia; Di Giorgio, Annabella; Pergola, Giulio; Bertolino, Alessandro; Blasi, Giuseppe

    2016-08-01

    The CB1 cannabinoid receptor is targeted in the brain by endocannabinoids under physiological conditions as well as by delta9-tetrahydrocannabinol under cannabis use. Furthermore, its signaling appears to affect brain cognitive processing. Recent findings highlight a crucial role of cyclooxygenase-2 (COX-2) in the mechanism of intraneuronal CB1 signaling transduction, while others indicate that two single nucleotide polymorphisms (SNPs) (rs1406977 and rs20417) modulate expression of CB1 (CNR1) and COX-2 (PTGS2) coding genes, respectively. Here, our aim was to use fMRI to investigate in healthy humans whether these SNPs interact in modulating prefrontal activity during working memory processing and if this modulation is linked with cannabis use. We recruited 242 healthy subjects genotyped for CNR1 rs1406977 and PTGS2 rs20417 that performed the N-back working memory task during fMRI and were interviewed using the Cannabis Experience Questionnaire (CEQ). We found that the interaction between CNR1 rs1406977 and PTGS2 rs20417 is associated with dorsolateral prefrontal cortex (DLPFC) activity such that specific genotype configurations (CNR1 C carriers/PTGS2 C carriers and CNR1 TT/PTGS2 GG) predict lower cortical response versus others in spite of similar behavioral accuracy. Furthermore, DLPFC activity in the cluster associated with the CNR1 by PTGS2 interaction was negatively correlated with behavioral efficiency and positively correlated with frequency of cannabis use in cannabis users. These results suggest that a genetically modulated balancing of signaling within the CB1-COX-2 pathway may reflect on more or less efficient patterns of prefrontal activity during working memory. Frequency of cannabis use may be a factor for further modulation of CNR1/PTGS2-mediated cortical processing associated with this cognitive process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Increased angiotensin-converting enzyme activity in the left ventricle after infarction

    Directory of Open Access Journals (Sweden)

    V.C.W. Busatto

    1997-05-01

    Full Text Available An increase in angiotensin-converting enzyme (ACE activity has been observed in the heart after myocardial infarction (MI. Since most studies have been conducted in chronically infarcted individuals exhibiting variable degrees of heart failure, the present study was designed to determine ACE activity in an earlier phase of MI, before heart failure development. MI was produced in 3-month old male Wistar rats by ligation of the anterior branches of the left coronary artery, control rats underwent sham surgery and the animals were studied 7 or 15 days later. Hemodynamic data obtained for the anesthetized animals showed normal values of arterial blood pressure and of end-diastolic pressure in the right and left ventricular cavities of MI rats. Right and left ventricular (RV, LV muscle and scar tissue homogenates were prepared to determine ACE activity in vitro by measuring the velocity of His-Leu release from the synthetic substrate Hyp-His-Leu. ACE activity was corrected to the tissue wet weight and is reported as nmol His-Leu g-1 min-1. No significant change in ACE activity in the RV homogenates was demonstrable. A small nonsignificant increase of ACE activity (11 ± 9%; P0.05 was observed 7 days after MI in the surviving left ventricular muscle. Two weeks after surgery, however, ACE activity was 46 ± 11% (P<0.05 higher in infarcted rats compared to sham-operated rats. The highest ACE activity was demonstrable in the scar tissue homogenate. In rats studied two weeks after surgery, ACE activity in the LV muscle increased from 105 ± 7 nmol His-Leu g-1 min-1 in control hearts to 153 ± 11 nmol His-Leu g-1 min-1 (P<0.05 in the remaining LV muscle of MI rats and to 1051 ± 208 nmol His-Leu g-1 min-1 (P<0.001 in the fibrous scar. These data indicate that ACE activity increased in the heart after infarction before heart failure was demonstrable by hemodynamic measurements. Since the blood vessels of the scar drain to the remaining LV myocardium, the

  9. Relationship between plasma xanthine oxidoreductase activity and left ventricular ejection fraction and hypertrophy among cardiac patients.

    Directory of Open Access Journals (Sweden)

    Yuki Fujimura

    Full Text Available Xanthine oxidoreductase (XOR, which catalyzes purine catabolism, has two interconvertible forms, xanthine dehydrogenase and xanthine oxidase, the latter of which produces superoxide during uric acid (UA synthesis. An association between plasma XOR activity and cardiovascular and renal outcomes has been previously suggested. We investigated the potential association between cardiac parameters and plasma XOR activity among cardiology patients.Plasma XOR activity was measured by [13C2,15N2]xanthine coupled with liquid chromatography/triplequadrupole mass spectrometry. Among 270 patients who were not taking UA-lowering drugs, XOR activity was associated with body mass index (BMI, alanine aminotransferase (ALT, HbA1c and renal function. Although XOR activity was not associated with serum UA overall, patients with chronic kidney disease (CKD, those with higher XOR activity had higher serum UA among patients without CKD. Compared with patients with the lowest XOR activity quartile, those with higher three XOR activity quartiles more frequently had left ventricular hypertrophy. In addition, plasma XOR activity showed a U-shaped association with low left ventricular ejection fraction (LVEF and increased plasma B-type natriuretic peptide (BNP levels, and these associations were independent of age, gender, BMI, ALT, HbA1C, serum UA, and CKD stages.Among cardiac patients, left ventricular hypertrophy, low LVEF, and increased BNP were significantly associated with plasma XOR activity independent of various confounding factors. Whether pharmaceutical modification of plasma XOR activity might inhibit cardiac remodeling and improve cardiovascular outcome should be investigated in future studies.

  10. Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study.

    Science.gov (United States)

    Weber, Matthew J; Messing, Samuel B; Rao, Hengyi; Detre, John A; Thompson-Schill, Sharon L

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique used both experimentally and therapeutically to modulate regional brain function. However, few studies have directly measured the aftereffects of tDCS on brain activity or examined changes in task-related brain activity consequent to prefrontal tDCS. To investigate the neural effects of tDCS, we collected fMRI data from 22 human subjects, both at rest and while performing the Balloon Analog Risk Task (BART), before and after true or sham transcranial direct current stimulation. TDCS decreased resting blood perfusion in orbitofrontal cortex and the right caudate and increased task-related activity in the right dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in response to losses but not wins or increasing risk. Network analysis showed that whole-brain connectivity of the right ACC correlated positively with the number of pumps subjects were willing to make on the BART, and that tDCS reduced connectivity between the right ACC and the rest of the brain. Whole-brain connectivity of the right DLPFC also correlated negatively with pumps on the BART, as prior literature would suggest. Our results suggest that tDCS can alter activation and connectivity in regions distal to the electrodes. Copyright © 2014 Wiley Periodicals, Inc.

  11. Regulating prefrontal cortex activation: an emerging role for the 5-HT₂A serotonin receptor in the modulation of emotion-based actions?

    Science.gov (United States)

    Aznar, Susana; Klein, Anders B

    2013-12-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.

  12. Distinctive Left Ventricular Activations Associated With ECG Pattern in Heart Failure Patients.

    Science.gov (United States)

    Derval, Nicolas; Duchateau, Josselin; Mahida, Saagar; Eschalier, Romain; Sacher, Frederic; Lumens, Joost; Cochet, Hubert; Denis, Arnaud; Pillois, Xavier; Yamashita, Seigo; Komatsu, Yuki; Ploux, Sylvain; Amraoui, Sana; Zemmoura, Adlane; Ritter, Philippe; Hocini, Mélèze; Haissaguerre, Michel; Jaïs, Pierre; Bordachar, Pierre

    2017-06-01

    In contrast to patients with left bundle branch block (LBBB), heart failure patients with narrow QRS and nonspecific intraventricular conduction delay (NICD) display a relatively limited response to cardiac resynchronization therapy. We sought to compare left ventricular (LV) activation patterns in heart failure patients with narrow QRS and NICD to patients with LBBB using high-density electroanatomic activation maps. Fifty-two heart failure patients (narrow QRS [n=18], LBBB [n=11], NICD [n=23]) underwent 3-dimensional electroanatomic mapping with a high density of mapping points (387±349 LV). Adjunctive scar imaging was available in 37 (71%) patients and was analyzed in relation to activation maps. LBBB patients typically demonstrated (1) a single LV breakthrough at the septum (38±15 ms post-QRS onset); (2) prolonged right-to-left transseptal activation with absence of direct LV Purkinje activity; (3) homogeneous propagation within the LV cavity; and (4) latest activation at the basal lateral LV. In comparison, both NICD and narrow QRS patients demonstrated (1) multiple LV breakthroughs along the posterior or anterior fascicles: narrow QRS versus LBBB, 5±2 versus 1±1; P =0.0004; NICD versus LBBB, 4±2 versus 1±1; P =0.001); (2) evidence of early/pre-QRS LV electrograms with Purkinje potentials; (3) rapid propagation in narrow QRS patients and more heterogeneous propagation in NICD patients; and (4) presence of limited areas of late activation associated with LV scar with high interindividual heterogeneity. In contrast to LBBB patients, narrow QRS and NICD patients are characterized by distinct mechanisms of LV activation, which may predict poor response to cardiac resynchronization therapy. © 2017 American Heart Association, Inc.

  13. Selective activation around the left occipito-temporal sulcus for words relative to pictures: Individual variability or false positives?

    NARCIS (Netherlands)

    Wright, Nicholas D.; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J.; Rombouts, Serge A. R. B.; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J.

    2008-01-01

    We used high-resolution fMRI to investigate claims that learning to read r !sults in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In tl e first experiment, 9/16 subjects performing a one-back task showed activation in >= 1 left OT voxel for word:

  14. Decreased prefrontal functional brain response during memory testing in women with Cushing's syndrome in remission.

    Science.gov (United States)

    Ragnarsson, Oskar; Stomby, Andreas; Dahlqvist, Per; Evang, Johan A; Ryberg, Mats; Olsson, Tommy; Bollerslev, Jens; Nyberg, Lars; Johannsson, Gudmundur

    2017-08-01

    Neurocognitive dysfunction is an important feature of Cushing's syndrome (CS). Our hypothesis was that patients with CS in remission have decreased functional brain responses in the prefrontal cortex and hippocampus during memory testing. In this cross-sectional study we included 19 women previously treated for CS and 19 controls matched for age, gender, and education. The median remission time was 7 (IQR 6-10) years. Brain activity was studied with functional magnetic resonance imaging during episodic- and working-memory tasks. The primary regions of interest were the prefrontal cortex and the hippocampus. A voxel-wise comparison of functional brain responses in patients and controls was performed. During episodic-memory encoding, patients displayed lower functional brain responses in the left and right prefrontal gyrus (pright inferior occipital gyrus (pbrain responses in the left posterior hippocampus in patients (p=0.05). During episodic-memory retrieval, the patients displayed lower functional brain responses in several brain areas with the most predominant difference in the right prefrontal cortex (pbrain response during a more complex working memory task compared with a simpler one. In conclusion, women with CS in long-term remission have reduced functional brain responses during episodic and working memory testing. This observation extends previous findings showing long-term adverse effects of severe hypercortisolaemia on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Prefrontal and parietal activity is modulated by the rule complexity of inductive reasoning and can be predicted by a cognitive model.

    Science.gov (United States)

    Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng

    2015-01-01

    In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.

  16. Programming Cardiac Resynchronization Therapy for Electrical Synchrony: Reaching Beyond Left Bundle Branch Block and Left Ventricular Activation Delay.

    Science.gov (United States)

    Varma, Niraj; O'Donnell, David; Bassiouny, Mohammed; Ritter, Philippe; Pappone, Carlo; Mangual, Jan; Cantillon, Daniel; Badie, Nima; Thibault, Bernard; Wisnoskey, Brian

    2018-02-06

    QRS narrowing following cardiac resynchronization therapy with biventricular (BiV) or left ventricular (LV) pacing is likely affected by patient-specific conduction characteristics (PR, qLV, LV-paced propagation interval), making a universal programming strategy likely ineffective. We tested these factors using a novel, device-based algorithm (SyncAV) that automatically adjusts paced atrioventricular delay (default or programmable offset) according to intrinsic atrioventricular conduction. Seventy-five patients undergoing cardiac resynchronization therapy (age 66±11 years; 65% male; 32% with ischemic cardiomyopathy; LV ejection fraction 28±8%; QRS duration 162±16 ms) with intact atrioventricular conduction (PR interval 194±34, range 128-300 ms), left bundle branch block, and optimized LV lead position were studied at implant. QRS duration (QRSd) reduction was compared for the following pacing configurations: nominal simultaneous BiV (Mode I: paced/sensed atrioventricular delay=140/110 ms), BiV+SyncAV with 50 ms offset (Mode II), BiV+SyncAV with offset that minimized QRSd (Mode III), or LV-only pacing+SyncAV with 50 ms offset (Mode IV). The intrinsic QRSd (162±16 ms) was reduced to 142±17 ms (-11.8%) by Mode I, 136±14 ms (-15.6%) by Mode IV, and 132±13 ms (-17.8%) by Mode II. Mode III yielded the shortest overall QRSd (123±12 ms, -23.9% [ P <0.001 versus all modes]) and was the only configuration without QRSd prolongation in any patient. QRS narrowing occurred regardless of QRSd, PR, or LV-paced intervals, or underlying ischemic disease. Post-implant electrical optimization in already well-selected patients with left bundle branch block and optimized LV lead position is facilitated by patient-tailored BiV pacing adjusted to intrinsic atrioventricular timing using an automatic device-based algorithm. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  17. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  18. Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior

    Directory of Open Access Journals (Sweden)

    Ronald P Gaykema

    2014-07-01

    Full Text Available The medial prefrontal cortex (mPFC is implicated in aspects of executive function, that include the modulation of attentional and memory processes involved in goal selection. Food-seeking behavior has been shown to involve activation of the mPFC, both during the execution of strategies designed to obtain food and during the consumption of food itself. As these behaviors likely require differential engagement of the prefrontal cortex, we hypothesized that the pattern of neuronal activation would also be behavior dependent. In this study we describe, for the first time, the expression of Fos in different layers and cell types of the infralimbic/dorsal peduncular (IL/DP and prelimbic/anterior cingulate (PL/AC subdivisions of mouse mPFC following both the consumption of palatable food and following exploratory activity of the animal directed at obtaining food reward. While both manipulations led to increases of Fos expression in principal excitatory neurons relative to control, food-directed exploratory activity produced a significantly greater increase in Fos expression than observed in the food intake condition. Consequently, we hypothesized that mPFC interneuron activation would also be differentially engaged by these manipulations. Interestingly, Fos expression patterns differed substantially between treatments and interneuron subtype, illustrating how the differential engagement of subsets of mPFC interneurons depends on the behavioral state. In our experiments, both vasoactive intestinal peptide- and parvalbumin-expressing neurons showed enhanced Fos expression only during the food-dependent exploratory task and not during food intake. Conversely, elevations in arcuate and paraventricular hypothalamic fos expression were only observed following food intake and not following food driven exploration. Our data suggest that activation of select mPFC interneurons may be required to support high cognitive demand states while being dispensable during

  19. Enhanced activation of the left inferior frontal gyrus in deaf and dyslexic adults during rhyming.

    Science.gov (United States)

    MacSweeney, Mairéad; Brammer, Michael J; Waters, Dafydd; Goswami, Usha

    2009-07-01

    Hearing developmental dyslexics and profoundly deaf individuals both have difficulties processing the internal structure of words (phonological processing) and learning to read. In hearing non-impaired readers, the development of phonological representations depends on audition. In hearing dyslexics, many argue, auditory processes may be impaired. In congenitally profoundly deaf individuals, auditory speech processing is essentially absent. Two separate literatures have previously reported enhanced activation in the left inferior frontal gyrus in both deaf and dyslexic adults when contrasted with hearing non-dyslexics during reading or phonological tasks. Here, we used a rhyme judgement task to compare adults from these two special populations to a hearing non-dyslexic control group. All groups were matched on non-verbal intelligence quotient, reading age and rhyme performance. Picture stimuli were used since this requires participants to generate their own phonological representations, rather than have them partially provided via text. By testing well-matched groups of participants on the same task, we aimed to establish whether previous literatures reporting differences between individuals with and without phonological processing difficulties have identified the same regions of differential activation in these two distinct populations. The data indicate greater activation in the deaf and dyslexic groups than in the hearing non-dyslexic group across a large portion of the left inferior frontal gyrus. This includes the pars triangularis, extending superiorly into the middle frontal gyrus and posteriorly to include the pars opercularis, and the junction with the ventral precentral gyrus. Within the left inferior frontal gyrus, there was variability between the two groups with phonological processing difficulties. The superior posterior tip of the left pars opercularis, extending into the precentral gyrus, was activated to a greater extent by deaf than dyslexic

  20. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson's Disease.

    Science.gov (United States)

    Borchert, Robin J; Rittman, Timothy; Passamonti, Luca; Ye, Zheng; Sami, Saber; Jones, Simon P; Nombela, Cristina; Vázquez Rodríguez, Patricia; Vatansever, Deniz; Rae, Charlotte L; Hughes, Laura E; Robbins, Trevor W; Rowe, James B

    2016-07-01

    Cognitive impairment is common in Parkinson's disease (PD), but often not improved by dopaminergic treatment. New treatment strategies targeting other neurotransmitter deficits are therefore of growing interest. Imaging the brain at rest ('task-free') provides the opportunity to examine the impact of a candidate drug on many of the brain networks that underpin cognition, while minimizing task-related performance confounds. We test this approach using atomoxetine, a selective noradrenaline reuptake inhibitor that modulates the prefrontal cortical activity and can facilitate some executive functions and response inhibition. Thirty-three patients with idiopathic PD underwent task-free fMRI. Patients were scanned twice in a double-blind, placebo-controlled crossover design, following either placebo or 40-mg oral atomoxetine. Seventy-six controls were scanned once without medication to provide normative data. Seed-based correlation analyses were used to measure changes in functional connectivity, with the right inferior frontal gyrus (IFG) a critical region for executive function. Patients on placebo had reduced connectivity relative to controls from right IFG to dorsal anterior cingulate cortex and to left IFG and dorsolateral prefrontal cortex. Atomoxetine increased connectivity from the right IFG to the dorsal anterior cingulate. In addition, the atomoxetine-induced change in connectivity from right IFG to dorsolateral prefrontal cortex was proportional to the change in verbal fluency, a simple index of executive function. The results support the hypothesis that atomoxetine may restore prefrontal networks related to executive functions. We suggest that task-free imaging can support translational pharmacological studies of new drug therapies and provide evidence for engagement of the relevant neurocognitive systems.

  1. Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls.

    Science.gov (United States)

    Halari, Rozmin; Simic, Mima; Pariante, Carmine M; Papadopoulos, Andrew; Cleare, Anthony; Brammer, Michael; Fombonne, Eric; Rubia, Katya

    2009-03-01

    There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of cognitive control functions, however, exist in paediatric depression. This study investigated whether medication-naïve adolescents with MDD show abnormal brain activation of fronto-striatal and fronto-cingulate networks when performing tasks of attentional and cognitive control. Event-related functional magnetic resonance imaging was used to compare brain activation between 21 medication-naïve adolescents with a first-episode of MDD aged 14-17 years and 21 healthy adolescents, matched for handedness, age, sex, demographics and IQ. Activation paradigms were tasks of selective attention (Simon task), attentional switching (Switch task), and motor response inhibition and error detection (Stop task). In all three tasks, adolescents with depression compared to healthy controls demonstrated reduced activation in task-relevant right dorsolateral (DLPFC), inferior prefrontal cortex (IFC) and anterior cingulate gyrus (ACG). Additional areas of relatively reduced activation were in the parietal lobes during the Stop and Switch tasks, putamen, insula and temporal lobes during the Switch task and precuneus during the Simon task. This study shows first evidence that medication-naïve adolescents with MDD are characterised by abnormal function in ACG and right lateral prefrontal cortex during tasks of attention and performance monitoring, suggesting an early pathogenesis of these functional abnormalities attributed to MDD.

  2. Two-dimensional speckle tracking echocardiography demonstrates no effect of active acromegaly on left ventricular strain.

    Science.gov (United States)

    Volschan, I C M; Kasuki, L; Silva, C M S; Alcantara, M L; Saraiva, R M; Xavier, S S; Gadelha, M R

    2017-06-01

    Speckle tracking echocardiography (STE) allows for the study of myocardial strain (ε), a marker of early and subclinical ventricular systolic dysfunction. Cardiac disease may be present in patients with acromegaly; however, STE has never been used to evaluate these patients. To evaluate left ventricular (LV) global longitudinal strain in patients with active acromegaly with normal LV systolic function. Cross-sectional clinical study. Patients with active acromegaly with no detectable heart disease and a control group were matched for age, gender, arterial hypertension and diabetes mellitus underwent STE. Global LV longitudinal ε (GLS), left ventricular mass index (LVMi), left ventricular ejection fraction (LVEF) and relative wall thickness (RWT) were obtained via two-dimensional (2D) echocardiography using STE. Thirty-seven patients with active acromegaly (mean age 45.6 ± 13.8; 48.6% were males) and 48 controls were included. The mean GLS was not significantly different between the acromegaly group and the control group (in %, -20.1 ± 3.1 vs. -19.4 ± 2.2, p = 0.256). Mean LVMi was increased in the acromegaly group (in g/m 2 , 101.6 ± 27.1 vs. 73.2 ± 18.6, p Acromegaly patients, despite presenting with a higher LVMi when analyzed by 2D echocardiography, did not present with impairment in the strain when compared to a control group; this finding indicates a low chance of evolution to systolic dysfunction and agrees with recent studies that show a lower frequency of cardiac disease in these patients.

  3. Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder

    Science.gov (United States)

    Nusslock, Robin; Harmon-Jones, Eddie; Alloy, Lauren B.; Urosevic, Snezana; Goldstein, Kim; Abramson, Lyn Y.

    2013-01-01

    Bipolar disorder is characterized by a hypersensitivity to reward-relevant cues and a propensity to experience an excessive increase in approach-related affect, which may be reflected in hypo/manic symptoms. The present study examined the relationship between relative left-frontal electroencephalographic (EEG) activity, a proposed neurophysiological index of approach-system sensitivity and approach/reward-related affect, and bipolar course and state-related variables. Fifty-eight individuals with cyclothymia or bipolar II disorder and 59 healthy control participants with no affective psychopathology completed resting EEG recordings. Alpha power was obtained and asymmetry indices computed for homologous electrodes. Bipolar spectrum participants were classified as being in a major/minor depressive episode, a hypomanic episode, or a euthymic/remitted state at EEG recording. Participants were then followed prospectively for an average 4.7 year follow-up period with diagnostic interview assessments every four-months. Sixteen bipolar spectrum participants converted to bipolar I disorder during follow-up. Consistent with hypotheses, elevated relative left-frontal EEG activity at baseline 1) prospectively predicted a greater likelihood of converting from cyclothymia or bipolar II disorder to bipolar I disorder over the 4.7 year follow-up period, 2) was associated with an earlier age-of-onset of first bipolar spectrum episode, and 3) was significantly elevated in bipolar spectrum individuals in a hypomanic episode at EEG recording. This is the first study to identify a neurophysiological marker that prospectively predicts conversion to bipolar I disorder. The fact that unipolar depression is characterized by decreased relative left-frontal EEG activity suggests that unipolar depression and vulnerability to hypo/mania may be characterized by different profiles of frontal EEG asymmetry. PMID:22775582

  4. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  5. Selective Activation Around the Left Occipito-Temporal Sulcus for Words Relative to Pictures: Individual Variability or False Positives?

    OpenAIRE

    Wright, Nicholas D; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J; Rombouts, Serge ARB; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J

    2007-01-01

    We used high-resolution fMRI to investigate claims that learning to read results in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In the first experiment, 9/16 subjects performing a one-back task showed activation in ?1 left OT voxel for words relative to pictures (P < 0.05 uncorrected). In a second experiment, another 9/15 subjects performing a semantic decision task activated ?1 left OT voxel for words relative to pictures. However, at thi...

  6. Evaluation of left ventricular diastolic function by appreciating the shape of time activity curve

    International Nuclear Information System (INIS)

    Nishimura, Tohru; Taya, Makoto; Shimoyama, Katsuya; Sasaki, Akira; Mizuno, Haruyoshi; Tahara, Yorio; Ono, Akifumi; Ishikawa, Kyozo

    1993-01-01

    To determine left ventricular diastolic function (LVDF), the shape of time activity curve and primary differential curve, as acquired by Tc-99m radionuclide angiography, were visually assessed. The study popoulation consisted of 1647 patients with heart disease, such as hypertension, ischemic heart disease, cardiomyopathy and valvular disease. Fifty-six other patients were served as controls. The LVDF was divided into 4 degrees: 0=normal, I=slight disturbance, II=moderate disturbance, and III=severe disturbance. LVDF variables, including time to peak filling (TPF), TPF/time to end-systole, peak filling rate (PFR), PFR/t, 1/3 filling fraction (1/3 FR), and 1/3 FR/t, were calculated from time activity curve. There was no definitive correlation between each variable and age or heart rate. Regarding these LVDF variables, except for 1/3 FR, there was no significant difference between the group 0 of heart disease patients and the control group. Among the groups 0-III of heart disease patients, there were significant difference in LVDF variables. Visual assessement concurred with left ventricular ejection fraction, PFR/end-diastolic curve, and filling rate/end-diastolic curve. Visual assessment using time activity curve was considered useful in the semiquantitative determination of early diastolic function. (N.K.)

  7. Spatial Relation Between Left Atrial Anatomical Contact Areas and Circular Activation in Persistent Atrial Fibrillation.

    Science.gov (United States)

    Nakahara, Shiro; Yamaguchi, Takanori; Hori, Yuichi; Anjo, Naofumi; Hayashi, Akiko; Kobayashi, Sayuki; Komatsu, Takaaki; Sakai, Yoshihiko; Fukui, Akira; Tsuchiya, Takeshi; Taguchi, Isao

    2016-05-01

    Atrial low-voltage zones (LVZs) may be related to maintenance of atrial fibrillation (AF). The influence of left atrial (LA) contact areas (CoAs) on reentrant or rotor-like sources maintaining AF has not been investigated. Forty patients with persistent AF (PsAF) were analyzed. Three representative CoA regions in the LA (ascending aorta: anterior wall; descending aorta: left inferior pulmonary vein; and vertebrae: posterior wall) were visualized by enhanced CT. Using circular catheters, the LVZs (80% of the mean AF cycle length. A pivot was defined as the core of the localized circular activation. Anterior (39/40 patients, 98%), left pulmonary vein antrum (27/40, 68%), and posterior (19/40, 48%) CoAs were identified, and 80% (68/85) of those sites were overlapped by or close (<3 mm) to LVZs. Thirty-six (90%) patients demonstrated circular activation (3.1±1.7 sites/patients) along with significantly higher organized dominant frequencies (6.3 ± 0.5 Hz, regularity-index: 0.26 [0.23-0.41]) within the LA, and the average electrogram amplitude of those pivots was 0.30 mV (0.18-0.52). Of those sites, 55% (66/120) were located at or close to CoA regions. Catheter ablation including of LVZs neighboring CoAs terminated AF in 9 (23%) patients. External anatomical structures contacting the LA may be related to unique conduction properties in diseased myocardium necessary for PsAF maintenance. © 2016 Wiley Periodicals, Inc.

  8. The neural dynamics of competition resolution for language production in the prefrontal cortex.

    Science.gov (United States)

    Bourguignon, Nicolas J; Ohashi, Hiroki; Nguyen, Don; Gracco, Vincent L

    2018-03-01

    Previous research suggests a pivotal role of the prefrontal cortex (PFC) in word selection during tasks of confrontation naming (CN) and verb generation (VG), both of which feature varying degrees of competition between candidate responses. However, discrepancies in prefrontal activity have also been reported between the two tasks, in particular more widespread and intense activation in VG extending into (left) ventrolateral PFC, the functional significance of which remains unclear. We propose that these variations reflect differences in competition resolution processes tied to distinct underlying lexico-semantic operations: Although CN involves selecting lexical entries out of limited sets of alternatives, VG requires exploration of possible semantic relations not readily evident from the object itself, requiring prefrontal areas previously shown to be recruited in top-down retrieval of information from lexico-semantic memory. We tested this hypothesis through combined independent component analysis of functional imaging data and information-theoretic measurements of variations in selection competition associated with participants' performance in overt CN and VG tasks. Selection competition during CN engaged the anterior insula and surrounding opercular tissue, while competition during VG recruited additional activity of left ventrolateral PFC. These patterns remained after controlling for participants' speech onset latencies indicative of possible task differences in mental effort. These findings have implications for understanding the neural-computational dynamics of cognitive control in language production and how it relates to the functional architecture of adaptive behavior. © 2017 Wiley Periodicals, Inc.

  9. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  10. Being asked to tell an unpleasant truth about another person activates anterior insula and medial prefrontal cortex.

    Science.gov (United States)

    Littlefield, Melissa M; Dietz, Martin J; Fitzgerald, Des; Knudsen, Kasper J; Tonks, James

    2015-01-01

    "Truth" has been used as a baseline condition in several functional magnetic resonance imaging (fMRI) studies of deception. However, like deception, telling the truth is an inherently social construct, which requires consideration of another person's mental state, a phenomenon known as Theory of Mind. Using a novel ecological paradigm, we examined blood oxygenation level dependent (BOLD) responses during social and simple truth telling. Participants (n = 27) were randomly divided into two competing teams. Post-competition, each participant was scanned while evaluating performances from in-group and out-group members. Participants were asked to be honest and were told that their evaluations would be made public. We found increased BOLD responses in the medial prefrontal cortex, bilateral anterior insula and precuneus when participants were asked to tell social truths compared to simple truths about another person. At the behavioral level, participants were slower at responding to social compared to simple questions about another person. These findings suggest that telling the truth is a nuanced cognitive operation that is dependent on the degree of mentalizing. Importantly, we show that the cortical regions engaged by truth telling show a distinct pattern when the task requires social reasoning.

  11. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex.

    Science.gov (United States)

    Scheggia, D; Zamberletti, E; Realini, N; Mereu, M; Contarini, G; Ferretti, V; Managò, F; Margiani, G; Brunoro, R; Rubino, T; De Luca, M A; Piomelli, D; Parolaro, D; Papaleo, F

    2018-04-01

    The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC. However, despite the established role played by COMT genetic variation in executive functions, its impact on remote memory formation and recall is still poorly explored. Here we report that transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (>50 days) while having unaltered recent memories (remote memories as silencing COMT Val overexpression starting from 30 days after the initial aversive conditioning normalized remote memories. COMT genetic overactivity produced a selective overdrive of the endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and increased PFC dopamine levels. These results demonstrate that COMT genetic variations modulate the retrieval of remote memories through the dysregulation of the endocannabinoid system in the PFC.

  12. Ginkobiloba extract improves working memory performance in middle-aged women: role of asymmetry of prefrontal cortex activity during a working memory task.

    Science.gov (United States)

    Sakatani, Kaoru; Tanida, Masahiro; Hirao, Naoyasu; Takemura, Naohiro

    2014-01-01

    In order to clarify the mechanism through which extract of Ginkgo biloba leaves (EGb) improves cognitive function, we examined the effects of EGb on cerebral blood oxygenation in the prefrontal cortex (PFC) and on performance during a working memory task, using near-infrared spectrometry (NIRS). First, we evaluated differences in behavioral performance of the Sternberg working memory test (ST) and in the activation pattern of the PFC during ST between 15 young and 19 middle-aged healthy women. Then, we examined the effect of EGb (120 mg/day for 6 weeks) on ST performance and PFC activation pattern in the middle-aged group. The middle-aged group exhibited a longer reaction time (RT) in ST than the young group and showed a different PFC activation pattern during ST, i.e., the middle-aged group showed bilateral activation while the young group showed right-dominant activation. In the middle-aged group, administration of EGb for 6 weeks shortened the RT of ST and changed the PFC activation pattern to right-dominant, like that in the young group. The results indicate the PFC plays a role in the physiological cognitive function-enhancing effect of EGb. EGb might improve working memory function in middle-aged individuals by counteracting the occurrence of aging-related hemispheric asymmetry reduction.

  13. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  14. Radionuclide Angiocardiographic Evaluation of Left-to-Right Cardiac Shunts: Analysis of Time-Active Curves

    International Nuclear Information System (INIS)

    Kim, Ok Hwa; Bahk, Yong Whee; Kim, Chi Kyung

    1987-01-01

    The noninvasive nature of the radionuclide angiocardiography provided a useful approach for the evaluation of left-to-right cardiac shunts (LRCS). While the qualitative information can be obtained by inspection of serial radionuclide angiocardiograms, the quantitative information of radionuclide angiocardiography can be obtained by the analysis of time-activity curves using advanced computer system. The count ratios method and pulmonary-to-systemic flow ratio (QP/QS) by gamma variate fit method were used to evaluate the accuracy of detection and localization of LRCS. One hundred and ten time-activity curves were analyzed. There were 46 LRCS (atrial septal defects 11, ventricular septal defects 22, patent ductus arteriosus 13) and 64 normal subjects. By computer analysis of time-activity curves of the right atriurn, ventricle and the lungs separately, the count ratios modified by adding the mean cardiac transit time were calculated in each anatomic site. In normal subjects the mean count ratios in the right atrium, ventricle and lungs were 0.24 on average. In atrial septal defects, the count ratios were high in the right atrium, ventricle and lungs, whereas in ventricular septal defects the count ratios were higher only in the right ventricle and lungs. Patent ductus arteriosus showed normal count ratios in the heart but high count ratios were obtained in the lungs. Thus, this count ratios method could be separated normal from those with intracardiac or extracardiac shunts, and moreover, with this method the localization of the shunt level was possible in LRCS. Another method that could differentiate the intracardiac shunts from extracardiac shunts was measuring QP/QS in the left and right lungs. In patent ductus arteriosus, the left lung QP/QS was higher than those of the right lung, whereas in atrial septal defects and ventricular septal defects QP/ QS ratios were equal in both lungs. From this study, it was found that by measuring QP/QS separately in the lungs

  15. Altered left ventricular performance in aging physically active mice with an ankle sprain injury.

    Science.gov (United States)

    Turner, Michael J; Guderian, Sophie; Wikstrom, Erik A; Huot, Joshua R; Peck, Bailey D; Arthur, Susan T; Marino, Joseph S; Hubbard-Turner, Tricia

    2016-02-01

    We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.

  16. Working Memory in the Prefrontal Cortex

    Science.gov (United States)

    Funahashi, Shintaro

    2017-01-01

    The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified. PMID:28448453

  17. Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS

    Science.gov (United States)

    Whitney, Carin; Kirk, Marie; O'Sullivan, Jamie; Ralph, Matthew A. Lambon; Jefferies, Elizabeth

    2012-01-01

    To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus…

  18. Ticagrelor, but not clopidogrel active metabolite, displays antithrombotic properties in the left atrial endocardium.

    Science.gov (United States)

    Reiner, Martin F; Breitenstein, Alexander; Holy, Erik W; Glanzmann, Martina; Amstalden, Heidi; Stämpfli, Simon F; Bonetti, Nicole R; Falk, Volkmar; Keller, Stephan; Savarese, Gianluigi; Benussi, Stefano; Maisano, Francesco; Lüscher, Thomas F; Beer, Jürg H; Steffel, Jan; Camici, Giovanni G

    2017-03-21

    Oral anticoagulation is considered standard therapy for stroke prevention in atrial fibrillation (AF). Endocardial activation triggers expression of pro-thrombotic mediators including tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1), and contributes to thrombus formation in the left atrial appendage (LAA) of AF patients. Recently, pleiotropic effects of specific P2Y12 receptor antagonists were demonstrated; however, whether these drugs possess antithrombotic effects on LAA endocardial cells currently remains unknown. LAA were obtained from 14 patients with known AF undergoing elective cardiac surgery including LAA removal at the University Hospital Zurich. LAA endocardial cells were isolated and pre-incubated with ticagrelor (10-7, 10-6, 10-5M) or clopidogrel active metabolite (CAM) (1.5 × 10-8, 1.5 × 10-7, 1.5 × 10-6 M) before stimulation with tumour necrosis factor-alpha (TNF-α) (10 ng/mL). Finally, TF and PAI-1 expression and activity were analysed. Ticagrelor, unlike CAM, concentration dependently decreased TNF-α-induced TF expression and TF activity in LAA endocardial cells. Further, ticagrelor, but not CAM reduced PAI-1 expression and enzyme activity in TNF-α-stimulated LAA endocardial cells. In contrast, TF pathway inhibitor (TFPI) remained unaffected by both dugs. Ticagrelor, but not CAM, reduces expression and activity of TF and PAI-1 in LAA endocardial cells isolated from patients with AF, indicating possible local antithrombotic effects. Such pleiotropic properties of ticagrelor may contribute to a reduction in thromboembolic complications in patients with AF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  19. Evaluation of cerebral activity in the prefrontal cortex in mood [affective] disorders during animal-assisted therapy (AAT) by near-infrared spectroscopy (NIRS): a pilot study.

    Science.gov (United States)

    Aoki, Jun; Iwahashi, Kazuhiko; Ishigooka, Jun; Fukamauchi, Fumihiko; Numajiri, Maki; Ohtani, Nobuyo; Ohta, Mitsuaki

    2012-09-01

    Previous studies have shown the possibility that animal-assisted therapy (AAT) is useful for promoting the recovery of a patient's psychological, social, and physiological aspect. As a pilot study, we measured the effect that AAT had on cerebral activity using near-infrared spectroscopy (NIRS), and examined whether or not NIRS be used to evaluate the effect of AAT biologically and objectively. Two patients with mood [affective] disorders and a healthy subject participated in this study. We performed two AAT and the verbal fluency task (VFT). The NIRS signal during AAT showed great [oxy-Hb] increases in most of the prefrontal cortex (PFC) in the two patients. When the NIRS pattern during AAT was compared with that during VFT, greater or lesser differences were observed between them in all subjects. The present study suggested that AAT possibly causes biological and physiological changes in the PFC, and that AAT is useful for inducing the activity of the PFC in patients with depression who have generally been said to exhibit low cerebral activity in the PFC. In addition, the possibility was also suggested that the effect of AAT can be evaluated using NIRS physiologically and objectively.

  20. A mathematical model for active contraction in healthy and failing myocytes and left ventricles.

    Directory of Open Access Journals (Sweden)

    Li Cai

    Full Text Available Cardiovascular disease is one of the leading causes of death worldwide, in particular myocardial dysfunction, which may lead to heart failure eventually. Understanding the electro-mechanics of the heart will help in developing more effective clinical treatments. In this paper, we present a multi-scale electro-mechanics model of the left ventricle (LV. The Holzapfel-Ogden constitutive law was used to describe the passive myocardial response in tissue level, a modified Grandi-Pasqualini-Bers model was adopted to model calcium dynamics in individual myocytes, and the active tension was described using the Niederer-Hunter-Smith myofilament model. We first studied the electro-mechanics coupling in a single myocyte in the healthy and diseased left ventricle, and then the single cell model was embedded in a dynamic LV model to investigate the compensation mechanism of LV pump function due to myocardial dysfunction caused by abnormality in cellular calcium dynamics. The multi-scale LV model was solved using an in-house developed hybrid immersed boundary method with finite element extension. The predictions of the healthy LV model agreed well with the clinical measurements and other studies, and likewise, the results in the failing states were also consistent with clinical observations. In particular, we found that a low level of intracellular Ca2+ transient in myocytes can result in LV pump function failure even with increased myocardial contractility, decreased systolic blood pressure, and increased diastolic filling pressure, even though they will increase LV stroke volume. Our work suggested that treatments targeted at increased contractility and lowering the systolic blood pressure alone are not sufficient in preventing LV pump dysfunction, restoring a balanced physiological Ca2+ handling mechanism is necessary.

  1. Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

    Science.gov (United States)

    Zhu, Huilin; Li, Jun; Fan, Yuebo; Li, Xinge; Huang, Dan; He, Sailing

    2015-01-01

    Autism spectrum disorder (ASD) is a neuro-developmental disorder, characterized by impairments in one’s capacity for joint attention. In this study, functional near-infrared spectroscopy (fNIRS) was applied to study the differences in activation and functional connectivity in the prefrontal cortex between children with autism spectrum disorder (ASD) and typically developing (TD) children. 21 ASD and 20 TD children were recruited to perform joint and non-joint attention tasks. Compared with TD children, children with ASD showed reduced activation and atypical functional connectivity pattern in the prefrontal cortex during joint attention. The atypical development of left prefrontal cortex might play an important role in social cognition defects of children with ASD. PMID:25798296

  2. A Role for the Left Angular Gyrus in Episodic Simulation and Memory

    OpenAIRE

    Thakral, Preston P.; Madore, Kevin P.; Schacter, Daniel L.

    2017-01-01

    Functional magnetic resonance imaging (fMRI) studies indicate that episodic simulation (i.e., imagining specific future experiences) and episodic memory (i.e., remembering specific past experiences) are associated with enhanced activity in a common set of neural regions referred to as the core network. This network comprises the hippocampus, medial prefrontal cortex, and left angular gyrus, among other regions. Because fMRI data are correlational, it is unknown whether activity increases in c...

  3. Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography.

    Science.gov (United States)

    Kuwajima, Mariko; Sawaguchi, Toshiyuki

    2010-10-01

    General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4-6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.

  4. Guanfacine modulates the emotional biasing of amygdala-prefrontal connectivity for cognitive control.

    Science.gov (United States)

    Schulz, Kurt P; Clerkin, Suzanne M; Newcorn, Jeffrey H; Halperin, Jeffrey M; Fan, Jin

    2014-09-01

    Functional interactions between amygdala and prefrontal cortex provide a cortical entry point for emotional cues to bias cognitive control. Stimulation of α2 adrenoceptors enhances the prefrontal control functions and blocks the amygdala-dependent encoding of emotional cues. However, the impact of this stimulation on amygdala-prefrontal interactions and the emotional biasing of cognitive control have not been established. We tested the effect of the α2 adrenoceptor agonist guanfacine on psychophysiological interactions of amygdala with prefrontal cortex for the emotional biasing of response execution and inhibition. Fifteen healthy adults were scanned twice with event-related functional magnetic resonance imaging while performing an emotional go/no-go task following administration of oral guanfacine (1mg) and placebo in a double-blind, counterbalanced design. Happy, sad, and neutral faces served as trial cues. Guanfacine moderated the effect of face emotion on the task-related functional connectivity of left and right amygdala with left inferior frontal gyrus compared to placebo, by selectively reversing the functional co-activation of the two regions for response execution cued by sad faces. This shift from positively to negatively correlated activation for guanfacine was associated with selective improvements in the relatively low accuracy of responses to sad faces seen for placebo. These results demonstrate the importance of functional interactions between amygdala and inferior frontal gyrus to both bottom-up biasing of cognitive control and top-down control of emotional processing, as well as for the α2 adrenoceptor-mediated modulation of these processes. These mechanisms offer a possibile method to address the emotional reactivity that is common to several psychiatric disorders. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  5. The Stressed Female Brain: Neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress

    Directory of Open Access Journals (Sweden)

    Lisa Y. Maeng

    2013-12-01

    Full Text Available Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD, indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL and infralimbic (IL subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. 24h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similar to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful

  6. Adaptations of prefrontal brain activity, executive functions, and gait in healthy elderly following exergame and balance training: A randomized-controlled study

    Directory of Open Access Journals (Sweden)

    Alexandra Schättin

    2016-11-01

    Full Text Available During aging, the prefrontal cortex (PFC undergoes age-dependent neuronal changes influencing cognitive and motor functions. Motor-learning interventions are hypothesized to ameliorate motor and cognitive deficits in older adults. Especially, video game-based physical exercise might have the potential to train motor in combination with cognitive abilities in older adults. The aim of this study was to compare conventional balance training with video game-based physical exercise, a so-called exergame, on the relative power (RP of electroencephalographic (EEG frequencies over the PFC, executive function (EF, and gait performance. Twenty-seven participants (mean age 79.2 ± 7.3 years were randomly assigned to one of two groups. All participants completed 24 trainings including three times a 30min session/week. The EEG measurements showed that theta RP significantly decreased in favor of the exergame group (L(14 = 6.23, p = 0.007. Comparing pre- vs. post-test, EFs improved both within the exergame (working memory: z = -2.28, p = 0.021; divided attention auditory: z = -2.51, p = 0.009; divided attention visual: z = -2.06, p = 0.040; go/no-go: z = -2.55, p = 0.008; set-shifting: z = -2.90, p = 0.002 and within the balance group (set-shifting: z = -2.04, p = 0.042. Moreover, spatio-temporal gait parameters primarily improved within the exergame group under dual-task conditions (speed normal walking: z = -2.90, p = 0.002; speed fast walking: z = -2.97, p = 0.001; cadence normal walking: z = -2.97, p = 0.001; stride length fast walking: z = -2.69, p = 0.005 and within the balance group under single-task conditions (speed normal walking: z = -2.54, p = 0.009; speed fast walking: z = -1.98, p = 0.049; cadence normal walking: z = -2.79, p = 0.003. These results indicate that exergame training as well as balance training positively influence prefrontal cortex activity and/or function in varying proportion.

  7. Are orchids left and dandelions right? Frontal brain activation asymmetry and its sensitivity to developmental context.

    Science.gov (United States)

    Fortier, Paz; Van Lieshout, Ryan J; Waxman, Jordana A; Boyle, Michael H; Saigal, Saroj; Schmidt, Louis A

    2014-08-01

    To clarify long-standing conceptual and empirical inconsistencies in models describing the relation between frontal brain asymmetry and emotion, we tested a theory of biological sensitivity to context. We examined whether asymmetry of alpha activation in frontal brain regions, as measured by resting electroencephalography, is sensitive to early developmental contexts. Specifically, we investigated whether frontal asymmetry moderates the association between birth weight and adult outcomes. Adults with left frontal asymmetry (LFA) who were born at extremely low birth weight exhibited high levels of attention problems and withdrawn behaviors in their 30s, whereas normal-birth-weight adults with LFA had low levels of these problem behaviors. Adults with right frontal asymmetry (RFA) displayed a relatively moderate amount of problem behavior regardless of birth weight. Our findings suggest that LFA is associated with sensitivity to developmental context and may help explain why LFA is associated with both positive and negative outcomes, whereas RFA seems to be associated with a more canalized process in some contexts. © The Author(s) 2014.

  8. Activation of pyramidal neurons in mouse medial prefrontal cortex enhances food seeking behavior while reducing impulsivity in the absence of an effect on food intake

    Directory of Open Access Journals (Sweden)

    Daniel McAllister Warthen

    2016-03-01

    Full Text Available The medial prefrontal cortex (mPFC is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons, which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting pyramidal neurons in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using Designer Receptors Exclusively Activated by Designer Drugs (DREADD enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects in affect and food intake. Specifically, activation of mPFC pyramidal neurons enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC pyramidal neurons had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.

  9. Rapid prefrontal cortex activation towards aversively paired faces and enhanced contingency detection are observed in highly trait-anxious women under challenging conditions

    Directory of Open Access Journals (Sweden)

    Maimu Alissa Rehbein

    2015-06-01

    Full Text Available Relative to healthy controls, anxiety-disorder patients show anomalies in classical conditioning that may either result from, or provide a risk factor for, clinically relevant anxiety. Here, we investigated whether healthy participants with enhanced anxiety vulnerability show abnormalities in a challenging affective-conditioning paradigm, in which many stimulus-reinforcer associations had to be acquired with only few learning trials. Forty-seven high and low trait-anxious females underwent MultiCS conditioning, in which 52 different neutral faces (CS+ were paired with an aversive noise (US, while further 52 faces (CS- remained unpaired. Emotional learning was assessed by evaluative (rating, behavioral (dot-probe, contingency report, and neurophysiological (magnetoencephalography measures before, during, and after learning. High and low trait-anxious groups did not differ in evaluative ratings or response priming before or after conditioning. High trait-anxious women, however, were better than low trait-anxious women at reporting CS+/US contingencies after conditioning, and showed an enhanced prefrontal cortex activation towards CS+ in the M1 (i.e., 80 to 117 ms and M170 time intervals (i.e., 140 to 160 ms during acquisition. These effects in MultiCS conditioning observed in individuals with elevated trait anxiety are consistent with theories of enhanced conditionability in anxiety vulnerability. Furthermore, they point towards increased threat monitoring and detection in highly trait-anxious females, possibly mediated by alterations in visual working memory.

  10. Rapid prefrontal cortex activation towards aversively paired faces and enhanced contingency detection are observed in highly trait-anxious women under challenging conditions

    Science.gov (United States)

    Rehbein, Maimu Alissa; Wessing, Ida; Zwitserlood, Pienie; Steinberg, Christian; Eden, Annuschka Salima; Dobel, Christian; Junghöfer, Markus

    2015-01-01

    Relative to healthy controls, anxiety-disorder patients show anomalies in classical conditioning that may either result from, or provide a risk factor for, clinically relevant anxiety. Here, we investigated whether healthy participants with enhanced anxiety vulnerability show abnormalities in a challenging affective-conditioning paradigm, in which many stimulus-reinforcer associations had to be acquired with only few learning trials. Forty-seven high and low trait-anxious females underwent MultiCS conditioning, in which 52 different neutral faces (CS+) were paired with an aversive noise (US), while further 52 faces (CS−) remained unpaired. Emotional learning was assessed by evaluative (rating), behavioral (dot-probe, contingency report), and neurophysiological (magnetoencephalography) measures before, during, and after learning. High and low trait-anxious groups did not differ in evaluative ratings or response priming before or after conditioning. High trait-anxious women, however, were better than low trait-anxious women at reporting CS+/US contingencies after conditioning, and showed an enhanced prefrontal cortex (PFC) activation towards CS+ in the M1 (i.e., 80–117 ms) and M170 time intervals (i.e., 140–160 ms) during acquisition. These effects in MultiCS conditioning observed in individuals with elevated trait anxiety are consistent with theories of enhanced conditionability in anxiety vulnerability. Furthermore, they point towards increased threat monitoring and detection in highly trait-anxious females, possibly mediated by alterations in visual working memory. PMID:26113814

  11. Motivational mechanisms (BAS) and prefrontal cortical activation contribute to recognition memory for emotional words. rTMS effect on performance and EEG (alpha band) measures.

    Science.gov (United States)

    Balconi, Michela; Cobelli, Chiara

    2014-10-01

    The present research addressed the question of where memories for emotional words could be represented in the brain. A second main question was related to the effect of personality traits, in terms of the Behavior Activation System (BAS), in emotional word recognition. We tested the role of the left DLPFC (LDLPFC) by performing a memory task in which old (previously encoded targets) and new (previously not encoded distractors) positive or negative emotional words had to be recognized. High-BAS and low-BAS subjects were compared when a repetitive TMS (rTMS) was applied on the LDLPFC. We found significant differences between high-BAS vs. low-BAS subjects, with better performance for high-BAS in response to positive words. In parallel, an increased left cortical activity (alpha desynchronization) was observed for high-BAS in the case of positive words. Thus, we can conclude that the left approach-related hemisphere, underlying BAS, may support faster recognition of positive words. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study

    Science.gov (United States)

    Basso Moro, Sara; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-06-01

    Objective. In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. Approach. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). Main results. A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. Significance. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.

  13. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation.

    Directory of Open Access Journals (Sweden)

    Vadim Zotev

    Full Text Available We observed in a previous study (PLoS ONE 6:e24522 that the self-regulation of amygdala activity via real-time fMRI neurofeedback (rtfMRI-nf with positive emotion induction was associated, in healthy participants, with an enhancement in the functional connectivity between the left amygdala (LA and six regions of the prefrontal cortex. These regions included the left rostral anterior cingulate cortex (rACC, bilateral dorsomedial prefrontal cortex (DMPFC, bilateral superior frontal gyrus (SFG, and right medial frontopolar cortex (MFPC. Together with the LA, these six prefrontal regions thus formed the functional neuroanatomical network engaged during the rtfMRI-nf procedure. Here we perform a structural vector autoregression (SVAR analysis of the effective connectivity for this network. The SVAR analysis demonstrates that the left rACC plays an important role during the rtfMRI-nf training, modulating the LA and the other network regions. According to the analysis, the rtfMRI-nf training leads to a significant enhancement in the time-lagged effect of the left rACC on the LA, potentially consistent with the ipsilateral distribution of the monosynaptic projections between these regions. The training is also accompanied by significant increases in the instantaneous (contemporaneous effects of the left rACC on four other regions - the bilateral DMPFC, the right MFPC, and the left SFG. The instantaneous effects of the LA on the bilateral DMPFC are also significantly enhanced. Our results are consistent with a broad literature supporting the role of the rACC in emotion processing and regulation. Our exploratory analysis provides, for the first time, insights into the causal relationships within the network of regions engaged during the rtfMRI-nf procedure targeting the amygdala. It suggests that the rACC may constitute a promising target for rtfMRI-nf training along with the amygdala in patients with affective disorders, particularly posttraumatic stress

  14. Decoding rule search domain in the left inferior frontal gyrus

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2018-01-01

    Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623

  15. Selective activation around the left occipito-temporal sulcus for words relative to pictures: individual variability or false positives?

    Science.gov (United States)

    Wright, Nicholas D; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J; Rombouts, Serge A R B; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J

    2008-08-01

    We used high-resolution fMRI to investigate claims that learning to read results in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In the first experiment, 9/16 subjects performing a one-back task showed activation in > or =1 left OT voxel for words relative to pictures (P or =1 left OT voxel for words relative to pictures. However, at this low statistical threshold false positives need to be excluded. The semantic decision paradigm was therefore repeated, within subject, in two different scanners (1.5 and 3 T). Both scanners consistently localised left OT activation for words relative to fixation and pictures relative to words, but there were no consistent effects for words relative to pictures. Finally, in a third experiment, we minimised the voxel size (1.5 x 1.5 x 1.5 mm(3)) and demonstrated a striking concordance between the voxels activated for words and pictures, irrespective of task (naming vs. one-back) or script (English vs. Hebrew). In summary, although we detected differential activation for words relative to pictures, these effects: (i) do not withstand statistical rigour; (ii) do not replicate within or between subjects; and (iii) are observed in voxels that also respond to pictures of objects. Our findings have implications for the role of left OT activation during reading. More generally, they show that studies using low statistical thresholds in single subject analyses should correct the statistical threshold for the number of comparisons made or replicate effects within subject. (c) 2007 Wiley-Liss, Inc.

  16. Relative left frontal activity in reappraisal and suppression of negative emotion: Evidence from frontal alpha asymmetry (FAA).

    Science.gov (United States)

    Choi, Damee; Sekiya, Takahiro; Minote, Natsumi; Watanuki, Shigeki

    2016-11-01

    Previous studies have shown that reappraisal (changing the way that one thinks about emotional events) is an effective strategy for regulating emotion, compared with suppression (reducing emotion-expressive behavior). In the present study, we investigated relative left frontal activity when participants were instructed to use reappraisal and suppression of negative emotion, by measuring frontal alpha asymmetry (FAA). Two electroencephalography (EEG) experiments were conducted; FAA was analyzed while 102 healthy participants (59 men, 43 women) watched negative images after being instructed to perform reappraisal (Experiment 1) and suppression (Experiment 2). Habitual use of reappraisal and suppression was also assessed using the emotion regulation questionnaire (ERQ). The results of Experiment 1 showed that relative left frontal activity was greater when instructed to use reappraisal of negative images than when normally viewing negative images. In contrast, we observed no difference between conditions of instructed suppression and normal viewing in Experiment 2. In addition, in male participants, habitual use of reappraisal was positively correlated with increased relative left frontal activity for instructed reappraisal, while habitual use of suppression did not show a significant correlation with changes in relative left frontal activity for instructed suppression. These results suggest that emotional responses to negative images might be decreased for instructed reappraisal, but not suppression. These findings support previous reports that reappraisal is an effective emotion regulation strategy, compared with suppression. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Role of Left Hemispheric Structures for Emotional Processing as a Monitor of Bodily Reaction and Felt Chill - a Case-Control Functional Imaging Study.

    Science.gov (United States)

    Grunkina, Viktoria; Holtz, Katharina; Klepzig, Kai; Neubert, Jörg; Horn, Ulrike; Domin, Martin; Hamm, Alfons O; Lotze, Martin

    2016-01-01

    Background: The particular function of the left anterior human insula on emotional arousal has been illustrated with several case studies. Only after left hemispheric insula lesions, patients lose their pleasure in habits such as listening to joyful music. In functional magnetic resonance imaging studies (fMRI) activation in the left anterior insula has been associated with both processing of emotional valence and arousal. Tight interactions with different areas of the prefrontal cortex are involved in bodily response monitoring and cognitive appraisal of a given stimulus. Therefore, a large left hemispheric lesion including the left insula should impair the bodily response of chill experience (objective chill response) but leave the cognitive aspects of chill processing (subjective chill response) unaffected. Methods: We investigated a patient (MC) with a complete left hemispheric media cerebral artery stroke, testing fMRI representation of pleasant (music) and unpleasant (harsh sounds) chill response. Results: Although chill response to both pleasant and unpleasant rated sounds was confirmed verbally at passages also rated as chilling by healthy participants, skin conductance response was almost absent in MC. For a healthy control (HC) objective and subjective chill response was positively associated. Bilateral prefrontal fMRI-response to chill stimuli was sustained in MC whereas insula activation restricted to the right hemisphere. Diffusion imaging together with lesion maps revealed that left lateral tracts were completely damaged but medial prefrontal structures were intact. Conclusion: With this case study we demonstrate how bodily response and cognitive appraisal are differentially participating in the internal monitor of chill response.

  18. Systemic right-to-left shunts, ischemic brain lesions, and persistent migraine activity.

    Science.gov (United States)

    Koppen, Hille; Palm-Meinders, Inge H; Mess, Werner H; Keunen, Ruud W; Terwindt, Gisela M; Launer, Lenore J; van Buchem, Mark A; Kruit, Mark C; Ferrari, Michel D

    2016-05-03

    To assess whether migraine in the general population is associated with increased risk of systemic right-to-left shunts (RLS) and whether RLS are associated with increased prevalence of brain infarcts and persistent recurrence of migraine attacks at older age. Brain MRI and transcranial Doppler with air contrast in 166 unselected migraineurs (mean age ± SD 56 ± 7.7 years; 70% women; n = 96 migraine with aura) and 69 controls (mean age ± SD 55 ± 7.6 years; 65% women) from the general population. Participants with migraine with aura more frequently had Valsalva-induced RLS (60%), in particular large-sized, compared to controls (42%; odds ratio [OR] 2.1; 95% confidence interval [CI] 1.1-3.9; p = 0.02) and participants with migraine without aura (40%; OR 2.3; 95% CI 1.2-4.3; p = 0.01). They also more frequently had spontaneous RLS (35%) than participants with migraine without aura (17%; OR 2.6; 95% CI 1.3-5.6; p = 0.01) but not compared to controls (26%; OR 1.6; 95% CI 0.8-3.1; p = 0.2). Participants with migraine with aura and spontaneous RLS more frequently had persistent migraine activity (85%) than participants with migraine without spontaneous RLS (63%; OR 3.4; 95% CI 1.2-10.1; p = 0.03). Nine percent of participants with RLS had silent posterior circulation infarcts compared to 3% of participants without RLS (OR 2.8; 95% CI 0.9-9.3; p = 0.08), independent of migraine status. RLS were not associated with white matter lesions. RLS are more prevalent in migraineurs with aura but do not explain the increased prevalence of silent posterior circulation infarcts or white matter lesions in migraineurs. Spontaneous RLS are associated with persistent migraine. © 2016 American Academy of Neurology.

  19. Activation of the rostromedial prefrontal cortex during the experience of positive emotion in the context of aesthetic experience. An fNIRS study.

    Directory of Open Access Journals (Sweden)

    Ute eKreplin

    2013-12-01

    Full Text Available The contemplation of visual art requires attention to be directed to external stimulus properties and internally generated thoughts. It has been proposed that the medial rostral prefrontal cortex (rPFC; BA10 plays a role in the maintenance of attention on external stimuli whereas the lateral area of the rPFC is associated with the preservation of attention on internal cognitions. An alternative hypothesis associates activation of medial rPFC with internal cognitions related to the self during emotion regulation. The aim of the current study was to differentiate activation within rPFC using functional near infrared spectroscopy (fNIRS during the viewing of visual art selected to induce positive and negative valence, which were viewed under two conditions: (1 emotional introspection and (2 external object identification. Thirty participants (15 female were recruited. Sixteen pre-rated images that represented either positive or negative valence were selected from an existing database of visual art. In one condition, participants were directed to engage in emotional introspection during picture viewing. The second condition involved a spot-the-difference task where participants compared two almost identical images, a viewing strategy that directed attention to external properties of the stimuli. The analysis revealed a significant increase of oxygenated blood in the medial rPFC during viewing of positive images compared to negative images. This finding suggests that the rPFC is involved during positive evaluations of visual art that may be related to judgment of pleasantness or attraction. The fNIRS data revealed no significant main effect between the two viewing conditions, which seemed to indicate that the emotional impact of the stimuli remained unaffected by the two viewing conditions.

  20. Activation of the rostromedial prefrontal cortex during the experience of positive emotion in the context of esthetic experience. An fNIRS study.

    Science.gov (United States)

    Kreplin, Ute; Fairclough, Stephen H

    2013-01-01

    The contemplation of visual art requires attention to be directed to external stimulus properties and internally generated thoughts. It has been proposed that the medial rostral prefrontal cortex (rPFC; BA10) plays a role in the maintenance of attention on external stimuli whereas the lateral area of the rPFC is associated with the preservation of attention on internal cognitions. An alternative hypothesis associates activation of medial rPFC with internal cognitions related to the self during emotion regulation. The aim of the current study was to differentiate activation within rPFC using functional near infrared spectroscopy (fNIRS) during the viewing of visual art selected to induce positive and negative valence, which were viewed under two conditions: (1) emotional introspection and (2) external object identification. Thirty participants (15 female) were recruited. Sixteen pre-rated images that represented either positive or negative valence were selected from an existing database of visual art. In one condition, participants were directed to engage in emotional introspection during picture viewing. The second condition involved a spot-the-difference task where participants compared two almost identical images, a viewing strategy that directed attention to external properties of the stimuli. The analysis revealed a significant increase of oxygenated blood in the medial rPFC during viewing of positive images compared to negative images. This finding suggests that the rPFC is involved during positive evaluations of visual art that may be related to judgment of pleasantness or attraction. The fNIRS data revealed no significant main effect between the two viewing conditions, which seemed to indicate that the emotional impact of the stimuli remained unaffected by the two viewing conditions.

  1. Dietary-induced binge eating increases prefrontal cortex neural activation to restraint stress and increases binge food consumption following chronic guanfacine.

    Science.gov (United States)

    Bello, Nicholas T; Walters, Amy L; Verpeut, Jessica L; Caverly, Jonathan

    2014-10-01

    Binge eating is a prominent feature of bulimia nervosa and binge eating disorder. Stress or perceived stress is an often-cited reason for binge eating. One notion is that the neural pathways that overlap with stress reactivity and feeding behavior are altered by recurrent binge eating. Using young adult female rats in a dietary-induced binge eating model (30 min access to binge food with or without 24-h calorie restriction, twice a week, for 6 weeks) we measured the neural activation by c-Fos immunoreactivity to the binge food (vegetable shortening mixed with 10% sucrose) in bingeing and non-bingeing animals under acute stress (immobilization; 1 h) or no stress conditions. There was an increase in the number of immunopositive cells in the dorsal medial prefrontal cortex (mPFC) in stressed animals previously exposed to the binge eating feeding schedules. Because attention deficit hyperactive disorder (ADHD) medications target the mPFC and have some efficacy at reducing binge eating in clinical populations, we examined whether chronic (2 weeks; via IP osmotic mini-pumps) treatment with a selective alpha-2A adrenergic agonist (0.5 mg/kg/day), guanfacine, would reduce binge-like eating. In the binge group with only scheduled access to binge food (30 min; twice a week; 8 weeks), guanfacine increased total calories consumed during the 30-min access period from the 2-week pre-treatment baseline and increased binge food consumption compared with saline-treated animals. These experiments suggest that mPFC is differentially activated in response to an immobilization stress in animals under different dietary conditions and chronic guanfacine, at the dose tested, was ineffective at reducing binge-like eating. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task.

    Science.gov (United States)

    Asinof, Samuel K; Paine, Tracie A

    2013-02-01

    Attention deficits are a core cognitive symptom of schizophrenia; the neuropathology underlying these deficits is not known. Attention is regulated, at least in part, by the prefrontal cortex (PFC), a brain area in which pathology of γ-aminobutyric acid (GABA) neurons has been consistently observed in post-mortem analysis of the brains of people with schizophrenia. Specifically, expression of the 67-kD isoform of the GABA synthesis enzyme glutamic acid decarboxylase (GAD67) is reduced in parvalbumin-containing fast-spiking GABA interneurons. Thus it is hypothesized that reduced cortical GABA synthesis and release may contribute to the attention deficits in schizophrenia. Here the effect of reducing cortical GABA synthesis with l-allylglycine (LAG) on attention was tested using three different versions of the 5-choice serial reaction time task (5CSRTT). Because 5CSRTT performance can be affected by locomotor activity, we also measured this behavior in an open field. Finally, the expression of Fos protein was used as an indirect measure of reduced GABA synthesis. Intra-cortical LAG (10 μg/0.5 μl/side) infusions increased Fos expression and resulted in hyperactivity in the open field. Intra-cortical LAG infusions did not affect attention in any version of the 5CSRTT. These results suggest that a general decrease in GABA synthesis is not sufficient to cause attention deficits. It remains to be tested whether a selective decrease in GABA synthesis in parvalbumin-containing GABA neurons could cause attention deficits. Decreased cortical GABA synthesis did increase locomotor activity; this may reflect the positive symptoms of schizophrenia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Activation of the left inferior frontal gyrus in the first 200 ms of reading: evidence from magnetoencephalography (MEG).

    Science.gov (United States)

    Cornelissen, Piers L; Kringelbach, Morten L; Ellis, Andrew W; Whitney, Carol; Holliday, Ian E; Hansen, Peter C

    2009-01-01

    It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100-250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at approximately 130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at approximately 115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at approximately 140 ms, at a location coincident with the fMRI-defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.

  4. Right and left amygdalae activation in patients with major depression receiving antidepressant treatment, as revealed by fMRI.

    Science.gov (United States)

    Chen, Yen-Ting; Huang, Min-Wei; Hung, I-Chung; Lane, Hsien-Yuan; Hou, Chun-Ju

    2014-10-08

    A differential contribution of the right and left amygdalae to affective information processing has been proposed. However, the direction of this lateralization has not been confirmed. In this study, we used a pre- and post-treatment (escitalopram) design to analyze the relative differences between neural activity in the right and left amygdalae during exposure to emotional stimuli in currently depressed patients. To the best of our knowledge, this study is to compare neural activity between the left and right amygdalae in people with depression. Our findings could lead to the development of parameters or biomarkers for depressive symptoms and treatment response. We used a pre-post-test design without a control group. Twenty currently depressed participants underwent an emotion processing task during fMRI. These participants were then treated with an antidepressant for 6 weeks. We used amygdala region-of-interest analysis to evaluate the hemodynamic response during exposure to colored emotional pictures. In total, thirteen of the 20 participants were placed into a separate group based on degree of response to antidepressants. The partial response group had an averaged HDRS score of 10.75 ± 2.25 and an averaged DBOLDLR signal of 189.18 ± 140.23 (m1 = 8), and the remitted group had an averaged HDRS score of 4.80 ± 1.64 and an averaged DBOLDLR signal of 421.26 ± 109.19 (m2 = 5). Each individual had lateralized amygdala activity, and the direction of asymmetry persisted following treatment. Amygdala responses to four types of emotional stimuli did not significantly change (p > 0.05) with treatment in either the right or the left amygdala. However, the difference in neural activity between the right and left amygdalae was greater after treatment, and the variation in neural activity was larger in the left amygdala. We found that the response between the right and left amygdala did not differ in terms of time series, although activity increased after pharmaceutical

  5. Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task

    Directory of Open Access Journals (Sweden)

    Hirosawa R

    2013-07-01

    left and right dorsolateral prefrontal cortex and frontopolar areas. Results: During the verbal fluency task, significant task-related activation was detected in both the OCD group and the controls. Changes in oxygenated hemoglobin concentration in the right dorsolateral prefrontal cortex were significantly smaller in the OCD group than in the controls, but were not statistically significant after correction for multiple comparisons. Conclusion: Patients with OCD have reduced prefrontal, especially right dorsolateral prefrontal, cortical hemodynamic responses as measured by near-infrared spectroscopy during the verbal fluency task. These results support the hypothesis that the dorsolateral prefrontal cortex plays a role in the pathophysiology of OCD. Keywords: functional neuroimaging, near-infrared spectroscopy, obsessive-compulsive disorder, prefrontal hemodynamic response, verbal fluency task, dorsolateral prefrontal cortex

  6. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections

    Directory of Open Access Journals (Sweden)

    Hoang Nam eNguyen

    2015-02-01

    Full Text Available The medial prefrontal cortex (mPFC exerts top-down control of primary visual cortex (V1 activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB, which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL and infralimbic cortices (IL. Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate 1 V1 neurons and 2 HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labelling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labelling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC, which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.

  7. Distinct iEEG activity patterns in temporal-limbic and prefrontal sites induced by emotional intentionality.

    Science.gov (United States)

    Singer, Neomi; Podlipsky, Ilana; Esposito, Fabrizio; Okon-Singer, Hadas; Andelman, Fani; Kipervasser, Svetlana; Neufeld, Miri Y; Goebel, Rainer; Fried, Itzhak; Hendler, Talma

    2014-11-01

    Our emotions tend to be directed towards someone or something. Such emotional intentionality calls for the integration between two streams of information; abstract hedonic value and its associated concrete content. In a previous functional magnetic resonance imaging (fMRI) study we found that the combination of these two streams, as modeled by short emotional music excerpts and neutral film clips, was associated with synergistic activation in both temporal-limbic (TL) and ventral-lateral PFC (vLPFC) regions. This additive effect implies the integration of domain-specific 'affective' and 'cognitive' processes. Yet, the low temporal resolution of the fMRI limits the characterization of such cross-domain integration. To this end, we complemented the fMRI data with intracranial electroencephalogram (iEEG) recordings from twelve patients with intractable epilepsy. As expected, the additive fMRI activation in the amygdala and vLPFC was associated with distinct spatio-temporal iEEG patterns among electrodes situated within the vicinity of the fMRI activation foci. On the one hand, TL channels exhibited a transient (0-500 msec) increase in gamma power (61-69 Hz), possibly reflecting initial relevance detection or hedonic value tagging. On the other hand, vLPFC channels showed sustained (1-12 sec) suppression of low frequency power (2.3-24 Hz), possibly mediating changes in gating, enabling an on-going readiness for content-based processing of emotionally tagged signals. Moreover, an additive effect in delta-gamma phase-amplitude coupling (PAC) was found among the TL channels, possibly reflecting the integration between distinct domain specific processes. Together, this study provides a multi-faceted neurophysiological signature for computations that possibly underlie emotional intentionality in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Involvement of the Ventrolateral Prefrontal Cortex in Learning Others' Bad Reputations and Indelible Distrust.

    Science.gov (United States)

    Suzuki, Atsunobu; Ito, Yuichi; Kiyama, Sachiko; Kunimi, Mitsunobu; Ohira, Hideki; Kawaguchi, Jun; Tanabe, Hiroki C; Nakai, Toshiharu

    2016-01-01

    A bad reputation can persistently affect judgments of an individual even when it turns out to be invalid and ought to be disregarded. Such indelible distrust may reflect that the negative evaluation elicited by a bad reputation transfers to a person. Consequently, the person him/herself may come to activate this negative evaluation irrespective of the accuracy of the reputation. If this theoretical model is correct, an evaluation-related brain region will be activated when witnessing a person whose bad reputation one has learned about, regardless of whether the reputation is deemed valid or not. Here, we tested this neural hypothesis with functional magnetic resonance imaging (fMRI). Participants memorized faces paired with either a good or a bad reputation. Next, they viewed the faces alone and inferred whether each person was likely to cooperate, first while retrieving the reputations, and then while trying to disregard them as false. A region of the left ventrolateral prefrontal cortex (vlPFC), which may be involved in negative evaluation, was activated by faces previously paired with bad reputations, irrespective of whether participants attempted to retrieve or disregard these reputations. Furthermore, participants showing greater activity of the left ventrolateral prefrontal region in response to the faces with bad reputations were more likely to infer that these individuals would not cooperate. Thus, once associated with a bad reputation, a person may elicit evaluation-related brain responses on their own, thereby evoking distrust independently of their reputation.

  9. Neural substrates of semantic relationships: common and distinct left-frontal activities for generation of synonyms vs. antonyms.

    Science.gov (United States)

    Jeon, Hyeon-Ae; Lee, Kyoung-Min; Kim, Young-Bo; Cho, Zang-Hee

    2009-11-01

    Synonymous and antonymous relationships among words may reflect the organization and/or processing in the mental lexicon and its implementation in the brain. In this study, functional magnetic resonance imaging (fMRI) is employed to compare brain activities during generation of synonyms (SYN) and antonyms (ANT) prompted by the same words. Both SYN and ANT, when compared with reading nonwords (NW), activated a region in the left middle frontal gyrus (BA 46). Neighboring this region, there was a dissociation observed in that the ANT activation extended more anteriorly and laterally to the SYN activation. The activations in the left middle frontal gyrus may be related to mental processes that are shared in the SYN and ANT generations, such as engaging semantically related parts of mental lexicon for the word search, whereas the distinct activations unique for either SYN or ANT generation may reflect the additional component of antonym retrieval, namely, reversing the polarity of semantic relationship in one crucial dimension. These findings suggest that specific components in the semantic processing, such as the polarity reversal for antonym generation and the similarity assessment for synonyms, are separately and systematically laid out in the left-frontal cortex.

  10. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  11. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25±2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% ± 1.3% and 10.6% ± 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% ± 4.5% vs. 6.6% ± 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release

  12. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex.

    Science.gov (United States)

    Marti, Andrea R; Patil, Sudarshan; Mrdalj, Jelena; Meerlo, Peter; Skrede, Silje; Pallesen, Ståle; Pedersen, Torhild T; Bramham, Clive R; Grønli, Janne

    2017-01-01

    Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA "cap". In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats ( n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m 7 GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC

  13. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Andrea R. Marti

    2017-10-01

    Full Text Available Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1 has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA “cap”. In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40 were exposed to forced activity, either in their rest phase (simulated night shift work or in their active phase (simulated day shift work for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0. Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus implicated in cognition and sleep loss, were analyzed with m7GTP (cap pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1 was significantly reduced in

  14. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, M.; Wang, G.; Michaelides, M.; Pascau, J.; Gispert, J.-D.; Delis, F.; Grandy, D.K.; Wang, G.-J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K.

    2010-07-16

    Methylphenidate (MP) is widely used to treat attention deficit hyperactivity disorder (ADHD). Variable number of tandem repeats polymorphisms in the dopamine D4 receptor (D{sub 4}) gene have been implicated in vulnerability to ADHD and the response to MP. Here we examined the contribution of dopamine D4 receptors (D4Rs) to baseline brain glucose metabolism and to the regional metabolic responses to MP. We compared brain glucose metabolism (measured with micro-positron emission tomography and [{sup 18}F]2-fluoro-2-deoxy-D-glucose) at baseline and after MP (10 mg/kg, i.p.) administration in mice with genetic deletion of the D{sub 4}. Images were analyzed using a novel automated image registration procedure. Baseline D{sub 4}{sup -/-} mice had lower metabolism in the prefrontal cortex (PFC) and greater metabolism in the cerebellar vermis (CBV) than D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice; when given MP, D{sub 4}{sup -/-} mice increased metabolism in the PFC and decreased it in the CBV, whereas in D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice, MP decreased metabolism in the PFC and increased it in the CBV. These findings provide evidence that D4Rs modulate not only the PFC, which may reflect the activation by dopamine of D4Rs located in this region, but also the CBV, which may reflect an indirect modulation as D4Rs are minimally expressed in this region. As individuals with ADHD show structural and/or functional abnormalities in these brain regions, the association of ADHD with D4Rs may reflect its modulation of these brain regions. The differential response to MP as a function of genotype could explain differences in brain functional responses to MP between patients with ADHD and healthy controls and between patients with ADHD with different D{sub 4} polymorphisms.

  15. Prefrontal cortex activation is associated with a discrepancy between self- and observer-rated depression severities of major depressive disorder: a multichannel near-infrared spectroscopy study.

    Science.gov (United States)

    Akashi, Hiroyuki; Tsujii, Noa; Mikawa, Wakako; Adachi, Toru; Kirime, Eiji; Shirakawa, Osamu

    2015-03-15

    Studies on major depressive disorder (MDD) show that the degree of correlation between the Beck Depression Inventory (BDI) and Hamilton Depression Rating Scale (HAMD) varies widely. We aimed to determine whether this discrepancy reflects specific functional abnormalities in the frontotemporal cortex. Mildly depressed or euthymic patients with MDD (n=52), including 21 patients with MDD with the discrepancy, i.e., those with low HAMD17 scores (≤13) but high BDI-II scores (>28), and 31 patients without the discrepancy, i.e., those with low HAMD17 scores and low BDI-II scores (≤28), participated in the study along with 48 control subjects. Regional changes of oxygenated hemoglobin (oxy-Hb) levels during a verbal fluency task (VFT) were monitored using a 52-channel near-infrared spectroscopy (NIRS) device. In the frontotemporal regions, mean oxy-Hb changes induced by the VFT were significantly smaller in patients with MDD than in control subjects. In 5 channels within frontal regions, the increase in mean oxy-Hb levels was significantly greater in MDD patients with the BDI-HAMD discrepancy than in those without the discrepancy. In 6 channels within the frontal region of the patients with MDD, significant positive correlations were observed between mean oxy-Hb changes and BDI total scores (ρ=0.38-0.59; Pdepressed patients, particularly those with melancholia. The distinct pattern of activation of the prefrontal cortex suggests that MDD with the BDI-HAMD discrepancy is pathophysiologically different from MDD without the discrepancy. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Activation of type 4 dopaminergic receptors in the prelimbic area of medial prefrontal cortex is necessary for the expression of innate fear behavior.

    Science.gov (United States)

    Vergara, Macarena D; Keller, Victor N; Fuentealba, José A; Gysling, Katia

    2017-05-01

    The prelimbic area (PL) of the medial Prefrontal cortex (mPFC) is involved in the acquisition and expression of conditioned and innate fear. Both types of fear share several neuronal pathways. It has been documented that dopamine (DA) plays an important role in the regulation of aversive memories in the mPFC. The exposure to an aversive stimulus, such as the smell of a predator odor or the exposure to footshock stress is accompanied by an increase in mPFC DA release. Evidence suggests that the type 4 dopaminergic receptor (D4R) is the molecular target through which DA modulates fear expression. In fact, the mPFC is the brain region with the highest expression of D4R; however, the role of D4R in the expression of innate fear has not been fully elucidated. Therefore, the principal objective of this work was to evaluate the participation of mPFC D4R in the expression of innate fear. Rats were exposed to the elevated plus-maze (EPM) and to the cat odor paradigm after the intra PL injection of L-745,870, selective D4R antagonist, to measure the expression of fear-related behaviors. Intra PL injection of L-745,870 increased the time spent in the EPM open arms and decreased freezing behavior in the cat odor paradigm. Our results also showed that D4R is expressed in GABAergic and pyramidal neurons in the PL region of PFC. Thus, D4R antagonism in the PL decreases the expression of innate fear-behavior indicating that the activation of D4R in the PL is necessary for the expression of innate fear-behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Prefrontal Structure Varies as a Function of Pain Symptoms in Chronic Fatigue Syndrome.

    Science.gov (United States)

    van der Schaaf, Marieke E; De Lange, Floris P; Schmits, Iris C; Geurts, Dirk E M; Roelofs, Karin; van der Meer, Jos W M; Toni, Ivan; Knoop, Hans

    2017-02-15

    Chronic fatigue syndrome (CFS) is characterized by severe fatigue persisting for ≥6 months and leading to considerable impairment in daily functioning. Neuroimaging studies of patients with CFS have revealed alterations in prefrontal brain morphology. However, it remains to be determined whether these alterations are specific for fatigue or whether they relate to other common CFS symptoms (e.g., chronic pain, lower psychomotor speed, and reduced physical activity). We used magnetic resonance imaging to quantify gray matter volume (GMV) and the N-acetylaspartate and N-acetylaspartylglutamate/creatine ratio (NAA/Cr) in a group of 89 women with CFS. Building on previous reports, we tested whether GMV and NAA/Cr in the dorsolateral prefrontal cortex are associated with fatigue severity, pain, psychomotor speed, and physical activity, while controlling for depressive symptoms. We also considered GMV and NAA/Cr differences between patients with CFS and 26 sex-, age-, and education-matched healthy controls. The presence of pain symptoms was the main predictor of both GMV and NAA/Cr in the left dorsolateral prefrontal cortex of patients with CFS. More pain was associated with reduced GMVs and NAA/Cr, over and above the effects of fatigue, depressive symptoms, physical activity, and psychomotor speed. In contrast to previous reports and despite a large representative sample, global GMV did not differ between the CFS and healthy control groups. CFS, as diagnosed by Centers for Disease Control and Prevention criteria, is not a clinical entity reliably associated with reduced GMV. Individual variation in the presence of pain, rather than fatigue, is associated with neuronal alterations in the dorsolateral prefrontal cortex of patients with CFS. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  19. Activation of beta2-Adrenoceptor Enhances Synaptic Potentiation and Behavioral Memory via cAMP-PKA Signaling in the Medial Prefrontal Cortex of Rats

    Science.gov (United States)

    Zhou, Hou-Cheng; Sun, Yan-Yan; Cai, Wei; He, Xiao-Ting; Yi, Feng; Li, Bao-Ming; Zhang, Xue-Han

    2013-01-01

    The prefrontal cortex (PFC) plays a critical role in cognitive functions, including working memory, attention regulation, behavioral inhibition, as well as memory storage. The functions of PFC are very sensitive to norepinephrine (NE), and even low levels of endogenously released NE exert a dramatic influence on the functioning of the PFC.…

  20. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device

    NARCIS (Netherlands)

    Nieuwhof, F.; Reelick, M.F.; Maidan, I.; Mirelman, A.; Hausdorff, J.M.; Olde Rikkert, M.G.M.; Bloem, B.R.; Muthalib, M.; Claassen, J.A.H.R.

    2016-01-01

    BACKGROUND: Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC)

  1. Prefrontal involvement in imitation learning of hand actions: effects of practice and expertise.

    Science.gov (United States)

    Vogt, Stefan; Buccino, Giovanni; Wohlschläger, Afra M; Canessa, Nicola; Shah, N Jon; Zilles, Karl; Eickhoff, Simon B; Freund, Hans-Joachim; Rizzolatti, Giacomo; Fink, Gereon R

    2007-10-01

    In this event-related fMRI study, we demonstrate the effects of a single session of practising configural hand actions (guitar chords) on cortical activations during observation, motor preparation and imitative execution. During the observation of non-practised actions, the mirror neuron system (MNS), consisting of inferior parietal and ventral premotor areas, was more strongly activated than for the practised actions. This finding indicates a strong role of the MNS in the early stages of imitation learning. In addition, the left dorsolateral prefrontal cortex (DLPFC) was selectively involved during observation and motor preparation of the non-practised chords. This finding confirms Buccino et al.'s [Buccino, G., Vogt, S., Ritzl, A., Fink, G.R., Zilles, K., Freund, H.-J., Rizzolatti, G., 2004a. Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron 42, 323-334] model of imitation learning: for actions that are not yet part of the observer's motor repertoire, DLPFC engages in operations of selection and combination of existing, elementary representations in the MNS. The pattern of prefrontal activations further supports Shallice's [Shallice, T., 2004. The fractionation of supervisory control. In: Gazzaniga, M.S. (Ed.), The Cognitive Neurosciences, Third edition. MIT Press, Cambridge, MA, pp. 943-956] proposal of a dominant role of the left DLPFC in modulating lower level systems and of a dominant role of the right DLPFC in monitoring operations.

  2. Cancer 'survivor-care': II. Disruption of prefrontal brain activation top-down control of working memory capacity as possible mechanism for chemo-fog/brain (chemotherapy-associated cognitive impairment).

    Science.gov (United States)

    Raffa, R B

    2013-08-01

    Cancer chemotherapy-associated cognitive impairments (termed 'chemo-fog' or 'chemo-brain'), particularly in memory, have been self-reported or identified in cancer survivors previously treated with chemotherapy. Although a variety of deficits have been detected, a consistent theme is a detriment in visuospatial working memory. The parietal cortex, a major site of storage of such memory, is implicated in chemotherapy-induced damage. However, if the findings of two recent publications are combined, the (pre)frontal cortex might be an equally viable target. Two recent studies, one postulating a mechanism for 'top-down control' of working memory capacity and another visualizing chemotherapy-induced alterations in brain activation during working memory processing, are reviewed and integrated. A computational model and the proposal that the prefrontal cortex plays a role in working memory via top-down control of parietal working memory capacity is consistent with a recent demonstration of decreased frontal hyperactivation following chemotherapy. Chemotherapy-associated impairment of visuospatial working memory might include the (pre)frontal cortex in addition to the parietal cortex. This provides new opportunity for basic science and clinical investigation. © 2013 John Wiley & Sons Ltd.

  3. Left TPJ activity in verbal working memory: implications for storage- and sensory-specific models of short term memory.

    Science.gov (United States)

    Ravizza, Susan M; Hazeltine, Eliot; Ruiz, Sandra; Zhu, David C

    2011-04-15

    Patients with damage to the left temporoparietal junction (TPJ) have a low verbal span without concomitant deficits in speech perception. This pattern of cognitive impairment is taken as evidence for a dedicated phonological buffer that plays little role in perception (storage-specific account). In contrast, other research suggests that items are maintained and perceived in the same regions (sensory-specific account). In an fMRI study, we demonstrate that the left TPJ does not respond in a way predicted of a phonological buffer; that is, activity in this region is not sustained during encoding or maintenance. Instead, a region in the superior temporal gyrus that has been associated with both speech perception and production demonstrated the expected profile of a store: it was more active in the verbal condition than the object condition and was active during both encoding and maintenance. These results support the sensory-specific account of short term memory rather than the storage-specific account. Based on the pattern of activity in the left TPJ, we suggest that the impairment of verbal working memory observed in patients with TPJ damage may be due to diminished attentional processes rather than reduced storage capacity. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    Science.gov (United States)

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  5. Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.

    Science.gov (United States)

    Bast, Tobias; Pezze, Marie; McGarrity, Stephanie

    2017-10-01

    We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition

  6. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  7. Negative inotropism of terpenes on guinea pig left atrium: structure-activity relationships.

    Science.gov (United States)

    Vasconcelos, Carla M L; Oliveira, Ingrid S N; Santos, José N A; Souza, Américo A; Menezes-Filho, José E R; Silva Neto, Júlio A; Lima, Tamires C; de Sousa, Damião P

    2018-06-01

    The aim of this work was to evaluate the pharmacological effect of seven structurally related terpenes on the contractility of cardiac muscle. The effect of terpenes was studied on isolated electrically driven guinea pig left atrium. From concentration-response curves for inotropic effect were determined the EC 50 and relative potency of such terpenes. Our results revealed that all terpenes, except phytol, showed ability to reduce the contractile response of guinea pig left atrium. Further, relative potency was directly related to the number of isoprene units and to the lipophilicity of the compounds. For example, sesquiterpenes farnesol and nerolidol showed higher relative potency when compared with the monoterpenes citronellol, geraniol and nerol. We can conclude that most of the evaluated terpenes showed a promising negative inotropism on the atrial muscle. Future studies are necessary to investigate their action mechanism.

  8. Organization of left-right coordination of neuronal activity in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Shevtsova, Natalia A.; Talpalar, Adolfo E.; Markin, Sergey N.

    2015-01-01

    and the left-right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN....... In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified...... inhibitory (V0D) and excitatory (V0V) subtypes of V0 CINs and excitatory V3 CINs. The model also includes the ipsilaterally projecting excitatory V2a interneurons mediating excitatory drive to the V0V CINs. The proposed network architectures and CIN connectivity allow the models to closely reproduce...

  9. Comparison of Hemodynamic Responses in the Prefrontal Cortex According to Differences in Self-Efficacy.

    Science.gov (United States)

    Hirao, Kazuki

    2017-07-01

    Although self-efficacy has been used extensively in the field of nursing (e.g., as an outcome measure of nursing interventions), its underlying nature is poorly understood. Investigation of the relationship between self-efficacy and brain activation will help explain the fundamental nature of self-efficacy. In this study, we compared prefrontal activation measured with near-infrared spectroscopy (NIRS) across 89 undergraduate students categorized into three groups based on their General Self-Efficacy Scale scores: low self-efficacy ( n = 59), moderate self-efficacy ( n = 17), and high self-efficacy ( n = 13). Changes in the hemoglobin levels of the prefrontal cortex (PFC) during a verbal fluency task were assessed using two-channel NIRS. Significant differences in the oxygenated hemoglobin (oxy-Hb) level of the left PFC (LPFC) were observed via analysis of variance. Post hoc Tukey's test showed a significant difference only between low self-efficacy and moderate self-efficacy groups. We found a medium between-group effect size in the moderate self-efficacy group versus the low self-efficacy group for the changes in oxy-Hb levels of the LPFC ( d = .78; 95% confidence interval for effect size [0.22, 1.33]). No significant between-group differences were observed with respect to changes in the oxy-Hb in the right PFC. The results indicate less left prefrontal activation in the low self-efficacy group than in the moderate self-efficacy group. These findings provide evidence to support the fundamental nature of self-efficacy.

  10. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  11. Prefrontal responses to Stroop tasks in subjects with post-traumatic stress disorder assessed by functional near infrared spectroscopy

    Science.gov (United States)

    Yennu, Amarnath; Tian, Fenghua; Smith-Osborne, Alexa; J. Gatchel, Robert; Woon, Fu Lye; Liu, Hanli

    2016-07-01

    Studies on posttraumatic stress disorder (PTSD) showing attentional deficits have implicated abnormal activities in the frontal lobe. In this study, we utilized multichannel functional near-infrared spectroscopy (fNIRS) to investigate selective attention-related hemodynamic activity in the prefrontal cortex among 15 combat-exposed war-zone veterans with PTSD and 13 age- and gender-matched healthy controls. While performing the incongruent Stroop task, healthy controls showed significant activations in the left lateral prefrontal cortex (LPFC) compared to baseline readings. This observation is consistent with previously reported results. In comparison, subjects with PTSD failed to activate left LPFC during the same Stroop task. Our observations may implicate that subjects with PTSD experienced difficulty in overcoming Stroop interference. We also observed significant negative correlation between task reaction times and hemodynamic responses from left LPFC during the incongruent Stroop task in the PTSD group. Regarding the methodology used in this study, we have learned that an appropriate design of Stroop paradigms is important for meeting an optimal cognitive load which can lead to better brain image contrasts in response to Stroop interference between healthy versus PTSD subjects. Overall, the feasibility of fNIRS for studying and mapping neural correlates of selective attention and interference in subjects with PTSD is reported.

  12. The interaction of process and domain in prefrontal cortex during inductive reasoning.

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2015-01-01

    Inductive reasoning is an everyday process that allows us to make sense of the world by creating rules from a series of instances. Consistent with accounts of process-based fractionations of the prefrontal cortex (PFC) along the left-right axis, inductive reasoning has been reliably localized to left PFC. However, these results may be confounded by the task domain, which is typically verbal. Indeed, some studies show that right PFC activation is seen with spatial tasks. This study used fMRI to examine the effects of process and domain on the brain regions recruited during a novel pattern discovery task. Twenty healthy young adult participants were asked to discover the rule underlying the presentation of a series of letters in varied spatial locations. The rules were either verbal (pertaining to a single semantic category) or spatial (geometric figures). Bilateral ventrolateral PFC activations were seen for the spatial domain, while the verbal domain showed only left ventrolateral PFC. A conjunction analysis revealed that the two domains recruited a common region of left ventrolateral PFC. The data support a central role of left PFC in inductive reasoning. Importantly, they also suggest that both process and domain shape the localization of reasoning in the brain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. An integrative theory of prefrontal cortex function.

    Science.gov (United States)

    Miller, E K; Cohen, J D

    2001-01-01

    The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

  14. Altered effect of dopamine transporter 3'UTR VNTR genotype on prefrontal and striatal function in schizophrenia.

    Science.gov (United States)

    Prata, Diana P; Mechelli, Andrea; Picchioni, Marco M; Fu, Cynthia H Y; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Murray, Robin M; Collier, David A; McGuire, Philip

    2009-11-01

    The dopamine transporter plays a key role in the regulation of central dopaminergic transmission, which modulates cognitive processing. Disrupted dopamine function and impaired executive processing are robust features of schizophrenia. To examine the effect of a polymorphism in the dopamine transporter gene (the variable number of tandem repeats in the 3' untranslated region) on brain function during executive processing in healthy volunteers and patients with schizophrenia. We hypothesized that this variation would have a different effect on prefrontal and striatal activation in schizophrenia, reflecting altered dopamine function. Case-control study. Psychiatric research center. Eighty-five subjects, comprising 44 healthy volunteers (18 who were 9-repeat carriers and 26 who were 10-repeat homozygotes) and 41 patients with DSM-IV schizophrenia (18 who were 9-repeat carriers and 23 who were 10-repeat homozygotes). Regional brain activation during word generation relative to repetition in an overt verbal fluency task measured by functional magnetic resonance imaging. Main effects of genotype and diagnosis on activation and their interaction were estimated with analysis of variance in SPM5. Irrespective of diagnosis, the 10-repeat allele was associated with greater activation than the 9-repeat allele in the left anterior insula and right caudate nucleus. Trends for the same effect in the right insula and for greater deactivation in the rostral anterior cingulate cortex were also detected. There were diagnosis x genotype interactions in the left middle frontal gyrus and left nucleus accumbens, where the 9-repeat allele was associated with greater activation than the 10-repeat allele in patients but not controls. Insular, cingulate, and striatal function during an executive task is normally modulated by variation in the dopamine transporter gene. Its effect on activation in the dorsolateral prefrontal cortex and ventral striatum is altered in patients with schizophrenia

  15. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias.

    Science.gov (United States)

    Ott, Derek V M; Ullsperger, Markus; Jocham, Gerhard; Neumann, Jane; Klein, Tilmann A

    2011-07-15

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of the dorsolateral prefrontal cortex (DLPFC) in reinforcement learning, we applied continuous theta-burst stimulation (cTBS) either to the left or right DLPFC, or to the vertex as a control region, respectively, prior to the performance of a probabilistic learning task in an fMRI environment. While there was no influence of cTBS on learning performance per se, we observed a stimulation-dependent modulation of reward vs. punishment sensitivity: Left-hemispherical DLPFC stimulation led to a more reward-guided performance, while right-hemispherical cTBS induced a more avoidance-guided behavior. FMRI results showed enhanced prediction error coding in the ventral striatum in subjects stimulated over the left as compared to the right DLPFC. Both behavioral and imaging results are in line with recent findings that left, but not right-hemispherical stimulation can trigger a release of dopamine in the ventral striatum, which has been suggested to increase the relative impact of rewards rather than punishment on behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task

    OpenAIRE

    Asinof, Samuel K.; Paine, Tracie A.

    2012-01-01

    Attention deficits are a core cognitive symptom of schizophrenia; the neuropathology underlying these deficits is not known. Attention is regulated, at least in part, by the prefrontal cortex (PFC), a brain area in which pathology of γ-aminobutyric acid (GABA) neurons has been consistently observed in post-mortem analysis of the brains of people with schizophrenia. Specifically, expression of the 67-kD isoform of the GABA synthesis enzyme glutamic acid decarboxylase (GAD67) is reduced in parv...

  18. Posterior and prefrontal contributions to the development posttraumatic stress disorder symptom severity: an fMRI study of symptom provocation in acute stress disorder.

    Science.gov (United States)

    Cwik, Jan C; Sartory, Gudrun; Nuyken, Malte; Schürholt, Benjamin; Seitz, Rüdiger J

    2017-09-01

    Acute stress disorder (ASD) is predictive of the development of posttraumatic stress disorder (PTSD). In response to symptom provocation, the exposure to trauma-related pictures, ASD patients showed increased activation of the medial posterior areas of precuneus and posterior cingulate cortex as well as of superior prefrontal cortex in a previous study. The current study aimed at investigating which activated areas are predictive of the development of PTSD. Nineteen ASD patients took part in an fMRI study in which they were shown personalized trauma-related and neutral pictures within 4 weeks of the traumatic event. They were assessed for severity of PTSD 4 weeks later. Activation contrasts between trauma-related and neutral pictures were correlated with subsequent PTSD symptom severity. Greater activation in, among others, right medial precuneus, left retrosplenial cortex, precentral and right superior temporal gyrus as well as less activation in lateral, superior prefrontal and left fusiform gyrus was related to subsequently increased PTSD severity. The results are broadly in line with neural areas related to etiological models of PTSD, namely multisensory associative learning recruiting posterior regions on the one hand and failure to reappraise maladaptive cognitions, thought to involve prefrontal areas, on the other.

  19. Reduced prefrontal efficiency for visuospatial working memory in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P

    2014-09-01

    Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p 100 voxels). Reanalysis using a more conservative statistical approach (p 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Task-based and resting-state fMRI reveal compensatory network changes following damage to left inferior frontal gyrus.

    Science.gov (United States)

    Hallam, Glyn P; Thompson, Hannah E; Hymers, Mark; Millman, Rebecca E; Rodd, Jennifer M; Lambon Ralph, Matthew A; Smallwood, Jonathan; Jefferies, Elizabeth

    2018-02-01

    Damage to left inferior prefrontal cortex in stroke aphasia is associated with semantic deficits reflecting poor control over conceptual retrieval, as opposed to loss of knowledge. However, little is known about how functional recruitment within the semantic network changes in patients with executive-semantic deficits. The current study acquired functional magnetic resonance imaging (fMRI) data from 14 patients with semantic aphasia, who had difficulty with flexible semantic retrieval following left prefrontal damage, and 16 healthy age-matched controls, allowing us to examine activation and connectivity in the semantic network. We examined neural activity while participants listened to spoken sentences that varied in their levels of lexical ambiguity and during rest. We found group differences in two regions thought to be good candidates for functional compensation: ventral anterior temporal lobe (vATL), which is strongly implicated in comprehension, and posterior middle temporal gyrus (pMTG), which is hypothesized to work together with left inferior prefrontal cortex to support controlled aspects of semantic retrieval. The patients recruited both of these sites more than controls in response to meaningful sentences. Subsequent analysis identified that, in control participants, the recruitment of pMTG to ambiguous sentences was inversely related to functional coupling between pMTG and anterior superior temporal gyrus (aSTG) at rest, while the patients showed the opposite pattern. Moreover, stronger connectivity between pMTG and aSTG in patients was associated with better performance on a test of verbal semantic association, suggesting that this temporal lobe connection supports comprehension in the face of damage to left inferior prefrontal cortex. These results characterize network changes in patients with executive-semantic deficits and converge with studies of healthy participants in providing evidence for a distributed system underpinning semantic control that

  1. Brief pressure overload of the left ventricle reduces myocardial infarct size via activation of protein kinase C.

    Science.gov (United States)

    Tang, Chia-Yu; Lai, Chang-Chi; Chiang, Shu-Chiung; Tseng, Kuo-Wei; Huang, Cheng-Hsiung

    2015-09-01

    We have previously reported that brief pressure overload of the left ventricle reduced myocardial infarct (MI) size. However, the role of protein kinase C (PKC) remains uncertain. In this study, we investigated whether pressure overload reduces MI size by activating PKC. MI was induced by a 40-minute occlusion of the left anterior descending coronary artery and a 3-hour reperfusion in anesthetized Sprague-Dawley rats. MI size was determined using triphenyl tetrazolium chloride staining. Brief pressure overload was achieved by two 10-minute partial snarings of the ascending aorta, raising the systolic left ventricular pressure 50% above the baseline value. Ischemic preconditioning was elicited by two 10-minute coronary artery occlusions and 10-minute reperfusions. Dimethyl sulfoxide (vehicle) or calphostin C (0.1 mg/kg, a specific inhibitor of PKC) was administered intravenously as pretreatment. The MI size, expressed as the percentage of the area at risk, was significantly reduced in the pressure overload group and the ischemic preconditioning group (19.0 ± 2.9% and 18.7 ± 3.0% vs. 26.1 ± 2.6% in the control group, where p overload and ischemic preconditioning (25.2 ± 2.4% and 25.0 ± 2.3%, where p overload of the left ventricle reduced MI size. Since calphostin C significantly limited the decrease of MI size, our results suggested that brief pressure overload reduces MI size via activation of PKC. Copyright © 2015. Published by Elsevier Taiwan.

  2. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight.

    Science.gov (United States)

    Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-11-01

    Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with

  3. Capacity-speed relationships in prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Vivek Prabhakaran

    Full Text Available Working memory (WM capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.

  4. Differential Involvement of Left Prefrontal Cortexin Inductive and Deductive Reasoning

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J.

    2004-01-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by…

  5. Is two better than one? Limb Activation Treatment combined with Contralesional Arm Vibration to ameliorate signs of left neglect

    Directory of Open Access Journals (Sweden)

    Marco ePitteri

    2013-08-01

    Full Text Available In the present study, we evaluated the effects of the Limb Activation Treatment (LAT alone and in combination with the Contralateral Arm Vibration (CAV on left neglect (LN rehabilitation. We conceived them as techniques that both prompt the activation of the lesioned right hemisphere because of the activation (with the LAT as an active technique and the stimulation (with the CAV as a passive technique of the left hemibody. To test the effect of the simultaneous use of these two techniques (i.e., LAT and CAV on visuo-spatial aspects of LN, we described the case of a LN patient (GR, who showed high intra-individual variability (IIV in performance. Given the high IIV of GR, we used an ABAB repeated-measures design to better define the effectiveness of the combined application of LAT and CAV, as a function of time. The results showed an improvement of GR’s performance on the Bells test following the combined application of LAT and CAV, with respect to the application of LAT alone. We did not find, however, significant effects of treatment on two other LN tests (i.e., Line bisection and Picture scanning. We propose that the combined application of LAT and CAV can be beneficial for some aspects of LN.

  6. Similar or different? The role of the ventrolateral prefrontal cortex in similarity detection.

    Directory of Open Access Journals (Sweden)

    Béatrice Garcin

    Full Text Available Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., "both have peel", while others continue to look for differences between these objects (e.g., "one is yellow, the other is orange". These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC. We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1 Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2 Abstraction per se activates the left dorsolateral PFC.

  7. Prefrontal mediation of emotion regulation in social anxiety disorder during laughter perception.

    Science.gov (United States)

    Kreifelts, Benjamin; Brück, Carolin; Ethofer, Thomas; Ritter, Jan; Weigel, Lena; Erb, Michael; Wildgruber, Dirk

    2017-02-01

    Social anxiety disorder (SAD) is characterized by negatively biased perception of social cues and deficits in emotion regulation. While negatively biased perception is thought to maintain social anxiety, emotion regulation represents an ability necessary to overcome both biased perception and social anxiety. Here, we used laughter as a social threat in a functional magnetic resonance imaging (fMRI) study to identify cerebral mediators linking SAD with attention and interpretation biases and their modification through cognitive emotion regulation in the form of reappraisal. We found that reappraisal abolished the negative laughter interpretation bias in SAD and that this process was directly mediated through activation patterns of the left dorsolateral prefrontal cortex (DLPFC) serving as a cerebral pivot between biased social perception and its normalization through reappraisal. Connectivity analyses revealed reduced prefrontal control over threat-processing sensory cortices (here: the temporal voice area) during cognitive emotion regulation in SAD. Our results indicate a central role for the left DLPFC in SAD which might represent a valuable target for future research on interventions either aiming to directly modulate cognitive emotion regulation in SAD or to evaluate its potential as physiological marker for psychotherapeutic interventions relying on emotion regulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A randomized study on the effect of modified behavioral activation treatment for depressive symptoms in rural left-behind elderly.

    Science.gov (United States)

    Xie, Jianfei; He, Guoping; Ding, Siqing; Pan, Chen; Zhang, Xia; Zhou, Jianda; Iennaco, Joanne Desanto

    2017-08-25

    To evaluate the effectiveness of a modified behavioral activation treatment (MBAT) intervention on reducing depressive symptoms in rural left-behind elderly. This is a randomized study registered in Chinese Clinical Trial Registry (ChiCTR-IOR-17011289). Eighty rural left-behind elderly people who had a Geriatric Depression Scale (GDS) score between 11 and 25 were randomly assigned to the intervention (n = 40) and control group (n = 40). The intervention group received both MBAT and regular treatment for 8 weeks while the control group received regular treatment. Both groups were assessed with the GDS, Beck Anxiety Inventory (BAI), and Oxford Happiness Questionnaire (OHQ) at baseline, immediately post-intervention, and at 3 months post-intervention. There were a total of 73 participants that completed the intervention. The scores of GDS and BAI decreased significantly, but the scores of OHQ increased significantly in the intervention group after 8 sessions of MBAT (P < .01). The reduction in depression symptoms after the intervention was maintained at the 3-month follow-up. Significant differences in GDS, BAI, and OHQ scores were observed between the intervention group and the control group (P < .01). MBAT produced a significantly greater reduction in depressive symptoms than regular care in rural left-behind elderly.

  9. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    Science.gov (United States)

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  10. Nonlinear responses within the medial prefrontal cortex reveal when specific implicit information influences economic decision making.

    Science.gov (United States)

    Deppe, Michael; Schwindt, Wolfram; Kugel, Harald; Plassmann, Hilke; Kenning, Peter

    2005-04-01

    The authors used functional magnetic resonance imaging (fMRI) to investigate how individual economic decisions are influenced by implicit memory contributions. Twenty-two participants were asked to make binary decisions between different brands of sensorily nearly undistinguishable consumer goods. Changes of brain activity comparing decisions in the presence or absence of a specific target brand were detected by fMRI. Only when the tar get brand was the participant's favorite one did the authors find reduced activation in the dorsolateral prefrontal, posterior parietal, and occipital cortices and the left premotor area (Brodmann areas [BA] 9, 46, 7/19, and 6). Simultaneously, activity was increased in the inferior precuneus and posterior cingulate (BA 7), right superior frontal gyrus (BA 10), right supramarginal gyrus (BA 40), and, most pronounced, in the ventromedial prefrontal cortex (BA 10). For products mainly distinguishable by brand information, the authors revealed a nonlinear winner-take-all effect for a participant's favorite brand characterized, on one hand, by reduced activation in brain areas associated with working memory and reasoning and, on the other hand, increased activation in areas involved in processing of emotions and self-reflections during decision making.

  11. Impaired prefrontal hemodynamic maturation in autism and unaffected siblings.

    Directory of Open Access Journals (Sweden)

    Yuki Kawakubo

    Full Text Available BACKGROUND: Dysfunctions of the prefrontal cortex have been previously reported in individuals with autism spectrum disorders (ASD. Previous studies reported that first-degree relatives of individuals with ASD show atypical brain activity during tasks associated with social function. However, developmental changes in prefrontal dysfunction in ASD and genetic influences on the phenomena remain unclear. In the present study, we investigated the change in hemoglobin concentration in the prefrontal cortex as measured with near-infrared spectroscopy, in children and adults with ASD during the letter fluency test. Moreover, to clarify the genetic influences on developmental changes in the prefrontal dysfunction in ASD, unaffected siblings of the ASD participants were also assessed. METHODOLOGY/PRINCIPAL FINDINGS: Study participants included 27 individuals with high-functioning ASD, age- and IQ-matched 24 healthy non-affected siblings, and 27 unrelated healthy controls aged 5 to 39 years. The relative concentration of hemoglobin ([Hb] in the prefrontal cortex was measured during the letter fluency task. For children, neither the [oxy-Hb] change during the task nor task performances differed significantly among three groups. For adults, the [oxy-Hb] increases during the task were significantly smaller in the bilateral prefrontal cortex in ASD than those in control subjects, although task performances were similar. In the adult siblings the [oxy-Hb] change was intermediate between those in controls and ASDs. CONCLUSION/SIGNIFICANCE: Although indirectly due to a cross-sectional design, the results of this study indicate altered age-related change of prefrontal activity during executive processing in ASD. This is a first near-infrared spectroscopy study that implies alteration in the age-related changes of prefrontal activity in ASD and genetic influences on the phenomena.

  12. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Directory of Open Access Journals (Sweden)

    Eliane C Miotto

    Full Text Available Patients with low-grade glioma (LGG have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR, related-non-structured (RNS, and related-structured words (RS, allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG and middle frontal gyrus (MFG during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  13. Radionuclide detection and differential diagnosis of left-to-right cardiac shunts by analysis of time-activity curves

    International Nuclear Information System (INIS)

    Kim, Ok-Hwa

    1986-01-01

    The noninvasive nature of the radionuclide angiocardiography provided a useful approach for the evaluation of left-to-right cardiac shunts (LRCS). While the qualitative information can be obtained by inspection of serial radionuclide angiocardiograms, the quantitative information of radionuclide angiocardiography can be obtained by the analysis of time-activity curves using advanced computer system. The count ratios method and pulmonary-to-systemic flow ratio (QP/QS) by gamma variate fit method were used to evaluate the accuracy of detection and localization of LRCS. One hundred and ten time-activity curves were analyzed. There were 46 LRCS (atrial septal defects 11, ventricular septal defects 22, patent ductus arteriosus 13) and 64 normal subjects. By computer analysis of time-activity histograms of the right atrium, ventricle and the lungs separately, the count ratios modified by adding the mean cardiac transit time were calculated in each anatomic site. In normal subjects the mean count ratios in the right atrium, ventricle and lungs were 0.24 on average. In atrial septal defects, the count ratios were high in the right atrium, ventricle and lungs, whereas in ventricular septal defects the count ratios were higher only in the right ventricle and lungs. Patent ductus arteriosus showed normal count ratios in the heart but high count ratios were obtained in the lungs. Thus, this count ratios method could be separated normal from those with intracardiac or extracardiac shunts, and moreover, with this method the localization of the shunts level was possible in LRCS. Another method that could differentiate the intracardiac shunts from extracardiac shunts was measuring QP/QS in the left and right lungs. In patent ductus arteriosus, the left lung QP/QS was hight than those of the right lung, whereas in atrial septal defects and ventricular septal defects QP/QS ratios were equal in both lungs. (J.P.N.)

  14. Right inferior frontal gyrus activation is associated with memory improvement in patients with left frontal low-grade glioma resection.

    Science.gov (United States)

    Miotto, Eliane C; Balardin, Joana B; Vieira, Gilson; Sato, Joao R; Martin, Maria da Graça M; Scaff, Milberto; Teixeira, Manoel J; Junior, Edson Amaro

    2014-01-01

    Patients with low-grade glioma (LGG) have been studied as a model of functional brain reorganization due to their slow-growing nature. However, there is no information regarding which brain areas are involved during verbal memory encoding after extensive left frontal LGG resection. In addition, it remains unknown whether these patients can improve their memory performance after instructions to apply efficient strategies. The neural correlates of verbal memory encoding were investigated in patients who had undergone extensive left frontal lobe (LFL) LGG resections and healthy controls using fMRI both before and after directed instructions were given for semantic organizational strategies. Participants were scanned during the encoding of word lists under three different conditions before and after a brief period of practice. The conditions included semantically unrelated (UR), related-non-structured (RNS), and related-structured words (RS), allowing for different levels of semantic organization. All participants improved on memory recall and semantic strategy application after the instructions for the RNS condition. Healthy subjects showed increased activation in the left inferior frontal gyrus (IFG) and middle frontal gyrus (MFG) during encoding for the RNS condition after the instructions. Patients with LFL excisions demonstrated increased activation in the right IFG for the RNS condition after instructions were given for the semantic strategies. Despite extensive damage in relevant areas that support verbal memory encoding and semantic strategy applications, patients that had undergone resections for LFL tumor could recruit the right-sided contralateral homologous areas after instructions were given and semantic strategies were practiced. These results provide insights into changes in brain activation areas typically implicated in verbal memory encoding and semantic processing.

  15. Strain differences in basal and post-citalopram extracellular 5-HT in the mouse medial prefrontal cortex and dorsal hippocampus: relation with tryptophan hydroxylase-2 activity.

    Science.gov (United States)

    Calcagno, E; Canetta, A; Guzzetti, S; Cervo, L; Invernizzi, R W

    2007-11-01

    We used the microdialysis technique to compare basal extracellular serotonin (5-HT) and the response to citalopram in different strains of mice with functionally different allelic forms of tryptophan hydroxylase-2 (TPH-2), the rate-limiting enzyme in brain 5-HT synthesis. DBA/2J, DBA/2N and BALB/c mice carrying the 1473G allele of TPH-2 had less dialysate 5-HT in the medial prefrontal cortex and dorsal hippocampus (DH) (20-40% reduction) than C57BL/6J and C57BL/6N mice carrying the 1473C allele. Extracellular 5-HT estimated by the zero-net flux method confirmed the result of conventional microdialysis. Citalopram, 1.25, 5 and 20 mg/kg, dose-dependently raised extracellular 5-HT in the medial prefrontal cortex of C57BL/6J mice, with maximum effect at 5 mg/kg, but had significantly less effect in DBA/2J and BALB/c mice and in the DH of DBA/2J mice. A tryptophan (TRP) load enhanced basal extracellular 5-HT in the medial prefrontal cortex of DBA/2J mice but did not affect citalopram's ability to raise cortical and hippocampal extracellular 5-HT. The impairment of 5-HT synthesis quite likely accounts for the reduction of basal 5-HT and the citalopram-induced rise in mice carrying the mutated enzyme. These findings might explain why DBA/2 and BALB/c mice do not respond to citalopram in the forced swimming test. Although TRP could be a useful strategy to improve the antidepressant effect of citalopram (Cervo et al. 2005), particularly in subjects with low 5-HT synthesis, the contribution of serotonergic and non-serotonergic mechanisms to TRP's effect remains to be elucidated.

  16. The role of prefrontal cortex in psychopathy

    Science.gov (United States)

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  17. Early Left Parietal Activity Elicited by Direct Gaze: A High-Density EEG Study

    Science.gov (United States)

    Burra, Nicolas; Kerzel, Dirk; George, Nathalie

    2016-01-01

    Gaze is one of the most important cues for human communication and social interaction. In particular, gaze contact is the most primary form of social contact and it is thought to capture attention. A very early-differentiated brain response to direct versus averted gaze has been hypothesized. Here, we used high-density electroencephalography to test this hypothesis. Topographical analysis allowed us to uncover a very early topographic modulation (40–80 ms) of event-related responses to faces with direct as compared to averted gaze. This modulation was obtained only in the condition where intact broadband faces–as opposed to high-pass or low-pas filtered faces–were presented. Source estimation indicated that this early modulation involved the posterior parietal region, encompassing the left precuneus and inferior parietal lobule. This supports the idea that it reflected an early orienting response to direct versus averted gaze. Accordingly, in a follow-up behavioural experiment, we found faster response times to the direct gaze than to the averted gaze broadband faces. In addition, classical evoked potential analysis showed that the N170 peak amplitude was larger for averted gaze than for direct gaze. Taken together, these results suggest that direct gaze may be detected at a very early processing stage, involving a parallel route to the ventral occipito-temporal route of face perceptual analysis. PMID:27880776

  18. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.

    Directory of Open Access Journals (Sweden)

    Annabella Di Giorgio

    Full Text Available BACKGROUND: Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560 and in the nicotinic receptor α5 gene (CHRNA5, rs16969968 on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. METHODS: A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T and CHNRA5 rs16969968 (G>A on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. RESULTS: We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. CONCLUSIONS: The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.

  19. DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.

    Science.gov (United States)

    Di Giorgio, Annabella; Smith, Ryan M; Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro

    2014-01-01

    Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.

  20. Left temporal alpha band activity increases during working memory retention of pitches

    NARCIS (Netherlands)

    Van Dijk, H.; Nieuwenhuis, I.L.C.; Jensen, O.

    2010-01-01

    The functional role and regional specificity of similar to 10 Hz alpha band activity remains of debate. Alpha band activity is strongly modulated in visual working memory tasks and it has been proposed to subserve resource allocation by disengaging task-irrelevant regions. It remains unknown if

  1. Hyperresponsivity and impaired prefrontal control of the mesolimbic reward system in schizophrenia.

    Science.gov (United States)

    Richter, Anja; Petrovic, Aleksandra; Diekhof, Esther K; Trost, Sarah; Wolter, Sarah; Gruber, Oliver

    2015-12-01

    Schizophrenia is characterized by substantial dysfunctions of reward processing, leading to detrimental consequences for decision-making. The neurotransmitter dopamine is responsible for the transmission of reward signals and also known to be involved in the mechanism of psychosis. Using functional magnetic resonance imaging (fMRI), sixteen medicated patients with schizophrenia and sixteen healthy controls performed the 'desire-reason dilemma' (DRD) paradigm. This paradigm allowed us to directly investigate reward-related brain activations depending on the interaction of bottom-up and top-down mechanisms, when a previously conditioned reward stimulus had to be rejected to achieve a superordinate long-term goal. Both patients and controls showed significant activations in the mesolimbic reward system. In patients with schizophrenia, however, we found a significant hyperactivation of the left ventral striatum (vStr) when they were allowed to accept the conditioned reward stimuli, and a reduced top-down regulation of activation in the ventral striatum (vStr) and ventral tegmental area (VTA) while having to reject the immediate reward to pursue the superordinate task-goal. Moreover, while healthy subjects exhibited a negative functional coupling of the vStr with both the anteroventral prefrontal cortex (avPFC) and the ventromedial prefrontal cortex (VMPFC) in the dilemma situation, this functional coupling was significantly impaired in the patient group. These findings provide evidence for an increased ventral striatal activation to reward stimuli and an impaired top-down control of reward signals by prefrontal brain regions in schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Changes in brain activity in response to problem solving during the abstinence from online game play.

    Science.gov (United States)

    Kim, Sun Mi; Han, Doug Hyun; Lee, Young Sik; Kim, Jieun E; Renshaw, Perry F

    2012-06-01

    Several studies have suggested that addictive disorders including substance abuse and pathologic gambling might be associated with dysfunction on working memory and prefrontal activity. We hypothesized that excessive online game playing is associated with deficits in prefrontal cortex function and that recovery from excessive online game playing might improve prefrontal cortical activation in response to working memory stimulation. Thirteen adolescents with excessive online game playing (AEOP) and ten healthy adolescents (HC) agreed to participate in this study. The severity of online game play and playing time were evaluated for a baseline measurement and again following four weeks of treatment. Brain activation in response to working memory tasks (simple and complex calculations) at baseline and subsequent measurements was assessed using BOLD functional magnetic resonance imaging (fMRI). Compared to the HC subjects, the AEOP participants exhibited significantly greater activity in the right middle occipital gyrus, left cerebellum posterior lobe, left premotor cortex and left middle temporal gyrus in response to working memory tasks during baseline measurements. After four weeks of treatment, the AEOP subjects showed increased activity within the right dorsolateral prefrontal cortex and left occipital fusiform gyrus. After four weeks of treatment, changes in the severity of online game playing were negatively correlated with changes in the mean β value of the right dorsolateral prefrontal cortex in response to complex stimulation. We suggest that the effects of online game addiction on working memory may be similar to those observed in patients with substance dependence.

  3. Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process

    Science.gov (United States)

    De Pino, Gabriela; Fernández, Rodrigo Sebastián; Villarreal, Mirta Fabiana; Pedreira, María Eugenia

    2016-01-01

    Consolidated memories return to a labile state after the presentation of cues (reminders) associated with acquisition, followed by a period of stabilization (reconsolidation). However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1). Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI) (Experiment 2). We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated. PMID:26991776

  4. Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process.

    Directory of Open Access Journals (Sweden)

    Cecilia Forcato

    Full Text Available Consolidated memories return to a labile state after the presentation of cues (reminders associated with acquisition, followed by a period of stabilization (reconsolidation. However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1. Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI (Experiment 2. We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated.

  5. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation

    Czech Academy of Sciences Publication Activity Database

    Světlák, M.; Bob, P.; Roman, R.; Ježek, S.; Damborská, A.; Chládek, Jan; Shaw, D. J.; Kukleta, M.

    2013-01-01

    Roč. 62, č. 6 (2013), s. 711-719 ISSN 0862-8408 Institutional support: RVO:68081731 Keywords : electrodermal activity * pointwise trasinformation * autonomic nervous system * asymmetry * stress Subject RIV: CE - Biochemistry Impact factor: 1.487, year: 2013

  6. Detection of sequential activation of left atrium and coronary sinus musculature in the general population

    Directory of Open Access Journals (Sweden)

    Masaki Ota, MD

    2016-12-01

    Conclusions: Far-field LA potentials are often recorded in the CS during sequential LA and CSM activation in the general population. The timing of LA potentials in CS recordings reflected the direction of conduction across the CSM.

  7. Cortical activity in the left and right hemispheres during language-related brain functions

    DEFF Research Database (Denmark)

    Lassen, N A; Larsen, B

    1980-01-01

    of cortical activity seen during various language functions, emphasizing the practically symmetrical involvement in both hemispheres. A case of auditive agnosia (with complete cortical word deafness but preserved pure tone thresholds) is presented. The patient's normal speech constitutes evidence...

  8. Right prefrontal rTMS treatment for refractory auditory command hallucinations - a neuroSPECT assisted case study.

    Science.gov (United States)

    Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon

    2002-11-30

    Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.

  9. Distraction decreases prefrontal oxygenation: A NIRS study.

    Science.gov (United States)

    Ozawa, Sachiyo; Hiraki, Kazuo

    2017-04-01

    When near-infrared spectroscopy (NIRS) is used to measure emotion-related cerebral blood flow (CBF) changes in the prefrontal cortex regions, the functional distinction of CBF changes is often difficult because NIRS is unable to measure neural activity in deeper brain regions that play major roles in emotional processing. The CBF changes could represent cognitive control of emotion and emotional responses to emotional materials. Supposing that emotion-related CBF changes in the prefrontal cortex regions during distraction are emotional responses, we examined whether oxygenated hemoglobin (oxyHb) decreases. Attention-demanding tasks cause blood flow decreases, and we thus compared the effects of visually paced tapping with different tempos, on distraction. The results showed that the oxyHb level induced by emotional stimulation decreased with fast-tempo tapping significantly more than slow-tempo tapping in ventral medial prefrontal cortex regions. Moreover, a Global-Local task following tapping showed significantly greater local-minus-global response time (RT) difference scores in the fast- and mid-tempo condition compared with those in the slow-tempo, suggesting an increased attentional focus, and decreased negative emotion. The overall findings indicate that oxyHb changes in a relatively long distraction task, as measured by NIRS, are associated with emotional responses, and oxyHb can be decreased by successfully performing attention-demanding distraction tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Detection of left ventricular epi- and endocardial borders using coupled active contours

    NARCIS (Netherlands)

    Spreeuwers, Lieuwe Jan; Breeuwer, M.

    2003-01-01

    Active contours are a popular method for extraction of object boundaries in medical images. However, they may fail to give correct results if there are other edges in the neighbourhood. To handle and even exploit a geometrical relation between neighbouring boundaries, we propose to use a set of

  12. From left to right: Processing acronyms referring to names of political parties activates spatial associations

    NARCIS (Netherlands)

    Elk, M. van; Schie, H.T. van; Bekkering, H.

    2010-01-01

    In line with previous studies, showing that abstract concepts like opowero or ogodo implicitly activate spatial associations, in the present study we hypothesized that spatial associations are coactivated during the processing of acronyms referring to names of political parties as well. In four

  13. Levels of integration in cognitive control and sequence processing in the prefrontal cortex.

    Science.gov (United States)

    Bahlmann, Jörg; Korb, Franziska M; Gratton, Caterina; Friederici, Angela D

    2012-01-01

    Cognitive control is necessary to flexibly act in changing environments. Sequence processing is needed in language comprehension to build the syntactic structure in sentences. Functional imaging studies suggest that sequence processing engages the left ventrolateral prefrontal cortex (PFC). In contrast, cognitive control processes additionally recruit bilateral rostral lateral PFC regions. The present study aimed to investigate these two types of processes in one experimental paradigm. Sequence processing was manipulated using two different sequencing rules varying in complexity. Cognitive control was varied with different cue-sets that determined the choice of a sequencing rule. Univariate analyses revealed distinct PFC regions for the two types of processing (i.e. sequence processing: left ventrolateral PFC and cognitive control processing: bilateral dorsolateral and rostral PFC). Moreover, in a common brain network (including left lateral PFC and intraparietal sulcus) no interaction between sequence and cognitive control processing was observed. In contrast, a multivariate pattern analysis revealed an interaction of sequence and cognitive control processing, such that voxels in left lateral PFC and parietal cortex showed different tuning functions for tasks involving different sequencing and cognitive control demands. These results suggest that the difference between the process of rule selection (i.e. cognitive control) and the process of rule-based sequencing (i.e. sequence processing) find their neuronal underpinnings in distinct activation patterns in lateral PFC. Moreover, the combination of rule selection and rule sequencing can shape the response of neurons in lateral PFC and parietal cortex.

  14. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  15. Catecholaminergic activation in acute myocardial infarction: time course and relation to left ventricular performance

    DEFF Research Database (Denmark)

    Petersen, Claus Leth; Nielsen, Jens Rokkedal; Petersen, Bodil Laub

    2003-01-01

    AIM: The study was designed to assess (1) the time course of catecholaminergic activation in acute myocardial infarction (AMI) as estimated by adrenaline (ADR) and noradrenaline (NOR) concentrations, and (2) to relate activation of these hormones to predict the outcome of cardiac performance......-ventricular ejection fraction (LVEF). RESULTS: In the study group as a whole, the concentrations of ADR decreased from (mean +/- SEM) 0.80 +/- 0.12 nmol/l on admission to 0.33 +/- 0.03 nmol/l at discharge (p ... of both ADR and NOR on admission were correlated to LVEF at discharge (r = -0.56, p ADR and NOR after 1 year follow-up was 0...

  16. Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction.

    Science.gov (United States)

    Nakamura-Palacios, Ester Miyuki; Lopes, Isabela Bittencourt Coutinho; Souza, Rodolpho Albuquerque; Klauss, Jaisa; Batista, Edson Kruger; Conti, Catarine Lima; Moscon, Janine Andrade; de Souza, Rodrigo Stênio Moll

    2016-10-01

    Here, we report some electrophysiologic and imaging effects of the transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (dlPFC) in drug addiction, notably in alcohol and crack-cocaine dependence. The low resolution electromagnetic tomography (LORETA) analysis obtained through event-related potentials (ERPs) under drug-related cues, more specifically in its P3 segment (300-500 ms) in both, alcoholics and crack-cocaine users, showed that the ventral medial prefrontal cortex (vmPFC) was the brain area with the largest change towards increasing activation under drug-related cues in those subjects that kept abstinence during and after the treatment with bilateral tDCS (2 mA, 35 cm(2), cathodal left and anodal right) over dlPFC, applied repetitively (five daily sessions). In an additional study in crack-cocaine, which showed craving decreases after repetitive bilateral tDCS, we examined data originating from diffusion tensor imaging (DTI), and we found increased DTI parameters in the left connection between vmPFC and nucleus accumbens (NAcc), such as the number of voxels, fractional anisotropy (FA) and apparent diffusion coefficient (ADC), in tDCS-treated crack-cocaine users when compared to the sham-tDCS group. This increasing of DTI parameters was significantly correlated with craving decreasing after the repetitive tDCS. The vmPFC relates to the control of drug seeking, possibly by extinguishing this behavior. In our studies, the bilateral dlPFC tDCS reduced relapses and craving to the drug use, and increased the vmPFC activation under drug cues, which may be of a great importance in the control of drug use in drug addiction.

  17. The effect of activation rate on left atrial bipolar voltage in patients with paroxysmal atrial fibrillation.

    Science.gov (United States)

    Williams, Steven E; Linton, Nick; O'Neill, Louisa; Harrison, James; Whitaker, John; Mukherjee, Rahul; Rinaldi, Christopher A; Gill, Jaswinder; Niederer, Steven; Wright, Matthew; O'Neill, Mark

    2017-09-01

    Bipolar voltage is used during electroanatomic mapping to define abnormal myocardium, but the effect of activation rate on bipolar voltage is not known. We hypothesized that bipolar voltage may change in response to activation rate. By examining corresponding unipolar signals we sought to determine the mechanisms of such changes. LA extrastimulus mapping was performed during CS pacing in 10 patients undergoing first time paroxysmal atrial fibrillation ablation. Bipolar and unipolar electrograms were recorded using a PentaRay catheter (4-4-4 spacing) and indifferent IVC electrode, respectively. An S1S2 pacing protocol was delivered with extrastimulus coupling interval reducing from 350 to 200 milliseconds. At each recording site (119 ± 37 per LA), bipolar peak-to-peak voltage, unipolar peak to peak voltage and activation delay between unipole pairs was measured. Four patterns of bipolar voltage/extrastimulus coupling interval curves were seen: voltage attenuation with plateau voltage >1 mV (48 ± 15%) or voltage unaffected by coupling interval with plateau voltage >1 mV (17 ± 10%) or voltage attenuation were associated with significantly greater unipolar voltage attenuation at low (25 ± 28 mV/s vs. 9 ± 11 mV/s) and high (23 ± 29 mV/s vs. 6 ± 12 mV/s) plateau voltage sites (P voltage attenuation (P = 0.026). Bipolar electrogram voltage is dependent on activation rate at a significant proportion of sites. Changes in unipolar voltage and timing underlie these effects. These observations have important implications for use of voltage mapping to delineate abnormal atrial substrate. © 2017 The Authors. Journal of Cardiovascular Electrophysiology published by Wiley Periodicals, Inc.

  18. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: a functional near-infrared spectroscopy (fNIRS study

    Directory of Open Access Journals (Sweden)

    Thiago F. Dias Kanthack

    2013-09-01

    Full Text Available The purpose of this study was to compare the prefrontal cortex (PFC blood flow variation and time on in males and females while performing a motor task and imagery perspectives. Eighteen right handed subjects (11 males and 7 females were volunteers to this study. All subjects went through three randomly conditions, a motor task condition (MT in which they had to do a simple finger tap. The other conditions included practicing imagery in first and third views. During all the conditions, the fNIRS device was attached to the subject forehead to obtain the blood flow; the total time in each task which was measured with a chronometer. No difference had been found in any condition for both sexes in the PFC and time, nor for all subjects integrated in the PFC. Therefore, we conclu-de that both imageries can be used to mentally train a motor task, and probably both sexes can be benefited.

  19. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Directory of Open Access Journals (Sweden)

    Anders C. Green

    2012-01-01

    Full Text Available We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  20. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music.

    Science.gov (United States)

    Green, Anders C; Bærentsen, Klaus B; Stødkilde-Jørgensen, Hans; Roepstorff, Andreas; Vuust, Peter

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  1. Differential mesolimbic and prefrontal alterations during reward anticipation and consummation in positive and negative schizotypy.

    Science.gov (United States)

    Yan, Chao; Wang, Yi; Su, Li; Xu, Ting; Yin, Da-Zhi; Fan, Ming-Xia; Deng, Ci-Ping; Wang, Zhao-Xin; Lui, Simon S Y; Cheung, Eric F C; Chan, Raymond C K

    2016-08-30

    Schizotypy is associated with anhedonia. However, previous findings on the neural substrates of anhedonia in schizotypy are mixed. In the present study, we measured the neural substrates associated with reward anticipation and consummation in positive and negative schizotypy using functional MRI. The Monetary Incentive Delay task was administered to 33 individuals with schizotypy (18 positive schizotypy (PS),15 negative schizotypy (NS)) and 22 healthy controls. Comparison between schizotypy individuals and controls were performed using two-sample T tests for contrast images involving gain versus non-gain anticipation condition and gain versus non-gain consummation condition. Multiple comparisons were corrected using Monte Carlo Simulation correction of panticipation or consummation. However, during the consummatory phase, NS individuals rather than PS individuals showed diminished left amygdala and left putamen activity compared with controls. We observed significantly weaker activation at the left ventral striatum during gain anticipation in NS individuals compared with controls. PS individuals, however, exhibited enhanced right ventral lateral prefrontal activity. These findings suggest that different dimensions of schizotypy may be underlied by different neural dysfunctions in reward anticipation and consummation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Laterality in Responce of Brain Activity during Mirror Therapy using Near-infrared Spectroscopy

    OpenAIRE

    Sakai, Yusuke; Hamaguchi, Toyohiro; Takagi, Akiteru

    2006-01-01

    This study presents the activation of left the prefrontal area by Mirror Therapy (MT) targeted to improve the function of the upper arms. The subjects were eight right handed females who were going to receive MT for the first time. Cortical brain activity was compared through oxygen ized hemoglobin ([oxy-Hb]) using near infra-red multi-channel oxygen monitor, during resting image training (IT). The result showed a significant increase of [oxy-Hb] in the lower left prefrontal area during the s...

  3. Addressing the selective role of distinct prefrontal areas in response suppression: A study with brain tumor patients.

    Science.gov (United States)

    Arbula, Sandra; Pacella, Valentina; De Pellegrin, Serena; Rossetto, Marta; Denaro, Luca; D'Avella, Domenico; Della Puppa, Alessandro; Vallesi, Antonino

    2017-06-01

    The diverging evidence for functional localization of response inhibition within the prefrontal cortex might be justified by the still unclear involvement of other intrinsically related cognitive processes like response selection and sustained attention. In this study, the main aim was to understand whether inhibitory impairments, previously found in patients with both left and right frontal lesions, could be better accounted for by assessing these potentially related cognitive processes. We tested 37 brain tumor patients with left prefrontal, right prefrontal and non-prefrontal lesions and a healthy control group on Go/No-Go and Foreperiod tasks. In both types of tasks inhibitory impairments are likely to cause false alarms, although additionally the former task requires response selection and the latter target detection abilities. Irrespective of the task context, patients with right prefrontal damage showed frequent Go and target omissions, probably due to sustained attention lapses. Left prefrontal patients, on the other hand, showed both Go and target omissions and high false alarm rates to No-Go and warning stimuli, suggesting a decisional rather than an inhibitory impairment. An exploratory whole-brain voxel-based lesion-symptom mapping analysis confirmed the association of left ventrolateral and dorsolateral prefrontal lesions with target discrimination failure, and right ventrolateral and medial prefrontal lesions with target detection failure. Results from this study show how left and right prefrontal areas, which previous research has linked to response inhibition, underlie broader cognitive control processes, particularly involved in response selection and target detection. Based on these findings, we suggest that successful inhibitory control relies on more than one functionally distinct process which, if assessed appropriately, might help us to better understand inhibitory impairments across different pathologies. Copyright © 2017 The Authors

  4. Physiological consequences of transient outward K(+) current activation during heart failure in the canine left ventricle

    DEFF Research Database (Denmark)

    Cordeiro, Jonathan M; Callø, Kirstine; Moise, N Sydney

    2012-01-01

    .7±1.4pA/pF after 5weeks, +50mV). Current decay as well as recovery of I(to) from inactivation progressively slowed with the development of heart failure. Reduction of I(to) density was paralleled by a reduction in phase 1 magnitude, epicardial action potential notch and J wave amplitude recorded from......Background: Remodeling of ion channel expression is well established in heart failure (HF). We determined the extent to which I(to) is reduced in tachypacing-induced HF and assessed the ability of an I(to) activator (NS5806) to recover this current. Method and results: Whole-cell patch clamp...

  5. Neurohormonal activation and exercise tolerance in patients supported with a continuous-flow left ventricular assist device

    DEFF Research Database (Denmark)

    Jung, Mette Holme; Goetze, Jens Peter; Boesgaard, Soeren

    2016-01-01

    BACKGROUND: Neurohormones play a key role in regulating hemodynamics in heart failure (HF) both at rest and during exercise. In contrast, little is known about the importance of neurohormonal regulation for exercise capacity in continuous-flow left ventricular assist device (CF-LVAD) patients....... The aim of this study was to assess the relation between neurohormonal activation patterns in CF-LVAD patients and exercise capacity. METHODS: Plasma concentrations of the C-terminal portion of pro-arginine vasopressin precursor (copeptin), pro-adrenomedullin (proADM), pro-B-type (proBNP) and pro......-atrial (proANP) natriuretic peptides were measured in 25 CF-LVAD patients (HeartMate II) in the morning prior to maximal cardiopulmonary exercise testing determining peak oxygen uptake (peak VO2). Quality of life (QOL) was determined by questionnaires. RESULTS: Peak VO2 was severely reduced averaging 13...

  6. Changes in prefrontal-limbic function in major depression after 15 months of long-term psychotherapy.

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    Full Text Available Neuroimaging studies of depression have demonstrated treatment-specific changes involving the limbic system and regulatory regions in the prefrontal cortex. While these studies have examined the effect of short-term, interpersonal or cognitive-behavioural psychotherapy, the effect of long-term, psychodynamic intervention has never been assessed. Here, we investigated recurrently depressed (DSM-IV unmedicated outpatients (N = 16 and control participants matched for sex, age, and education (N = 17 before and after 15 months of psychodynamic psychotherapy. Participants were scanned at two time points, during which presentations of attachment-related scenes with neutral descriptions alternated with descriptions containing personal core sentences previously extracted from an attachment interview. Outcome measure was the interaction of the signal difference between personal and neutral presentations with group and time, and its association with symptom improvement during therapy. Signal associated with processing personalized attachment material varied in patients from baseline to endpoint, but not in healthy controls. Patients showed a higher activation in the left anterior hippocampus/amygdala, subgenual cingulate, and medial prefrontal cortex before treatment and a reduction in these areas after 15 months. This reduction was associated with improvement in depressiveness specifically, and in the medial prefrontal cortex with symptom improvement more generally. This is the first study documenting neurobiological changes in circuits implicated in emotional reactivity and control after long-term psychodynamic psychotherapy.

  7. Changes in Prefrontal-Limbic Function in Major Depression after 15 Months of Long-Term Psychotherapy

    Science.gov (United States)

    Buchheim, Anna; Viviani, Roberto; Kessler, Henrik; Kächele, Horst; Cierpka, Manfred; Roth, Gerhard; George, Carol; Kernberg, Otto F.; Bruns, Georg; Taubner, Svenja

    2012-01-01

    Neuroimaging studies of depression have demonstrated treatment-specific changes involving the limbic system and regulatory regions in the prefrontal cortex. While these studies have examined the effect of short-term, interpersonal or cognitive-behavioural psychotherapy, the effect of long-term, psychodynamic intervention has never been assessed. Here, we investigated recurrently depressed (DSM-IV) unmedicated outpatients (N = 16) and control participants matched for sex, age, and education (N = 17) before and after 15 months of psychodynamic psychotherapy. Participants were scanned at two time points, during which presentations of attachment-related scenes with neutral descriptions alternated with descriptions containing personal core sentences previously extracted from an attachment interview. Outcome measure was the interaction of the signal difference between personal and neutral presentations with group and time, and its association with symptom improvement during therapy. Signal associated with processing personalized attachment material varied in patients from baseline to endpoint, but not in healthy controls. Patients showed a higher activation in the left anterior hippocampus/amygdala, subgenual cingulate, and medial prefrontal cortex before treatment and a reduction in these areas after 15 months. This reduction was associated with improvement in depressiveness specifically, and in the medial prefrontal cortex with symptom improvement more generally. This is the first study documenting neurobiological changes in circuits implicated in emotional reactivity and control after long-term psychodynamic psychotherapy. PMID:22470470

  8. Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning.

    Science.gov (United States)

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M

    2011-01-01

    Reasoning is a key component of adaptable "executive" behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand-or the requirement to remap rules on to novel features-recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions.

  9. Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    Science.gov (United States)

    Thompson, Russell; Duncan, John; Owen, Adrian M.

    2011-01-01

    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908

  10. Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human.

    Science.gov (United States)

    Garell, P C; Bakken, H; Greenlee, J D W; Volkov, I; Reale, R A; Oya, H; Kawasaki, H; Howard, M A; Brugge, J F

    2013-10-01

    The connection between auditory fields of the temporal lobe and prefrontal cortex has been well characterized in nonhuman primates. Little is known of temporofrontal connectivity in humans, however, due largely to the fact that invasive experimental approaches used so successfully to trace anatomical pathways in laboratory animals cannot be used in humans. Instead, we used a functional tract-tracing method in 12 neurosurgical patients with multicontact electrode arrays chronically implanted over the left (n = 7) or right (n = 5) perisylvian temporal auditory cortex (area PLST) and the ventrolateral prefrontal cortex (VLPFC) of the inferior frontal gyrus (IFG) for diagnosis and treatment of medically intractable epilepsy. Area PLST was identified by the distribution of average auditory-evoked potentials obtained in response to simple and complex sounds. The same sounds evoked little if there is any activity in VLPFC. A single bipolar electrical pulse (0.2 ms, charge-balanced) applied between contacts within physiologically identified PLST resulted in polyphasic evoked potentials clustered in VLPFC, with greatest activation being in pars triangularis of the IFG. The average peak latency of the earliest negative deflection of the evoked potential on VLPFC was 13.48 ms (range: 9.0-18.5 ms), providing evidence for a rapidly conducting pathway between area PLST and VLPFC.

  11. Selective reductions in prefrontal glucose metabolism in murderers.

    Science.gov (United States)

    Raine, A; Buchsbaum, M S; Stanley, J; Lottenberg, S; Abel, L; Stoddard, J

    1994-09-15

    This study tests the hypothesis that seriously violent offenders pleading not guilty by reason of insanity or incompetent to stand trial are characterized by prefrontal dysfunction. This hypothesis was tested in a group of 22 subjects accused of murder and 22 age-matched and gender-matched controls by measuring local cerebral uptake of glucose using positron emission tomography during the continuous performance task. Murderers had significantly lower glucose metabolism in both lateral and medial prefrontal cortex relative to controls. No group differences were observed for posterior frontal, temporal, and parietal glucose metabolism, indicating regional specificity for the prefrontal deficit. Group differences were not found to be a function of raised levels of left-handedness, schizophrenia, ethnic minority status, head injury, or motivation deficits in the murder group. These preliminary results suggest that deficits localized to the prefrontal cortex may be related to violence in a selected group of offenders, although further studies are needed to establish the generalizability of these findings to violent offenders in the community.

  12. Angiotensin converting enzyme 2 activity and human atrial fibrillation: increased plasma angiotensin converting enzyme 2 activity is associated with atrial fibrillation and more advanced left atrial structural remodelling.

    Science.gov (United States)

    Walters, Tomos E; Kalman, Jonathan M; Patel, Sheila K; Mearns, Megan; Velkoska, Elena; Burrell, Louise M

    2017-08-01

    Angiotensin converting enzyme 2 (ACE2) is an integral membrane protein whose main action is to degrade angiotensin II. Plasma ACE2 activity is increased in various cardiovascular diseases. We aimed to determine the relationship between plasma ACE2 activity and human atrial fibrillation (AF), and in particular its relationship to left atrial (LA) structural remodelling. One hundred and three participants from a tertiary arrhythmia centre, including 58 with paroxysmal AF (PAF), 20 with persistent AF (PersAF), and 25 controls, underwent clinical evaluation, echocardiographic analysis, and measurement of plasma ACE2 activity. A subgroup of 20 participants underwent invasive LA electroanatomic mapping. Plasma ACE2 activity levels were increased in AF [control 13.3 (9.5-22.3) pmol/min/mL; PAF 16.9 (9.7-27.3) pmol/min/mL; PersAF 22.8 (13.7-33.4) pmol/min/mL, P = 0.006]. Elevated plasma ACE2 was associated with older age, male gender, hypertension and vascular disease, elevated left ventricular (LV) mass, impaired LV diastolic function and advanced atrial disease (P < 0.05 for all). Independent predictors of elevated plasma ACE2 activity were AF (P = 0.04) and vascular disease (P < 0.01). There was a significant relationship between elevated ACE2 activity and low mean LA bipolar voltage (adjusted R2 = 0.22, P = 0.03), a high proportion of complex fractionated electrograms (R2 = 0.32, P = 0.009) and a long LA activation time (R2 = 0.20, P = 0.04). Plasma ACE2 activity is elevated in human AF. Both AF and vascular disease predict elevated plasma ACE2 activity, and elevated plasma ACE2 is significantly associated with more advanced LA structural remodelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  13. Involvement of the dorsolateral prefrontal cortex and superior temporal sulcus in impaired social perception in schizophrenia.

    Science.gov (United States)

    Shin, Jung Eun; Choi, Soo-Hee; Lee, Hyeongrae; Shin, Young Seok; Jang, Dong-Pyo; Kim, Jae-Jin

    2015-04-03

    Schizophrenia is a mental disorder characterized by impairments in diverse thinking and emotional responses, which are related to social perception dysfunction. This fMRI study was designed to investigate a neurobiological basis of social perception deficits of patients with schizophrenia in various social situations of daily life and their relationship with clinical symptoms and social dysfunction. Seventeen patients and 19 controls underwent functional magnetic resonance imaging, during which participants performed a virtual social perception task, containing an avatar's speech with positive, negative or neutral emotion in a virtual reality space. Participants were asked to determine whether or not the avatar's speech was appropriate to each situation. The significant group×appropriateness interaction was seen in the left dorsolateral prefrontal cortex (DLPFC), resulting from lower activity in patients in the inappropriate condition, and left DLPFC activity was negatively correlated with the severity of negative symptoms and positively correlated with the level of social functioning. The significant appropriateness×emotion interaction observed in the left superior temporal sulcus (STS) was present in controls, but absent in patients, resulting from the existence and absence of a difference between the inappropriate positive and negative conditions, respectively. These findings indicate that dysfunction of the DLPFC-STS network may underlie patients' abnormal social perception in various social situations of daily life. Abnormal functioning of this network may contribute to increases of negative symptoms and decreases of social functioning. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Activation of NADPH oxidase mediates increased endoplasmic reticulum stress and left ventricular remodeling after myocardial infarction in rabbits.

    Science.gov (United States)

    Li, Bao; Tian, Jing; Sun, Yi; Xu, Tao-Rui; Chi, Rui-Fang; Zhang, Xiao-Li; Hu, Xin-Ling; Zhang, Yue-An; Qin, Fu-Zhong; Zhang, Wei-Fang

    2015-05-01

    Nicotinamide adenine dinucleotide 3-phosphate (NADPH) oxidase activity and endoplasmic reticulum (ER) stress are increased after myocardial infarction (MI). In this study, we proposed to test whether activation of the NADPH oxidase in the remote non-infarcted myocardium mediates ER stress and left ventricular (LV) remodeling after MI. Rabbits with MI or sham operation were randomly assigned to orally receive an NADPH oxidase inhibitor apocynin or placebo for 30 days. The agents were administered beginning at 1 week after surgery. MI rabbits exhibited decreases in LV fractional shortening, LV ejection fraction and the first derivative of the LV pressure rise, which were abolished by apocynin treatment. NADPH oxidase Nox2 protein and mRNA expressions were increased in the remote non-infarcted myocardium after MI. Immunolabeling further revealed that Nox2 was increased in cardiac myocytes in the remote myocardium. The apocynin treatment prevented increases in the Nox2 expression, NADPH oxidase activity, oxidative stress, myocyte apoptosis and GRP78, CHOP and cleaved caspase 12 protein expression in the remote myocardium. The apocynin treatment also attenuated increases in myocyte diameter and cardiac fibrosis. In cultured H9C2 cardiomyocytes exposed to angiotensin II, an important stimulus for post-MI remodeling, Nox2 knockdown with siRNA significantly inhibited angiotensin II-induced NADPH oxidase activation, reactive oxygen species and GRP78 and CHOP protein expression. We conclude that NADPH oxidase inhibition attenuates increased ER stress in the remote non-infarcted myocardium and LV remodeling late after MI in rabbits. These findings suggest that the activation of NADPH oxidase in the remote non-infarcted myocardium mediates increased ER stress, contributing to myocyte apoptosis and LV remodeling after MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  16. Using Functional Near-Infrared Spectroscopy to Measure Effects of Delta 9-Tetrahydrocannabinol on Prefrontal Activity and Working Memory in Cannabis Users

    Directory of Open Access Journals (Sweden)

    Hasan O. Keles

    2017-10-01

    Full Text Available Intoxication from cannabis impairs cognitive performance, in part due to the effects of Δ9-tetrahydrocannabinol (THC, the primary psychoactive compound in cannabis on prefrontal cortex (PFC function. However, a relationship between impairment in cognitive functioning with THC administration and THC-induced change in hemodynamic response has not been demonstrated. We explored the feasibility of using functional near-infrared spectroscopy (fNIRS to examine the functional changes of the human PFC associated with cannabis intoxication and cognitive impairment. Eighteen adult regular cannabis users (final sample, n = 13 performed a working memory task (n-back during fNIRS recordings, before and after receiving a single dose of oral synthetic THC (dronabinol; 20–50 mg. Functional data were collected using a continuous-wave NIRS device, in which 8 Sources and 7 detectors were placed on the forehead, resulting in 20 channels covering PFC regions. Physiological changes and subjective intoxication measures were collected. We found a significant increase in the oxygenated hemoglobin (HbO concentration after THC administration in several channels on the PFC during both the high working memory load (2-back and the low working memory load (0-back condition. The increased HbO response was accompanied by a trend toward an increased number of omission errors after THC administration. The current study suggests that cannabis intoxication is associated with increases in hemodynamic blood flow to the PFC, and that this increase can be detected with fNIRS.

  17. Grit and the brain: spontaneous activity of the dorsomedial prefrontal cortex mediates the relationship between the trait grit and academic performance

    Science.gov (United States)

    Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Wang, Meiyun; Gong, Qiyong

    2017-01-01

    Abstract As a personality trait, grit involves the tendency to strive to achieve long-term goals with continual passion and perseverance and plays an extremely crucial role in personal achievement. However, the neural mechanisms of grit remain largely unknown. In this study, we aimed to explore the association between grit and the fractional amplitude of low-frequency fluctuations (fALFF) in 217 healthy adolescent students using resting-state functional magnetic resonance imaging (RS-fMRI). We found that an individual’s grit was negatively related to the regional fALFF in the right dorsomedial prefrontal cortex (DMPFC), which is involved in self-regulation, planning, goal setting and maintenance, and counterfactual thinking for reflecting on past failures. The results persisted even after the effects of general intelligence and the ‘big five’ personality traits were adjusted for. More importantly, the fALFF of the right DMPFC played a mediating role in the association between grit and academic performance. Overall, these findings reveal regional fALFF as a neural basis of grit and highlight the right DMPFC as a neural link between grit and academic performance. PMID:27672175

  18. Activations of the dorsolateral prefrontal cortex and thalamus during agentic self-evaluation are negatively associated with trait self-esteem.

    Science.gov (United States)

    Jiang, Ke; Wu, Shi; Shi, Zhenhao; Liu, Mingyan; Peng, Maoying; Shen, Yang; Yang, Juan

    2018-08-01

    Individual self-esteem is dominated more by agency than by communion. However, prior research has mainly focused on one's agentic/communal self-evaluation, while little is known about how one endorses others' agentic/communal evaluation of the self. The present study investigated the associations between trait self-esteem and fundamental dimensions of social cognition, i.e. agency vs. communion, during both self-evaluation and endorsement of others' evaluation of oneself. We also investigated the neural mechanisms underlying the relationship between trait self-esteem and agentic self-evaluation. Behavioral results revealed that self-esteem was positively correlated with the agentic ratings from self-evaluation and endorsement of others' evaluation of the self, and that the agentic self-evaluation was a significant full mediator between self-esteem and endorsement of others' agentic evaluation. Whole-brain regression analysis revealed that self-esteem was negatively correlated with right dorsolateral prefrontal and bilateral thalamic response to agentic self-evaluation. A possible interpretation is that low self-esteem people both hold a more self-critical attitude about the self and have less certainty or clarity of their self-concepts than high self-esteem people do. These findings have important implication for understanding the neural and cognitive mechanisms underlying self-esteem's effect on one's agentic self-evaluations. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Functional connectivity in the prefrontal cortex measured by near-infrared spectroscopy during ultrarapid object recognition

    Science.gov (United States)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John

    2011-01-01

    Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.

  20. Hippocampal-prefrontal connectivity predicts midfrontal oscillations and long-term memory performance

    NARCIS (Netherlands)

    Cohen, M.X.

    2011-01-01

    The hippocampus and prefrontal cortex interact to support working memory (WM) and long-term memory [1, 2 and 3]. Neurophysiologically, WM is thought to be subserved by reverberatory activity of distributed networks within the prefrontal cortex (PFC) [2, 4, 5, 6, 7 and 8], which become synchronized

  1. Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia.

    Science.gov (United States)

    Blasi, Giuseppe; Napolitano, Francesco; Ursini, Gianluca; Di Giorgio, Annabella; Caforio, Grazia; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Attrotto, Maria Teresa; Colagiorgio, Lucia; Todarello, Giovanna; Piva, Francesco; Papazacharias, Apostolos; Masellis, Rita; Mancini, Marina; Porcelli, Annamaria; Romano, Raffaella; Rampino, Antonio; Quarto, Tiziana; Giulietti, Matteo; Lipska, Barbara K; Kleinman, Joel E; Popolizio, Teresa; Weinberger, Daniel R; Usiello, Alessandro; Bertolino, Alessandro

    2013-08-01

    OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia. RESULTS Consistent with predictions, the TT genotype of a single-nucleotide polymorphism in GSK-3β (rs12630592) was associated with reduced GSK-3β mRNA from postmortem prefrontal cortex. Furthermore, this genotype was associated with GSK-3β protein expression and kinase activity, as well as with downstream effects on β-catenin expression in PBMCs. Finally, the TT genotype was associated with attenuated functional MRI prefrontal activity, reduced prefrontal cortical thickness, and diagnosis of schizophrenia. CONCLUSIONS These results suggest that GSK-3β variation is implicated in multiple phenotypes relevant to schizophrenia.

  2. Gender differences in brain activity generated by unpleasant word stimuli concerning body image: an fMRI study.

    Science.gov (United States)

    Shirao, Naoko; Okamoto, Yasumasa; Mantani, Tomoyuki; Okamoto, Yuri; Yamawaki, Shigeto

    2005-01-01

    We have previously reported that the temporomesial area, including the amygdala, is activated in women when processing unpleasant words concerning body image. To detect gender differences in brain activation during processing of these words. Functional magnetic resonance imaging was used to investigate 13 men and 13 women during an emotional decision task consisting of unpleasant words concerning body image and neutral words. The left medial prefrontal cortex and hippocampus were activated only among men, and the left amygdala was activated only among women during the task; activation in the apical prefrontal region was significantly greater in men than in women. Our data suggest that the prefrontal region is responsible for the gender differences in the processing of words concerning body image, and may also be responsible for gender differences in susceptibility to eating disorders.

  3. Prefrontal Cortex Structure Predicts Training-Induced Improvements in Multitasking Performance.

    Science.gov (United States)

    Verghese, Ashika; Garner, K G; Mattingley, Jason B; Dux, Paul E

    2016-03-02

    The ability to perform multiple, concurrent tasks efficiently is a much-desired cognitive skill, but one that remains elusive due to the brain's inherent information-processing limitations. Multitasking performance can, however, be greatly improved through cognitive training (Van Selst et al., 1999, Dux et al., 2009). Previous studies have examined how patterns of brain activity change following training (for review, see Kelly and Garavan, 2005). Here, in a large-scale human behavioral and imaging study of 100 healthy adults, we tested whether multitasking training benefits, assessed using a standard dual-task paradigm, are associated with variability in brain structure. We found that the volume of the rostral part of the left dorsolateral prefrontal cortex (DLPFC) predicted an individual's response to training. Critically, this association was observed exclusively in a task-specific training group, and not in an active-training control group. Our findings reveal a link between DLPFC structure and an individual's propensity to gain from training on a task that taps the limits of cognitive control. Cognitive "brain" training is a rapidly growing, multibillion dollar industry (Hayden, 2012) that has been touted as the panacea for a variety of disorders that result in cognitive decline. A key process targeted by such training is "cognitive control." Here, we combined an established cognitive control measure, multitasking ability, with structural brain imaging in a sample of 100 participants. Our goal was to determine whether individual differences in brain structure predict the extent to which people derive measurable benefits from a cognitive training regime. Ours is the first study to identify a structural brain marker-volume of left hemisphere dorsolateral prefrontal cortex-associated with the magnitude of multitasking performance benefits induced by training at an individual level. Copyright © 2016 the authors 0270-6474/16/362638-08$15.00/0.

  4. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    Science.gov (United States)

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers.

  5. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Garrott, Kara; Dyavanapalli, Jhansi; Cauley, Edmund; Dwyer, Mary Kate; Kuzmiak-Glancy, Sarah; Wang, Xin; Mendelowitz, David; Kay, Matthew W

    2017-09-01

    A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were

  6. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  7. Focused transcranial direct current stimulation (tDCS) over the dorsola