WorldWideScience

Sample records for left prefrontal activation

  1. Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by NIRS

    Science.gov (United States)

    Zhang, Zhili; Li, Ting; Zheng, Yi; Luo, Qingming; Song, Ranran; Gong, Hui

    2006-02-01

    Developmental dyslexia, a kind of prevalent psychological disease, represents that dyslexic children have unexpected difficulties in phonological processing and recognition test of Chinese characters. Some functional imaging technologies, such as fMRI and PET, have been used to study the brain activities of the children with dyslexia whose first language is English. In this paper, a portable, 16-channel, continuous-wave (CW) NIRS instrument was used to monitor the concentration changes of each hemoglobin species when Chinese children did the task of phonological processing and recognition test. The NIRS recorded the hemodynamic changes in the left prefrontal cortex of the children. 20 dyslexia-reading children (10~12 years old) and 20 normal-reading children took part in the phonological processing of Chinese characters including the phonological awareness section and the phonological decoding section. During the phonological awareness section, the changed concentration of deoxy-hemoglobin in dyslexia-reading children were significantly higher (pchildren in the left ventrolateral prefrontal cortex (VLPFC). While in the phonological decoding section, both normal and dyslexic reading children had more activity in the left VLPFC, but only normal-reading children had activity in the left middorsal prefrontal cortex. In conclusion, both dyslexic and normal-reading children have activity in the left prefrontal cortex, but the degree and the areas of the prefrontal cortex activity are different between them when they did phonological processing.

  2. Left Prefrontal Activity Reflects the Ability of Vicarious Fear Learning: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Qingguo Ma

    2013-01-01

    Full Text Available Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants’ hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being was receiving a classical fear conditioning. A neutral colored square paired with shocks (CSshock and another colored square paired with no shocks (CSno-shock were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CSshock compared with that exposed to CSno-shock. In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others’ mental state, is associated with social fear transmission.

  3. Left prefrontal activity reflects the ability of vicarious fear learning: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ma, Qingguo; Huang, Yujing; Wang, Lei

    2013-01-01

    Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants' hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being) was receiving a classical fear conditioning. A neutral colored square paired with shocks (CS(shock)) and another colored square paired with no shocks (CS(no-shock)) were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CS(shock) compared with that exposed to CS(no-shock). In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others' mental state, is associated with social fear transmission.

  4. Affective emotion increases heart rate variability and activates left dorsolateral prefrontal cortex in post-traumatic growth.

    Science.gov (United States)

    Wei, Chuguang; Han, Jin; Zhang, Yuqing; Hannak, Walter; Dai, Yanyan; Liu, Zhengkui

    2017-11-30

    The present study evaluated the activities of heart rate variability (HRV) and dorsolateral prefrontal cortex (DLPFC) in response to the presentation of affective pictures correlated with posttraumatic growth (PTG) among adults exposed to the Tianjin explosion incident. The participants who were directly involved in the Tianjin explosions were divided into control, post-traumatic stress disorder (PTSD) and PTG group according to the scores of PTSD Checklist-Civilian Version and PTG Inventory survey. All participants received exposure to affective images. Electrocardiogram recording took place during the process for the purpose of analyzing HRV. Meanwhile, functional near-infrared spectroscopy (fNIRS) was used to measure DLPFC activity through hemodynamic response. Our results indicated that, while performing the negative and positive picture stimulating, PTG increased both in low and high frequency components of HRV compared with the control group, but PTSD was not observed in this phenomenon. Moreover, the fNIRS data revealed that PTG had an increased activation in the left DLPFC compared to the control in the condition of negative pictures stimulating, wheras PTSD showed a higher activation in the right DLPFC while receiving positive pictures stimulating. To our knowledge, this is the first study which provides the differences between PTSD and PTG in emotional regulation.

  5. Increased Low-Frequency Resting-State Brain Activity by High-Frequency Repetitive TMS on the Left Dorsolateral Prefrontal Cortex.

    Science.gov (United States)

    Xue, Shao-Wei; Guo, Yonghu; Peng, Wei; Zhang, Jian; Chang, Da; Zang, Yu-Feng; Wang, Ze

    2017-01-01

    Beneficial effects of repetitive transcranial magnetic stimulation (rTMS) on left dorsolateral prefrontal cortex (DLPFC) have been consistently shown for treating various neuropsychiatrical or neuropsychological disorders, but relatively little is known about its neural mechanisms. Here we conducted a randomized, double-blind, SHAM-controlled study to assess the effects of high-frequency left DLPFC rTMS on resting-state activity. Thirty-eight young healthy subjects received two sessions of either real rTMS ( N = 18, 90% motor-threshold; left DLPFC at 20 Hz) or SHAM TMS ( N = 20) and functional magnetic resonance imaging scan during rest in 2 days separated by 48 h. Resting-state bran activity was measured with the fractional amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC). Increased fALFF was found in rostral anterior cingulate cortex (rACC) after 20 Hz rTMS, while no changes were observed after SHAM stimulation. Using the suprathreshold rACC cluster as the seed, increased FC was found in left temporal cortex (stimulation vs. group interaction). These data suggest that high-frequency rTMS on left DLPFC enhances low-frequency resting-state brain activity in the target site and remote sites as reflected by fALFF and FC.

  6. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala...... and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive...... pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor...

  7. Examining Brain-Cognition Effects of Ginkgo Biloba Extract: Brain Activation in the Left Temporal and Left Prefrontal Cortex in an Object Working Memory Task

    Directory of Open Access Journals (Sweden)

    R. B. Silberstein

    2011-01-01

    Full Text Available Ginkgo Biloba extract (GBE is increasingly used to alleviate symptoms of age related cognitive impairment, with preclinical evidence pointing to a pro-cholinergic effect. While a number of behavioral studies have reported improvements to working memory (WM associated with GBE, electrophysiological studies of GBE have typically been limited to recordings during a resting state. The current study investigated the chronic effects of GBE on steady state visually evoked potential (SSVEP topography in nineteen healthy middle-aged (50-61 year old male participants whilst completing an object WM task. A randomized double-blind crossover design was employed in which participants were allocated to receive 14 days GBE and 14 days placebo in random order. For both groups, SSVEP was recorded from 64 scalp electrode sites during the completion of an object WM task both pre- and 14 days post-treatment. GBE was found to improve behavioural performance on the WM task. GBE was also found to increase the SSVEP amplitude at occipital and frontal sites and increase SSVEP latency at left temporal and left frontal sites during the hold component of the WM task. These SSVEP changes associated with GBE may represent more efficient processing during WM task completion.

  8. White matter integrity between left basal ganglia and left prefrontal cortex is compromised in gambling disorder.

    Science.gov (United States)

    van Timmeren, Tim; Jansen, Jochem M; Caan, Matthan W A; Goudriaan, Anna E; van Holst, Ruth J

    2017-11-01

    Pathological gambling (PG) is a behavioral addiction characterized by an inability to stop gambling despite the negative consequences, which may be mediated by cognitive flexibility deficits. Indeed, impaired cognitive flexibility has previously been linked to PG and also to reduced integrity of white matter connections between the basal ganglia and the prefrontal cortex. It remains unclear, however, how white matter integrity problems relate to cognitive inflexibility seen in PG. We used a cognitive switch paradigm during functional magnetic resonance imaging in pathological gamblers (PGs; n = 26) and healthy controls (HCs; n = 26). Cognitive flexibility performance was measured behaviorally by accuracy and reaction time on the switch task, while brain activity was measured in terms of blood oxygen level-dependent responses. We also used diffusion tensor imaging on a subset of data (PGs = 21; HCs = 21) in combination with tract-based spatial statistics and probabilistic fiber tracking to assess white matter integrity between the basal ganglia and the dorsolateral prefrontal cortex. Although there were no significant group differences in either task performance, related neural activity or tract-based spatial statistics, PGs did show decreased white matter integrity between the left basal ganglia and prefrontal cortex. Our results complement and expand similar findings from a previous study in alcohol-dependent patients. Although we found no association between white matter integrity and task performance here, decreased white matter connections may contribute to a diminished ability to recruit prefrontal networks needed for regulating behavior in PG. Hence, our findings could resonate an underlying risk factor for PG, and we speculate that these findings may extend to addiction in general. © 2016 Society for the Study of Addiction.

  9. Decreased neural activity and neural connectivity while performing a set-shifting task after inhibiting repetitive transcranial magnetic stimulation on the left dorsal prefrontal cortex

    NARCIS (Netherlands)

    Gerrits, N.J.H.M.; van den Heuvel, O.A.; van der Werf, Y.D.

    2015-01-01

    Background: Sub-optimal functioning of the dorsal prefrontal cortex (PFC) is associated with executive dysfunction, such as set-shifting deficits, in neurological and psychiatric disorders. We tested this hypothesis by investigating the effect of low-frequency 'inhibiting' off-line repetitive

  10. Decreased neural activity and neural connectivity while performing a set-shifting task after inhibiting repetitive transcranial magnetic stimulation on the left dorsal prefrontal cortex

    NARCIS (Netherlands)

    Gerrits, Niels J H M; van den Heuvel, Odile A; van der Werf, Ysbrand D

    2015-01-01

    BACKGROUND: Sub-optimal functioning of the dorsal prefrontal cortex (PFC) is associated with executive dysfunction, such as set-shifting deficits, in neurological and psychiatric disorders. We tested this hypothesis by investigating the effect of low-frequency 'inhibiting' off-line repetitive

  11. Cathodal tDCS over the left prefrontal cortex diminishes choice-induced preference change.

    Science.gov (United States)

    Mengarelli, Flavia; Spoglianti, Silvia; Avenanti, Alessio; di Pellegrino, Giuseppe

    2015-05-01

    In everyday life, people often find themselves facing difficult decisions between options that are equally attractive. Cognitive dissonance theory states that after making a difficult choice between 2 equally preferred options, individuals no longer find the alternatives similarly desirable. Rather, they often change their existing preferences to align more closely with the choice they have just made. Despite the relevance of cognitive dissonance in modulating behavior, little is known about the brain processes crucially involved in choice-induced preference change. In the present study, we applied cathodal transcranial Direct Current Stimulation (tDCS) with the aim of downregulating the activity of the left or the right dorsolateral prefrontal cortex (DLPFC) during a revised version of Brehm's (in 1956. Post-decision changes in the desirability of alternatives. J Abnorm Soc Psychol. 52:384-389) free-choice paradigm. We found that cathodal tDCS over the left, but not over the right, DLPFC caused a reduction of the typical behavior-induced preference change relative to sham stimulation. Our findings highlight the role of prefrontal cortex in cognitive dissonance and provide evidence that left DLPFC plays a necessary role in the implementation of choice-induced preference change. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli.

    Directory of Open Access Journals (Sweden)

    Marie-Anne Vanderhasselt

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation, we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information.

  13. Acute pharmacogenetic activation of medial prefrontal cortex ...

    Indian Academy of Sciences (India)

    The medial prefrontal cortex (mPFC) is implicated in anxiety-like behaviour. In rodent models, perturbations of mPFCneuronal activity through pharmacological manipulations, optogenetic activation of mPFC neurons or cell-type specificpharmacogenetic inhibition of somatostatin interneurons indicate conflicting effects on ...

  14. Prefrontal activity and impaired memory encoding strategies in schizophrenia.

    Science.gov (United States)

    Guimond, Synthia; Hawco, Colin; Lepage, Martin

    2017-08-01

    Schizophrenia patients have significant memory difficulties that have far-reaching implications in their daily life. These impairments are partly attributed to an inability to self-initiate effective memory encoding strategies, but its core neurobiological correlates remain unknown. The current study addresses this critical gap in our knowledge of episodic memory impairments in schizophrenia. Schizophrenia patients (n = 35) and healthy controls (n = 23) underwent a Semantic Encoding Memory Task (SEMT) during an fMRI scan. Brain activity was examined for conditions where participants were a) prompted to use semantic encoding strategies, or b) not prompted but required to self-initiate such strategies. When prompted to use semantic encoding strategies, schizophrenia patients exhibited similar recognition performance and brain activity as healthy controls. However, when required to self-initiate these strategies, patients had significant reduced recognition performance and brain activity in the left dorsolateral prefrontal cortex, as well as in the left temporal gyrus, left superior parietal lobule, and cerebellum. When patients were divided based on performance on the SEMT, the subgroup with more severe deficits in self-initiation also showed greater reduction in left dorsolateral prefrontal activity. These results suggest that impaired self-initiation of elaborative encoding strategies is a driving feature of memory deficits in schizophrenia. We also identified the neural correlates of impaired self-initiation of semantic encoding strategies, in which a failure to activate the left dorsolateral prefrontal cortex plays a key role. These findings provide important new targets in the development of novel treatments aiming to improve memory and ultimately patients' outcome. Copyright © 2017. Published by Elsevier Ltd.

  15. Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Erika K Hussey

    Full Text Available Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty. Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1 processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2 performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1 the sentence processing conditions requiring executive-control, and (2 only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing.

  16. Transcranial direct current stimulation of the left dorsolateral prefrontal cortex shifts preference of moral judgments.

    Directory of Open Access Journals (Sweden)

    Maria Kuehne

    Full Text Available Attitude to morality, reflecting cultural norms and values, is considered unique to human social behavior. Resulting moral behavior in a social environment is controlled by a widespread neural network including the dorsolateral prefrontal cortex (DLPFC, which plays an important role in decision making. In the present study we investigate the influence of neurophysiological modulation of DLPFC reactivity by means of transcranial direct current stimulation (tDCS on moral reasoning. For that purpose we administered anodal, cathodal, and sham stimulation of the left DLPFC while subjects judged the appropriateness of hard moral personal dilemmas. In contrast to sham and cathodal stimulation, anodal stimulation induced a shift in judgment of personal moral dilemmas towards more non-utilitarian actions. Our results demonstrate that alterations of left DLPFC activity can change moral judgments and, in consequence, provide a causal link between left DLPFC activity and moral reasoning. Most important, the observed shift towards non-utilitarian actions suggests that moral decision making is not a permanent individual trait but can be manipulated; consequently individuals with boundless, uncontrollable, and maladaptive moral behavior, such as found in psychopathy, might benefit from neuromodulation-based approaches.

  17. Transcranial direct current stimulation over the left prefrontal cortex increases randomness of choice in instrumental learning.

    Science.gov (United States)

    Turi, Zsolt; Mittner, Matthias; Opitz, Alexander; Popkes, Miriam; Paulus, Walter; Antal, Andrea

    2015-02-01

    There is growing evidence from neuro-computational studies that instrumental learning involves the dynamic interaction of a computationally rigid, low-level striatal and a more flexible, high-level prefrontal component. To evaluate the role of the prefrontal cortex in instrumental learning, we applied anodal transcranial direct current stimulation (tDCS) optimized for the left dorsolateral prefrontal cortex, by using realistic MR-derived finite element model-based electric field simulations. In a study with a double-blind, sham-controlled, repeated-measures design, sixteen male participants performed a probabilistic learning task while receiving anodal and sham tDCS in a counterbalanced order. Compared to sham tDCS, anodal tDCS significantly increased the amount of maladaptive shifting behavior after optimal outcomes during learning when reward probabilities were highly dissociable. Derived parameters of the Q-learning computational model further revealed a significantly increased model parameter that was sensitive to random action selection in the anodal compared to the sham tDCS session, whereas the learning rate parameter was not influenced significantly by tDCS. These results congruently indicate that prefrontal tDCS during instrumental learning increased randomness of choice, possibly reflecting the influence of the cognitive prefrontal component. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. rTMS on left prefrontal cortex contributes to memories for positive emotional cues: a comparison between pictures and words.

    Science.gov (United States)

    Balconi, M; Cobelli, C

    2015-02-26

    The present research explored the cortical correlates of emotional memories in response to words and pictures. Subjects' performance (Accuracy Index, AI; response times, RTs; RTs/AI) was considered when a repetitive Transcranial Magnetic Stimulation (rTMS) was applied on the left dorsolateral prefrontal cortex (LDLPFC). Specifically, the role of LDLPFC was tested by performing a memory task, in which old (previously encoded targets) and new (previously not encoded distractors) emotional pictures/words had to be recognized. Valence (positive vs. negative) and arousing power (high vs. low) of stimuli were also modulated. Moreover, subjective evaluation of emotional stimuli in terms of valence/arousal was explored. We found significant performance improving (higher AI, reduced RTs, improved general performance) in response to rTMS. This "better recognition effect" was only related to specific emotional features, that is positive high arousal pictures or words. Moreover no significant differences were found between stimulus categories. A direct relationship was also observed between subjective evaluation of emotional cues and memory performance when rTMS was applied to LDLPFC. Supported by valence and approach model of emotions, we supposed that a left lateralized prefrontal system may induce a better recognition of positive high arousal words, and that evaluation of emotional cue is related to prefrontal activation, affecting the recognition memories of emotions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Influence of subjective happiness on the prefrontal brain activity: an fNIRS study.

    Science.gov (United States)

    Oonishi, Sayuri; Hori, Shota; Hoshi, Yoko; Seiyama, Akitoshi

    2014-01-01

    Focusing on the relationship between subjective happiness (SH) and emotional changes, we examined influences of SH on emotion-related prefrontal activity using multichannel NIRS. The International Affective Picture System (IAPS) was used to evoke emotional changes. Subjects were a total of 18 right-handed healthy students. Frequency of picture-induced increases in oxygenated haemoglobin (oxy-Hb) was evaluated. Subjects with a high SH score had a higher frequency of increased oxy-Hb in the left prefrontal cortex (PFC) while viewing pleasant pictures, whereas they showed a lower frequency in the right PFC while viewing unpleasant pictures. It is well known that the left PFC and right PFC are engaged in different ways in the emotional processes. Although further investigations are required, the present results indicate that the SH level influences the right-left differences in emotion-related prefrontal activity.

  20. Deficit in rewarding mechanisms and prefrontal left/right cortical effect in vulnerability for internet addiction.

    Science.gov (United States)

    Balconi, Michela; Finocchiaro, Roberta

    2016-10-01

    The present research explored the cortical correlates of rewarding mechanisms and cortical 'unbalance' effect in internet addiction (IA) vulnerability. Internet Addiction Inventory (IAT) and personality trait (Behavioural Inhibition System, BIS; Behavioural Activation System, BAS) were applied to 28 subjects. Electroencephalographic (EEG, alpha frequency band) and response times (RTs) were registered during a Go-NoGo task execution in response to different online stimuli: gambling videos, videogames or neutral stimuli. Higher-IAT (more than 50 score, with moderate or severe internet addiction) and lower-IAT (internet addiction). Alpha band and RTs were affected by IAT, with significant bias (reduced RTs) for high-IAT in response to gambling videos and videogames; and by BAS, BAS-Reward subscale (BAS-R), since not only higher-IAT, but also BAS and BAS-R values determined an increasing of left prefrontal cortex (PFC) activity (alpha reduction) in response to videogames and gambling stimuli for both Go and NoGo conditions, in addition to decreased RTs for these stimuli categories. The increased PFC responsiveness and the lateralisation (left PFC hemisphere) effect in NoGo condition was explained on the basis of a 'rewarding bias' towards more rewarding cues and a deficit in inhibitory control in higher-IAT and higher-BAS subjects. In contrast lower-IAT and lower-BAS predicted a decreased PFC response and increased RTs for NoGo (inhibitory mechanism). These results may support the significance of personality (BAS) and IAT measures for explaining future internet addiction behaviour based on this observed 'vulnerability'.

  1. Predicting risk-taking behavior from prefrontal resting-state activity and personality.

    Directory of Open Access Journals (Sweden)

    Bettina Studer

    Full Text Available Risk-taking is subject to considerable individual differences. In the current study, we tested whether resting-state activity in the prefrontal cortex and trait sensitivity to reward and punishment can help predict risk-taking behavior. Prefrontal activity at rest was assessed in seventy healthy volunteers using electroencephalography, and compared to their choice behavior on an economic risk-taking task. The Behavioral Inhibition System/Behavioral Activation System scale was used to measure participants' trait sensitivity to reward and punishment. Our results confirmed both prefrontal resting-state activity and personality traits as sources of individual differences in risk-taking behavior. Right-left asymmetry in prefrontal activity and scores on the Behavioral Inhibition System scale, reflecting trait sensitivity to punishment, were correlated with the level of risk-taking on the task. We further discovered that scores on the Behavioral Inhibition System scale modulated the relationship between asymmetry in prefrontal resting-state activity and risk-taking. The results of this study demonstrate that heterogeneity in risk-taking behavior can be traced back to differences in the basic physiology of decision-makers' brains, and suggest that baseline prefrontal activity and personality traits might interplay in guiding risk-taking behavior.

  2. Spatial working memory encoding type modulates prefrontal cortical activity.

    Science.gov (United States)

    Oi, Yuhei; Kita, Yosuke; Suzuki, Kota; Okumura, Yasuko; Okuzumi, Hideyuki; Shinoda, Haruo; Inagaki, Masumi

    2017-05-03

    Spatial working memory (SWM) involves both simultaneous and sequential encoding, but the differences in their neural correlates are unclear. We investigated the differences in prefrontal cortex activity related to these SWM encoding types. We also examined the patterns of brain activity influencing individual visuospatial abilities (VSA). We conducted SWM tasks with two different conditions, sequential and simultaneous encoding, and examined hemodynamic activity in 39 healthy adults using near-infrared spectroscopy. The bilateral dorsolateral prefrontal cortex was activated more strongly in the sequential condition compared with the simultaneous condition. This suggests that prefrontal cortex activity underlying SWM is modulated by the type of encoding. We also found that individuals with high VSA showed weaker activation in the right-dorsolateral prefrontal cortex compared with those with lower VSA during the simultaneous condition. This hypoactivation is thought to reflect neural efficiency in the individuals with high ability. These findings are expected to lead to a better understanding of neural substrates for SWM.

  3. Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies.

    Directory of Open Access Journals (Sweden)

    Samantha J Brooks

    Full Text Available BACKGROUND AND OBJECTIVES: Obesity is emerging as the most significant health concern of the twenty-first century. A wealth of neuroimaging data suggest that weight gain might be related to aberrant brain function, particularly in prefrontal cortical regions modulating mesolimbic addictive responses to food. Nevertheless, food addiction is currently a model hotly debated. Here, we conduct a meta-analysis of neuroimaging data, examining the most common functional differences between normal-weight and obese participants in response to food stimuli. DATA SOURCE: We conducted a search using several journal databases and adhered to the 'Preferred Reporting Items for Systematic Reviews and Meta-analyses' (PRISMA method. To this aim, 10 studies were found with a total of 126 obese participants, 129 healthy controls, equaling 184 foci (146 increased, 38 decreased activation using the Activation Likelihood Estimation (ALE technique. Out of the 10 studies, 7 investigated neural responses to food versus non-food images. RESULTS: In response to food images, obese in comparison to healthy weight subjects had increased activation in the left dorsomedial prefrontal cortex, right parahippocampal gyrus, right precentral gyrus and right anterior cingulate cortex, and reduced activation in the left dorsolateral prefrontal cortex and left insular cortex. CONCLUSIONS: Prefrontal cortex areas linked to cognitive evaluation processes, such as evaluation of rewarding stimuli, as well as explicit memory regions, appear most consistently activated in response to images of food in those who are obese. Conversely, a reduced activation in brain regions associated with cognitive control and interoceptive awareness of sensations in the body might indicate a weakened control system, combined with hypo-sensitivity to satiety and discomfort signals after eating in those who are prone to overeat.

  4. Specifying the role of the left prefrontal cortex in word selection

    Science.gov (United States)

    Ries, S. K; Karzmark, C. R.; Navarrete, E.; Knight, R. T.; Dronkers, N. F.

    2015-01-01

    Word selection allows us to choose words during language production. This is often viewed as a competitive process wherein a lexical representation is retrieved among semantically-related alternatives. The left prefrontal cortex (LPFC) is thought to help overcome competition for word selection through top-down control. However, whether the LPFC is always necessary for word selection remains unclear. We tested 6 LPFC-injured patients and controls in two picture naming paradigms varying in terms of item repetition. Both paradigms elicited the expected semantic interference effects (SIE), reflecting interference caused by semantically-related representations in word selection. However, LPFC patients as a group showed a larger SIE than controls only in the paradigm involving item repetition. We argue that item repetition increases interference caused by semantically-related alternatives, resulting in increased LPFC-dependent cognitive control demands. The remaining network of brain regions associated with word selection appears to be sufficient when items are not repeated. PMID:26291289

  5. Lesions to the left lateral prefrontal cortex impair decision threshold adjustment for lexical selection.

    Science.gov (United States)

    Anders, Royce; Riès, Stéphanie; Van Maanen, Leendert; Alario, F-Xavier

    Patients with lesions in the left prefrontal cortex (PFC) have been shown to be impaired in lexical selection, especially when interference between semantically related alternatives is increased. To more deeply investigate which computational mechanisms may be impaired following left PFC damage due to stroke, a psychometric modelling approach is employed in which we assess the cognitive parameters of the patients from an evidence accumulation (sequential information sampling) modelling of their response data. We also compare the results to healthy speakers. Analysis of the cognitive parameters indicates an impairment of the PFC patients to appropriately adjust their decision threshold, in order to handle the increased item difficulty that is introduced by semantic interference. Also, the modelling contributes to other topics in psycholinguistic theory, in which specific effects are observed on the cognitive parameters according to item familiarization, and the opposing effects of priming (lower threshold) and semantic interference (lower drift) which are found to depend on repetition. These results are developed for the blocked-cyclic picture naming paradigm, in which pictures are presented within semantically homogeneous (HOM) or heterogeneous (HET) blocks, and are repeated several times per block. Overall, the results are in agreement with a role of the left PFC in adjusting the decision threshold for lexical selection in language production.

  6. Task constraints modulate activation in right ventral lateral prefrontal cortex.

    Science.gov (United States)

    Vartanian, Oshin; Goel, Vinod

    2005-10-01

    Lesion data suggest that right prefrontal cortex (PFC) plays a critical role in open-ended problem solving. To test this hypothesis, we scanned fifteen normal subjects with fMRI as they completed three types of anagram problems varying in the level of constraints placed on the search space. On unconstrained trials, they rearranged letters to generate solutions (e.g., Can you make a "Word with ZJAZ?"). On semantically constrained trials, they rearranged letters to generate solutions within particular semantic categories (e.g., Can you make a type of "Music with ZJAZ?"). On baseline trials, they rearranged letters to make specific words (e.g., Can you make the word "JAZZ with ZJAZ?"). As predicted, the critical comparison of unconstrained vs. semantically constrained trials revealed significant activation in right ventral lateral PFC, as well as left superior frontal gyrus, frontopolar cortex, right superior parietal lobe, right post central gyrus, and the occipital-parietal sulcus. Furthermore, activation in right ventral lateral PFC (BA 47) increased as the constraints placed on the anagram search space were reduced. We argue that the activation in right ventral lateral PFC is related to hypothesis generation in unconstrained settings, whereas activation in other structures is related to additional processes linked to anagram problems such as semantic retrieval, semantic categorization, and cognitive monitoring. These results extend the lesion data and imaging studies by demonstrating that a relative absence of constraints on the solution space is sufficient to engage right ventral lateral PFC in hypothesis generation tasks.

  7. Fifteen Minutes of Left Prefrontal Repetitive Transcranial Magnetic Stimulation Acutely Increases Thermal Pain Thresholds in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Jeffrey J Borckardt

    2007-01-01

    Full Text Available BACKGROUND: Transcranial magnetic stimulation (TMS of the motor cortex appears to alter pain perception in healthy adults and in patients with chronic neuropathic pain. There is, however, emerging brain imaging evidence that the left prefrontal cortex is involved in pain inhibition in humans.

  8. Role of Prefrontal Persistent Activity in Working Memory

    Science.gov (United States)

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between

  9. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  10. Lateralized hippocampal volume increase following high-frequency left prefrontal repetitive transcranial magnetic stimulation in patients with major depression.

    Science.gov (United States)

    Hayasaka, Shunsuke; Nakamura, Motoaki; Noda, Yoshihiro; Izuno, Takuji; Saeki, Takashi; Iwanari, Hideo; Hirayasu, Yoshio

    2017-11-01

    Repetitive transcranial magnetic stimulation (rTMS) has been applied as a treatment for patients with treatment-resistant depression in recent years, and a large body of evidence has demonstrated its therapeutic efficacy through stimulating neuronal plasticity. The aim of this study was to investigate structural alterations in the hippocampus (HIPP) and amygdala (AM) following conventional rTMS in patients with depression. Twenty-eight patients with depression underwent 10 daily 20-Hz left prefrontal rTMS over 2 weeks. The left dorsolateral prefrontal cortex (DLPFC) was identified using magnetic resonance imaging-guided neuronavigation prior to stimulation. Magnetic resonance imaging scans were obtained at baseline and after the completion of rTMS sessions. The therapeutic effects of rTMS were evaluated with the 17-item Hamilton Depression Rating Scale (HAM-D 17 ), and the volumes of the HIPP and AM were measured by a manual tracing method. Statistical analyses revealed a significant volume increase in the left HIPP (+3.4%) after rTMS but no significant volume change in the AM. No correlation was found between the left HIPP volume increase and clinical improvement, as measured by the HAM-D 17 . The present study demonstrated that conventional left prefrontal rTMS increases the HIPP volume in the stimulated side, indicating a remote neuroplastic effect through the cingulum bundle. © 2017 The Authors. Psychiatry and Clinical Neurosciences © 2017 Japanese Society of Psychiatry and Neurology.

  11. Asymmetric activation in the prefrontal cortex by sound-induced affect.

    Science.gov (United States)

    Kim, Wuon-Shik; Yoon, Young-Ro; Kim, Kyo-Heon; Jho, Moon-Jae; Lee, Sang-Tae

    2003-12-01

    This study is based on previous information regarding asymmetric activation in the prefrontal cortex by film-induced affects, as well as the inverse proportionality of prefrontal cortex activity to power in the alpha band of EEG. To search for a specific EEG band where the asymmetric activation in the prefrontal cortex by sound-induced affects is mainly reflected, we measured 32 college students' EEGs; 11 bands ranged from 6.5 to 35.0 Hz, at Fp1 and Fp2 sites. The power in the alpha band (8.0 to 13.0 Hz) at Fp2, especially in the alpha-2 band (9.0 to 11.0 Hz) increased while the students listened to music, during which participants reported positive affect. In contrast, the power at Fp1 increased while the students listened to noise, during which participants reported negative affect. These results imply that sound-induced positive affect increases relative left-sided activation in the prefrontal cortex, whereas induced negative affect elicits the opposite pattern of asymmetric activation.

  12. Attention, emotion, and deactivation of default activity in inferior medial prefrontal cortex

    DEFF Research Database (Denmark)

    Geday, Jacob; Gjedde, Albert

    2008-01-01

    significantly lowered blood flow (rCBF) in left IMPC, left and right insula, and right amygdala, and significantly raised blood flow in motor cortex and right precuneus. Restricted searches of rCBF changes by emotion, at coordinates of significant effect in previous studies of the medial prefrontal and temporal...... cortices, revealed significant activation in the fusiform gyrus, independently of the task. In contrast, we found no effect of emotional content in the IMPC, where emotions failed to override the effect of the task. The results are consistent with a role of the IMPC in the selection among competitive...

  13. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  14. Empathy for pain-related dorsolateral prefrontal activity is modulated by angry face perception.

    Science.gov (United States)

    Enzi, Björn; Amirie, Scharbanu; Brüne, Martin

    2016-11-01

    Empathy, i.e., the ability to perceive and share another person's affective state, is associated with activity in a complex neural network, including the anterior insula, the anterior and mid-cingulate cortex, and the lateral prefrontal cortex. Here, we were interested in the question how facial emotions influence the activation of the 'pain network'. In the present study, we used functional magnetic resonance imaging to investigate the neuronal correlates of empathy for pain and its interaction with emotional face recognition in 20 healthy subjects. We identified various brain regions commonly associated with empathy for pain, including the right mid-cingulate cortex, the left anterior insula (AI), and the left dorsolateral prefrontal cortex (dlPFC), with an increased neuronal response in the left dlPFC after the presentation of angry faces. Furthermore, a negative correlation between psychological measures of alexithymia and empathy for pain-related brain activity was observed in the left AI. The dlPFC is an important brain region involved in cognitive reappraisal or in 'top-down' control of the limbic system. Our findings could therefore reflect a regulatory response associated with distancing from negatively valenced stimuli. Moreover, our results underline the involvement of the AI in empathy for pain responses and their relationship to alexithymia.

  15. Prefrontal cortex activity related to abstract response strategies.

    Science.gov (United States)

    Genovesio, Aldo; Brasted, Peter J; Mitz, Andrew R; Wise, Steven P

    2005-07-21

    Many monkeys adopt abstract response strategies as they learn to map visual symbols to responses by trial and error. According to the repeat-stay strategy, if a symbol repeats from a previous, successful trial, the monkeys should stay with their most recent response choice. According to the change-shift strategy, if the symbol changes, the monkeys should shift to a different choice. We recorded the activity of prefrontal cortex neurons while monkeys chose responses according to these two strategies. Many neurons had activity selective for the strategy used. In a subsequent block of trials, the monkeys learned fixed stimulus-response mappings with the same stimuli. Some neurons had activity selective for choosing responses based on fixed mappings, others for choosing based on abstract strategies. These findings indicate that the prefrontal cortex contributes to the implementation of the abstract response strategies that monkeys use during trial-and-error learning.

  16. Food cravings and the effects of left prefrontal repetitive transcranial magnetic stimulation using an improved sham condition

    Directory of Open Access Journals (Sweden)

    Kelly eBarth

    2011-03-01

    Full Text Available This study examined whether a single session of repetitive transcranial magnetic stimulation (rTMS of the left prefrontal cortex would inhibit food cravings in healthy women who endorsed frequent food cravings. Ten participants viewed images of food and completed ratings for food cravings before and after receiving either real or sham rTMS over the left prefrontal cortex (10Hz, 100% rMT, 10 seconds-on, 20 seconds-off for 15 minutes; 3000 pulses. Sham TMS was matched with real TMS with respect to perceived painfulness of the stimulation. Each participant received both real and sham rTMS in random order and were blind to the condition in a within-subject cross-over design. With an improved sham control condition, prefrontal rTMS inhibited food cravings no better than sham rTMS. The mild pain from the real and sham rTMS may distract or inhibit food craving, and the decreased craving may not be caused by the effect of rTMS itself. Further studies are needed to elucidate whether rTMS has any true effects on food craving and whether painful stimuli inhibit food or other cravings. A sham condition which matches the painfulness is important to understand the true effects of TMS on behaviors and diseases.

  17. Dopaminergic Activity in the Medial Prefrontal Cortex Modulates Fear Conditioning

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2011-07-01

    Full Text Available "nThe purpose of the present study was to determine the role of medial prefrontal cortex (mPFC dopaminergic system in fear conditioning response considering individual differences. Animals were initially counterbalanced and classified based on open field test, and then were given a single infusion of the dopamine agonist, amphetamine (AMPH and antagonist, clozapine (CLZ into the medial prefrontal cortex. Rats received tone-shock pairing in a classical fear conditioning test and then exposed to the tone alone. Freezing responses were measured as conditioned fear index. The results showed that both AMPH and CLZ infusion in mPFC reduced the expression of conditioned fear. This finding indicates that elevation or reduction in the dopaminergic activity is associated with the decrease of fear responses, despite preexisting individual-typological differences.

  18. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Science.gov (United States)

    Balzarotti, Stefania; Colombo, Barbara

    2016-01-01

    The dorsolateral prefrontal cortex (DLPFC) is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant) pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  19. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Directory of Open Access Journals (Sweden)

    Stefania Balzarotti

    Full Text Available The dorsolateral prefrontal cortex (DLPFC is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  20. Emergence of realism: Enhanced visual artistry and high accuracy of visual numerosity representation after left prefrontal damage.

    Science.gov (United States)

    Takahata, Keisuke; Saito, Fumie; Muramatsu, Taro; Yamada, Makiko; Shirahase, Joichiro; Tabuchi, Hajime; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2014-05-01

    Over the last two decades, evidence of enhancement of drawing and painting skills due to focal prefrontal damage has accumulated. It is of special interest that most artworks created by such patients were highly realistic ones, but the mechanism underlying this phenomenon remains to be understood. Our hypothesis is that enhanced tendency of realism was associated with accuracy of visual numerosity representation, which has been shown to be mediated predominantly by right parietal functions. Here, we report a case of left prefrontal stroke, where the patient showed enhancement of artistic skills of realistic painting after the onset of brain damage. We investigated cognitive, functional and esthetic characteristics of the patient׳s visual artistry and visual numerosity representation. Neuropsychological tests revealed impaired executive function after the stroke. Despite that, the patient׳s visual artistry related to realism was rather promoted across the onset of brain damage as demonstrated by blind evaluation of the paintings by professional art reviewers. On visual numerical cognition tasks, the patient showed higher performance in comparison with age-matched healthy controls. These results paralleled increased perfusion in the right parietal cortex including the precuneus and intraparietal sulcus. Our data provide new insight into mechanisms underlying change in artistic style due to focal prefrontal lesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Science.gov (United States)

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  2. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Directory of Open Access Journals (Sweden)

    Takehiro Minamoto

    Full Text Available Different people make different responses when they face a frustrating situation: some punish others (extrapunitive, while others punish themselves (intropunitive. Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9 showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9 showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  3. Extrapunitive and Intropunitive Individuals Activate Different Parts of the Prefrontal Cortex under an Ego-Blocking Frustration

    Science.gov (United States)

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation. PMID:24454951

  4. The role of the left ventrolateral prefrontal cortex in online sentence processing

    Directory of Open Access Journals (Sweden)

    Nazbanou Nozari

    2014-04-01

    Full Text Available Introduction: Patients with damage to the left ventrolateral prefrontal cortex (VLPFC are often not impaired in understanding simple sentences. It is, however, possible that the damage may cause subclinical effects. If VLPFC has a role in biasing competition towards what is relevant to the task, we would expect patients with VLPFC damage to be slower in using the relevant information and discarding the irrelevant information when they process sentences online. Methods: Nine patients, five with lesions limited to VLPFC, and four with lesions sparing VLPFC participated. The groups were matched in age, education, WAB-AQ and total lesion volume. Two experiments explored processing of online cues during sentence comprehension by tracking eye fixations in a Visual World paradigm with four pictures. Participants only listened to the sentences and looked at the pictures. Experiment 1 investigated how quickly cues can be used for target identification using a simple “She will [verb] the [target].” sentence structure. The verbs in the restrictive condition were compatible with only one of the four pictures (e.g., “eat”; target “apple” + three inedible competitors. The verbs in the control conditions were matched to the restrictive verbs in length and frequency, but did not point to a unique target (e.g., “see”. If VLPFC is critical for quickly biasing competition towards the relevant target, the VLPFC patients should to be slower than the non-VLPFC patients in fixating the noun when the verb is restrictive. Experiment 2 probed how effectively irrelevant cues are suppressed. A similar Visual World paradigm was used, but all verbs were restrictive, and one of the distractors was also compatible with the verb (e.g., “banana”. The sentences contained an adjective that ruled out one of verb-compatible pictures (e.g., “red”. The critical manipulation involved a third picture (the adjective competitor which was compatible with the

  5. Right prefrontal TMS disrupts interregional anticipatory EEG alpha activity during shifting of visuospatial attention

    Directory of Open Access Journals (Sweden)

    Paul eSauseng

    2011-10-01

    Full Text Available Visual attention can be shifted in space without moving the eyes. Amplitude decrease of rhythmical brain activity around 10 Hz (so called alpha activity at contralateral posterior sites has been reported during covert shifts of visuospatial attention to one visual hemifield. Alpha amplitude increase, on the other hand, can be found at ipsilateral visual cortex. There is some evidence suggesting an involvement of prefrontal brain areas during the control of attention-related anticipatory alpha amplitude asymmetry. However, the exact neural mechanism by which prefrontal cortex influences visual processing has not been completely clear yet. This open question has been studied in detail using a multimodal approach combining transcranial magnetic stimulation (TMS and multichannel electroencephalography (EEG in healthy humans. Slow (1 Hz repetitive TMS inducing an inhibitory effect at the stimulation site was delivered either to right frontal eye field or a control site (vertex. Subsequently, participants had to perform a spatial cueing task in which covert shifts of attention were required to either the left or the right visual hemi-field. After stimulation at the vertex (control condition a pattern of anticipatory, attention-related ipsilateral alpha increase / contralateral alpha decrease over posterior recording sites could be obtained. Additionally, there was pronounced coupling between (in particular right FEF and posterior brain sites. When, however, the right prefrontal cortex had been virtually lesioned preceding the task, these EEG correlates of visuospatial attention were attenuated. Notably, the effect of TMS at the right FEF on interregional fronto-parietal alpha coupling predicted the effect on response times. This suggests that visual attention processes associated with posterior EEG alpha activity are at least partly top-down controlled by the prefrontal cortex.

  6. Left dorsolateral prefrontal cortex atrophy is associated with frontal lobe function in Alzheimer's disease and contributes to caregiver burden.

    Science.gov (United States)

    Matsuoka, Kiwamu; Yasuno, Fumihiko; Hashimoto, Akiko; Miyasaka, Toshiteru; Takahashi, Masato; Kiuchi, Kuniaki; Iida, Junzo; Kichikawa, Kimihiko; Kishimoto, Toshifumi

    2017-12-27

    Caregivers of patients with dementia experience physical and mental deterioration. We have previously reported a correlation between caregiver burden and the Frontal Assessment Battery (FAB) total scores of patients with Alzheimer's disease (AD), especially regarding the dependency factor from the Zarit Burden Interview. The present study aimed to identify an objective biomarker for predicting caregiver burden. The participants were 26 pairs of caregivers and patients with AD and mild-to-moderate dementia. Correlations between regional gray matter volumes in the patients with AD and the FAB total scores were explored by using whole-brain voxel-based morphometric analysis. Path analysis was used to estimate the relationships between regional gray matter volumes, FAB total scores, and caregiver burden based on the Zarit Burden Interview. The voxel-based morphometric revealed a significant positive correlation between the FAB total scores and the volume of the left dorsolateral prefrontal cortex. This positive correlation persisted after controlling for the effect of general cognitive dysfunction, which was assessed by using the Mini-Mental State Examination. Path analysis revealed that decreases in FAB scores, caused by reduced frontal lobe volumes, negatively affected caregiver burden. The present study revealed that frontal lobe function, based on FAB scores, was affected by the volume of the left dorsolateral prefrontal cortex. Decreased scores were associated with greater caregiver burden, especially for the dependency factor. These findings may facilitate the development of an objective biomarker for predicting caregiver burden. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Left prefrontal neuronavigated electrode localization in tDCS: 10-20 EEG system versus MRI-guided neuronavigation.

    Science.gov (United States)

    De Witte, Sara; Klooster, Debby; Dedoncker, Josefien; Duprat, Romain; Remue, Jonathan; Baeken, Chris

    2018-04-30

    Transcranial direct current stimulation (tDCS) involves positioning two electrodes at specifically targeted locations on the human scalp. In neuropsychiatric research, the anode is often placed over the left dorsolateral prefrontal cortex (DLPFC), while the cathode is positioned over a contralateral cephalic region above the eye, referred-to as the supraorbital region. Although the 10-20 EEG system is frequently used to locate the DLPFC, due to inter-subject brain variability, this method may lack accuracy. Therefore, we compared in forty participants left DLPFC-localization via the 10-20 EEG system to MRI-guided neuronavigation. In one participant, with individual electrode positions in close proximity to the mean electrode position across subjects, we also investigated whether distinct electrode localizations were associated with different tDCS-induced electrical field distributions. Furthermore, we aimed to examine which neural region is targeted when placing the reference-electrode on the right supraorbital region. Compared to the 10-20 EEG system, MRI-guided neuronavigation localizes the DLPFC-targeting anode more latero-posteriorly, targeting the middle prefrontal gyrus. tDCS-induced electric fields (n = 1) suggest that both localization methods induce significantly different electric fields in distinct brain regions. Considering the frequent application of tDCS as a neuropsychiatric treatment, an evaluation and direct comparison of the clinical efficacy of targeting methods is warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effects of 10 Hz Repetitive Transcranial Magnetic Stimulation of the Left Dorsolateral Prefrontal Cortex in Disorders of Consciousness

    Directory of Open Access Journals (Sweden)

    Xiaoyu Xia

    2017-05-01

    Full Text Available BackgroundWhile repetitive transcranial magnetic stimulation (rTMS has been applied in treatment of patients with disorders of consciousness (DOC, a standardized stimulation protocol has not been proposed, and its therapeutic effects are inconsistently documented.ObjectivesTo assess the efficacy of rTMS in improving consciousness in patients with persistent minimally conscious state (MCS or unresponsive wakefulness syndrome (UWS, previously known as vegetative state (VS.MethodA prospective single-blinded study, with selected subjects, was carried out. In total, 16 patients (5 MCS and 11 VS/UWS with chronic DOC were included. All patients received active 10 Hz rTMS at the left dorsolateral prefrontal cortex (DLPFC, at one session per day, for 20 consecutive days. A single daily session of stimulation consisted of 1,000 pulses (10 s of 10 Hz trains; repeated 10 times with an inter-train interval of 60 s; and 11 min and 40 s for total session. The main outcome measures were changes in the total score on the JFK Coma Recovery Scale-Revised (CRS-R scale. Additional measures were the impressions of caregivers after the conclusion of the interventions, which were assessed using the Clinical Global Impression-Improvement (CGI-I scale.ResultsThe CRS-R scores were increased in all 5 MCS patients and 4 of 11 VS/UWS patients, while a significant enhancement of CRS-R scores was observed compared to the baseline in all participants (p = 0.007. However, the improvement was more notable in MCS patients (p = 0.042 than their VS/UWS counterparts (p = 0.066. Based on the CGI-I scores, two patients improved considerably, two improved, six minimally improved, six experienced no change, and none deteriorated. Good concordance was seen between the CGI-I result and the increases in CRS-R scores.ConclusionTreatment of 10 Hz multisession rTMS applied to the left DLPFC is promising for the rehabilitation of DOC patients, especially those in MCS

  9. Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex.

    Science.gov (United States)

    Reid, Andrew T; Bzdok, Danilo; Langner, Robert; Fox, Peter T; Laird, Angela R; Amunts, Katrin; Eickhoff, Simon B; Eickhoff, Claudia R

    2016-06-01

    Working memory is essential for many of our distinctly human abilities, including reasoning, problem solving, and planning. Research spanning many decades has helped to refine our understanding of this high-level function as comprising several hierarchically organized components, some which maintain information in the conscious mind, and others which manipulate and reorganize this information in useful ways. In the neocortex, these processes are likely implemented by a distributed frontoparietal network, with more posterior regions serving to maintain volatile information, and more anterior regions subserving the manipulation of this information. Recent meta-analytic findings have identified the anterior lateral prefrontal cortex, in particular, as being generally engaged by working memory tasks, while the posterior lateral prefrontal cortex was more strongly associated with the cognitive load required by these tasks. These findings suggest specific roles for these regions in the cognitive control processes underlying working memory. To further characterize these regions, we applied three distinct seed-based methods for determining cortical connectivity. Specifically, we employed meta-analytic connectivity mapping across task-based fMRI experiments, resting-state BOLD correlations, and VBM-based structural covariance. We found a frontoparietal pattern of convergence which strongly resembled the working memory networks identified in previous research. A contrast between anterior and posterior parts of the lateral prefrontal cortex revealed distinct connectivity patterns consistent with the idea of a hierarchical organization of frontoparietal networks. Moreover, we found a distributed network that was anticorrelated with the anterior seed region, which included most of the default mode network and a subcomponent related to social and emotional processing. These findings fit well with the internal attention model of working memory, in which representation of

  10. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns

    Directory of Open Access Journals (Sweden)

    Meyer Martin

    2009-07-01

    Full Text Available Abstract Background Little is known about the contribution of transcranial direct current stimulation (tDCS to the exploration of memory functions. The aim of the present study was to examine the behavioural effects of right or left-hemisphere frontal direct current delivery while committing to memory auditory presented nouns on short-term learning and subsequent long-term retrieval. Methods Twenty subjects, divided into two groups, performed an episodic verbal memory task during anodal, cathodal and sham current application on the right or left dorsolateral prefrontal cortex (DLPFC. Results Our results imply that only cathodal tDCS elicits behavioural effects on verbal memory performance. In particular, left-sided application of cathodal tDCS impaired short-term verbal learning when compared to the baseline. We did not observe tDCS effects on long-term retrieval. Conclusion Our results imply that the left DLPFC is a crucial area involved in short-term verbal learning mechanisms. However, we found further support that direct current delivery with an intensity of 1.5 mA to the DLPFC during short-term learning does not disrupt longer lasting consolidation processes that are mainly known to be related to mesial temporal lobe areas. In the present study, we have shown that the tDCS technique has the potential to modulate short-term verbal learning mechanism.

  11. Left Activism, Succour and Selfhood

    DEFF Research Database (Denmark)

    Hughes, Celia Penelope

    2014-01-01

    an interchange of motherhood, domesticity, far-left politics, and close female friendship. The article will show how the women's epistolary friendship offers intimate insight into female self-fashioning at a breakthrough social and political moment in 1970s Britain. As they reflected on some of the key political...

  12. Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder. A regional cerebral blood flow study

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Friberg, L

    1991-01-01

    blood flow distribution was depicted by single photon emission computed tomography at rest and during activation with the Wisconsin Card Sorting Test. A significant relative activation deficit in the left inferior-prefrontal region was revealed during the Wisconsin Card Sorting Test in the patient group......To measure prefrontal and subcortical activity during a cognitive task, we examined 19 newly diagnosed schizophrenics and patients with schizophreniform psychosis. Seven healthy volunteers served as controls. The patients were drug naive or had received neuroleptics for a few days only. Cerebral....... Furthermore, the patients had impaired striatal suppression on the left side during the cognitive task. The test performance was significantly impaired in the patients. The inability to reduce striatal activity may be due to a lack of corticostriatal feedback during prefrontal activation....

  13. Negative emotion modulates prefrontal cortex activity during a working memory task: A NIRS study

    Directory of Open Access Journals (Sweden)

    Sachiyo eOzawa

    2014-02-01

    Full Text Available This study investigated the neural processing underlying the cognitive control of emotions induced by the presentation of task-irrelevant emotional pictures before a working memory task. Previous studies have suggested that the cognitive control of emotion involves the prefrontal regions. Therefore, we measured the hemodynamic responses that occurred in the prefrontal region with a 16-channel near-infrared spectroscopy (NIRS system. In our experiment, participants observed two negative or two neutral pictures in succession immediately before a 1-back or 3-back task. Pictures were selected from the International Affective Picture System. We measured the changes in the concentration of oxygenated hemoglobin (oxyHb during picture presentation and during the n-back task. The emotional valence of the picture affected the oxyHb changes in anterior parts of the medial prefrontal cortex (located in the left and right superior frontal gyrus and left inferior frontal gyrus during the n-back task; the oxyHb changes during the task were significantly greater following negative rather than neutral stimulation. As indicated in a number of previous studies, and the time courses of the oxyHb changes in our study, activation in these locations is possibly led by cognitive control of emotion, though we cannot deny it may simply be emotional responses. There were no effects of emotion on oxyHb changes during picture presentation or on n-back task performance. Although further studies are necessary to confirm this interpretation, our findings suggest that NIRS can be used to investigate neural processing during emotional control.

  14. At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia.

    Science.gov (United States)

    André, Sebastian; Heinrich, Simon; Kayser, Friederike; Menzler, Katja; Kesselring, Jürg; Khader, Patrick H; Lefaucheur, Jean-Pascal; Mylius, Veit

    2016-10-15

    Previous studies have shown that anodal transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex (DLPFC) led to an improvement of various cognitive functions in patients with Alzheimer dementia, early affected by short-term memory deficits. Since this approach has not been evaluated in the context of vascular dementia, which rather affects the velocity of cognitive responses, we aimed at improving these functions by applying repetitive sessions of anodal tDCS. Four 20-minute sessions of 2mA anodal or sham at-home tDCS were applied to the left DLPFC in a single-blinded randomised study of 21 patients with mild vascular dementia, with parallel-group design. The effect of tDCS on cognitive testing was assessed up to two weeks beyond the stimulation time. A similar clinically meaningful improvement of various cognitive and behavioral dysfunction characteristics could be observed following either active or sham tDCS, whereas visual recall, and reaction times in the n-back task as well as in the go/no-go test improved only in the active tDCS group. In patients with mild vascular dementia, anodal tDCS of the left DLPFC is able to produce additional effects to cognitive training on visual short-term memory, verbal working memory, and executive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Functional magnetic resonance imaging (fMRI) in patients with gliomas adjacent to classical language areas. Lateralization of activated prefrontal cortex is important in determining the dominant hemisphere

    International Nuclear Information System (INIS)

    Karibe, Hiroshi; Kumabe, Toshihiro; Shirane, Reizo; Yoshimoto, Takashi

    2003-01-01

    In patients with gliomas adjacent to classical language areas, lateralized activation of prefrontal cortex was assessed to determine language dominant hemisphere using functional magnetic resonance imaging (fMRI). Twelve patients presented with aphasias were studied. In all patients, either the left frontal operculum or left superior temporal gyri were adjacent to gliomas, suggesting all patients had left lateralization in hemispheric language dominance. Functional MRI was performed with a 1.5T scanner, with the sequence of gradient-echo type echo-planar imaging. As specific language tasks, verb, word, and capping generations were used. Using a cross-correlation analysis method, primary activation maps were generated using pixels with a correlation coefficient of >0.7. The lateralized activation of frontal operculum, superior temporal gyrus, and prefrontal cortex were assessed by calculating laterality index. Successful activation of frontal operculum was imaged in 11 of 12, in the superior temporal gyrus or prefrontal cortex. Three out of 11 cases had apparent activation lateralized in the right frontal operculum on fMRI, while 3 out of 12 cases showed activation in the superior temporal gyrus. On the other hand, all cases had apparent activation lateralized to the left prefrontal cortex. Significant activation of true language area may not be obtained in some cases with gliomas adjacent to classical language areas. In such cases, lateralization of apparent activation of prefrontal cortex may reflect lateralization in the dominant hemisphere. These result suggest that the assessment of apparent activation of prefrontal cortex lateralization is useful to determine the language dominant hemisphere. (author)

  16. Both left and right posterior parietal activations contribute to compensatory processes in normal aging

    Science.gov (United States)

    Huang, Chih-Mao; Polk, Thad A.; Goh, Joshua O.; Park, Denise C.

    2012-01-01

    Older adults often exhibit greater brain activation in prefrontal cortex compared to younger adults, and there is some evidence that this increased activation compensates for age-related neural degradation that would otherwise adversely affect cognitive performance. Less is known about aging and compensatory recruitment in the parietal cortex. In this event-related functional magnetic resonance imaging study, we presented healthy young and old participants with two Stroop-like tasks (number magnitude and physical size). In young, the number magnitude task activated right parietal cortex and the physical size task activated left parietal cortex. In older adults, we observed contralateral parietal recruitment that depended on the task: in the number magnitude task older participants recruited left posterior parietal cortex (in addition to the right parietal activity observed in young) while in the physical size task they recruited right (in addition to left) posterior parietal cortex. In both cases, the additional parietal activity was associated with better performance suggesting that it played a compensatory role. Older adults also recruited left prefrontal cortex during both tasks and this common activation was also associated with better performance. The results provide evidence for task-specific compensatory recruitment in parietal cortex as well as task-independent compensatory recruitment in prefrontal cortex in normal aging. PMID:22063904

  17. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    Directory of Open Access Journals (Sweden)

    Laura eFerreri

    2013-11-01

    Full Text Available Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC. 22 healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  18. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    Science.gov (United States)

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  19. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    Science.gov (United States)

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer’s patients. PMID:24339807

  20. Association of Oxytocin and Parental Prefrontal Activation during Reunion with Infant: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Jun Ito

    2017-12-01

    Full Text Available Although previous studies have revealed the role of oxytocin (OT in parental behavior, the role of OT has not been investigated through the direct assessment of prefrontal brain activation during parenting. By using functional near-infrared spectroscopy, we aimed to show the relationship between parental [maternal (N = 15 and paternal (N = 21] OT levels and the activation of the prefrontal cortex (PFC, while holding their infants after separation. Baseline OT levels were measured in the subjects’ saliva samples before the experiment. Prefrontal brain activation was assessed in participants sitting alone on a chair (i.e., separation from their infant for 120 s and during the target period (i.e., holding their infant for 45 s, which was done in triplicate. The oxygen hemoglobin (oxy-Hb dissociation curve significantly increased in 9 out of 22 channels on the PFC when maternal and paternal samples were combined. However, only the fathers showed a correlation between salivary OT and oxy-Hb signal. Furthermore, while holding their infants, high-OT fathers showed left hemispheric dominance compared to low-OT fathers, while high-OT mothers showed right hemispheric dominance compared to low-OT mothers. This study showed that fathers with high-OT levels showed neural activation with left hemispheric dominance, while holding their infants, suggesting that increase of OT level might activate paternal PFC related to parenting behavior, although the same is not true for mothers.

  1. Left and right High Frequency repetitive Transcranial Magnetic Stimulation of the dorsolateral prefrontal cortex does not affect mood in female volunteers.

    Science.gov (United States)

    Baeken, C; Leyman, L; De Raedt, R; Vanderhasselt, M A; D'haenen, H

    2008-03-01

    High Frequency repetitive Transcranial Magnetic Stimulation (HF-rTMS) has yielded divergent results concerning its effect on mood in normal volunteers. In a former study, we were unable to demonstrate negative mood effects after one session of HF-rTMS on the left dorsolateral prefrontal cortex (DLPFC) in a large group of healthy female volunteers: researchers had focused mainly on negative mood changes, overlooking a possible positive mood induction, while no studies had yet examined mood effects of HF-rTMS delivered on the right prefrontal cortex. In this study, we have tried to replicate our previous HF-rTMS findings on the left DLPFC in a new (large) group of healthy female subjects, and we focused especially on positive mood changes. We also extended our former research by stimulating the right DLPFC in a different but comparable (large) group of healthy female volunteers with the same HF-rTMS parameters. In this sham-controlled, single blind, crossover HF-rTMS study, stimulus parameters were an exact copy of our previous healthy volunteer study. To exclude individual anatomical differences, the left and right DLPFC were targeted under magnetic resonance (MRI) guidance. To examine subjective mood changes we used Visual Analogue Scales (VAS), the Profile of Mood States (POMS), and the Positive Affect and Negative Affect Schedule (PANAS), the latter to assure assessment of positive emotions. To detect any delayed mood changes, assessments were also re-administered 30min post-HF-rTMS. We were unable to demonstrate immediate or delayed mood changes after one single active HF-rTMS session on the left or right DLPFC. Although we took into account several methodological problems which might have confounded previous rTMS mood induction studies, the hypothesis that one single session of HF-rTMS on the left or on the right DLPFC can influence mood in healthy female volunteers was not supported. One HF-rTMS session has no effect on subjective mood in healthy female

  2. Prefrontal cortex activation during obstacle negotiation: What's the effect size and timing?

    Science.gov (United States)

    Maidan, Inbal; Shustak, Shiran; Sharon, Topaz; Bernad-Elazari, Hagar; Geffen, Nimrod; Giladi, Nir; Hausdorff, Jeffrey M; Mirelman, Anat

    2018-02-15

    Obstacle negotiation is a daily activity that requires the integration of sensorimotor and cognitive information. Recent studies provide evidence for the important role of prefrontal cortex during obstacle negotiation. We aimed to explore the effects of obstacle height and available response time on prefrontal activation. Twenty healthy young adults (age: 30.1 ± 1.0 years; 50% women) walked in an obstacle course while negotiating anticipated and unanticipated obstacles at heights of 50 mm and 100 mm. Prefrontal activation was measured using a functional near-infrared spectroscopy system. Kinect cameras measured the obstacle negotiation strategy. Prefrontal activation was defined based on mean level of HbO 2 before, during and after obstacle negotiation and the HbO 2 slope from gait initiation and throughout the task. Changes between types of obstacles were assessed using linear-mix models and partial correlation analyses evaluated the relationship between prefrontal activation and the distance between the feet as the subjects traversed the obstacles. Different obstacle heights showed similar changes in prefrontal activation measures (p > 0.210). However, during unanticipated obstacles, the slope of the HbO 2 response was steeper (p = 0.048), as compared to anticipated obstacles. These changes in prefrontal activation during negotiation of unanticipated obstacles were correlated with greater distance of the leading foot after the obstacles (r = 0.831, p = 0.041). These findings are the first to show that the pattern of prefrontal activation depends on the nature of the obstacle. More specifically, during unanticipated obstacles the recruitment of the prefrontal cortex is faster and greater than during negotiating anticipated obstacles. These results provide evidence of the important role of the prefrontal cortex and the ability of healthy young adults to tailor the activation pattern to different types of obstacles. Copyright © 2018

  3. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    Science.gov (United States)

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Impact of Anodal and Cathodal Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex during Attention Bias Modification: An Eye-Tracking Study.

    Directory of Open Access Journals (Sweden)

    Alexandre Heeren

    Full Text Available People with anxiety disorders show an attentional bias for threat (AB, and Attention Bias Modification (ABM procedures have been found to reduce this bias. However, the underlying processes accounting for this effect remain poorly understood. One explanation suggests that ABM requires the modification of attention control, driven by the recruitment of the dorsolateral prefrontal cortex (DLPFC. In the present double-blind study, we examined whether modifying left DLPFC activation influences the effect of ABM on AB. We used transcranial direct current stimulation (tDCS to directly modulate cortical excitability of the left DLPFC during an ABM procedure designed to reduce AB to threat. Anodal tDCS increases excitability, whereas cathodal tDCS decreases it. We randomly assigned highly trait-anxious individuals to one of three conditions: 1 ABM combined with cathodal tDCS, 2 ABM combined with anodal tDCS, or 3 ABM combined with sham tDCS. We assessed the effects of these manipulations on both reaction times and eye-movements on a task indexing AB. Results indicate that combining ABM and anodal tDCS over the left DLPFC reduces the total duration that participants' gaze remains fixated on threat, as assessed using eye-tracking measurement. However, in contrast to previous studies, there were no changes in AB from baseline to post-training for participants that received ABM without tDCS. As the tendency to maintain attention to threat is known to play an important role in the maintenance of anxiety, the present findings suggest that anodal tDCS over the left DLPFC may be considered as a promising tool to reduce the maintenance of gaze to threat. Implications for future translational research combining ABM and tDCS are discussed.

  5. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, Cleo L.; Kaag, Anne Marije; van den Munkhof, Hanna E.; Reneman, Liesbeth; Homberg, Judith R.; Sabbe, Bernard; van den Brink, Wim; van Wingen, Guido

    2015-01-01

    Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the prefrontal

  6. Prefrontal Cortex Activation and Young Driver Behaviour: A fNIRS Study.

    Science.gov (United States)

    Foy, Hannah J; Runham, Patrick; Chapman, Peter

    2016-01-01

    Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population.

  7. Effect of Bilateral Prefrontal rTMS on Left Prefrontal NAA and Glx Levels in Schizophrenia Patients with Predominant Negative Symptoms : An Exploratory Study

    NARCIS (Netherlands)

    Dlabac-de Lange, Jozarni J.; Liemburg, Edith J.; Bais, Leonie; van de Poel-Mustafayeva, Aida T.; de Lange-de Klerk, Elly S. M.; Knegtering, Henderikus; Aleman, Andre

    2017-01-01

    Background: Prefrontal repetitive Transcranial Magnetic Stimulation (rTMS) may improve negative symptoms in patients with schizophrenia, but few studies have investigated the underlying neural mechanism. Objective: This study aims to investigate changes in the levels of glutamate and glutamine (Glx,

  8. Increased low- and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients

    Directory of Open Access Journals (Sweden)

    Manyoel eLim

    2016-03-01

    Full Text Available Recent human neuroimaging studies have suggested that fibromyalgia (FM, a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC and orbitofrontal cortex (OFC. Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM.

  9. Linking trait-based phenotypes to prefrontal cortex activation during inhibitory control.

    Science.gov (United States)

    Rodrigo, Achala H; Di Domenico, Stefano I; Graves, Bryanna; Lam, Jaeger; Ayaz, Hasan; Bagby, R Michael; Ruocco, Anthony C

    2016-01-01

    Inhibitory control is subserved in part by discrete regions of the prefrontal cortex whose functionality may be altered according to specific trait-based phenotypes. Using a unified model of normal range personality traits, we examined activation within lateral and medial aspects of the prefrontal cortex during a manual go/no-go task. Evoked hemodynamic oxygenation within the prefrontal cortex was measured in 106 adults using a 16-channel continuous-wave functional near-infrared spectroscopy system. Within lateral regions of the prefrontal cortex, greater activation was associated with higher trait levels of extraversion, agreeableness and conscientiousness, and lower neuroticism. Higher agreeableness was also related to more activation in the medial prefrontal cortex during inhibitory control. These results suggest that personality traits reflecting greater emotional stability, extraversion, agreeableness and conscientiousness may be associated with more efficient recruitment of control processes subserved by lateral regions of the prefrontal cortex. These findings highlight key links between trait-based phenotypes and neural activation patterns in the prefrontal cortex underlying inhibitory control. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Syntactic processing in left prefrontal cortex is independent of lexical meaning

    NARCIS (Netherlands)

    Indefrey, P.; Hagoort, P.; Herzog, H.; Seitz, R.J.; Brown, C.M.

    2001-01-01

    In language comprehension a syntactic representation is built up even when the input is semantically uninterpretable. We report data on brain activation during syntactic processing, from an experiment on the detection of grammatical errors in meaningless sentences. The experimental paradigm was such

  11. Low-frequency brain stimulation to the left dorsolateral prefrontal cortex increases the negative impact of social exclusion among those high in personal distress.

    Science.gov (United States)

    Fitzgibbon, Bernadette Mary; Kirkovski, Melissa; Bailey, Neil Wayne; Thomson, Richard Hilton; Eisenberger, Naomi; Enticott, Peter Gregory; Fitzgerald, Paul Bernard

    2017-06-01

    The dorsolateral prefrontal cortex (DLPFC) is thought to play a key role in the cognitive control of emotion and has therefore, unsurprisingly, been implicated in the regulation of physical pain perception. This brain region may also influence the experience of social pain, which has been shown to activate similar neural networks as seen in response to physical pain. Here, we applied sham or active low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC, previously shown to exert bilateral effects in pain perception, in healthy participants. Following stimulation, participants played the "Cyberball Task"; an online ball-tossing game in which the subject participant is included or excluded. Compared to sham, rTMS did not modulate behavioural response to social exclusion. However, within the active rTMS group only, greater trait personal distress was related to enhanced negative outcomes to social exclusion. These results add further support to the notion that the effect of brain stimulation is not homogenous across individuals, and indicates the need to consider baseline individual differences when assessing response to brain stimulation. This seems particularly relevant in social neuroscience investigations, where trait factors may have a meaningful effect.

  12. Antipsychotic medication and prefrontal cortex activation : A review of neuroimaging findings

    NARCIS (Netherlands)

    Liemburg, Edith J.; Knegtering, Henderikus; Klein, Hans C.; Kortekaas, Rudie; Aleman, Andre

    Decreased prefrontal activation (hypofrontality) in schizophrenia is thought to underlie negative symptoms and cognitive impairments, and may contribute to poor social outcome. Hypofrontality does not always improve during treatment with antipsychotics. We hypothesized that antipsychotics, which

  13. Nucleus accumbens deep brain stimulation results in insula and prefrontal activation: a large animal FMRI study.

    Directory of Open Access Journals (Sweden)

    Emily J Knight

    Full Text Available Deep Brain Stimulation (DBS of the nucleus accumbens (NAc has previously been investigated clinically for the treatment of several psychiatric conditions, including obsessive-compulsive disorder and treatment resistant depression. However, the mechanism underlying the therapeutic benefit of DBS, including the brain areas that are activated, remains largely unknown. Here, we utilized 3.0 T functional Magnetic Resonance Imaging (fMRI changes in Blood Oxygenation Level-Dependent (BOLD signal to test the hypothesis that NAc/internal capsule DBS results in global neural network activation in a large animal (porcine modelAnimals (n = 10 were implanted in the NAc/internal capsule with DBS electrodes and received stimulation (1, 3, and 5 V, 130 Hz, and pulse widths of 100 and 500 µsec. BOLD signal changes were evaluated using a gradient echo-echo planar imaging (GRE-EPI sequence in 3.0 T MRI. We used a normalized functional activation map for group analysis and applied general linear modeling across subjects (FDR<0.001. The anatomical location of the implanted DBS lead was confirmed with a CT scanWe observed stimulation-evoked activation in the ipsilateral prefrontal cortex, insula, cingulate and bilateral parahippocampal region along with decrease in BOLD signal in the ipsilateral dorsal region of the thalamus. Furthermore, as the stimulation voltage increased from 3 V to 5 V, the region of BOLD signal modulation increased in insula, thalamus, and parahippocampal cortex and decreased in the cingulate and prefrontal cortex. We also demonstrated that right and left NAc/internal capsule stimulation modulates identical areas ipsilateral to the side of the stimulationOur results suggest that NAc/internal capsule DBS results in modulation of psychiatrically important brain areas notably the prefrontal cortex, cingulate, and insular cortex, which may underlie the therapeutic effect of NAc DBS in psychiatric disorders. Finally, our fMRI setup in the large

  14. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  15. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited

    Directory of Open Access Journals (Sweden)

    Shintaro eFunahashi

    2015-02-01

    Full Text Available Working memory is one of key concepts to understand functions of the prefrontal cortex. Delay-period activity is an important neural correlate to understand the role of working memory in prefrontal functions. The importance of delay-period activity is that this activity can encode not only visuospatial information but also a variety of information including non-spatial visual features, auditory and tactile stimuli, task rules, expected reward, and numerical quantity. This activity also participates in a variety of information processing including sensory-to-motor information transformation. These mnemonic features of delay-period activity enable to perform various important operations that the prefrontal cortex participates in, such as executive controls, and therefore, support the notion that working memory is an important function to understand prefrontal functions. On the other hand, although experiments using manual versions of the delayed-response task had revealed many important findings, an oculomotor version of this task enabled us to use multiple cue positions, exclude postural orientation during the delay period, and further prove the importance of mnemonic functions of the prefrontal cortex. In addition, monkeys with unilateral lesions exhibited specific impairment only in the performance of memory-guided saccades directed toward visual cues in the visual field contralateral to the lesioned hemisphere. This result indicates that memories for visuospatial coordinates in each hemifield are processed primarily in the contralateral prefrontal cortex. This result further strengthened the idea of mnemonic functions of the prefrontal cortex. Thus, the mnemonic functions of the prefrontal cortex and delay-period activity may not need to be reconsidered, but should be emphasized.

  16. Functions of delay-period activity in the prefrontal cortex and mnemonic scotomas revisited.

    Science.gov (United States)

    Funahashi, Shintaro

    2015-01-01

    Working memory (WM) is one of key concepts to understand functions of the prefrontal cortex. Delay-period activity is an important neural correlate to understand the role of WM in prefrontal functions. The importance of delay-period activity is that this activity can encode not only visuospatial information but also a variety of information including non-spatial visual features, auditory and tactile stimuli, task rules, expected reward, and numerical quantity. This activity also participates in a variety of information processing including sensory-to-motor information transformation. These mnemonic features of delay-period activity enable to perform various important operations that the prefrontal cortex participates in, such as executive controls, and therefore, support the notion that WM is an important function to understand prefrontal functions. On the other hand, although experiments using manual versions of the delayed-response task had revealed many important findings, an oculomotor version of this task enabled us to use multiple cue positions, exclude postural orientation during the delay period, and further prove the importance of mnemonic functions of the prefrontal cortex. In addition, monkeys with unilateral lesions exhibited specific impairment only in the performance of memory-guided saccades directed toward visual cues in the visual field contralateral to the lesioned hemisphere. This result indicates that memories for visuospatial coordinates in each hemifield are processed primarily in the contralateral prefrontal cortex. This result further strengthened the idea of mnemonic functions of the prefrontal cortex. Thus, the mnemonic functions of the prefrontal cortex and delay-period activity may not need to be reconsidered, but should be emphasized.

  17. Comparison of Metabolite Concentrations in the Left Dorsolateral Prefrontal Cortex, the Left Frontal White Matter, and the Left Hippocampus in Patients in Stable Schizophrenia Treated with Antipsychotics with or without Antidepressants. ¹H-NMR Spectroscopy Study.

    Science.gov (United States)

    Strzelecki, Dominik; Grzelak, Piotr; Podgórski, Michał; Kałużyńska, Olga; Stefańczyk, Ludomir; Kotlicka-Antczak, Magdalena; Gmitrowicz, Agnieszka

    2015-10-15

    Managing affective, negative, and cognitive symptoms remains the most difficult therapeutic problem in stable phase of schizophrenia. Efforts include administration of antidepressants. Drugs effects on brain metabolic parameters can be evaluated by means of proton nuclear magnetic resonance (¹H-NMR) spectroscopy. We compared spectroscopic parameters in the left prefrontal cortex (DLPFC), the left frontal white matter (WM) and the left hippocampus and assessed the relationship between treatment and the spectroscopic parameters in both groups. We recruited 25 patients diagnosed with schizophrenia (DSM-IV-TR), with dominant negative symptoms and in stable clinical condition, who were treated with antipsychotic and antidepressive medication for minimum of three months. A group of 25 patients with schizophrenia, who were taking antipsychotic drugs but not antidepressants, was matched. We compared metabolic parameters (N-acetylaspartate (NAA), myo-inositol (mI), glutamatergic parameters (Glx), choline (Cho), and creatine (Cr)) between the two groups. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS). In patients receiving antidepressants we observed significantly higher NAA/Cr and NAA/Cho ratios within the DLPFC, as well as significantly higher mI/Cr within the frontal WM. Moreover, we noted significantly lower values of parameters associated with the glutamatergic transmission--Glx/Cr and Glx/Cho in the hippocampus. Doses of antipsychotic drugs in the group treated with antidepressants were also significantly lower in the patients showing similar severity of psychopathology.

  18. Comparison of Metabolite Concentrations in the Left Dorsolateral Prefrontal Cortex, the Left Frontal White Matter, and the Left Hippocampus in Patients in Stable Schizophrenia Treated with Antipsychotics with or without Antidepressants. 1H-NMR Spectroscopy Study

    Science.gov (United States)

    Strzelecki, Dominik; Grzelak, Piotr; Podgórski, Michał; Kałużyńska, Olga; Stefańczyk, Ludomir; Kotlicka-Antczak, Magdalena; Gmitrowicz, Agnieszka

    2015-01-01

    Managing affective, negative, and cognitive symptoms remains the most difficult therapeutic problem in stable phase of schizophrenia. Efforts include administration of antidepressants. Drugs effects on brain metabolic parameters can be evaluated by means of proton nuclear magnetic resonance (1H-NMR) spectroscopy. We compared spectroscopic parameters in the left prefrontal cortex (DLPFC), the left frontal white matter (WM) and the left hippocampus and assessed the relationship between treatment and the spectroscopic parameters in both groups. We recruited 25 patients diagnosed with schizophrenia (DSM-IV-TR), with dominant negative symptoms and in stable clinical condition, who were treated with antipsychotic and antidepressive medication for minimum of three months. A group of 25 patients with schizophrenia, who were taking antipsychotic drugs but not antidepressants, was matched. We compared metabolic parameters (N-acetylaspartate (NAA), myo-inositol (mI), glutamatergic parameters (Glx), choline (Cho), and creatine (Cr)) between the two groups. All patients were also assessed with the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS). In patients receiving antidepressants we observed significantly higher NAA/Cr and NAA/Cho ratios within the DLPFC, as well as significantly higher mI/Cr within the frontal WM. Moreover, we noted significantly lower values of parameters associated with the glutamatergic transmission—Glx/Cr and Glx/Cho in the hippocampus. Doses of antipsychotic drugs in the group treated with antidepressants were also significantly lower in the patients showing similar severity of psychopathology. PMID:26501256

  19. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults.

    Science.gov (United States)

    Ishii-Takahashi, Ayaka; Takizawa, Ryu; Nishimura, Yukika; Kawakubo, Yuki; Kuwabara, Hitoshi; Matsubayashi, Junko; Hamada, Kasumi; Okuhata, Shiho; Yahata, Noriaki; Igarashi, Takashi; Kawasaki, Shingo; Yamasue, Hidenori; Kato, Nobumasa; Kasai, Kiyoto; Kano, Yukiko

    2014-01-01

    The differential diagnosis of autism spectrum disorders (ASDs) and attention deficit hyperactivity disorder (ADHD) based solely on symptomatic and behavioral assessments can be difficult, even for experts. Thus, the development of a neuroimaging marker that differentiates ASDs from ADHD would be an important contribution to this field. We assessed the differences in prefrontal activation between adults with ASDs and ADHD using an entirely non-invasive and portable neuroimaging tool, near-infrared spectroscopy. This study included 21 drug-naïve adults with ASDs, 19 drug-naïve adults with ADHD, and 21 healthy subjects matched for age, sex, and IQ. Oxygenated hemoglobin concentration changes in the prefrontal cortex were assessed during a stop signal task and a verbal fluency task. During the stop signal task, compared to the control group, the ASDs group exhibited lower activation in a broad prefrontal area, whereas the ADHD group showed underactivation of the right premotor area, right presupplementary motor area, and bilateral dorsolateral prefrontal cortices. Significant differences were observed in the left ventrolateral prefrontal cortex between the ASDs and ADHD groups during the stop signal task. The leave-one-out cross-validation method using mean oxygenated hemoglobin changes yielded a classification accuracy of 81.4% during inhibitory control. These results were task specific, as the brain activation pattern observed during the verbal fluency task did not differentiate the ASDs and ADHD groups significantly. This study therefore provides evidence of a difference in left ventrolateral prefrontal activation during inhibitory control between adults with ASDs and ADHD. Thus, near-infrared spectroscopy may be useful as an auxiliary tool for the differential diagnosis of such developmental disorders.

  20. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults

    Directory of Open Access Journals (Sweden)

    Ayaka Ishii-Takahashi

    2014-01-01

    Full Text Available The differential diagnosis of autism spectrum disorders (ASDs and attention deficit hyperactivity disorder (ADHD based solely on symptomatic and behavioral assessments can be difficult, even for experts. Thus, the development of a neuroimaging marker that differentiates ASDs from ADHD would be an important contribution to this field. We assessed the differences in prefrontal activation between adults with ASDs and ADHD using an entirely non-invasive and portable neuroimaging tool, near-infrared spectroscopy. This study included 21 drug-naïve adults with ASDs, 19 drug-naïve adults with ADHD, and 21 healthy subjects matched for age, sex, and IQ. Oxygenated hemoglobin concentration changes in the prefrontal cortex were assessed during a stop signal task and a verbal fluency task. During the stop signal task, compared to the control group, the ASDs group exhibited lower activation in a broad prefrontal area, whereas the ADHD group showed underactivation of the right premotor area, right presupplementary motor area, and bilateral dorsolateral prefrontal cortices. Significant differences were observed in the left ventrolateral prefrontal cortex between the ASDs and ADHD groups during the stop signal task. The leave-one-out cross-validation method using mean oxygenated hemoglobin changes yielded a classification accuracy of 81.4% during inhibitory control. These results were task specific, as the brain activation pattern observed during the verbal fluency task did not differentiate the ASDs and ADHD groups significantly. This study therefore provides evidence of a difference in left ventrolateral prefrontal activation during inhibitory control between adults with ASDs and ADHD. Thus, near-infrared spectroscopy may be useful as an auxiliary tool for the differential diagnosis of such developmental disorders.

  1. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  2. High-definition transcranial direct current stimulation (HD-tDCS) of left dorsolateral prefrontal cortex affects performance in Balloon Analogue Risk Task (BART).

    Science.gov (United States)

    Guo, Heng; Zhang, Zhuoran; Da, Shu; Sheng, Xiaotian; Zhang, Xichao

    2018-02-01

    Studies on risk preferences have long been of great concern and have examined the neural basis underlying risk-based decision making. However, studies using conventional transcranial direct current stimulation (tDCS) revealed that bilateral stimulation could change risk propensity with limited evidence of precisely focalized unilateral high-definition transcranial direct current stimulation (HD-tDCS). The aim of this experiment was to investigate the effect of HD-tDCS focalizing the left dorsal lateral prefrontal cortex (DLPFC) on risk-taking behavior during the Balloon Analogue Risk Task (BART). This study was designed as a between-subject, single-blind, sham-controlled experiment. University students were randomly assigned to three groups: the anodal group (F3 anode, AF3, F1, F5, FC3 returned), the cathodal group (F3 cathodal, AF3, F1, F5, FC3 returned) and the sham group. Subsequently, 1.5-mA 20-min HD-tDCS was applied during the BART, and the Positive Affect and Negative Affect Scale (PANAS), the Sensation Seeking Scale-5 (SSS-5), and the Behavioral Inhibition System and Behavioral Approach System scale (BIS/BAS) were measured as control variables. The cathodal group earned less total money than the sham group, and no significant difference was observed between the anodal group and the sham group. These results showed that, to some extent, focalized unilateral cathodal HD-tDCS on left DLPFC could change performance during risky tasks and diminish risky decision making. Further studies are needed to investigate the dose effect and electrode distribution of HD-tDCS during risky tasks and examine synchronous brain activity to show the neural basis.

  3. Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion.

    Science.gov (United States)

    Luethi, Matthias S; Friese, Malte; Binder, Julia; Boesiger, Peter; Luechinger, Roger; Rasch, Björn

    2016-10-01

    Self-control is key to success in life. Initial acts of self-control temporarily impair subsequent self-control performance. Why such self-control failures occur is unclear, with prominent models postulating a loss of a limited resource vs a loss of motivation, respectively. Here, we used functional magnetic resonance imaging to identify the neural correlates of motivation-induced benefits on self-control. Participants initially exerted or did not exert self-control. In a subsequent Stroop task, participants performed worse after exerting self-control, but not if they were motivated to perform well by monetary incentives. On the neural level, having exerted self-control resulted in decreased activation in the left inferior frontal gyrus. Increasing motivation resulted in a particularly strong activation of this area specifically after exerting self-control. Thus, after self-control exertion participants showed more prefrontal neural activity without improving performance beyond baseline level. These findings suggest that impaired performance after self-control exertion may not exclusively be due to a loss of motivation. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Verbal fluency as a prefrontal activation probe: a validation study using 99mTc-ECD brain SPET

    International Nuclear Information System (INIS)

    Audenaert, K.; Brans, B.; Laere, K. van; Versijpt, J.; Dierckx, R.; Lahorte, P.; Heeringen, K. van

    2000-01-01

    This study aimed to investigate the feasibility of brain single-photon emission tomography (SPET) in the letter and category fluency paradigm of the Controlled Oral Word Association (COWA) test in healthy volunteers. Two groups each comprising ten right-handed healthy volunteers were injected twice with 370 MBq technetium-99m ethyl cysteinate dimer following a split-dose paradigm (resting and activation condition). Statistical parametric mapping (SPM96) was used to determine voxelwise significant changes. The letter fluency and the category fluency activation paradigm had a differential brain activation pattern. The posterior part of the left inferior prefrontal cortex (LIPC) was activated in both paradigms, with the category fluency task having an extra activation in the anterior LIPC. In the category fluency task, but not the letter fluency task, an activation in the right inferior prefrontal cortex was found. These findings confirm to a large extent the results of previous functional magnetic resonance imaging and positron emission tomography studies in semantic and phonological activation paradigms. The choice and validity of various methodological characteristics of the experimental design leading to these results are critically discussed. It is concluded that brain SPET activation with the letter fluency and category fluency paradigm under standard neuropsychological conditions in healthy volunteers is both technically and practically feasible. (orig.)

  5. Verbal fluency as a prefrontal activation probe: a validation study using {sup 99m}Tc-ECD brain SPET

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Department of Psychiatry and Medical Psychology, Ghent University Hospital and Ghent University (Belgium); Brans, B.; Laere, K. van; Versijpt, J.; Dierckx, R. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Lahorte, P. [Department of Nuclear Medicine, Ghent University Hospital (Belgium); Laboratory of Subatomic and Radiation Physics, Ghent University (Belgium); Heeringen, K. van [Department of Psychiatry and Medical Psychology, Ghent University Hospital and Ghent University (Belgium)

    2000-12-01

    This study aimed to investigate the feasibility of brain single-photon emission tomography (SPET) in the letter and category fluency paradigm of the Controlled Oral Word Association (COWA) test in healthy volunteers. Two groups each comprising ten right-handed healthy volunteers were injected twice with 370 MBq technetium-99m ethyl cysteinate dimer following a split-dose paradigm (resting and activation condition). Statistical parametric mapping (SPM96) was used to determine voxelwise significant changes. The letter fluency and the category fluency activation paradigm had a differential brain activation pattern. The posterior part of the left inferior prefrontal cortex (LIPC) was activated in both paradigms, with the category fluency task having an extra activation in the anterior LIPC. In the category fluency task, but not the letter fluency task, an activation in the right inferior prefrontal cortex was found. These findings confirm to a large extent the results of previous functional magnetic resonance imaging and positron emission tomography studies in semantic and phonological activation paradigms. The choice and validity of various methodological characteristics of the experimental design leading to these results are critically discussed. It is concluded that brain SPET activation with the letter fluency and category fluency paradigm under standard neuropsychological conditions in healthy volunteers is both technically and practically feasible. (orig.)

  6. Increased prefrontal activity and reduced motor cortex activity during imagined eccentric compared to concentric muscle actions

    Science.gov (United States)

    Olsson, C.-J.; Hedlund, M.; Sojka, P.; Lundström, R.; Lindström, B.

    2012-01-01

    In this study we used functional magnetic resonance imaging (fMRI) to examine differences in recruited brain regions during the concentric and the eccentric phase of an imagined maximum resistance training task of the elbow flexors in healthy young subjects. The results showed that during the eccentric phase, pre-frontal cortex (BA44) bilaterally was recruited when contrasted to the concentric phase. During the concentric phase, however, the motor and pre-motor cortex (BA 4/6) was recruited when contrasted to the eccentric phase. Interestingly, the brain activity of this region was reduced, when compared to the mean activity of the session, during the eccentric phase. Thus, the neural mechanisms governing imagined concentric and eccentric contractions appear to differ. We propose that the recruitment of the pre-frontal cortex is due to an increased demand of regulating force during the eccentric phase. Moreover, it is possible that the inability to fully activate a muscle during eccentric contractions may partly be explained by a reduction of activity in the motor and pre-motor cortex. PMID:22973217

  7. Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex

    Science.gov (United States)

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…

  8. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    Science.gov (United States)

    Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.

    2012-01-01

    Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…

  9. Ventrolateral prefrontal activation during a N-back task assessed with multichannel functional near-infrared spectroscopy

    Science.gov (United States)

    Zhou, Yuan; Zhu, Ye; Jiang, Tianzi

    2007-05-01

    Functional near-infrared spectroscopy (fNIRS) has been used to investigate the changes in the concentration of oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin in brain issue during several cognitive tasks. In the present study, by means of multichannel dual wavelength light-emitting diode continuous-wave (CW) NIRS, we investigated the blood oxygenation changes of prefrontal cortex in 18 healthy subjects while performing a verbal n-back task (0-back and 2-back), which has been rarely investigated by fNIRS. Compared to the 0-back task (control task), we found a significant increase of O2Hb and total amount of hemoglobin (THb) in left and right ventrolateral prefrontal cortex (VLPFC) during the execution of the 2-back task compared to the 0-back task (pmemory. However, we found no significant hemisphere dominance. In addition, the effects of gender and its interaction with task performance on O2Hb concentration change were suggested in the present study. Our findings not only confirm that multichannel fNIRS is suitable to detect spatially specific activation during the performance of cognitive tasks; but also suggest that it should be cautious of gender-dependent difference in cerebral activation when interpreting the fNIRS data during cognitive tasks.

  10. Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex.

    Science.gov (United States)

    Jiménez-Sánchez, Laura; Castañé, Anna; Pérez-Caballero, Laura; Grifoll-Escoda, Marc; López-Gil, Xavier; Campa, Leticia; Galofré, Mireia; Berrocoso, Esther; Adell, Albert

    2016-06-01

    Although deep brain stimulation (DBS) has been used with success in treatment-resistant depression, little is known about its mechanism of action. We examined the antidepressant-like activity of short (1 h) DBS applied to the infralimbic prefrontal cortex in the forced swim test (FST) and the novelty-suppressed feeding test (NSFT). We also used in vivo microdialysis to evaluate the release of glutamate, γ-aminobutyric acid, serotonin, dopamine, and noradrenaline in the prefrontal cortex and c-Fos immunohistochemistry to determine the brain regions activated by DBS. One hour of DBS of the infralimbic prefrontal cortex has antidepressant-like effects in FST and NSFT, and increases prefrontal efflux of glutamate, which would activate AMPA receptors (AMPARs). This effect is specific of the infralimbic area since it is not observed after DBS of the prelimbic subregion. The activation of prefrontal AMPARs would result in a stimulation of prefrontal output to the brainstem, thus increasing serotonin, dopamine, and noradrenaline in the prefrontal cortex. Further, the activation of prefrontal AMPARs is necessary and sufficient condition for the antidepressant response of 1 h DBS. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Activation of the prefrontal cortex by unilateral transcranial direct current stimulation leads to an asymmetrical effect on risk preference in frames of gain and loss.

    Science.gov (United States)

    Ye, Hang; Huang, Daqiang; Wang, Siqi; Zheng, Haoli; Luo, Jun; Chen, Shu

    2016-10-01

    Previous brain imaging and brain stimulation studies have suggested that the dorsolateral prefrontal cortex may be critical in regulating risk-taking behavior, although its specific causal effect on people's risk preference remains controversial. This paper studied the independent modulation of the activity of the right and left dorsolateral prefrontal cortex using various configurations of transcranial direct current stimulation. We designed a risk-measurement table and adopted a within-subject design to compare the same participant's risk preference before and after unilateral stimulation when presented with different frames of gain and loss. The results confirmed a hemispheric asymmetry and indicated that the right dorsolateral prefrontal cortex has an asymmetric effect on risk preference regarding frames of gain and loss. Enhancing the activity of the right dorsolateral prefrontal cortex significantly decreased the participants' degree of risk aversion in the gain frame, whereas it increased the participants' degree of risk aversion in the loss frame. Our findings provide important information regarding the impact of transcranial direct current stimulation on the risk preference of healthy participants. The effects observed in our experiment compared with those of previous studies provide further evidence of the effects of hemispheric and frame-dependent asymmetry. These findings may be helpful in understanding the neural basis of risk preference in humans, especially when faced with decisions involving possible gain or loss relative to the status quo. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Saccade-related activity in the prefrontal cortex: its role in eye movement control and cognitive functions

    Science.gov (United States)

    Funahashi, Shintaro

    2014-01-01

    Prefrontal neurons exhibit saccade-related activity and pre-saccadic memory-related activity often encodes the directions of forthcoming eye movements, in line with demonstrated prefrontal contribution to flexible control of voluntary eye movements. However, many prefrontal neurons exhibit post-saccadic activity that is initiated well after the initiation of eye movement. Although post-saccadic activity has been observed in the frontal eye field, this activity is thought to be a corollary discharge from oculomotor centers, because this activity shows no directional tuning and is observed whenever the monkeys perform eye movements regardless of goal-directed or not. However, prefrontal post-saccadic activities exhibit directional tunings similar as pre-saccadic activities and show context dependency, such that post-saccadic activity is observed only when monkeys perform goal-directed saccades. Context-dependency of prefrontal post-saccadic activity suggests that this activity is not a result of corollary signals from oculomotor centers, but contributes to other functions of the prefrontal cortex. One function might be the termination of memory-related activity after a behavioral response is done. This is supported by the observation that the termination of memory-related activity coincides with the initiation of post-saccadic activity in population analyses of prefrontal activities. The termination of memory-related activity at the end of the trial ensures that the subjects can prepare to receive new and updated information. Another function might be the monitoring of behavioral performance, since the termination of memory-related activity by post-saccadic activity could be associated with informing the correctness of the response and the termination of the trial. However, further studies are needed to examine the characteristics of saccade-related activities in the prefrontal cortex and their functions in eye movement control and a variety of cognitive functions

  13. Social hierarchies and emotions: cortical prefrontal activity, facial feedback (EMG), and cognitive performance in a dynamic interaction.

    Science.gov (United States)

    Balconi, Michela; Pagani, Silvia

    2015-04-01

    In the present research, we manipulated the perceived superior/inferior status during a competitive cognitive task. In two experiments, we created an explicit and strongly reinforced social hierarchy based on incidental rating on an attentional task. Based on our hypotheses, social rank may influence nonverbal cues (such as facial mimic related to emotional response), cortical lateralized activity in frontal areas (brain oscillations), and cognitive outcomes in response to rank modulation. Thus, the facial mimic (corrugators vs. zygomatic muscle activity), frequency bands (delta, theta, alpha, beta), and real cognitive performance [(error rate (ER); response times (RTs)] were considered. Specifically, a peer-group comparison was enrolled and an improved (experiment 1, N = 29) or decreased (experiment 2, N = 31) performance was artificially manipulated by the experimenter. Results showed a significant improved cognitive performance (decreased ER and RTs), an increased zygomatic activity (positive emotions), and a more prefrontal left-lateralized cortical response in the case of a perceived increased social ranking. On the contrary, a significant decreased cognitive performance (increased ER and RTs), an increased corrugators activity (negative emotions), and a less left-lateralized cortical response were observed as a consequence of a perceived decreased social ranking. Moreover, the correlational values revealed a consistent trend between behavioral (RTs) and EMG and EEG measures for both experiments. The present results suggest that social status not only guides social behavior, but it also influences cognitive processes and subjects' performance.

  14. Pedophilia is linked to reduced activation in hypothalamus and lateral prefrontal cortex during visual erotic stimulation.

    Science.gov (United States)

    Walter, Martin; Witzel, Joachim; Wiebking, Christine; Gubka, Udo; Rotte, Michael; Schiltz, Kolja; Bermpohl, Felix; Tempelmann, Claus; Bogerts, Bernhard; Heinze, Hans Jochen; Northoff, Georg

    2007-09-15

    Although pedophilia is of high public concern, little is known about underlying neural mechanisms. Although pedophilic patients are sexually attracted to prepubescent children, they show no sexual interest toward adults. This study aimed to investigate the neural correlates of deficits of sexual and emotional arousal in pedophiles. Thirteen pedophilic patients and 14 healthy control subjects were tested for differential neural activity during visual stimulation with emotional and erotic pictures with functional magnetic resonance imaging. Regions showing differential activations during the erotic condition comprised the hypothalamus, the periaqueductal gray, and dorsolateral prefrontal cortex, the latter correlating with a clinical measure. Alterations of emotional processing concerned the amygdala-hippocampus and dorsomedial prefrontal cortex. Hypothesized regions relevant for processing of erotic stimuli in healthy individuals showed reduced activations during visual erotic stimulation in pedophilic patients. This suggests an impaired recruitment of key structures that might contribute to an altered sexual interest of these patients toward adults.

  15. Prefrontal Hemodynamics of Physical Activity and Environmental Complexity During Cognitive Work.

    Science.gov (United States)

    McKendrick, Ryan; Mehta, Ranjana; Ayaz, Hasan; Scheldrup, Melissa; Parasuraman, Raja

    2017-02-01

    The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.

  16. Prefrontal activation associated with social attachment: facial-emotion recognition in mothers and infants.

    Science.gov (United States)

    Minagawa-Kawai, Yasuyo; Matsuoka, Sunao; Dan, Ippeita; Naoi, Nozomi; Nakamura, Katsuki; Kojima, Shozo

    2009-02-01

    Attachment between mothers and infants is the most primitive and primary form of human social relationship. Many reports have suggested that the orbitofrontal cortex (OFC) plays a significant role in this attachment; however, only a select few provide experimental neurophysiological evidence. In the present study, to determine the neural substrates underlying the social and emotional attachment between mothers and infants, we measured their prefrontal activation by using near-infrared spectroscopy. We used movie stimuli that could robustly induce a positive affect, and the results for viewing own versus unfamiliar infants showed that own-infant viewing elicited increased activations around the anterior part of the orbitofrontal cortex (OFC) in the mothers. Their response magnitude in that area was also correlated with the behavioral rating of the pleasant mood of infants. Furthermore, our study revealed that the infants' prefrontal activation around the anterior OFC is specific to viewing their mothers' smile. These results suggest the OFC's role in regulating and encoding the affect in attachment system and also show that infants share similar neuronal functions with mothers, associated with their bonds at 1 year of age. We further discussed infants' prefrontal activations and their implications for the development of the social brain network.

  17. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    Science.gov (United States)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  18. Prefrontal cortex activity, sympatho-vagal reaction and behaviour distinguish between situations of feed reward and frustration in dwarf goats.

    Science.gov (United States)

    Gygax, Lorenz; Reefmann, Nadine; Wolf, Martin; Langbein, Jan

    2013-02-15

    Recent concepts relating to animal welfare accept that animals experience affective states. These are notoriously difficult to measure in non-verbal species, but it is generally agreed that emotional reactions consist of well-coordinated reactions in behaviour, autonomic and brain activation. The aim of the study was to evaluate whether each or a combination of these aspects can differentiate between situations presumed to differ in emotional content. To this end, we repeatedly confronted dwarf goats at short intervals with a covered and an uncovered feed bowl (i.e. presumably frustrating and rewarding situations respectively) whilst simultaneously observing their behaviour, measuring heart-rate and heart-rate variability and haemodynamic changes in the prefrontal cortex using functional near-infrared spectroscopy. When faced with a covered feed bowl, goats occupied themselves at locations away from the bowl and showed increased locomotion, while there was a general increase in prefrontal cortical activity. There was little indication of autonomic changes. In contrast, when feed was accessible, the goats reduced locomotion, focused their behaviour on the feed bowl, showed signs of sympathetically mediated arousal reflecting anticipation and, if any cortical activity at all was present, it was concentrated to the left hemisphere. We thus observed patterns in behaviour, sympathetic reaction and brain activity that distinguished between a situation of frustration and one of reward in dwarf goats. These patterns consisted of a well-coordinated set of reactions appropriate in respect of the emotional content of the stimuli used. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Harmine and Imipramine Promote Antioxidant Activities in Prefrontal Cortex and Hippocampus

    Directory of Open Access Journals (Sweden)

    Gislaine Z. Réus

    2010-01-01

    Full Text Available A growing body of evidence has suggested that reactive oxygen species (ROS may play an important role in the physiopathology of depression. Evidence has pointed to the β-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg and imipramine (10, 20 and 30 mg/kg or saline in lipid and protein oxidation levels and superoxide dismutase (SOD and catalase (CAT activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and β-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.

  20. Reversal learning strategy in adolescence is associated with prefrontal cortex activation.

    Science.gov (United States)

    Boehme, Rebecca; Lorenz, Robert C; Gleich, Tobias; Romund, Lydia; Pelz, Patricia; Golde, Sabrina; Flemming, Eva; Wold, Andrew; Deserno, Lorenz; Behr, Joachim; Raufelder, Diana; Heinz, Andreas; Beck, Anne

    2017-01-01

    Adolescence is a critical maturation period for human cognitive control and executive function. In this study, a large sample of adolescents (n = 85) performed a reversal learning task during functional magnetic resonance imaging. We analyzed behavioral data using a reinforcement learning model to provide individually fitted parameters and imaging data with regard to reward prediction errors (PE). Following a model-based approach, we formed two groups depending on whether individuals tended to update expectations predominantly for the chosen stimulus or also for the unchosen one. These groups significantly differed in their problem behavior score obtained using the child behavior checklist (CBCL) and in a measure of their developmental stage. Imaging results showed that dorsolateral striatal areas covaried with PE. Participants who relied less on learning based on task structure showed less prefrontal activation compared with participants who relied more on task structure. An exploratory analysis revealed that PE-related activity was associated with pubertal development in prefrontal areas, insula and anterior cingulate. These findings support the hypothesis that the prefrontal cortex is implicated in mediating flexible goal-directed behavioral control. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Organization of cortico-cortical pathways supporting memory retrieval across subregions of the left ventrolateral prefrontal cortex.

    Science.gov (United States)

    Barredo, Jennifer; Verstynen, Timothy D; Badre, David

    2016-09-01

    Functional magnetic resonance imaging (fMRI) evidence indicates that different subregions of ventrolateral prefrontal cortex (VLPFC) participate in distinct cortical networks. These networks have been shown to support separable cognitive functions: anterior VLPFC [inferior frontal gyrus (IFG) pars orbitalis] functionally correlates with a ventral fronto-temporal network associated with top-down influences on memory retrieval, while mid-VLPFC (IFG pars triangularis) functionally correlates with a dorsal fronto-parietal network associated with postretrieval control processes. However, it is not known to what extent subregional differences in network affiliation and function are driven by differences in the organization of underlying white matter pathways. We used high-angular-resolution diffusion spectrum imaging and functional connectivity analysis in unanesthetized humans to address whether the organization of white matter connectivity differs between subregions of VLPFC. Our results demonstrate a ventral-dorsal division within IFG. Ventral IFG as a whole connects broadly to lateral temporal cortex. Although several different individual white matter tracts form connections between ventral IFG and lateral temporal cortex, functional connectivity analysis of fMRI data indicates that these are part of the same ventral functional network. By contrast, across subdivisions, dorsal IFG was connected with the midfrontal gyrus and correlated as a separate dorsal functional network. These qualitative differences in white matter organization within larger macroanatomical subregions of VLPFC support prior functional distinctions among these regions observed in task-based and functional connectivity fMRI studies. These results are consistent with the proposal that anatomical connectivity is a crucial determinant of systems-level functional organization of frontal cortex and the brain in general. Copyright © 2016 the American Physiological Society.

  2. No change in N-acetyl aspartate in first episode of moderate depression after antidepressant treatment: 1H magnetic spectroscopy study of left amygdala and left dorsolateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Bajs Janović M

    2014-09-01

    Full Text Available Maja Bajs Janović,1,3 Petra Kalember,2 Špiro Janović,1,3 Pero Hrabač,2 Petra Folnegović Grošić,1 Vladimir Grošić,4 Marko Radoš,5 Neven Henigsberg2,61University Department of Psychiatry, Clinical Hospital Center Zagreb, Zagreb, 2Polyclinic Neuron, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, 3University North, Varaždin, 4Psychiatric Hospital Sveti Ivan, Zagreb, 5University Department of Radiology, Clinical Hospital Center Zagreb, Zagreb, 6Psychiatric Clinic Vrapče, Zagreb, CroatiaBackground: The role of brain metabolites as biological correlates of the intensity, symptoms, and course of major depression has not been determined. It has also been inconclusive whether the change in brain metabolites, measured with proton magnetic spectroscopy, could be correlated with the treatment outcome. Methods: Proton magnetic spectroscopy was performed in 29 participants with a first episode of moderate depression occurring in the left dorsolateral prefrontal cortex and left amygdala at baseline and after 8 weeks of antidepressant treatment with escitalopram. The Montgomery-Asberg Depression Rating Scale, the Hamilton Rating Scale for Depression, and the Beck Depression Inventory were used to assess the intensity of depression at baseline and at the endpoint of the study. At endpoint, the participants were identified as responders (n=17 or nonresponders (n=12 to the antidepressant therapy. Results: There was no significant change in the N-acetyl aspartate/creatine ratio (NAA/Cr after treatment with antidepressant medication. The baseline and endpoint NAA/Cr ratios were not significantly different between the responder and nonresponder groups. The correlation between NAA/Cr and changes in the scores of clinical scales were not significant in either group. Conclusion: This study could not confirm any significant changes in NAA after antidepressant treatment in the first episode of moderate depression, or in

  3. Real-time monitoring prefrontal activities during online video game playing by functional near-infrared spectroscopy.

    Science.gov (United States)

    Li, Yue; Zhang, Lei; Long, Kehong; Gong, Hui; Lei, Hao

    2018-02-16

    A growing body of literature has suggested that video game playing can induce functional and structural plasticity of the brain. The underlying mechanisms, however, remain poorly understood. In this study, functional near-infrared spectroscopy (fNIRS) was used to record prefrontal activities in 24 experienced game players when they played a massively multiplayer online battle arena (MOBA) video game, League of Legends (LOL), under naturalistic conditions. It was observed that game onset was associated with significant activations in the ventrolateral prefrontal cortex (VLPFC) and concomitant deactivations in the dorsolateral prefrontal cortex (DLPFC) and frontal pole area (FPA). Game events, such as slaying an enemy and being slain by an enemy evoked region-specific time-locked hemodynamic/oxygenation responses in the prefrontal cortex. It was proposed that the VLPFC activities during LOL playing are likely responses to visuo-motor task load of the game, while the DLPFC/FPA activities may be involved in the constant shifts of attentional states and allocation of cognitive resources required by game playing. The present study demonstrated that it is feasible to use fNIRS to monitor real-time prefrontal activity during online video game playing. Game events-evoked hemoglobin concentration changes in the prefrontal cortex while playing League of Legends. Slaying an enemy (A), Assist (B), Being slain by an enemy (C), destroy a turret (DT, D) and an artificially constructed random condition (E). This article is protected by copyright. All rights reserved.

  4. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    Science.gov (United States)

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  5. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants

    Directory of Open Access Journals (Sweden)

    Sin-Ae Park

    2017-09-01

    Full Text Available The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV, prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD method and a profile of mood state questionnaire (POMS. Results showed that the natural logarithmic (ln ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2–3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  6. Central as well as peripheral attentional bottlenecks in dual-task performance activate lateral prefrontal cortices

    Directory of Open Access Journals (Sweden)

    Andre J Szameitat

    2016-03-01

    Full Text Available Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage as well as peripheral limitations (i.e., bottleneck at response initiation both demand executive functions located in the lateral prefrontal cortex. For this, we re-analysed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP during fMRI. In one study (N=17, the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group. In the other study (N=16, the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group. Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect. Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices. Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns suggest that the executive functions resolving

  7. Amyloid β Peptide-Induced Changes in Prefrontal Cortex Activity and Its Response to Hippocampal Input

    Directory of Open Access Journals (Sweden)

    Ernesto Flores-Martínez

    2017-01-01

    Full Text Available Alterations in prefrontal cortex (PFC function and abnormalities in its interactions with other brain areas (i.e., the hippocampus have been related to Alzheimer Disease (AD. Considering that these malfunctions correlate with the increase in the brain’s amyloid beta (Aβ peptide production, here we looked for a causal relationship between these pathognomonic signs of AD. Thus, we tested whether or not Aβ affects the activity of the PFC network and the activation of this cortex by hippocampal input stimulation in vitro. We found that Aβ application to brain slices inhibits PFC spontaneous network activity as well as PFC activation, both at the population and at the single-cell level, when the hippocampal input is stimulated. Our data suggest that Aβ can contribute to AD by disrupting PFC activity and its long-range interactions throughout the brain.

  8. Medial prefrontal activity during delay period contributes to learning of a working memory task.

    Science.gov (United States)

    Liu, Ding; Gu, Xiaowei; Zhu, Jia; Zhang, Xiaoxing; Han, Zhe; Yan, Wenjun; Cheng, Qi; Hao, Jiang; Fan, Hongmei; Hou, Ruiqing; Chen, Zhaoqin; Chen, Yulei; Li, Chengyu T

    2014-10-24

    Cognitive processes require working memory (WM) that involves a brief period of memory retention known as the delay period. Elevated delay-period activity in the medial prefrontal cortex (mPFC) has been observed, but its functional role in WM tasks remains unclear. We optogenetically suppressed or enhanced activity of pyramidal neurons in mouse mPFC during the delay period. Behavioral performance was impaired during the learning phase but not after the mice were well trained. Delay-period mPFC activity appeared to be more important in memory retention than in inhibitory control, decision-making, or motor selection. Furthermore, endogenous delay-period mPFC activity showed more prominent modulation that correlated with memory retention and behavioral performance. Thus, properly regulated mPFC delay-period activity is critical for information retention during learning of a WM task. Copyright © 2014, American Association for the Advancement of Science.

  9. Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Beatrix Barth

    2016-12-01

    Full Text Available Neurofeedback is a promising tool for treatment and rehabilitation of several patient groups. In this proof of principle study, near-infrared spectroscopy (NIRS based neurofeedback of frontal cortical areas was investigated in healthy adults. Main aims were the assessment of learning, the effects on performance in a working memory (n-back task and the impact of applied strategies on regulation.13 healthy participants underwent 8 sessions of NIRS based neurofeedback within two weeks to learn to voluntarily up-regulate hemodynamic activity in prefrontal areas. An n-back task in pre-/post measurements was used to monitor neurocognitive changes. Mean oxygenated hemoglobin (O2Hb amplitudes over the course of the sessions as well as during the n-back task were evaluated. 12 out of 13 participants were able to regulate their frontal hemodynamic response via NIRS neurofeedback. However, no systematic learning effects were observed in frontal O2Hb amplitudes over the training course in our healthy sample. We found an impact of applied strategies in only 5 out of 13 subjects. Regarding the n-back task, neurofeedback appeared to induce more focused and specific brain activation compared to pre-training measurement. NIRS based neurofeedback is a feasible and potentially effective method, with an impact on activation patterns in a working memory task. Ceiling effects might explain the lack of a systematic learning pattern in healthy subjects. Clinical studies are needed to show effects in patients exhibiting pathological deviations in prefrontal function.

  10. Changes in prefrontal neuronal activity after learning to perform a spatial working memory task.

    Science.gov (United States)

    Qi, Xue-Lian; Meyer, Travis; Stanford, Terrence R; Constantinidis, Christos

    2011-12-01

    The prefrontal cortex is considered essential for learning to perform cognitive tasks though little is known about how the representation of stimulus properties is altered by learning. To address this issue, we recorded neuronal activity in monkeys before and after training on a task that required visual working memory. After the subjects learned to perform the task, we observed activation of more prefrontal neurons and increased activity during working memory maintenance. The working memory-related increase in firing rate was due mostly to regular-spiking putative pyramidal neurons. Unexpectedly, the selectivity of neurons for stimulus properties and the ability of neurons to discriminate between stimuli decreased as the information about stimulus properties was apparently present in neural firing prior to training and neuronal selectivity degraded after training in the task. The effect was robust and could not be accounted for by differences in sampling sites, selection of neurons, level of performance, or merely the elapse of time. The results indicate that, in contrast to the effects of perceptual learning, mastery of a cognitive task degrades the apparent stimulus selectivity as neurons represent more abstract information related to the task. This effect is countered by the recruitment of more neurons after training.

  11. Left dorsolateral prefrontal transcranial magnetic stimulation (TMS): sleep factor changes during treatment in patients with pharmacoresistant major depressive disorder.

    Science.gov (United States)

    Rosenquist, Peter B; Krystal, Andrew; Heart, Karen L; Demitrack, Mark A; McCall, W Vaughn

    2013-01-30

    As they alleviate major depressive disorder, antidepressant therapies may improve associated sleep disturbances, but may also have inherent sedating or activating properties. We examined sleep changes during a multicenter, sham-controlled, trial of transcranial magnetic stimulation (TMS) therapy for pharmacoresistant MDD. Medication-free outpatients (N=301) were randomized to receive active (N=155) or sham (N=146) TMS for 6 weeks. Depression severity was rated with the Montgomery-Asberg Depression Rating Scale, the 24-item Hamilton Depression Scale (HAMD), and the Inventory of Depressive Symptoms-Self Report (IDS-SR). Assessments were performed at baseline, 2, 4, and 6 week time points. Sleep was assessed using the HAMD and IDS-SR sleep factors; comparison between treatment groups employed ANCOVA model. No significant differences were identified between the active and sham treatment groups in either the HAMD or IDS-SR sleep factor scores at any time during treatment. Sleep difficulty as an adverse event over the length of the study did not differ between active and sham treatment. Stratified by end of acute treatment responder status, there was a statistically significant improvement in both the HAMD sleep factor score and the IDS-SR sleep factor during acute treatment in both the active and sham treatment conditions. TMS exerts no intrinsic effect upon sleep in patients with MDD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    Directory of Open Access Journals (Sweden)

    Paola Fuentes-Claramonte

    Full Text Available Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  13. Exergame and Balance Training modulate Prefrontal Brain Activity during Walking and enhance Executive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Patrick eEggenberger

    2016-04-01

    Full Text Available Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE or balance and stretching training (BALANCE. The 8-week intervention included three sessions of 30 minutes per week and was completed by 33 participants (mean age 74.9±6.9 years. Prefrontal cortex (PFC activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < .05 or trend, r = .25 to .36, while DANCE showed a larger reduction at the end of the 30-second walking task compared to BALANCE in the left PFC (F(1, 31 = 3.54, p = .035, r = .32. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < .05 or trend, r = .31 to .50. The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults.

  14. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    Science.gov (United States)

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  15. Prenatal Protein Malnutrition Decreases KCNJ3 and 2DG Activity in Rat Prefrontal Cortex

    Science.gov (United States)

    Amaral, A.C.; Jakovcevski, M.; McGaughy, J.A.; Calderwood, S.K.; Mokler, D.J.; Rushmore, R.J.; Galler, J.R.; Akbarian, S.A.; Rosene, D.L.

    2014-01-01

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with 14C-2-deoxyglucose. Results showed decreased activation in PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  16. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity.

    Science.gov (United States)

    Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric

    2017-12-01

    Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Prefrontal activity and diagnostic monitoring of memory retrieval: FMRI of the criterial recollection task.

    Science.gov (United States)

    Gallo, David A; Kensinger, Elizabeth A; Schacter, Daniel L

    2006-01-01

    According to the distinctiveness heuristic, subjects rely more on detailed recollections (and less on familiarity) when memory is tested for pictures relative to words, leading to reduced false recognition. If so, then neural regions that have been implicated in effortful postretrieval monitoring (e.g., dorsolateral prefrontal cortex) might be recruited less heavily when trying to remember pictures. We tested this prediction with the criterial recollection task. Subjects studied black words, paired with either the same word in red font or a corresponding colored picture. Red words were repeated at study to equate recognition hits for red words and pictures. During fMRI scanning, alternating red word memory tests and picture memory tests were given, using only white words as test stimuli (say "yes" only if you recollect a corresponding red word or picture, respectively). These tests were designed so that subjects had to rely on memory for the criterial information. Replicating prior behavioral work, we found enhanced rejection of lures on the picture test compared to the red word test, indicating that subjects had used a distinctiveness heuristic. Critically, dorsolateral prefrontal activity was reduced when rejecting familiar lures on the picture test, relative to the red word test. These findings indicate that reducing false recognition via the distinctiveness heuristic is not heavily dependent on frontally mediated postretrieval monitoring processes.

  18. Central as well as Peripheral Attentional Bottlenecks in Dual-Task Performance Activate Lateral Prefrontal Cortices

    Science.gov (United States)

    Szameitat, André J.; Vanloo, Azonya; Müller, Hermann J.

    2016-01-01

    Human information processing suffers from severe limitations in parallel processing. In particular, when required to respond to two stimuli in rapid succession, processing bottlenecks may appear at central and peripheral stages of task processing. Importantly, it has been suggested that executive functions are needed to resolve the interference arising at such bottlenecks. The aims of the present study were to test whether central attentional limitations (i.e., bottleneck at the decisional response selection stage) as well as peripheral limitations (i.e., bottleneck at response initiation) both demand executive functions located in the lateral prefrontal cortex. For this, we re-analyzed two previous studies, in which a total of 33 participants performed a dual-task according to the paradigm of the psychological refractory period (PRP) during functional magnetic resonance imaging (fMRI). In one study (N = 17), the PRP task consisted of two two-choice response tasks known to suffer from a central bottleneck (CB group). In the other study (N = 16), the PRP task consisted of two simple-response tasks known to suffer from a peripheral bottleneck (PB group). Both groups showed considerable dual-task costs in form of slowing of the second response in the dual-task (PRP effect). Imaging results are based on the subtraction of both single-tasks from the dual-task within each group. In the CB group, the bilateral middle frontal gyri and inferior frontal gyri were activated. Higher activation in these areas was associated with lower dual-task costs. In the PB group, the right middle frontal and inferior frontal gyrus (IFG) were activated. Here, higher activation was associated with higher dual-task costs. In conclusion we suggest that central and peripheral bottlenecks both demand executive functions located in lateral prefrontal cortices (LPFC). Differences between the CB and PB groups with respect to the exact prefrontal areas activated and the correlational patterns

  19. Reduced prefrontal cortex activation in the color-word Stroop task for Chinese dyslexic children: a near-infrared spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinyan; Zhai Jiahuan; Gong Hui [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074 (China); Song Ranran; Zou Li, E-mail: huigong@mail.hust.edu.cn [Department of Child and Adolescent Health and Maternal Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-01

    Behavioral studies have investigated the performance of children with developmental dyslexia in conflict resolution, a function connected with the prefrontal cortex (PFC) closely. However, little is known about the prefrontal activation in conflict resolution for dyslexic children. In the present study, the involvement of the PFC in resolving conflict was evaluated for Chinese dyslexic children by means of near-infrared spectroscopy (NIRS). The NIRS instrument is a portable, continuous-wave system and can measure concentration changes of hemodynamic parameters (including oxy-, deoxy-, and total hemoglobin). Considering better sensitivity, the oxy-hemoglobin (oxy-Hb) was chosen to indicate the prefrontal activation. Ten dyslexic children and 11 normal children were recruited to perform the Chinese-character color-word Stroop task, which included the neutral and color (incongruent) tasks. In behavioral performance, both groups showed significant Stroop effect, longer response time or higher error rate for the color task. In particular, the Stroop interference effect was marginally larger for dyslexic children than normal children in response time. What's more, the two groups showed distinct pattern of oxy-Hb activation during the Stroop tasks. The normal group recruited the bilateral PFC to perform the tasks, while the dyslexic group couldn't activate the bilateral PFC in the difficult color task. Moreover, significantly less color Stroop effect was found in the left PFC for the dyslexic group, showing their disability in coping with the Stroop interference. These findings suggest that the PFC is dysfunctional in conflict resolution for Chinese dyslexic children and that NIRS can be an effective tool in neurological research and clinical application.

  20. Reduced prefrontal cortex activation in the color-word Stroop task for Chinese dyslexic children: a near-infrared spectroscopy study

    International Nuclear Information System (INIS)

    Sun Jinyan; Zhai Jiahuan; Gong Hui; Song Ranran; Zou Li

    2011-01-01

    Behavioral studies have investigated the performance of children with developmental dyslexia in conflict resolution, a function connected with the prefrontal cortex (PFC) closely. However, little is known about the prefrontal activation in conflict resolution for dyslexic children. In the present study, the involvement of the PFC in resolving conflict was evaluated for Chinese dyslexic children by means of near-infrared spectroscopy (NIRS). The NIRS instrument is a portable, continuous-wave system and can measure concentration changes of hemodynamic parameters (including oxy-, deoxy-, and total hemoglobin). Considering better sensitivity, the oxy-hemoglobin (oxy-Hb) was chosen to indicate the prefrontal activation. Ten dyslexic children and 11 normal children were recruited to perform the Chinese-character color-word Stroop task, which included the neutral and color (incongruent) tasks. In behavioral performance, both groups showed significant Stroop effect, longer response time or higher error rate for the color task. In particular, the Stroop interference effect was marginally larger for dyslexic children than normal children in response time. What's more, the two groups showed distinct pattern of oxy-Hb activation during the Stroop tasks. The normal group recruited the bilateral PFC to perform the tasks, while the dyslexic group couldn't activate the bilateral PFC in the difficult color task. Moreover, significantly less color Stroop effect was found in the left PFC for the dyslexic group, showing their disability in coping with the Stroop interference. These findings suggest that the PFC is dysfunctional in conflict resolution for Chinese dyslexic children and that NIRS can be an effective tool in neurological research and clinical application.

  1. Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder.

    Science.gov (United States)

    Aupperle, Robin L; Allard, Carolyn B; Grimes, Erin M; Simmons, Alan N; Flagan, Taru; Behrooznia, Michelle; Cissell, Shadha H; Twamley, Elizabeth W; Thorp, Steven R; Norman, Sonya B; Paulus, Martin P; Stein, Murray B

    2012-04-01

    Posttraumatic stress disorder (PTSD) has been associated with executive or attentional dysfunction and problems in emotion processing. However, it is unclear whether these two domains of dysfunction are related to common or distinct neurophysiological substrates. To examine the hypothesis that greater neuropsychological impairment in PTSD relates to greater disruption in prefrontal-subcortical networks during emotional anticipation. Case-control, cross-sectional study. General community and hospital and community psychiatric clinics. Volunteer sample of 37 women with PTSD related to intimate partner violence and 34 age-comparable healthy control women. We used functional magnetic resonance imaging (fMRI) to examine neural responses during anticipation of negative and positive emotional images. The Clinician-Administered PTSD Scale was used to characterize PTSD symptom severity. The Wechsler Adult Intelligence Scale, Third Edition, Digit Symbol Test, Delis-Kaplan Executive Function System Color-Word Interference Test, and Wisconsin Card Sorting Test were used to characterize neuropsychological performance. Women with PTSD performed worse on complex visuomotor processing speed (Digit Symbol Test) and executive function (Color-Word Interference Inhibition/Switching subtest) measures compared with control subjects. Posttraumatic stress disorder was associated with greater anterior insula and attenuated lateral prefrontal cortex (PFC) activation during emotional anticipation. Greater dorsolateral PFC activation (anticipation of negative images minus anticipation of positive images) was associated with lower PTSD symptom severity and better visuomotor processing speed and executive functioning. Greater medial PFC and amygdala activation related to slower visuomotor processing speed. During emotional anticipation, women with PTSD show exaggerated activation in the anterior insula, a region important for monitoring internal bodily state. Greater dorsolateral PFC response

  2. Inhibitory modulation of medial prefrontal cortical activation on lateral orbitofrontal cortex-amygdala information flow.

    Science.gov (United States)

    Chang, Chun-Hui; Ho, Ta-Wen

    2017-09-01

    The basolateral complex of the amygdala (BLA) receives input from the lateral orbitofrontal cortex (lOFC) for cue-outcome contingencies and the medial prefrontal cortex (mPFC) for emotion control. Here we examined how the mPFC modulates lOFC-BLA information flow. We found that the majority of BLA neurons responsive to lOFC stimulation were also responsive to mPFC stimulation. Activation of the mPFC exerted an inhibitory modulation of the lOFC-BLA pathway, which was reversed with intra-amygdala blockade of GABAergic receptors. mPFC tetanus potentiated the lOFC-BLA pathway, but did not alter its inhibitory modulatory gating. These results show that the mPFC potently inhibits lOFC drive of the BLA in a GABA-dependent manner, which is informative in understanding the normal and potential pathophysiological state of emotion and contingency associations in regulating behaviour. Several neocortical projections converge onto the basolateral complex of the amygdala (BLA), including the lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC). Lateral orbitofrontal input to the BLA is important for cue-outcome contingencies, while medial prefrontal input is essential for emotion control. In this study, we examined how the mPFC, specifically the infralimbic division of the mPFC, modulates lOFC-BLA information flow, using combined in vivo extracellular single-unit recordings and pharmacological manipulations in anaesthetized rats. We found that the majority (over 95%) of BLA neurons that responded to lOFC stimulation also responded to mPFC stimulation. Compared to basal condition, pharmacological (N-methyl-d-aspartate) or electrical activation of the mPFC exerted an inhibitory modulation of the lOFC-BLA pathway, which was reversed with intra-amygdala blockade of GABAergic receptors with combined GABA A and GABA B antagonists (bicuculline and saclofen). Moreover, mPFC tetanus potentiated the lOFC-BLA pathway, but mPFC tetanus or low-frequency stimulation did

  3. Improved working memory performance through self-regulation of dorsal lateral prefrontal cortex activation using real-time fMRI.

    Directory of Open Access Journals (Sweden)

    Gaoyan Zhang

    Full Text Available Working memory is important for a wide range of high-level cognitive activities. Previous studies have shown that the dorsal lateral prefrontal cortex (DLPFC plays a critical role in working memory and that behavioral training of working memory can alter the activity of DLPFC. However, it is unclear whether the activation in the DLPFC can be self-regulated and whether any self-regulation can affect working memory behavior. The recently emerged real-time functional magnetic resonance imaging (rtfMRI technique enables the individuals to acquire self-control of localized brain activation, potentially inducing desirable behavioral changes. In the present study, we employed the rtfMRI technique to train subjects to up-regulate the activation in the left DLPFC, which is linked to verbal working memory. After two rtfMRI training sessions, activation in the left DLPFC was significantly increased, whereas the control group that received sham feedback did not show any increase in DLPFC activation. Pre- and post-training behavioral tests indicated that performance of the digit span and letter memory task was significantly improved in the experimental group. Between-group comparison of behavioral changes showed that the increase of digit span in the experimental group was significantly greater than that in the control group. These findings provide preliminary evidence that working memory performance can be improved through learned regulation of activation in associated brain regions using rtfMRI.

  4. Norepinephrine drives persistent activity in prefrontal cortex via synergistic α1 and α2 adrenoceptors.

    Directory of Open Access Journals (Sweden)

    Zizhen Zhang

    Full Text Available Optimal norepinephrine levels in the prefrontal cortex (PFC increase delay-related firing and enhance working memory, whereas stress-related or pathologically high levels of norepinephrine are believed to inhibit working memory via α1 adrenoceptors. However, it has been shown that activation of Gq-coupled and phospholipase C-linked receptors can induce persistent firing, a cellular correlate of working memory, in cortical pyramidal neurons. Therefore, despite its importance in stress and cognition, the exact role of norepinephrine in modulating PFC activity remains elusive. Using electrophysiology and optogenetics, we report here that norepinephrine induces persistent firing in pyramidal neurons of the PFC independent of recurrent fast synaptic excitation. This persistent excitatory effect involves presynaptic α1 adrenoceptors facilitating glutamate release and subsequent activation of postsynaptic mGluR5 receptors, and is enhanced by postsynaptic α2 adrenoceptors inhibiting HCN channel activity. Activation of α2 adrenoceptors or inhibition of HCN channels also enhances cholinergic persistent responses in pyramidal neurons, providing a mechanism of crosstalk between noradrenergic and cholinergic inputs. The present study describes a novel cellular basis for the noradrenergic control of cortical information processing and supports a synergistic combination of intrinsic and network mechanisms for the expression of mnemonic properties in pyramidal neurons.

  5. Individual differences in moral judgment competence are related to activity of the prefrontal cortex when attributing blame to evil intention.

    Science.gov (United States)

    Li, Xiaojing; Yang, Juan; Li, Peng; Li, Hong

    2016-01-01

    The weighing of intentions and consequences is inconsistent in adult's moral judgments, and this is particularly prominent when assigning blame to the immoral intentions in the absence of negative outcomes. The current study extends previous research by examining how individual differences in moral judgment competence are reflected in the cortical network when making judgments about immoral intentions. Twenty-four participants were scanned, using functional magnetic resonance imaging, while making judgments about three kinds of moral scenarios: a neutral condition, an immoral intention condition, and an immoral condition. The result showed that comparing with making judgments about the other two conditions, making judgments about the immoral intentions takes longer time and was associated with significantly elevated activity in the dorsolateral prefrontal cortex and the ventrolateral prefrontal cortex. Additionally, moral judgment competence scores were inversely correlated with activity in the right dorsolateral prefrontal cortex when assigning blame to the immoral intentions. Greater activity in the right dorsolateral prefrontal cortex in participants with lower moral judgment competence possibly reflected increased recruitment of cognitive resource applied to control impulsive response and integrate competitive information in making judgments about the immoral intention.

  6. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Science.gov (United States)

    Fazio, Leonardo; Logroscino, Giancarlo; Taurisano, Paolo; Amico, Graziella; Quarto, Tiziana; Antonucci, Linda Antonella; Barulli, Maria Rosaria; Mancini, Marina; Gelao, Barbara; Ferranti, Laura; Popolizio, Teresa; Bertolino, Alessandro; Blasi, Giuseppe

    2016-01-01

    Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions. Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia. Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior. These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  7. Prefrontal Activity and Connectivity with the Basal Ganglia during Performance of Complex Cognitive Tasks Is Associated with Apathy in Healthy Subjects.

    Directory of Open Access Journals (Sweden)

    Leonardo Fazio

    Full Text Available Convergent evidence indicates that apathy affects cognitive behavior in different neurological and psychiatric conditions. Studies of clinical populations have also suggested the primary involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are interconnected at both the structural and functional levels and are deeply involved in cognitive processes, such as working memory and attention. However, it is unclear how apathy modulates brain processing during cognition and whether such a modulation occurs in healthy young subjects. To address this issue, we investigated the link between apathy and prefrontal and basal ganglia function in healthy young individuals. We hypothesized that apathy may be related to sub-optimal activity and connectivity in these brain regions.Three hundred eleven healthy subjects completed an apathy assessment using the Starkstein's Apathy Scale and underwent fMRI during working memory and attentional performance tasks. Using an ROI approach, we investigated the association of apathy with activity and connectivity in the DLPFC and the basal ganglia.Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-basal ganglia connectivity during both working memory and attention tasks. Furthermore, prefrontal activity was inversely related to attentional behavior.These results suggest that in healthy young subjects, apathy is a trait associated with inefficient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources to process cognitive stimuli. Furthermore, apathy may alter the functional relationship between the prefrontal cortex and the basal ganglia during cognition.

  8. Reduced Prefrontal Cortex Activation in Children with Attention-Deficit/Hyperactivity Disorder during Go/No-Go Task: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Shuo Miao

    2017-06-01

    Full Text Available Objective: Attention-deficit/hyperactivity disorder (ADHD is one of the most common neuropsychiatric disorders in children and affects 3 to 5% of school-aged children. This study is to demonstrate whether functional near-infrared spectroscopy (fNIRS can detect the changes in the concentration of oxygenated hemoglobin (oxy-HB in children with ADHD and typically developing children (TD children.Method: In this study, 14 children with ADHD and 15 TD children were studied. Metabolic signals of functional blood oxygen were recorded by using fNIRS during go/no-go task. A statistic method is used to compare the fNIRS between the ADHD children and controls.Results: A significant oxy-HB increase in the left frontopolar cortex (FPC in control subjects but not in children with ADHD during inhibitory tasks. Moreover, ADHD children showed reduced activation in left FPC relative to TD children.Conclusion: Functional brain imaging using fNIRS showed reduced activation in the left prefrontal cortex (PFC of children with ADHD during the inhibition task. The fNIRS could be a promising tool for differentiating children with ADHD and TD children.

  9. Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity.

    Science.gov (United States)

    Zander, Thorsten O; Krol, Laurens R; Birbaumer, Niels P; Gramann, Klaus

    2016-12-27

    The effectiveness of today's human-machine interaction is limited by a communication bottleneck as operators are required to translate high-level concepts into a machine-mandated sequence of instructions. In contrast, we demonstrate effective, goal-oriented control of a computer system without any form of explicit communication from the human operator. Instead, the system generated the necessary input itself, based on real-time analysis of brain activity. Specific brain responses were evoked by violating the operators' expectations to varying degrees. The evoked brain activity demonstrated detectable differences reflecting congruency with or deviations from the operators' expectations. Real-time analysis of this activity was used to build a user model of those expectations, thus representing the optimal (expected) state as perceived by the operator. Based on this model, which was continuously updated, the computer automatically adapted itself to the expectations of its operator. Further analyses showed this evoked activity to originate from the medial prefrontal cortex and to exhibit a linear correspondence to the degree of expectation violation. These findings extend our understanding of human predictive coding and provide evidence that the information used to generate the user model is task-specific and reflects goal congruency. This paper demonstrates a form of interaction without any explicit input by the operator, enabling computer systems to become neuroadaptive, that is, to automatically adapt to specific aspects of their operator's mindset. Neuroadaptive technology significantly widens the communication bottleneck and has the potential to fundamentally change the way we interact with technology.

  10. Ventromedial Prefrontal Cortex Activation Is Associated with Memory Formation for Predictable Rewards

    Science.gov (United States)

    Bialleck, Katharina A.; Schaal, Hans-Peter; Kranz, Thorsten A.; Fell, Juergen; Elger, Christian E.; Axmacher, Nikolai

    2011-01-01

    During reinforcement learning, dopamine release shifts from the moment of reward consumption to the time point when the reward can be predicted. Previous studies provide consistent evidence that reward-predicting cues enhance long-term memory (LTM) formation of these items via dopaminergic projections to the ventral striatum. However, it is less clear whether memory for items that do not precede a reward but are directly associated with reward consumption is also facilitated. Here, we investigated this question in an fMRI paradigm in which LTM for reward-predicting and neutral cues was compared to LTM for items presented during consumption of reliably predictable as compared to less predictable rewards. We observed activation of the ventral striatum and enhanced memory formation during reward anticipation. During processing of less predictable as compared to reliably predictable rewards, the ventral striatum was activated as well, but items associated with less predictable outcomes were remembered worse than items associated with reliably predictable outcomes. Processing of reliably predictable rewards activated the ventromedial prefrontal cortex (vmPFC), and vmPFC BOLD responses were associated with successful memory formation of these items. Taken together, these findings show that consumption of reliably predictable rewards facilitates LTM formation and is associated with activation of the vmPFC. PMID:21326612

  11. Lateral prefrontal cortex activity during cognitive control of emotion predicts response to social stress in schizophrenia

    Directory of Open Access Journals (Sweden)

    Laura M. Tully, PhD

    2014-01-01

    Full Text Available LPFC dysfunction is a well-established neural impairment in schizophrenia and is associated with worse symptoms. However, how LPFC activation influences symptoms is unclear. Previous findings in healthy individuals demonstrate that lateral prefrontal cortex (LPFC activation during cognitive control of emotional information predicts mood and behavior in response to interpersonal conflict, thus impairments in these processes may contribute to symptom exacerbation in schizophrenia. We investigated whether schizophrenia participants show LPFC deficits during cognitive control of emotional information, and whether these LPFC deficits prospectively predict changes in mood and symptoms following real-world interpersonal conflict. During fMRI, 23 individuals with schizophrenia or schizoaffective disorder and 24 healthy controls completed the Multi-Source Interference Task superimposed on neutral and negative pictures. Afterwards, schizophrenia participants completed a 21-day online daily-diary in which they rated the extent to which they experienced mood and schizophrenia-spectrum symptoms, as well as the occurrence and response to interpersonal conflict. Schizophrenia participants had lower dorsal LPFC activity (BA9 during cognitive control of task-irrelevant negative emotional information. Within schizophrenia participants, DLPFC activity during cognitive control of emotional information predicted changes in positive and negative mood on days following highly distressing interpersonal conflicts. Results have implications for understanding the specific role of LPFC in response to social stress in schizophrenia, and suggest that treatments targeting LPFC-mediated cognitive control of emotion could promote adaptive response to social stress in schizophrenia.

  12. Activation of dorsolateral prefrontal cortex in a dual neuropsychological screening test: An fMRI approach

    Directory of Open Access Journals (Sweden)

    Tachibana Atsumichi

    2012-05-01

    Full Text Available Abstract Background The Kana Pick-out Test (KPT, which uses Kana or Japanese symbols that represent syllables, requires parallel processing of discrete (pick-out and continuous (reading dual tasks. As a dual task, the KPT is thought to test working memory and executive function, particularly in the prefrontal cortex (PFC, and is widely used in Japan as a clinical screen for dementia. Nevertheless, there has been little neurological investigation into PFC activity during this test. Methods We used functional magnetic resonance imaging (fMRI to evaluate changes in the blood oxygenation level-dependent (BOLD signal in young healthy adults during performance of a computerized KPT dual task (comprised of reading comprehension and picking out vowels and compared it to its single task components (reading or vowel pick-out alone. Results Behavioral performance of the KPT degraded compared to its single task components. Performance of the KPT markedly increased BOLD signal intensity in the PFC, and also activated sensorimotor, parietal association, and visual cortex areas. In conjunction analyses, bilateral BOLD signal in the dorsolateral PFC (Brodmann's areas 45, 46 was present only in the KPT. Conclusions Our results support the central bottleneck theory and suggest that the dorsolateral PFC is an important mediator of neural activity for both short-term storage and executive processes. Quantitative evaluation of the KPT with fMRI in healthy adults is the first step towards understanding the effects of aging or cognitive impairment on KPT performance.

  13. Adolescent earthquake survivors' show increased prefrontal cortex activation to masked earthquake images as adults.

    Science.gov (United States)

    Du, Xue; Wei, Dongtao; Ganzel, Barbara L; Kim, Pilyoung; Zhang, Qinglin; Qiu, Jiang

    2015-03-01

    The great Sichuan earthquake in China on May 12, 2008 was a traumatic event to many who live near the earthquake area. However, at present, there are few studies that explore the long-term impact of the adolescent trauma exposure on adults' brain function. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the brain activation evoked by masked trauma-related stimuli (earthquake versus neutral images) in 14 adults who lived near the epicenter of the great Sichuan earthquake when they were adolescents (trauma-exposed group) and 14 adults who lived farther from the epicenter of the earthquake when they were adolescents (control group). Compared with the control group, the trauma-exposed group showed significant elevation of activation in the right anterior cingulate cortex (ACC) and the medial prefrontal cortex (MPFC) in response to masked earthquake-related images. In the trauma-exposed group, the right ACC activation was negatively correlated with the frequency of symptoms of post-traumatic stress disorder (PTSD). These findings differ markedly from the long-term effects of trauma exposure in adults. This suggests that trauma exposure during adolescence may have a unique long-term impact on ACC/MPFC function, top-down modulation of trauma-related information, and subsequent symptoms of PTSD. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Humor Appreciation Involves Parametric and Synchronized Activity in the Medial Prefrontal Cortex and Hippocampus.

    Science.gov (United States)

    Iidaka, Tetsuya

    2017-12-01

    Humor perception is a ubiquitous phenomenon in human societies. In theories of humor perception, three factors, non-seriousness, social context, and incongruity, have been implicated in humor. In another theory, however, elaboration and reinterpretation of contexts are considered to play a role in eliciting humor. Although the neural correlates of humor appreciation have been investigated using neuroimaging methods, only a few studies have conducted such experiments under natural conditions. In the present study, two functional magnetic resonance imaging experiments, using a comedy movie as a stimulus, were conducted to investigate the neural correlates of humor under natural conditions. The subjects' brain activity was measured while watching and enjoying a movie. In experiment 1, a parametric analysis showed that the medial prefrontal cortex (MPFC) and hippocampus/amygdala had a positive relationship with the subjective rating of funniness. In experiment 2, intersubject correlation was analyzed to investigate synchronized activity across all participants. Signal synchronization that paralleled increased funniness ratings was observed in the MPFC and hippocampus. Thus, it appears that both parametric and synchronized activity in the MPFC and hippocampus are important during humor appreciation. The present study has revealed the brain regions that are predominantly involved in humor sensation under natural condition. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Media multitasking is associated with distractibility and increased prefrontal activity in adolescents and young adults.

    Science.gov (United States)

    Moisala, M; Salmela, V; Hietajärvi, L; Salo, E; Carlson, S; Salonen, O; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2016-07-01

    The current generation of young people indulges in more media multitasking behavior (e.g., instant messaging while watching videos) in their everyday lives than older generations. Concerns have been raised about how this might affect their attentional functioning, as previous studies have indicated that extensive media multitasking in everyday life may be associated with decreased attentional control. In the current study, 149 adolescents and young adults (aged 13-24years) performed speech-listening and reading tasks that required maintaining attention in the presence of distractor stimuli in the other modality or dividing attention between two concurrent tasks. Brain activity during task performance was measured using functional magnetic resonance imaging (fMRI). We studied the relationship between self-reported daily media multitasking (MMT), task performance and brain activity during task performance. The results showed that in the presence of distractor stimuli, a higher MMT score was associated with worse performance and increased brain activity in right prefrontal regions. The level of performance during divided attention did not depend on MMT. This suggests that daily media multitasking is associated with behavioral distractibility and increased recruitment of brain areas involved in attentional and inhibitory control, and that media multitasking in everyday life does not translate to performance benefits in multitasking in laboratory settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Changes in cue-induced, prefrontal cortex activity with video-game play.

    Science.gov (United States)

    Han, Doug Hyun; Kim, Yang Soo; Lee, Yong Sik; Min, Kyung Joon; Renshaw, Perry F

    2010-12-01

    Brain responses, particularly within the orbitofrontal and cingulate cortices, to Internet video-game cues in college students are similar to those observed in patients with substance dependence in response to the substance-related cues. In this study, we report changes in brain activity between baseline and following 6 weeks of Internet video-game play. We hypothesized that subjects with high levels of self-reported craving for Internet video-game play would be associated with increased activity in the prefrontal cortex, particularly the orbitofrontal and anterior cingulate cortex. Twenty-one healthy university students were recruited. At baseline and after a 6-week period of Internet video-game play, brain activity during presentation of video-game cues was assessed using 3T blood oxygen level dependent functional magnetic resonance imaging. Craving for Internet video-game play was assessed by self-report on a 7-point visual analogue scale following cue presentation. During a standardized 6-week video-game play period, brain activity in the anterior cingulate and orbitofrontal cortex of the excessive Internet game-playing group (EIGP) increased in response to Internet video-game cues. In contrast, activity observed in the general player group (GP) was not changed or decreased. In addition, the change of craving for Internet video games was positively correlated with the change in activity of the anterior cingulate in all subjects. These changes in frontal-lobe activity with extended video-game play may be similar to those observed during the early stages of addiction.

  17. Impaired prefrontal activity to regulate the intrinsic motivation-action link in schizophrenia.

    Science.gov (United States)

    Takeda, Kazuyoshi; Matsumoto, Madoka; Ogata, Yousuke; Maida, Keiko; Murakami, Hiroki; Murayama, Kou; Shimoji, Keigo; Hanakawa, Takashi; Matsumoto, Kenji; Nakagome, Kazuyuki

    2017-01-01

    A core feature of schizophrenia (SCZ) is impairment in intrinsic motivation. Although intrinsic motivation plays an important role in enhancing improvement of the social functioning, its neural mechanisms of impairment have yet to be clarified. We hypothesized that abnormal function of the frontostriatal loop consisting of the striatum and lateral prefrontal cortex (LPFC) may be related to impaired intrinsic motivation in SCZ. We tested this by comparing the brain activity measured by functional magnetic resonance imaging and behavioral parameters associated with movement, motivation, and cognitive control between 18 stable SCZ patients and 17 healthy control (HC) participants during a task that elicits intrinsic motivation. We also compared the functional connectivity during resting-state and the fractional anisotropy using diffusion tensor imaging analysis between the two groups. We adopted an enjoyable timing task to stop a stopwatch at an exact time, which in our previous study has demonstrated to elicit intrinsic motivation. Although the performance level in general was not different between groups, the SCZ group performed worse than the HC group in trials following "overshoot" errors (i.e., the response was too late). SCZ participants showed lower intrinsic motivation to the task than the HC group in an inventory report. The striatal activity during the prediction at the task cue period was consistently lower in SCZ participants than in HC. The LPFC activity at the task cue period positively correlated with intrinsic motivation and also with the rate of success following overshoot errors in the HC group, but not in the SCZ group. The LPFC activity at the task cue period was also positively correlated with the striatal activity in both groups. The striatal activity during the feedback period was not significantly different between groups. These results suggest that, unlike HC, the neural activity in the LPFC fails to mediate between prediction of hedonic

  18. Impaired prefrontal activity to regulate the intrinsic motivation-action link in schizophrenia

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2017-01-01

    Full Text Available A core feature of schizophrenia (SCZ is impairment in intrinsic motivation. Although intrinsic motivation plays an important role in enhancing improvement of the social functioning, its neural mechanisms of impairment have yet to be clarified. We hypothesized that abnormal function of the frontostriatal loop consisting of the striatum and lateral prefrontal cortex (LPFC may be related to impaired intrinsic motivation in SCZ. We tested this by comparing the brain activity measured by functional magnetic resonance imaging and behavioral parameters associated with movement, motivation, and cognitive control between 18 stable SCZ patients and 17 healthy control (HC participants during a task that elicits intrinsic motivation. We also compared the functional connectivity during resting-state and the fractional anisotropy using diffusion tensor imaging analysis between the two groups. We adopted an enjoyable timing task to stop a stopwatch at an exact time, which in our previous study has demonstrated to elicit intrinsic motivation. Although the performance level in general was not different between groups, the SCZ group performed worse than the HC group in trials following “overshoot” errors (i.e., the response was too late. SCZ participants showed lower intrinsic motivation to the task than the HC group in an inventory report. The striatal activity during the prediction at the task cue period was consistently lower in SCZ participants than in HC. The LPFC activity at the task cue period positively correlated with intrinsic motivation and also with the rate of success following overshoot errors in the HC group, but not in the SCZ group. The LPFC activity at the task cue period was also positively correlated with the striatal activity in both groups. The striatal activity during the feedback period was not significantly different between groups. These results suggest that, unlike HC, the neural activity in the LPFC fails to mediate between

  19. The Anterior Prefrontal Cortex and the Hippocampus Are Negatively Correlated during False Memories.

    Science.gov (United States)

    Jeye, Brittany M; Karanian, Jessica M; Slotnick, Scott D

    2017-01-23

    False memories commonly activate the anterior/dorsolateral prefrontal cortex (A/DLPFC) and the hippocampus. These regions are assumed to work in concert during false memories, which would predict a positive correlation between the magnitudes of activity in these regions across participants. However, the A/DLPFC may also inhibit the hippocampus, which would predict a negative correlation between the magnitudes of activity in these regions. In the present functional magnetic resonance imaging (fMRI) study, during encoding, participants viewed abstract shapes in the left or right visual field. During retrieval, participants classified each old shape as previously in the "left" or "right" visual field followed by an "unsure"-"sure"-"very sure" confidence rating. The contrast of left-hits and left-misses produced two activations in the hippocampus and three activations in the left A/DLPFC. For each participant, activity associated with false memories (right-"left"-"very sure" responses) from the two hippocampal regions was plotted as a function of activity in each A/DLPFC region. Across participants, for one region in the left anterior prefrontal cortex, there was a negative correlation between the magnitudes of activity in this region and the hippocampus. This suggests that the anterior prefrontal cortex might inhibit the hippocampus during false memories and that participants engage either the anterior prefrontal cortex or the hippocampus during false memories.

  20. Functional co-activation within the prefrontal cortex supports the maintenance of behavioural performance in fear-relevant situations before an iTBS modulated virtual reality challenge in participants with spider phobia.

    Science.gov (United States)

    Deppermann, S; Notzon, S; Kroczek, A; Rosenbaum, D; Haeussinger, F B; Diemer, J; Domschke, K; Fallgatter, A J; Ehlis, A-C; Zwanzger, P

    2016-07-01

    A number of studies/meta-analyses reported moderate antidepressant effects of activating repetitive transcranial magnetic stimulation (rTMS) over the prefrontal cortex (PFC). Regarding the treatment of anxiety, study outcomes are inconsistent, probably because of the heterogenity of anxiety disorders/study designs. To specifically evaluate the impact of rTMS on emotion regulation in fear-relevant situations we applied a sham-controlled activating protocol (intermittent Theta Burst Stimulation/iTBS) over the left PFC (F3) succeeded by a virtual reality (VR) challenge in n=41 participants with spider phobia and n=42 controls. Prior to/after iTBS and following VR prefrontal activation was assessed by functional near-infrared spectroscopy during an emotional Stroop paradigm. Performance (reaction times/error rates) was evaluated. Stimuli were rated regarding valence/arousal at both measurements. We found diminished activation in the left inferior frontal gyrus (IFG) of participants with spider phobia compared to controls, particularly elicited by emotionally-irrelevant words. Simultaneously, a functional connectivity analysis showed increased co-activation between the left IFG and the contra-lateral hemisphere. Behavioural performance was unimpaired. After iTBS/VR no significant differences in cortical activation between the phobic and control group remained. However, verum-iTBS did not cause an additional augmentation. We interpreted our results in terms of a prefrontal network which gets activated by emotionally-relevant stimuli and supports the maintenance of adequate behavioural reactions. The missing add-on effects of iTBS might be due to a ceiling effect of VR, thereby supporting its potential during exposure therapy. Concurrently, it implies that the efficient application of iTBS in the context of emotion regulation still needs to be studied further. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Encoding problem-solving strategies in prefrontal cortex: activity during strategic errors.

    Science.gov (United States)

    Genovesio, Aldo; Tsujimoto, Satoshi; Wise, Steven P

    2008-02-01

    The primate prefrontal cortex (PF) plays a central role in choosing goals and strategies. To better understand its mechanisms, we recorded from PF neurons as monkeys used abstract response strategies to select a spatial goal. A visual cue, selected randomly from a set of three cues, appeared on each trial. All three cues were novel when neuronal recording commenced. From trial to trial, the cue could have either been repeated or changed from the previous trial; these were called repeat trials and change trials, respectively. On repeat trials, the monkeys used a Repeat-stay strategy to gain a reward by choosing the same spatial goal as on the previous trial; on change trials, they used a Change-shift strategy to reject the previous goal in favour of an alternative. We reported previously that when monkeys performed the task correctly, many PF neurons had activity encoding one of these two strategies. The monkeys sometimes chose the incorrect strategy, however. Strategy coding was weak or absent during the cue period of error trials which was, for correct trials, the time when the monkeys used a strategy to choose a future goal. By contrast, later in the trial, after the chosen goal had been attained and the monkeys awaited feedback, strategy coding was present and it reflected the strategy used, whether correct or incorrect. The weak cue-period strategy signal could, whatever its cause, have contributed to the errors made, whereas the activity prior to feedback suggests a role in monitoring task performance.

  2. In search of integrative processes: basic psychological need satisfaction predicts medial prefrontal activation during decisional conflict.

    Science.gov (United States)

    Di Domenico, Stefano I; Fournier, Marc A; Ayaz, Hasan; Ruocco, Anthony C

    2013-08-01

    Research has shown that people's abilities to develop and act from a coherent sense of self are facilitated by satisfaction of the basic psychological needs for competence, relatedness, and autonomy. The present study utilized functional near infrared spectroscopy (fNIRS) to examine the effect of need satisfaction on activity in the medial prefrontal cortex (MPFC), a key region in processing information about the self. Participants completed a decision-making task (e.g., Which occupation would you prefer, dancer or chemist?) in which they made a series of forced choices according to their personal preferences. The degree of decisional conflict (i.e., choice difficulty) between the available response options was manipulated on the basis of participants' unique preference ratings for the target stimuli, which were obtained prior to scanning. Need satisfaction predicted elevated MPFC activity during high-conflict relative to low-conflict situations, suggesting that one way need satisfaction may promote self-coherence is by enhancing the utilization of self-knowledge in the resolution of decisional conflicts. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area

    Science.gov (United States)

    Jo, Yong Sang; Lee, Jane; Mizumori, Sheri J.Y.

    2013-01-01

    Dopamine (DA) cells have been suggested to signal discrepancies between expected and actual rewards in reinforcement learning. DA cells in the ventral tegmental area (VTA) receive direct projections from the medial prefrontal cortex (mPFC), a structure that is known as one of the brain areas that represent expected future rewards. To investigate whether the mPFC contributes to generating reward prediction error signals of DA cells, we recorded VTA cells from rats foraging for different amounts of reward in a spatial working memory task. Our results showed that DA cells initially responded after the acquisition of rewards, but over training, they exhibited phasic responses when rats detected sensory cues originating from the rewards before obtaining them. We also observed two separate groups of non-DA cells that were activated in expectation of upcoming rewards or during reward consumption. Bilateral injections of muscimol, a GABAA agonist, into the mPFC significantly decreased the non-DA activity that encoded reward expectation. By contrast, the same manipulation of the mPFC elevated DA responses to reward-predicting cues. However, neither DA nor non-DA responses that were elicited after reward acquisition were affected by mPFC inactivation. These results suggest that the mPFC provides the information about expected rewards to the VTA, and its functional loss elevates DA responses to reward-predicting cues by altering expectations about forthcoming rewards. PMID:23658156

  4. Associations between prefrontal cortex activation and H-reflex modulation during dual task gait

    Directory of Open Access Journals (Sweden)

    Daan eMeester

    2014-02-01

    Full Text Available Walking, although a largely automatic process, is controlled by the cortex and the spinal cord; with corrective reflexes modulated through integration of neural signals from central and peripheral inputs at supraspinal level throughout the gait cycle. However the full mechanism is not described. In this study we used an additional cognitive task to interfere with the automatic processing during walking in order to explore the neural mechanisms involved in healthy young adults. Participants were asked to walk on a treadmill at two speeds, both with and without additional cognitive load. We evaluated the impact of speed and cognitive load by analysing activity of the pre-frontal cortex (PFC using functional Near-Infrared Spectroscopy (fNIRS alongside with spinal cord reflex activity measured by soleus H-reflex amplitude and gait changes obtained by using an inertial measuring unit. Repeated measures ANOVA revealed that fNIRS Oxy-Hb concentrations significantly increased in the PFC with dual task (walking while performing a cognitive task compared to a single talk only (walking (p< 0.05. PFC activity was unaffected by increases of walking speed. H-reflex amplitude and gait variables did not change in response to either dual task or increases of walking speed. When walking under additional cognitive load we observed that participants adapted by using greater activity in the PFC, but that this adaption did not detrimentally affect H-reflex amplitude or gait variables. Our findings suggests that in a healthy young population central mechanisms (PFC are activated in response to cognitive loads but that H-reflex activity and gait performance can successfully be maintained. This study provides insight in the mechanisms behind healthy individuals safely performing dual task walking

  5. Altered neuronal spontaneous activity correlates with glutamate concentration in medial prefrontal cortex of major depressed females: An fMRI-MRS study.

    Science.gov (United States)

    Zhang, Xiaoliu; Tang, Yingying; Maletic-Savatic, Mirjana; Sheng, Jianhua; Zhang, Xuanhong; Zhu, Yajing; Zhang, Tianhong; Wang, Junjie; Tong, Shanbao; Wang, Jijun; Li, Yao

    2016-09-01

    Major depressive disorder (MDD) is twice more prevalent in females than in males. Yet, there have only been a few studies on the functional brain activity in female MDD patients and the detailed mechanisms underlying their neurobiology merit further investigations. In the present work, we used combined fMRI-MRS methods to investigate the altered intrinsic neuronal activity and its association with neurotransmitter concentration in female MDD patients. The whole brain amplitude of low frequency fluctuation (ALFF) analysis using resting state functional magnetic resonance imaging (fMRI) was performed to explore the alteration of intrinsic neuronal signals in MDD females (n=11) compared with female healthy controls (n=11). With a specific interest in the medial prefrontal cortex (mPFC) area, we quantified the concentration of amino acid neurotransmitters including GABA ((r-aminobutyric acid)), Glu (Glutamate), and Glx (Glutamate + Glutamine) using (1)H-MRS technology. Moreover, we conducted Pearson correlation analysis between the ALFF value and neurotransmitter concentration to find out the functional-biochemical relation in mPFC area. The relationship between the metabolites concentration and MDD symptomatology was also examined through Spearman correlation analysis. We found that the female MDD patients showed increased neuronal spontaneous activity in left medial prefrontal cortex (mPFC) and left middle frontal cortex, with decreased ALFF level in right putamen and right middle temporal cortex (pconcentration in female MDD patients (r=0.67, p=0.023). The Glu concentration in mPFC was positively correlated with patients HAMA scores (r=0.641, p=0.033). The relatively small sample size, metabolite information acquired only in mPFC and not all patients were unmedicated are the major limitations of our study. Using combined fMRI-MRS methods, we found increased spontaneous neuronal activity was correlated with Glu concentration in mPFC of female MDD patients. Other

  6. The regional neuronal activity in left posterior middle temporal gyrus is correlated with the severity of chronic aphasia.

    Science.gov (United States)

    Li, Jianlin; Du, Dunren; Gao, Wei; Sun, Xichun; Xie, Haizhu; Zhang, Gang; Li, Jian; Li, Honglun; Li, Kefeng

    2017-01-01

    Aphasia is one of the most disabling cognitive deficits affecting >2 million people in the USA. The neuroimaging characteristics of chronic aphasic patients (>6 months post onset) remain largely unknown. The objective of this study was to investigate the regional signal changes of spontaneous neuronal activity of brain and the inter-regional connectivity in chronic aphasia. Resting-state blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) was used to obtain fMRI data from 17 chronic aphasic patients and 20 healthy control subjects in a Siemens Verio 3.0T MR Scanner. The amplitude of low-frequency fluctuation (ALFF) was determined, which directly reflects the regional neuronal activity. The functional connectivity (FC) of fMRI was assessed using a seed voxel linear correlation approach. The severity of aphasia was evaluated by aphasia quotient (AQ) scores obtained from Western Aphasia Battery test. Compared with normal subjects, aphasic patients showed decreased ALFF values in the regions of left posterior middle temporal gyrus (PMTG), left medial prefrontal gyrus, and right cerebellum. The ALFF values in left PMTG showed strong positive correlation with the AQ score (coefficient r =0.79, P temporal gyrus (BA20), fusiform gyrus (BA37), and inferior frontal gyrus (BA47\\45\\44). Left PMTG might play an important role in language dysfunction of chronic aphasia, and ALFF value might be a promising indicator to evaluate the severity of aphasia.

  7. The Influence of Televised Food Commercials on Children's Food Choices: Evidence from Ventromedial Prefrontal Cortex Activations.

    Science.gov (United States)

    Bruce, Amanda S; Pruitt, Stephen W; Ha, Oh-Ryeong; Cherry, J Bradley C; Smith, Timothy R; Bruce, Jared M; Lim, Seung-Lark

    2016-10-01

    To investigate how food commercials influence children's food choices. Twenty-three children ages 8-14 years provided taste and health ratings for 60 food items. Subsequently, these children were scanned with the use of functional magnetic resonance imaging while making food choices (ie, "eat" or "not eat") after watching food and nonfood television commercials. Our results show that watching food commercials changes the way children consider the importance of taste when making food choices. Children did not use health values for their food choices, indicating children's decisions were largely driven by hedonic, immediate rewards (ie, "tastiness"); however, children placed significantly more importance on taste after watching food commercials compared with nonfood commercials. This change was accompanied by faster decision times during food commercial trials. The ventromedial prefrontal cortex, a reward valuation brain region, showed increased activity during food choices after watching food commercials compared with after watching nonfood commercials. Overall, our results suggest watching food commercials before making food choices may bias children's decisions based solely on taste, and that food marketing may systematically alter the psychological and neurobiologic mechanisms of children's food decisions. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Prefrontal activation during two Japanese Stroop tasks revealed with multi-channel near-infrared spectroscopy.

    Science.gov (United States)

    Watanabe, Yukina; Sumitani, Satsuki; Hosokawa, Mai; Ohmori, Tetsuro

    2015-01-01

    The Stroop task is sometimes used in psychiatric research to elicit prefrontal activity, which presumably reflects cognitive functioning. Although there are two Stroop tasks (Kana script and Kanji script) in Japan, it is unclear whether these tasks elicit the same hemoglobin changes. Moreover, it is unclear whether psychological conditions or characteristics influence hemoglobin changes in the Japanese Stroop task. The aim of this study was to clarify whether hemoglobin changes elicited by the two Japanese Stroop tasks accurately reflected cognitive functioning. Hemoglobin changes were measured with multi-channel near-infrared spectroscopy (NIRS) in 100 healthy Japanese participants performing two Japanese Stroop tasks. The Beck-Depression Inventory (BDI), State-Trait-Anxiety Inventory (STAI), and Maudsley Obsessive Compulsive Inventory (MOCI) were administered to participants to identify psychological conditions or personality characteristics. Compared with the Kanji task, the Kana task produced a greater Stroop effect and a larger increase in oxyhemoglobin (oxy-Hb) concentration. Moreover there were no significant correlations between oxy-Hb concentration and BDI, STAI-trait, STAI-state, or MOCI scores. Therefore we found that a participant's psychological conditions or characteristics did not influence the hemodynamic changes during either task. These data suggest the Kana Stroop task is more useful than the Kanji Stroop task for NIRS studies in psychiatric research.

  9. Subcellular Localization and Activity of TRPM4 in Medial Prefrontal Cortex Layer 2/3

    Science.gov (United States)

    Riquelme, Denise; Silva, Ian; Philp, Ashleigh M.; Huidobro-Toro, Juan P.; Cerda, Oscar; Trimmer, James S.; Leiva-Salcedo, Elias

    2018-01-01

    TRPM4 is a Ca2+-activated non-selective cationic channel that conducts monovalent cations. TRPM4 has been proposed to contribute to burst firing and sustained activity in several brain regions, however, the cellular and subcellular pattern of TRPM4 expression in medial prefrontal cortex (mPFC) during postnatal development has not been elucidated. Here, we use multiplex immunofluorescence labeling of brain sections to characterize the postnatal developmental expression of TRPM4 in the mouse mPFC. We also performed electrophysiological recordings to correlate the expression of TRPM4 immunoreactivity with the presence of TRPM4-like currents. We found that TRPM4 is expressed from the first postnatal day, with expression increasing up to postnatal day 35. Additionally, in perforated patch clamp experiments, we found that TRPM4-like currents were active at resting membrane potentials at all postnatal ages studied. Moreover, TRPM4 is expressed in both pyramidal neurons and interneurons. TRPM4 expression is localized in the soma and proximal dendrites, but not in the axon initial segment of pyramidal neurons. This subcellular localization is consistent with a reduction in the basal current only when we locally perfused 9-Phenanthrol in the soma, but not upon perfusion in the medial or distal dendrites. Our results show a specific localization of TRPM4 expression in neurons in the mPFC and that a 9-Phenanthrol sensitive current is active at resting membrane potential, suggesting specific functional roles in mPFC neurons during postnatal development and in adulthood. PMID:29440991

  10. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    Directory of Open Access Journals (Sweden)

    Hideya Koshino

    Full Text Available BACKGROUND: The anterior prefrontal cortex (PFC exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN, which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition or to ignore them (No face memory condition, then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  11. Activity in ventromedial prefrontal cortex during self-related processing: positive subjective value or personal significance?

    Science.gov (United States)

    Kim, Kyungmi; Johnson, Marcia K

    2015-04-01

    Well-being and subjective experience of a coherent world depend on our sense of 'self' and relations between the self and the environment (e.g. people, objects and ideas). The ventromedial prefrontal cortex (vMPFC) is involved in self-related processing, and disrupted vMPFC activity is associated with disruptions of emotional/social functioning (e.g. depression and autism). Clarifying precise function(s) of vMPFC in self-related processing is an area of active investigation. In this study, we sought to more specifically characterize the function of vMPFC in self-related processing, focusing on two alternative accounts: (i) assignment of positive subjective value to self-related information and (ii) assignment of personal significance to self-related information. During functional magnetic resonance imaging (fMRI), participants imagined owning objects associated with either their perceived ingroup or outgroup. We found that for ingroup-associated objects, vMPFC showed greater activity for objects with increased than decreased post-ownership preference. In contrast, for outgroup-associated objects, vMPFC showed greater activity for objects with decreased than increased post-ownership preference. Our findings support the idea that the function of vMPFC in self-related processing may not be to represent/evaluate the 'positivity' or absolute preference of self-related information but to assign personal significance to it based on its meaning/function for the self. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation

    Science.gov (United States)

    Anderson, Rachel M.; Cosme, Caitlin V.; Glanz, Ryan M.; Miller, Mary C.; Romig-Martin, Sara A.; LaLumiere, Ryan T.

    2015-01-01

    The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation of the stress-responsive hypothalamo-pituitary-adrenal axis raises the possibility that cocaine-related impairments in mPFC functioning may be manifested by similar changes in neuronal architecture in mPFC. Nevertheless, previous studies have generally identified increases, rather than decreases, in structural plasticity in mPFC after cocaine self-administration. Here, we use 3D imaging and analysis of dendritic spine morphometry to show that chronic cocaine self-administration leads to mild decreases of apical dendritic branching, prominent dendritic spine attrition in PL pyramidal neurons, and working memory deficits. Importantly, these impairments were largely accounted for in groups of rats that self-administered cocaine compared with yoked-cocaine- and saline-matched counterparts. Follow-up experiments failed to demonstrate any effects of either experimenter-administered cocaine or food self-administration on structural alterations in PL neurons. Finally, we verified that the cocaine self-administration group was distinguished by more protracted increases in adrenocortical activity compared with yoked-cocaine- and saline-matched controls. These studies suggest a mechanism whereby increased adrenocortical activity resulting from chronic cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity. SIGNIFICANCE STATEMENT Stress, aging, and mental illness are each linked to decreased prefrontal plasticity. Here, we show that chronic

  13. Right prefrontal cortex transcranial direct current stimulation enhances multi-day savings in sensorimotor adaptation.

    Science.gov (United States)

    Seidler, Rachael D; Gluskin, Brittany S; Greeley, Brian

    2017-01-01

    We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of visuomotor adaptation. Recent behavioral studies suggest that sensorimotor savings, or faster relearning on second exposure to a task, are due to recall of these early, strategic components of adaptation. In the present study we applied anodal transcranial direct current stimulation to right or left prefrontal cortex or left motor cortex. We found that all groups adapted dart throwing movements while wearing prism lenses at the same rate as subjects receiving sham stimulation on day 1 On test day 2, which was conducted a few days later, the right prefrontal and left motor cortex groups adapted faster than the sham group. Moreover, only the right prefrontal group exhibited greater savings, expressed as a greater difference between day 1 and day 2 errors, compared with sham stimulation. These findings support the hypothesis that the right prefrontal cortex contributes to sensorimotor adaptation and savings. We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of manual visuomotor adaptation. Sensorimotor savings, or faster adaptation to a previously experienced perturbation, has been recently linked to cognitive processes. We show that facilitating the right prefrontal cortex with anodal transcranial direct current stimulation enhances sensorimotor savings compared with sham stimulation. Copyright © 2017 the American Physiological Society.

  14. Medial prefrontal cortex TRPV1 channels modulate the baroreflex cardiac activity in rats.

    Science.gov (United States)

    Lagatta, D C; Ferreira-Junior, N C; Resstel, L B M

    2015-11-01

    The ventral portion of the medial prefrontal cortex (vMPFC) comprises the infralimbic (IL), prelimbic (PL) and dorsopenducular (DP) cortices. The IL and PL regions facilitate the baroreceptor reflex arc. This facilitatory effect on the baroreflex is thought to be mediated by vMPFC glutamatergic transmission, through NMDA receptors. The glutamatergic transmission can be modulated by other neurotransmitters, such as the endocannabinoids, which are agonists of the TRPV1 receptor. TRPV1 channels facilitate glutamatergic transmission in the brain. Thus, we hypothesized that TRPV1 receptors in the vMPFC enhance the cardiac baroreflex response. Stainless steel guide cannulae were bilaterally implanted into the vMPFC of male Wistar rats. Afterwards, a catheter was inserted into the femoral artery, for recording MAP and HR, and into the femoral vein for assessing baroreflex activation. Microinjections of the TRPV1 receptor antagonists capsazepine and 6-iodo-nordihydrocapsaicin (6-IODO) into the vMPFC reduced the cardiac baroreflex activity in unanaesthetized rats. Capsaicin microinjected into the vMPFC increased the cardiac baroreflex activity in unanaesthetized rats. When an ineffective dose of the TRPV1 receptor antagonist 6-IODO was used, the capsaicin-induced increase in the cardiac baroreflex response was abolished. The higher doses of capsaicin administered into the vMPFC after the ineffective dose of 6-IODO displaced the dose-response curve of the baroreflex parameters to the right, with no alteration in the maximum effect of capsaicin. The results of the present study show that stimulation of the TRPV1 receptors in the vMPFC increases the cardiac baroreceptor reflex response. © 2015 The British Pharmacological Society.

  15. Differences in dual-task performance and prefrontal cortex activation between younger and older adults

    Directory of Open Access Journals (Sweden)

    Ohsugi Hironori

    2013-01-01

    Full Text Available Abstract Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly participated in this study. Near-infrared spectroscopy (NIRS was employed to measure PFC activation during a single-task (performing calculations or stepping and dual-task (performing both single-tasks at once. Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B. Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive

  16. Decreased Left Posterior Insular Activity During Auditory Language in Autism American Journal of Neuroradiology – January 2010

    Science.gov (United States)

    Anderson, Jeffrey S.; Lange, Nicholas; Froehlich, Alyson; DuBray, Molly B.; Druzgal, T. Jason; Froimowitz, Michael P.; Alexander, Andrew L.; Bigler, Erin D.; Lainhart, Janet E.

    2009-01-01

    Background and Purpose Individuals with autism spectrum disorders often exhibit atypical language patterns including delay of speech onset, literal speech interpretation, and poor recognition of social and emotional cues in speech. We acquired fMRI images during an auditory language task to evaluate for systematic differences in language network activation between control and high-functioning autistic populations. Materials and Methods 41 right-handed male subjects (26 high-functioning autistic, 15 control) were studied using an auditory phrase recognition task, and areas of differential activation between groups were identified. Hand preference, verbal IQ, age, and language function testing were included as covariables in the analysis. Results Control and autistic subjects showed similar language activation networks, with two notable differences. Control subjects showed significantly increased activation in the left posterior insula compared to autistic subjects (p<0.05, FDR), and autistic subjects showed increased bilaterality of receptive language compared to control subjects. Higher receptive language score on standardized testing was associated with greater activation of the posterior aspect of left Wernicke’s area. Higher verbal IQ was associated with greater activation of bilateral Broca’s area and involvement of prefrontal cortex and lateral premotor cortex. Conclusion Control subjects showed greater activation of the posterior insula during receptive language, which may correlate with impaired emotive processing of language in autism. Autism subjects showed greater bilateral activation of receptive language areas that was out of proportion to differences in hand preference in autism and control populations. PMID:19749222

  17. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    Energy Technology Data Exchange (ETDEWEB)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi [Division of Nuclear Medicine, Polikliniek 7, Ghent University Hospital, De Pintelaan 185, 9000, Ghent (Belgium); Audenaert, Kurt [Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent (Belgium)

    2004-03-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  18. The prefrontal cortex: insights from functional neuroimaging using cognitive activation tasks

    International Nuclear Information System (INIS)

    Goethals, Ingeborg; Van de Wiele, Christophe; Dierckx, Rudi; Audenaert, Kurt

    2004-01-01

    This review presents neuroimaging studies which have explored the functional anatomy of a variety of cognitive processes represented by the prefrontal cortex (PFC). Overall, these studies have demonstrated that standard prefrontal neuroactivation tasks recruit a widely distributed network within the brain of which the PFC consistently forms a part. As such, these results are in keeping with the notion that executive functions within the PFC rely not only on anterior (mainly prefrontal) brain areas, but also on posterior (mainly parietal) brain regions. Moreover, intervention of similar brain regions in a large number of different executive tasks suggests that higher-level cognitive functions may best be understood in terms of an interactive network of specialised anterior as well as posterior brain regions. (orig.)

  19. Domain-General and Domain-Specific Patterns of Activity Supporting Metacognition in Human Prefrontal Cortex.

    Science.gov (United States)

    Morales, Jorge; Lau, Hakwan; Fleming, Stephen M

    2018-03-08

    Metacognition is the capacity to evaluate the success of one's own cognitive processes in various domains, e.g. memory and perception. It remains controversial whether metacognition relies on a domain-general resource that is applied to different tasks, or whether self-evaluative processes are domain-specific. Here we directly investigated this issue by examining the neural substrates engaged when metacognitive judgments were made by human participants of both sexes during perceptual and memory tasks matched for stimulus and performance characteristics. By comparing patterns of functional magnetic resonance imaging (fMRI) activity while subjects evaluated their performance, we revealed both domain-specific and domain-general metacognitive representations. Multi-voxel activity patterns in anterior prefrontal cortex predicted levels of confidence in a domain-specific fashion, whereas domain-general signals predicting confidence and accuracy were found in a widespread network in the frontal and posterior midline. The demonstration of domain-specific metacognitive representations suggests the presence of a content-rich mechanism available to introspection and cognitive control. Significance statement: We use human neuroimaging to investigate processes supporting memory and perceptual metacognition. It remains controversial whether metacognition relies on a global resource that is applied to different tasks, or whether self-evaluative processes are specific to particular tasks. Using multivariate decoding methods, we provide evidence that perceptual- and memory-specific metacognitive representations cortex co-exist with generic confidence signals. Our findings reconcile previously conflicting results on the domain-specificity/generality of metacognition, and lay the groundwork for a mechanistic understanding of metacognitive judgments. Copyright © 2018 Morales et al.

  20. Correlation of within-individual fluctuation of depressed mood with prefrontal cortex activity during verbal working memory task: optical topography study

    Science.gov (United States)

    Sato, Hiroki; Aoki, Ryuta; Katura, Takusige; Matsuda, Ryoichi; Koizumi, Hideaki

    2011-12-01

    Previous studies showed that interindividual variations in mood state are associated with prefrontal cortex (PFC) activity. In this study, we focused on the depressed-mood state under natural circumstances and examined the relationship between within-individual changes over time in this mood state and PFC activity. We used optical topography (OT), a functional imaging technique based on near-infrared spectroscopy, to measure PFC activity for each participant in three experimental sessions repeated at 2-week intervals. In each session, the participants completed a self-report questionnaire of mood state and underwent OT measurement while performing verbal and spatial working memory (WM) tasks. The results showed that changes in the depressed-mood score between successive sessions were negatively correlated with those in the left PFC activation for the verbal WM task (ρ = -0.56, p < 0.05). In contrast, the PFC activation for the spatial WM task did not co-vary with participants' mood changes. We thus demonstrated that PFC activity during a verbal WM task varies depending on the participant's depressed mood state, independent of trait factors. This suggests that using optical topography to measure PFC activity during a verbal WM task can be used as a potential state marker for an individual's depressed mood state.

  1. Distinctive activation patterns under intrinsically versus extrinsically driven cognitive loads in prefrontal cortex: a near-infrared spectroscopy study using a driving video game.

    Science.gov (United States)

    Liu, Tao; Saito, Hirofumi; Oi, Misato

    2012-01-11

    To investigate the neural bases of intrinsically and extrinsically driven cognitive loads in daily life, we measured repetitively prefrontal activation in three (one control and two experimental) groups during a driving video game using near-infrared spectroscopy. The control group drove to goal four times with distinct route-maps illustrating default turning points. In contrast, the memory group drove the memorized default route without a route-map, and the emergency group drove with a route-map, but was instructed to change the default route by an extrinsically given verbal command (turn left or right) as an envisioned emergency. The predictability of a turning point in the route in each group was relatively different: due to extrinsic dictate of others in the emergency group, intrinsic memory in the memory group, and route-map aid in the control group. We analyzed concentration changes of oxygenated hemoglobin (CoxyHb) in the three critical periods (pre-turning, actual-turning, and post-turning). The emergency group showed a significantly increasing pattern of CoxyHb throughout the three periods, and a significant reduction in CoxyHb throughout the repetitive trials, but the memory group did not, even though both experimental groups showed higher activation than the control group in the pre-turning period. These results suggest that the prefrontal cortex differentiates the intrinsically (memory) and the extrinsically (dictate of others) driven cognitive loads according to the predictability of turning behavior, although the two types of cognitive loads commonly show increasing activation in the pre-turning period as the preparation effect. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Differences in time course activation of dorsolateral prefrontal cortex associated with low or high risk choicesin a gambling task

    Directory of Open Access Journals (Sweden)

    Stefano eBembich

    2014-06-01

    Full Text Available Prefrontal cortex plays an important role in decision making (DM, supporting choices in the ordinary uncertainty of everyday life. To assess DM in an unpredictable situation, a playing card task, such as the Iowa Gambling Task (IGT, has been proposed. This task is supposed to specifically test emotion-based learning, linked to the integrity of the ventromedial prefrontal cortex (VMPFC. However, the dorsolateral prefrontal cortex (DLPFC has demonstrated a role in IGT performance too. Our aim was to study, by multichannel near-infrared spectroscopy, the contribution of DLPFC to the IGT execution over time. We tested the hypothesis that low and high risk choices would differentially activate DLPFC, as IGT execution progressed. We enrolled 11 healthy adults. To identify DLPFC activation associated with IGT choices, we compared regional differences in oxy-haemoglobin variation, from baseline to the event. The time course of task execution was divided in four periods, each one consisting of 25 choices, and DLPFC activation was distinctly analyzed for low and high risk choices in each period. We found different time courses in DLPFC activation, associated with low or high risk choices. During the first period, a significant DLPFC activation emerged with low risk choices, whereas, during the second period, we found a cortical activation with high risk choices. Then, DLPFC activation decreased to non-significant levels during the third and fourth period. This study shows that DLPFC involvement in IGT execution is differentiated over time and according to choice risk level. DLPFC is activated only in the first half of the task, earlier by low risk and later by high risk choices. We speculate that DLPFC may sustain initial and more cognitive functions, such as attention shifting and response inhibition. The lack of DLPFC activation, as the task progresses, may be due to VMPFC activation, not detectable by fNIRS, which takes over the IGT execution in its

  3. Oscillatory activity in the medial prefrontal cortex and nucleus accumbens correlates with impulsivity and reward outcome.

    Directory of Open Access Journals (Sweden)

    Nicholas A Donnelly

    Full Text Available Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC and nucleus accumbens (NAcb and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT, which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50-60 Hz LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7-9 Hz LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour.

  4. Altered activity of the medial prefrontal cortex and amygdala during acquisition and extinction of an active avoidance task

    Directory of Open Access Journals (Sweden)

    Xilu eJiao

    2015-09-01

    Full Text Available Altered medial prefrontal cortex (mPFC and amygdala function is associated with anxiety-related disorders. While the mPFC-amygdala pathway has a clear role in fear conditioning, these structures are also involved in active avoidance. Given that avoidance perseveration represents a core symptom of anxiety disorders, the neural substrate of avoidance, especially its extinction, requires better understanding. The present study was designed to investigate the activity of mPFC and amygdala neurons during acquisition and extinction of lever-press avoidance in rats. In particular, neural activity was examined in the mPFC, intercalated cell clusters (ITCs, lateral (LA, basal (BA and central (CeA amygdala, at various time points during acquisition and extinction, using induction of the immediate early gene product, c-Fos. Neural activity was greater in the mPFC, LA, BA, and ITC during the extinction phase as compared to the acquisition phase. In contrast, the CeA was the only region that was more activated during acquisition than during extinction. Our results indicate that elevated activity in the mPFC, BA, LA and ITCs, and reduced CeA activity is associated with extinction of active avoidance. Moreover, inhibitory neurons are activated differently in the mPFC and BA during early and late phase of acquisition and extinction, suggesting their dynamic involvement in the development of avoidance response. Together, these data start to identify the key brain regions important in active avoidance behavior, areas that could be associated with avoidance perseveration in anxiety disorders.

  5. Effect of stimulation by foliage plant display images on prefrontal cortex activity: a comparison with stimulation using actual foliage plants.

    Science.gov (United States)

    Igarashi, Miho; Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi

    2015-01-01

    Natural scenes like forests and flowers evoke neurophysiological responses that can suppress anxiety and relieve stress. We examined whether images of natural objects can elicit neural responses similar to those evoked by real objects by comparing the activation of the prefrontal cortex during presentation of real foliage plants with a projected image of the same foliage plants. Oxy-hemoglobin concentrations in the prefrontal cortex were measured using time-resolved near-infrared spectroscopy while the subjects viewed the real plants or a projected image of the same plants. Compared with a projected image of foliage plants, viewing the actual foliage plants significantly increased oxy-hemoglobin concentrations in the prefrontal cortex. However, using the modified semantic differential method, subjective emotional response ratings ("comfortable vs. uncomfortable" and "relaxed vs. awakening") were similar for both stimuli. The frontal cortex responded differently to presentation of actual plants compared with images of these plants even when the subjective emotional response was similar. These results may help explain the physical and mental health benefits of urban, domestic, and workplace foliage. © 2014 The Authors. Journal of Neuroimaging published by the American Society of Neuroimaging.

  6. The Anterior Prefrontal Cortex and the Hippocampus Are Negatively Correlated during False Memories

    Directory of Open Access Journals (Sweden)

    Brittany M. Jeye

    2017-01-01

    Full Text Available False memories commonly activate the anterior/dorsolateral prefrontal cortex (A/DLPFC and the hippocampus. These regions are assumed to work in concert during false memories, which would predict a positive correlation between the magnitudes of activity in these regions across participants. However, the A/DLPFC may also inhibit the hippocampus, which would predict a negative correlation between the magnitudes of activity in these regions. In the present functional magnetic resonance imaging (fMRI study, during encoding, participants viewed abstract shapes in the left or right visual field. During retrieval, participants classified each old shape as previously in the “left” or “right” visual field followed by an “unsure”–“sure”–“very sure” confidence rating. The contrast of left-hits and left-misses produced two activations in the hippocampus and three activations in the left A/DLPFC. For each participant, activity associated with false memories (right–“left”–“very sure” responses from the two hippocampal regions was plotted as a function of activity in each A/DLPFC region. Across participants, for one region in the left anterior prefrontal cortex, there was a negative correlation between the magnitudes of activity in this region and the hippocampus. This suggests that the anterior prefrontal cortex might inhibit the hippocampus during false memories and that participants engage either the anterior prefrontal cortex or the hippocampus during false memories.

  7. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    Science.gov (United States)

    Ruocco, Anthony C.; Rodrigo, Achala H.; McMain, Shelley F.; Page-Gould, Elizabeth; Ayaz, Hasan; Links, Paul S.

    2016-01-01

    Self-harm is a potentially lethal symptom of borderline personality disorder (BPD) that often improves with dialectical behavior therapy (DBT). While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, 29 actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex (PFC) during impulse control prior to beginning DBT and after 7 months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex (DLPFC) prior to beginning treatment, and they showed the greatest increases in activity within this region after 7 months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial PFC and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right DLPFC even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the PFC underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT. PMID:27242484

  8. Walking while performing working memory tasks changes the prefrontal cortex hemodynamic activations and gait kinematics

    Directory of Open Access Journals (Sweden)

    Ming-I Brandon Lin

    2016-05-01

    Full Text Available BackgroundIncreasing evidence suggests that walking while performing a concurrent task negatively influences gait performance. However, it remains unclear how higher-level cognitive processes and coordination of limb movements are altered in challenging walking environments. This study investigated the influence of cognitive task complexity and walking road condition on the neutral correlates of executive function and postural control in dual-task walking. MethodsTwenty-four healthy young adults completed a series of overground walks with three walking road conditions (wide, narrow, with obstacles with and without the concurrent n-back working memory tasks of two complexity levels (1-back and 3-back. Prefrontal brain activation was assessed by functional near-infrared spectroscopy. A three-dimensional motion analysis system was used simultaneously to measure gait performance and lower-extremity kinematics. Repeated measures analysis of variance were performed to examine the differences between the conditions. ResultsIn comparison with standing still, participants showed lower n-back task accuracy while walking, with the worst performance from the road with obstacles. Spatiotemporal gait parameters, lower-extremity joint movements, and the relative changes in oxygenated hemoglobin (HbO concentration levels were all significantly different across the task complexity and walking path conditions. While dual-tasking participants were found to flex their hips and knees less, leading to a slower gait speed, longer stride time, shorter step length, and greater gait variability than during normal walking. For narrow-road walking, smaller ankle dorsiflexion and larger hip flexion were observed, along with a reduced gait speed. Obstacle negotiation was mainly characterized by increased gait variability than other conditions. HbO levels appeared to be lower during dual-task walking than normal walking. Compared to wide and obstacle conditions, walking on

  9. Encoding problem-solving strategies in prefrontal cortex: Activity during strategic errors

    OpenAIRE

    Genovesio, Aldo; Tsujimoto, Satoshi; Wise, Steven P.

    2008-01-01

    The primate prefrontal cortex (PF) plays a central role in choosing goals and strategies. To better understand its mechanisms, we recorded from PF neurons as monkeys used abstract response strategies to select a spatial goal. A visual cue, selected randomly from a set of three cues, appeared on each trial. All three cues were novel when neuronal recording commenced. From trial to trial, the cue could have either repeated or changed from the previous trial, called repeat trials and change tria...

  10. Perceptual difficulty in source memory encoding and retrieval: Prefrontal versus parietal electrical brain activity

    OpenAIRE

    Kuo, Trudy Y.; Van Petten, Cyma

    2008-01-01

    It is well established that source memory retrieval – remembering relationships between a core item and some additional attribute of an event – engages prefrontal cortex (PFC) more than simple item memory. In event-related potentials (ERPs), this is manifest in a late-onset difference over PFC between studied items which mandate retrieval of a second attribute, and unstudied items which can be immediately rejected. Although some sorts of attribute conjunctions are easier to remember than othe...

  11. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task

    Science.gov (United States)

    Alkozei, Anna; Smith, Ryan; Pisner, Derek A.; Vanuk, John R.; Berryhill, Sarah M.; Fridman, Andrew; Shane, Bradley R.; Knight, Sara A.; Killgore, William D.S.

    2016-01-01

    Study Objectives: Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. Methods: A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Results: Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. Conclusions: This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. Citation: Alkozei A, Smith R, Pisner DA, Vanuk JR, Berryhill SM, Fridman A, Shane BR, Knight SA, Killgore WD. Exposure to blue light increases subsequent functional activation of the prefrontal cortex during performance of a working memory task. SLEEP 2016;39(9):1671–1680. PMID:27253770

  12. Passive and active ventricular elastances of the left ventricle

    Directory of Open Access Journals (Sweden)

    Ng Eddie YK

    2005-02-01

    Full Text Available Abstract Background Description of the heart as a pump has been dominated by models based on elastance and compliance. Here, we are presenting a somewhat new concept of time-varying passive and active elastance. The mathematical basis of time-varying elastance of the ventricle is presented. We have defined elastance in terms of the relationship between ventricular pressure and volume, as: dP = EdV + VdE, where E includes passive (Ep and active (Ea elastance. By incorporating this concept in left ventricular (LV models to simulate filling and systolic phases, we have obtained the time-varying expression for Ea and the LV-volume dependent expression for Ep. Methods and Results Using the patient's catheterization-ventriculogram data, the values of passive and active elastance are computed. Ea is expressed as: ; Epis represented as: . Ea is deemed to represent a measure of LV contractility. Hence, Peak dP/dt and ejection fraction (EF are computed from the monitored data and used as the traditional measures of LV contractility. When our computed peak active elastance (Ea,max is compared against these traditional indices by linear regression, a high degree of correlation is obtained. As regards Ep, it constitutes a volume-dependent stiffness property of the LV, and is deemed to represent resistance-to-filling. Conclusions Passive and active ventricular elastance formulae can be evaluated from a single-beat P-V data by means of a simple-to-apply LV model. The active elastance (Ea can be used to characterize the ventricle's contractile state, while passive elastance (Ep can represent a measure of resistance-to-filling.

  13. Thermotherapy to the facial region in and around the eyelids altered prefrontal hemodynamic responses and autonomic nervous activity during mental arithmetic.

    Science.gov (United States)

    Takamoto, Kouich; Hori, Etsuro; Urakawa, Susumu; Katayama, Miho; Nagashima, Yoshinao; Yada, Yukihiro; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    To investigate neural mechanisms of local thermotherapy to reduce mental stress, participants were required to perform mental arithmetic after treatment by a heat- and steam-generating sheet on the facial eyelid region while hemodynamic activity and ECGs were monitored. The results indicated that thermotherapy decreased hemodynamic activity in the anterior dorsomedial prefrontal cortex (aDMPFC) involved in sympathetic activity. Consistently, thermotherapy increased parasympathetic activity while it decreased sympathetic activity. Furthermore, thermotherapy increased hemodynamic activity in the dorsolateral prefrontal cortex (DLPFC) during mental arithmetic. These hemodynamic responses in the DLPFC during mental arithmetic were negatively correlated with that in the aDMPFC during thermotherapy. The results suggest that thermotherapy in the facial eyelid region is useful to ameliorate mental fatigue through its effects on the prefrontal cortex. Copyright © 2012 Society for Psychophysiological Research.

  14. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure

    DEFF Research Database (Denmark)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo

    2017-01-01

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field...... of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5 mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time...... spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin...

  15. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms.

    Science.gov (United States)

    Eriksson, Olle; Wall, Anders; Olsson, Ulf; Marteinsdottir, Ina; Holstad, Maria; Ågren, Hans; Hartvig, Per; Långström, Bengt; Naessén, Tord

    2016-01-01

    To investigate potential quantitative and qualitative differences in brain serotonergic activity between women with Premenstrual Dysphoria (PMD) and asymptomatic controls. Serotonin-augmenting drugs alleviate premenstrual mood symptoms in the majority of women with PMD while serotonin-depleting diets worsen PMD symptoms, both indicating intrinsic differences in brain serotonergic activity in women with PMD compared to asymptomatic women. Positron-emission tomography with the immediate precursor of serotonin, 5-hydroxytryptophan (5-HTP), radiolabelled by 11C in the beta-3 position, was performed in the follicular and luteal phases for 12 women with PMD and 8 control women. Brain radioactivity-a proxy for serotonin precursor uptake and synthesis-was measured in 9 regions of interest (ROIs): the right and left sides of the medial prefrontal cortex, dorsolateral prefrontal cortex, putamen and caudate nucleus, and the single "whole brain". There were no significant quantitative differences in brain 5-HTP-derived activity between the groups in either of the menstrual phases for any of the 9 ROIs. However, multivariate analysis revealed a significant quantitative and qualitative difference between the groups. Asymptomatic control women showed a premenstrual right sided relative increase in dorsolateral prefrontal cortex 5-HTP derived activity, whereas PMD women displayed the opposite (p = 0.0001). Menstrual phase changes in this asymmetry (premenstrual-follicular) correlated with changes in self ratings of 'irritability' for the entire group (rs = -0.595, p = 0.006). The PMD group showed a strong inverse correlation between phase changes (premenstrual-follicular) in plasma levels of estradiol and phase changes in the laterality (dx/sin) of radiotracer activity in the dorsolateral prefrontal ROI (rs = -0.635; 0.027). The control group showed no such correlation. Absence of increased premenstrual right-sided relative 5-HTP-derived activity of the dorsolateral prefrontal

  16. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms.

    Directory of Open Access Journals (Sweden)

    Olle Eriksson

    Full Text Available To investigate potential quantitative and qualitative differences in brain serotonergic activity between women with Premenstrual Dysphoria (PMD and asymptomatic controls.Serotonin-augmenting drugs alleviate premenstrual mood symptoms in the majority of women with PMD while serotonin-depleting diets worsen PMD symptoms, both indicating intrinsic differences in brain serotonergic activity in women with PMD compared to asymptomatic women.Positron-emission tomography with the immediate precursor of serotonin, 5-hydroxytryptophan (5-HTP, radiolabelled by 11C in the beta-3 position, was performed in the follicular and luteal phases for 12 women with PMD and 8 control women. Brain radioactivity-a proxy for serotonin precursor uptake and synthesis-was measured in 9 regions of interest (ROIs: the right and left sides of the medial prefrontal cortex, dorsolateral prefrontal cortex, putamen and caudate nucleus, and the single "whole brain".There were no significant quantitative differences in brain 5-HTP-derived activity between the groups in either of the menstrual phases for any of the 9 ROIs. However, multivariate analysis revealed a significant quantitative and qualitative difference between the groups. Asymptomatic control women showed a premenstrual right sided relative increase in dorsolateral prefrontal cortex 5-HTP derived activity, whereas PMD women displayed the opposite (p = 0.0001. Menstrual phase changes in this asymmetry (premenstrual-follicular correlated with changes in self ratings of 'irritability' for the entire group (rs = -0.595, p = 0.006. The PMD group showed a strong inverse correlation between phase changes (premenstrual-follicular in plasma levels of estradiol and phase changes in the laterality (dx/sin of radiotracer activity in the dorsolateral prefrontal ROI (rs = -0.635; 0.027. The control group showed no such correlation.Absence of increased premenstrual right-sided relative 5-HTP-derived activity of the dorsolateral

  17. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Basso Moro, Sara; Bisconti, Silvia; Muthalib, Makii; Spezialetti, Matteo; Cutini, Simone; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2014-01-15

    Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11

  18. Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex reduces resting-state insula activity and modulates functional connectivity of the orbitofrontal cortex in cigarette smokers.

    Science.gov (United States)

    Li, Xingbao; Du, Lian; Sahlem, Gregory L; Badran, Bashar W; Henderson, Scott; George, Mark S

    2017-05-01

    Previous studies reported that repetitive transcranial magnetic stimulation (rTMS) can reduce cue-elicited craving and decrease cigarette consumption in smokers. The mechanism of this effect however, remains unclear. We used resting-state functional magnetic resonance imaging (rsfMRI) to test the effect of rTMS in non-treatment seeking smokers. We used a single blinded, sham-controlled, randomized counterbalanced crossover design where participants underwent two visits separated by at least 1 week. Participants received active rTMS over the left dorsolateral prefrontal cortex (DLPFC) during one of their visits, and sham rTMS during their other visit. They had two rsFMRI scans before and after each rTMS session. We used the same rTMS stimulation parameters as in a previous study (10Hz, 5s-on, 10s-off, 100% resting motor threshold, 3000 pulses). Ten non-treatment-seeking, nicotine-dependent, cigarette smokers (6 women, an average age of 39.72 and an average cigarette per day of 17.30) finished the study. rsFMRI results demonstrate that as compared to a single session of sham rTMS, a single session of active rTMS inhibits brain activity in the right insula and thalamus in fractional amplitude of low frequency fluctuation (fALFF). For intrinsic brain connectivity comparisons, active TMS resulted in significantly decreased connectivity from the site of rTMS to the left orbitomedial prefrontal cortex. This data suggests that one session of rTMS can reduce activity in the right insula and right thalamus as measured by fALFF. The data also demonstrates that rTMS can reduce rsFC between the left DLPFC and the medial orbitofrontal cortex. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues.

    Science.gov (United States)

    Schroeder, B E; Binzak, J M; Kelley, A E

    2001-01-01

    Conditioning and learning factors are likely to play key roles in the process of addiction and in relapse to drug use. In nicotine addiction, for example, contextual cues associated with smoking can be powerful determinants of craving and relapse, even after considerable periods of abstinence. Using the detection of the immediate-early gene product, Fos, we examined which regions of the brain are activated by environmental cues associated with nicotine administration, and compared this profile to the pattern induced by cues associated with a natural reward, chocolate. In the first experiment, rats were treated with either nicotine (0.4 mg/ml/kg) or saline once per day for 10 days in a test environment distinct from their home cages. In the second experiment, rats were given access to either a bowl of chocolate chips or an empty bowl in the distinct environment for 10 days. After a 4-day interval, rats were re-introduced to the environment where they previously received either nicotine treatment or chocolate access. Nicotine-associated sensory cues elicited marked and specific activation of Fos expression in prefrontal cortical and limbic regions. Moreover, exposure to cues associated with the natural reward, chocolate, induced a pattern of gene expression that showed many similarities with that elicited by drug cues, particularly in prefrontal regions. These observations support the hypothesis that addictive drugs induce long-term neuroadaptations in brain regions subserving normal learning and memory for motivationally salient stimuli.

  20. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.

    Science.gov (United States)

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2016-02-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. © The Author(s) 2015.

  1. Activity in inferior parietal and medial prefrontal cortex signals the accumulation of evidence in a probability learning task.

    Directory of Open Access Journals (Sweden)

    Mathieu d'Acremont

    Full Text Available In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI, young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

  2. Jogging improved performance of a behavioral branching task: implications for prefrontal activation.

    Science.gov (United States)

    Harada, Taeko; Okagawa, Satoru; Kubota, Kisou

    2004-07-01

    We studied the effect of habitual jogging on the performance of a frontal lobe functioning test. Fourteen subjects were divided into a jogging trained group (TG) or a jogging untrained group (NG). The TG jogged for 12 weeks, for 30 min, 2.6 times per week, while the NG did not. We administered a prefrontal branching task (BR) combining a Spatial Delayed-Response Test (DR) and a Go/No-Go Test (GNG). Each test alone and a Simple Reaction Time Test (SR) were given as controls. All tests were given three times at 6 week intervals over 12 weeks in both groups. In the TG, the tests were given two times after termination of the jogging. The maximal oxygen uptake (VO2max) was measured in the TG during the 12 weeks. After 12 weeks, the correct performance rates in the BR task were more improved in the TG than in the NG. The control and reaction time tests were unchanged in both groups. The improved performance in the BR task in the TG decreased after stopping the jogging. The VO2max increased significantly during the 12 weeks of jogging in the TG. Thus, the habitual jogging improved performance in a prefrontal BR.

  3. Can neural activation in dorsolateral prefrontal cortex predict responsiveness to information? An application to egg production systems and campaign advertising.

    Science.gov (United States)

    McFadden, Brandon R; Lusk, Jayson L; Crespi, John M; Cherry, J Bradley C; Martin, Laura E; Aupperle, Robin L; Bruce, Amanda S

    2015-01-01

    Consumers prefer to pay low prices and increase animal welfare; however consumers are typically forced to make tradeoffs between price and animal welfare. Campaign advertising (i.e., advertising used during the 2008 vote on Proposition 2 in California) may affect how consumers make tradeoffs between price and animal welfare. Neuroimaging data was used to determine the effects of brain activation in dorsolateral prefrontal cortex (dlPFC) on choices making a tradeoff between price and animal welfare and responsiveness to campaign advertising. Results indicated that activation in the dlPFC was greater when making choices that forced a tradeoff between price and animal welfare, compared to choices that varied only by price or animal welfare. Furthermore, greater activation differences in right dlPFC between choices that forced a tradeoff and choices that did not, indicated greater responsiveness to campaign advertising.

  4. Can neural activation in dorsolateral prefrontal cortex predict responsiveness to information? An application to egg production systems and campaign advertising.

    Directory of Open Access Journals (Sweden)

    Brandon R McFadden

    Full Text Available Consumers prefer to pay low prices and increase animal welfare; however consumers are typically forced to make tradeoffs between price and animal welfare. Campaign advertising (i.e., advertising used during the 2008 vote on Proposition 2 in California may affect how consumers make tradeoffs between price and animal welfare. Neuroimaging data was used to determine the effects of brain activation in dorsolateral prefrontal cortex (dlPFC on choices making a tradeoff between price and animal welfare and responsiveness to campaign advertising. Results indicated that activation in the dlPFC was greater when making choices that forced a tradeoff between price and animal welfare, compared to choices that varied only by price or animal welfare. Furthermore, greater activation differences in right dlPFC between choices that forced a tradeoff and choices that did not, indicated greater responsiveness to campaign advertising.

  5. Reduced prefrontal activation during verbal fluency task in chronic insomnia disorder: a multichannel near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sun JJ

    2017-06-01

    Full Text Available Jing-Jing Sun,1,2 Xiao-Min Liu,2 Chen-Yu Shen,2 Xiao-Qian Zhang,1,2 Gao-Xiang Sun,2 Kun Feng,2 Bo Xu,2 Xia-Jin Ren,1,2 Xiang-Yun Ma,1,2 Po-Zi Liu2 1Medical Center, Tsinghua University, Beijing, China, 2Department of Psychiatry, YuQuan Hospital, Tsinghua University, Beijing, China Purpose: Daytime complaints such as memory and attention deficits and failure to accomplish daily tasks are common in insomnia patients. However, objective psychological tests to detect cognitive impairment are equivocal. Neural function associated with cognitive performance may explain the discrepancy. The aim of this study was to investigate the hemodynamic response patterns of patients with chronic insomnia disorder (CID using the noninvasive and low-cost functional neuroimaging technique of multichannel near-infrared spectroscopy (NIRS in order to identify changes of neural function associated with cognitive performance.Patients and methods: Twenty-four CID patients and twenty-five healthy controls matched for age, right-hand dominance, educational level, and gender were examined during verbal fluency tasks (VFT using NIRS. A covariance analysis was conducted to analyze differences of oxygenated hemoglobin (oxy-Hb changes in prefrontal cortex (PFC between the two groups and reduce the influence of the severity of depression. Pearson correlation coeffcients were calculated to examine the relationship between the oxy-Hb changes, with the severity of insomnia and depressive symptoms assessed by the Pittsburgh Sleep Quality Index (PSQI and the Hamilton Rating Scale for Depression (HAMD.Results: The number of words generated during the VFT in CID groups showed no statistical differences with healthy controls. CID patients showed hypoactivation in the PFC during the cognitive task. In addition, we found that the function of left orbitofrontal cortex (OFC during the VFT was significantly negatively correlated with the PSQI scores and the function of right dorsolateral PFC

  6. Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy

    Science.gov (United States)

    Power, Sarah D.; Falk, Tiago H.; Chau, Tom

    2010-04-01

    Near-infrared spectroscopy (NIRS) has recently been investigated as a non-invasive brain-computer interface (BCI). In particular, previous research has shown that NIRS signals recorded from the motor cortex during left- and right-hand imagery can be distinguished, providing a basis for a two-choice NIRS-BCI. In this study, we investigated the feasibility of an alternative two-choice NIRS-BCI paradigm based on the classification of prefrontal activity due to two cognitive tasks, specifically mental arithmetic and music imagery. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations (International 10-20 System) while ten able-bodied adults performed mental arithmetic and music imagery within a synchronous shape-matching paradigm. With the 18 filtered AC signals, we created task- and subject-specific maximum likelihood classifiers using hidden Markov models. Mental arithmetic and music imagery were classified with an average accuracy of 77.2% ± 7.0 across participants, with all participants significantly exceeding chance accuracies. The results suggest the potential of a two-choice NIRS-BCI based on cognitive rather than motor tasks.

  7. Recovery from Unrecognized Sleep Loss Accumulated in Daily Life Improved Mood Regulation via Prefrontal Suppression of Amygdala Activity

    Directory of Open Access Journals (Sweden)

    Yuki Motomura

    2017-06-01

    Full Text Available Many modern people suffer from sleep debt that has accumulated in everyday life but is not subjectively noticed [potential sleep debt (PSD]. Our hypothesis for this study was that resolution of PSD through sleep extension optimizes mood regulation by altering the functional connectivity between the amygdala and prefrontal cortex. Fifteen healthy male participants underwent an experiment consisting of a baseline (BL evaluation followed by two successive interventions, namely, a 9-day sleep extension followed by one night of total sleep deprivation (TSD. Tests performed before and after the interventions included a questionnaire on negative mood and neuroimaging with arterial spin labeling MRI for evaluating regional cerebral blood flow (rCBF and functional connectivity. Negative mood and amygdala rCBF were significantly reduced after sleep extension compared with BL. The amygdala had a significant negative functional connectivity with the medial prefrontal cortex (FCamg–MPFC, and this negative connectivity was greater after sleep extension than at BL. After TSD, these indices reverted to the same level as at BL. An additional path analysis with structural equation modeling showed that the FCamg–MPFC significantly explained the amygdala rCBF and that the amygdala rCBF significantly explained the negative mood. These findings suggest that the use of our sleep extension protocol normalized amygdala activity via negative amygdala–MPFC functional connectivity. The resolution of unnoticed PSD may improve mood by enhancing frontal suppression of hyperactivity in the amygdala caused by PSD accumulating in everyday life.

  8. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder.

    Science.gov (United States)

    Le, Thang M; Borghi, John A; Kujawa, Autumn J; Klein, Daniel N; Leung, Hoi-Chung

    2017-01-01

    The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by

  9. The effects of left and right monocular viewing on hemispheric activation.

    Science.gov (United States)

    Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M

    2018-03-01

    Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.

  10. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole

    2017-01-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim...... a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest...... that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead...

  11. The regional neuronal activity in left posterior middle temporal gyrus is correlated with the severity of chronic aphasia

    Directory of Open Access Journals (Sweden)

    Li J

    2017-07-01

    Full Text Available Jianlin Li,1,* Dunren Du,2,* Wei Gao,1 Xichun Sun,3 Haizhu Xie,1 Gang Zhang,1 Jian Li,1 Honglun Li,1 Kefeng Li4 1Department of Radiology, Yantai Yuhuangding Hospital, 2Department of Radiology, Yantai Laishan Branch Hospital of Yuhuangding Hospital, Medical College of Qingdao University, 3Department of Radiology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China; 4School of Medicine, University of California, San Diego, CA, USA *These authors contributed equally to this work Background: Aphasia is one of the most disabling cognitive deficits affecting >2 million people in the USA. The neuroimaging characteristics of chronic aphasic patients (>6 months post onset remain largely unknown.Objective: The objective of this study was to investigate the regional signal changes of spontaneous neuronal activity of brain and the inter-regional connectivity in chronic aphasia. Materials and methods: Resting-state blood oxygenation level-dependent functional magnetic resonance imaging (fMRI was used to obtain fMRI data from 17 chronic aphasic patients and 20 healthy control subjects in a Siemens Verio 3.0T MR Scanner. The amplitude of low-frequency fluctuation (ALFF was determined, which directly reflects the regional neuronal activity. The functional connectivity (FC of fMRI was assessed using a seed voxel linear correlation approach. The severity of aphasia was evaluated by aphasia quotient (AQ scores obtained from Western Aphasia Battery test.Results: Compared with normal subjects, aphasic patients showed decreased ALFF values in the regions of left posterior middle temporal gyrus (PMTG, left medial prefrontal gyrus, and right cerebellum. The ALFF values in left PMTG showed strong positive correlation with the AQ score (coefficient r=0.79, P<0.05. There was a positive FC in chronic aphasia between left PMTG and left inferior temporal gyrus (BA20, fusiform gyrus (BA37, and inferior frontal gyrus (BA47\\45\\44. Conclusion: Left PMTG might play

  12. Differences in steady-state glutamate levels and variability between 'non-task-active' conditions: Evidence from 1H fMRS of the prefrontal cortex.

    Science.gov (United States)

    Lynn, Jonathan; Woodcock, Eric A; Anand, Chaitali; Khatib, Dalal; Stanley, Jeffrey A

    2018-02-05

    Proton functional magnetic resonance spectroscopy ( 1 H fMRS) is a noninvasive neuroimaging technique capable of detecting dynamic changes in glutamate related to task-related demands at a temporal resolution under 1 min. Several recent 1 H fMRS studies demonstrated elevated steady-state levels of glutamate of 2% or greater during different 'task-active' conditions, relative to a 'non-task-active' control condition. However, the 'control' condition from these studies does vary with respect to the degree of constraining behavior, which may lead to different glutamate levels or variability between 'control' conditions. The purpose of this 1 H fMRS study was to compare the steady-state levels and variability of glutamate in the left dorsolateral prefrontal cortex (dlPFC) of 16 healthy adults across four different putative 'non-task-active' conditions: relaxed with eyes closed, passive visual fixation crosshair, visual flashing checkerboard, and finger tapping. Results showed significantly lower glutamate levels during the passive visual fixation crosshair than the visual flashing checkerboard and the finger tapping conditions. Moreover, glutamate was significantly less variable during the passive visual fixation crosshair and the visual flashing checkerboard than the relaxed eyes closed condition. Of the four conditions, the passive visual fixation crosshair condition demonstrated the lowest and least variable glutamate levels potentially reflecting the least dlPFC engagement, but greatest behavioral constraint. These results emphasize the importance of selecting a proper 'control' condition to reflect accurately a 'non-task-active' steady-state level of glutamate with minimal variability during 1 H MRS investigations. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Exposure to Blue Light Increases Subsequent Functional Activation of the Prefrontal Cortex During Performance of a Working Memory Task.

    Science.gov (United States)

    Alkozei, Anna; Smith, Ryan; Pisner, Derek A; Vanuk, John R; Berryhill, Sarah M; Fridman, Andrew; Shane, Bradley R; Knight, Sara A; Killgore, William D S

    2016-09-01

    Prolonged exposure to blue wavelength light has been shown to have an alerting effect, and enhances performance on cognitive tasks. A small number of studies have also shown that relatively short exposure to blue light leads to changes in functional brain responses during the period of exposure. The extent to which blue light continues to affect brain functioning during a cognitively challenging task after cessation of longer periods of exposure (i.e., roughly 30 minutes or longer), however, has not been fully investigated. A total of 35 healthy participants (18 female) were exposed to either blue (469 nm) (n = 17) or amber (578 nm) (n = 18) wavelength light for 30 minutes in a darkened room, followed immediately by functional magnetic resonance imaging (fMRI) while undergoing a working memory task (N-back task). Participants in the blue light condition were faster in their responses on the N-back task and showed increased activation in the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex compared to those in the amber control light condition. Furthermore, greater activation within the VLPFC was correlated with faster N-back response times. This is the first study to suggest that a relatively brief, single exposure to blue light has a subsequent beneficial effect on working memory performance, even after cessation of exposure, and leads to temporarily persisting functional brain changes within prefrontal brain regions associated with executive functions. These findings may have broader implication for using blue-enriched light in a variety of work settings where alertness and quick decision-making are important. © 2016 Associated Professional Sleep Societies, LLC.

  14. Variants of contextual fear conditioning induce differential patterns of Egr-1 activity within the young adult prefrontal cortex.

    Science.gov (United States)

    Chakraborty, T; Asok, A; Stanton, M E; Rosen, J B

    2016-04-01

    Contextual fear conditioning is a form of associative learning where animals must experience a context before they can associate it with an aversive stimulus. Single-trial contextual fear conditioning (sCFC) and the context preexposure facilitation effect (CPFE) are two variants of CFC where learning about the context is temporally contiguous (sCFC) with or separated (CPFE) from receiving a footshock in that context. Neural activity within CA1 of the dorsal hippocampus (CA1), amygdala (LA), and prefrontal cortex (PFC) may play a critical role when animals learn to associate a context with a footshock (i.e., training). Previous studies from our lab have found that early-growth-response gene 1 (Egr-1), an immediate early gene, exhibits unique patterns of activity within regions of the PFC following training in sCFC and the CPFE of juvenile rats. In the present study, we extended our studies by examining Egr-1 expression in young adult rats to determine (1) if our previous work reflected changes unique to development or extend into adulthood and (2) to contrast expression profiles between sCFC and the CPFE. Rats that learned context fear with sCFC showed increased Egr-1 in the anterior cingulate, orbitofrontal and infralimbic cortices relative to non-associative controls following training, but expression in prelimbic cortex did not differ between fear conditioned and non-associative controls. In contrast, rats trained in the CPFE also showed increased Egr-1 in all the prefrontal cortex regions, including prelimbic cortex. These findings replicate our previous findings in juveniles and suggest that Egr-1 in specific PFC subregions may be uniquely involved in learning context-fear in the CPFE compared to sCFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Prefrontal θ-Burst Stimulation Disrupts the Organizing Influence of Active Short-Term Retrieval on Episodic Memory.

    Science.gov (United States)

    Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J

    2018-01-01

    Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.

  16. Correlation between prefrontal cortex activity during working memory tasks and natural mood independent of personality effects: an optical topography study.

    Science.gov (United States)

    Aoki, Ryuta; Sato, Hiroki; Katura, Takusige; Matsuda, Ryoichi; Koizumi, Hideaki

    2013-04-30

    Interactions between mood and cognition have drawn much attention in the fields of psychology and neuroscience. Recent neuroimaging studies have examined a neural basis of the mood-cognition interaction that which emphasize the role of the prefrontal cortex (PFC). Although these studies have shown that natural mood variations among participants are correlated with PFC activity during cognitive tasks, they did not control for personality differences. Our aim in this study was to clarify the relationship between natural mood and PFC activity by partialling out the effects of personality. Forty healthy adults completed self-report questionnaires assessing natural mood (the Profile of Mood States) and personality (the NEO Five-Factor Inventory and the Behavioral Inhibition/Activation Systems scales). They performed verbal and spatial working memory (WM) tasks while their PFC activity was measured using optical topography, a non-invasive, low-constraint neuroimaging tool. Correlation analysis showed that the level of negative mood was inversely associated with PFC activity during the verbal WM task, which replicated our previous findings. Furthermore, the negative correlation between negative mood and PFC activity remained significant after controlling for participants' personality traits, suggesting that natural mood is an independent contributing factor of PFC activity during verbal WM tasks. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. From Blame to Punishment: Disrupting Prefrontal Cortex Activity Reveals Norm Enforcement Mechanisms.

    Science.gov (United States)

    Buckholtz, Joshua W; Martin, Justin W; Treadway, Michael T; Jan, Katherine; Zald, David H; Jones, Owen; Marois, René

    2015-09-23

    The social welfare provided by cooperation depends on the enforcement of social norms. Determining blameworthiness and assigning a deserved punishment are two cognitive cornerstones of norm enforcement. Although prior work has implicated the dorsolateral prefrontal cortex (DLPFC) in norm-based judgments, the relative contribution of this region to blameworthiness and punishment decisions remains poorly understood. Here, we used repetitive transcranial magnetic stimulation (rTMS) and fMRI to determine the specific role of DLPFC function in norm-enforcement behavior. DLPFC rTMS reduced punishment for wrongful acts without affecting blameworthiness ratings, and fMRI revealed punishment-selective DLPFC recruitment, suggesting that these two facets of norm-based decision making are neurobiologically dissociable. Finally, we show that DLPFC rTMS affects punishment decision making by altering the integration of information about culpability and harm. Together, these findings reveal a selective, causal role for DLPFC in norm enforcement: representational integration of the distinct information streams used to make punishment decisions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction.

    Directory of Open Access Journals (Sweden)

    Jörg Lesting

    Full Text Available Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction.

  19. Release of premotor activity after repetitive transcranial magnetic stimulation of prefrontal cortex.

    Science.gov (United States)

    Gangitano, Massimo; Mottaghy, Felix M; Pascual-Leone, Alvaro

    2008-01-01

    In the present study we aimed to explore by means of repetitive transcranial magnetic stimulation (rTMS) the reciprocal influences between prefrontal cortex (PFC) and premotor cortex (PMC). Subjects were asked to observe on a computer monitor different pictures representing manipulations of different kind of tools. They had to produce a movement (go condition) or to keep the resting position (no-go condition) at the appearance of different cue signals represented by different colors shown alternatively on the hands manipulating the tools or on the picture background. Motor evoked potentials (MEPs) were collected at the offset of the visual stimuli before and after a 10 minute, 1 Hz rTMS train applied to the dorsolateral PFC (Experiment 1), to the PMC (Experiment 2) or to the primary motor cortex (Experiment 3). Following rTMS to the PFC, MEPs increased in the go condition when the cue for the go command was presented on the hand. In contrast, following rTMS to the PMC, in the same condition, MEPs were decreased. rTMS to the primary motor cortex did not produce any modulation. Results are discussed according to the presence of a visual-motor matching system in the PMC and to the role of the PFC in the attention-related processes. We hypothesize that the perceptual analysis for action selection within the PFC was modulated by rTMS and its temporary functional inactivation in turn influenced the premotor areas for motor programming.

  20. Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder. A regional cerebral blood flow study

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Friberg, L

    1991-01-01

    To measure prefrontal and subcortical activity during a cognitive task, we examined 19 newly diagnosed schizophrenics and patients with schizophreniform psychosis. Seven healthy volunteers served as controls. The patients were drug naive or had received neuroleptics for a few days only. Cerebral ...

  1. How stable is activation in the amygdala and prefrontal cortex in adolescence? A study of emotional face processing across three measurements

    NARCIS (Netherlands)

    van den Bulk, B.G.; Koolschijn, P.C.M.P.; Meens, P.H.F.; van Lang, N.D.J.; van der Wee, N.J.A.; Rombouts, S.A.R.B.; Vermeiren, R.R.J.M.; Crone, E.A.

    2013-01-01

    Prior developmental functional magnetic resonance imaging (fMRI) studies have demonstrated elevated activation patterns in the amygdala and prefrontal cortex (PFC) in response to viewing emotional faces. As adolescence is a time of substantial variability in mood and emotional responsiveness, the

  2. Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex.

    Science.gov (United States)

    Sun, Ninglei; Chi, Ning; Lauzon, Nicole; Bishop, Stephanie; Tan, Huibing; Laviolette, Steven R

    2011-12-01

    The medial prefrontal cortex (mPFC) comprises an important component in the neural circuitry underlying drug-related associative learning and memory processing. Neuronal activation within mPFC circuits is correlated with the recall of opiate-related drug-taking experiences in both humans and other animals. Using an unbiased associative place conditioning procedure, we recorded mPFC neuronal populations during the acquisition, recall, and extinction phases of morphine-related associative learning and memory. Our analyses revealed that mPFC neurons show increased activity both in terms of tonic and phasic activity patterns during the acquisition phase of opiate reward-related memory and demonstrate stimulus-locked associative activity changes in real time, during the recall of opiate reward memories. Interestingly, mPFC neuronal populations demonstrated divergent patterns of bursting activity during the acquisition versus recall phases of newly acquired opiate reward memory, versus the extinction of these memories, with strongly increased bursting during the recall of an extinction memory and no associative bursting during the recall of a newly acquired opiate reward memory. Our results demonstrate that neurons within the mPFC are involved in both the acquisition, recall, and extinction of opiate-related reward memories, showing unique patterns of tonic and phasic activity patterns during these separate components of the opiate-related reward learning and memory recall.

  3. Neural activity in ventral medial prefrontal cortex is modulated more before approach than avoidance during reinforced and extinction trial blocks.

    Science.gov (United States)

    Gentry, Ronny N; Roesch, Matthew R

    2018-04-16

    Ventromedial prefrontal cortex (vmPFC) is thought to provide regulatory control over Pavlovian fear responses and has recently been implicated in appetitive approach behavior, but much less is known about its role in contexts where appetitive and aversive outcomes can be obtained and avoided, respectively. To address this issue, we recorded from single neurons in vmPFC while male rats performed our combined approach and avoidance task under reinforced and non-reinforced (extinction) conditions. Surprisingly, we found that cues predicting reward modulated cell firing in vmPFC more often and more robustly than cues preceding avoidable shock; additionally, firing of vmPFC neurons was both response (press or no-press) and outcome (reinforced or extinction) selective. These results suggest a complex role for vmPFC in regulating behavior and supports its role in appetitive contexts during both reinforced and non-reinforced conditions. SIGNIFICANCE STATEMENT Selecting context-appropriate behaviors to gain reward or avoid punishment is critical for survival. While the role of ventromedial prefrontal cortex (vmPFC) in mediating fear responses is well-established, vmPFC has also been implicated in the regulation of reward-guided approach and extinction. Many studies have used indirect methods and simple behavioral procedures to study vmPFC, which leaves the literature incomplete. We recorded vmFPC neural activity during a complex cue-driven combined approach and avoidance task and during extinction. Surprisingly, we found very little vmPFC modulation to cues predicting avoidable shock, while cues predicting reward approach robustly modulated vmPFC firing in a response- and outcome-selective manner. This suggests a more complex role for vmPFC than current theories suggest, specifically regarding context-specific behavioral optimization. Copyright © 2018 the authors.

  4. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    Science.gov (United States)

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity

    Science.gov (United States)

    Pinti, Paola; Cardone, Daniela; Merla, Arcangelo

    2015-12-01

    Functional Near Infrared-Spectroscopy (fNIRS) represents a powerful tool to non-invasively study task-evoked brain activity. fNIRS assessment of cortical activity may suffer for contamination by physiological noises of different origin (e.g. heart beat, respiration, blood pressure, skin blood flow), both task-evoked and spontaneous. Spontaneous changes occur at different time scales and, even if they are not directly elicited by tasks, their amplitude may result task-modulated. In this study, concentration changes of hemoglobin were recorded over the prefrontal cortex while simultaneously recording the facial temperature variations of the participants through functional infrared thermal (fIR) imaging. fIR imaging provides touch-less estimation of the thermal expression of peripheral autonomic. Wavelet analysis revealed task-modulation of the very low frequency (VLF) components of both fNIRS and fIR signals and strong coherence between them. Our results indicate that subjective cognitive and autonomic activities are intimately linked and that the VLF component of the fNIRS signal is affected by the autonomic activity elicited by the cognitive task. Moreover, we showed that task-modulated changes in vascular tone occur both at a superficial and at larger depth in the brain. Combined use of fNIRS and fIR imaging can effectively quantify the impact of VLF autonomic activity on the fNIRS signals.

  6. Reduced prefrontal activation during working and long-term memory tasks and impaired patient-reported cognition among cancer survivors postchemotherapy compared with healthy controls.

    Science.gov (United States)

    Wang, Lei; Apple, Alexandra C; Schroeder, Matthew P; Ryals, Anthony J; Voss, Joel L; Gitelman, Darren; Sweet, Jerry J; Butt, Zeeshan A; Cella, David; Wagner, Lynne I

    2016-01-15

    Patients who receive adjuvant chemotherapy have reported cognitive impairments that may last for years after the completion of treatment. Working memory-related and long-term memory-related changes in this population are not well understood. The objective of this study was to demonstrate that cancer-related cognitive impairments are associated with the under recruitment of brain regions involved in working and recognition memory compared with controls. Oncology patients (n = 15) who were receiving adjuvant chemotherapy and had evidence of cognitive impairment according to neuropsychological testing and self-report and a group of age-matched, education group-matched, cognitively normal control participants (n = 14) underwent functional magnetic resonance imaging. During functional magnetic resonance imaging, participants performed a nonverbal n-back working memory task and a visual recognition task. On the working memory task, when 1-back and 2-back data were averaged and contrasted with 0-back data, significantly reduced activation was observed in the right dorsolateral prefrontal cortex for oncology patients versus controls. On the recognition task, oncology patients displayed decreased activity of the left-middle hippocampus compared with controls. Neuroimaging results were not associated with patient-reported cognition. Decreased recruitment of brain regions associated with the encoding of working memory and recognition memory was observed in the oncology patients compared with the control group. These results suggest that there is a reduction in neural functioning postchemotherapy and corroborate patient-reported cognitive difficulties after cancer treatment, although a direct association was not observed. Cancer 2016;122:258-268. © 2015 American Cancer Society. © 2015 American Cancer Society.

  7. Neuronal activity in primate prefrontal cortex related to goal-directed behavior during auditory working memory tasks.

    Science.gov (United States)

    Huang, Ying; Brosch, Michael

    2016-06-01

    Prefrontal cortex (PFC) has been documented to play critical roles in goal-directed behaviors, like representing goal-relevant events and working memory (WM). However, neurophysiological evidence for such roles of PFC has been obtained mainly with visual tasks but rarely with auditory tasks. In the present study, we tested roles of PFC in auditory goal-directed behaviors by recording local field potentials in the auditory region of left ventrolateral PFC while a monkey performed auditory WM tasks. The tasks consisted of multiple events and required the monkey to change its mental states to achieve the reward. The events were auditory and visual stimuli, as well as specific actions. Mental states were engaging in the tasks and holding task-relevant information in auditory WM. We found that, although based on recordings from one hemisphere in one monkey only, PFC represented multiple events that were important for achieving reward, including auditory and visual stimuli like turning on and off an LED, as well as bar touch. The responses to auditory events depended on the tasks and on the context of the tasks. This provides support for the idea that neuronal representations in PFC are flexible and can be related to the behavioral meaning of stimuli. We also found that engaging in the tasks and holding information in auditory WM were associated with persistent changes of slow potentials, both of which are essential for auditory goal-directed behaviors. Our study, on a single hemisphere in a single monkey, reveals roles of PFC in auditory goal-directed behaviors similar to those in visual goal-directed behaviors, suggesting that functions of PFC in goal-directed behaviors are probably common across the auditory and visual modality. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Lee, Hweeling

    2017-01-01

    -parietal areas integrating the evidence into a decision variable that is compared to a decisional threshold. This concurrent transcranial magnetic stimulation (TMS)-fMRI study applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS) to investigate the causal influence of IPS...... on the neural systems involved in perceptual decision-making. Participants had to detect visual signals at threshold intensity that were presented in their left lower visual field on 50% of the trials. Critically, we adjusted the signal strength such that participants failed to detect the visual stimulus...

  9. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly

    Directory of Open Access Journals (Sweden)

    Ruud H. Knols

    2017-11-01

    Full Text Available Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON. Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model were assessed together with measures of the achieved game level, reaction times, (in- correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02% assessed with functional near infrared spectroscopy (fNIRS (n = 5 and EEG power (n = 10 was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1–7 of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8–10, for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1, where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly (p < 0.001 lower, compared to the left prefrontal cortex. Four participants yielded significant lower rS02% measures after exergaming with the ALERT games (p < 0.000, but not with the SELECT games. EEG recordings of theta power significantly decreased in the averaged ~0.25–0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively

  10. Investigating the Usability and Acute Effects of a Bedside Video Console to Prefrontal Cortical Activity Alterations: A Preclinical Study in Healthy Elderly.

    Science.gov (United States)

    Knols, Ruud H; Swanenburg, Jaap; De Bon, Dino; Gennaro, Federico; Wolf, Martin; Krüger, Bernard; Bettex, Dominique; de Bruin, Eling D

    2017-01-01

    Elderly people at risk of developing cognitive decline; e.g., following surgery, may benefit from structured, challenging, and repetitive cognitive video training. This study assessed usability and acute effects of a newly developed bedside console (COPHYCON). Fifteen healthy elderly individuals performed a one-time 80-min intervention, including cognitive video games aimed at improving awareness and selective attention. Perceived usefulness and perceived ease of use (Technology Acceptance Model) were assessed together with measures of the achieved game level, reaction times, (in-) correct responses during ALERT and SELECT game play. Further, prefrontal cortical involvement of the regional cerebral hemoglobin saturation (rS02%) assessed with functional near infrared spectroscopy (fNIRS) ( n = 5) and EEG power ( n = 10) was analyzed. All participants completed the study without any adverse events. Perceived usefulness and perceived ease of use (TAM scores range 1-7) of the system varied between 3.9 and 6.3. The game levels reached for awareness varied between 9 and 11 (initial score 8-10), for reaction speed between 439 and 469 ms, and for correct responses between 74.1 and 78.8%. The highest level for the selective attention games was 2 (initial score 1), where reaction speed varied between 439 and 469 ms, correct responses between 96.2 and 98.5%, respectively. The decrease of rS02% in the right prefrontal cortex during gameplay was significantly ( p games ( p games. EEG recordings of theta power significantly decreased in the averaged ~0.25-0.75 time interval for the left prefrontal cortex sensor across the cognitive game levels between the ALERT 1 and SELECT 1, as well as between SELECT 1 and 2 games. Participants rated the usability of the COPHYCON training positively. Further results indicate that video gaming may be an effective measure to affect prefrontal cortical functioning in elderly. The results warrant a clinical explorative study investigating the

  11. β-Carboline harmine reverses the effects induced by stress on behaviour and citrate synthase activity in the rat prefrontal cortex.

    Science.gov (United States)

    Abelaira, Helena Mendes; Réus, Gislaine Zilli; Scaini, Giselli; Streck, Emilio Luiz; Crippa, José Alexandre; Quevedo, João

    2013-12-01

    The present study was aimed at evaluating the effects of the administration of β-carboline harmine on behaviour and citrate synthase activity in the brain of rats exposed to chronic mild stress (CMS) procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days, then memory, anhedonia and citrate synthase activity were assessed. Result Our findings demonstrated that stressed rats treated with saline increased the sucrose intake, and the stressed rats treated with harmine reversed this effect. Neither stress nor harmine treatment altered memory performance in rats. In addition, chronic stressful situations induced increase in citrate synthase activity in the prefrontal cortex, but not in the hippocampus and striatum. Treatment with harmine reversed the increase in citrate synthase activity in the prefrontal cortex. These findings support the hypothesis that harmine could be involved in controlling the energy metabolism.

  12. Perceiving emotions in human-human and human-animal interactions: Hemodynamic prefrontal activity (fNIRS) and empathic concern.

    Science.gov (United States)

    Vanutelli, Maria Elide; Balconi, Michela

    2015-09-25

    In the last years social neuroscience research attempted to identify the neural networks underlying the human ability to perceive others' emotions, a core process in establishing meaningful social bonds. A large amount of papers arose and identified common and specific empathy-based networks with respect to stimulus type and task. Despite the great majority of studies focused on human-human contexts, we do not establish relations with only other humans, but also with non-human animals. The aim of the present work was to explore the brain mechanisms involved in empathic concern for people who interacts with both peers and other species. Participants have been assessed by functional near-infrared spectroscopy (fNIRS) while viewing pictures depicting humans interacting with both other men and women (human-human condition: HH), or with dogs and cats (human-animal: HA). Results showed that aggressive HH interactions elicited greater prefrontal activity (PFC) than HA ones while, when considering HA interactions, friendly ones were related to higher cortical activity. Finally, oxy (O2Hb) and deoxyhemoglobin (HHb) increasing related to the processing of aggressive interactions positively correlated with different empathic measures, within more specific brain regions. Results were elucidated with respect to available evidence on emotion perception, empathic neural mechanisms and their functional meaning for human-animal contexts. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Self-distancing improves interpersonal perceptions and behavior by decreasing medial prefrontal cortex activity during the provision of criticism.

    Science.gov (United States)

    Leitner, Jordan B; Ayduk, Ozlem; Mendoza-Denton, Rodolfo; Magerman, Adam; Amey, Rachel; Kross, Ethan; Forbes, Chad E

    2017-04-01

    Previous research suggests that people show increased self-referential processing when they provide criticism to others, and that this self-referential processing can have negative effects on interpersonal perceptions and behavior. The current research hypothesized that adopting a self-distanced perspective (i.e. thinking about a situation from a non-first person point of view), as compared with a typical self-immersed perspective (i.e. thinking about a situation from a first-person point of view), would reduce self-referential processing during the provision of criticism, and in turn improve interpersonal perceptions and behavior. We tested this hypothesis in an interracial context since research suggests that self-referential processing plays a role in damaging interracial relations. White participants prepared for mentorship from a self-immersed or self-distanced perspective. They then conveyed negative and positive evaluations to a Black mentee while electroencephalogram (EEG) was recorded. Source analysis revealed that priming a self-distanced (vs self-immersed) perspective predicted decreased activity in regions linked to self-referential processing (medial prefrontal cortex; MPFC) when providing negative evaluations. This decreased MPFC activity during negative evaluations, in turn, predicted verbal feedback that was perceived to be more positive, warm and helpful. Results suggest that self-distancing can improve interpersonal perceptions and behavior by decreasing self-referential processing during the provision of criticism. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. The temporal structure of resting-state brain activity in the medial prefrontal cortex predicts self-consciousness.

    Science.gov (United States)

    Huang, Zirui; Obara, Natsuho; Davis, Henry Hap; Pokorny, Johanna; Northoff, Georg

    2016-02-01

    Recent studies have demonstrated an overlap between the neural substrate of resting-state activity and self-related processing in the cortical midline structures (CMS). However, the neural and psychological mechanisms mediating this so-called "rest-self overlap" remain unclear. To investigate the neural mechanisms, we estimated the temporal structure of spontaneous/resting-state activity, e.g. its long-range temporal correlations or self-affinity across time as indexed by the power-law exponent (PLE). The PLE was obtained in resting-state activity in the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in 47 healthy subjects by functional magnetic resonance imaging (fMRI). We performed correlation analyses of the PLE and Revised Self-Consciousness Scale (SCSR) scores, which enabled us to access different dimensions of self-consciousness and specified rest-self overlap in a psychological regard. The PLE in the MPFC's resting-state activity correlated with private self-consciousness scores from the SCSR. Conversely, we found no correlation between the PLE and the other subscales of the SCSR (public, social) or between other resting-state measures, including functional connectivity, and the SCSR subscales. This is the first evidence for the association between the scale-free dynamics of resting-state activity in the CMS and the private dimension of self-consciousness. This finding implies the relationship of especially the private dimension of self with the temporal structure of resting-state activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dysfunctional amygdala activation and connectivity with the prefrontal cortex in current cocaine users

    NARCIS (Netherlands)

    Crunelle, C.L.; Kaag, A.M.; van den Munkhof, H.E.; Reneman, L.; Homberg, J.R.; Sabbe, B.; van den Brink, W.; van Wingen, G.

    2015-01-01

    OBJECTIVES: Stimulant use is associated with increased anxiety and a single administration of dexamphetamine increases amygdala activation to biologically salient stimuli in healthy individuals. Here, we investigate how current cocaine use affects amygdala activity and amygdala connectivity with the

  16. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  17. Mediodorsal Thalamic Neurons Mirror the Activity of Medial Prefrontal Neurons Responding to Movement and Reinforcement during a Dynamic DNMTP Task.

    Science.gov (United States)

    Miller, Rikki L A; Francoeur, Miranda J; Gibson, Brett M; Mair, Robert G

    2017-01-01

    The mediodorsal nucleus (MD) interacts with medial prefrontal cortex (mPFC) to support learning and adaptive decision-making. MD receives driver (layer 5) and modulatory (layer 6) projections from PFC and is the main source of driver thalamic projections to middle cortical layers of PFC. Little is known about the activity of MD neurons and their influence on PFC during decision-making. We recorded MD neurons in rats performing a dynamic delayed nonmatching to position (dDNMTP) task and compared results to a previous study of mPFC with the same task (Onos et al., 2016). Criterion event-related responses were observed for 22% (254/1179) of neurons recorded in MD, 237 (93%) of which exhibited activity consistent with mPFC response types. More MD than mPFC neurons exhibited responses related to movement (45% vs. 29%) and reinforcement (51% vs. 27%). MD had few responses related to lever presses, and none related to preparation or memory delay, which constituted 43% of event-related activity in mPFC. Comparison of averaged normalized population activity and population response times confirmed the broad similarity of common response types in MD and mPFC and revealed differences in the onset and offset of some response types. Our results show that MD represents information about actions and outcomes essential for decision-making during dDNMTP, consistent with evidence from lesion studies that MD supports reward-based learning and action-selection. These findings support the hypothesis that MD reinforces task-relevant neural activity in PFC that gives rise to adaptive behavior.

  18. Mapping Prefrontal Cortex Functions in Human Infancy

    Science.gov (United States)

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  19. The relationship between dorsolateral prefrontal activation and speech performance-based social anxiety using functional near infrared spectroscopy.

    Science.gov (United States)

    Glassman, Lisa H; Kuster, Anootnara T; Shaw, Jena A; Forman, Evan M; Izzetoglu, Meltem; Matteucci, Alyssa; Herbert, James D

    2017-06-01

    Functional near-infrared (fNIR) spectroscopy is a promising new technology that has demonstrated utility in the study of normal human cognition. We utilized fNIR spectroscopy to examine the effect of social anxiety and performance on hemodynamic activity in the dorsolateral prefrontal cortex (DLPFC). Socially phobic participants and non-clinical participants with varying levels of social anxiety completed a public speaking task in front of a small virtual audience while the DLPFC was being monitored by the fNIR device. The relationship between anxiety and both blood volume (BV) and deoxygenated hemoglobin (Hb) varied significantly as a function of speech performance, such that individuals with low social anxiety who performed well showed an increase in DLPFC activation relative to those who did not perform well. This result suggests that effortful thinking and/or efficient top-down inhibitory control may have been required to complete an impromptu speech task with good performance. In contrast, good performers who were highly socially anxious showed lower DLPFC activation relative to good performers who were low in social anxiety, suggesting autopilot thinking or less-effortful thinking. In poor performers, slight increases in DLPFC activation were observed from low to highly anxious individuals, which may reflect a shift from effortless thinking to heightened self-focused attention. Heightened self-focused attention, poor inhibitory control resulting in excessive fear or anxiety, or low motivation may lower performance. These results suggest that there can be different underlying mechanisms in the brain that affect the level of speech performance in individuals with varying degrees of social anxiety. This study highlights the utility of the fNIR device in the assessment of changes in DLPFC in response to exposure to realistic phobic stimuli, and further supports the potential utility of this technology in the study of the neurophysiology of anxiety disorders.

  20. Medial Prefrontal Cortex Activation Facilitates Re-Extinction of Fear in Rats

    Science.gov (United States)

    Chang, Chun-hui; Maren, Stephen

    2011-01-01

    It has been suggested that reduced infralimbic (IL) cortical activity contributes to impairments of fear extinction. We therefore explored whether pharmacological activation of the IL would facilitate extinction under conditions it normally fails (i.e., immediate extinction). Rats received auditory fear conditioning 1 h before extinction training.…

  1. Medial prefrontal cortex activation facilitates re-extinction of fear in rats

    OpenAIRE

    Chang, Chun-hui; Maren, Stephen

    2011-01-01

    It has been suggested that reduced infralimbic (IL) cortical activity contributes to impairments of fear extinction. We therefore explored whether pharmacological activation of the IL would facilitate extinction under conditions it normally fails (i.e., immediate extinction). Rats received auditory fear conditioning 1 h before extinction training. Immediately prior to extinction, rats received microinfusions into the IL of the GABAA receptor antagonist, picrotoxin, or the NMDA receptor partia...

  2. Contralateral white noise selectively changes left human auditory cortex activity in a lexical decision task.

    Science.gov (United States)

    Behne, Nicole; Wendt, Beate; Scheich, Henning; Brechmann, André

    2006-04-01

    In a previous study, we hypothesized that the approach of presenting information-bearing stimuli to one ear and noise to the other ear may be a general strategy to determine hemispheric specialization in auditory cortex (AC). In that study, we confirmed the dominant role of the right AC in directional categorization of frequency modulations by showing that fMRI activation of right but not left AC was sharply emphasized when masking noise was presented to the contralateral ear. Here, we tested this hypothesis using a lexical decision task supposed to be mainly processed in the left hemisphere. Subjects had to distinguish between pseudowords and natural words presented monaurally to the left or right ear either with or without white noise to the other ear. According to our hypothesis, we expected a strong effect of contralateral noise on fMRI activity in left AC. For the control conditions without noise, we found that activation in both auditory cortices was stronger on contralateral than on ipsilateral word stimulation consistent with a more influential contralateral than ipsilateral auditory pathway. Additional presentation of contralateral noise did not significantly change activation in right AC, whereas it led to a significant increase of activation in left AC compared with the condition without noise. This is consistent with a left hemispheric specialization for lexical decisions. Thus our results support the hypothesis that activation by ipsilateral information-bearing stimuli is upregulated mainly in the hemisphere specialized for a given task when noise is presented to the more influential contralateral ear.

  3. Acupuncture on GB34 activates the precentral gyrus and prefrontal cortex in Parkinson's disease

    NARCIS (Netherlands)

    Yeo, Sujung; Choe, I.H.; Noort, M.W.M.L. van den; Bosch, M.P.C.; Jahng, G.H.; Rosen, B.; Kim, S.H.; Lim, S.

    2014-01-01

    Background Acupuncture is increasingly used as an additional treatment for patients with Parkinson’s disease (PD). Methods In this functional magnetic resonance imaging study, brain activation in response to acupuncture in a group of 12 patients with PD was compared with a group of 12 healthy

  4. PREFRONTAL CORTEX ACTIVATION DURING STORY ENCODING/RETRIEVAL: A MULTI-CHANNEL FUNCTIONAL NEAR-INFRARED SPECTROSCOPY STUDY

    Directory of Open Access Journals (Sweden)

    Sara eBasso Moro

    2013-12-01

    Full Text Available Encoding, storage and retrieval constitute three fundamental stages in information processing and memory. They allow for the creation of new memory traces, the maintenance and the consolidation of these traces over time, and the access and recover of the stored information from short or long-term memory. Functional near-infrared spectroscopy (fNIRS is a non-invasive neuroimaging technique that measures concentration changes of oxygenated-hemoglobin (O2Hb and deoxygenated-hemoglobin (HHb in cortical microcirculation blood vessels by means of the characteristic absorption spectra of hemoglobin in the near-infrared range. In the present study, we monitored, using a sixteen-channel fNIRS system, the hemodynamic response during the encoding and retrieval processes (EP and RP, respectively over the prefrontal cortex (PFC of thirteen healthy subjects (27.2±2.6 y. while were performing the Logical Memory Test (LMT of the Wechsler Memory Scale. A LMT-related PFC activation was expected; specifically, it was hypothesized a neural dissociation between EP and RP. The results showed a heterogeneous O2Hb/HHb response over the mapped area during the EP and the RP, with a O2Hb progressive and prominent increment in ventrolateral PFC since the beginning of the EP. During the RP a broader activation, including the ventrolateral PFC, the dorsolateral PFC and the frontopolar cortex, was observed. This could be explained by the different contributions of the PFC regions in the EP and the RP. Considering the fNIRS applicability for the hemodynamic monitoring during the LMT performance, this study has demonstrated that fNIRS could be utilized as a valuable clinical diagnostic tool, and that it has the potential to be adopted in patients with cognitive disorders or slight working memory deficits.

  5. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    Science.gov (United States)

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release.

  6. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    OpenAIRE

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hy...

  7. Motion verb sentences activate left posterior middle temporal cortex despite static context

    DEFF Research Database (Denmark)

    Wallentin, M; Ellegaard Lund, Torben; Østergaard, Svend

    2005-01-01

    The left posterior middle temporal region, anterior to V5/MT, has been shown to be responsive both to images with implied motion, to simulated motion, and to motion verbs. In this study, we investigated whether sentence context alters the response of the left posterior middle temporal region....... 'Fictive motion' sentences are sentences in which an inanimate subject noun, semantically incapable of self movement, is coupled with a motion verb, yielding an apparent semantic contradiction (e.g. 'The path comes into the garden.'). However, this context yields no less activation in the left posterior...... middle temporal region than sentences in which the motion can be applied to the subject noun. We speculate that the left posterior middle temporal region activity in fictive motion sentences reflects the fact that the hearer applies motion to the depicted scenario by scanning it egocentrically...

  8. Discourse Production Following Injury to the Dorsolateral Prefrontal Cortex

    Science.gov (United States)

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC…

  9. Evidence for activation of histamine H-3 autoreceptors during handling stress in the prefrontal cortex of the rat

    NARCIS (Netherlands)

    Westerink, BHC; Cremers, TIFH; De Vries, JB; Liefers, H; Tran, N

    2002-01-01

    On-line microdialysis of histamine in 10-min samples of the prefrontal cortex of the conscious rat is described. The HPLC-fluorescent assay for histamine in dialysates has been significantly simplified by using only one postcolumn reagent line instead of the three reagent lines described in earlier

  10. Trace and Contextual Fear Conditioning Require Neural Activity and NMDA Receptor-Dependent Transmission in the Medial Prefrontal Cortex

    Science.gov (United States)

    Gilmartin, Marieke R.; Helmstetter, Fred J.

    2010-01-01

    The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a…

  11. Dopamine modulates persistent synaptic activity and enhances the signal-to-noise ratio in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Sven Kroener

    2009-08-01

    Full Text Available The importance of dopamine (DA for prefrontal cortical (PFC cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA neurons.We used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (> or = 1 microM concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 microM had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1-1 microM of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA's effects in an active network.Taken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning.

  12. Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Guillaume Martel

    Full Text Available Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD. Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR. Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.

  13. Rapid activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway by electroconvulsive shock in the rat prefrontal cortex is not associated with TrkB neurotrophin receptor activation

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Rantamäki, Tomi P J; Larsen, Marianne Hald

    2007-01-01

    , are important pathways triggered by TrkB autophosphorylation. 2. We have previously observed that chemical antidepressants induce a rapid activation of TrkB signaling in the rodent prefrontal cortex (PFC), which is likely a consequence of the stimulatory effect of antidepressants on BDNF synthesis. However...

  14. Is the self special in the dorsomedial prefrontal cortex? An fMRI study.

    Science.gov (United States)

    Yaoi, Ken; Osaka, Naoyuki; Osaka, Mariko

    2009-01-01

    In recent years, several neuroimaging studies have suggested that the neural basis of the self-referential process1 is special, especially in the medial prefrontal cortex (MPFC). However, it remains controversial whether activity of the MPFC (and other related brain regions) appears only during the self-referential process. We investigated the neural correlates during the processing of references to the self, close other (friend), and distant other (prime minister) using fMRI. In comparison with baseline findings, referential processing to the three kinds of persons defined above showed common activation patterns in the dorsomedial prefrontal cortex (DMPFC), left middle temporal gyrus, left angular gyrus, posterior cingulate cortex and right cerebellum. Additionally, percent changes in BOLD signal in five regions of interest demonstrated the same findings. The result indicated that DMPFC was not special for the self-referential process, while there are common neural bases for evaluating the personalities of the self and others.

  15. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  16. Organization of left-right coordination of neuronal activity in the mammalian spinal cord

    DEFF Research Database (Denmark)

    Shevtsova, Natalia A.; Talpalar, Adolfo E.; Markin, Sergey N.

    2015-01-01

    . In this study, we construct and analyse two computational models of spinal locomotor circuits consisting of left and right rhythm generators interacting bilaterally via several neuronal pathways mediated by different CINs. The CIN populations incorporated in the models include the genetically identified......Different locomotor gaits in mammals, such as walking or galloping, are produced by coordinated activity in neuronal circuits in the spinal cord. Coordination of neuronal activity between left and right sides of the cord is provided by commissural interneurons (CINs), whose axons cross the midline...... and the left-right synchronous hopping-like pattern in mutants lacking specific neuron classes, and speed-dependent asymmetric changes of flexor and extensor phase durations. The models provide insights into the architecture of spinal network and the organization of parallel inhibitory and excitatory CIN...

  17. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle.

    Science.gov (United States)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel; Brzezinska, Zofia; Klapcinska, Barbara; Galbo, Henrik; Gorski, Jan

    2010-09-03

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Detection of active left ventricular thrombosis during acute myocardial infarction using indium-111 platelet scintigraphy

    International Nuclear Information System (INIS)

    Ezekowitz, M.D.; Kellerman, D.J.; Smith, E.O.; Streitz, T.M.

    1984-01-01

    Platelet scintigraphy with radioactive indium-111 may be used both to identify and to reflect the activity of thrombin in vivo in man. Forty-one patients with acute myocardial infarction were studied for active left ventricular thrombosis by platelet scintigraphy and followed until in-hospital death, discharge, or same-admission cardiac surgery for evidence of systemic embolization. Group 1 (n . 29) had transmural myocardial infarctions, of which 21 were anterior and eight were inferior. Group 2 (n . 12) had subendocardial myocardial infarctions. Those with subendocardial and transmural inferior myocardial infarctions had neither left ventricular thrombosis nor emboli. Ten (48 percent) of 21 with anterior transmural myocardial infarctions had left ventricular thrombosis by platelet scintigraphy. Three with and one without such thrombosis by scintigraphy had acute neurologic episodes. In the group with anterior myocardial infarctions, seven of ten patients with and four of 11 without left ventricular thrombosis received heparin subcutaneously. We conclude that platelet scintigraphy may be used to monitor antiplatelet and anticoagulant therapy in patients with anterior transmural myocardial infarctions who are at risk for left ventricular thrombosis and systemic embolization

  19. Decreased prefrontal functional brain response during memory testing in women with Cushing's syndrome in remission.

    Science.gov (United States)

    Ragnarsson, Oskar; Stomby, Andreas; Dahlqvist, Per; Evang, Johan A; Ryberg, Mats; Olsson, Tommy; Bollerslev, Jens; Nyberg, Lars; Johannsson, Gudmundur

    2017-08-01

    Neurocognitive dysfunction is an important feature of Cushing's syndrome (CS). Our hypothesis was that patients with CS in remission have decreased functional brain responses in the prefrontal cortex and hippocampus during memory testing. In this cross-sectional study we included 19 women previously treated for CS and 19 controls matched for age, gender, and education. The median remission time was 7 (IQR 6-10) years. Brain activity was studied with functional magnetic resonance imaging during episodic- and working-memory tasks. The primary regions of interest were the prefrontal cortex and the hippocampus. A voxel-wise comparison of functional brain responses in patients and controls was performed. During episodic-memory encoding, patients displayed lower functional brain responses in the left and right prefrontal gyrus (pmemory retrieval, the patients displayed lower functional brain responses in several brain areas with the most predominant difference in the right prefrontal cortex (pmemory task, patients had lower response in the prefrontal cortices bilaterally (pmemory task compared with a simpler one. In conclusion, women with CS in long-term remission have reduced functional brain responses during episodic and working memory testing. This observation extends previous findings showing long-term adverse effects of severe hypercortisolaemia on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in the prefrontal cortex modulates cued fear learning, but not spatial working memory, in female rats.

    Science.gov (United States)

    Kirry, Adam J; Herbst, Matthew R; Poirier, Sarah E; Maskeri, Michelle M; Rothwell, Amy C; Twining, Robert C; Gilmartin, Marieke R

    2018-05-01

    A genetic polymorphism within the gene encoding the pituitary adenylate cyclase- activating polypeptide (PACAP) receptor type I (PAC1R) has recently been associated with hyper-reactivity to threat-related cues in women, but not men, with post-traumatic stress disorder (PTSD). PACAP is a highly conserved peptide, whose role in mediating adaptive physiological stress responses is well established. Far less is understood about the contribution of PACAP signaling in emotional learning and memory, particularly the encoding of fear to discrete cues. Moreover, a neurobiological substrate that may account for the observed link between PAC1R and PTSD in women, but not men, has yet to be identified. Sex differences in PACAP signaling during emotional learning could provide novel targets for the treatment of PTSD. Here we investigated the contribution of PAC1R signaling within the prefrontal cortex to the acquisition of cued fear in female and male rats. We used a variant of fear conditioning called trace fear conditioning, which requires sustained attention to fear cues and depends on working-memory like neuronal activity within the prefrontal cortex. We found that cued fear learning, but not spatial working memory, was impaired by administration of a PAC1R antagonist directly into the prelimbic area of the prefrontal cortex. This effect was specific to females. We also found that levels of mRNA for the PAC1R receptor in the prelimbic cortex were greater in females compared with males, and were highest during and immediately following the proestrus stage of the estrous cycle. Together, these results demonstrate a sex-specific role of PAC1R signaling in learning about threat-related cues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Storage of Verbal Associations Is Sufficient to Activate the Left Medial Temporal Lobe

    Directory of Open Access Journals (Sweden)

    Andrew R. Mayes

    1999-01-01

    Full Text Available Neuroimaging studies have shown that memory encoding activates the medial temporal lobe (MTL. Many believe that these activations are related to novelty but it remains unproven which is critical - novelty detection or the rich associative encoding it triggers. We examined MTL activation during verbal associative encoding using functional magnetic resonance imaging. First, associative encoding activated left posterior MTL more than single word encoding even though novelty detection was matched, indicating not only that associative encoding activates the MTL particularly strongly, but also that activation does not require novelty detection. Moreover, it remains to be convincingly shown that novelty detection alone does produce such activation. Second, repetitive associative encoding produced less MTL activation than initial associative encoding, indicating that priming of associative information reduces MTL activation. Third, re-encoding familiar associations in a well-established way had a minimal effect on both memory and MTL activation, indicating that MTL activation reflects storage of associations, not merely their initial representation.

  2. Relationship between plasma xanthine oxidoreductase activity and left ventricular ejection fraction and hypertrophy among cardiac patients.

    Directory of Open Access Journals (Sweden)

    Yuki Fujimura

    Full Text Available Xanthine oxidoreductase (XOR, which catalyzes purine catabolism, has two interconvertible forms, xanthine dehydrogenase and xanthine oxidase, the latter of which produces superoxide during uric acid (UA synthesis. An association between plasma XOR activity and cardiovascular and renal outcomes has been previously suggested. We investigated the potential association between cardiac parameters and plasma XOR activity among cardiology patients.Plasma XOR activity was measured by [13C2,15N2]xanthine coupled with liquid chromatography/triplequadrupole mass spectrometry. Among 270 patients who were not taking UA-lowering drugs, XOR activity was associated with body mass index (BMI, alanine aminotransferase (ALT, HbA1c and renal function. Although XOR activity was not associated with serum UA overall, patients with chronic kidney disease (CKD, those with higher XOR activity had higher serum UA among patients without CKD. Compared with patients with the lowest XOR activity quartile, those with higher three XOR activity quartiles more frequently had left ventricular hypertrophy. In addition, plasma XOR activity showed a U-shaped association with low left ventricular ejection fraction (LVEF and increased plasma B-type natriuretic peptide (BNP levels, and these associations were independent of age, gender, BMI, ALT, HbA1C, serum UA, and CKD stages.Among cardiac patients, left ventricular hypertrophy, low LVEF, and increased BNP were significantly associated with plasma XOR activity independent of various confounding factors. Whether pharmaceutical modification of plasma XOR activity might inhibit cardiac remodeling and improve cardiovascular outcome should be investigated in future studies.

  3. Perception of active head rotation in patients with severe left unilateral spatial neglect.

    Science.gov (United States)

    Kaibe, Shinobu; Okita, Manabu; Kaba, Hideto

    2017-07-01

    Unilateral spatial neglect is a common neurological syndrome following predominantly right hemisphere damage, and is characterized by a failure to perceive and report stimuli in the contralesional side of space. To test the reference shift hypothesis that contralesional spatial neglect in right-brain-damaged patients is attributed to a rightward deviation of the egocentric reference frame, we measured the final angular position to which controls and left-side neglect patients actively turned their head toward the left in response to a verbal instruction given from each of three locations-right, left, and front-in two conditions, with and without visual feedback. When neglect patients were asked to "look straight ahead", they deviated about 30° toward the right in the eyes-open condition. However, the rightward deviation was markedly reduced in the eyes-closed condition. Regardless of visual feedback, there was no significant difference between controls and neglect patients in the final angular position of active head rotation when the verbal instruction came from the subject's left or front side; however, the final angular position was significantly smaller in the neglect patients than in the controls when the verbal instruction was given from the right. These results support the contention that cervico-vestibular stimulation during active head rotation restores spatial remapping and sensori-motor correlations and so improves neglect without affecting the position of the egocentric reference; however, once left-side neglect patients respond to verbal instruction from the right side, they are unable to disengage attention from the hemispace, and the performance of head rotation is disturbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior

    Directory of Open Access Journals (Sweden)

    Ronald P Gaykema

    2014-07-01

    Full Text Available The medial prefrontal cortex (mPFC is implicated in aspects of executive function, that include the modulation of attentional and memory processes involved in goal selection. Food-seeking behavior has been shown to involve activation of the mPFC, both during the execution of strategies designed to obtain food and during the consumption of food itself. As these behaviors likely require differential engagement of the prefrontal cortex, we hypothesized that the pattern of neuronal activation would also be behavior dependent. In this study we describe, for the first time, the expression of Fos in different layers and cell types of the infralimbic/dorsal peduncular (IL/DP and prelimbic/anterior cingulate (PL/AC subdivisions of mouse mPFC following both the consumption of palatable food and following exploratory activity of the animal directed at obtaining food reward. While both manipulations led to increases of Fos expression in principal excitatory neurons relative to control, food-directed exploratory activity produced a significantly greater increase in Fos expression than observed in the food intake condition. Consequently, we hypothesized that mPFC interneuron activation would also be differentially engaged by these manipulations. Interestingly, Fos expression patterns differed substantially between treatments and interneuron subtype, illustrating how the differential engagement of subsets of mPFC interneurons depends on the behavioral state. In our experiments, both vasoactive intestinal peptide- and parvalbumin-expressing neurons showed enhanced Fos expression only during the food-dependent exploratory task and not during food intake. Conversely, elevations in arcuate and paraventricular hypothalamic fos expression were only observed following food intake and not following food driven exploration. Our data suggest that activation of select mPFC interneurons may be required to support high cognitive demand states while being dispensable during

  5. Inefficiency in self-organized attentional switching in the normal aging population is associated with decreased activity in the ventrolateral prefrontal cortex.

    Science.gov (United States)

    Hampshire, Adam; Gruszka, Aleksandra; Fallon, Sean J; Owen, Adrian M

    2008-09-01

    Studies of the aging brain have demonstrated that areas of the frontal cortex, along with their associated top-down executive control processes, are particularly prone to the neurodegenerative effects of age. Here, we investigate the effects of aging on brain and behavior using a novel task, which allows us to examine separate components of an individual's chosen strategy during routine problem solving. Our findings reveal that, contrary to previous suggestions of a specific decrease in cognitive flexibility, older participants show no increased level of perseveration to either the recently rewarded object or the recently relevant object category. In line with this lack of perseveration, lateral and medial regions of the orbito-frontal cortex, which are associated with inhibitory control and reward processing, appear to be functionally intact. Instead, a general loss of efficient problem-solving strategy is apparent with a concomitant decrease in neural activity in the ventrolateral prefrontal cortex and the posterior parietal cortex. The dorsolateral prefrontal cortex is also affected during problem solving, but age-related decline within this region appears to occur at a later stage.

  6. Distinctive Left Ventricular Activations Associated With ECG Pattern in Heart Failure Patients.

    Science.gov (United States)

    Derval, Nicolas; Duchateau, Josselin; Mahida, Saagar; Eschalier, Romain; Sacher, Frederic; Lumens, Joost; Cochet, Hubert; Denis, Arnaud; Pillois, Xavier; Yamashita, Seigo; Komatsu, Yuki; Ploux, Sylvain; Amraoui, Sana; Zemmoura, Adlane; Ritter, Philippe; Hocini, Mélèze; Haissaguerre, Michel; Jaïs, Pierre; Bordachar, Pierre

    2017-06-01

    In contrast to patients with left bundle branch block (LBBB), heart failure patients with narrow QRS and nonspecific intraventricular conduction delay (NICD) display a relatively limited response to cardiac resynchronization therapy. We sought to compare left ventricular (LV) activation patterns in heart failure patients with narrow QRS and NICD to patients with LBBB using high-density electroanatomic activation maps. Fifty-two heart failure patients (narrow QRS [n=18], LBBB [n=11], NICD [n=23]) underwent 3-dimensional electroanatomic mapping with a high density of mapping points (387±349 LV). Adjunctive scar imaging was available in 37 (71%) patients and was analyzed in relation to activation maps. LBBB patients typically demonstrated (1) a single LV breakthrough at the septum (38±15 ms post-QRS onset); (2) prolonged right-to-left transseptal activation with absence of direct LV Purkinje activity; (3) homogeneous propagation within the LV cavity; and (4) latest activation at the basal lateral LV. In comparison, both NICD and narrow QRS patients demonstrated (1) multiple LV breakthroughs along the posterior or anterior fascicles: narrow QRS versus LBBB, 5±2 versus 1±1; P =0.0004; NICD versus LBBB, 4±2 versus 1±1; P =0.001); (2) evidence of early/pre-QRS LV electrograms with Purkinje potentials; (3) rapid propagation in narrow QRS patients and more heterogeneous propagation in NICD patients; and (4) presence of limited areas of late activation associated with LV scar with high interindividual heterogeneity. In contrast to LBBB patients, narrow QRS and NICD patients are characterized by distinct mechanisms of LV activation, which may predict poor response to cardiac resynchronization therapy. © 2017 American Heart Association, Inc.

  7. Selective activation around the left occipito-temporal sulcus for words relative to pictures: Individual variability or false positives?

    NARCIS (Netherlands)

    Wright, Nicholas D.; Mechelli, Andrea; Noppeney, Uta; Veltman, Dick J.; Rombouts, Serge A. R. B.; Glensman, Janice; Haynes, John-Dylan; Price, Cathy J.

    2008-01-01

    We used high-resolution fMRI to investigate claims that learning to read r !sults in greater left occipito-temporal (OT) activation for written words relative to pictures of objects. In tl e first experiment, 9/16 subjects performing a one-back task showed activation in >= 1 left OT voxel for word:

  8. Applied Machine Learning Method to Predict Children With ADHD Using Prefrontal Cortex Activity: A Multicenter Study in Japan.

    Science.gov (United States)

    Yasumura, Akira; Omori, Mikimasa; Fukuda, Ayako; Takahashi, Junichi; Yasumura, Yukiko; Nakagawa, Eiji; Koike, Toshihide; Yamashita, Yushiro; Miyajima, Tasuku; Koeda, Tatsuya; Aihara, Masao; Tachimori, Hisateru; Inagaki, Masumi

    2017-11-01

    To establish valid, objective biomarkers for ADHD using machine learning. Machine learning was used to predict disorder severity from new brain function data, using a support vector machine (SVM). A multicenter approach was used to collect data for machine learning training, including behavioral and physiological indicators, age, and reverse Stroop task (RST) data from 108 children with ADHD and 108 typically developing (TD) children. Near-infrared spectroscopy (NIRS) was used to quantify change in prefrontal cortex oxygenated hemoglobin during RST. Verification data were from 62 children with ADHD and 37 TD children from six facilities in Japan. The SVM general performance results showed sensitivity of 88.71%, specificity of 83.78%, and an overall discrimination rate of 86.25%. A SVM using an objective index from RST may be useful as an auxiliary biomarker for diagnosis for children with ADHD.

  9. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  10. Involvement of neuronal and glial activities in control of the extracellular d-serine concentrations by the AMPA glutamate receptor in the mouse medial prefrontal cortex.

    Science.gov (United States)

    Ishiwata, Sayuri; Umino, Asami; Nishikawa, Toru

    2017-09-28

    It has been well accepted that d-serine may be an exclusive endogenous coagonist for the N-methyl-d-aspartate (NMDA)-type glutamate receptor in mammalian forebrain regions. We have recently found by using an in vivo dialysis method that an intra-medial prefrontal cortex infusion of S-α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (S-AMPA), a selective AMPA-type glutamate receptor agonist, causes a reduction in the extracellular levels of d-serine in a calcium-permeable AMPA receptor antagonist-sensitive manner. The inhibitory influence by the AMPA receptor on the extracellular d-serine, however, contradicts the data obtained from in vitro experiments that the AMPA receptor stimulation leads to facilitation of the d-serine liberation. This discrepancy appears to be due to the different cell setups between the in vivo and in vitro preparations. From the viewpoints of the previous reports indicating (1) the neuronal presence of d-serine synthesizing enzyme, serine racemase, and d-serine-like immunoreactivity and (2) the same high tissue concentrations of d-serine in the glia-enriched white matter and in the neuron-enriched gray matter of the mammalian neocortex, we have now investigated in the mouse medial prefrontal cortex, the effects of attenuation of neuronal and glial activities, by tetrodotoxin or fluorocitrate, respectively, on the S-AMPA-induced downregulation of the extracellular d-serine contents. In vivo dialysis studies revealed that a local infusion of tetrodotoxin or fluorocitrate eliminated the ability of S-AMPA given intra-cortically to cause a significant decrease in the dialysate concentrations of d-serine without affecting the elevating effects of S-AMPA on those of glycine, another intrinsic coagonist for the NMDA receptor. These findings suggest that the control by the AMPA receptor of the extracellular d-serine levels could be modulated by the neuronal and glial activities in the prefrontal cortex. It cannot be excluded that

  11. Rostral and caudal prefrontal contribution to creativity: A meta-analysis of functional imaging data

    Directory of Open Access Journals (Sweden)

    Gil eGonen-Yaacovi

    2013-08-01

    Full Text Available Creativity is of central importance for human civilization, yet its neurocognitive bases are poorly understood. The aim of the present study was to integrate existing functional imaging data by using the meta-analysis approach. We reviewed 34 functional imaging studies that reported activation foci during tasks assumed to engage creative thinking in healthy adults. A coordinate-based meta-analysis using Activation Likelihood Estimation (ALE first showed a set of predominantly left-hemispheric regions shared by the various creativity tasks examined. These regions included the caudal lateral prefrontal cortex (PFC, the medial and lateral rostral PFC, and the inferior parietal and posterior temporal cortices. Further analyses showed that tasks involving the combination of remote information (combination tasks activated more anterior areas of the lateral PFC than tasks involving the free generation of unusual responses (unusual generation tasks, although both types of tasks shared caudal prefrontal areas. In addition, verbal and non-verbal tasks involved the same regions in the left caudal prefrontal, temporal, and parietal areas, but also distinct domain-oriented areas. Taken together, these findings suggest that several frontal and parieto-temporal regions may support cognitive processes shared by diverse creativity tasks, and that some regions may be specialized for distinct types of processes. In particular, the lateral PFC appeared to be organized along a rostro-caudal axis, with rostral regions involved in combining ideas creatively and more posterior regions involved in freely generating novel ideas.

  12. Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice.

    Science.gov (United States)

    Pham, T H; Mendez-David, I; Defaix, C; Guiard, B P; Tritschler, L; David, D J; Gardier, A M

    2017-01-01

    Unlike classic serotonergic antidepressant drugs, ketamine, an NMDA receptor antagonist, exhibits a rapid and persistent antidepressant (AD) activity, at sub-anaesthetic doses in treatment-resistant depressed patients and in preclinical studies in rodents. The mechanisms mediating this activity are unclear. Here, we assessed the role of the brain serotonergic system in the AD-like activity of an acute sub-anaesthetic ketamine dose. We compared ketamine and fluoxetine responses in several behavioral tests currently used to predict anxiolytic/antidepressant-like potential in rodents. We also measured their effects on extracellular serotonin levels [5-HT] ext in the medial prefrontal cortex (mPFCx) and brainstem dorsal raphe nucleus (DRN), a serotonergic nucleus involved in emotional behavior, and on 5-HT cell firing in the DRN in highly anxious BALB/cJ mice. Ketamine (10 mg/kg i.p.) had no anxiolytic-like effect, but displayed a long lasting AD-like activity, i.e., 24 h post-administration, compared to fluoxetine (18 mg/kg i.p.). Ketamine (144%) and fluoxetine (171%) increased mPFCx [5-HT] ext compared to vehicle. Ketamine-induced AD-like effect was abolished by a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA) pointing out the role of the 5-HT system in its behavioral activity. Interestingly, increase in cortical [5-HT] ext following intra-mPFCx ketamine bilateral injection (0.25 μg/side) was correlated with its AD-like activity as measured on swimming duration in the FST in the same mice. Furthermore, pre-treatment with a selective AMPA receptor antagonist (intra-DRN NBQX) blunted the effects of intra-mPFCx ketamine on both the swimming duration in the FST and mPFCx [5-HT] ext suggesting that the AD-like activity of ketamine required activation of DRN AMPA receptors and recruited the prefrontal cortex/brainstem DRN neural circuit in BALB/c mice. These results confirm a key role of cortical 5-HT release in ketamine's AD-like activity following

  13. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  14. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex.

    Science.gov (United States)

    Scheggia, D; Zamberletti, E; Realini, N; Mereu, M; Contarini, G; Ferretti, V; Managò, F; Margiani, G; Brunoro, R; Rubino, T; De Luca, M A; Piomelli, D; Parolaro, D; Papaleo, F

    2018-04-01

    The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC. However, despite the established role played by COMT genetic variation in executive functions, its impact on remote memory formation and recall is still poorly explored. Here we report that transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (>50 days) while having unaltered recent memories (remote memories as silencing COMT Val overexpression starting from 30 days after the initial aversive conditioning normalized remote memories. COMT genetic overactivity produced a selective overdrive of the endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and increased PFC dopamine levels. These results demonstrate that COMT genetic variations modulate the retrieval of remote memories through the dysregulation of the endocannabinoid system in the PFC.

  15. Elevated left mid-frontal cortical activity prospectively predicts conversion to bipolar I disorder

    Science.gov (United States)

    Nusslock, Robin; Harmon-Jones, Eddie; Alloy, Lauren B.; Urosevic, Snezana; Goldstein, Kim; Abramson, Lyn Y.

    2013-01-01

    Bipolar disorder is characterized by a hypersensitivity to reward-relevant cues and a propensity to experience an excessive increase in approach-related affect, which may be reflected in hypo/manic symptoms. The present study examined the relationship between relative left-frontal electroencephalographic (EEG) activity, a proposed neurophysiological index of approach-system sensitivity and approach/reward-related affect, and bipolar course and state-related variables. Fifty-eight individuals with cyclothymia or bipolar II disorder and 59 healthy control participants with no affective psychopathology completed resting EEG recordings. Alpha power was obtained and asymmetry indices computed for homologous electrodes. Bipolar spectrum participants were classified as being in a major/minor depressive episode, a hypomanic episode, or a euthymic/remitted state at EEG recording. Participants were then followed prospectively for an average 4.7 year follow-up period with diagnostic interview assessments every four-months. Sixteen bipolar spectrum participants converted to bipolar I disorder during follow-up. Consistent with hypotheses, elevated relative left-frontal EEG activity at baseline 1) prospectively predicted a greater likelihood of converting from cyclothymia or bipolar II disorder to bipolar I disorder over the 4.7 year follow-up period, 2) was associated with an earlier age-of-onset of first bipolar spectrum episode, and 3) was significantly elevated in bipolar spectrum individuals in a hypomanic episode at EEG recording. This is the first study to identify a neurophysiological marker that prospectively predicts conversion to bipolar I disorder. The fact that unipolar depression is characterized by decreased relative left-frontal EEG activity suggests that unipolar depression and vulnerability to hypo/mania may be characterized by different profiles of frontal EEG asymmetry. PMID:22775582

  16. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...... and carbohydrate metabolism....

  17. Evaluation of left ventricular diastolic function by appreciating the shape of time activity curve

    International Nuclear Information System (INIS)

    Nishimura, Tohru; Taya, Makoto; Shimoyama, Katsuya; Sasaki, Akira; Mizuno, Haruyoshi; Tahara, Yorio; Ono, Akifumi; Ishikawa, Kyozo

    1993-01-01

    To determine left ventricular diastolic function (LVDF), the shape of time activity curve and primary differential curve, as acquired by Tc-99m radionuclide angiography, were visually assessed. The study popoulation consisted of 1647 patients with heart disease, such as hypertension, ischemic heart disease, cardiomyopathy and valvular disease. Fifty-six other patients were served as controls. The LVDF was divided into 4 degrees: 0=normal, I=slight disturbance, II=moderate disturbance, and III=severe disturbance. LVDF variables, including time to peak filling (TPF), TPF/time to end-systole, peak filling rate (PFR), PFR/t, 1/3 filling fraction (1/3 FR), and 1/3 FR/t, were calculated from time activity curve. There was no definitive correlation between each variable and age or heart rate. Regarding these LVDF variables, except for 1/3 FR, there was no significant difference between the group 0 of heart disease patients and the control group. Among the groups 0-III of heart disease patients, there were significant difference in LVDF variables. Visual assessement concurred with left ventricular ejection fraction, PFR/end-diastolic curve, and filling rate/end-diastolic curve. Visual assessment using time activity curve was considered useful in the semiquantitative determination of early diastolic function. (N.K.)

  18. Activation of the left superior temporal gyrus of musicians by music-derived sounds.

    Science.gov (United States)

    Matsui, Toshie; Tanaka, Satomi; Kazai, Koji; Tsuzaki, Minoru; Katayose, Haruhiro

    2013-01-09

    Previous studies have suggested that professional musicians comprehend features of music-derived sound even if the sound sequence lacks the traditional temporal structure of music. We tested this hypothesis through behavioral and functional brain imaging experiments. Musicians were better than nonmusicians at identifying scrambled pieces of piano music in which the original temporal structure had been destroyed. Bilateral superior temporal gyri (STG) activity was observed while musicians listened to the scrambled stimuli, whereas this activity was present only in the right STG of nonmusicians under the same experimental conditions. We suggest that left STG activation is related to the processing of deviants, which appears to be enhanced in musicians. This may be because of the superior knowledge of musical temporal structure held by this population.

  19. Working Memory in the Prefrontal Cortex.

    Science.gov (United States)

    Funahashi, Shintaro

    2017-04-27

    The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley's working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified.

  20. Working Memory in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Shintaro Funahashi

    2017-04-01

    Full Text Available The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified.

  1. The impact of rTMS over the dorsolateral prefrontal cortex on cognitive processing.

    Science.gov (United States)

    Sato, A; Torii, T; Nakahara, Y; Iwahashi, M; Itoh, Y; Iramina, K

    2013-01-01

    The purpose of the present study was to use event-related potentials (ERP) to clarify the effect of magnetic stimulation on cognitive processing. A figure eight-shaped flat repetitive transcranial magnetic stimulation (rTMS) coil was used to stimulate either the region over the left or the right dorsolateral prefrontal cortex, which is considered to be the origin of the P300 component. Stimulus frequencies were 1.00, 0.75 and 0.50 Hz rTMS. The strength of the magnetic stimulation was set at 80% of the motor threshold for each participant. The auditory oddball task was used to elicit P300s before and shortly after rTMS, and comprised a sequence of sounds containing standard (1 kHz pure tone, 80% of trials) and deviant (2 kHz pure tone, 20% of trials) stimuli. We found that a 1.00 Hz rTMS pulse train over the left dorsolateral prefrontal cortex increased P300 latencies by 8.50 ms at Fz, 12.85 ms at Cz, and 11.25 ms at Pz. In contrast, neither 0.75 and 0.50 Hz rTMS pulse trains over the left dorsolateral prefrontal cortex nor 1.00, 0.75 and 0.50 Hz rTMS pulse trains over the right dorsolateral prefrontal cortex altered P300 latencies. These results indicate that rTMS frequency affects cognitive processing. Thus, we suggest that the effects of rTMS vary according to the activity of excitatory and inhibitory neurons in the cerebral cortex.

  2. Evaluation of different magnetic resonance imaging techniques for the assessment of active left atrial emptying

    Energy Technology Data Exchange (ETDEWEB)

    Muellerleile, Kai; Steven, Daniel; Sultan, Arian; Drewitz, Imke; Hoffmann, Boris; Lueker, Jakob; Willems, Stephan; Rostock, Thomas [University Medical Center Hamburg-Eppendorf, Department of Cardiology, Electrophysiology, Center for Cardiology and Cardiovascular Surgery, Hamburg (Germany); Groth, Michael; Adam, Gerhard; Lund, Gunnar K. [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Radiology, Hamburg (Germany); Saring, Dennis [University Medical Center Hamburg-Eppendorf, Department of Medical Informatics, Hamburg (Germany)

    2012-09-15

    There is currently no agreement on the best method of assessing active left atrial (LA) emptying. This study evaluated the relative merits of cine- and velocity encoded (VENC) magnetic resonance imaging (MRI) for the assessment of active LA emptying. Total LA emptying volume (TLAEV) and active LA stroke volume (ALASV) were assessed in 107 consecutive patients using cine-MRI and transmitral flow measurements by VENC-MRI. The fraction of active LA emptying (ALAEF) was calculated as the ratio of ALASV to TLAEV. LA and left ventricular (LV) output were calculated by multiplying TLAEV and LV stroke volume by heart rate, respectively. Intra- and inter-observer variances were significantly larger for cine-MRI than for VENC-MRI measurements of ALASV (24.7 mL{sup 2} vs. 3.7 mL{sup 2} and 57.7 mL{sup 2} vs. 4.2 mL{sup 2}; P < 0.0001). Biplane cine-MRI underestimated TLAEV (mean difference -57 {+-} 32 %; P < 0.0001) and ALASV (mean difference -24 {+-} 51 %; P < 0.0001) but overestimated ALAEF (mean difference 31 {+-} 54 %, P < 0.0001) compared with VENC-MRI. There was significantly better agreement between LV output and LA output measured by VENC-MRI compared with LA output measured by cine-MRI (mean difference 0.30 {+-} 1.12 L/min vs. -2.05 {+-} 1.44 L/min; P < 0.0001). VENC-MRI is the more appropriate method of assessing active LA emptying and its use should be favoured. (orig.)

  3. Magnetoencephalographic signatures of right prefrontal cortex involvement in response inhibition.

    Science.gov (United States)

    Hege, Maike A; Preissl, Hubert; Stingl, Krunoslav T

    2014-10-01

    The prefrontal cortex has a pivotal role in top-down control of cognitive and sensory functions. In complex go-nogo tasks, the right dorsolateral prefrontal cortex is considered to be important for guiding the response inhibition. However, little is known about the temporal dynamics and neurophysiological nature of this activity. To address this issue, we recorded magnetoencephalographic brain activity in 20 women during a visual go-nogo task. The right dorsolateral prefrontal cortex showed an increase for the amplitude of the event-related fields and an increase in induced alpha frequency band activity for nogo in comparison to go trials. The peak of this prefrontal activity preceded the mean reaction time of around 360 ms for go trials, and thus supports the proposed role of right dorsolateral prefrontal cortex in gating the response inhibition and further suggests that right prefrontal alpha band activity might be involved in this gating. However, the results in right dorsolateral prefrontal cortex were similar for both successful and unsuccessful response inhibition. In these conditions, we instead observed pre- and poststimulus differences in alpha band activity in occipital and central areas. Thus, successful response inhibition seemed to additionally depend on prestimulus anticipatory alpha desynchronization in sensory areas as it was reduced prior to unsuccessful response inhibition. In conclusion, we suggest a role for functional inhibition by alpha synchronization not only in sensory, but also in prefrontal areas. Copyright © 2014 Wiley Periodicals, Inc.

  4. Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS

    Science.gov (United States)

    Whitney, Carin; Kirk, Marie; O'Sullivan, Jamie; Ralph, Matthew A. Lambon; Jefferies, Elizabeth

    2012-01-01

    To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus…

  5. Evaluation of cerebral activity in the prefrontal cortex in mood [affective] disorders during animal-assisted therapy (AAT) by near-infrared spectroscopy (NIRS): a pilot study.

    Science.gov (United States)

    Aoki, Jun; Iwahashi, Kazuhiko; Ishigooka, Jun; Fukamauchi, Fumihiko; Numajiri, Maki; Ohtani, Nobuyo; Ohta, Mitsuaki

    2012-09-01

    Previous studies have shown the possibility that animal-assisted therapy (AAT) is useful for promoting the recovery of a patient's psychological, social, and physiological aspect. As a pilot study, we measured the effect that AAT had on cerebral activity using near-infrared spectroscopy (NIRS), and examined whether or not NIRS be used to evaluate the effect of AAT biologically and objectively. Two patients with mood [affective] disorders and a healthy subject participated in this study. We performed two AAT and the verbal fluency task (VFT). The NIRS signal during AAT showed great [oxy-Hb] increases in most of the prefrontal cortex (PFC) in the two patients. When the NIRS pattern during AAT was compared with that during VFT, greater or lesser differences were observed between them in all subjects. The present study suggested that AAT possibly causes biological and physiological changes in the PFC, and that AAT is useful for inducing the activity of the PFC in patients with depression who have generally been said to exhibit low cerebral activity in the PFC. In addition, the possibility was also suggested that the effect of AAT can be evaluated using NIRS physiologically and objectively.

  6. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats.

    Science.gov (United States)

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M; Calu, Donna J; Baumann, Michael H; Marchant, Nathan J; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R; Shaham, Yavin; Hope, Bruce T

    2012-06-20

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express GFP in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5-2 mg/kg) or pellet priming (1-4 noncontingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and nonactivated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPA receptor/NMDA receptor current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. While ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior.

  7. Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

    Science.gov (United States)

    Zhu, Huilin; Li, Jun; Fan, Yuebo; Li, Xinge; Huang, Dan; He, Sailing

    2015-01-01

    Autism spectrum disorder (ASD) is a neuro-developmental disorder, characterized by impairments in one’s capacity for joint attention. In this study, functional near-infrared spectroscopy (fNIRS) was applied to study the differences in activation and functional connectivity in the prefrontal cortex between children with autism spectrum disorder (ASD) and typically developing (TD) children. 21 ASD and 20 TD children were recruited to perform joint and non-joint attention tasks. Compared with TD children, children with ASD showed reduced activation and atypical functional connectivity pattern in the prefrontal cortex during joint attention. The atypical development of left prefrontal cortex might play an important role in social cognition defects of children with ASD. PMID:25798296

  8. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  9. Top-Down Control of Motor Cortex Ensembles by Dorsomedial Prefrontal Cortex

    OpenAIRE

    Narayanan, Nandakumar S.; Laubach, Mark

    2006-01-01

    Dorsomedial prefrontal cortex is critical for the temporal control of behavior. Dorsomedial prefrontal cortex might alter neuronal activity in areas such as motor cortex to inhibit temporally inappropriate responses. We tested this hypothesis by recording from neuronal ensembles in rodent dorsomedial prefrontal cortex during a delayed-response task. One-third of dorsomedial prefrontal neurons were significantly modulated during the delay period. The activity of many of these neurons was predi...

  10. Altered left ventricular performance in aging physically active mice with an ankle sprain injury.

    Science.gov (United States)

    Turner, Michael J; Guderian, Sophie; Wikstrom, Erik A; Huot, Joshua R; Peck, Bailey D; Arthur, Susan T; Marino, Joseph S; Hubbard-Turner, Tricia

    2016-02-01

    We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.

  11. A phylogenetic group of Escherichia coli associated with active left-sided inflammatory bowel disease

    DEFF Research Database (Denmark)

    Petersen, Andreas M; Nielsen, Eva M; Litrup, Eva

    2009-01-01

    BACKGROUND: Escherichia coli have been found in increased numbers in tissues from patients with Inflammatory Bowel Disease (IBD) and adherent-invasive E. coli have been found in resected ileum from patients with Crohn's disease. This study aimed to characterize possible differences in phylogenetic...... 10 healthy controls. Disease activity was evaluated by sigmoidoscopy. Interestingly, E. coli strains of the phylogenetic group B2 were cultured from 60% of patients with IBD compared to 11% of healthy controls (p coli B2 strains with at least one...... group (triplex PCR), extraintestinal pathogenic E. coli (ExPEC) genes and multilocus sequence type (MLST) between E. coli strains isolated from IBD patients with past or present involvement of the left side of the colon and from controls. RESULTS: Fecal samples were collected from 18 patients and from...

  12. History of Suicide Attempt Is Associated with Reduced Medial Prefrontal Cortex Activity during Emotional Decision-Making among Men with Schizophrenia: An Exploratory fMRI Study

    Directory of Open Access Journals (Sweden)

    Stéphane Potvin

    2018-01-01

    Full Text Available Despite the high prevalence of suicidal ideas/attempts in schizophrenia, only a handful of neuroimaging studies have examined the neurobiological differences associated with suicide risk in this population. The main objective of the current exploratory study is to examine the neurofunctional correlates associated with a history of suicide attempt in schizophrenia, using a risky decision-making task, in order to show alterations in brain reward regions in this population. Thirty-two male outpatients with schizophrenia were recruited: 13 patients with (SCZ + S and 19 without a history of suicidal attempt (SCZ − S. Twenty-one healthy men with no history of mental disorders or suicidal attempt/idea were also recruited. Participants were scanned using fMRI while performing the Balloon Analogue Risk Task. A rapid event-related fMRI paradigm was used, separating decision and outcome events, and the explosion probabilities were included as parametric modulators. The most important finding of this study is that SCZ + S patients had reduced activations of the medial prefrontal cortex during the success outcome event (with parametric modulation, relative to both SCZ − S patients and controls, as illustrated by a spatial conjunction analysis. These exploratory results suggest that a history of suicidal attempt in schizophrenia is associated with blunted brain reward activity during emotional decision-making.

  13. A Role for the Left Angular Gyrus in Episodic Simulation and Memory

    OpenAIRE

    Thakral, Preston P.; Madore, Kevin P.; Schacter, Daniel L.

    2017-01-01

    Functional magnetic resonance imaging (fMRI) studies indicate that episodic simulation (i.e., imagining specific future experiences) and episodic memory (i.e., remembering specific past experiences) are associated with enhanced activity in a common set of neural regions referred to as the core network. This network comprises the hippocampus, medial prefrontal cortex, and left angular gyrus, among other regions. Because fMRI data are correlational, it is unknown whether activity increases in c...

  14. Women with Premenstrual Dysphoria Lack the Seemingly Normal Premenstrual Right-Sided Relative Dominance of 5-HTP-Derived Serotonergic Activity in the Dorsolateral Prefrontal Cortices - A Possible Cause of Disabling Mood Symptoms

    DEFF Research Database (Denmark)

    Eriksson, Olle; Wall, Anders; Olsson, Ulf

    2016-01-01

    while serotonin-depleting diets worsen PMD symptoms, both indicating intrinsic differences in brain serotonergic activity in women with PMD compared to asymptomatic women. METHODS: Positron-emission tomography with the immediate precursor of serotonin, 5-hydroxytryptophan (5-HTP), radiolabelled by 11C...... prefrontal cortex, putamen and caudate nucleus, and the single "whole brain". RESULTS: There were no significant quantitative differences in brain 5-HTP-derived activity between the groups in either of the menstrual phases for any of the 9 ROIs. However, multivariate analysis revealed a significant...... quantitative and qualitative difference between the groups. Asymptomatic control women showed a premenstrual right sided relative increase in dorsolateral prefrontal cortex 5-HTP derived activity, whereas PMD women displayed the opposite (p = 0.0001). Menstrual phase changes in this asymmetry (premenstrual...

  15. The stressed female brain: neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress.

    Science.gov (United States)

    Maeng, Lisa Y; Shors, Tracey J

    2013-01-01

    Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD), indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA) is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC) during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL) and infralimbic (IL) subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. About 24 h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similarly to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful life

  16. Evidence of Non-Linear Associations between Frustration-Related Prefrontal Cortex Activation and the Normal:Abnormal Spectrum of Irritability in Young Children.

    Science.gov (United States)

    Grabell, Adam S; Li, Yanwei; Barker, Jeff W; Wakschlag, Lauren S; Huppert, Theodore J; Perlman, Susan B

    2018-01-01

    Burgeoning interest in early childhood irritability has recently turned toward neuroimaging techniques to better understand normal versus abnormal irritability using dimensional methods. Current accounts largely assume a linear relationship between poor frustration management, an expression of irritability, and its underlying neural circuitry. However, the relationship between these constructs may not be linear (i.e., operate differently at varying points across the irritability spectrum), with implications for how early atypical irritability is identified and treated. Our goal was to examine how the association between frustration-related lateral prefrontal cortex (LPFC) activation and irritability differs across the dimensional spectrum of irritability by testing for non-linear associations. Children (N = 92; ages 3-7) ranging from virtually no irritability to the upper end of the clinical range completed a frustration induction task while we recorded LPFC hemoglobin levels using fNIRS. Children self-rated their emotions during the task and parents rated their child's level of irritability. Whereas a linear model showed no relationship between frustration-related LPFC activation and irritability, a quadratic model revealed frustration-related LPFC activation increased as parent-reported irritability scores increased within the normative range of irritability but decreased with increasing irritability in the severe range, with an apex at the 91st percentile. Complementarily, we found children's self-ratings of emotion during frustration related to concurrent LPFC activation as an inverted U function, such that children who reported mild distress had greater activation than peers reporting no or high distress. Results suggest children with relatively higher irritability who are unimpaired may possess well-developed LPFC support, a mechanism that drops out in the severe end of the irritability dimension. Findings suggest novel avenues for understanding the

  17. The Stressed Female Brain: Neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress

    Directory of Open Access Journals (Sweden)

    Lisa Y. Maeng

    2013-12-01

    Full Text Available Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD, indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL and infralimbic (IL subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. 24h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similar to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful

  18. Adaptations of prefrontal brain activity, executive functions, and gait in healthy elderly following exergame and balance training: A randomized-controlled study

    Directory of Open Access Journals (Sweden)

    Alexandra Schättin

    2016-11-01

    Full Text Available During aging, the prefrontal cortex (PFC undergoes age-dependent neuronal changes influencing cognitive and motor functions. Motor-learning interventions are hypothesized to ameliorate motor and cognitive deficits in older adults. Especially, video game-based physical exercise might have the potential to train motor in combination with cognitive abilities in older adults. The aim of this study was to compare conventional balance training with video game-based physical exercise, a so-called exergame, on the relative power (RP of electroencephalographic (EEG frequencies over the PFC, executive function (EF, and gait performance. Twenty-seven participants (mean age 79.2 ± 7.3 years were randomly assigned to one of two groups. All participants completed 24 trainings including three times a 30min session/week. The EEG measurements showed that theta RP significantly decreased in favor of the exergame group (L(14 = 6.23, p = 0.007. Comparing pre- vs. post-test, EFs improved both within the exergame (working memory: z = -2.28, p = 0.021; divided attention auditory: z = -2.51, p = 0.009; divided attention visual: z = -2.06, p = 0.040; go/no-go: z = -2.55, p = 0.008; set-shifting: z = -2.90, p = 0.002 and within the balance group (set-shifting: z = -2.04, p = 0.042. Moreover, spatio-temporal gait parameters primarily improved within the exergame group under dual-task conditions (speed normal walking: z = -2.90, p = 0.002; speed fast walking: z = -2.97, p = 0.001; cadence normal walking: z = -2.97, p = 0.001; stride length fast walking: z = -2.69, p = 0.005 and within the balance group under single-task conditions (speed normal walking: z = -2.54, p = 0.009; speed fast walking: z = -1.98, p = 0.049; cadence normal walking: z = -2.79, p = 0.003. These results indicate that exergame training as well as balance training positively influence prefrontal cortex activity and/or function in varying proportion.

  19. Early-Life Stress Affects Stress-Related Prefrontal Dopamine Activity in Healthy Adults, but Not in Individuals with Psychotic Disorder.

    Directory of Open Access Journals (Sweden)

    Zuzana Kasanova

    Full Text Available Early life stress may have a lasting impact on the developmental programming of the dopamine (DA system implicated in psychosis. Early adversity could promote resilience by calibrating the prefrontal stress-regulatory dopaminergic neurotransmission to improve the individual's fit with the predicted stressful environment. Aberrant reactivity to such match between proximal and distal environments may, however, enhance psychosis disease risk. We explored the combined effects of childhood adversity and adult stress by exposing 12 unmedicated individuals with a diagnosis of non-affective psychotic disorder (NAPD and 12 healthy controls (HC to psychosocial stress during an [18F]fallypride positron emission tomography. Childhood trauma divided into early (ages 0-11 years and late (12-18 years was assessed retrospectively using a questionnaire. A significant group x childhood trauma interaction on the spatial extent of stress-related [18F]fallypride displacement was observed in the mPFC for early (b = -8.45, t(1,23 = -3.35, p = .004 and late childhood trauma (b = -7.86, t(1,23 = -2.48, p = .023. In healthy individuals, the spatial extent of mPFC DA activity under acute psychosocial stress was positively associated with the severity of early (b = 7.23, t(11 = 3.06, p = .016 as well as late childhood trauma (b = -7.86, t(1,23 = -2.48, p = .023. Additionally, a trend-level main effect of early childhood trauma on subjective stress response emerged within this group (b = -.7, t(11 = -2, p = .07, where higher early trauma correlated with lower subjective stress response to the task. In the NAPD group, childhood trauma was not associated with the spatial extent of the tracer displacement in mPFC (b = -1.22, t(11 = -0.67, nor was there a main effect of trauma on the subjective perception of stress within this group (b = .004, t(11 = .01, p = .99. These findings reveal a potential mechanism of neuroadaptation of prefrontal DA transmission to early life stress

  20. Rapid prefrontal cortex activation towards aversively paired faces and enhanced contingency detection are observed in highly trait-anxious women under challenging conditions

    Science.gov (United States)

    Rehbein, Maimu Alissa; Wessing, Ida; Zwitserlood, Pienie; Steinberg, Christian; Eden, Annuschka Salima; Dobel, Christian; Junghöfer, Markus

    2015-01-01

    Relative to healthy controls, anxiety-disorder patients show anomalies in classical conditioning that may either result from, or provide a risk factor for, clinically relevant anxiety. Here, we investigated whether healthy participants with enhanced anxiety vulnerability show abnormalities in a challenging affective-conditioning paradigm, in which many stimulus-reinforcer associations had to be acquired with only few learning trials. Forty-seven high and low trait-anxious females underwent MultiCS conditioning, in which 52 different neutral faces (CS+) were paired with an aversive noise (US), while further 52 faces (CS−) remained unpaired. Emotional learning was assessed by evaluative (rating), behavioral (dot-probe, contingency report), and neurophysiological (magnetoencephalography) measures before, during, and after learning. High and low trait-anxious groups did not differ in evaluative ratings or response priming before or after conditioning. High trait-anxious women, however, were better than low trait-anxious women at reporting CS+/US contingencies after conditioning, and showed an enhanced prefrontal cortex (PFC) activation towards CS+ in the M1 (i.e., 80–117 ms) and M170 time intervals (i.e., 140–160 ms) during acquisition. These effects in MultiCS conditioning observed in individuals with elevated trait anxiety are consistent with theories of enhanced conditionability in anxiety vulnerability. Furthermore, they point towards increased threat monitoring and detection in highly trait-anxious females, possibly mediated by alterations in visual working memory. PMID:26113814

  1. Rapid prefrontal cortex activation towards aversively paired faces and enhanced contingency detection are observed in highly trait-anxious women under challenging conditions

    Directory of Open Access Journals (Sweden)

    Maimu Alissa Rehbein

    2015-06-01

    Full Text Available Relative to healthy controls, anxiety-disorder patients show anomalies in classical conditioning that may either result from, or provide a risk factor for, clinically relevant anxiety. Here, we investigated whether healthy participants with enhanced anxiety vulnerability show abnormalities in a challenging affective-conditioning paradigm, in which many stimulus-reinforcer associations had to be acquired with only few learning trials. Forty-seven high and low trait-anxious females underwent MultiCS conditioning, in which 52 different neutral faces (CS+ were paired with an aversive noise (US, while further 52 faces (CS- remained unpaired. Emotional learning was assessed by evaluative (rating, behavioral (dot-probe, contingency report, and neurophysiological (magnetoencephalography measures before, during, and after learning. High and low trait-anxious groups did not differ in evaluative ratings or response priming before or after conditioning. High trait-anxious women, however, were better than low trait-anxious women at reporting CS+/US contingencies after conditioning, and showed an enhanced prefrontal cortex activation towards CS+ in the M1 (i.e., 80 to 117 ms and M170 time intervals (i.e., 140 to 160 ms during acquisition. These effects in MultiCS conditioning observed in individuals with elevated trait anxiety are consistent with theories of enhanced conditionability in anxiety vulnerability. Furthermore, they point towards increased threat monitoring and detection in highly trait-anxious females, possibly mediated by alterations in visual working memory.

  2. Loss of Sustained Activity in the Ventromedial Prefrontal Cortex in Response to Repeated Stress in Individuals with Early-Life Emotional Abuse: Implications for Depression Vulnerability

    Directory of Open Access Journals (Sweden)

    Lihong eWang

    2013-06-01

    Full Text Available Repeated psychosocial stress in early life has significant impact on both behavior and neural function which, together, increase vulnerability to depression. However, neural mechanisms related to repeated stress remain unclear. We hypothesize that early-life stress may result in a reduced capacity for cognitive control in response to a repeated stressor, particularly in individuals who developed maladaptive emotional processing strategies, namely trait rumination. Individuals who encountered early-life stress but have adaptive emotional processing, namely trait mindfulness, may demonstrate an opposite pattern. Using a mental arithmetic task to induce mild stress and a mindful breathing task to induce a mindful state, we tested this hypothesis by examining blood perfusion changes over time in healthy young men. We found that subjects with early-life stress, particularly emotional abuse, failed to sustain neural activation in the orbitofrontal and ventromedial prefrontal cortex (vmPFC over time. Given that the vmPFC is known to regulate amygdala activity during emotional processing, we subsequently compared the perfusion in the vmPFC and the amygdala in depression-vulnerable (having early life stress and high in rumination and resilient (having early life stress and high in mindfulness subjects. We found that depression-vulnerable subjects had increased amygdala perfusion and reduced vmPFC perfusion during the later runs than that during the earlier stressful task runs. In contrast, depression resilient individuals showed the reverse pattern. Our results indicate that the vmPFC of depression-vulnerable subjects may have a limited capacity to inhibit amygdala activation to repeated stress over time, whereas the vmPFC in resilient individuals may adapt to stress quickly. This pilot study warrants future investigation to clarify the stress-related neural activity pattern dynamically to identify depression vulnerability at an individual level.

  3. Presurgical language fMRI activation correlates with postsurgical verbal memory decline in left-sided temporal lobe epilepsy.

    Science.gov (United States)

    Labudda, Kirsten; Mertens, Markus; Aengenendt, Joerg; Ebner, Alois; Woermann, Friedrich G

    2010-12-01

    We analysed the association of presurgical language fMRI activations and postsurgical verbal memory changes in 16 left-sided mesial temporal lobe epilepsy patients with initially intact memory. Patients with severe verbal memory decline after surgery (n = 9) had stronger presurgical fMRI activations within the left posterior temporal lobe, compared to those with no decline (n = 7). Language fMRI activation may predict verbal memory outcome, even in patients with a high risk of postsurgical memory deterioration. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Comparison of Echocardiographic Markers of Cardiac Dyssynchrony and Latest Left Ventricular Activation Site in Heart Failure Patients with and without Left Bundle Branch Block.

    Science.gov (United States)

    Lotfi-Tokaldany, Masoumeh; Roomi, Zahra Savand; Kasemisaeid, Ali; Sadeghian, Hakimeh

    2013-04-01

    Several echocardiographic markers have been introduced to assess the left ventricular (LV) mechanical dyssynchrony. We studied dyssynchrony markers and the latest LV activation site in heart failure patients with and without left bundle branch block (LBBB). Conventional echocardiography and tissue velocity imaging were performed for 78 patients (LV ejection fraction ≤ 35%), who were divided into two groups: LBBB (n = 37) and non-LBBB (n = 41). Time-to-peak systolic velocity (Ts) was measured in 12 LV segments in the mid and basal levels. Seven dyssynchrony markers were defined: delay and standard deviation (SD) of Ts in all and basal segments, septal-lateral and anteroseptal-posterior wall delay (at the basal level), and interventricular mechanical delay (IVMD). The LBBB patients had significantly higher QRS duration and IVMD. The posterior wall was the latest activated site in the LBBB and the inferior wall was the latest in the non-LBBB patients. The most common dyssynchrony marker in the LBBB group was the SD of Ts in all segments (73%), whereas it was Ts delay in the basal segments in the non-LBBB group (48.8%). Ts delay and SD of all LV segments, septal lateral delay, septal-to-posterior wall delay by M-mode, pre-ejection period of the aortic valve, and IVMD were significantly higher in the LBBB group than in the non-LBBB group. Also, 29.3% of the non-LBBB and 10.8% of the LBBB patients did not show dyssynchrony by any marker. The number of patients showing dyssynchrony by ≥ 3 markers was remarkably higher in the LBBB patients (73% vs. 43.9%, respectively; p value = 0.044). The LBBB patients presented with a higher prevalence of dyssynchrony according to the frequently used echocardiographic markers. The latest activation site was different between the groups.

  5. Abnormal MEG oscillatory activity during visual processing in the prefrontal cortices and frontal eye-fields of the aging HIV brain.

    Directory of Open Access Journals (Sweden)

    Tony W Wilson

    Full Text Available Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation.High-density magnetoencephalography (MEG was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming.Uninfected controls had increased neuronal synchronization in the 6-12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions.MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health.

  6. Functional activity of the right temporo-parietal junction and of the medial prefrontal cortex associated with true and false belief reasoning.

    Science.gov (United States)

    Döhnel, Katrin; Schuwerk, Tobias; Meinhardt, Jörg; Sodian, Beate; Hajak, Göran; Sommer, Monika

    2012-04-15

    Since false belief reasoning requires mental state representation independently of the state of reality, it is seen as a key ability in Theory of Mind (ToM). Although true beliefs do not have to be processed independently of the state of reality, growing behavioural evidence indicates that true belief reasoning is different from just reasoning about the state of reality. So far, neural studies on true and false belief reasoning revealed inconsistent findings in the medial prefrontal cortex (MPFC) and in the right temporo-parietal junction (R-TPJ), brain regions that are hypothesized to play an important role in ToM. To further explore true and false belief reasoning, the present functional magnetic resonance imaging (fMRI) study in eighteen adult subjects used methodological refinements such as ensuring that the true belief trials did not elicit false belief reasoning, as well as including paralleled control conditions requiring reasoning about the state of reality. When compared to its control condition, common R-TPJ activity was observed for true and false belief reasoning, supporting its role in belief reasoning in general, and indicating that, at least in adults, also true belief reasoning appears to be different from reasoning about the state of reality. Differential activity was observed in a broad network of brain regions such as the MPFC, the inferior frontal cortex, and the precuneus. False over true belief reasoning induced activation in the posterior MPFC (pMPFC), supporting its role in the decoupling mechanisms, which is defined as processing a mental state independently of the state of reality. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Motivational mechanisms (BAS) and prefrontal cortical activation contribute to recognition memory for emotional words. rTMS effect on performance and EEG (alpha band) measures.

    Science.gov (United States)

    Balconi, Michela; Cobelli, Chiara

    2014-10-01

    The present research addressed the question of where memories for emotional words could be represented in the brain. A second main question was related to the effect of personality traits, in terms of the Behavior Activation System (BAS), in emotional word recognition. We tested the role of the left DLPFC (LDLPFC) by performing a memory task in which old (previously encoded targets) and new (previously not encoded distractors) positive or negative emotional words had to be recognized. High-BAS and low-BAS subjects were compared when a repetitive TMS (rTMS) was applied on the LDLPFC. We found significant differences between high-BAS vs. low-BAS subjects, with better performance for high-BAS in response to positive words. In parallel, an increased left cortical activity (alpha desynchronization) was observed for high-BAS in the case of positive words. Thus, we can conclude that the left approach-related hemisphere, underlying BAS, may support faster recognition of positive words. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Does transcranial direct current stimulation to prefrontal cortex affect mood and emotional memory retrieval in healthy individuals?

    Science.gov (United States)

    Morgan, Helen M; Davis, Nick J; Bracewell, R Martyn

    2014-01-01

    Studies using transcranial direct current stimulation (tDCS) of prefrontal cortex to improve symptoms of depression have had mixed results. We examined whether using tDCS to change the balance of activity between left and right dorsolateral prefrontal cortex (DLPFC) can alter mood and memory retrieval of emotional material in healthy volunteers. Participants memorised emotional images, then tDCS was applied bilaterally to DLPFC while they performed a stimulus-response compatibility task. Participants were then presented with a set of images for memory retrieval. Questionnaires to examine mood and motivational state were administered at the beginning and end of each session. Exploratory data analyses showed that the polarity of tDCS to DLPFC influenced performance on a stimulus-response compatibility task and this effect was dependent on participants' prior motivational state. However, tDCS polarity had no effect on the speed or accuracy of memory retrieval of emotional images and did not influence positive or negative affect. These findings suggest that the balance of activity between left and right DLPFC does not play a critical role in the mood state of healthy individuals. We suggest that the efficacy of prefrontal tDCS depends on the initial activation state of neurons and future work should take this into account.

  9. Resting state amygdala-prefrontal connectivity predicts symptom change after cognitive behavioral therapy in generalized social anxiety disorder.

    Science.gov (United States)

    Klumpp, Heide; Keutmann, Michael K; Fitzgerald, Daniel A; Shankman, Stewart A; Phan, K Luan

    2014-01-01

    Aberrant amygdala-prefrontal interactions at rest and during emotion processing are implicated in the pathophysiology of generalized social anxiety disorder (gSAD), a common disorder characterized by fears of potential scrutiny. Cognitive behavioral therapy (CBT) is first-line psychotherapy for gSAD and other anxiety disorders. While CBT is generally effective, there is a great deal of heterogeneity in treatment response. To date, predictors of success in CBT for gSAD include reduced amygdala reactivity and increased activity in prefrontal regulatory regions (e.g., anterior cingulate cortex, "ACC") during emotion processing. However, studies have not examined whether tonic (i.e., at rest) coupling of amygdala and these prefrontal regions also predict response to CBT. Twenty-one patients with gSAD participated in resting-state functional magnetic resonance imaging (fMRI) before 12 weeks of CBT. Overall, symptom severity was significantly reduced after completing CBT; however, the patients varied considerably in degree of symptom change. Whole-brain voxel-wise findings showed symptom improvement after CBT was predicted by greater right amygdala-pregenual ACC ("pgACC") connectivity and greater left amygdala-pgACC coupling encompassing medial prefrontal cortex. In support of their predictive value, area under receiver operating characteristic curve was significant for the left and right amygdala-pgACC in relation to treatment responders. Improvement after CBT was predicted by enhanced resting-state bilateral amygdala-prefrontal coupling in gSAD. Preliminary results suggest baseline individual differences in a fundamental circuitry that may underlie emotion regulation contributed to variation in symptom change after CBT. Findings offer a new approach towards using a biological measure to foretell who will most likely benefit from CBT. In particular, the departure from neural predictors based on illness-relevant stimuli (e.g., socio-emotional stimuli in gSAD) permits

  10. Reduced dorsolateral prefrontal cortical hemodynamic response in adult obsessive-compulsive disorder as measured by near-infrared spectroscopy during the verbal fluency task

    Directory of Open Access Journals (Sweden)

    Hirosawa R

    2013-07-01

    left and right dorsolateral prefrontal cortex and frontopolar areas. Results: During the verbal fluency task, significant task-related activation was detected in both the OCD group and the controls. Changes in oxygenated hemoglobin concentration in the right dorsolateral prefrontal cortex were significantly smaller in the OCD group than in the controls, but were not statistically significant after correction for multiple comparisons. Conclusion: Patients with OCD have reduced prefrontal, especially right dorsolateral prefrontal, cortical hemodynamic responses as measured by near-infrared spectroscopy during the verbal fluency task. These results support the hypothesis that the dorsolateral prefrontal cortex plays a role in the pathophysiology of OCD. Keywords: functional neuroimaging, near-infrared spectroscopy, obsessive-compulsive disorder, prefrontal hemodynamic response, verbal fluency task, dorsolateral prefrontal cortex

  11. Lucid dreaming and ventromedial versus dorsolateral prefrontal task performance.

    Science.gov (United States)

    Neider, Michelle; Pace-Schott, Edward F; Forselius, Erica; Pittman, Brian; Morgan, Peter T

    2011-06-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for 1 week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Lucid Dreaming and Ventromedial versus Dorsolateral Prefrontal Task Performance

    Science.gov (United States)

    Neider, Michelle; Pace-Schott, Edward F.; Forselius, Erica; Pittman, Brian; Morgan, Peter T.

    2010-01-01

    Activity in the prefrontal cortex may distinguish the meta-awareness experienced during lucid dreams from its absence in normal dreams. To examine a possible relationship between dream lucidity and prefrontal task performance, we carried out a prospective study in 28 high school students. Participants performed the Wisconsin Card Sort and Iowa Gambling tasks, then for one week kept dream journals and reported sleep quality and lucidity-related dream characteristics. Participants who exhibited a greater degree of lucidity performed significantly better on the task that engages the ventromedial prefrontal cortex (the Iowa Gambling Task), but degree of lucidity achieved did not distinguish performance on the task that engages the dorsolateral prefrontal cortex (the Wisconsin Card Sort Task), nor did it distinguish self-reported sleep quality or baseline characteristics. The association between performance on the Iowa Gambling Task and lucidity suggests a connection between lucid dreaming and ventromedial prefrontal function. PMID:20829072

  13. Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated.

    Science.gov (United States)

    Salling, Michael C; Harrison, Neil L

    2014-09-01

    Processing of signals within the cerebral cortex requires integration of synaptic inputs and a coordination between excitatory and inhibitory neurotransmission. In addition to the classic form of synaptic inhibition, another important mechanism that can regulate neuronal excitability is tonic inhibition via sustained activation of receptors by ambient levels of inhibitory neurotransmitter, usually GABA. The purpose of this study was to determine whether this occurs in layer II/III pyramidal neurons (PNs) in the prelimbic region of the mouse medial prefrontal cortex (mPFC). We found that these neurons respond to exogenous GABA and to the α4δ-containing GABAA receptor (GABA(A)R)-selective agonist gaboxadol, consistent with the presence of extrasynaptic GABA(A)R populations. Spontaneous and miniature synaptic currents were blocked by the GABA(A)R antagonist gabazine and had fast decay kinetics, consistent with typical synaptic GABA(A)Rs. Very few layer II/III neurons showed a baseline current shift in response to gabazine, but almost all showed a current shift (15-25 pA) in response to picrotoxin. In addition to being a noncompetitive antagonist at GABA(A)Rs, picrotoxin also blocks homomeric glycine receptors (GlyRs). Application of the GlyR antagonist strychnine caused a modest but consistent shift (∼15 pA) in membrane current, without affecting spontaneous synaptic events, consistent with the tonic activation of GlyRs. Further investigation showed that these neurons respond in a concentration-dependent manner to glycine and taurine. Inhibition of glycine transporter 1 (GlyT1) with sarcosine resulted in an inward current and an increase of the strychnine-sensitive current. Our data demonstrate the existence of functional GlyRs in layer II/III of the mPFC and a role for these receptors in tonic inhibition that can have an important influence on mPFC excitability and signal processing. Copyright © 2014 the American Physiological Society.

  14. Dietary-induced binge eating increases prefrontal cortex neural activation to restraint stress and increases binge food consumption following chronic guanfacine.

    Science.gov (United States)

    Bello, Nicholas T; Walters, Amy L; Verpeut, Jessica L; Caverly, Jonathan

    2014-10-01

    Binge eating is a prominent feature of bulimia nervosa and binge eating disorder. Stress or perceived stress is an often-cited reason for binge eating. One notion is that the neural pathways that overlap with stress reactivity and feeding behavior are altered by recurrent binge eating. Using young adult female rats in a dietary-induced binge eating model (30 min access to binge food with or without 24-h calorie restriction, twice a week, for 6 weeks) we measured the neural activation by c-Fos immunoreactivity to the binge food (vegetable shortening mixed with 10% sucrose) in bingeing and non-bingeing animals under acute stress (immobilization; 1 h) or no stress conditions. There was an increase in the number of immunopositive cells in the dorsal medial prefrontal cortex (mPFC) in stressed animals previously exposed to the binge eating feeding schedules. Because attention deficit hyperactive disorder (ADHD) medications target the mPFC and have some efficacy at reducing binge eating in clinical populations, we examined whether chronic (2 weeks; via IP osmotic mini-pumps) treatment with a selective alpha-2A adrenergic agonist (0.5 mg/kg/day), guanfacine, would reduce binge-like eating. In the binge group with only scheduled access to binge food (30 min; twice a week; 8 weeks), guanfacine increased total calories consumed during the 30-min access period from the 2-week pre-treatment baseline and increased binge food consumption compared with saline-treated animals. These experiments suggest that mPFC is differentially activated in response to an immobilization stress in animals under different dietary conditions and chronic guanfacine, at the dose tested, was ineffective at reducing binge-like eating. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Left Recumbent Position Decreases Heart Rate without Alterations in Cardiac Autonomic Nervous System Activity in Healthy Young Adults.

    Science.gov (United States)

    Sasaki, Konosuke; Haga, Mayu; Endo, Yoichi; Fujiwara, Junko; Maruyama, Ryoko

    2017-04-01

    Some studies have reported that recumbent position may have advantages in patients with heart disease and in pregnancy. However, it remains controversial whether recumbent position affects autonomic nervous system activity and hemodynamics in healthy adults. The aim of this study was to evaluate alterations in heart rate variability (HRV) and hemodynamics in the supine, left recumbent and right recumbent positions in healthy young adults. A total of 80 participants aged 22.8 ± 3.1 years were enrolled in this observational study. Fifty-eight volunteers (29 men and 29 women) maintained the supine position followed by the left and right recumbent positions, while electrocardiographic data were recorded for spectral analysis of HRV to assess cardiac vagal nerve and sympathetic nerve activities. The heart rate (HR) was significantly lower in the left recumbent position than in the other positions. There were no statistically significant differences in HRV among the three positions. Considering the possibility that the echographic procedure affects autonomic nervous system (ANS) activity, the other 22 participants (11 men and 11 women) underwent an echographic evaluation of hemodynamics in the heart and inferior vena cava (IVC) across the three positions. Although a low HR was also observed, there were no statistically significant differences in the IVC or the heart blood volume between the supine and the left recumbent positions. A postural change to the left recumbent position does not affect the cardiac blood circulation or ANS activity, though it does decrease HR in healthy young adults. This finding indicates that the lower HR in the left recumbent position is not attributable to the ANS activity.

  16. Physiological consequences of transient outward K(+) current activation during heart failure in the canine left ventricle

    DEFF Research Database (Denmark)

    Cordeiro, Jonathan M; Callø, Kirstine; Moise, N Sydney

    2012-01-01

    was used to record I(to) in epicardial (Epi) ventricular myocytes. Epi- and endocardial action potentials were recorded from left ventricular wedge preparations. Right ventricular tachypacing-induced heart failure reduced I(to) density in Epi myocytes (Control=22.1±1.9pA/pF vs 16.1±1.4 after 2weeks and 10......Background: Remodeling of ion channel expression is well established in heart failure (HF). We determined the extent to which I(to) is reduced in tachypacing-induced HF and assessed the ability of an I(to) activator (NS5806) to recover this current. Method and results: Whole-cell patch clamp.......7±1.4pA/pF after 5weeks, +50mV). Current decay as well as recovery of I(to) from inactivation progressively slowed with the development of heart failure. Reduction of I(to) density was paralleled by a reduction in phase 1 magnitude, epicardial action potential notch and J wave amplitude recorded from...

  17. Maintaining the feelings of others in working memory is associated with activation of the left anterior insula and left frontal-parietal control network.

    Science.gov (United States)

    Smith, Ryan; Lane, Richard D; Alkozei, Anna; Bao, Jennifer; Smith, Courtney; Sanova, Anna; Nettles, Matthew; Killgore, William D S

    2017-05-01

    The maintenance of social/emotional information in working memory (SWM/EWM) has recently been the topic of multiple neuroimaging studies. However, some studies find that SWM/EWM involves a medial frontal-parietal network while others instead find lateral frontal-parietal activations similar to studies of verbal and visuospatial WM. In this study, we asked 26 healthy volunteers to complete an EWM task designed to examine whether different cognitive strategies- maintaining emotional images, words, or feelings- might account for these discrepant results. We also examined whether differences in EWM performance were related to general intelligence (IQ), emotional intelligence (EI), and emotional awareness (EA). We found that maintaining emotional feelings, even when accounting for neural activation attributable to maintaining emotional images/words, still activated a left lateral frontal-parietal network (including the anterior insula and posterior dorsomedial frontal cortex). We also found that individual differences in the ability to maintain feelings were positively associated with IQ and EA, but not with EI. These results suggest that maintaining the feelings of others (at least when perceived exteroceptively) involves similar frontal-parietal control networks to exteroceptive WM, and that it is similarly linked to IQ, but that it also may be an important component of EA. © The Author (2017). Published by Oxford University Press.

  18. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections

    Directory of Open Access Journals (Sweden)

    Hoang Nam eNguyen

    2015-02-01

    Full Text Available The medial prefrontal cortex (mPFC exerts top-down control of primary visual cortex (V1 activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB, which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL and infralimbic cortices (IL. Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate 1 V1 neurons and 2 HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labelling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labelling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC, which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.

  19. Distinct iEEG activity patterns in temporal-limbic and prefrontal sites induced by emotional intentionality.

    Science.gov (United States)

    Singer, Neomi; Podlipsky, Ilana; Esposito, Fabrizio; Okon-Singer, Hadas; Andelman, Fani; Kipervasser, Svetlana; Neufeld, Miri Y; Goebel, Rainer; Fried, Itzhak; Hendler, Talma

    2014-11-01

    Our emotions tend to be directed towards someone or something. Such emotional intentionality calls for the integration between two streams of information; abstract hedonic value and its associated concrete content. In a previous functional magnetic resonance imaging (fMRI) study we found that the combination of these two streams, as modeled by short emotional music excerpts and neutral film clips, was associated with synergistic activation in both temporal-limbic (TL) and ventral-lateral PFC (vLPFC) regions. This additive effect implies the integration of domain-specific 'affective' and 'cognitive' processes. Yet, the low temporal resolution of the fMRI limits the characterization of such cross-domain integration. To this end, we complemented the fMRI data with intracranial electroencephalogram (iEEG) recordings from twelve patients with intractable epilepsy. As expected, the additive fMRI activation in the amygdala and vLPFC was associated with distinct spatio-temporal iEEG patterns among electrodes situated within the vicinity of the fMRI activation foci. On the one hand, TL channels exhibited a transient (0-500 msec) increase in gamma power (61-69 Hz), possibly reflecting initial relevance detection or hedonic value tagging. On the other hand, vLPFC channels showed sustained (1-12 sec) suppression of low frequency power (2.3-24 Hz), possibly mediating changes in gating, enabling an on-going readiness for content-based processing of emotionally tagged signals. Moreover, an additive effect in delta-gamma phase-amplitude coupling (PAC) was found among the TL channels, possibly reflecting the integration between distinct domain specific processes. Together, this study provides a multi-faceted neurophysiological signature for computations that possibly underlie emotional intentionality in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Oxytocin Increases the Perceived Value of Both Self- and Other-Owned Items and Alters Medial Prefrontal Cortex Activity in an Endowment Task.

    Science.gov (United States)

    Zhao, Weihua; Geng, Yayuan; Luo, Lizhu; Zhao, Zhiying; Ma, Xiaole; Xu, Lei; Yao, Shuxia; Kendrick, Keith M

    2017-01-01

    The neuropeptide oxytocin (OXT) can influence self-processing and may help motivate us to value the attributes of others in a more self-like manner by reducing medial prefrontal cortex (mPFC) responses. We do not know however whether this OXT effect extends to possessions. We tend to place a higher monetary value on specific objects that belong to us compared to others, known as the "endowment effect". In two double-blind, between-subject placebo (PLC) controlled experiments in subjects from a collectivist culture, we investigated the influence of intranasal OXT on the endowment effect, with the second study incorporating functional magnetic resonance imaging (fMRI). In the task, subjects decided whether to buy or sell their own or others' (mother/father/classmate/stranger) possessions at various prices. Both experiments demonstrated an endowment effect in the self-owned condition which extended to close others (mother/father) and OXT increased this for self and all other-owned items. This OXT effect was associated with reduced activity in the ventral mPFC (vmPFC) in the self-owned condition but increased in the mother-condition. For the classmate- and stranger-owned conditions OXT increased activity in the dorsal mPFC (dmPFC). Changes in vmPFC activation were associated with the size of the endowment effect for self- and mother-owned items. Functional connectivity between the dmPFC and ventral striatum (VStr) was reduced by OXT in self- and mother-owned conditions and between vmPFC and precuneus in the self-condition. Overall our results show that OXT enhances the endowment effect for both self- and other-owned items in Chinese subjects. This effect is associated with reduced mPFC activation in the self-condition but enhanced activation in all other-conditions and involves differential actions on both dorsal and ventral regions as well as functional connectivity with brain reward and other self-processing regions. Overall our findings suggest that OXT increases

  1. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Andrea R. Marti

    2017-10-01

    Full Text Available Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1 has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA “cap”. In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40 were exposed to forced activity, either in their rest phase (simulated night shift work or in their active phase (simulated day shift work for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0. Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus implicated in cognition and sleep loss, were analyzed with m7GTP (cap pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1 was significantly reduced in

  2. Dopamine D4 receptors modulate brain metabolic activity in the prefrontal cortex and cerebellum at rest and in response to methylphenidate

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, M.; Wang, G.; Michaelides, M.; Pascau, J.; Gispert, J.-D.; Delis, F.; Grandy, D.K.; Wang, G.-J.; Desco, M.; Rubinstein, M.; Volkow, N.D.; Thanos, P.K.

    2010-07-16

    Methylphenidate (MP) is widely used to treat attention deficit hyperactivity disorder (ADHD). Variable number of tandem repeats polymorphisms in the dopamine D4 receptor (D{sub 4}) gene have been implicated in vulnerability to ADHD and the response to MP. Here we examined the contribution of dopamine D4 receptors (D4Rs) to baseline brain glucose metabolism and to the regional metabolic responses to MP. We compared brain glucose metabolism (measured with micro-positron emission tomography and [{sup 18}F]2-fluoro-2-deoxy-D-glucose) at baseline and after MP (10 mg/kg, i.p.) administration in mice with genetic deletion of the D{sub 4}. Images were analyzed using a novel automated image registration procedure. Baseline D{sub 4}{sup -/-} mice had lower metabolism in the prefrontal cortex (PFC) and greater metabolism in the cerebellar vermis (CBV) than D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice; when given MP, D{sub 4}{sup -/-} mice increased metabolism in the PFC and decreased it in the CBV, whereas in D{sub 4}{sup +/+} and D{sub 4}{sup +/-} mice, MP decreased metabolism in the PFC and increased it in the CBV. These findings provide evidence that D4Rs modulate not only the PFC, which may reflect the activation by dopamine of D4Rs located in this region, but also the CBV, which may reflect an indirect modulation as D4Rs are minimally expressed in this region. As individuals with ADHD show structural and/or functional abnormalities in these brain regions, the association of ADHD with D4Rs may reflect its modulation of these brain regions. The differential response to MP as a function of genotype could explain differences in brain functional responses to MP between patients with ADHD and healthy controls and between patients with ADHD with different D{sub 4} polymorphisms.

  3. Activation of type 4 dopaminergic receptors in the prelimbic area of medial prefrontal cortex is necessary for the expression of innate fear behavior.

    Science.gov (United States)

    Vergara, Macarena D; Keller, Victor N; Fuentealba, José A; Gysling, Katia

    2017-05-01

    The prelimbic area (PL) of the medial Prefrontal cortex (mPFC) is involved in the acquisition and expression of conditioned and innate fear. Both types of fear share several neuronal pathways. It has been documented that dopamine (DA) plays an important role in the regulation of aversive memories in the mPFC. The exposure to an aversive stimulus, such as the smell of a predator odor or the exposure to footshock stress is accompanied by an increase in mPFC DA release. Evidence suggests that the type 4 dopaminergic receptor (D4R) is the molecular target through which DA modulates fear expression. In fact, the mPFC is the brain region with the highest expression of D4R; however, the role of D4R in the expression of innate fear has not been fully elucidated. Therefore, the principal objective of this work was to evaluate the participation of mPFC D4R in the expression of innate fear. Rats were exposed to the elevated plus-maze (EPM) and to the cat odor paradigm after the intra PL injection of L-745,870, selective D4R antagonist, to measure the expression of fear-related behaviors. Intra PL injection of L-745,870 increased the time spent in the EPM open arms and decreased freezing behavior in the cat odor paradigm. Our results also showed that D4R is expressed in GABAergic and pyramidal neurons in the PL region of PFC. Thus, D4R antagonism in the PL decreases the expression of innate fear-behavior indicating that the activation of D4R in the PL is necessary for the expression of innate fear-behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. [Echocardiographic evaluation of left ventricular morphology and function in active sportsmen].

    Science.gov (United States)

    Vujin, Bojan; Benc, Dragan; Grujić, Nikola; Srdić, Svetozar; Radisić, Biljana; Kovac, Marko

    2006-01-01

    Echocardiography is a noninvasive, reliable method for evaluation of left ventricular morphology and function. Judo and wrestling are sports characterized by intensive and high physical and isometric effort, while football is characterized by long-term physical isotonic effort. The key compensatory mechanism with both groups of sportsmen is left ventricular hypertrophy. The aim of this study is evaluate left ventricular morphology and function in a group of judo players, wrestlers and football players during competition season and their interactive comparation. 42 judo players and wrestlers and 43 football players were examined. An increase in thickness of the septum and posterior wall was established in both groups of sportsmen, but the thickness was statistically more significant in judo players. On the other hand, in football players, a statistically significant left ventricular end-diastolic volume index enlargement was found, compared to reference values and compared to end-diastolic volume index in judo players and wrestlers. High left ventricular ejection fraction was established in both groups, but it was statistically significantly higher in football players. Left ventricular mass index was statistically increased in both groups, but it was higher in judo players and wrestlers.

  5. Body surface mapping of ectopic left and right ventricular activation. QRS spectrum in patients without structural heart disease

    NARCIS (Netherlands)

    SippensGroenewegen, A.; Spekhorst, H.; van Hemel, N. M.; Kingma, J. H.; Hauer, R. N.; Janse, M. J.; Dunning, A. J.

    1990-01-01

    The value of simultaneous 62-lead electrocardiographic recordings in localizing the site of origin of ectopic ventricular activation in a structurally normal heart was assessed by examining body surface QRS integral maps in 12 patients during left and right ventricular (LV and RV) pacing at 182

  6. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device

    NARCIS (Netherlands)

    Nieuwhof, F.; Reelick, M.F.; Maidan, I.; Mirelman, A.; Hausdorff, J.M.; Olde Rikkert, M.G.M.; Bloem, B.R.; Muthalib, M.; Claassen, J.A.H.R.

    2016-01-01

    BACKGROUND: Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC)

  7. Activation of beta2-Adrenoceptor Enhances Synaptic Potentiation and Behavioral Memory via cAMP-PKA Signaling in the Medial Prefrontal Cortex of Rats

    Science.gov (United States)

    Zhou, Hou-Cheng; Sun, Yan-Yan; Cai, Wei; He, Xiao-Ting; Yi, Feng; Li, Bao-Ming; Zhang, Xue-Han

    2013-01-01

    The prefrontal cortex (PFC) plays a critical role in cognitive functions, including working memory, attention regulation, behavioral inhibition, as well as memory storage. The functions of PFC are very sensitive to norepinephrine (NE), and even low levels of endogenously released NE exert a dramatic influence on the functioning of the PFC.…

  8. Early-Life Stress Affects Stress-Related Prefrontal Dopamine Activity in Healthy Adults, but Not in Individuals with Psychotic Disorder

    NARCIS (Netherlands)

    Kasanova, Zuzana; Hernaus, Dennis; Vaessen, Thomas; van Amelsvoort, Thérèse; Winz, Oliver; Heinzel, Alexander; Pruessner, Jens; Mottaghy, Felix M.; Collip, Dina; Myin-Germeys, Inez

    2016-01-01

    Early life stress may have a lasting impact on the developmental programming of the dopamine (DA) system implicated in psychosis. Early adversity could promote resilience by calibrating the prefrontal stress-regulatory dopaminergic neurotransmission to improve the individual's fit with the predicted

  9. Comparison of Hemodynamic Responses in the Prefrontal Cortex According to Differences in Self-Efficacy.

    Science.gov (United States)

    Hirao, Kazuki

    2017-07-01

    Although self-efficacy has been used extensively in the field of nursing (e.g., as an outcome measure of nursing interventions), its underlying nature is poorly understood. Investigation of the relationship between self-efficacy and brain activation will help explain the fundamental nature of self-efficacy. In this study, we compared prefrontal activation measured with near-infrared spectroscopy (NIRS) across 89 undergraduate students categorized into three groups based on their General Self-Efficacy Scale scores: low self-efficacy ( n = 59), moderate self-efficacy ( n = 17), and high self-efficacy ( n = 13). Changes in the hemoglobin levels of the prefrontal cortex (PFC) during a verbal fluency task were assessed using two-channel NIRS. Significant differences in the oxygenated hemoglobin (oxy-Hb) level of the left PFC (LPFC) were observed via analysis of variance. Post hoc Tukey's test showed a significant difference only between low self-efficacy and moderate self-efficacy groups. We found a medium between-group effect size in the moderate self-efficacy group versus the low self-efficacy group for the changes in oxy-Hb levels of the LPFC ( d = .78; 95% confidence interval for effect size [0.22, 1.33]). No significant between-group differences were observed with respect to changes in the oxy-Hb in the right PFC. The results indicate less left prefrontal activation in the low self-efficacy group than in the moderate self-efficacy group. These findings provide evidence to support the fundamental nature of self-efficacy.

  10. Prefrontal responses to Stroop tasks in subjects with post-traumatic stress disorder assessed by functional near infrared spectroscopy

    Science.gov (United States)

    Yennu, Amarnath; Tian, Fenghua; Smith-Osborne, Alexa; J. Gatchel, Robert; Woon, Fu Lye; Liu, Hanli

    2016-07-01

    Studies on posttraumatic stress disorder (PTSD) showing attentional deficits have implicated abnormal activities in the frontal lobe. In this study, we utilized multichannel functional near-infrared spectroscopy (fNIRS) to investigate selective attention-related hemodynamic activity in the prefrontal cortex among 15 combat-exposed war-zone veterans with PTSD and 13 age- and gender-matched healthy controls. While performing the incongruent Stroop task, healthy controls showed significant activations in the left lateral prefrontal cortex (LPFC) compared to baseline readings. This observation is consistent with previously reported results. In comparison, subjects with PTSD failed to activate left LPFC during the same Stroop task. Our observations may implicate that subjects with PTSD experienced difficulty in overcoming Stroop interference. We also observed significant negative correlation between task reaction times and hemodynamic responses from left LPFC during the incongruent Stroop task in the PTSD group. Regarding the methodology used in this study, we have learned that an appropriate design of Stroop paradigms is important for meeting an optimal cognitive load which can lead to better brain image contrasts in response to Stroop interference between healthy versus PTSD subjects. Overall, the feasibility of fNIRS for studying and mapping neural correlates of selective attention and interference in subjects with PTSD is reported.

  11. Neural substrates of semantic relationships: common and distinct left-frontal activities for generation of synonyms vs. antonyms.

    Science.gov (United States)

    Jeon, Hyeon-Ae; Lee, Kyoung-Min; Kim, Young-Bo; Cho, Zang-Hee

    2009-11-01

    Synonymous and antonymous relationships among words may reflect the organization and/or processing in the mental lexicon and its implementation in the brain. In this study, functional magnetic resonance imaging (fMRI) is employed to compare brain activities during generation of synonyms (SYN) and antonyms (ANT) prompted by the same words. Both SYN and ANT, when compared with reading nonwords (NW), activated a region in the left middle frontal gyrus (BA 46). Neighboring this region, there was a dissociation observed in that the ANT activation extended more anteriorly and laterally to the SYN activation. The activations in the left middle frontal gyrus may be related to mental processes that are shared in the SYN and ANT generations, such as engaging semantically related parts of mental lexicon for the word search, whereas the distinct activations unique for either SYN or ANT generation may reflect the additional component of antonym retrieval, namely, reversing the polarity of semantic relationship in one crucial dimension. These findings suggest that specific components in the semantic processing, such as the polarity reversal for antonym generation and the similarity assessment for synonyms, are separately and systematically laid out in the left-frontal cortex.

  12. Activity levels in the left hemisphere caudate-fusiform circuit predict how well a second language will be learned.

    Science.gov (United States)

    Tan, Li Hai; Chen, Lin; Yip, Virginia; Chan, Alice H D; Yang, Jing; Gao, Jia-Hong; Siok, Wai Ting

    2011-02-08

    How second language (L2) learning is achieved in the human brain remains one of the fundamental questions of neuroscience and linguistics. Previous neuroimaging studies with bilinguals have consistently shown overlapping cortical organization of the native language (L1) and L2, leading to a prediction that a common neurobiological marker may be responsible for the development of the two languages. Here, by using functional MRI, we show that later skills to read in L2 are predicted by the activity level of the fusiform-caudate circuit in the left hemisphere, which nonetheless is not predictive of the ability to read in the native language. We scanned 10-y-old children while they performed a lexical decision task on L2 (and L1) stimuli. The subjects' written language (reading) skills were behaviorally assessed twice, the first time just before we performed the fMRI scan (time 1 reading) and the second time 1 y later (time 2 reading). A whole-brain based analysis revealed that activity levels in left caudate and left fusiform gyrus correlated with L2 literacy skills at time 1. After controlling for the effects of time 1 reading and nonverbal IQ, or the effect of in-scanner lexical performance, the development in L2 literacy skills (time 2 reading) was also predicted by activity in left caudate and fusiform regions that are thought to mediate language control functions and resolve competition arising from L1 during L2 learning. Our findings suggest that the activity level of left caudate and fusiform regions serves as an important neurobiological marker for predicting accomplishment in reading skills in a new language.

  13. Prefrontal versus motor cortex transcranial direct current stimulation (tDCS) effects on post-surgical opioid use.

    Science.gov (United States)

    Borckardt, Jeffrey J; Reeves, Scott T; Milliken, Cole; Carter, Brittan; Epperson, Thomas I; Gunselman, Ryan J; Madan, Alok; Del Schutte, H; Demos, Harry A; George, Mark S

    Pain is often a complaint that precedes total knee arthroplasty (TKA), however the procedure itself is associated with considerable post-operative pain lasting days to weeks which can predict longer-term surgical outcomes. Previously, we reported significant opioid-sparing effects of motor cortex transcranial direct current stimulation from a single-blind trial. In the present study, we used double-blind methodology to compare motor cortex tDCS and prefrontal cortex tDCS to both sham and active-control (active electrodes over non-pain modulating brain areas) tDCS. 58 patients undergoing unilateral TKA were randomly assigned to receive 4 20-min sessions (a total of 80 min) of tDCS (2 mA) post-surgery with electrodes placed to create 4 groups: 1) MOTOR (n = 14); anode-motor/cathode-right prefrontal, 2) PREFRONTAL (n = 16); anode-left-prefrontal/cathode-right-sensory, 3) ACTIVE-CONTROL (n = 15); anode-left-temporal-occipital junction/cathode-medial-anterior-premotor-area, and 4) SHAM (n = 13); 0 mA-current stimulation using placements 1 or 2. Patient controlled analgesia (PCA; hydromorphone) use was tracked during the ∼72-h post-surgery. Patients in the sham group and the active-control group used 15.4 mg (SD = 14.1) and 16.0 mg (SD = 9.7) of PCA hydromorphone respectively. There was no difference between the slopes of the cumulative PCA usage curves between these two groups (p = 0.25; ns). Patients in the prefrontal tDCS group used an average of 11.7 mg (SD = 5.0) of PCA hydromporhone, and the slope of the cumulative PCA usage curve was significantly lower than sham (p prefrontal cortex may be a reasonable approach to reducing post-TKA opioid requirements. Given the unexpected finding that motor cortex failed to produce an opioid sparing effect in this follow-up trial, further research in the area of post-operative cortical stimulation is still needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity

    Directory of Open Access Journals (Sweden)

    J. A. Messina

    2017-11-01

    Full Text Available The contribution of left-right reciprocal coupling between spinal locomotor networks to the generation of locomotor activity was tested in adult lampreys. Muscle recordings were made from normal animals as well as from experimental animals with rostral midline (ML spinal lesions (~13%→35% body length, BL, before and after spinal transections (T at 35% BL. Importantly, in the present study actual locomotor movements and muscle burst activity, as well as other motor activity, were initiated in whole animals by descending brain-spinal pathways in response to sensory stimulation of the anterior head. For experimental animals with ML spinal lesions, sensory stimulation could elicit well-coordinated locomotor muscle burst activity, but with some significant differences in the parameters of locomotor activity compared to those for normal animals. Computer models representing normal animals or experimental animals with ML spinal lesions could mimic many of the differences in locomotor activity. For experimental animals with ML and T spinal lesions, right and left rostral hemi-spinal cords, disconnected from intact caudal cord, usually produced tonic or unpatterned muscle activity. Hemi-spinal cords sometimes generated spontaneous or sensory-evoked relatively high frequency “burstlet” activity that probably is analogous to the previously described in vitro “fast rhythm”, which is thought to represent lamprey locomotor activity. However, “burstlet” activity in the present study had parameters and features that were very different than those for lamprey locomotor activity: average frequencies were ~25 Hz, but individual frequencies could be >50 Hz; burst proportions (BPs often varied with cycled time; “burstlet” activity usually was not accompanied by a rostrocaudal phase lag; and following ML spinal lesions alone, “burstlet” activity could occur in the presence or absence of swimming burst activity, suggesting the two were generated

  16. The effect of commitment on relative left frontal cortical activity: tests of the action-based model of dissonance.

    Science.gov (United States)

    Harmon-Jones, Eddie; Harmon-Jones, Cindy; Serra, Raymond; Gable, Philip A

    2011-03-01

    The action-based model of dissonance and recent advances in neuroscience suggest that commitment to action should cause greater relative left frontal cortical activity. Two experiments were conducted in which electroencephalographic activity was recorded following commitment to action, operationalized with a perceived choice manipulation. Perceived high as compared to low choice to engage in the action, regardless of whether it was counterattitudinal or proattitudinal, caused greater relative left frontal cortical activity. Moreover, perceived high as compared to low choice caused attitudes to be more consistent with the action. These results broaden the theoretical reach of the action-based model by suggesting that similar neural and motivational processes are involved in attitudinal responses to counterattitudinal and proattitudinal commitments.

  17. The Political Left on Campus and In Society: The Active Decades. Final Report.

    Science.gov (United States)

    Bressler, Marvin; Higgins, Judith

    A comparative analysis is made of the similarities and differences between youthful activists of the 1960's with earlier periods, focusing upon the 1920's and 1930's. The report briefly sketches the political and romantic Student Left during the decade of the sixties; delineates the characteristics of non-campus-based youthful radicalism as…

  18. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias.

    Science.gov (United States)

    Ott, Derek V M; Ullsperger, Markus; Jocham, Gerhard; Neumann, Jane; Klein, Tilmann A

    2011-07-15

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of the dorsolateral prefrontal cortex (DLPFC) in reinforcement learning, we applied continuous theta-burst stimulation (cTBS) either to the left or right DLPFC, or to the vertex as a control region, respectively, prior to the performance of a probabilistic learning task in an fMRI environment. While there was no influence of cTBS on learning performance per se, we observed a stimulation-dependent modulation of reward vs. punishment sensitivity: Left-hemispherical DLPFC stimulation led to a more reward-guided performance, while right-hemispherical cTBS induced a more avoidance-guided behavior. FMRI results showed enhanced prediction error coding in the ventral striatum in subjects stimulated over the left as compared to the right DLPFC. Both behavioral and imaging results are in line with recent findings that left, but not right-hemispherical stimulation can trigger a release of dopamine in the ventral striatum, which has been suggested to increase the relative impact of rewards rather than punishment on behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch.

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A; Larson, Charles R

    2014-02-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Enhanced early-latency electromagnetic activity in the left premotor cortex is associated with successful phonetic categorization.

    Science.gov (United States)

    Alho, Jussi; Sato, Marc; Sams, Mikko; Schwartz, Jean-Luc; Tiitinen, Hannu; Jääskeläinen, Iiro P

    2012-05-01

    Sensory-motor interactions between auditory and articulatory representations in the dorsal auditory processing stream are suggested to contribute to speech perception, especially when bottom-up information alone is insufficient for purely auditory perceptual mechanisms to succeed. Here, we hypothesized that the dorsal stream responds more vigorously to auditory syllables when one is engaged in a phonetic identification/repetition task subsequent to perception compared to passive listening, and that this effect is further augmented when the syllables are embedded in noise. To this end, we recorded magnetoencephalography while twenty subjects listened to speech syllables, with and without noise masking, in four conditions: passive perception; overt repetition; covert repetition; and overt imitation. Compared to passive listening, left-hemispheric N100m equivalent current dipole responses were amplified and shifted posteriorly when perception was followed by covert repetition task. Cortically constrained minimum-norm estimates showed amplified left supramarginal and angylar gyri responses in the covert repetition condition at ~100ms from stimulus onset. Longer-latency responses at ~200ms were amplified in the covert repetition condition in the left angular gyrus and in all three active conditions in the left premotor cortex, with further enhancements when the syllables were embedded in noise. Phonetic categorization accuracy and magnitude of voice pitch change between overt repetition and imitation conditions correlated with left premotor cortex responses at ~100 and ~200ms, respectively. Together, these results suggest that the dorsal stream involvement in speech perception is dependent on perceptual task demands and that phonetic categorization performance is influenced by the left premotor cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Capacity-speed relationships in prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Vivek Prabhakaran

    Full Text Available Working memory (WM capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.

  2. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality.

    Science.gov (United States)

    Jansma, J M; Ramsey, N; Rutten, G J

    2015-12-01

    Language dominance is an important factor for clinical decision making in brain tumor surgery. Functional MRI can provide detailed information about the organization of language in the brain. One often used measure derived from fMRI data is the laterality index (LI). The LI is typically based on the ratio between left and right brain activity in a specific region associated with language. Nearly all fMRI language studies show language-related activity in both hemispheres, and as a result the LI shows a large range of values. The clinical significance of the variation in language laterality as measured with the LI is still under debate. In this study, we tested two hypotheses in relation to the LI, measured in Broca's region, and it's right hemisphere homologue: 1: the level of activity in Broca's and it's right hemisphere homologue is mirrored for subjects with an equal but opposite LI; 2: the whole brain language activation pattern differs between subjects with an equal but opposite LI. One hundred sixty-three glioma and meningioma patients performed a verb generation task as part of a standard clinical protocol. We calculated the LI in the pars orbitalis, pars triangularis and pars opercularis of the left inferior frontal gyrus, referred to as Broca's region from here on. In our database, 21 patients showed right lateralized activity, with a moderate average level (-0.32). A second group of 21 patients was selected from the remaining group, for equal but opposite LI (0.32). We compared the level and distribution of activity associated with language production in the left and right hemisphere in these two groups. Patients with left sided laterality showed a significantly higher level of activity in Broca's region than the patients with right sided laterality. However, both groups showed no difference in level of activity in Broca's homologue region in the right hemisphere. Also, we did not see any difference in the pattern of activity between patients with left

  3. Left frontal cortical activation and spreading of alternatives: tests of the action-based model of dissonance.

    Science.gov (United States)

    Harmon-Jones, Eddie; Harmon-Jones, Cindy; Fearn, Meghan; Sigelman, Jonathan D; Johnson, Peter

    2008-01-01

    The action-based model of dissonance predicts that following decisional commitment, approach-oriented motivational processes occur to assist in translating the decision into effective and unconflicted behavior. Therefore, the modulation of these approach-oriented processes should affect the degree to which individuals change their attitudes to be more consistent with the decisional commitment (spreading of alternatives). Experiment 1 demonstrated that a neurofeedback-induced decrease in relative left frontal cortical activation, which has been implicated in approach motivational processes, caused a reduction in spreading of alternatives. Experiment 2 manipulated an action-oriented mindset following a decision and demonstrated that the action-oriented mindset caused increased activation in the left frontal cortical region as well as increased spreading of alternatives. Discussion focuses on how this integration of neuroscience and dissonance theory benefits both parent literatures. Copyright 2008 APA, all rights reserved.

  4. Current dipole orientation and distribution of epileptiform activity correlates with cortical thinning in left mesiotemporal epilepsy.

    Science.gov (United States)

    Reinsberger, Claus; Tanaka, Naoaki; Cole, Andrew J; Lee, Jong Woo; Dworetzky, Barbara A; Bromfield, Edward B; Hamiwka, Lorie; Bourgeois, Blaise F; Golby, Alexandra J; Madsen, Joseph R; Stufflebeam, Steven M

    2010-10-01

    To evaluate cortical architecture in mesial temporal lobe epilepsy (MTLE) with respect to electrophysiology, we analyze both magnetic resonance imaging (MRI) and magnetoencephalography (MEG) in 19 patients with left MTLE. We divide the patients into two groups: 9 patients (Group A) have vertically oriented antero-medial equivalent current dipoles (ECDs). 10 patients (Group B) have ECDs that are diversely oriented and widely distributed. Group analysis of MRI data shows widespread cortical thinning in Group B compared with Group A, in the left hemisphere involving the cingulate, supramarginal, occipitotemporal and parahippocampal gyri, precuneus and parietal lobule, and in the right hemisphere involving the fronto-medial, -central and -basal gyri and the precuneus. These results suggest that regardless of the presence of hippocampal sclerosis, in a subgroup of patients with MTLE a large cortical network is affected. This finding may, in part, explain the unfavorable outcome in some MTLE patients after epilepsy surgery. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  6. Similar or different? The role of the ventrolateral prefrontal cortex in similarity detection.

    Directory of Open Access Journals (Sweden)

    Béatrice Garcin

    Full Text Available Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., "both have peel", while others continue to look for differences between these objects (e.g., "one is yellow, the other is orange". These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC. We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1 Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2 Abstraction per se activates the left dorsolateral PFC.

  7. Cerebral responses and role of the prefrontal cortex in conditioned pain modulation: an fMRI study in healthy subjects

    Science.gov (United States)

    Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean

    2017-01-01

    The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267

  8. Verbal and visuospatial working memory during pregnancy: EEG correlation between the prefrontal and parietal cortices.

    Science.gov (United States)

    Almanza-Sepúlveda, Mayra Linné; Hernández-González, Marisela; Hevia-Orozco, Jorge Carlos; Amezcua-Gutiérrez, Claudia; Guevara, Miguel Angel

    2018-02-01

    Pregnancy is a dynamic process during which significant cognitive changes take place. It has been suggested that working memory (WM) is affected during gestation as a result of functional changes among cortical areas, such as the prefrontal and parietal cortices. This study examined cortical electroencephalographic correlations (rEEG) during performance of WM tasks in each trimester of pregnancy. Forty women were divided into 4 groups: first (T1), second (T2), and third (T3) trimester of pregnancy, and a control group of non-pregnant women. Electroencephalographic activity (EEG) was recorded from the frontopolar, dorsolateral and parietal cortices during performance of one verbal and one visuospatial working memory task. Only groups T2 and T3 showed increased onset latency in the visuospatial WM. During the verbal WM task, the T1 group showed a higher correlation between dorsolateral areas in the theta and alpha bands, as well as a lower left prefrontal-parietal correlation in the gamma band. During the visuospatial WM task, the T1 and T3 groups showed a higher left EEG correlation in the delta and alpha1 bands, whereas T2 presented a higher right prefrontal-parietal correlation in the gamma band. Although pregnancy had only a subtle effect on the visuospatial WM task, these different patterns of cortical synchronization in each trimester of pregnancy could represent adaptive mechanisms that enabled the pregnant women to focus their attention and use more cognitive resources and so adequately solve the WM tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The role of prefrontal cortex in psychopathy

    Science.gov (United States)

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  10. Сlinical features of left atrial myxoma in comorbidity with active lung tuberculosis

    Directory of Open Access Journals (Sweden)

    M. Yu. Kolesnyk

    2016-12-01

    Full Text Available The symptoms and syndromology of myxomas with clinical features of a rare comorbidity – lung tuberculosis and left atrial myxoma in a 69-old year woman, are described in the article. The description includes the clinical history, transesophageal echocardiography findings, pathomorphological characteristics of myxoma, also photoillustrations of tumor’s macro- and microstructures. The analysis reflects the troubles in differential diagnosis of the clinical case due to non-specific symptoms of both diseases. The discussion provides the information about the possible pathophysiological link between myxoma and tuberculosis and the role of interleukin6 inthis process.

  11. Changes in morning salivary melatonin correlate with prefrontal responses during working memory performance.

    Science.gov (United States)

    Killgore, William D S; Kent, Haley C; Knight, Sara A; Alkozei, Anna

    2018-04-11

    Humans demonstrate a circadian rhythm of melatonin production that closely tracks the daily light/dark cycle, with profound increases in circulating levels during the night-time and nearly nonexistent levels during daylight hours. Although melatonin is known to play a role in preparing the brain and body for sleep, its effects on cognition and brain function are not well understood. We hypothesized that declines in morning melatonin would be associated with increased functional activation within cortical regions involved in alertness, attention, and executive function. We measured the change in salivary melatonin from mid-morning to late-morning in 26 healthy young adults who were also exposed to a 30-min period of blue or amber light followed by functional MRI during a working memory task (N-back). Brain activation was regressed on the change in melatonin scores from the mid-morning to late-morning saliva samples and the role of light exposure was also assessed. Although overall melatonin levels did not change significantly over the morning at the group level, individual declines in salivary melatonin were associated with significant increases in activation within the left dorsomedial and right inferior lateral prefrontal cortex during the 2-back condition (Pmorning are associated with increased prefrontal cortex functioning and may play a role in the increased frontal activation that occurs following awakening.

  12. Prefrontal and occipital asymmetry and volume in boys with autism spectrum disorder.

    Science.gov (United States)

    Knaus, Tracey A; Tager-Flusberg, Helen; Mock, Jeffrey; Dauterive, Rachel; Foundas, Anne L

    2012-12-01

    To examine prefrontal and occipital asymmetry (brain torque) in boys with autism spectrum disorder (ASD) and controls. A secondary aim was to study age-related changes in gray and white matter volume. Several studies have found atypical early cortical development in ASD. Atypical brain torque, defined as a greater-than-normal left prefrontal and right occipital asymmetry, has been found in some studies of children and adults with ASD. This configuration may be an early neural marker of ASD risk. We studied 24 right-handed boys with ASD and 27 typically developing right-handed boys, 7 to 15 years old, obtaining neuropsychological profiles and measuring prefrontal and occipital volumes on magnetic resonance images. Most participants had the expected rightward prefrontal and leftward occipital asymmetry, with no group differences in direction or degree of asymmetry. We found a trend toward larger prefrontal volume in the ASD group than in the controls. The controls also had a trend toward differences in age associations, correlating with total and left prefrontal white matter volumes. Our findings suggest that atypical brain torque may not be a neural signature of ASD, although our sample was limited to high-functioning, right-handed boys. Our results provide support for aberrant cortical development in ASD, continuing into adolescence, with prefrontal regions being disproportionally affected.

  13. Is two better than one? Limb Activation Treatment combined with Contralesional Arm Vibration to ameliorate signs of left neglect

    Directory of Open Access Journals (Sweden)

    Marco ePitteri

    2013-08-01

    Full Text Available In the present study, we evaluated the effects of the Limb Activation Treatment (LAT alone and in combination with the Contralateral Arm Vibration (CAV on left neglect (LN rehabilitation. We conceived them as techniques that both prompt the activation of the lesioned right hemisphere because of the activation (with the LAT as an active technique and the stimulation (with the CAV as a passive technique of the left hemibody. To test the effect of the simultaneous use of these two techniques (i.e., LAT and CAV on visuo-spatial aspects of LN, we described the case of a LN patient (GR, who showed high intra-individual variability (IIV in performance. Given the high IIV of GR, we used an ABAB repeated-measures design to better define the effectiveness of the combined application of LAT and CAV, as a function of time. The results showed an improvement of GR’s performance on the Bells test following the combined application of LAT and CAV, with respect to the application of LAT alone. We did not find, however, significant effects of treatment on two other LN tests (i.e., Line bisection and Picture scanning. We propose that the combined application of LAT and CAV can be beneficial for some aspects of LN.

  14. Changes in brain activity in response to problem solving during the abstinence from online game play.

    Science.gov (United States)

    Kim, Sun Mi; Han, Doug Hyun; Lee, Young Sik; Kim, Jieun E; Renshaw, Perry F

    2012-06-01

    Several studies have suggested that addictive disorders including substance abuse and pathologic gambling might be associated with dysfunction on working memory and prefrontal activity. We hypothesized that excessive online game playing is associated with deficits in prefrontal cortex function and that recovery from excessive online game playing might improve prefrontal cortical activation in response to working memory stimulation. Thirteen adolescents with excessive online game playing (AEOP) and ten healthy adolescents (HC) agreed to participate in this study. The severity of online game play and playing time were evaluated for a baseline measurement and again following four weeks of treatment. Brain activation in response to working memory tasks (simple and complex calculations) at baseline and subsequent measurements was assessed using BOLD functional magnetic resonance imaging (fMRI). Compared to the HC subjects, the AEOP participants exhibited significantly greater activity in the right middle occipital gyrus, left cerebellum posterior lobe, left premotor cortex and left middle temporal gyrus in response to working memory tasks during baseline measurements. After four weeks of treatment, the AEOP subjects showed increased activity within the right dorsolateral prefrontal cortex and left occipital fusiform gyrus. After four weeks of treatment, changes in the severity of online game playing were negatively correlated with changes in the mean β value of the right dorsolateral prefrontal cortex in response to complex stimulation. We suggest that the effects of online game addiction on working memory may be similar to those observed in patients with substance dependence.

  15. Improved multitasking following prefrontal tDCS.

    Science.gov (United States)

    Filmer, Hannah L; Mattingley, Jason B; Dux, Paul E

    2013-01-01

    We have a limited capacity for mapping sensory information onto motor responses. This processing bottleneck is thought to be a key factor in determining our ability to make two decisions simultaneously - i.e., to multitask (Pashler, 1984, 1994; Welford, 1952). Previous functional imaging research (Dux, Ivanoff, Asplund, & Marois, 2006; Dux et al., 2009) has localised this bottleneck to the posterior lateral prefrontal cortex (pLPFC) of the left hemisphere. Currently, however, it is unknown whether this region is causally involved in multitasking performance. We investigated the role of the left pLPFC in multitasking using transcranial direct current stimulation (tDCS). The behavioural paradigm included single- and dual-task trials, each requiring a speeded discrimination of visual stimuli alone, auditory stimuli alone, or both visual and auditory stimuli. Reaction times for single- and dual-task trials were compared before, immediately after, and 20 min after anodal stimulation (excitatory), cathodal stimulation (inhibitory), or sham stimulation. The cost of responding to the two tasks (i.e., the reduction in performance for dual- vs single-task trials) was significantly reduced by cathodal stimulation, but not by anodal or sham stimulation. Overall, the results provide direct evidence that the left pLPFC is a key neural locus of the central bottleneck that limits an individual's ability to make two simple decisions simultaneously. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    Science.gov (United States)

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Radionuclide detection and differential diagnosis of left-to-right cardiac shunts by analysis of time-activity curves

    International Nuclear Information System (INIS)

    Kim, Ok-Hwa

    1986-01-01

    The noninvasive nature of the radionuclide angiocardiography provided a useful approach for the evaluation of left-to-right cardiac shunts (LRCS). While the qualitative information can be obtained by inspection of serial radionuclide angiocardiograms, the quantitative information of radionuclide angiocardiography can be obtained by the analysis of time-activity curves using advanced computer system. The count ratios method and pulmonary-to-systemic flow ratio (QP/QS) by gamma variate fit method were used to evaluate the accuracy of detection and localization of LRCS. One hundred and ten time-activity curves were analyzed. There were 46 LRCS (atrial septal defects 11, ventricular septal defects 22, patent ductus arteriosus 13) and 64 normal subjects. By computer analysis of time-activity histograms of the right atrium, ventricle and the lungs separately, the count ratios modified by adding the mean cardiac transit time were calculated in each anatomic site. In normal subjects the mean count ratios in the right atrium, ventricle and lungs were 0.24 on average. In atrial septal defects, the count ratios were high in the right atrium, ventricle and lungs, whereas in ventricular septal defects the count ratios were higher only in the right ventricle and lungs. Patent ductus arteriosus showed normal count ratios in the heart but high count ratios were obtained in the lungs. Thus, this count ratios method could be separated normal from those with intracardiac or extracardiac shunts, and moreover, with this method the localization of the shunts level was possible in LRCS. Another method that could differentiate the intracardiac shunts from extracardiac shunts was measuring QP/QS in the left and right lungs. In patent ductus arteriosus, the left lung QP/QS was hight than those of the right lung, whereas in atrial septal defects and ventricular septal defects QP/QS ratios were equal in both lungs. (J.P.N.)

  18. Increased emergence of alpha activity over the left but not the right temporal lobe within a dark acoustic chamber: differential response of the left but not the right hemisphere to transcerebral magnetic fields.

    Science.gov (United States)

    Persinger, M A

    1999-11-01

    The percentages of alpha activity per minute over the left and right temporal lobes were measured for the first and second successive 15-min intervals while subjects wore opaque goggles within an acoustic chamber. A weak (5 microT), burst-firing magnetic field was presented during this period for 1 s every 4 s primarily over the left or the right cerebral hemisphere. The results indicated that the left temporal lobe became less vigilant between the first and second 15 min while the right temporal lobe did not. When standardized scores for each subject's measures over time and across hemispheres were employed, increased alpha time over the left temporal lobe relative to the right temporal lobe was observed only when the transcerebral magnetic field was applied over the left hemisphere. Stimulation of the right hemisphere did not evoke this discrepancy. The detection of the effects of this specific complex magnetic field upon electroencephalographic activity may be more probable when the subjects are exposed to partial sensory deprivation.

  19. Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction.

    Science.gov (United States)

    Nakamura-Palacios, Ester Miyuki; Lopes, Isabela Bittencourt Coutinho; Souza, Rodolpho Albuquerque; Klauss, Jaisa; Batista, Edson Kruger; Conti, Catarine Lima; Moscon, Janine Andrade; de Souza, Rodrigo Stênio Moll

    2016-10-01

    Here, we report some electrophysiologic and imaging effects of the transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (dlPFC) in drug addiction, notably in alcohol and crack-cocaine dependence. The low resolution electromagnetic tomography (LORETA) analysis obtained through event-related potentials (ERPs) under drug-related cues, more specifically in its P3 segment (300-500 ms) in both, alcoholics and crack-cocaine users, showed that the ventral medial prefrontal cortex (vmPFC) was the brain area with the largest change towards increasing activation under drug-related cues in those subjects that kept abstinence during and after the treatment with bilateral tDCS (2 mA, 35 cm(2), cathodal left and anodal right) over dlPFC, applied repetitively (five daily sessions). In an additional study in crack-cocaine, which showed craving decreases after repetitive bilateral tDCS, we examined data originating from diffusion tensor imaging (DTI), and we found increased DTI parameters in the left connection between vmPFC and nucleus accumbens (NAcc), such as the number of voxels, fractional anisotropy (FA) and apparent diffusion coefficient (ADC), in tDCS-treated crack-cocaine users when compared to the sham-tDCS group. This increasing of DTI parameters was significantly correlated with craving decreasing after the repetitive tDCS. The vmPFC relates to the control of drug seeking, possibly by extinguishing this behavior. In our studies, the bilateral dlPFC tDCS reduced relapses and craving to the drug use, and increased the vmPFC activation under drug cues, which may be of a great importance in the control of drug use in drug addiction.

  20. Why are some Children Left Out? Factors Barring Canadian Children from Participating in Extracurricular Activities

    Directory of Open Access Journals (Sweden)

    Li Xu

    2009-12-01

    Full Text Available Using three waves of data from the Canadian National Longitudinal Survey of Children and Youth, this study examines the impact of child, family and community level characteristics on children’s participation in extracurricular activities between the ages of 4 and 9 (n=2,289. Results show a large positive effect of family income on children’s participation in structured activities. Living in a poor neighbourhood constitutes an extra disadvantage for children's participation in organized sport activities. Our study also identifies a positive association between parent’s education and children’s participation in most activities, and a negative association between family size and some structured activities. Furthermore, children of immigrants, as well as children of visible minority and aboriginal children were found to be disadvantaged in their participation in some activities.

  1. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music.

    Science.gov (United States)

    Green, Anders C; Bærentsen, Klaus B; Stødkilde-Jørgensen, Hans; Roepstorff, Andreas; Vuust, Peter

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  2. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    Directory of Open Access Journals (Sweden)

    Anders C. Green

    2012-01-01

    Full Text Available We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen.

  3. Ventrolateral prefrontal cortex and tactile memory disambiguation in the human brain.

    Science.gov (United States)

    Kostopoulos, Penelope; Albanese, Marie-Claire; Petrides, Michael

    2007-06-12

    Tactile sensory information is first channeled from the primary somatosensory cortex on the postcentral gyrus to the parietal opercular region (i.e., the secondary somatosensory cortex) and the rostral inferior parietal lobule and, from there, to the prefrontal cortex, with which bidirectional connections exist. Although we know that tactile memory signals can be found in the prefrontal cortex, the contribution of the different prefrontal areas to tactile memory remains unclear. The present functional MRI study shows that a specific part of the prefrontal cortex in the human brain, namely the midventrolateral prefrontal region (cytoarchitectonic areas 47/12 and 45), is involved in active controlled retrieval processing necessary for the disambiguation of vibrotactile information in short-term memory. Furthermore, we demonstrate that this particular part of the prefrontal cortex interacts functionally with the secondary somatosensory areas in the parietal operculum and the rostral inferior parietal lobule during controlled processing for the retrieval of specific tactile information.

  4. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: a functional near-infrared spectroscopy (fNIRS study

    Directory of Open Access Journals (Sweden)

    Thiago F. Dias Kanthack

    2013-09-01

    Full Text Available The purpose of this study was to compare the prefrontal cortex (PFC blood flow variation and time on in males and females while performing a motor task and imagery perspectives. Eighteen right handed subjects (11 males and 7 females were volunteers to this study. All subjects went through three randomly conditions, a motor task condition (MT in which they had to do a simple finger tap. The other conditions included practicing imagery in first and third views. During all the conditions, the fNIRS device was attached to the subject forehead to obtain the blood flow; the total time in each task which was measured with a chronometer. No difference had been found in any condition for both sexes in the PFC and time, nor for all subjects integrated in the PFC. Therefore, we conclu-de that both imageries can be used to mentally train a motor task, and probably both sexes can be benefited.

  5. Adult males buffer the cortisol response of young guinea pigs: Changes with age, mediation by behavior, and comparison with prefrontal activity.

    Science.gov (United States)

    Hennessy, Michael B; Watanasriyakul, W Tang; Price, Brittany C; Bertke, Alexander S; Schiml, Patricia A

    2018-02-01

    In the guinea pig, the presence of the mother buffers hypothalamic-pituitary-adrenal (HPA) responses of her young during exposure to a novel environment, and can do so even if she is anesthetized. In contrast, under comparable conditions other conspecifics (siblings, other adult females) are less effective or ineffective in doing so. However, we recently observed that an unfamiliar adult male reduced plasma cortisol elevations and increased Fos in the prefrontal cortex of preweaning pups exposed to a novel enclosure for 120min. Here we found adult males buffered the adrenocortical response of preweaning pups at 60 as well as 120min and of periadolescent guinea pigs if exposure was of 120min. Further, because males vigorously engaged in social interactions with the young during exposure, we examined the effect of behavior by comparing the impact of conscious and unconscious (anesthetized) adult males. When tested with a conscious but not unconscious male, pups exhibited reduced plasma cortisol elevations. Pups, particularly females, had greater Fos induction in the prefrontal cortex when with a conscious versus unconscious adult male. Overall, we found that an unfamiliar adult male can buffer the cortisol response of guinea pigs both before and after weaning, though more-prolonged exposure appears necessary in the older animals. Further, unlike buffering by the biological mother, the effect of the male is mediated by behavioral interactions. Thus, the buffering of the infant guinea pig's cortisol response by the mother and an unfamiliar adult male involve different underlying mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Satiation attenuates BOLD activity in brain regions involved in reward and increases activity in dorsolateral prefrontal cortex: an fMRI study in healthy volunteers.

    Science.gov (United States)

    Thomas, Jason M; Higgs, Suzanne; Dourish, Colin T; Hansen, Peter C; Harmer, Catherine J; McCabe, Ciara

    2015-04-01

    Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. A whole-brain cluster-corrected analysis (P analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049. © 2015 American Society for Nutrition.

  7. Changes in prefrontal-limbic function in major depression after 15 months of long-term psychotherapy.

    Directory of Open Access Journals (Sweden)

    Anna Buchheim

    Full Text Available Neuroimaging studies of depression have demonstrated treatment-specific changes involving the limbic system and regulatory regions in the prefrontal cortex. While these studies have examined the effect of short-term, interpersonal or cognitive-behavioural psychotherapy, the effect of long-term, psychodynamic intervention has never been assessed. Here, we investigated recurrently depressed (DSM-IV unmedicated outpatients (N = 16 and control participants matched for sex, age, and education (N = 17 before and after 15 months of psychodynamic psychotherapy. Participants were scanned at two time points, during which presentations of attachment-related scenes with neutral descriptions alternated with descriptions containing personal core sentences previously extracted from an attachment interview. Outcome measure was the interaction of the signal difference between personal and neutral presentations with group and time, and its association with symptom improvement during therapy. Signal associated with processing personalized attachment material varied in patients from baseline to endpoint, but not in healthy controls. Patients showed a higher activation in the left anterior hippocampus/amygdala, subgenual cingulate, and medial prefrontal cortex before treatment and a reduction in these areas after 15 months. This reduction was associated with improvement in depressiveness specifically, and in the medial prefrontal cortex with symptom improvement more generally. This is the first study documenting neurobiological changes in circuits implicated in emotional reactivity and control after long-term psychodynamic psychotherapy.

  8. Changes in Prefrontal-Limbic Function in Major Depression after 15 Months of Long-Term Psychotherapy

    Science.gov (United States)

    Buchheim, Anna; Viviani, Roberto; Kessler, Henrik; Kächele, Horst; Cierpka, Manfred; Roth, Gerhard; George, Carol; Kernberg, Otto F.; Bruns, Georg; Taubner, Svenja

    2012-01-01

    Neuroimaging studies of depression have demonstrated treatment-specific changes involving the limbic system and regulatory regions in the prefrontal cortex. While these studies have examined the effect of short-term, interpersonal or cognitive-behavioural psychotherapy, the effect of long-term, psychodynamic intervention has never been assessed. Here, we investigated recurrently depressed (DSM-IV) unmedicated outpatients (N = 16) and control participants matched for sex, age, and education (N = 17) before and after 15 months of psychodynamic psychotherapy. Participants were scanned at two time points, during which presentations of attachment-related scenes with neutral descriptions alternated with descriptions containing personal core sentences previously extracted from an attachment interview. Outcome measure was the interaction of the signal difference between personal and neutral presentations with group and time, and its association with symptom improvement during therapy. Signal associated with processing personalized attachment material varied in patients from baseline to endpoint, but not in healthy controls. Patients showed a higher activation in the left anterior hippocampus/amygdala, subgenual cingulate, and medial prefrontal cortex before treatment and a reduction in these areas after 15 months. This reduction was associated with improvement in depressiveness specifically, and in the medial prefrontal cortex with symptom improvement more generally. This is the first study documenting neurobiological changes in circuits implicated in emotional reactivity and control after long-term psychodynamic psychotherapy. PMID:22470470

  9. Differential Left Hippocampal Activation during Retrieval with Different Types of Reminders: An fMRI Study of the Reconsolidation Process

    Science.gov (United States)

    De Pino, Gabriela; Fernández, Rodrigo Sebastián; Villarreal, Mirta Fabiana; Pedreira, María Eugenia

    2016-01-01

    Consolidated memories return to a labile state after the presentation of cues (reminders) associated with acquisition, followed by a period of stabilization (reconsolidation). However not all cues are equally effective in initiating the process, unpredictable cues triggered it, predictable cues do not. We hypothesize that the different effects observed by the different reminder types on memory labilization-reconsolidation depend on a differential neural involvement during reminder presentation. To test it, we developed a declarative task and compared the efficacy of three reminder types in triggering the process in humans (Experiment 1). Finally, we compared the brain activation patterns between the different conditions using functional magnetic resonance imaging (fMRI) (Experiment 2). We confirmed that the unpredictable reminder is the most effective in initiating the labilization-reconsolidation process. Furthermore, only under this condition there was differential left hippocampal activation during its presentation. We suggest that the left hippocampus is detecting the incongruence between actual and past events and allows the memory to be updated. PMID:26991776

  10. High-Frequency Electroencephalographic Activity in Left Temporal Area Is Associated with Pleasant Emotion Induced by Video Clips

    Directory of Open Access Journals (Sweden)

    Jukka Kortelainen

    2015-01-01

    Full Text Available Recent findings suggest that specific neural correlates for the key elements of basic emotions do exist and can be identified by neuroimaging techniques. In this paper, electroencephalogram (EEG is used to explore the markers for video-induced emotions. The problem is approached from a classifier perspective: the features that perform best in classifying person’s valence and arousal while watching video clips with audiovisual emotional content are searched from a large feature set constructed from the EEG spectral powers of single channels as well as power differences between specific channel pairs. The feature selection is carried out using a sequential forward floating search method and is done separately for the classification of valence and arousal, both derived from the emotional keyword that the subject had chosen after seeing the clips. The proposed classifier-based approach reveals a clear association between the increased high-frequency (15–32 Hz activity in the left temporal area and the clips described as “pleasant” in the valence and “medium arousal” in the arousal scale. These clips represent the emotional keywords amusement and joy/happiness. The finding suggests the occurrence of a specific neural activation during video-induced pleasant emotion and the possibility to detect this from the left temporal area using EEG.

  11. Prefrontal Hemodynamic Changes Associated with Subjective Sense of Occlusal Discomfort

    Directory of Open Access Journals (Sweden)

    Yumie Ono

    2015-01-01

    Full Text Available We used functional near-infrared spectroscopy to measure prefrontal brain activity accompanying the physical sensation of oral discomfort that arose when healthy young-adult volunteers performed a grinding motion with mild occlusal elevation (96 μm. We simultaneously evaluated various forms of occlusal discomfort using the visual analogue scale (VAS and hemodynamic responses to identify the specific prefrontal activity that occurs with increased occlusal discomfort. The Oxy-Hb responses of selected channels in the bilateral frontopolar and dorsolateral prefrontal cortices increased in participants who reported increased severity of occlusal discomfort, while they decreased in those who reported no change or decreased occlusal discomfort during grinding. Moreover, the cumulative values of Oxy-Hb response in some of these channels were statistically significant predictive factors for the VAS scores. A generalized linear model analysis of Oxy-Hb signals in a group of participants who reported increased discomfort further indicated significant cerebral activation in the right frontopolar and dorsolateral prefrontal cortices that overlapped with the results of correlation analyses. Our results suggest that the increased hemodynamic responses in the prefrontal area reflect the top-down control of attention and/or self-regulation against the uncomfortable somatosensory input, which could be a possible marker to detect the subjective sense of occlusal discomfort.

  12. Noradrenergic lesion of the locus coeruleus increases the firing activity of the medial prefrontal cortex pyramidal neurons and the role of alpha2-adrenoceptors in normal and medial forebrain bundle lesioned rats.

    Science.gov (United States)

    Wang, Yong; Zhang, Qiao Jun; Liu, Jian; Ali, Umar; Gui, Zhen Hua; Hui, Yan Ping; Wang, Tao; Chen, Li; Li, Qiang

    2010-04-09

    Degeneration of noradrenergic neurons in the locus coeruleus (LC) and dysfunction of the prefrontal cortex were regarded as playing a specific role in the occurrence of non-motor symptoms in Parkinson's disease. The present study examined the spontaneous firing rate and firing pattern of medial prefrontal cortex (mPFC) pyramidal neurons, and effects of alpha(2)-adrenoceptor agonist UK-14,304 and antagonist yohimbine on the neuronal activity in rats with 6-hydroxydopamine lesions of the LC, medial forebrain bundle (MFB) and with combined MFB and LC lesions. The firing rate of mPFC pyramidal neurons in rats with lesions of the LC and with combine LC and MFB lesions is significantly higher than that of normal and MFB-lesioned rats and the firing pattern of these neurons in rats with lesions of the LC and with combine LC and MFB lesions also changed significantly towards more regular compared with normal and MFB-lesioned rats. The local administration of UK-14,304 in the mPFC inhibited the firing activity of the pyramidal neurons in normal rats and rats with lesions of the LC, MFB and with combined LC and MFB lesions, while yohimbine increased the firing activity of the pyramidal neurons. These results indicate that the lesions of the LC lead to hyperactivity of mPFC pyramidal neurons in normal and MFB-lesioned rats, and the postsynaptic alpha(2)-adrenoceptors may partially mediate the inhibitory effects of LC-noradrenergic system on the firing activity of pyramidal neurons in the mPFC, suggesting that LC-noradrenergic system plays an important role in the functional disorders of mPFC in Parkinson's disease. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  13. Correction: Stereodivergent synthesis of right- and left-handed iminoxylitol heterodimers and monomers. Study of their impact on β-glucocerebrosidase activity.

    Science.gov (United States)

    Stauffert, Fabien; Serra-Vinardell, Jenny; Gómez-Grau, Marta; Michelakakis, Helen; Mavridou, Irene; Grinberg, Daniel; Vilageliu, Lluïsa; Casas, Josefina; Bodlenner, Anne; Delgado, Antonio; Compain, Philippe

    2017-09-26

    Correction for 'Stereodivergent synthesis of right- and left-handed iminoxylitol heterodimers and monomers. Study of their impact on β-glucocerebrosidase activity' by Fabien Stauffert et al., Org. Biomol. Chem., 2017, 15, 3681-3705.

  14. Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning.

    Science.gov (United States)

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M

    2011-01-01

    Reasoning is a key component of adaptable "executive" behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand-or the requirement to remap rules on to novel features-recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions.

  15. Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    Science.gov (United States)

    Thompson, Russell; Duncan, John; Owen, Adrian M.

    2011-01-01

    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908

  16. Cortical activity in the left and right hemispheres during language-related brain functions

    DEFF Research Database (Denmark)

    Lassen, N A; Larsen, B

    1980-01-01

    of cortical activity seen during various language functions, emphasizing the practically symmetrical involvement in both hemispheres. A case of auditive agnosia (with complete cortical word deafness but preserved pure tone thresholds) is presented. The patient's normal speech constitutes evidence...

  17. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation

    Czech Academy of Sciences Publication Activity Database

    Světlák, M.; Bob, P.; Roman, R.; Ježek, S.; Damborská, A.; Chládek, Jan; Shaw, D. J.; Kukleta, M.

    2013-01-01

    Roč. 62, č. 6 (2013), s. 711-719 ISSN 0862-8408 Institutional support: RVO:68081731 Keywords : electrodermal activity * pointwise trasinformation * autonomic nervous system * asymmetry * stress Subject RIV: CE - Biochemistry Impact factor: 1.487, year: 2013

  18. The role of the medial prefrontal cortex in achieving goals.

    Science.gov (United States)

    Matsumoto, Kenji; Tanaka, Keiji

    2004-04-01

    Achieving goals in changing environments requires the course of action to be selected on the basis of goal expectation and memory of action-outcome contingency. It is often also essential to evaluate action on the basis of immediate outcomes and the discrimination of early action steps from the final step towards the goal. Recently, in single-cell recordings in monkeys, the neuronal activity that appears to underlie these processes has been noted in the medial part of the prefrontal cortex. Medial prefrontal cells were also active when the subjects extracted the rules of a task in a novel environment. The processes described above might play important roles in rule learning.

  19. Strategy-effects in prefrontal cortex during learning of higher-order S-R rules.

    Science.gov (United States)

    Wolfensteller, Uta; von Cramon, D Yves

    2011-07-15

    All of us regularly face situations that require the integration of the available information at hand with the established rules that guide behavior in order to generate the most appropriate action. But where individuals differ from one another is most certainly in terms of the different strategies that are adopted during this process. A previous study revealed differential brain activation patterns for the implementation of well established higher-order stimulus-response (S-R) rules depending on inter-individual strategy differences (Wolfensteller and von Cramon, 2010). This raises the question of how these strategies evolve or which neurocognitive mechanisms underlie these inter-individual strategy differences. Using functional magnetic resonance imaging (fMRI), the present study revealed striking strategy-effects across regions of the lateral prefrontal cortex during the implementation of higher-order S-R rules at an early stage of learning. The left rostrolateral prefrontal cortex displayed a quantitative strategy-effect, such that activation during rule integration based on a mismatch was related to the degree to which participants continued to rely on rule integration. A quantitative strategy ceiling effect was observed for the left inferior frontal junction area. Conversely, the right inferior frontal gyrus displayed a qualitative strategy-effect such that participants who at a later point relied on an item-based strategy showed stronger activations in this region compared to those who continued with the rule integration strategy. Together, the present findings suggest that a certain amount of rule integration is mandatory when participants start to learn higher-order rules. The more efficient item-based strategy that evolves later appears to initially require the recruitment of additional cognitive resources in order to shield the currently relevant S-R association from interfering information. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Involvement of the dorsolateral prefrontal cortex and superior temporal sulcus in impaired social perception in schizophrenia.

    Science.gov (United States)

    Shin, Jung Eun; Choi, Soo-Hee; Lee, Hyeongrae; Shin, Young Seok; Jang, Dong-Pyo; Kim, Jae-Jin

    2015-04-03

    Schizophrenia is a mental disorder characterized by impairments in diverse thinking and emotional responses, which are related to social perception dysfunction. This fMRI study was designed to investigate a neurobiological basis of social perception deficits of patients with schizophrenia in various social situations of daily life and their relationship with clinical symptoms and social dysfunction. Seventeen patients and 19 controls underwent functional magnetic resonance imaging, during which participants performed a virtual social perception task, containing an avatar's speech with positive, negative or neutral emotion in a virtual reality space. Participants were asked to determine whether or not the avatar's speech was appropriate to each situation. The significant group×appropriateness interaction was seen in the left dorsolateral prefrontal cortex (DLPFC), resulting from lower activity in patients in the inappropriate condition, and left DLPFC activity was negatively correlated with the severity of negative symptoms and positively correlated with the level of social functioning. The significant appropriateness×emotion interaction observed in the left superior temporal sulcus (STS) was present in controls, but absent in patients, resulting from the existence and absence of a difference between the inappropriate positive and negative conditions, respectively. These findings indicate that dysfunction of the DLPFC-STS network may underlie patients' abnormal social perception in various social situations of daily life. Abnormal functioning of this network may contribute to increases of negative symptoms and decreases of social functioning. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. DETECTING BILATERAL FUNCTIONAL CONNECTIVITY IN THE PREFRONTAL CORTEX DURING A STROOP TASK BY NEAR-INFRARED SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    LEI ZHANG

    2013-10-01

    Full Text Available Near-infrared spectroscopy (NIRS is generally accepted as a functional brain imaging technology for brain activation study. With multichannel highly sensitive NIRS instruments, it has become possible to assess functional connectivity of different brain regions by NIRS. However, the feasibility needs to be validated in complex cognitive activities. In this study, we recorded the hemodynamic activity of the bilateral prefrontal cortex (PFC during a color-word matching Stroop task. Wavelet transform coherence (WTC analysis was applied to assess the functional connectivity of all homologous channel pairs within the left/right PFC. Both the behavioral and brain activation results showed significant Stroop effects. The results of WTC analysis revealed that, bilateral functional connectivity was significantly stronger during both the incongruent stimuli and neutral stimuli compared to that of the rest period. It also showed significant Stroop effect. Our findings demonstrate that, NIRS becomes a valuable tool to elucidate the functional connectivity of brain cortex in complex cognitive activities.

  2. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.

    Science.gov (United States)

    Dahmani, Louisa; Bohbot, Véronique D

    2015-01-01

    The hippocampus and the caudate nucleus are critical to spatial- and stimulus-response-based navigation strategies, respectively. The hippocampus and caudate nucleus are also known to be anatomically connected to various areas of the prefrontal cortex. However, little is known about the involvement of the prefrontal cortex in these processes. In the current study, we sought to identify the prefrontal areas involved in spatial and response learning. We used functional magnetic resonance imaging (fMRI) and voxel-based morphometry to compare the neural activity and grey matter density of spatial and response strategy users. Twenty-three healthy young adults were scanned in a 1.5 T MRI scanner while they engaged in the Concurrent Spatial Discrimination Learning Task, a virtual navigation task in which either a spatial or response strategy can be used. In addition to increased BOLD activity in the hippocampus, spatial strategy users showed increased BOLD activity and grey matter density in the ventral area of the medial prefrontal cortex, especially in the orbitofrontal cortex. On the other hand, response strategy users exhibited increased BOLD activity and grey matter density in the dorsal area of the medial prefrontal cortex. Given the prefrontal cortex's role in reward-guided decision-making, we discuss the possibility that the ventromedial prefrontal cortex, including the orbitofrontal cortex, supports spatial learning by encoding stimulus-reward associations, while the dorsomedial prefrontal cortex supports response learning by encoding action-reward associations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Too Little and Too Much: Hypoactivation and Disinhibition of Medial Prefrontal Cortex Cause Attentional Deficits

    Science.gov (United States)

    McGarrity, Stephanie; Mason, Rob; Fone, Kevin C.

    2014-01-01

    Attentional deficits are core symptoms of schizophrenia, contributing strongly to disability. Prefrontal dysfunction has emerged as a candidate mechanism, with clinical evidence for prefrontal hypoactivation and disinhibition (reduced GABAergic inhibition), possibly reflecting different patient subpopulations. Here, we tested in rats whether imbalanced prefrontal neural activity impairs attention. To induce prefrontal hypoactivation or disinhibition, we microinfused the GABA-A receptor agonist muscimol (C4H6N2O2; 62.5, 125, 250 ng/side) or antagonist picrotoxin (C30H34O13; 75, 150, 300 ng/side), respectively, into the medial prefrontal cortex. Using the five-choice serial reaction time (5CSRT) test, we showed that both muscimol and picrotoxin impaired attention (reduced accuracy, increased omissions). Muscimol also impaired response control (increased premature responses). In addition, muscimol dose dependently reduced open-field locomotor activity, whereas 300 ng of picrotoxin caused locomotor hyperactivity; sensorimotor gating (startle prepulse inhibition) was unaffected. Therefore, infusion effects on the 5CSRT test can be dissociated from sensorimotor effects. Combining microinfusions with in vivo electrophysiology, we showed that muscimol inhibited prefrontal firing, whereas picrotoxin increased firing, mainly within bursts. Muscimol reduced and picrotoxin enhanced bursting and both drugs changed the temporal pattern of bursting. Picrotoxin also markedly enhanced prefrontal LFP power. Therefore, prefrontal hypoactivation and disinhibition both cause attentional deficits. Considering the electrophysiological findings, this suggests that attention requires appropriately tuned prefrontal activity. Apart from attentional deficits, prefrontal disinhibition caused additional neurobehavioral changes that may be relevant to schizophrenia pathophysiology, including enhanced prefrontal bursting and locomotor hyperactivity, which have been linked to psychosis

  4. Depressive symptoms in older adults are associated with decreased cerebral oxygenation of the prefrontal cortex during a trail-making test.

    Science.gov (United States)

    Uemura, Kazuki; Shimada, Hiroyuki; Doi, Takehiko; Makizako, Hyuma; Park, Hyuntae; Suzuki, Takao

    2014-01-01

    Growing evidence supports the relationships between depressive symptoms, cognitive decline, and brain structural changes in older adults. The purpose of this study was to determine whether depressive symptoms are related to cerebral oxygenation during cognitive tasks in older adults. In this study, 80 elderly subjects (73.9 ± 5.4 years, 34 males) were evaluated using multi-channel Near-infrared spectroscopy. Concentration changes (mmolcm/l) in oxy-hemoglobin (oxy-Hb), as the most reliable available indicator of changes in regional cerebral blood flow, in the right and left prefrontal cortex were measured during the Trail Making Test Part B (TMT-B). Depressive symptoms were assessed using the short Geriatric Depression Scale (GDS). Subjects were divided into a depressive group (GDS greater than or equal to 6) and non-depressive group (GDS lower than 6). In results, Oxy-Hb activation during the TMT-B was significantly smaller in the depressive group (n=13) than in the non-depressive group (n=67) in both the right and left prefrontal cortex. In the multivariate analysis, GDS scores were significantly negatively correlated with oxy-Hb activation after adjusting for age, gender and educational history (right, β=-0.32, p=0.002; left, β=-0.25, p=0.02). Less prefrontal activation in older adults with depressive symptoms may account for decline in executive function. Further studies are needed to investigate the influence of the less brain activation associated with depressive symptoms on future cognitive decline and structural brain changes in older adults. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Using Functional Near-Infrared Spectroscopy to Measure Effects of Delta 9-Tetrahydrocannabinol on Prefrontal Activity and Working Memory in Cannabis Users.

    Science.gov (United States)

    Keles, Hasan O; Radoman, Milena; Pachas, Gladys N; Evins, A Eden; Gilman, Jodi M

    2017-01-01

    Intoxication from cannabis impairs cognitive performance, in part due to the effects of Δ9-tetrahydrocannabinol (THC, the primary psychoactive compound in cannabis) on prefrontal cortex (PFC) function. However, a relationship between impairment in cognitive functioning with THC administration and THC-induced change in hemodynamic response has not been demonstrated. We explored the feasibility of using functional near-infrared spectroscopy (fNIRS) to examine the functional changes of the human PFC associated with cannabis intoxication and cognitive impairment. Eighteen adult regular cannabis users (final sample, n = 13) performed a working memory task ( n -back) during fNIRS recordings, before and after receiving a single dose of oral synthetic THC (dronabinol; 20-50 mg). Functional data were collected using a continuous-wave NIRS device, in which 8 Sources and 7 detectors were placed on the forehead, resulting in 20 channels covering PFC regions. Physiological changes and subjective intoxication measures were collected. We found a significant increase in the oxygenated hemoglobin (HbO) concentration after THC administration in several channels on the PFC during both the high working memory load (2-back) and the low working memory load (0-back) condition. The increased HbO response was accompanied by a trend toward an increased number of omission errors after THC administration. The current study suggests that cannabis intoxication is associated with increases in hemodynamic blood flow to the PFC, and that this increase can be detected with fNIRS.

  6. Using Functional Near-Infrared Spectroscopy to Measure Effects of Delta 9-Tetrahydrocannabinol on Prefrontal Activity and Working Memory in Cannabis Users

    Directory of Open Access Journals (Sweden)

    Hasan O. Keles

    2017-10-01

    Full Text Available Intoxication from cannabis impairs cognitive performance, in part due to the effects of Δ9-tetrahydrocannabinol (THC, the primary psychoactive compound in cannabis on prefrontal cortex (PFC function. However, a relationship between impairment in cognitive functioning with THC administration and THC-induced change in hemodynamic response has not been demonstrated. We explored the feasibility of using functional near-infrared spectroscopy (fNIRS to examine the functional changes of the human PFC associated with cannabis intoxication and cognitive impairment. Eighteen adult regular cannabis users (final sample, n = 13 performed a working memory task (n-back during fNIRS recordings, before and after receiving a single dose of oral synthetic THC (dronabinol; 20–50 mg. Functional data were collected using a continuous-wave NIRS device, in which 8 Sources and 7 detectors were placed on the forehead, resulting in 20 channels covering PFC regions. Physiological changes and subjective intoxication measures were collected. We found a significant increase in the oxygenated hemoglobin (HbO concentration after THC administration in several channels on the PFC during both the high working memory load (2-back and the low working memory load (0-back condition. The increased HbO response was accompanied by a trend toward an increased number of omission errors after THC administration. The current study suggests that cannabis intoxication is associated with increases in hemodynamic blood flow to the PFC, and that this increase can be detected with fNIRS.

  7. Grit and the brain: spontaneous activity of the dorsomedial prefrontal cortex mediates the relationship between the trait grit and academic performance

    Science.gov (United States)

    Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Wang, Meiyun; Gong, Qiyong

    2017-01-01

    Abstract As a personality trait, grit involves the tendency to strive to achieve long-term goals with continual passion and perseverance and plays an extremely crucial role in personal achievement. However, the neural mechanisms of grit remain largely unknown. In this study, we aimed to explore the association between grit and the fractional amplitude of low-frequency fluctuations (fALFF) in 217 healthy adolescent students using resting-state functional magnetic resonance imaging (RS-fMRI). We found that an individual’s grit was negatively related to the regional fALFF in the right dorsomedial prefrontal cortex (DMPFC), which is involved in self-regulation, planning, goal setting and maintenance, and counterfactual thinking for reflecting on past failures. The results persisted even after the effects of general intelligence and the ‘big five’ personality traits were adjusted for. More importantly, the fALFF of the right DMPFC played a mediating role in the association between grit and academic performance. Overall, these findings reveal regional fALFF as a neural basis of grit and highlight the right DMPFC as a neural link between grit and academic performance. PMID:27672175

  8. Association of the five-factor personality model with prefrontal activation during frontal lobe task performance using two-channel near-infrared spectroscopy.

    Science.gov (United States)

    Ikeda, Haruka; Ikeda, Eiji; Shiozaki, Kazumasa; Hirayasu, Yoshio

    2014-10-01

    The aim of this study was to investigate the biological background of the five-factor model using near-infrared spectroscopy and cognitive tasks. Twenty right-handed healthy volunteers participated in this study. Their personality traits were assessed using the NEO Five-Factor Inventory, and changes in oxyhemoglobin concentration ([oxy-Hb]) were measured during cognitive tasks using a wireless near-infrared spectroscopy. The average [oxy-Hb] in the right prefrontal area had a significant positive correlation with the agreeableness score during the Stroop test at incongruent stimulus block. For the verbal fluency task, there were no significant correlations of bilateral [oxy-Hb] changes with any items. Higher agreeableness scores may involve less suppression to the default mode network related to resting state brain function. Keeping selective attention during the Stroop test may require more power of concentration than retrieving words during the verbal fluency task. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  9. Why are some Children Left Out? Factors Barring Canadian Children from Participating in Extracurricular Activities

    Directory of Open Access Journals (Sweden)

    Strohschein, Lisa

    2009-01-01

    Full Text Available AbstractUsing three waves of data from the Canadian National Longitudinal Survey ofChildren and Youth, this study examines the impact of child, family andcommunity level characteristics on children’s participation in extracurricularactivities between the ages of 4 and 9 (n=2,289. Results show a large positiveeffect of family income on children’s participation in structured activities.Living in a poor neighbourhood constitutes an extra disadvantage for children'sparticipation in organized sport activities. Our study also identifies a positiveassociation between parent’s education and children’s participation in mostactivities, and a negative association between family size and some structuredactivities. Furthermore, children of immigrants, as well as children of visibleminority and aboriginal children were found to be disadvantaged in theirparticipation in some activities.RésuméSur la base de trois cycles de données de l’Enquête canadienne longitudinalesur les enfants et les jeunes, cette étude examine l'impact des caractéristiques del'enfant, de la famille et de la communauté sur la participation des enfants de 4à 9 ans (n=2,289 dans des activités parascolaires. Les résultats démontrent unfort effet positif du revenu familial sur la participation dans des activitésstructurées. Vivre dans un quartier pauvre constitue un désavantagesupplémentaire pour la participation des enfants dans des activités de sportorganisé. Notre étude identifie aussi une association positive entre la scolaritédes parents et la participation des enfants à la plupart des activités, et uneassociation négative entre la taille de la famille et certaines activitésstructurées. De plus, on a trouvé que les enfants d'immigrants, de même que lesenfants de minorités visibles et les enfants autochtones étaient désavantagés parrapport à leur participation dans certaines activités.

  10. Neurohormonal activation and exercise tolerance in patients supported with a continuous-flow left ventricular assist device

    DEFF Research Database (Denmark)

    Jung, Mette Holme; Goetze, Jens Peter; Boesgaard, Soeren

    2016-01-01

    BACKGROUND: Neurohormones play a key role in regulating hemodynamics in heart failure (HF) both at rest and during exercise. In contrast, little is known about the importance of neurohormonal regulation for exercise capacity in continuous-flow left ventricular assist device (CF-LVAD) patients....... The aim of this study was to assess the relation between neurohormonal activation patterns in CF-LVAD patients and exercise capacity. METHODS: Plasma concentrations of the C-terminal portion of pro-arginine vasopressin precursor (copeptin), pro-adrenomedullin (proADM), pro-B-type (proBNP) and pro......-atrial (proANP) natriuretic peptides were measured in 25 CF-LVAD patients (HeartMate II) in the morning prior to maximal cardiopulmonary exercise testing determining peak oxygen uptake (peak VO2). Quality of life (QOL) was determined by questionnaires. RESULTS: Peak VO2 was severely reduced averaging 13...

  11. Re-activation of an inactive Ge(Li) detector left for long time at room temperature

    International Nuclear Information System (INIS)

    Kawarasaki, Yuuki

    1976-07-01

    The two techniques of re-activating or fabricating a Ge(Li) detector simpler than the usual ones are presented. One is applied in the first stage, which is Li-evaporation onto Ge-crystal and thermal diffusion into the crystal. The crystal is heated directly by an electric current and the Li-evaporation efficiency is raised by means of electric fields applied between the crystal and the evaporators and between these two and the surrounding reflector electrode. The other is applied in the final stage of the so-called ''clean-up'' process. The Q-factor as a function of the applied bias voltage measured simultaneously with a capacitance can be used as a measure of the degree of quality (characteristic) which governs the detector resolution. By the techniques, re-activation was successfully carried out of an inactive detector left for long time at room temperature. They are applicable to re-activation of the deteriorated detector due to bombardment of fast neutron or charged particles. The procedure of re-activation and the results are described. (auth.)

  12. Multiplexed Optical Imaging of Energy Substrates Reveals That Left Ventricular Hypertrophy Is Associated With Brown Adipose Tissue Activation.

    Science.gov (United States)

    Panagia, Marcello; Chen, Howard H; Croteau, Dominique; Iris Chen, Yin-Ching; Ran, Chongzhao; Luptak, Ivan; Josephson, Lee; Colucci, Wilson S; Sosnovik, David E

    2018-03-01

    Substrate utilization in tissues with high energetic requirements could play an important role in cardiometabolic disease. Current techniques to assess energetics are limited by high cost, low throughput, and the inability to resolve multiple readouts simultaneously. Consequently, we aimed to develop a multiplexed optical imaging platform to simultaneously assess energetics in multiple organs in a high throughput fashion. The detection of 18F-Fluordeoxyglucose uptake via Cerenkov luminescence and free fatty acid uptake with a fluorescent C 16 free fatty acid was tested. Simultaneous uptake of these agents was measured in the myocardium, brown/white adipose tissue, and skeletal muscle in mice with/without thoracic aortic banding. Within 5 weeks of thoracic aortic banding, mice developed left ventricular hypertrophy and brown adipose tissue activation with upregulation of β 3 AR (β 3 adrenergic receptors) and increased natriuretic peptide receptor ratio. Imaging of brown adipose tissue 15 weeks post thoracic aortic banding revealed an increase in glucose ( P <0.01) and free fatty acid ( P <0.001) uptake versus controls and an increase in uncoupling protein-1 ( P <0.01). Similar but less robust changes were seen in skeletal muscle, while substrate uptake in white adipose tissue remained unchanged. Myocardial glucose uptake was increased post-thoracic aortic banding but free fatty acid uptake trended to decrease. A multiplexed optical imaging technique is presented that allows substrate uptake to be simultaneously quantified in multiple tissues in a high throughput manner. The activation of brown adipose tissue occurs early in the onset of left ventricular hypertrophy, which produces tissue-specific changes in substrate uptake that may play a role in the systemic response to cardiac pressure overload. © 2018 American Heart Association, Inc.

  13. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    Science.gov (United States)

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers.

  14. Prefrontal Cortex Structure Predicts Training-Induced Improvements in Multitasking Performance.

    Science.gov (United States)

    Verghese, Ashika; Garner, K G; Mattingley, Jason B; Dux, Paul E

    2016-03-02

    The ability to perform multiple, concurrent tasks efficiently is a much-desired cognitive skill, but one that remains elusive due to the brain's inherent information-processing limitations. Multitasking performance can, however, be greatly improved through cognitive training (Van Selst et al., 1999, Dux et al., 2009). Previous studies have examined how patterns of brain activity change following training (for review, see Kelly and Garavan, 2005). Here, in a large-scale human behavioral and imaging study of 100 healthy adults, we tested whether multitasking training benefits, assessed using a standard dual-task paradigm, are associated with variability in brain structure. We found that the volume of the rostral part of the left dorsolateral prefrontal cortex (DLPFC) predicted an individual's response to training. Critically, this association was observed exclusively in a task-specific training group, and not in an active-training control group. Our findings reveal a link between DLPFC structure and an individual's propensity to gain from training on a task that taps the limits of cognitive control. Cognitive "brain" training is a rapidly growing, multibillion dollar industry (Hayden, 2012) that has been touted as the panacea for a variety of disorders that result in cognitive decline. A key process targeted by such training is "cognitive control." Here, we combined an established cognitive control measure, multitasking ability, with structural brain imaging in a sample of 100 participants. Our goal was to determine whether individual differences in brain structure predict the extent to which people derive measurable benefits from a cognitive training regime. Ours is the first study to identify a structural brain marker-volume of left hemisphere dorsolateral prefrontal cortex-associated with the magnitude of multitasking performance benefits induced by training at an individual level. Copyright © 2016 the authors 0270-6474/16/362638-08$15.00/0.

  15. Focused transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex modulates specific domains of self-regulation.

    Science.gov (United States)

    Pripfl, Jürgen; Lamm, Claus

    2015-02-01

    Recent neuroscience theories suggest that different kinds of self-regulation may share a common psychobiological mechanism. However, empirical evidence for a domain general self-regulation mechanism is scarce. The aim of this study was to investigate whether focused anodal transcranial direct current stimulation (tDCS), facilitating the activity of the dorsolateral prefrontal cortex (dlPFC), acts on a domain general self-regulation mechanism and thus modulates both affective and appetitive self-regulation. Twenty smokers participated in this within-subject sham controlled study. Effects of anodal left, anodal right and sham tDCS over the dlPFC on affective picture appraisal and nicotine craving-cue appraisal were assessed. Anodal right tDCS over the dlPFC reduced negative affect in emotion appraisal, but neither modulated regulation of positive emotion appraisal nor of craving appraisal. Anodal left stimulation did not induce any significant effects. The results of our study show that domain specific self-regulation networks are at work in the prefrontal cortex. Focused tDCS modulation of this specific self-regulation network could probably be used during the first phase of nicotine abstinence, during which negative affect might easily result in relapse. These findings have implications for neuroscience models of self-regulation and are of relevance for the development of brain stimulation based treatment methods for neuropsychiatric disorders associated with self-regulation deficits. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  16. Changes in electrical activation modify the orientation of left ventricular flow momentum: novel observations using echocardiographic particle image velocimetry.

    Science.gov (United States)

    Pedrizzetti, Gianni; Martiniello, Alfonso R; Bianchi, Valter; D'Onofrio, Antonio; Caso, Pio; Tonti, Giovanni

    2016-02-01

    Changes in electrical activation sequence are known to affect the timing of cardiac mechanical events. We aim to demonstrate that these also modify global properties of the intraventricular blood flow pattern. We also explore whether such global changes present a relationship with clinical outcome. We investigated 30 heart failure patients followed up after cardiac resynchronization therapy (CRT). All subjects underwent echocardiography before implant and at follow-up after 6+ months. Left ventricular mechanics was investigated at follow-up during active CRT and was repeated after a temporary interruption volumetric reduction after CRT. Changes in electrical activation alter the orientation of blood flow momentum. The long-term CRT outcome correlates with the degree of re-alignment of haemodynamic forces. These preliminary results suggest that flow orientation could be used for optimizing the biventricular pacing setting. However, larger prospective studies are needed to confirm this hypothesis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  17. Anterior prefrontal involvement in implicit contextual change detection

    Directory of Open Access Journals (Sweden)

    Stefan Pollmann

    2009-10-01

    Full Text Available Anterior prefrontal cortex is usually associated with high level executive functions. Here, we show that the frontal pole, specifically left lateral frontopolar cortex, is involved in signaling change in implicitly learned spatial contexts, in the absence of conscious change detection. In a variant of the contextual cueing paradigm, participants first learned implicitly contingencies between distractor contexts and target locations. After learning, repeated distractor contexts were paired with new target locations. Left lateral frontopolar (BA10 and superior frontal (BA9 cortices showed selective signal increase for this target location change in repeated displays in an event-related fMRI experiment, which was most pronounced in participants with high contextual facilitation before the change. The data support the view that left lateral frontopolar cortex is involved in signaling contextual change to posterior brain areas as a precondition for adaptive changes of attentional resource allocation. This signaling occurs in the absence of awareness of learned contingencies or contextual change.

  18. Striatal dopamine release induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex: effect of aging

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Seong Ae; Cho, Sang Soo; Yoon, Eun Jin; Kim, Ji Sun; Lee, Byung Chul; Kim, Yu Kyeong; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    We previously demonstrated dopamine (DA) release in the bilateral striatal regions following prefrontal repetitive transcranial magnetic stimulation (rTMS) in young subjects. Several lines of evidence support substantial age-related changes in human dopaminergic neurotransmission. One possible explanation is alteration of cortico striatal neural connection with aging. Therefore, we investigated how frontal activation by rTMS influences striatal DA release in the elderly with SPECT measurements of striatal binding of [123I]iodobenzamide (lBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy elderly male subjects (age, 64 3 y) were studied with brain [123I]IBZM SPECT under three conditions (resting, sham stimulation, and active rTMS over left dorsolateral prefrontal cortex (DLPFC)), while receiving a bolus plus constant infusion of [123I]IBZM. rTMS session consisted of three blocks. In each block, 15 trains of 2 sec duration were delivered with 10 Hz stimulation frequency and 100% motor threshold. Striatal V3', calculated as (striatal - occipital)/occipital radioactivity, was measured under equilibrium condition at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over left DLPFC induced no significant change in V3' in the right striatum compared with baseline condition (0.91 0.25 vs. 0.96 0.25, P = NS). Interestingly, left striatal V3' showed a significant increase after rTMS over left DLPFC compared with sham condition (1.09 0.33 vs. 0.93 0.27, P < 0.05; 17.0 11.1% increase). These results are discrepant from previous ones from young subjects, who showed frontal rTMS-induced reduction of striatal V3', indicating rTMS-induced striatal DA release. We found no significant striatal DA release induced by rTMS over DLPFC in healthy elderly subjects using in vivo binding competition techniques. These results may support an altered cortico striatal circuit in normal aging.

  19. The Role of the Prefrontal Cortex in Action Perception.

    Science.gov (United States)

    Raos, Vassilis; Savaki, Helen E

    2017-10-01

    In an attempt to shed light on the role of the prefrontal cortex in action perception, we used the quantitative 14C-deoxyglucose method to reveal the effects elicited by reaching-to-grasp in the light or in the dark and by observation of the same action executed by an external agent. We analyzed the cortical areas in the principal sulcus, the superior and inferior lateral prefrontal convexities and the orbitofrontal cortex of monkeys. We found that execution in the light and observation activated in common most of the lateral prefrontal and orbitofrontal cortical areas, with the exception of 9/46-dorsal activated exclusively for observation and 9/46-ventral, 11 and 13 activated only for execution. Execution in the dark implicated only the ventral bank of the principal sulcus and its adjacent inferior convexity along with areas 47/12-dorsal and 13, whereas execution in the light activated both banks of the principal sulcus and both superior and inferior convexities along with areas 10 and 11. Our results demonstrate that the prefrontal cortex integrates information in the service of both action generation and action perception, and are discussed in relation to its contribution in movement suppression during action observation and in attribution of action to the correct agent. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. The role of the ventromedial prefrontal cortex in memory consolidation

    NARCIS (Netherlands)

    Nieuwenhuis, I.L.C.; Takashima, A.

    2011-01-01

    System-level memory consolidation theory posits that the hippocampus initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has

  1. Transcranial direct current stimulation of the dorsolateral prefrontal cortex modulates repetition suppression to unfamiliar faces: an ERP study.

    Directory of Open Access Journals (Sweden)

    Marc Philippe Lafontaine

    Full Text Available Repeated visual processing of an unfamiliar face suppresses neural activity in face-specific areas of the occipito-temporal cortex. This "repetition suppression" (RS is a primitive mechanism involved in learning of unfamiliar faces, which can be detected through amplitude reduction of the N170 event-related potential (ERP. The dorsolateral prefrontal cortex (DLPFC exerts top-down influence on early visual processing. However, its contribution to N170 RS and learning of unfamiliar faces remains unclear. Transcranial direct current stimulation (tDCS transiently increases or decreases cortical excitability, as a function of polarity. We hypothesized that DLPFC excitability modulation by tDCS would cause polarity-dependent modulations of N170 RS during encoding of unfamiliar faces. tDCS-induced N170 RS enhancement would improve long-term recognition reaction time (RT and/or accuracy rates, whereas N170 RS impairment would compromise recognition ability. Participants underwent three tDCS conditions in random order at ∼72 hour intervals: right anodal/left cathodal, right cathodal/left anodal and sham. Immediately following tDCS conditions, an EEG was recorded during encoding of unfamiliar faces for assessment of P100 and N170 visual ERPs. The P3a component was analyzed to detect prefrontal function modulation. Recognition tasks were administered ∼72 hours following encoding. Results indicate the right anodal/left cathodal condition facilitated N170 RS and induced larger P3a amplitudes, leading to faster recognition RT. Conversely, the right cathodal/left anodal condition caused N170 amplitude and RTs to increase, and a delay in P3a latency. These data demonstrate that DLPFC excitability modulation can influence early visual encoding of unfamiliar faces, highlighting the importance of DLPFC in basic learning mechanisms.

  2. Maintaining the feelings of others in working memory is associated with activation of the left anterior insula and left frontal-parietal control network

    OpenAIRE

    Smith, Ryan; Lane, Richard D.; Alkozei, Anna; Bao, Jennifer; Smith, Courtney; Sanova, Anna; Nettles, Matthew; Killgore, William D. S.

    2017-01-01

    Abstract The maintenance of social/emotional information in working memory (SWM/EWM) has recently been the topic of multiple neuroimaging studies. However, some studies find that SWM/EWM involves a medial frontal-parietal network while others instead find lateral frontal-parietal activations similar to studies of verbal and visuospatial WM. In this study, we asked 26 healthy volunteers to complete an EWM task designed to examine whether different cognitive strategies? maintaining emotional im...

  3. Visual Scanning Training, Limb Activation Treatment, and Prism Adaptation for rehabilitating left neglect: Who is the winner?

    Directory of Open Access Journals (Sweden)

    Konstantinos ePriftis

    2013-07-01

    Full Text Available We compared, for the first time, the overall and differential effects of three of the most widely used left neglect (LN treatments: Visual Scanning Training (VST, Limb Activation Treatment (LAT, and Prism Adaptation (PA. Thirty-three LN patients were assigned in quasi-random order to the three groups (VST, LAT, or PA. Each patient received only one type of treatment. LN patients’ performance on everyday life tasks was assessed four times (over a period of six weeks: A1 and A2 (i.e., the two pre-treatment assessments; A3 and A4 (i.e., the two post-treatment assessments. LN patients in each of the three treatment conditions were treated for the same number of sessions (i.e., 20. The results showed that improvements were present in the majority of the tests assessing the peripersonal space in everyday life activities. Our findings were independent of unspecific factors and lasted for at least two weeks following the end of the treatments. There were no interactions, however, between LN treatments and assessments. We suggest that all three treatments can be considered as valid rehabilitation interventions for LN and could be employed for ameliorating LN signs.

  4. Improved relationship between left and right ventricular electrical activation after cardiac resynchronization therapy in heart failure patients can be quantified by body surface potential mapping.

    Science.gov (United States)

    Samesima, Nelson; Pastore, Carlos Alberto; Douglas, Roberto Andrés; Martinelli, Martino Filho; Pedrosa, Anísio A

    2013-07-01

    Few studies have evaluated cardiac electrical activation dynamics after cardiac resynchronization therapy. Although this procedure reduces morbidity and mortality in heart failure patients, many approaches attempting to identify the responders have shown that 30% of patients do not attain clinical or functional improvement. This study sought to quantify and characterize the effect of resynchronization therapy on the ventricular electrical activation of patients using body surface potential mapping, a noninvasive tool. This retrospective study included 91 resynchronization patients with a mean age of 61 years, left ventricle ejection fraction of 28%, mean QRS duration of 182 ms, and functional class III/IV (78%/22%); the patients underwent 87-lead body surface mapping with the resynchronization device on and off. Thirty-six patients were excluded. Body surface isochronal maps produced 87 maximal/mean global ventricular activation times with three regions identified. The regional activation times for right and left ventricles and their inter-regional right-to-left ventricle gradients were calculated from these results and analyzed. The Mann-Whitney U-test and Kruskall-Wallis test were used for comparisons, with the level of significance set at p≤0.05. During intrinsic rhythms, regional ventricular activation times were significantly different (54.5 ms vs. 95.9 ms in the right and left ventricle regions, respectively). Regarding cardiac resynchronization, the maximal global value was significantly reduced (138 ms to 131 ms), and a downward variation of 19.4% in regional-left and an upward variation of 44.8% in regional-right ventricular activation times resulted in a significantly reduced inter-regional gradient (43.8 ms to 17 ms). Body surface potential mapping in resynchronization patients yielded electrical ventricular activation times for two cardiac regions with significantly decreased global and regional-left values but significantly increased regional

  5. Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex.

    Science.gov (United States)

    Hsu, Wan-Yu; Zanto, Theodore P; Anguera, Joaquin A; Lin, Yung-Yang; Gazzaley, Adam

    2015-08-01

    The dorsolateral prefrontal cortex (DLPFC) has been proposed to play an important role in neural processes that underlie multitasking performance. However, this claim is underexplored in terms of direct causal evidence. The current study aimed to delineate the causal involvement of the DLPFC during multitasking by modulating neural activity with transcranial direct current stimulation (tDCS) prior to engagement in a demanding multitasking paradigm. The study is a single-blind, crossover, sham-controlled experiment. Anodal tDCS or sham tDCS was applied over left DLPFC in forty-one healthy young adults (aged 18-35 years) immediately before they engaged in a 3-D video game designed to assess multitasking performance. Participants were separated into three subgroups: real-sham (i.e., real tDCS in the first session, followed by sham tDCS in the second session 1 h later), sham-real (sham tDCS first session, real tDCS second session), and sham-sham (sham tDCS in both sessions). The real-sham group showed enhanced multitasking performance and decreased multitasking cost during the second session, compared to first session, suggesting delayed cognitive benefits of tDCS. Interestingly, performance benefits were observed only for multitasking and not on a single-task version of the game. No significant changes were found between the first and second sessions for either the sham-real or the sham-sham groups. These results suggest a causal role of left prefrontal cortex in facilitating the simultaneous performance of more than one task, or multitasking. Moreover, these findings reveal that anodal tDCS may have delayed benefits that reflect an enhanced rate of learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  7. Changes in theta activities in the left posterior temporal region, left occipital region and right frontal region related to mild cognitive impairment in Parkinson's disease patients.

    Science.gov (United States)

    He, Xuetao; Zhang, Yuhu; Chen, Jieling; Xie, Chunge; Gan, Rong; Wang, Limin; Wang, Lijuan

    2017-01-01

    The aim of this study was to investigate changes in brain activity associated with mild cognitive impairment (MCI) in a large sample of nondemented Parkinson's disease (PD) patients and its relationship with specific neuropsychological deficits. Electroencephalography (EEG) and neuropsychological assessment were performed in a sample of 135 nondemented PD patients and 44 healthy controls. All patients underwent a neuropsychological battery to assess global cognitive function. Patients were classified according to their cognitive status as PD patients with MCI (n = 61) and without MCI (n = 74). EEG data were used to analyze the relative band power parameters for the following frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz). In addition, relative band power parameters were compared between groups and examined for correlations with neuropsychological performance. The relative theta band powers in three regions (O1, T5 and F4) exhibited statistically significant increases in PD patients with MCI. Beta band powers also exhibited obvious decreases in five regions (T5, T6, P3, P4 and C3) in the PD-MCI group compared with the normal control group. Furthermore, correlation analyses revealed that attention, visuospatial and executive functions were associated with theta power in local regions, mainly in the frontal region (F4). The present study demonstrated that changes in brain activities limited to distinct cognitive domains, especially the theta power in the frontal region, could serve as an electrophysiological marker of cognitive impairment in nondemented PD patients.

  8. Stress amplifies sex differences in primate prefrontal profiles of gene expression.

    Science.gov (United States)

    Lee, Alex G; Hagenauer, Megan; Absher, Devin; Morrison, Kathleen E; Bale, Tracy L; Myers, Richard M; Watson, Stanley J; Akil, Huda; Schatzberg, Alan F; Lyons, David M

    2017-11-02

    Stress is a recognized risk factor for mood and anxiety disorders that occur more often in women than men. Prefrontal brain regions mediate stress coping, cognitive control, and emotion. Here, we investigate sex differences and stress effects on prefrontal cortical profiles of gene expression in squirrel monkey adults. Dorsolateral, ventrolateral, and ventromedial prefrontal cortical regions from 18 females and 12 males were collected after stress or no-stress treatment conditions. Gene expression profiles were acquired using HumanHT-12v4.0 Expression BeadChip arrays adapted for squirrel monkeys. Extensive variation between prefrontal cortical regions was discerned in the expression of numerous autosomal and sex chromosome genes. Robust sex differences were also identified across prefrontal cortical regions in the expression of mostly autosomal genes. Genes with increased expression in females compared to males were overrepresented in mitogen-activated protein kinase and neurotrophin signaling pathways. Many fewer genes with increased expression in males compared to females were discerned, and no molecular pathways were identified. Effect sizes for sex differences were greater in stress compared to no-stress conditions for ventromedial and ventrolateral prefrontal cortical regions but not dorsolateral prefrontal cortex. Stress amplifies sex differences in gene expression profiles for prefrontal cortical regions involved in stress coping and emotion regulation. Results suggest molecular targets for new treatments of stress disorders in human mental health.

  9. Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories.

    Science.gov (United States)

    Warren, Brandon L; Mendoza, Michael P; Cruz, Fabio C; Leao, Rodrigo M; Caprioli, Daniele; Rubio, F Javier; Whitaker, Leslie R; McPherson, Kylie B; Bossert, Jennifer M; Shaham, Yavin; Hope, Bruce T

    2016-06-22

    In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in "neuronal ensembles." Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration. We first trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area. A current popular hypothesis is that neuronal ensembles in different prefrontal cortex areas control reward-associated versus extinction-associated memories: the dorsal medial prefrontal cortex (mPFC) promotes reward seeking, whereas the

  10. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-01-01

    Full Text Available Segmentation of the left atrium (LA from cardiac magnetic resonance imaging (MRI datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs and active contour model (ACM approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC and average surface-to-surface distance (S2S, were computed as 0.9227±0.0598 and 1.14±1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively.

  11. The impact of social disparity on prefrontal function in childhood.

    Directory of Open Access Journals (Sweden)

    Margaret A Sheridan

    Full Text Available The prefrontal cortex (PFC develops from birth through late adolescence. This extended developmental trajectory provides many opportunities for experience to shape the structure and function of the PFC. To date, a few studies have reported links between parental socioeconomic status (SES and prefrontal function in childhood, raising the possibility that aspects of environment associated with SES impact prefrontal function. Considering that behavioral measures of prefrontal function are associated with learning across multiple domains, this is an important area of investigation. In this study, we used fMRI to replicate previous findings, demonstrating an association between parental SES and PFC function during childhood. In addition, we present two hypothetical mechanisms by which SES could come to affect PFC function of this association: language environment and stress reactivity. We measured language use in the home environment and change in salivary cortisol before and after fMRI scanning. Complexity of family language, but not the child's own language use, was associated with both parental SES and PFC activation. Change in salivary cortisol was also associated with both SES and PFC activation. These observed associations emphasize the importance of both enrichment and adversity-reduction interventions in creating good developmental environments for all children.

  12. Activation and Functional Connectivity of the Left Inferior Temporal Gyrus during Visual Speech Priming in Healthy Listeners and Listeners with Schizophrenia.

    Science.gov (United States)

    Wu, Chao; Zheng, Yingjun; Li, Juanhua; Zhang, Bei; Li, Ruikeng; Wu, Haibo; She, Shenglin; Liu, Sha; Peng, Hongjun; Ning, Yuping; Li, Liang

    2017-01-01

    Under a "cocktail-party" listening condition with multiple-people talking, compared to healthy people, people with schizophrenia benefit less from the use of visual-speech (lipreading) priming (VSP) cues to improve speech recognition. The neural mechanisms underlying the unmasking effect of VSP remain unknown. This study investigated the brain substrates underlying the unmasking effect of VSP in healthy listeners and the schizophrenia-induced changes in the brain substrates. Using functional magnetic resonance imaging, brain activation and functional connectivity for the contrasts of the VSP listening condition vs. the visual non-speech priming (VNSP) condition were examined in 16 healthy listeners (27.4 ± 8.6 years old, 9 females and 7 males) and 22 listeners with schizophrenia (29.0 ± 8.1 years old, 8 females and 14 males). The results showed that in healthy listeners, but not listeners with schizophrenia, the VSP-induced activation (against the VNSP condition) of the left posterior inferior temporal gyrus (pITG) was significantly correlated with the VSP-induced improvement in target-speech recognition against speech masking. Compared to healthy listeners, listeners with schizophrenia showed significantly lower VSP-induced activation of the left pITG and reduced functional connectivity of the left pITG with the bilateral Rolandic operculum, bilateral STG, and left insular. Thus, the left pITG and its functional connectivity may be the brain substrates related to the unmasking effect of VSP, assumedly through enhancing both the processing of target visual-speech signals and the inhibition of masking-speech signals. In people with schizophrenia, the reduced unmasking effect of VSP on speech recognition may be associated with a schizophrenia-related reduction of VSP-induced activation and functional connectivity of the left pITG.

  13. Impact of Prefrontal Theta Burst Stimulation on Clinical Neuropsychological Tasks

    Directory of Open Access Journals (Sweden)

    Raquel Viejo-Sobera

    2017-08-01

    Full Text Available Theta burst stimulation (TBS protocols hold high promise in neuropsychological rehabilitation. Nevertheless, their ability to either decrease (continuous, cTBS or increase (intermittent, iTBS cortical excitability in areas other than the primary motor cortex, and their consistency modulating human behaviors with clinically relevant tasks remain to be fully established. The behavioral effects of TBS over the dorsolateral prefrontal cortex (dlPFC are particularly interesting given its involvement in working memory (WM and executive functions (EF, often impaired following frontal brain damage. We aimed to explore the ability of cTBS and iTBS to modulate WM and EF in healthy individuals, assessed with clinical neuropsychological tests (Digits Backward, 3-back task, Stroop Test, and Tower of Hanoi. To this end, 36 participants were assessed using the four tests 1 week prior to stimulation and immediately following a single session of either cTBS, iTBS, or sham TBS, delivered to the left dlPFC. No significant differences were found across stimulation conditions in any of the clinical tasks. Nonetheless, in some of them, active stimulation induced significant pre/post performance modulations, which were not found for the sham condition. More specifically, sham stimulation yielded improvements in the 3-back task and the Color, Color-Word, and Interference Score of the Stroop Test, an effect likely caused by task practice. Both, iTBS and cTBS, produced improvements in Digits Backward and impairments in 3-back task accuracy. Moreover, iTBS increased Interference Score in the Stroop Test in spite of the improved word reading and impaired color naming, whereas cTBS decreased the time required to complete the Tower of Hanoi. Differing from TBS outcomes reported for cortico-spinal measures on the primary motor cortex, our analyses did not reveal any of the expected performance differences across stimulation protocols. However, if one considers independently

  14. Alterations of Resting-State Static and Dynamic Functional Connectivity of the Dorsolateral Prefrontal Cortex in Subjects with Internet Gaming Disorder.

    Science.gov (United States)

    Han, Xu; Wu, Xiaowei; Wang, Yao; Sun, Yawen; Ding, Weina; Cao, Mengqiu; Du, Yasong; Lin, Fuchun; Zhou, Yan

    2018-01-01

    Internet gaming disorder (IGD), a major behavior disorder, has gained increasing attention. Recent studies indicate altered resting-state static functional connectivity (FC) of the dorsolateral prefrontal cortex (DLPFC) in subjects with IGD. Whereas static FC often provides information on functional changes in subjects with IGD, investigations of temporal changes in FC between the DLPFC and the other brain regions may shed light on the dynamic characteristics of brain function associated with IGD. Thirty subjects with IGD and 30 healthy controls (HCs) matched for age, gender and education status were recruited. Using the bilateral DLPFC as seeds, static FC and dynamic FC maps were calculated and compared between groups. Correlations between alterations in static FC and dynamic FC and clinical variables were also investigated within the IGD group. The IGD group showed significantly lower static FC between the right DLPFC and the left rolandic operculum while higher static FC between the right DLPFC and the left pars triangularis when compared to HCs. The IGD group also had significantly decreased dynamic FC between the right DLPFC and the left insula, right putamen and left precentral gyrus, and increased dynamic FC in the left precuneus. Moreover, the dynamic FC between the right DLPFC and the left insula was negatively correlated with the severity of IGD. Dynamic FC can be used as a powerful supplement to static FC, helping us obtain a more comprehensive understanding of large-scale brain network activity in IGD and put forward new ideas for behavioral intervention therapy for it.

  15. Alterations of Resting-State Static and Dynamic Functional Connectivity of the Dorsolateral Prefrontal Cortex in Subjects with Internet Gaming Disorder

    Directory of Open Access Journals (Sweden)

    Xu Han

    2018-02-01

    Full Text Available Internet gaming disorder (IGD, a major behavior disorder, has gained increasing attention. Recent studies indicate altered resting-state static functional connectivity (FC of the dorsolateral prefrontal cortex (DLPFC in subjects with IGD. Whereas static FC often provides information on functional changes in subjects with IGD, investigations of temporal changes in FC between the DLPFC and the other brain regions may shed light on the dynamic characteristics of brain function associated with IGD. Thirty subjects with IGD and 30 healthy controls (HCs matched for age, gender and education status were recruited. Using the bilateral DLPFC as seeds, static FC and dynamic FC maps were calculated and compared between groups. Correlations between alterations in static FC and dynamic FC and clinical variables were also investigated within the IGD group. The IGD group showed significantly lower static FC between the right DLPFC and the left rolandic operculum while higher static FC between the right DLPFC and the left pars triangularis when compared to HCs. The IGD group also had significantly decreased dynamic FC between the right DLPFC and the left insula, right putamen and left precentral gyrus, and increased dynamic FC in the left precuneus. Moreover, the dynamic FC between the right DLPFC and the left insula was negatively correlated with the severity of IGD. Dynamic FC can be used as a powerful supplement to static FC, helping us obtain a more comprehensive understanding of large-scale brain network activity in IGD and put forward new ideas for behavioral intervention therapy for it.

  16. 38 CFR 12.18 - Disposition of funds and effects left by officers and enlisted men on the active list of the Army...

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Disposition of funds and effects left by officers and enlisted men on the active list of the Army, Navy or Marine Corps of the... list of the Army, Navy or Marine Corps of the United States. (a) The manager will notify the commanding...

  17. Neural mechanisms of memory retrieval: role of the prefrontal cortex.

    Science.gov (United States)

    Hasegawa, I

    2000-01-01

    In the primate brain, long-term memory is stored in the neocortical association area which is also engaged in sensory perception. The coded representation of memory is retrieved via interactions of hierarchically different cortical areas along bottom-up and top-down anatomical connections. The functional significance of the fronto-cortical top-down neuronal projections has been relevantly assessed in a new experimental paradigm using posterior-split-brain monkeys. When the splenium of the corpus callosum and the anterior commissure were selectively split, the bottom-up visual signal originating from the unilateral striate cortex could not reach the contralateral visual cortical areas. In this preparation, long-term memory acquired through visual stimulus-stimulus association learning was prevented from transferring across hemispheres. Nonetheless, following the presentation of a visual cue to one hemisphere, the prefrontal cortex could instruct the contralateral hemisphere to retrieve the correct stimulus specified by the cue. These results support the hypothesis that the prefrontal cortex can regulate memory recall in the absence of bottom-up sensory input. In humans, functional neuroimaging studies have revealed activation of a distributed neural network, including the prefrontal cortex, during memory retrieval tasks. Thus, the prefrontal cortex is consistently involved in retrieval of long-term memory in primates.

  18. 1 hz rTMS over the right prefrontal cortex reduces vigilant attention to unmasked but not to masked fearful faces.

    Science.gov (United States)

    van Honk, Jack; Schutter, Dennis J L G; d'Alfonso, Alfredo A L; Kessels, Roy P C; de Haan, Edward H F

    2002-08-15

    Recent repetitive transcranial magnetic stimulation (rTMS) research in healthy subjects suggests that the emotions anger and anxiety are lateralized in the prefrontal cortex. Low-frequency rTMS over the right prefrontal cortex (PFC) shifts the anterior asymmetry in brain activation to the left hemisphere and reduces anxiety. The same rTMS technique results in enhanced anger-related emotional processing, observed as elevations in attention for angry faces. The current study used low-frequency rTMS over the right PFC and indexed selective attention to fearful faces, hypothesizing a reduction in attention for fearful faces, i.e., a reversal of the latter effect. In a placebo-controlled design, 1 Hz rTMS at 130% of the individual motor threshold (MT) was applied continuously over the right PFC of eight healthy subjects for 20 minutes. Effects on motivated attention were investigated by means of an emotional Stroop task, indexing selective attention to masked and unmasked fearful faces. Vigilant attention for masked and unmasked fearful faces was observed after placebo stimulation. As hypothesized, rTMS reduced the vigilant emotional response to the fearful face, but only in the unmasked task. These data provide further support for the lateralization of the emotions anger and anxiety in the prefrontal cortex. In addition, the absence of an effect for masked fearful faces suggests that changes in emotional processing after a single session of rTMS predominantly involve the cortical affective pathways.

  19. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry.

    Directory of Open Access Journals (Sweden)

    Sonia Doallo

    Full Text Available Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory, processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9, less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years binge drinking pattern of alcohol use (n = 11; age 22.43 ± 1.03 and control subjects (n = 21; age 22.18 ± 1.08 to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9 in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol -that does not meet criteria for alcohol dependence- throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory.

  20. Motor unit activity in biceps brachii of left-handed humans during sustained contractions with two load types.

    Science.gov (United States)

    Gould, Jeffrey R; Cleland, Brice T; Mani, Diba; Amiridis, Ioannis G; Enoka, Roger M

    2016-09-01

    The purpose of the study was to compare the discharge characteristics of single motor units during sustained isometric contractions that required either force or position control in left-handed individuals. The target force for the two sustained contractions (24.9 ± 10.5% maximal force) was identical for each biceps brachii motor unit (n = 32) and set at 4.7 ± 2.0% of maximal voluntary contraction (MVC) force above its recruitment threshold (range: 0.5-41.2% MVC force). The contractions were not sustained to task failure, but the duration (range: 60-330 s) was identical for each motor unit and the decline in MVC force immediately after the sustained contractions was similar for the two tasks (force: 11.1% ± 13.7%; position: 11.6% ± 9.9%). Despite a greater increase in the rating of perceived exertion during the position task (task × time interaction, P < 0.006), the amplitude of the surface-recorded electromyogram for the agonist and antagonist muscles increased similarly during the two tasks. Nonetheless, mean discharge rate of the biceps brachii motor units declined more during the position task (task × time interaction, P < 0.01) and the variability in discharge times (coefficient of variation for interspike interval) increased only during the position task (task × time interaction, P < 0.008). When combined with the results of an identical study on right-handers (Mottram CJ, Jakobi JM, Semmler JG, Enoka RM. J Neurophysiol 93: 1381-1392, 2005), the findings indicate that handedness does not influence the adjustments in biceps brachii motor unit activity during sustained submaximal contractions requiring either force or position control. Copyright © 2016 the American Physiological Society.

  1. Heterogeneity of the left temporal lobe in semantic representation and control: priming multiple versus single meanings of ambiguous words.

    Science.gov (United States)

    Whitney, Carin; Jefferies, Elizabeth; Kircher, Tilo

    2011-04-01

    Semantic judgments involve both representations of meaning plus executive mechanisms that guide knowledge retrieval in a task-appropriate way. These 2 components of semantic cognition-representation and control-are commonly linked to left temporal and prefrontal cortex, respectively. This simple proposal, however, remains contentious because in most functional neuroimaging studies to date, the number of concepts being activated and the involvement of executive processes during retrieval are confounded. Using functional magnetic resonance imaging, we examined a task in which semantic representation and control demands were dissociable. Words with multiple meanings like "bank" served as targets in a double-prime paradigm, in which multiple meaning activation and maximal executive demands loaded onto different priming conditions. Anterior inferior temporal gyrus (ITG) was sensitive to the number of meanings that were retrieved, suggesting a role for this region in semantic representation, while posterior middle temporal gyrus (pMTG) and inferior frontal cortex showed greater activation in conditions that maximized executive demands. These results support a functional dissociation between left ITG and pMTG, consistent with a revised neural organization in which left prefrontal and posterior temporal areas work together to underpin aspects of semantic control.

  2. Active vs. Reactive Threat Responding is Associated with Differential c-Fos Expression in Specific Regions of Amygdala and Prefrontal Cortex

    Science.gov (United States)

    Martinez, Raquel C. R.; Gupta, Nikita; Lazaro-Munoz, Gabriel; Sears, Robert M.; Kim, Soojeong; Moscarello, Justin M.; LeDoux, Joseph E.; Cain, Christopher K.

    2013-01-01

    Active avoidance (AA) is an important paradigm for studying mechanisms of aversive instrumental learning, pathological anxiety, and active coping. Unfortunately, AA neurocircuits are poorly understood, partly because behavior is highly variable and reflects a competition between Pavlovian reactions and instrumental actions. Here we exploited the…

  3. Infants’ neural responses to facial emotion in the prefrontal cortex are correlated with temperament: A functional near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Miranda M Ravicz

    2015-07-01

    Full Text Available Accurate decoding of facial expressions is critical for human communication, particularly during infancy, before formal language has developed. Different facial emotions elicit distinct neural responses within the first months of life. However, there are broad individual differences in such responses, such that the same emotion can elicit different brain responses in different infants. In this study we sought to investigate such differences in the processing of emotional faces by analyzing infants’ cortical metabolic responses to face stimuli and examining whether individual differences in these responses might vary as a function of infant temperament.Seven-month-old infants (N = 24 were shown photographs of women portraying happy expressions, and neural activity was recorded using functional near-infrared spectroscopy (fNIRS. Temperament data were collected using the Revised Infant Behavior Questionnaire Short Form, which assesses the broad temperament factors of Surgency/Extraversion (S/E, Negative Emotionality (NE, and Orienting/Regulation (O/R. We observed that oxyhemoglobin (oxyHb responses to happy face stimuli were negatively correlated with infant temperament factors in channels over the left prefrontal cortex (uncorrected for multiple comparisons. To investigate the brain activity underlying this association, and to explore the use of fNIRS in measuring cortical asymmetry, we analyzed hemispheric asymmetry with respect to temperament groups. Results showed preferential activation of the left hemisphere in low-NE infants in response to smiling faces.These results suggest that individual differences in temperament are associated with differential prefrontal oxyHb responses to faces. Overall, these analyses contribute to our current understanding of face processing during infancy, demonstrate the use of fNIRS in measuring prefrontal asymmetry, and illuminate the neural correlates of face processing as modulated by temperament.

  4. Integration of Teaching Processes and Learning Assessment in the Prefrontal Cortex during a Video Game Teaching-learning Task.

    Science.gov (United States)

    Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Izumi, Shin-Ichi

    2016-01-01

    Human teaching is a social interaction that supports reciprocal and dynamical feedback between the teacher and the student. The prefrontal cortex (PFC) is a region of particular interest due to its demonstrated role in social interaction. In the present study, we evaluated the PFC activity simultaneously in two individuals playing the role of a teacher and student in a video game teaching-learning task. For that, we used two wearable near-infrared spectroscopy (NIRS) devices in order to elucidate the neural mechanisms underlying cognitive interactions between teachers and students. Fifteen teacher-student pairs in total ( N = 30) participated in this study. Each teacher was instructed to teach the video game to their student partner, without speaking. The PFC activity was simultaneously evaluated in both participants using a wearable 16-channel NIRS system during the video game teaching-learning task. Two sessions, each including a triplet of a 30-s teaching-learning task, were performed in order to evaluate changes in PFC activity after advancement of teaching-learning state. Changes in the teachers' left PFC activity between the first and second session positively correlated with those observed in students ( r = 0.694, p = 0.004). Moreover, among teachers, multiple regression analysis revealed a correlation between the left PFC activity and the assessment gap between one's own teaching and the student's understanding ( β = 0.649, p = 0.009). Activity in the left PFC changed synchronously in both teachers and students after advancement of the teaching-learning state. The left PFC of teachers may be involved in integrating information regarding one's own teaching process and the student's learning state. The present observations indicate that simultaneous recording and analysis of brain activity data during teacher-student interactions may be useful in the field of educational neuroscience.

  5. Effects of Sleep Deprivation on Phase Synchronization as Assessed by Wavelet Phase Coherence Analysis of Prefrontal Tissue Oxyhemoglobin Signals.

    Science.gov (United States)

    Bu, Lingguo; Zhang, Ming; Li, Jianfeng; Li, Fangyi; Liu, Heshan; Li, Zengyong

    2017-01-01

    To reveal the physiological mechanism of the decline in cognitive function after sleep deprivation, a within-subject study was performed to assess sleep deprivation effects on phase synchronization, as revealed by wavelet phase coherence (WPCO) analysis of prefrontal tissue oxyhemoglobin signals. Twenty subjects (10 male and 10 female, 25.5 ± 3.5 years old) were recruited to participate in two tests: one without sleep deprivation (group A) and the other with 24 h of sleep deprivation (group B). Before the test, each subject underwent a subjective evaluation using visual analog scales. A cognitive task was performed by judging three random numbers. Continuous recordings of the near-infrared spectroscopy (NIRS) signals were obtained from both the left and right prefrontal lobes during rest, task, and post-task periods. The WPCO of cerebral Delta [HbO2] signals were analyzed for these three periods for both groups A and B. Six frequency intervals were defined: I: 0.6-2 Hz (cardiac activity), II: 0.145-0.6 Hz (respiratory activity), III: 0.052-0.145 Hz (myogenic activity), IV: 0.021-0.052 Hz (neurogenic activity), V: 0.0095-0.021 Hz (nitric oxide related endothelial activity) and VI: 0.005-0.0095 Hz (non-nitric oxide related endothelial activity). WPCO in intervals III (F = 5.955, p = 0.02) and V (F = 4.7, p = 0.037) was significantly lower in group B than in group A at rest. During the task period, WPCO in intervals III (F = 5.175, p = 0.029) and IV (F = 4.585, p = 0.039) was significantly lower in group B compared with group A. In the post-task recovery period, the WPCO in interval III (F = 6.125, p = 0.02) was significantly lower in group B compared with group A. Reaction time was significantly prolonged, and the accuracy rate and F1 score both declined after sleep deprivation. The decline in WPCO after sleep deprivation indicates reduced phase synchronization between left and right prefrontal oxyhemoglobin oscillations, which may contribute to the diminished

  6. Human brain activity with near-infrared spectroscopy

    Science.gov (United States)

    Luo, Qingming; Chance, Britton

    1999-09-01

    Human brain activity was studied with a real time functional Near-InfraRed Imager (fNIRI). The imager has 16 measurement channels and covers 4 cm by 9 cm detection area. Brain activities in occipital, motor and prefrontal area were studied with the fNIRI. In prefrontal stimulation, language cognition, analogies, forming memory for new associations, emotional thinking, and mental arithmetic were carried out. Experimental results measured with fNIRI are demonstrated in this paper. It was shown that fNIRI technique is able to reveal the occipital activity during visual stimulation, and co-register well with results of fMRI in the motor cortex activity during finger tapping. In the studies of the effects of left prefrontal lobe on forming memory for new associations, it is shown that left prefrontal lobe activated more under deep conditions than that under shallow encoding, especially the dorsal part. In the studies of emotional thinking, it was shown that the responses were different between positive- negative emotional thinking and negative-positive emotional thinking. In mental arithmetic studies, higher activation was found in the first task than in the second, regardless of the difficulty, and higher activation was measured in subtraction of 17 than in subtraction of 3.

  7. A dorsolateral prefrontal cortex semi-automatic segmenter

    Science.gov (United States)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  8. The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation.

    Science.gov (United States)

    Jahanshahi, M; Profice, P; Brown, R G; Ridding, M C; Dirnberger, G; Rothwell, J C

    1998-08-01

    Random number generation is an attention-demanding task that engages working memory and executive processes. Random number generation requires holding information 'on line', suppression of habitual counting, internally driven response generation and monitoring of responses. Evidence from PET studies suggests that the dorsolateral prefrontal cortex (DLPFC) is involved in the generation of random responses. We examined the effects of short trains of transcranial magnetic stimulation (TMS) over the left or right DLPFC or medial frontal cortex on random number generation in healthy normal participants. As in previous evidence, in control trials without stimulation participants performed poorly on the random number generation task, showing repetition avoidance and a tendency to count. Brief disruption of processing with TMS over the left DLPFC changed the balance of the individuals' counting bias, increasing the most habitual counting in ones and reducing the lower probability response of counting in twos. This differential effect of TMS over the left DLPFC on the balance of the subject's counting bias was not obtained with TMS over the right DLPFC or the medial frontal cortex. The results suggest that, with disruption of the left DLPFC with TMS, habitual counting in ones that has previously been suppressed is released from inhibition. From these findings a network modulation model of random number generation is proposed, whereby suppression of habitual responses is achieved through the modulatory influence of the left DLPFC over a number-associative network in the superior temporal cortex. To allow emergence of appropriate random responses, the left DLPFC inhibits the superior temporal cortex to prevent spreading activation and habitual counting in ones.

  9. Stimulus selectivity in dorsal and ventral prefrontal cortex after training in working memory tasks

    Science.gov (United States)

    Meyer, Travis; Qi, Xue-Lian; Stanford, Terrence R.; Constantinidis, Christos

    2011-01-01

    The prefrontal cortex is known to represent different types of information in working memory. Contrasting theories propose that the dorsal and ventral regions of the lateral prefrontal cortex are innately specialized for the representation of spatial and non-spatial information respectively (Goldman-Rakic, 1996), or that the two regions are shaped by the demands of cognitive tasks imposed on them (Miller, 2000). To resolve this issue, we recorded from neurons in the two regions, prior to and at multiple stages of training monkeys on visual working memory tasks. Prior to training, substantial functional differences were present between the two regions. Dorsal prefrontal cortex exhibited higher overall responsiveness to visual stimuli and higher selectivity for spatial information. After training, stimulus selectivity generally decreased, though dorsal prefrontal cortex retained higher spatial selectivity regardless of task performed. Ventral prefrontal cortex appeared to be affected to a greater extent by the nature of task performed. Our results indicate that regional specialization for stimulus selectivity is present in the primate prefrontal cortex regardless of training. Dorsal areas of the prefrontal cortex are inherently organized to represent spatial information and training has little influence on this spatial bias. Ventral areas are biased toward non-spatial information although they are more influenced by training both in terms of activation and changes in stimulus selectivity. PMID:21525266

  10. Prefrontal cortex volume reductions and tic inhibition are unrelated in uncomplicated GTS adults.

    Science.gov (United States)

    Ganos, Christos; Kühn, Simone; Kahl, Ursula; Schunke, Odette; Brandt, Valerie; Bäumer, Tobias; Thomalla, Götz; Haggard, Patrick; Münchau, Alexander

    2014-01-01

    Tics in Gilles de la Tourette syndrome (GTS) are repetitive patterned movements, resembling spontaneous motor behaviour, but escaping voluntary control. Previous studies hypothesised relations between structural alterations in prefrontal cortex of GTS adults and tic severity using voxel-based morphometry (VBM), but could not demonstrate a significant association. The relation between prefrontal cortex structure and tic inhibition has not been investigated. Here, we used VBM to examine 14 GTS adults without associated comorbidities, and 15 healthy controls. We related structural alterations in GTS to clinical measures of tic severity and tic control. Grey matter volumes in the right inferior frontal gyrus and the left frontal pole were reduced in patients relative to healthy controls. These changes were not related to tic severity and tic inhibition. Prefrontal grey matter volume reductions in GTS adults are not related to state measures of tic phenomenology. © 2013.

  11. Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure

    Science.gov (United States)

    Schechter, Daniel S.; Moser, Dominik A.; Paoloni-Giacobino, Ariane; Stenz, Ludwig; Gex-Fabry, Marianne; Aue, Tatjana; Adouan, Wafae; Cordero, María I.; Suardi, Francesca; Manini, Aurelia; Sancho Rossignol, Ana; Merminod, Gaëlle; Ansermet, Francois; Dayer, Alexandre G.; Rusconi Serpa, Sandra

    2015-01-01

    Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother–child interactions. Following a mental health assessment, 45 mothers and their children (ages 12–42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother–child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother–child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD

  12. Methylation of NR3C1 is related to maternal PTSD, parenting stress and maternal medial prefrontal cortical activity in response to child separation among mothers with histories of violence exposure

    Directory of Open Access Journals (Sweden)

    Daniel Scott Schechter

    2015-05-01

    Full Text Available Prior research has shown that mothers with Interpersonal Violence-related Posttraumatic Stress Disorder (IPV-PTSD report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis, characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress

  13. Cav1.2 channels mediate persistent chronic stress-induced behavioral deficits that are associated with prefrontal cortex activation of the p25/Cdk5-glucocorticoid receptor pathway

    Directory of Open Access Journals (Sweden)

    Charlotte C. Bavley

    2017-12-01

    Full Text Available Chronic stress is known to precipitate and exacerbate neuropsychiatric symptoms, and exposure to stress is particularly pathological in individuals with certain genetic predispositions. Recent genome wide association studies have identified single nucleotide polymorphisms (SNPs in the gene CACNA1C, which codes for the Cav1.2 subunit of the L-type calcium channel (LTCC, as a common risk variant for multiple neuropsychiatric conditions. Cav1.2 channels mediate experience-dependent changes in gene expression and long-term synaptic plasticity through activation of downstream calcium signaling pathways. Previous studies have found an association between stress and altered Cav1.2 expression in the brain, however the contribution of Cav1.2 channels to chronic stress-induced behaviors, and the precise Cav1.2 signaling mechanisms activated are currently unknown. Here we report that chronic stress leads to a delayed increase in Cav1.2 expression selectively within the prefrontal cortex (PFC, but not in other stress-sensitive brain regions such as the hippocampus or amygdala. Further, we demonstrate that while Cav1.2 heterozygous (Cav1.2+/− mice show chronic stress-induced depressive-like behavior, anxiety-like behavior, and deficits in working memory 1–2 days following stress, they are resilient to the effects of chronic stress when tested 5–7 days later. Lastly, molecular studies find a delayed upregulation of the p25/Cdk5-glucocorticoid receptor (GR pathway in the PFC when examined 8 days post-stress that is absent in Cav1.2+/− mice. Our findings reveal a novel Cav1.2-mediated molecular mechanism associated with the persistent behavioral effects of chronic stress and provide new insight into potential Cav1.2 channel mechanisms that may contribute to CACNA1C-linked neuropsychiatric phenotypes.

  14. Social state representation in prefrontal cortex.

    Science.gov (United States)

    Fujii, Naotaka; Hihara, Sayaka; Nagasaka, Yasuo; Iriki, Atsushi

    2009-01-01

    One of the cardinal mental faculties of humans and other primates is social brain function, the collective name assigned to the distributed system of social cognitive processes that orchestrate our sophisticated adaptive social behavior. These must include processes for recognizing current social context and maintaining an internal representation of the current social state as a reference for decision-making. But how and where the brain processes such social-state information is unknown. To home in on the neural substrates of social-state representation, the activity of 196 prefrontal (PFC) neurons was recorded from two monkeys simultaneously during a food-grab task under varying social conditions. Of PFC neurons, 39% showed activity modulation during movement-free periods and seemed to be representing current social state. The direction of modulation was opposite between the dominant and submissive monkeys: During social engagement, PFC activity increased in the dominant monkey and was suppressed in the submissive monkey. The modulation was consistently observed in additional PFC neurons (27/72) in additional pairings with two other monkeys. Notably, PFC activity in one formerly submissive monkey switched to dominant modulation mode when he was paired with a new monkey of lower social status. These findings suggest that PFC, as part of a larger social brain network, maintains a multistate classification of social context for use as a behavioral reference for social decision-making.

  15. Effects of Physical Exercise on Working Memory and Prefrontal Cortex Function in Post-Stroke Patients.

    Science.gov (United States)

    Moriya, M; Aoki, C; Sakatani, K

    2016-01-01

    Physical exercise enhances prefrontal cortex activity and improves working memory performance in healthy older adults, but it is not clear whether this remains the case in post-stroke patients. Therefore, the aim of this study was to examine the acute effect of physical exercise on prefrontal cortex activity in post-stroke patients using near-infrared spectroscopy (NIRS). We studied 11 post-stroke patients. The patients performed Sternberg-type working memory tasks before and after moderate intensity aerobic exercise (40 % of maximal oxygen uptake) with a cycling ergometer for 15 min. We measured the NIRS response at the prefrontal cortex during the working memory task. We evaluated behavioral performance (response time and accuracy) of the working memory task. It was found that physical exercise improved behavioral performance of the working memory task compared with the control condition (p prefrontal cortex activation, particularly in the right prefrontal cortex (p prefrontal cortex activity and improves working memory performance in post-stroke patients.

  16. Mechanical discordance between left atrium and left atrial appendage

    Directory of Open Access Journals (Sweden)

    Arash Khamooshian

    2018-01-01

    Full Text Available During standard transesophageal echocardiographic examinations in sinus rhythm (SR patients, the left atrial appendage (LAA is not routinely assessed with Doppler. Despite having a SR, it is still possible to have irregular activity in the LAA. This situation is even more important for SR patients where assessment of the left atrium is often foregone. We describe a case where we encountered this situation and briefly review how to assess the left atrium and its appendage in such a case scenario.

  17. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node.

    Directory of Open Access Journals (Sweden)

    José Manuel Inácio

    Full Text Available The determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node, and the transmission of the laterality information to the left lateral plate mesoderm (LPM. Our results indicate that Cerl2 initially localizes and prevents the activation of Nodal genetic circuitry on the right side of the embryo, and later its right-to-left translocation shutdowns Nodal activity in the node. The consequent prolonged Nodal activity in the node by the absence of Cerl2 affects local Nodal expression and prolongs its expression in the LPM. Simultaneous genetic removal of both Nodal node inhibitors, Cerl2 and Lefty1, sustains even longer and bilateral this LPM expression.

  18. Spontaneous Activity Associated with Delusions of Schizophrenia in the Left Medial Superior Frontal Gyrus: A Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Bin Gao

    Full Text Available Delusions of schizophrenia have been found to be associated with alterations of some brain regions in structure and task-induced activation. However, the relationship between spontaneously occurring symptoms and spontaneous brain activity remains unclear. In the current study, 14 schizophrenic patients with delusions and 14 healthy controls underwent a resting-state functional magnetic resonance imaging (RS-fMRI scan. Patients with delusions of schizophrenia patients were rated with Positive and Negative Syndrome Scale (PANSS and Characteristics of Delusional Rating Scale (CDRS. Regional homogeneity (ReHo was calculated to measure the local synchronization of the spontaneous activity in a voxel-wise way. A two-sample t-test showed that ReHo of the right anterior cingulate gyrus and left medial superior frontal gyrus were higher in patients, and ReHo of the left superior occipital gyrus was lower, compared to healthy controls. Further, among patients, correlation analysis showed a significant difference between delusion scores of CRDS and ReHo of brain regions. ReHo of the left medial superior frontal gyrus was negatively correlated with patients' CDRS scores but not with delusional PANSS scores. These results suggested that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of delusion in schizophrenia.

  19. Amphetamine Exerts Dose-Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory

    OpenAIRE

    Lapish, C.C.; Balaguer-Ballester, Emili; Seamans, J.K.; Phillips, A.G.; Durstewitz, D.

    2015-01-01

    Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of app...

  20. Cerebral Inefficient Activation in Schizophrenia Patients and Their Unaffected Parents during the N-Back Working Memory Task: A Family fMRI Study.

    Directory of Open Access Journals (Sweden)

    Sisi Jiang

    Full Text Available It has been suggested that working memory deficits is a core feature of symptomatology of schizophrenia, which can be detected in patients and their unaffected relatives. The impairment of working memory has been found related to the abnormal activity of human brain regions in many functional magnetic resonance imaging (fMRI studies. This study investigated how brain region activation was altered in schizophrenia and how it was inherited independently from performance deficits.The authors used fMRI method during N-back task to assess working memory related cortical activation in four groups (N = 20 in each group, matching task performance, age, gender and education: schizophrenic patients, their unaffected biological parents, young healthy controls for the patients and older healthy controls for their parents.Compared to healthy controls, patients showed an exaggerated response in the right dorsolateral prefrontal cortex (brodmann area [BA] 46 and bilateral ventrolateral prefrontal cortex, and had reduced activation in bilateral dorsolateral prefrontal cortex (BA 9. In the conjunction analysis, the effect of genetic risk (parents versus older control shared significantly overlapped activation with effect of disease (patients versus young control in the right middle frontal gyrus (BA 46 and left inferior parietal gyrus (BA 40.Physiological inefficiency of dorsal prefrontal cortex and compensation involvement of ventral prefrontal cortex in working memory function may one physiological characteristics of schizophrenia. And relatively inefficient activation in dorsolateral prefrontal cortex probably can be a promising intermediate phenotype for schizophrenia.

  1. Differences in prefrontal blood oxygenation during an acute multitasking stressor in ecstasy polydrug users.

    Science.gov (United States)

    Roberts, C A; Wetherell, M A; Fisk, J E; Montgomery, C

    2015-01-01

    Cognitive deficits are well documented in ecstasy (3,4-methylenedioxymethamphetamine; MDMA) users, with such deficits being taken as evidence of dysregulation of the serotonin (5-hydroxytryptamine; 5-HT) system. More recently neuroimaging has been used to corroborate these deficits. The present study aimed to assess multitasking performance in ecstasy polydrug users, polydrug users and drug-naive individuals. It was predicted that ecstasy polydrug users would perform worse than non-users on the behavioural measure and this would be supported by differences in cortical blood oxygenation. In the study, 20 ecstasy-polydrug users, 17 polydrug users and 19 drug-naive individuals took part. On day 1, drug use history was taken and questionnaire measures were completed. On day 2, participants completed a 20-min multitasking stressor while brain blood oxygenation was measured using functional near infrared spectroscopy (fNIRS). There were no significant differences between the three groups on the subscales of the multitasking stressor. In addition, there were no significant differences on self-report measures of perceived workload (NASA Task Load Index). In terms of mood, ecstasy users were significantly less calm and less relaxed compared with drug-naive controls. There were also significant differences at three voxels on the fNIRS, indicating decreased blood oxygenation in ecstasy users compared with drug-naive controls at voxel 2 (left dorsolateral prefrontal cortex), voxel 14 and voxel 16 (right dorsolateral prefrontal cortex), and compared with polydrug controls at V14. The results of the present study provide support for changes in brain activation during performance of demanding tasks in ecstasy polydrug users, which could be related to cerebral vasoconstriction.

  2. The alpha7 nicotinic receptor agonist SSR180711 increases activity regulated cytoskeleton protein (Arc) gene expression in the prefrontal cortex of the rat

    DEFF Research Database (Denmark)

    Kristensen, Søren; Thomsen, Morten Skøtt; Hansen, Henrik H

    2007-01-01

    Nicotinic alpha7 acetylcholine receptors (alpha7 nAChR) have been shown to enhance attentional function and aspects of memory function in experimental models and in man. The protein Arc encoded by the effector immediate early gene arc or arg3.1 has been shown to be strongly implicated in long......-term memory function. We have sought to determine if alpha7 nAChR mediate the stimulation of arc gene expression, and if so, where in the brain such activation may occur using semi-quantitative in situ hybridisation. Administration of the novel and selective alpha7 nAChR agonist, SSR180711 (1, 3 and 10 mg...

  3. Neural correlates of memory retrieval in the prefrontal cortex.

    Science.gov (United States)

    Nácher, Verónica; Ojeda, Sabiela; Cadarso-Suárez, Carmen; Roca-Pardiñas, Javier; Acuña, Carlos

    2006-08-01

    Working memory includes short-term representations of information that were recently experienced or retrieved from long-term representations of sensory stimuli. Evidence is presented here that working memory activates the same dorsolateral prefrontal cortex neurons that: (a) maintained recently perceived visual stimuli; and (b) retrieved visual stimuli from long-term memory (LTM). Single neuron activity was recorded in the dorsolateral prefrontal cortex while trained monkeys discriminated between two orientated lines shown sequentially, separated by a fixed interstimulus interval. This visual task required the monkey to compare the orientation of the second line with the memory trace of the first and to decide the relative orientation of the second. When the behavioural task required the monkey to maintain in working memory a first stimulus that continually changed from trial to trial, the discharge in these cells was related to the parameters--the orientation--of the memorized item. Then, what the monkey had to recall from memory was manipulated by switching to another task in which the first stimulus was not shown, and had to be retrieved from LTM. The discharge rates of the same neurons also varied depending on the parameters of the memorized stimuli, and their response was progressively delayed as the monkey performed the task. These results suggest that working memory activates dorsolateral prefrontal cortex neurons that maintain parametrical visual information in short-term and LTM, and that the contents of working memory cannot be limited to what has recently happened in the sensory environment.

  4. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study.

    Science.gov (United States)

    Ding, Wei-na; Sun, Jin-hua; Sun, Ya-Wen; Chen, Xue; Zhou, Yan; Zhuang, Zhi-guo; Li, Lei; Zhang, Yong; Xu, Jian-rong; Du, Ya-song

    2014-05-30

    Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process.

  5. Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption.

    Science.gov (United States)

    Richard, Jocelyn M; Berridge, Kent C

    2013-02-15

    Corticolimbic circuits, including direct projections from prefrontal cortex to nucleus accumbens (NAc), permit top-down control of intense motivations generated by subcortical circuits. In rats, localized disruptions of glutamate signaling within medial shell of NAc generate desire or dread, anatomically organized along a rostrocaudal gradient analogous to a limbic keyboard. At rostral locations in shell, these disruptions generate appetitive eating, but at caudal locations the disruptions generate progressively fearful behaviors (distress vocalizations, escape attempts, and antipredator reactions). Here, we asked whether medial prefrontal cortex can modulate intense motivations generated by subcortical NAc disruptions. We used simultaneous microinjections in medial prefrontal cortex regions and in NAc shell to examine whether the desire or dread generated by NAc shell disruptions is modulated by activation/inhibition of three specific regions of prefrontal cortex: medial orbitofrontal cortex, infralimbic cortex (homologous to area 25 or subgenual anterior cingulate in the human), or prelimbic cortex (midventral anterior cingulate). We found that activation of medial orbitofrontal cortex biased intense bivalent motivation in an appetitive direction by amplifying generation of eating behavior by middle to caudal NAc disruptions, without altering fear. In contrast, activation of infralimbic prefrontal cortex powerfully and generally suppressed both appetitive eating and fearful behaviors generated by NAc shell disruptions. These results suggest that corticolimbic projections from discrete prefrontal regions can either bias motivational valence or generally suppress subcortically generated intense motivations of desire or fear. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Working memory coding of analog stimulus properties in the human prefrontal cortex.

    Science.gov (United States)

    Spitzer, Bernhard; Gloel, Matthias; Schmidt, Timo T; Blankenburg, Felix

    2014-08-01

    Building on evidence for working memory (WM) coding of vibrotactile frequency information in monkey prefrontal cortex, recent electroencephalography studies found frequency processing in human WM to be reflected by quantitative modulations of prefrontal upper beta activity (20-30 Hz) as a function of the to-be-maintained stimulus attribute. This kind of stimulus-dependent activity has been observed across different sensory modalities, suggesting a generalized role of prefrontal beta during abstract WM processing of quantitative magnitude information. However, until now the available empirical evidence for such quantitative WM representation remains critically limited to the retention of periodic stimulus frequencies. In the present experiment, we used retrospective cueing to examine the quantitative WM processing of stationary (intensity) and temporal (duration) attributes of a previously presented tactile stimulus. We found parametric modulations of prefrontal beta activity during cued WM processing of each type of quantitative information, in a very similar manner as had before been observed only for periodic frequency information. In particular, delayed prefrontal beta modulations systematically reflected the magnitude of the retrospectively selected stimulus attribute and were functionally linked to successful behavioral task performance. Together, these findings converge on a generalized role of stimulus-dependent prefrontal beta-band oscillations during abstract scaling of analog quantity information in human WM. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. You talkin' to me? Communicative talker gaze activates left-lateralized superior temporal cortex during perception of degraded speech.

    Science.gov (United States)

    McGettigan, Carolyn; Jasmin, Kyle; Eisner, Frank; Agnew, Zarinah K; Josephs, Oliver J; Calder, Andrew J; Jessop, Rosemary; Lawson, Rebecca P; Spielmann, Mona; Scott, Sophie K

    2017-06-01

    Neuroimaging studies of speech perception have consistently indicated a left-hemisphere dominance in the temporal lobes' responses to intelligible auditory speech signals (McGettigan and Scott, 2012). However, there are important communicative cues that cannot be extracted from auditory signals alone, including the direction of the talker's gaze. Previous work has implicated the superior temporal cortices in processing gaze direction, with evidence for predominantly right-lateralized responses (Carlin & Calder, 2013). The aim of the current study was to investigate whether the lateralization of responses to talker gaze differs in an auditory communicative context. Participants in a functional MRI experiment watched and listened to videos of spoken sentences in which the auditory intelligibility and talker gaze direction were manipulated factorially. We observed a left-dominant temporal lobe sensitivity to the talker's gaze direction, in which the left anterior superior temporal sulcus/gyrus and temporal pole showed an enhanced response to direct gaze - further investigation revealed that this pattern of lateralization was modulated by auditory intelligibility. Our results suggest flexibility in the distribution of neural responses to social cues in the face within the context of a challenging speech perception task. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. ARE LEFT HANDED SURGEONS LEFT OUT?

    OpenAIRE

    SriKamkshi Kothandaraman; Balasubramanian Thiagarajan

    2012-01-01

    Being a left-handed surgeon, more specifically a left-handed ENT surgeon, presents a unique pattern of difficulties.This article is an overview of left-handedness and a personal account of the specific difficulties a left-handed ENT surgeon faces.

  9. Net influx of plasma 6-[18F]fluoro-L-DOPA (FDOPA) to the ventral striatum correlates with prefrontal processing of affective stimuli.

    Science.gov (United States)

    Siessmeier, Thomas; Kienast, Thorsten; Wrase, Jana; Larsen, Jennifer Lynne; Braus, Dieter F; Smolka, Michael N; Buchholz, Hans Georg; Schreckenberger, Mathias; Rösch, Frank; Cumming, Paul; Mann, Karl; Bartenstein, Peter; Heinz, Andreas

    2006-07-01

    Dopaminergic neurotransmission in the ventral and dorsal striatum interact with central processing of rewarding and reward-indicating stimuli, and may affect frontocortical-striatal-thalamic circuits regulating goal-directed behaviour. Thirteen healthy male volunteers were investigated with multimodal imaging, using the radioligand 6-[(18)F]fluoro-l-DOPA (FDOPA) for positron emission tomography (PET) measurements of dopamine synthesis capacity, and also functional magnetic resonance imaging (fMRI) in a cognitive activation paradigm. We calculated the correlation between FDOPA net blood-brain influx (; ml/g/min) in the ventral and associative dorsal striatum and BOLD signal changes elicited by standardized affectively positive, negative and neutral visual stimuli. The magnitude of in the ventral striatum was positively correlated with BOLD signal increases in the left anterior cingulate cortex and right insular operculum elicited by positive vs. neutral stimuli, but not negative vs. neutral stimuli. In the dorsal striatum, the magnitude of was positively correlated with processing of positive and negative stimuli in the left dorsolateral prefrontal cortex. These findings suggest that dopamine synthesis capacity in the ventral striatum correlates with the attentional processing of rewarding positive stimuli in the anterior cingulate cortex of healthy subjects. Dopaminergic neurotransmission in the associative dorsal striatum has been associated previously with habit learning. The observed correlation between dopamine synthesis capacity in the dorsal striatum and BOLD signal changes in the dorsolateral prefrontal cortex suggests dopaminergic modulation of processing of emotional stimuli in brain areas associated with motor planning and executive behaviour control.

  10. Positive association of video game playing with left frontal cortical thickness in adolescents.

    Directory of Open Access Journals (Sweden)

    Simone Kühn

    Full Text Available Playing video games is a common recreational activity of adolescents. Recent research associated frequent video game playing with improvements in cognitive functions. Improvements in cognition have been related to grey matter changes in prefrontal cortex. However, a fine-grained analysis of human brain structure in relation to video gaming is lacking. In magnetic resonance imaging scans of 152 14-year old adolescents, FreeSurfer was used to estimate cortical thickness. Cortical thickness across the whole cortical surface was correlated with self-reported duration of video gaming (hours per week. A robust positive association between cortical thickness and video gaming duration was observed in left dorsolateral prefrontal cortex (DLPFC and left frontal eye fields (FEFs. No regions showed cortical thinning in association with video gaming frequency. DLPFC is the core correlate of executive control and strategic planning which in turn are essential cognitive domains for successful video gaming. The FEFs are a key region involved in visuo-motor integration important for programming and execution of eye movements and allocation of visuo-spatial attention, processes engaged extensively in video games. The results may represent the biological basis of previously reported cognitive improvements due to video game play. Whether or not these results represent a-priori characteristics or consequences of video gaming should be studied in future longitudinal investigations.

  11. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks

    NARCIS (Netherlands)

    Fleck, M.S.; Daselaar, S.M.; Dobbins, I.G.; Cabeza, R.

    2006-01-01

    In the episodic retrieval (ER) domain, activations in right dorsolateral prefrontal cortex (DLPFC) are often attributed to postretrieval monitoring. Yet, right DLPFC activations are also frequently found during nonmemory tasks. To investigate the role of this region across different cognitive

  12. Resistance training may concomitantly benefit body composition, blood pressure and muscle MMP-2 activity on the left ventricle of high-fat fed diet rats.

    Science.gov (United States)

    Leite, Richard Diego; Durigan, Rita de Cássia Marqueti; de Souza Lino, Anderson Diogo; de Souza Campos, Markus Vinicius; Souza, Maria das Graças; Selistre-de-Araújo, Heloisa Silvestre; Bouskela, Eliete; Kraemer-Aguiar, Luiz Guilherme

    2013-10-01

    The purpose of this study was to evaluate the effect of resistance training (RT) on body composition, systolic and diastolic blood pressures (BP), and activity of muscle MMP-2 in the left ventricle of high-fat fed rats. We have evaluated 32 male Wistar rats divided into four experimental groups (n=8/each) according to diet and exercise status: sedentary (SED; standard diet), sedentary obese (SED-OB; diet: 30% of fat), RT (RT; standard diet) and RT obese (RT-OB; diet: 30% of fat). After weaning (day 21), animals were subjected to the experimental diet according to their groups during 24 weeks. A 12-week strength-training period was used, during which the rats climbed a 1.1-m vertical ladder with weights attached to their tails. Sessions were performed three times/week (Mondays, Wednesdays and Fridays), with 4-9 climbs/session and 8-12 dynamic movements/climb. RT induced higher muscle MMP-2 activity in the left ventricle in RT and RT-OB groups. Moreover, this study demonstrated that RT promoted lower body and fat masses, fat percentage, systolic and diastolic BPs and higher fat free mass in both trained groups. RT increased muscle MMP-2 activity in the left ventricle, induced positive changes on body composition and lowered BPs in high-fat diet fed rats, suggesting that it may be a useful tool to prevent alterations induced by high-fat diet consumption. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: toward a three-state NIRS-BCI

    Directory of Open Access Journals (Sweden)

    Power Sarah D

    2012-03-01

    Full Text Available Abstract Background Near-infrared spectroscopy (NIRS is an optical imaging technology that has recently been investigated for use in a safe, non-invasive brain-computer interface (BCI for individuals with severe motor impairments. To date, most NIRS-BCI studies have attempted to discriminate two mental states (e.g., a mental task and rest, which could potentially lead to a two-choice BCI system. In this study, we attempted to automatically differentiate three mental states - specifically, intentional activity due to 1 a mental arithmetic (MA task and 2 a mental singing (MS task, and 3 an unconstrained, "no-control (NC" state - to investigate the feasibility of a three-choice system-paced NIRS-BCI. Results Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations while 7 able-bodied adults performed mental arithmetic and mental singing to answer multiple-choice questions within a system-paced paradigm. With a linear classifier trained on a ten-dimensional feature set, an overall classification accuracy of 56.2% was achieved for the MA vs. MS vs. NC classification problem and all individual participant accuracies significantly exceeded chance (i.e., 33%. However, as anticipated based on results of previous work, the three-class discrimination was unsuccessful for three participants due to the ineffectiveness of the mental singing task. Excluding these three participants increases the accuracy rate to 62.5%. Even without training, three of the remaining four participants achieved accuracies approaching 70%, the value often cited as being necessary for effective BCI communication. Conclusions These results are encouraging and demonstrate the potential of a three-state system-paced NIRS-BCI with two intentional control states corresponding to mental arithmetic and mental singing.

  14. Automatic single-trial discrimination of mental arithmetic, mental singing and the no-control state from prefrontal activity: toward a three-state NIRS-BCI.

    Science.gov (United States)

    Power, Sarah D; Kushki, Azadeh; Chau, Tom

    2012-03-13

    Near-infrared spectroscopy (NIRS) is an optical imaging technology that has recently been investigated for use in a safe, non-invasive brain-computer interface (BCI) for individuals with severe motor impairments. To date, most NIRS-BCI studies have attempted to discriminate two mental states (e.g., a mental task and rest), which could potentially lead to a two-choice BCI system. In this study, we attempted to automatically differentiate three mental states - specifically, intentional activity due to 1) a mental arithmetic (MA) task and 2) a mental singing (MS) task, and 3) an unconstrained, "no-control (NC)" state - to investigate the feasibility of a three-choice system-paced NIRS-BCI. Deploying a dual-wavelength frequency domain near-infrared spectrometer, we interrogated nine sites around the frontopolar locations while 7 able-bodied adults performed mental arithmetic and mental singing to answer multiple-choice questions within a system-paced paradigm. With a linear classifier trained on a ten-dimensional feature set, an overall classification accuracy of 56.2% was achieved for the MA vs. MS vs. NC classification problem and all individual participant accuracies significantly exceeded chance (i.e., 33%). However, as anticipated based on results of previous work, the three-class discrimination was unsuccessful for three participants due to the ineffectiveness of the mental singing task. Excluding these three participants increases the accuracy rate to 62.5%. Even without training, three of the remaining four participants achieved accuracies approaching 70%, the value often cited as being necessary for effective BCI communication. These results are encouraging and demonstrate the potential of a three-state system-paced NIRS-BCI with two intentional control states corresponding to mental arithmetic and mental singing.

  15. A Role for the Left Angular Gyrus in Episodic Simulation and Memory.

    Science.gov (United States)

    Thakral, Preston P; Madore, Kevin P; Schacter, Daniel L

    2017-08-23

    Functional magnetic resonance imaging (fMRI) studies indicate that episodic simulation (i.e., imagining specific future experiences) and episodic memory (i.e., remembering specific past experiences) are associated with enhanced activity in a common set of neural regions referred to as the core network. This network comprises the hippocampus, medial prefrontal cortex, and left angular gyrus, among other regions. Because fMRI data are correlational, it is unknown whether activity increases in core network regions are critical for episodic simulation and episodic memory. In the current study, we used MRI-guided transcranial magnetic stimulation (TMS) to assess whether temporary disruption of the left angular gyrus would impair both episodic simulation and memory (16 participants, 10 females). Relative to TMS to a control site (vertex), disruption of the left angular gyrus significantly reduced the number of internal (i.e., episodic) details produced during the simulation and memory tasks, with a concomitant increase in external detail production (i.e., semantic, repetitive, or off-topic information), reflected by a significant detail by TMS site interaction. Difficulty in the simulation and memory tasks also increased after TMS to the left angular gyrus relative to the vertex. In contrast, performance in a nonepisodic control task did not differ statistically as a function of TMS site (i.e., number of free associates produced or difficulty in performing the free associate task). Together, these results are the first to demonstrate that the left angular gyrus is critical for both episodic simulation and episodic memory. SIGNIFICANCE STATEMENT Humans have the ability to imagine future episodes (i.e., episodic simulation) and remember episodes from the past (i.e., episodic memory). A wealth of neuroimaging studies have revealed that these abilities are associated with enhanced activity in a core network of neural regio