WorldWideScience

Sample records for left parietal gray

  1. Working memory training using mental calculation impacts regional gray matter of the frontal and parietal regions.

    Directory of Open Access Journals (Sweden)

    Hikaru Takeuchi

    Full Text Available Training working memory (WM improves performance on untrained cognitive tasks and alters functional activity. However, WM training's effects on gray matter morphology and a wide range of cognitive tasks are still unknown. We investigated this issue using voxel-based morphometry (VBM, various psychological measures, such as non-trained WM tasks and a creativity task, and intensive adaptive training of WM using mental calculations (IATWMMC, all of which are typical WM tasks. IATWMMC was associated with reduced regional gray matter volume in the bilateral fronto-parietal regions and the left superior temporal gyrus. It improved verbal letter span and complex arithmetic ability, but deteriorated creativity. These results confirm the training-induced plasticity in psychological mechanisms and the plasticity of gray matter structures in regions that have been assumed to be under strong genetic control.

  2. Intradiploic encephalocele of the left parietal bone: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok [Myongji St. Mary' s Hospital, Seoul (Korea, Republic of)

    2015-06-15

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood.

  3. Intradiploic encephalocele of the left parietal bone: A case report

    International Nuclear Information System (INIS)

    Kim, Hyung Sock; Huh, Choon Woong; Kim, Dal Soo; Mok, Jin Ho; Kim, In Soo; Yang, Geun Seok

    2015-01-01

    Encephaloceles are generally regarded as midline abnormalities. A 50-year-old man presented with a parietal intradiploic encephalocele manifesting as intermittent headache for the past 6 months. Computed tomography (CT) showed bone destruction associated with a left parietal lesion. Magnetic resonance imaging (MRI) demonstrated brain herniation within the intradiploic space. Cerebral angiographic imaging showed a normal cerebral vessel pattern within the herniated brain lesion. In this case, surgical treatment may not be necessary in the absence of concurrent symptoms and neurologic deficit. We report the CT, MRI, and angiographic findings of an extremely rare case of parietal intradiploic encephalocele in adulthood

  4. Both left and right posterior parietal activations contribute to compensatory processes in normal aging

    Science.gov (United States)

    Huang, Chih-Mao; Polk, Thad A.; Goh, Joshua O.; Park, Denise C.

    2012-01-01

    Older adults often exhibit greater brain activation in prefrontal cortex compared to younger adults, and there is some evidence that this increased activation compensates for age-related neural degradation that would otherwise adversely affect cognitive performance. Less is known about aging and compensatory recruitment in the parietal cortex. In this event-related functional magnetic resonance imaging study, we presented healthy young and old participants with two Stroop-like tasks (number magnitude and physical size). In young, the number magnitude task activated right parietal cortex and the physical size task activated left parietal cortex. In older adults, we observed contralateral parietal recruitment that depended on the task: in the number magnitude task older participants recruited left posterior parietal cortex (in addition to the right parietal activity observed in young) while in the physical size task they recruited right (in addition to left) posterior parietal cortex. In both cases, the additional parietal activity was associated with better performance suggesting that it played a compensatory role. Older adults also recruited left prefrontal cortex during both tasks and this common activation was also associated with better performance. The results provide evidence for task-specific compensatory recruitment in parietal cortex as well as task-independent compensatory recruitment in prefrontal cortex in normal aging. PMID:22063904

  5. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    Science.gov (United States)

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  6. Individual structural differences in left inferior parietal area are associated with schoolchildrens’ arithmetic scores

    Directory of Open Access Journals (Sweden)

    Yongxin eLi

    2013-12-01

    Full Text Available Arithmetic skill is of critical importance for academic achievement, professional success and everyday life, and childhood is the key period to acquire this skill. Neuroimaging studies have identified that left parietal regions are a key neural substrate for representing arithmetic skill. Although the relationship between functional brain activity in left parietal regions and arithmetic skill has been studied in detail, it remains unclear about the relationship between arithmetic achievement and structural properties in left inferior parietal area in schoolchildren. The current study employed a combination of voxel-based morphometry (VBM for high-resolution T1-weighted images and fiber tracking on diffusion tensor imaging (DTI to examine the relationship between structural properties in the inferior parietal area and arithmetic achievement in 10-year-old schoolchildren. VBM of the T1-weighted images revealed that individual differences in arithmetic scores were significantly and positively correlated with the grey matter (GM volume in the left intraparietal sulcus (IPS. Fiber tracking analysis revealed that the forceps major, left superior longitudinal fasciculus (SLF, bilateral inferior longitudinal fasciculus (ILF and inferior fronto-occipital fasciculus (IFOF were the primary pathways connecting the left IPS with other brain areas. Furthermore, the regression analysis of the probabilistic pathways revealed a significant and positive correlation between the fractional anisotropy (FA values in the left SLF, ILF and bilateral IFOF and arithmetic scores. The brain structure-behavior correlation analyses indicated that the GM volumes in the left IPS and the FA values in the tract pathways connecting left IPS were both related to children’s arithmetic achievement. The present findings provide evidence that individual structural differences in the left IPS are associated with arithmetic scores in schoolchildren.

  7. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development.

    Science.gov (United States)

    Darki, Fahimeh; Peyrard-Janvid, Myriam; Matsson, Hans; Kere, Juha; Klingberg, Torkel

    2014-10-22

    Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function. Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2 years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading comprehension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal outgrowth. Copyright © 2014 the authors 0270-6474/14/3414455-08$15.00/0.

  9. Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization

    Directory of Open Access Journals (Sweden)

    Veronika I. Müller

    2013-06-01

    Full Text Available The inferior parietal cortex (IPC is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition in schizophrenia. By using task-independent (resting state and task-dependent (MACM analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC, medial orbitofrontal cortex (mOFC, left middle frontal (MFG as well as inferior frontal (IFG gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.

  10. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  11. Visuokinesthetic perception of hand movement is mediated by cerebro-cerebellar interaction between the left cerebellum and right parietal cortex.

    Science.gov (United States)

    Hagura, Nobuhiro; Oouchida, Yutaka; Aramaki, Yu; Okada, Tomohisa; Matsumura, Michikazu; Sadato, Norihiro; Naito, Eiichi

    2009-01-01

    Combination of visual and kinesthetic information is essential to perceive bodily movements. We conducted behavioral and functional magnetic resonance imaging experiments to investigate the neuronal correlates of visuokinesthetic combination in perception of hand movement. Participants experienced illusory flexion movement of their hand elicited by tendon vibration while they viewed video-recorded flexion (congruent: CONG) or extension (incongruent: INCONG) motions of their hand. The amount of illusory experience was graded by the visual velocities only when visual information regarding hand motion was concordant with kinesthetic information (CONG). The left posterolateral cerebellum was specifically recruited under the CONG, and this left cerebellar activation was consistent for both left and right hands. The left cerebellar activity reflected the participants' intensity of illusory hand movement under the CONG, and we further showed that coupling of activity between the left cerebellum and the "right" parietal cortex emerges during this visuokinesthetic combination/perception. The "left" cerebellum, working with the anatomically connected high-order bodily region of the "right" parietal cortex, participates in online combination of exteroceptive (vision) and interoceptive (kinesthesia) information to perceive hand movement. The cerebro-cerebellar interaction may underlie updating of one's "body image," when perceiving bodily movement from visual and kinesthetic information.

  12. Visuokinesthetic Perception of Hand Movement is Mediated by Cerebro–Cerebellar Interaction between the Left Cerebellum and Right Parietal Cortex

    Science.gov (United States)

    Hagura, Nobuhiro; Oouchida, Yutaka; Aramaki, Yu; Okada, Tomohisa; Matsumura, Michikazu; Sadato, Norihiro

    2009-01-01

    Combination of visual and kinesthetic information is essential to perceive bodily movements. We conducted behavioral and functional magnetic resonance imaging experiments to investigate the neuronal correlates of visuokinesthetic combination in perception of hand movement. Participants experienced illusory flexion movement of their hand elicited by tendon vibration while they viewed video-recorded flexion (congruent: CONG) or extension (incongruent: INCONG) motions of their hand. The amount of illusory experience was graded by the visual velocities only when visual information regarding hand motion was concordant with kinesthetic information (CONG). The left posterolateral cerebellum was specifically recruited under the CONG, and this left cerebellar activation was consistent for both left and right hands. The left cerebellar activity reflected the participants' intensity of illusory hand movement under the CONG, and we further showed that coupling of activity between the left cerebellum and the “right” parietal cortex emerges during this visuokinesthetic combination/perception. The “left” cerebellum, working with the anatomically connected high-order bodily region of the “right” parietal cortex, participates in online combination of exteroceptive (vision) and interoceptive (kinesthesia) information to perceive hand movement. The cerebro–cerebellar interaction may underlie updating of one's “body image,” when perceiving bodily movement from visual and kinesthetic information. PMID:18453537

  13. Maintaining the feelings of others in working memory is associated with activation of the left anterior insula and left frontal-parietal control network.

    Science.gov (United States)

    Smith, Ryan; Lane, Richard D; Alkozei, Anna; Bao, Jennifer; Smith, Courtney; Sanova, Anna; Nettles, Matthew; Killgore, William D S

    2017-05-01

    The maintenance of social/emotional information in working memory (SWM/EWM) has recently been the topic of multiple neuroimaging studies. However, some studies find that SWM/EWM involves a medial frontal-parietal network while others instead find lateral frontal-parietal activations similar to studies of verbal and visuospatial WM. In this study, we asked 26 healthy volunteers to complete an EWM task designed to examine whether different cognitive strategies- maintaining emotional images, words, or feelings- might account for these discrepant results. We also examined whether differences in EWM performance were related to general intelligence (IQ), emotional intelligence (EI), and emotional awareness (EA). We found that maintaining emotional feelings, even when accounting for neural activation attributable to maintaining emotional images/words, still activated a left lateral frontal-parietal network (including the anterior insula and posterior dorsomedial frontal cortex). We also found that individual differences in the ability to maintain feelings were positively associated with IQ and EA, but not with EI. These results suggest that maintaining the feelings of others (at least when perceived exteroceptively) involves similar frontal-parietal control networks to exteroceptive WM, and that it is similarly linked to IQ, but that it also may be an important component of EA. © The Author (2017). Published by Oxford University Press.

  14. Investigating the Functional Utility of the Left Parietal ERP Old/New Effect: Brain Activity Predicts within But Not between Participant Variance in Episodic Recollection

    Directory of Open Access Journals (Sweden)

    Catherine A. MacLeod

    2017-12-01

    Full Text Available A success story within neuroimaging has been the discovery of distinct neural correlates of episodic retrieval, providing insight into the processes that support memory for past life events. Here we focus on one commonly reported neural correlate, the left parietal old/new effect, a positive going modulation seen in event-related potential (ERP data that is widely considered to index episodic recollection. Substantial evidence links changes in the size of the left parietal effect to changes in remembering, but the precise functional utility of the effect remains unclear. Here, using forced choice recognition of verbal stimuli, we present a novel population level test of the hypothesis that the magnitude of the left parietal effect correlates with memory performance. We recorded ERPs during old/new recognition, source accuracy and Remember/Know/Guess tasks in two large samples of healthy young adults, and successfully replicated existing within participant modulations of the magnitude of the left parietal effect with recollection. Critically, however, both datasets also show that across participants the magnitude of the left parietal effect does not correlate with behavioral measures of memory – including both subjective and objective estimates of recollection. We conclude that in these tasks, and across this healthy young adult population, the generators of the left parietal ERP effect do not index performance as expected. Taken together, these novel findings provide important constraints on the functional interpretation of the left parietal effect, suggesting that between group differences in the magnitude of old/new effects cannot always safely be used to infer differences in recollection.

  15. Barratt Impulsivity in Healthy Adults Is Associated with Higher Gray Matter Concentration in the Parietal Occipital Cortex that Represents Peripheral Visual Field

    Directory of Open Access Journals (Sweden)

    Jaime S. Ide

    2017-05-01

    Full Text Available Impulsivity is a personality trait of clinical importance. Extant research focuses on fronto-striatal mechanisms of impulsivity and how executive functions are compromised in impulsive individuals. Imaging studies employing voxel based morphometry highlighted impulsivity-related changes in gray matter concentrations in a wide array of cerebral structures. In particular, whereas prefrontal cortical areas appear to show structural alterations in individuals with a neuropsychiatric condition, the findings are less than consistent in the healthy population. Here, in a sample (n = 113 of young adults assessed for Barratt impulsivity, we controlled for age, gender and alcohol use, and showed that higher impulsivity score is associated with increased gray matter volume (GMV in bilateral medial parietal and occipital cortices known to represent the peripheral visual field. When impulsivity components were assessed, we observed that this increase in parieto-occipital cortical volume is correlated with inattention and non-planning but not motor subscore. In a separate behavioral experiment of 10 young adults, we demonstrated that impulsive individuals are more vulnerable to the influence of a distractor on target detection in an attention task. If replicated, these findings together suggest aberrant visual attention as a neural correlate of an impulsive personality trait in neurotypical individuals and need to be reconciled with the literature that focuses on frontal dysfunctions.

  16. Controversies over the mechanisms underlying the crucial role of the left fronto-parietal areas in the representation of tools

    Directory of Open Access Journals (Sweden)

    Guido eGainotti

    2013-10-01

    Full Text Available Anatomo-clinical and neuroimaging data show that the left fronto-parietal areas play an important role in representing tools. As manipulation is an important source of knowledge about tools, it has been assumed that motor activity explains the link between tool knowledge and the left fronto-parietal areas. However, controversies exist over the exact mechanisms underlying this relationship. According to a strong version of the ‘embodied cognition theory’, activation of a tool concept necessarily involves re-enactment of the corresponding kind of action. Impairment of the ability to use tools should, therefore, lead to impairment of tool knowledge. Both the ‘domains of knowledge hypothesis’ and the ‘sensory-motor model of conceptual knowledge’ refute the strong version of the ‘embodied cognition hypothesis’ but acknowledge that manipulation and other action schemata play an important role in our knowledge of tools. The basic difference between these two models is that the former is based on an innatist model and the latter holds that the brain’s organization of categories is experience dependent. Data supporting and arguing against each of these models are briefly reviewed. In particular, the following lines of research, which argue against the innate nature of the brain’s categorical organization, are discussed: (1 the observation that in patients with category-specific disorders the semantic impairment does not respect the boundaries between biological entities and artefact items; (2 data showing that experience-driven neuroplasticity in musicians is not confined to alterations of perceptual and motor maps but also leads to the establishment of higher-level semantic representations for musical instruments; (3 results of experiments using previously unfamiliar materials showing that the history of our sensory-motor experience with an object significantly affects its neural representation.

  17. The role of the left inferior parietal lobule in second language learning: An intensive language training fMRI study.

    Science.gov (United States)

    Barbeau, Elise B; Chai, Xiaoqian J; Chen, Jen-Kai; Soles, Jennika; Berken, Jonathan; Baum, Shari; Watkins, Kate E; Klein, Denise

    2017-04-01

    Research to date suggests that second language acquisition results in functional and structural changes in the bilingual brain, however, in what way and how quickly these changes occur remains unclear. To address these questions, we studied fourteen English-speaking monolingual adults enrolled in a 12-week intensive French language-training program in Montreal. Using functional MRI, we investigated the neural changes associated with new language acquisition. The participants were scanned before the start of the immersion program and at the end of the 12 weeks. The fMRI scan aimed to investigate the brain regions recruited in a sentence reading task both in English, their first language (L1), and in French, their second language (L2). For the L1, fMRI patterns did not change from Time 1 to Time 2, while for the L2, the brain response changed between Time 1 and Time 2 in language-related areas. Of note, for the L2, there was higher activation at Time 2 compared to Time 1 in the left inferior parietal lobule (IPL) including the supramarginal gyrus. At Time 2 this higher activation in the IPL correlated with faster L2 reading speed. Moreover, higher activation in the left IPL at Time 1 predicted improvement in L2 reading speed from Time 1 to Time 2. Our results suggest that learning-induced plasticity occurred as early as 12 weeks into immersive second-language training, and that the IPL appears to play a special role in language learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

    DEFF Research Database (Denmark)

    Verleger, Rolf; Möller, Friderike; Kuniecki, Michal

    2010-01-01

    In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted...... by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2......) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field...

  19. Maintaining the feelings of others in working memory is associated with activation of the left anterior insula and left frontal-parietal control network

    OpenAIRE

    Smith, Ryan; Lane, Richard D.; Alkozei, Anna; Bao, Jennifer; Smith, Courtney; Sanova, Anna; Nettles, Matthew; Killgore, William D. S.

    2017-01-01

    Abstract The maintenance of social/emotional information in working memory (SWM/EWM) has recently been the topic of multiple neuroimaging studies. However, some studies find that SWM/EWM involves a medial frontal-parietal network while others instead find lateral frontal-parietal activations similar to studies of verbal and visuospatial WM. In this study, we asked 26 healthy volunteers to complete an EWM task designed to examine whether different cognitive strategies? maintaining emotional im...

  20. Functional mapping of left parietal areas involved in simple addition and multiplication. A single-case study of qualitative analysis of errors.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; Salillas, Elena; Grego, Alberto; Lazzarini, Anna; Vallesi, Antonino; Saladini, Marina; Semenza, Carlo

    2015-09-01

    All electrostimulation studies on arithmetic have so far solely reported general errors. Nonetheless, a classification of the errors during stimulation can inform us about underlying arithmetic processes. The present electrostimulation study was performed in a case of left parietal glioma. The patient's erroneous responses suggested that calculation was mainly applied for addition and a combination of retrieval and calculation was mainly applied for multiplication. The findings of the present single-case study encourage follow up with further data collection with the same paradigm. © 2014 The British Psychological Society.

  1. Increased gray matter volume of left pars opercularis in male orchestral musicians correlate positively with years of musical performance.

    Science.gov (United States)

    Abdul-Kareem, Ihssan A; Stancak, Andrej; Parkes, Laura M; Sluming, Vanessa

    2011-01-01

    To compare manual volumetry of gray matter (GM) / white matter (WM) of Broca's area subparts: pars opercularis (POP) and pars triangularis (PTR) in both hemispheres between musicians and nonmusician, as it has been shown that these regions are crucial for musical abilities. A previous voxel-based morphometric (VBM) study conducted in our laboratory reported increased GM density in Broca's area of left hemisphere in male orchestral musicians. Functional segregation of POP/PTR justified separate volumetric analysis of these parts. We used the same cohort for the VBM study. Manual morphometry (stereology) was used to compare volumes between 26/26 right-handed orchestral musicians/nonmusicians. As expected, musicians showed significantly increased GM volume in the Broca's area, specifically in the left POP. No significant results were detected in right POP, left/right PTR GM volumes, and WM volumes for all regions. Results were positively correlated with years of musical performance (r = 0.7, P = 0.0001). This result corroborates the VBM study and is in line with the hypothesis of critical involvement of POP in hearing-action integration being an integral component of frontoparietotemporal mirror neuron network. We hypothesize that increased size of musicians' left POP represent use-dependent structural adaptation in response to intensive audiomotor skill acquisition. Copyright © 2010 Wiley-Liss, Inc.

  2. The anodal tDCS over the left posterior parietal cortex enhances attention toward a focus word in a sentence.

    Science.gov (United States)

    Minamoto, Takehiro; Azuma, Miyuki; Yaoi, Ken; Ashizuka, Aoi; Mima, Tastuya; Osaka, Mariko; Fukuyama, Hidenao; Osaka, Naoyuki

    2014-01-01

    The posterior parietal cortex (PPC) has two attentional functions: top-down attentional control and stimulus-driven attentional processing. Using the focused version of the reading span test (RST), in which the target word to be remembered is the critical word for comprehending a sentence (focused word) or a non-focused word, we examined the effect of tDCS on resolution of distractor interference by the focused word in the non-focus condition (top-down attentional control) and on augmented/shrunk attentional capture by the focused word in both the focus and non-focus conditions (stimulus-driven attentional processing). Participants were divided into two groups: anodal tDCS (atDCS) and cathodal tDCS (ctDCS). Online stimulation was given while participants performed the RST. A post-hoc recognition task was also administered in which three kinds of words were presented: target words in the RST, distractor words in the RST, and novel words. atDCS augmented the effect of the focused word by increasing differences in performance between the focus and non-focus conditions. Such an effect was not observed in the ctDCS group. As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition. On the other hand, ctDCS brought less recognition of non-focused target words in comparison to sham. The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions. In contrast, ctDCS appears to prevent retrieval of less important information from episodic memory, which may require top-down attentional processing.

  3. Transcortical mixed aphasia due to cerebral infarction in left inferior frontal lobe and temporo-parietal lobe

    International Nuclear Information System (INIS)

    Maeshima, S.; Matsumoto, T.; Ueyoshi, A.; Toshiro, H.; Sekiguchi, E.; Okita, R.; Yamaga, H.; Ozaki, F.; Moriwaki, H.; Roger, P.

    2002-01-01

    We present a case of transcortical mixed aphasia caused by a cerebral embolism. A 77-year-old right-handed man was admitted to our hospital with speech disturbance and a right hemianopia. His spontaneous speech was remarkably reduced, and object naming, word fluency, comprehension, reading and writing were all severely disturbed. However, repetition of phonemes and sentences and reading aloud were fully preserved. Although magnetic resonance imaging (MRI) showed cerebral infarcts in the left frontal and parieto-occipital lobe which included the inferior frontal gyrus and angular gyrus, single photon emission CT revealed a wider area of low perfusion over the entire left hemisphere except for part of the left perisylvian language areas. The amytal (Wada) test, which was performed via the left internal carotid artery, revealed that the left hemisphere was dominant for language. Hence, it appears that transcortical mixed aphasia may be caused by the isolation of perisylvian speech areas, even if there is a lesion in the inferior frontal gyrus, due to disconnection from surrounding areas. (orig.)

  4. Transcortical mixed aphasia due to cerebral infarction in left inferior frontal lobe and temporo-parietal lobe

    Energy Technology Data Exchange (ETDEWEB)

    Maeshima, S.; Matsumoto, T.; Ueyoshi, A. [Department of Physical Medicine and Rehabilitation, Wakayama Medical University, Wakayama (Japan); Toshiro, H.; Sekiguchi, E.; Okita, R.; Yamaga, H.; Ozaki, F.; Moriwaki, H. [Department of Neurological Surgery, Hidaka General Hospital, Wakayama (Japan); Roger, P. [School of Communication Sciences and Disorders, University of Sydney, Sydney, NSW (Australia)

    2002-02-01

    We present a case of transcortical mixed aphasia caused by a cerebral embolism. A 77-year-old right-handed man was admitted to our hospital with speech disturbance and a right hemianopia. His spontaneous speech was remarkably reduced, and object naming, word fluency, comprehension, reading and writing were all severely disturbed. However, repetition of phonemes and sentences and reading aloud were fully preserved. Although magnetic resonance imaging (MRI) showed cerebral infarcts in the left frontal and parieto-occipital lobe which included the inferior frontal gyrus and angular gyrus, single photon emission CT revealed a wider area of low perfusion over the entire left hemisphere except for part of the left perisylvian language areas. The amytal (Wada) test, which was performed via the left internal carotid artery, revealed that the left hemisphere was dominant for language. Hence, it appears that transcortical mixed aphasia may be caused by the isolation of perisylvian speech areas, even if there is a lesion in the inferior frontal gyrus, due to disconnection from surrounding areas. (orig.)

  5. Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients.

    Science.gov (United States)

    Maldonado, Igor Lima; Moritz-Gasser, Sylvie; de Champfleur, Nicolas Menjot; Bertram, Luc; Moulinié, Gérard; Duffau, Hugues

    2011-10-01

    Surgery in the left dominant inferior parietal lobule (IPL) is challenging because of a high density of somatosensory and language structures, both in the cortex and white matter. In the present study, on the basis of the results provided by direct cerebral stimulation in awake patients, the authors revisit the anatomofunctional aspects of surgery within the left IPL. Fourteen consecutive patients underwent awake craniotomy for a glioma involving the left IPL. Intraoperative motor, sensory, and language mapping was performed before and during the tumor removal, at both the cortical and subcortical levels, to optimize the extent of resection, which was determined based on functional boundaries. Anatomofunctional correlations were performed by combining the results of intraoperative mapping and those provided by pre- and postoperative MR imaging. At the cortical level, the primary somatosensory area (retrocentral gyrus) limited the resection anteriorly in all cases, at least partially. Less frequently, speech arrest or articulatory problems were observed within the parietal operculum (4 cases). The lateral limit was determined by language sites that were variably distributed. Anomia was the most frequent response (9 cases) at the posterior third of the superior (and/or middle) temporal gyrus. Posteriorly, less reproducible reorganized language sites were seldom observed in the posterior portion of the angular gyrus (2 cases). At the subcortical level, in addition to somatosensory responses due to stimulation of the thalamocortical pathways, articulatory disturbances were induced by stimulation of white matter in the anterior and lateral part of the surgical cavity (11 cases). This tract anatomically corresponds to the horizontal portion of the lateral segment of the superior longitudinal fascicle (SLF III). Deeper and superiorly, phonemic paraphasia was the main language disturbance (12 cases), elicited by stimulation of the posterosuperior portion of the arcuate

  6. [Meaning, phonological, orthography and kinestic route of reading and writing: a case with alexia and agraphia due to the left parietal lesion].

    Science.gov (United States)

    Endo, Keiko; Suzuki, Kyoko; Hirayama, Kazumi; Fujii, Toshikatsu; Kumabe, Toshihiro; Mori, Etsuro

    2010-09-01

    Abstract A 69-year-old right-handed man developed alexia with agraphia after resection of a brain tumor in the left parietal lobe. After the operation, neurological examination revealed right lower quadrantanopia, mild paresis and sensory disturbance on the right side. He showed marked alexia with agraphia, very mild aphasia, acalculia, and constructional disability. In reading tasks, he was able to read kanji word and kana words but not a single kana character or nonword. After he traced a single kana character or kana nonword, he was able to read it. In writing tasks, he could write kana but not kanji characters, except simple kanji characters that involved less than 4 strokes. These findings indicated that kinesthetic traces may enable such patients to read and write. We propose that processes of reading and writing may include kinesthetic route in addition to the meaning, phonological, and orthographical routes.

  7. The Left Superior Longitudinal Fasciculus within the Primary Sensory Area of Inferior Parietal Lobe Plays a Role in Dysgraphia of Kana Omission within Sentences

    Directory of Open Access Journals (Sweden)

    Nobusada Shinoura

    2012-01-01

    Full Text Available Functional neurological changes after surgery combined with diffusion tensor imaging (DTI tractography can directly provide evidence of anatomical localization of brain function. Using these techniques, a patient with dysgraphia before surgery was analyzed at our hospital in 2011. The patient showed omission of kana within sentences before surgery, which improved after surgery. The brain tumor was relatively small and was located within the primary sensory area (S1 of the inferior parietal lobe (IPL. DTI tractography before surgery revealed compression of the branch of the superior longitudinal fasciculus (SLF by the brain tumor. These results suggest that the left SLF within the S1 of IPL plays a role in the development of dysgraphia of kana omission within sentences.

  8. Non-perceptual Regions in the Left Inferior Parietal Lobe Support Phonological Short-term Memory: Evidence for a Buffer Account?

    Science.gov (United States)

    Yue, Qiuhai; Martin, Randi C; Hamilton, A Cris; Rose, Nathan S

    2018-03-07

    Buffer versus embedded processes accounts of short-term memory (STM) for phonological information were addressed by testing subjects' perception and memory for speech and non-speech auditory stimuli. Univariate and multivariate (MVPA) approaches were used to assess whether brain regions recruited in recognizing speech were involved in maintaining speech representations over a delay. As expected, a left superior temporal region was found to support speech perception. However, contrary to the embedded processes approach, this region failed to show a load effect, or any sustained activation, during a maintenance delay. Moreover, MVPA decoding during the maintenance stage was unsuccessful in this region by a perception classifier or an encoding classifier. In contrast, the left supramarginal gyrus showed both sustained activation and a load effect. Using MVPA, stimulus decoding was successful during the delay period. In addition, a functional connectivity analysis showed that, as memory load increased, the left temporal lobe involved in perception became more strongly connected with the parietal region involved in maintenance. Taken together, the findings provide greater support for a buffer than embedded processes account of phonological STM.

  9. Correlation between white matter damage and gray matter lesions in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Xue-mei Han

    2017-01-01

    Full Text Available We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri, right parietal lobe (postcentral and inferior parietal gyri, right temporal lobe (caudate nucleus, right occipital lobe (middle occipital gyrus, right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.

  10. Unilateral spatial neglect after posterior parietal damage.

    Science.gov (United States)

    Vallar, Giuseppe; Calzolari, Elena

    2018-01-01

    Unilateral spatial neglect is a disabling neurologic deficit, most frequent and severe after right-hemispheric lesions. In most patients neglect involves the left side of space, contralateral to a right-hemispheric lesion. About 50% of stroke patients exhibit neglect in the acute phase. Patients fail to orient, respond to, and report sensory events occurring in the contralateral sides of space and of the body, to explore these portions of space through movements by action effectors (eye, limbs), and to move the contralateral limbs. Neglect is a multicomponent higher-level disorder of spatial awareness, cognition, and attention. Spatial neglect may occur independently of elementary sensory and motor neurologic deficits, but it can mimic and make them more severe. Diagnostic tests include: motor exploratory target cancellation; setting the midpoint of a horizontal line (bisection), that requires the estimation of lateral extent; drawing by copy and from memory; reading, assessing neglect dyslexia; and exploring the side of the body contralateral to the lesion. Activities of daily living scales are also used. Patients are typically not aware of neglect, although they may exhibit varying degrees of awareness toward different components of the deficit. The neural correlates include lesions to the inferior parietal lobule of the posterior parietal cortex, which was long considered the unique neuropathologic correlate of neglect, to the premotor and to the dorsolateral prefrontal cortices, to the posterior superior temporal gyrus, at the temporoparietal junction, to subcortical gray nuclei (thalamus, basal ganglia), and to parietofrontal white-matter fiber tracts, such as the superior longitudinal fascicle. Damage to the inferior parietal lobule of the posterior parietal cortex is specifically associated with the mainly egocentric, perceptual, and exploratory extrapersonal, and with the personal, bodily components of neglect. Productive manifestations, such as

  11. Apraxia and the Parietal Lobes

    Science.gov (United States)

    Goldenberg, Georg

    2009-01-01

    The widely held belief in a central role of left parietal lesions for apraxia can be traced back to Liepmann's model of a posterior to anterior stream converting mental images of intended action into motor execution. Although this model has undergone significant changes, its modern descendants still attribute the parietal contribution to the…

  12. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.

    Science.gov (United States)

    Neef, Nicole E; Bütfering, Christoph; Anwander, Alfred; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2016-11-15

    Area 44 is a cytoarchitectonically distinct portion of Broca's region. Parallel and overlapping large-scale networks couple with this region thereby orchestrating heterogeneous language, cognitive, and motor functions. In the context of stuttering, area 44 frequently comes into focus because structural and physiological irregularities affect developmental trajectories, stuttering severity, persistency, and etiology. A remarkable phenomenon accompanying stuttering is the preserved ability to sing. Speaking and singing are connatural behaviours recruiting largely overlapping brain networks including left and right area 44. Analysing which potential subregions of area 44 are malfunctioning in adults who stutter, and what effectively suppresses stuttering during singing, may provide a better understanding of the coordination and reorganization of large-scale brain networks dedicated to speaking and singing in general. We used fMRI to investigate functionally distinct subregions of area 44 during imagery of speaking and imaginary of humming a melody in 15 dextral males who stutter and 17 matched control participants. Our results are fourfold. First, stuttering was specifically linked to a reduced activation of left posterior-dorsal area 44, a subregion that is involved in speech production, including phonological word processing, pitch processing, working memory processes, sequencing, motor planning, pseudoword learning, and action inhibition. Second, functional coupling between left posterior area 44 and left inferior parietal lobule was deficient in stuttering. Third, despite the preserved ability to sing, males who stutter showed bilaterally a reduced activation of area 44 when imagine humming a melody, suggesting that this fluency-enhancing condition seems to bypass posterior-dorsal area 44 to achieve fluency. Fourth, time courses of the posterior subregions in area 44 showed delayed peak activations in the right hemisphere in both groups, possibly signaling the

  13. Automatic segmentation of short association bundles using a new multi-subject atlas of the left hemisphere fronto-parietal brain connections.

    Science.gov (United States)

    Guevara, M; Seguel, D; Roman, C; Duclap, D; Lebois, A; Le Bihan; Mangin, J-F; Poupon, C; Guevara, P

    2015-08-01

    Human brain connection map is far from being complete. In particular the study of the superficial white matter (SWM) is an unachieved task. Its description is essential for the understanding of human brain function and the study of the pathogenesis associated to it. In this work we developed a method for the automatic creation of a SWM bundle multi-subject atlas. The atlas generation method is based on a cortical parcellation for the extraction of fibers connecting two different gyri. Then, an intra-subject fiber clustering is applied, in order to divide each bundle into sub-bundles with similar shape. After that, a two-step inter-subject fiber clustering is used in order to find the correspondence between the sub-bundles across the subjects, fuse similar clusters and discard the outliers. The method was applied to 40 subjects of a high quality HARDI database, focused on the left hemisphere fronto-parietal and insula brain regions. We obtained an atlas composed of 44 bundles connecting 22 pair of ROIs. Then the atlas was used to automatically segment 39 new subjects from the database.

  14. Contrasting effects of vocabulary knowledge on temporal and parietal brain structure across lifespan.

    Science.gov (United States)

    Richardson, Fiona M; Thomas, Michael S C; Filippi, Roberto; Harth, Helen; Price, Cathy J

    2010-05-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in teenagers but not adults. This region was not activated during auditory or visual sentence processing, and activation was unrelated to vocabulary skills. Its gray matter density may reflect the use of an explicit learning strategy that links new words to lexical or conceptual equivalents, as used in formal education and second language acquisition. By contrast, in left posterior temporal regions, gray matter as well as auditory and visual sentence activation correlated with vocabulary knowledge throughout lifespan. We propose that these effects reflect the acquisition of vocabulary through context, when new words are learnt within the context of semantically and syntactically related words.

  15. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  16. Apraxia, pantomime and the parietal cortex

    Directory of Open Access Journals (Sweden)

    E. Niessen

    2014-01-01

    In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies and elderly neurological patients (typically included in structural lesion studies may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  17. A comparison of gray and white matter density in patients with Parkinson's disease dementia and dementia with Lewy bodies using voxel-based morphometry.

    Science.gov (United States)

    Lee, Ji E; Park, Bosuk; Song, Sook K; Sohn, Young H; Park, Hae-Jeong; Lee, Phil Hyu

    2010-01-15

    Despite clinical and neuropsychological similarities between Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), recent studies have demonstrated that structural and pathological changes are more severe in DLB than in PDD. We used voxel-based morphometry using a 3-T MRI scanner to compare gray and white matter densities in 20 patients with probable PDD and 18 patients with probable DLB, who had similar overall severity of dementia and similar demographic characteristics. The gray matter density was significantly decreased in the left occipital, parietal, and striatal areas in patients with DLB compared with patients with PDD. The white matter density was significantly decreased in bilateral occipital and left occipito-parietal areas in patients with DLB compared with those with PDD. The degree of white and gray matter atrophy was similar in patients with DLB; in contrast, there was markedly less atrophy in the white matter than in the gray matter in patients with PDD. On analyzing the change of WM density relative to that of GM density in patients with DLB compared to those with PDD, the area of WM atrophy in the occipital areas was more extensive than that of GM atrophy. Our data demonstrate that atrophy of both gray and white matter was more severe in patients with DLB and that white matter atrophy relative to gray matter atrophy was less severe in patients with PDD. These data may reflect a difference in the underlying nature of PDD and DLB.

  18. Attention and Regional Gray Matter Development in Very Preterm Children at Age 12 Years.

    Science.gov (United States)

    Lean, Rachel E; Melzer, Tracy R; Bora, Samudragupta; Watts, Richard; Woodward, Lianne J

    2017-08-01

    This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error-corrected pattention was associated with increased gray matter in the anterior cingulate cortex (p=.04). Poor executive shifting attention was associated with reduced gray matter in the right superior temporal cortex (p=.04) and bilateral thalami (p=.05). Poorer executive divided attention was associated with reduced gray matter in the occipital (p=.001), posterior cingulate (p=.02), and left temporal (p=.01) cortices; and increased gray matter in the anterior cingulate cortex (p=.001). Disturbances in regional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539-550).

  19. Abnormal gray matter volume and impulsivity in young adults with Internet gaming disorder.

    Science.gov (United States)

    Lee, Deokjong; Namkoong, Kee; Lee, Junghan; Jung, Young-Chul

    2017-09-08

    Reduced executive control is one of the central components of model on the development and maintenance of Internet gaming disorder (IGD). Among the various executive control problems, high impulsivity has consistently been associated with IGD. We performed voxel-based morphometric analysis with diffeomorphic anatomical registration by using an exponentiated Lie algebra algorithm (DARTEL) to investigate the relationship of gray matter abnormalities to impulsivity in IGD. Thirty-one young male adults whose excessive Internet gaming began in early adolescence, and 30 age-matched male healthy controls were examined. IGD subjects showed smaller gray matter volume (GMV) in brain regions implicated in executive control, such as the anterior cingulate cortex and the supplementary motor area. The GMVs in the anterior cingulate cortex and the supplementary motor area were negatively correlated with self-reporting scales of impulsiveness. IGD subjects also exhibited smaller GMV in lateral prefrontal and parietal cortices comprising the left ventrolateral prefrontal cortex and the left inferior parietal lobule when compared with healthy controls. The GMVs in the left ventrolateral prefrontal cortex were negatively correlated with lifetime usage of Internet gaming. These findings suggest that gray matter abnormalities in areas related to executive control may contribute to high impulsivity of young adults with IGD. Furthermore, alterations in the prefrontal cortex were related with long-term excessive Internet gaming during adolescence. © 2017 Society for the Study of Addiction.

  20. Apraxia, pantomime and the parietal cortex.

    Science.gov (United States)

    Niessen, E; Fink, G R; Weiss, P H

    2014-01-01

    Apraxia, a disorder of higher motor cognition, is a frequent and outcome-relevant sequel of left hemispheric stroke. Deficient pantomiming of object use constitutes a key symptom of apraxia and is assessed when testing for apraxia. To date the neural basis of pantomime remains controversial. We here review the literature and perform a meta-analysis of the relevant structural and functional imaging (fMRI/PET) studies. Based on a systematic literature search, 10 structural and 12 functional imaging studies were selected. Structural lesion studies associated pantomiming deficits with left frontal, parietal and temporal lesions. In contrast, functional imaging studies associate pantomimes with left parietal activations, with or without concurrent frontal or temporal activations. Functional imaging studies that selectively activated parietal cortex adopted the most stringent controls. In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal)-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies) and elderly neurological patients (typically included in structural lesion studies) may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly.

  1. Avaliação quantitativa da movimentação parietal regional do ventrículo esquerdo na endomiocardiofibrose Quantitative assessment of left ventricular regional wall motion in endomyocardial fibrosis

    Directory of Open Access Journals (Sweden)

    Charles Mady

    2005-03-01

    Full Text Available OBJETIVO: Analisar a movimentação parietal regional do ventrículo esquerdo (VE em pacientes com endomiocardiofibrose (EMF. MÉTODOS: Estudados 88 pacientes, 59 do sexo feminino, com idade média de 39±13 anos (variação de 9 a 65 com evidência ecocardiográfica e angiográfica de EMF do VE. A intensidade da deposição de tecido fibroso na cineventriculografia contrastada foi classificada como discreta, moderada ou importante. A fração de ejeção global do ventrículo esquerdo (FEVE foi determinada pelo método área-comprimento por meio da ventriculografia. O movimento foi medido em 100 cordas eqüidistantes e perpendiculares à linha média desenhada no meio dos contornos diastólico e sistólico finais e normalizadas para o tamanho cardíaco. Analisaram-se cinco segmentos do VE: A - apical; AL - ântero-lateral; AB - ântero-basal; IA - ínfero-apical; IB - ínfero-basal. A anormalidade foi expressa em unidades de desvio padrão do movimento médio em uma população de referência normal, composta por 103 pacientes com VE normal, conforme dados de clínica, eletrocardiograma e padrões angiográficos. RESULTADOS: A FEVE média foi de 0,47±0,12. O envolvimento de tecido fibroso do VE foi discreto em 12 pacientes, moderado em 40 e importante em 36. As regiões com pior movimentação parietal foram A (-1,4±1,6 desvio-padrão/cordas e IA (-1,6±1,8 desvio-padrão/cordas comparadas com AB (-0,3±1,9 desvio-padrão /cordas, AL (-0,5±1,8 desvio-padrão/cordas e IB (-0,9±1,3 desvio-padrão/cordas. Não se observou relação entre a intensidade de envolvimento do tecido fibroso e a manutenção parietal regional. CONCLUSÃO : Existe alteração da movimentação parietal regional na EMF e é independente da intensidade de deposição de tecido fibroso avaliada qualitativamente. O envolvimento não uniforme do VE deve ser levado em conta no planejamento cirúrgico dessa doença.OBJECTIVE: To analyze left ventricular (LV regional wall

  2. Higher homocysteine associated with thinner cortical gray matter in 803 ADNI subjects

    Science.gov (United States)

    Madsen, Sarah K.; Rajagopalan, Priya; Joshi, Shantanu H.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor – high homocysteine levels in the blood – is known to increase risk for Alzheimer’s disease and vascular disorders. Here we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, surface area) computed from brain MRI in 803 elderly subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital and right temporal regions; and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex, and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, mild cognitive impairment, or Alzheimer’s disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels. PMID:25444607

  3. Bilateral Symmetrical Parietal Extradural Hematoma | Agrawal ...

    African Journals Online (AJOL)

    is an uncommon consequence of craniocerebral trauma, and acute symmetrical bilateral epidural hematomas are extremely rare. We discuss the technique ... A 55-year-old patient presented with history of fall of branch of tree on her head. She had loss of ... Initially, left parietal trephine craniotomy was performed and ...

  4. Auditory Short-Term Memory Capacity Correlates with Gray Matter Density in the Left Posterior STS in Cognitively Normal and Dyslexic Adults

    Science.gov (United States)

    Richardson, Fiona M.; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M.; Leff, Alex P.; Price, Cathy J.

    2011-01-01

    A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using…

  5. The contribution of the parietal lobes to speaking and writing.

    Science.gov (United States)

    Brownsett, Sonia L E; Wise, Richard J S

    2010-03-01

    The left parietal lobe has been proposed as a major language area. However, parietal cortical function is more usually considered in terms of the control of actions, contributing both to attention and cross-modal integration of external and reafferent sensory cues. We used positron emission tomography to study normal subjects while they overtly generated narratives, both spoken and written. The purpose was to identify the parietal contribution to the modality-specific sensorimotor control of communication, separate from amodal linguistic and memory processes involved in generating a narrative. The majority of left and right parietal activity was associated with the execution of writing under visual and somatosensory control irrespective of whether the output was a narrative or repetitive reproduction of a single grapheme. In contrast, action-related parietal activity during speech production was confined to primary somatosensory cortex. The only parietal area with a pattern of activity compatible with an amodal central role in communication was the ventral part of the left angular gyrus (AG). The results of this study indicate that the cognitive processing of language within the parietal lobe is confined to the AG and that the major contribution of parietal cortex to communication is in the sensorimotor control of writing.

  6. Higher homocysteine associated with thinner cortical gray matter in 803 participants from the Alzheimer's Disease Neuroimaging Initiative.

    Science.gov (United States)

    Madsen, Sarah K; Rajagopalan, Priya; Joshi, Shantanu H; Toga, Arthur W; Thompson, Paul M

    2015-01-01

    A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor, high-homocysteine levels in the blood, is known to increase risk for Alzheimer's disease and vascular disorders. Here, we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, and surface area) computed from brain magnetic resonance imaging in 803 elderly subjects from the Alzheimer's Disease Neuroimaging Initiative data set. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital, and right temporal regions and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, patients with mild cognitive impairment, or patients with Alzheimer's disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Differential Cortical Gray Matter Deficits in Adolescent- and Adult-Onset First-Episode Treatment-Naïve Patients with Schizophrenia.

    Science.gov (United States)

    Zhang, Chengcheng; Wang, Qiang; Ni, Peiyan; Deng, Wei; Li, Yinfei; Zhao, Liansheng; Ma, Xiaohong; Wang, Yingcheng; Yu, Hua; Li, Xiaojing; Zhang, Pingping; Meng, Yajing; Liang, Sugai; Li, Mingli; Li, Tao

    2017-08-31

    The current study aimed to explore age-variant trait differences of cortical gray matter volume (GMV) in a unique sample of first-episode and treatment-naïve patients with schizophrenia. A total of 158 subjects, including 26 adolescent-onset patients and 49 adult-onset patients as well as 83 age- and gender-matched controls were scanned using a 3T MRI scanner. Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL) was used to explore group differences between patients and controls in regional GMV. We found that patients with schizophrenia had decreased GMV in the left parietal postcentral region that extended to the left frontal regions, the right middle temporal gyrus, the occipital lobe and the right cerebellum posterior pyramis. Further analysis showed a distinct pattern of gray matter alterations in adolescent-onset patients compared with both healthy controls and adult-onset patients. Relative to healthy controls, adolescent-onset patients showed GMV alterations in the left parietal postcentral gyrus, parahippocampal gyrus and right cerebellum posterior pyramis, while GMV deficits in adult-onset patients were focused on the cingulo-fronto-temporal module and right occipital regions. Our study identified differential cortical gray matter deficits between adolescent- and adulthood-onset patients with schizophrenia, which suggests that the cortical abnormalities in schizophrenia are likely adjusted by the developmental community structure of the human brain.

  8. Volume changes of whole brain gray matter in pediatric patients with Tourette syndrome: evidence from voxel-based morphometry

    International Nuclear Information System (INIS)

    Liu Yue; Peng Yun; Gao Peiyi; Nie Binbin; Lu Chuankai; Zhang Liping; Ji Zhiying; Yin Guangheng; Yu Tong; Shan Baoci

    2012-01-01

    Objectives: To identify the related abnormalities of gray matter in pediatric patients with Tourette syndrome (TS) by using the optimized voxel-based morphometry (VBM). Methods: Three dimensional T 1 WI was acquired in 31 TS children (28 boys, 3 girts, mean age 8 years, range 4-15 years) and 50 age- and sex-matched controls on a 1.5 Tesla Philips scanner. Images were pre-processed and analyzed using a version of VBM 2 in SPM 2. The whole brain gray matter volume was compared between the study and control group by using t-test. Multivariate linear regression analysis was used for analyzing the correlation between the change of grey matter volume within each brain region (mm 3 ) and YGTSS score and course of disease of TS patients. Statistical analyses were performed by using SPSS 13.0. Results: Using VBM, significant increases in gray matter volumes in left superior parietal lobule, right cerebellar hemisphere and left parahippocampal gyrus were detected in TS patients, and the volume changes were 4059, 2126 and 84 mm 3 (t=3.93, 3.71, 3.58, P<0.05) respectively. Compared to the control group, decreased grey matter volumes were found in medulla and left pons, and the volume changes were 213 and 117 mm 3 (t=3.53, 3.48, P<0.05)respectively. Tic severity was not correlated with any volume changes of gray matter in brain (P>0.05, a small volume correction, KE ≥ 10 voxel). Tic course was negatively correlated with the gray matter volume of left parahippocampal gyrus (Beta =-0.391, P=0.039). Conclusions: Using VBM technique, the gray matter abnormalities can be revealed in TS patients without obvious lesions on conventional MR imaging. The increasing volume of temporal and parietal lobes and cerebellar may be an adaptive anatomical change in response to experiential demand. The gray matter volume of the parahippocampal gyrus may be used as one potential objective index for evaluating the prognosis of TS. (authors)

  9. Xenomelia: a new right parietal lobe syndrome.

    Science.gov (United States)

    McGeoch, Paul D; Brang, David; Song, Tao; Lee, Roland R; Huang, Mingxiong; Ramachandran, V S

    2011-12-01

    Damage to the right parietal lobe has long been associated with various disorders of body image. The authors have recently suggested that an unusual behavioural condition in which otherwise rational individuals desire the amputation of a healthy limb might also arise from right parietal dysfunction. Four subjects who desired the amputation of healthy legs (two right, one left and one, at first, bilateral and then left only) were recruited and underwent magnetoencephalography (MEG) scans during tactile stimulation of sites above and below the desired amputation line. Regions of interest (ROIs) in each hemisphere (superior parietal lobule (SPL), inferior parietal lobule, S1, M1, insula, premotor cortex and precuneus) were defined using FreeSurfer software. Analysis of average MEG activity across the 40-140 ms post-stimulation timeframe was carried out using an unpaired t test. This revealed significantly reduced activation only in the right SPL ROI for the subjects' affected legs when compared with both subjects' unaffected legs and that of controls. The right SPL is a cortical area that appears ideally placed to unify disparate sensory inputs to create a coherent sense of having a body. The authors propose that inadequate activation of the right SPL leads to the unnatural situation in which the sufferers can feel the limb in question being touched without it actually incorporating into their body image, with a resulting desire for amputation. The authors introduce the term 'xenomelia' as a more appropriate name than apotemnophilia or body integrity identity disorder, for what appears to be an unrecognised right parietal lobe syndrome.

  10. Abnormalities in cortical gray matter density in borderline personality disorder

    Science.gov (United States)

    Rossi, Roberta; Lanfredi, Mariangela; Pievani, Michela; Boccardi, Marina; Rasser, Paul E; Thompson, Paul M; Cavedo, Enrica; Cotelli, Maria; Rosini, Sandra; Beneduce, Rossella; Bignotti, Stefano; Magni, Laura R; Rillosi, Luciana; Magnaldi, Silvia; Cobelli, Milena; Rossi, Giuseppe; Frisoni, Giovanni B

    2015-01-01

    Background Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients‘ affective,cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Methods Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38±11; females: 16, 61%). Results BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (p<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. Conclusions BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. PMID:25561291

  11. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  12. Gray-white matter and cerebrospinal fluid volume differences in children with Specific Language Impairment and/or Reading Disability.

    Science.gov (United States)

    Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G

    2014-04-01

    We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right

  13. Development of parietal bone surrogates for parietal graft lift training

    Directory of Open Access Journals (Sweden)

    Hollensteiner Marianne

    2016-09-01

    Full Text Available Currently the surgical training of parietal bone graft techniques is performed on patients or specimens. Commercially available bone models do not deliver realistic haptic feedback. Thus customized parietal skull surrogates were developed for surgical training purposes. Two human parietal bones were used as reference. Based on the measurement of insertion forces of drilling, milling and saw procedures suitable material compositions for molding cortical and cancellous calvarial layers were found. Artificial skull caps were manufactured and tested. Additionally microtomograpy images of human and artificial parietal bones were performed to analyze outer table and diploe thicknesses. Significant differences between human and artificial skulls were not detected with the mechanical procedures tested. Highly significant differences were found for the diploe thickness values. In conclusion, an artificial bone has been created, mimicking the properties of human parietal bone thus being suitable for tabula externa graft lift training.

  14. Waves of awareness for occipital and parietal phosphenes perception.

    Science.gov (United States)

    Bagattini, Chiara; Mazzi, Chiara; Savazzi, Silvia

    2015-04-01

    Transcranial magnetic stimulation (TMS) of the occipital cortex is known to induce visual sensations, i.e. phosphenes, which appear as flashes of light in the absence of an external stimulus. Recent studies have shown that TMS can produce phosphenes also when the intraparietal sulcus (IPS) is stimulated. The main question addressed in this paper is whether parietal phosphenes are generated directly by local mechanisms or emerge through indirect activation of other visual areas. Electroencephalographic (EEG) signals were recorded while stimulating left occipital or parietal cortices inducing phosphene perception in healthy participants and in a hemianopic patient who suffered from complete destruction of the early visual cortex of the left hemisphere. Results in healthy participants showed that the onset of phosphene perception induced by occipital TMS correlated with differential cortical activity in temporal sites while the onset of phosphene perception induced by parietal TMS correlated with differential cortical activity in the stimulated parietal site. Moreover, IPS-TMS of the lesioned hemisphere of the hemianopic patient with a complete lesion to V1 showed again that the onset of phosphene perception correlated with differential cortical activity in the stimulated parietal site. The present data seem thus to suggest that temporal and parietal cortices can serve as different local early gatekeepers of perceptual awareness and that activity in the occipital cortex, although being relevant for perception in general, is not part of the neural bases of the perceptual awareness of phosphenes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Multimodal FMRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia.

    Directory of Open Access Journals (Sweden)

    Enrico Premi

    Full Text Available BACKGROUND: Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI is a promising tool to carefully describe disease signature from the earliest disease phase. OBJECTIVE: To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers to the clinical phase of the disease (GRN- related Frontotemporal Dementia. METHODS: Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo, Fractional Amplitude of Low Frequency Fluctuation (fALFF and Degree Centrality (DC were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy. RESULTS: Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found. CONCLUSIONS: GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.

  16. Executive Semantic Processing Is Underpinned by a Large-scale Neural Network: Revealing the Contribution of Left Prefrontal, Posterior Temporal, and Parietal Cortex to Controlled Retrieval and Selection Using TMS

    Science.gov (United States)

    Whitney, Carin; Kirk, Marie; O'Sullivan, Jamie; Ralph, Matthew A. Lambon; Jefferies, Elizabeth

    2012-01-01

    To understand the meanings of words and objects, we need to have knowledge about these items themselves plus executive mechanisms that compute and manipulate semantic information in a task-appropriate way. The neural basis for semantic control remains controversial. Neuroimaging studies have focused on the role of the left inferior frontal gyrus…

  17. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: a Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Camila Callegari Piccinin

    2015-01-01

    Full Text Available Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia. Neuroimaging studies have attempted to identify structural abnormalities in craniocervical dystonia but a clear pattern of alteration has not been established. We performed whole brain evaluation using voxel-based morphometry to identify patterns of gray matter changes in craniocervical dystonia.Methods: We compared 27 patients with craniocervical dystonia matched in age and gender to 54 healthy controls. Voxel-based morphometry was used to compare gray matter volumes. We created a two-sample t-test corrected for subjects’ age and we tested with a level of significance of p<0.001 and false discovery rate correction (p<0.05. Results: Voxel-based morphometry demonstrated significant reductions of gray matter using p<0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus and calcarine fissure; in the left hemisphere in the supplemementary motor area (SMA, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum , hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the false discovery rate correction. We also detected correlations between gray matter volume and age, disease duration, duration of botulinum toxin treatment and the Marsden-Fahn dystonia scale scores.Conclusions: We detected large clusters of gray matter changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function and emotional processing.

  18. Premature hair graying.

    Science.gov (United States)

    McDonough, Patrick Henry; Schwartz, Robert A

    2012-04-01

    Hair pigmentation and graying are important topics for the understanding of the physiology of aging; the differentiation of stem cells; and the mechanisms underlying disease processes such as progeroid syndromes, vitiligo, and hypothyroidism. Although hair graying, or canities, is a common process occurring in people as they age, an unknown percentage of individuals experience premature graying from familial inheritance or pathologic conditions. We review the physiology of hair pigmentation and the mechanism underlying physiologic graying, and we explore the etiology of pathologic causes of premature graying, pathologies associated with premature graying, and the limited available treatment options for hair graying.

  19. The parietal lobe and the vestibular system.

    Science.gov (United States)

    Dieterich, Marianne; Brandt, Thomas

    2018-01-01

    The vestibular cortex differs in various ways from other sensory cortices. It consists of a network of several distinct and separate temporoparietal areas. Its core region, the parietoinsular vestibular cortex (PIVC), is located in the posterior insula and retroinsular region and includes the parietal operculum. The entire network is multisensory (in particular, vestibular, visual, and somatosensory). The peripheral and central vestibular systems are bilaterally organized; there are various pontomesencephalic brainstem crossings and at least two transcallosal connections of both hemispheres, between the PIVC and the motion-sensitive visual cortex areas, which also mediate vestibular input. Structural and functional vestibular dominance characterizes the right hemisphere in right-handers and the left hemisphere in left-handers. This explains why right-hemispheric lesions in right-handers more often generally cause hemispatial neglect and the pusher syndrome, both of which involve vestibular function. Vestibular input also contributes to cognition and may determine individual lateralization of brain functions such as handedness. Bilateral organization is a major key to understanding cortical functions and disorders, for example, the visual-vestibular interaction that occurs in spatial orientation. Although the vestibular cortex is represented in both hemispheres, there is only one global percept of body position and motion. The chiefly vestibular aspects of the multiple functions and disorders of the parietal lobe dealt with in this chapter cannot be strictly separated from various multisensory vestibular functions within the entire brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Grays Harbor Paper

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, B. [Grays Harbor Paper, Hoquiam, WA (United States)

    2009-07-01

    Wood waste biomass boilers are used at Grays Harbor Paper in Hoquiam, Washington. This presentation showed that large volumes of biomass are left after a traditional clearcut. The opportunities and challenges of collecting branches, tops and stumps from this wet coastal climate were outlined. The paper described some of the low-tech methods for picking up branches, stumps and woody debris. It included several photographs of custom logging machines for timber harvest, including a brush grapple slasher, a shearer shovel, chippers, grinders, slicesaws, trucks, trailers and caterpillar log loaders for handling slash. The slash recovery program relies on innovative harvesting machines that convert scattered logging slash into bundles that can be easily collected, transported, and stored for use in existing facilities that utilize wood fiber for fuel. figs.

  1. Parietal Lobe Volume Deficits in Adolescents with Schizophrenia and Adolescents with Cannabis Use Disorders

    Science.gov (United States)

    Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin

    2012-01-01

    Objective: In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that…

  2. Sex Differences in Parietal Lobe Morphology: Relationship to Mental Rotation Performance

    Science.gov (United States)

    Koscik, Tim; O'Leary, Dan; Moser, David J.; Andreasen, Nancy C.; Nopoulos, Peg

    2009-01-01

    Structural magnetic resonance imaging (MRI) studies of the human brain have reported evidence for sexual dimorphism. In addition to sex differences in overall cerebral volume, differences in the proportion of gray matter (GM) to white matter (WM) volume have been observed, particularly in the parietal lobe. To our knowledge there have been no…

  3. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.

  4. A whole-brain gray and white matter analysis in children with 45XO karyotype Turner syndrome: voxel-based morphometry

    International Nuclear Information System (INIS)

    Zhao Qiuling; Zhang Zhixin; Cheng Pangui; Xie Sheng; Liu Xiwei; Pan Hui; Li Kang; Zhang Jiaying; Gong Gaolang

    2013-01-01

    Objective: To detect the structural changes of cerebral gray and white matter in children of monosomy Turner syndrome (TS) by using voxel-based morphometry (VBM). Methods: Nine children 45XO karyotype TS and 20 age-matched control girls were recruited in this study. Wechsler intelligence scale for children was used to obtain their intelligence quotients (IQ). High-resolution magnetic MR imaging was performed in TS children and control girls to collect the whole brain structural data. The data were analyzed by VBM based on SPM 8 to compare the volume of gray and white matter between the TS children and normal controls by using covariance analysis. Results: The IQ of TS children was 81 ± 13, and the IQ of the controls was 109 ± 16. Statistical analysis revealed significant difference of IQ between the two groups (t = -4.70, P < 0.05). Compared with normal controls, TS children showed significantly decreased volume (numbers of voxel in clusters were 631, 525, 520, t = 3.95, 3.50, 3.36, P < 0.05, FWE-corrected) in the gray matter of the right superior parietal lobule, postcentral gyrus, precuneus lobule, calcarine, cuneus cortices, as well as the left middle and inferior occipital lobe. However, the volume of the bilateral supplemental motor area and the medial superior frontal lobes, the right middle cingulum, the left superior, middle, and inferior temporal gyri were increased in the TS children compared to the controls. The left fusiform, the left parahippocampus, the left hippocampus and the left cerebellum were also enlarged in TS children (numbers of voxel in clusters were 2082, 974, 1708, 588, 579, t = 5.45, 4.59, 4.40, 4.29, 3.55, P < 0.05, FWE-corrected). White matter regions in the left postcentral gyrus and inferior parietal lobule showed significantly reduced volume (voxel number 957, t = 5.85, P < 0.05, FWE-corrected). Conclusion: Children with monosomy TS show abnormal gray and white matter volumes in some brain regions, which may be involved in the

  5. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Presidential award proceedings

    International Nuclear Information System (INIS)

    Abe, Osamu; Yamasue, Hidenori; Kasai, Kiyoto

    2008-01-01

    Previous neuroimaging studies have revealed that frontolimbic dysfunction may contribute to the pathophysiology of major depressive disorder. We used voxel-based analysis to simultaneously elucidate regional changes in gray/white matter volume, mean diffusivity (MD), and fractional anisotropy (FA) in the central nervous system of patients with unipolar major depression. We studied 21 right-handed patients and 42 age- and gender-matched right-handed normal subjects without central nervous system disorders. All image processing and statistical analyses were performed using SPM5 software. Local areas showing significant gray matter volume reduction in depressive patients compared with normal controls were observed in the right parahippocampal gyrus, hippocampus, bilateral middle frontal gyri, bilateral anterior cingulate cortices, left parietal and occipital lobes, and right superior temporal gyrus. Local areas showing increased mean diffusivity in depressive patients were observed in the bilateral parahippocampal gyri, hippocampus, pons, cerebellum, left frontal and temporal lobes, and right frontal lobe. There was no significant difference between the 2 groups for fractional anisotropy and white matter volume in the entire brain. Although there was no local area in which FA and MD were significantly correlated with disease severity, FA tended to correlate negatively with depression days (total accumulated days in depressive state) in the right anterior cingulate and the left frontal white matter (FDR-corrected P=0.055 for both areas). These results suggest that the frontolimbic neural circuit may play an important role in the neuropathology of patients with major depression. (author)

  6. Encefalomenigocele atrésico parietal Parietal atresic encephalomeningocele

    Directory of Open Access Journals (Sweden)

    Liliana Rivera Oliva

    2011-09-01

    Full Text Available El encefalocele es una anomalía congénita rara, en la que una porción del encéfalo protruye a través de un orificio craneal (evaginación, generalmente situado en la línea media. Clínicamente se caracteriza por una masa epicraneal, de consistencia blanda, muchas veces acompañada de trastornos psicomotores, convulsiones y trastornos de la visión. Se presenta el caso de un recién nacido con diagnóstico de encefalomeningocele atrésico parietal, intervenido quirúrgicamente y con evolución satisfactoria.The encephalocele is a uncommon congenital anomaly where a portion of encephalon protrudes through a cranial orifice (evagination, generally located in the middle line. Clinically, it is characterized by a soft epicranial mass often accompanied or psychomotor disorders, convulsions and vision disorders. This is the case of a newborn diagnosed with parietal atresic encephalomeningocele operated on with a satisfactory evolution.

  7. Sex-specific Gray Matter Volume Differences in Females with Developmental Dyslexia

    Science.gov (United States)

    Evans, Tanya M.; Flowers, D. Lynn; Napoliello, Eileen M.; Eden, Guinevere F.

    2013-01-01

    Developmental dyslexia, characterized by unexpected reading difficulty, is associated with anomalous brain anatomy and function. Previous structural neuroimaging studies have converged in reports of less gray matter volume (GMV) in dyslexics within left hemisphere regions known to subserve language. Due to the higher prevalence of dyslexia in males, these studies are heavily weighted towards males, raising the question whether studies of dyslexia in females only and using the same techniques, would generate the same findings. In a replication study of men we obtained the same findings of less GMV in dyslexics in left middle/inferior temporal gyri and right postcentral/supramarginal gyri as reported in the literature. However, comparisons in women with and without dyslexia did not yield left hemisphere differences and instead we found less GMV in right precuneus and paracentral lobule/medial frontal gyrus. In boys, we found less GMV in left inferior parietal cortex (supramarginal/angular gyri), again consistent with previous work, while in girls differences were within right central sulcus, spanning adjacent gyri, and left primary visual cortex. Our investigation into anatomical variants in dyslexia replicates existing studies in males, but at the same time shows that dyslexia in females is not characterized by involvement of left hemisphere language regions but rather early sensory and motor cortices (i.e. motor and premotor cortex, primary visual cortex). Our findings suggest that models on the brain basis of dyslexia, primarily developed through the study of males, may not be appropriate for females and suggest a need for more sex-specific investigations into dyslexia. PMID:23625146

  8. The Relation between Gray Matter Morphology and Divergent Thinking in Adolescents and Young Adults

    Science.gov (United States)

    Zanolie, Kiki; Kleibeuker, Sietske W.; Crone, Eveline A.

    2014-01-01

    Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15–17 and 20 young adults aged 25–30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted. PMID:25514366

  9. The relation between gray matter morphology and divergent thinking in adolescents and young adults.

    Directory of Open Access Journals (Sweden)

    Janna Cousijn

    Full Text Available Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task and visuo-spatial (CAT; creative ability test domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15-17 and 20 young adults aged 25-30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted.

  10. The relation between gray matter morphology and divergent thinking in adolescents and young adults.

    Science.gov (United States)

    Cousijn, Janna; Koolschijn, P Cédric M P; Zanolie, Kiki; Kleibeuker, Sietske W; Crone, Eveline A

    2014-01-01

    Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15-17 and 20 young adults aged 25-30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted.

  11. Henry Gray, plagiarist.

    Science.gov (United States)

    Richardson, Ruth

    2016-03-01

    The first edition of Anatomy Descriptive and Surgical (1858) was greeted with accolades, but also provoked serious controversy concerning Henry Gray's failure to acknowledge the work of earlier anatomists. A review in the Medical Times (1859) accused Gray of intellectual theft. The journal took the unusual step of substantiating its indictment by publishing twenty parallel texts from Gray and from a pre-existing textbook, Quain's Anatomy. At the recent "Vesalius Continuum" conference in Zakynthos, Greece (2014) Professor Brion Benninger disputed the theft by announcing from the floor the results of a computer analysis of both texts, which he reported exonerated Gray by revealing no evidence of plagiarism. The analysis has not been forthcoming, however, despite requests. Here the historian of Gray's Anatomy supplements the argument set out in the Medical Times 150 years ago with data suggesting unwelcome personality traits in Henry Gray, and demonstrating the utility of others' work to his professional advancement. Fair dealing in the world of anatomy and indeed the genuineness of the lustre of medical fame are important matters, but whether quantitative evidence has anything to add to the discussion concerning Gray's probity can be assessed only if Benninger makes public his computer analysis. © 2015 Wiley Periodicals, Inc.

  12. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study.

    Science.gov (United States)

    Tanaka, Satoshi; Ikeda, Hanako; Kasahara, Kazumi; Kato, Ryo; Tsubomi, Hiroyuki; Sugawara, Sho K; Mori, Makoto; Hanakawa, Takashi; Sadato, Norihiro; Honda, Manabu; Watanabe, Katsumi

    2013-01-01

    Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.

  13. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  14. The Predictive Nature of Pseudoneglect for Visual Neglect: Evidence from Parietal Theta Burst Stimulation.

    Directory of Open Access Journals (Sweden)

    Alice Varnava

    Full Text Available Following parietal damage most patients with visual neglect bisect horizontal lines significantly away from the true centre. Neurologically intact individuals also misbisect lines; a phenomenon referred to as 'pseudoneglect'. In this study we examined the relationship between neglect and pseudoneglect by testing how patterns of pre-existing visuospatial asymmetry predict asymmetry caused by parietal interference. Twenty-four participants completed line bisection and Landmark tasks before receiving continuous theta burst stimulation to the left or right angular gyrus. Results showed that a pre-existing pattern of left pseudoneglect (i.e. right bias, but not right pseudoneglect, predicts left neglect-like behaviour during line bisection following right parietal cTBS. This correlation is consistent with the view that neglect and pseudoneglect arise via a common or linked neural mechanism.

  15. Abnormal parietal function in conversion paresis.

    Directory of Open Access Journals (Sweden)

    Marije van Beilen

    Full Text Available The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms.

  16. Abnormal Parietal Function in Conversion Paresis

    Science.gov (United States)

    van Beilen, Marije; de Jong, Bauke M.; Gieteling, Esther W.; Renken, Remco; Leenders, Klaus L.

    2011-01-01

    The etiology of medically unexplained symptoms such as conversion disorder is poorly understood. This is partly because the interpretation of neuroimaging results in conversion paresis has been complicated by the use of different control groups, tasks and statistical comparisons. The present study includes these different aspects in a single data set. In our study we included both normal controls and feigners to control for conversion paresis. We studied both movement execution and imagery, and we contrasted both within-group and between-group activation. Moreover, to reveal hemisphere-specific effects that have not been reported before, we performed these analyses using both flipped and unflipped data. This approach resulted in the identification of abnormal parietal activation which was specific for conversion paresis patients. Patients also showed reduced activity in the prefrontal cortex, supramarginal gyrus and precuneus, including hemisphere-specific activation that is lateralized in the same hemisphere, regardless of right- or left-sided paresis. We propose that these regions are candidates for an interface between psychological mechanisms and disturbed higher-order motor control. Our study presents an integrative neurophysiological view of the mechanisms that contribute to the etiology of this puzzling psychological disorder, which can be further investigated with other types of conversion symptoms. PMID:22039428

  17. The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Hongmei eWang

    2015-03-01

    Full Text Available Objective: Internet gaming disorder (IGD has been investigated by many behavioral and neuroimaging studies, for it has became one of the main behavior disorders among adolescents. However, few studies focused on the relationship between alteration of gray matter volume (GMV and cognitive control feature in IGD adolescents. Methods: Twenty-eight participants with IAD and twenty-eight healthy age and gender matched controls participated in the study. Brain morphology of adolescents with IGD and healthy controls was investigated using an optimized voxel-based morphometry (VBM technique. Cognitive control performances were measured by Stroop task, and correlation analysis was performed between brain structural change and behavioral performance in IGD group. Results: The results showed that GMV of the bilateral anterior cingulate cortex (ACC, precuneus, supplementary motor area (SMA, superior parietal cortex, left dorsal lateral prefrontal cortex (DLPFC, left insula, and bilateral cerebellum decreased in the IGD participants compared with healthy controls. Moreover, GMV of the ACC was negatively correlated with the incongruent response errors of Stroop task in IGD group. Conclusion: Our results suggest that the alteration of GMV is associated with the performance change of cognitive control in adolescents with IGD, which indicating substantial brain image effects induced by IGD.

  18. Visuo-spatial construction in patients with frontal and parietal lobe lesions

    Directory of Open Access Journals (Sweden)

    Himani Kashyap

    2011-04-01

    Full Text Available Visuospatial construction, traditionally viewed as a putative parietal function, also requires sustained attention, planning, organization strategies and error correction, and hence frontal lobe mediation. The relative contributions of the frontal and parietal lobes are poorly understood. To examine the contributions of parietal, frontal lobes, as well as right and left cerebral hemispheres to visuospatial construction. The Stick Construction Test for two-dimensional construction and the Block Construction Test for three-dimensional construction were administered pre-surgically to patients with lesions in the parietal lobe (n =9 and the frontal lobe (n=11, along with normal control subjects (n =20 matched to the patients on age (+/- 3 years, gender, education (+/- 3 years and handedness. The patients were significantly slower than the controls on both two-dimensional and three-dimensional tests. Patients with parietal lesions were slower than those with frontal lesions on the test of three-dimensional construction. Within each lobe patients with right and left sided lesions did not differ significantly. It appears that tests of three-dimensional construction might be most sensitive to visuospatial construction deficits. Visuospatial construction involves the mediation of both frontal and parietal lobes. The function does not appear to be lateralized. The networks arising from the parieto-occipital areas and projecting to the frontal cortices (e.g., occipito-frontal fasciculus may be the basis of the mediation of both lobes in visuospatial construction. The present findings need replication from studies with larger sample sizes.

  19. Premature graying of hair.

    Science.gov (United States)

    Pandhi, Deepika; Khanna, Deepshikha

    2013-01-01

    Premature graying is an important cause of low self-esteem, often interfering with socio-cultural adjustment. The onset and progression of graying or canities correlate very closely with chronological aging, and occur in varying degrees in all individuals eventually, regardless of gender or race. Premature canities may occur alone as an autosomal dominant condition or in association with various autoimmune or premature aging syndromes. It needs to be differentiated from various genetic hypomelanotic hair disorders. Reduction in melanogenically active melanocytes in the hair bulb of gray anagen hair follicles with resultant pigment loss is central to the pathogenesis of graying. Defective melanosomal transfers to cortical keratinocytes and melanin incontinence due to melanocyte degeneration are also believed to contribute to this. The white color of canities is an optical effect; the reflection of incident light masks the intrinsic pale yellow color of hair keratin. Full range of color from normal to white can be seen both along individual hair and from hair to hair, and admixture of pigmented and white hair is believed to give the appearance of gray. Graying of hair is usually progressive and permanent, but there are occasional reports of spontaneous repigmentation of gray hair. Studies evaluating the association of canities with osteopenia and cardiovascular disease have revealed mixed results. Despite the extensive molecular research being carried out to understand the pathogenesis of canities, there is paucity of effective evidence-based treatment options. Reports of repigmentation of previously white hair following certain inflammatory processes and use of drugs have suggested the possibility of cytokine-induced recruitment of outer sheath melanocytes to the hair bulb and rekindled the hope for finding an effective drug for treatment of premature canities. In the end, camouflage techniques using hair colorants are outlined.

  20. Premature graying of hair

    Directory of Open Access Journals (Sweden)

    Deepika Pandhi

    2013-01-01

    Full Text Available Premature graying is an important cause of low self-esteem, often interfering with socio-cultural adjustment. The onset and progression of graying or canities correlate very closely with chronological aging, and occur in varying degrees in all individuals eventually, regardless of gender or race. Premature canities may occur alone as an autosomal dominant condition or in association with various autoimmune or premature aging syndromes. It needs to be differentiated from various genetic hypomelanotic hair disorders. Reduction in melanogenically active melanocytes in the hair bulb of gray anagen hair follicles with resultant pigment loss is central to the pathogenesis of graying. Defective melanosomal transfers to cortical keratinocytes and melanin incontinence due to melanocyte degeneration are also believed to contribute to this. The white color of canities is an optical effect; the reflection of incident light masks the intrinsic pale yellow color of hair keratin. Full range of color from normal to white can be seen both along individual hair and from hair to hair, and admixture of pigmented and white hair is believed to give the appearance of gray. Graying of hair is usually progressive and permanent, but there are occasional reports of spontaneous repigmentation of gray hair. Studies evaluating the association of canities with osteopenia and cardiovascular disease have revealed mixed results. Despite the extensive molecular research being carried out to understand the pathogenesis of canities, there is paucity of effective evidence-based treatment options. Reports of repigmentation of previously white hair following certain inflammatory processes and use of drugs have suggested the possibility of cytokine-induced recruitment of outer sheath melanocytes to the hair bulb and rekindled the hope for finding an effective drug for treatment of premature canities. In the end, camouflage techniques using hair colorants are outlined.

  1. Neural Correlates for Apathy: Frontal-Prefrontal and Parietal Cortical- Subcortical Circuits

    Science.gov (United States)

    Moretti, Rita; Signori, Riccardo

    2016-01-01

    Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional involvement; it is an important and heavy-burden clinical condition which strongly impacts in everyday life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC) and basal ganglia; “emotional affective” apathy may be related to the orbitomedial PFC and ventral striatum; “cognitive apathy” may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of “autoactivation” may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to gray matter atrophy in the anterior cingulate (ACC) and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies, and a reduced speedness in action decision, major responsible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control. We will discuss the importance of these circuits in different pathologies

  2. Parietal podocytes in normal human glomeruli.

    Science.gov (United States)

    Bariety, Jean; Mandet, Chantal; Hill, Gary S; Bruneval, Patrick

    2006-10-01

    Although parietal podocytes along the Bowman's capsule have been described by electron microscopy in the normal human kidney, their molecular composition remains unknown. Ten human normal kidneys that were removed for cancer were assessed for the presence and the extent of parietal podocytes along the Bowman's capsule. The expression of podocyte-specific proteins (podocalyxin, glomerular epithelial protein-1, podocin, nephrin, synaptopodin, and alpha-actinin-4), podocyte synthesized proteins (vascular endothelial growth factor and novH), transcription factors (WT1 and PAX2), cyclin-dependent kinase inhibitor p57, and intermediate filaments (cytokeratins and vimentin) was tested. In addition, six normal fetal kidneys were studied to track the ontogeny of parietal podocytes. The podocyte protein labeling detected parietal podocytes in all of the kidneys, was found in 76.6% on average of Bowman's capsule sections, and was prominent at the vascular pole. WT1 and p57 were expressed in some parietal cells, whereas PAX2 was present in all or most of them, so some parietal cells coexpressed WT1 and PAX2. Furthermore, parietal podocytes coexpressed WT1 and podocyte proteins. Cytokeratin-positive cells covered a variable part of the capsule and did not express podocyte proteins. Tuft-capsular podocyte bridges were present in 15.5 +/- 3.7% of the glomerular sections. Parietal podocytes often covered the juxtaglomerular arterioles and were present within the extraglomerular mesangium. Parietal podocytes were present in fetal kidneys. Parietal podocytes that express the same epitopes as visceral podocytes do exist along Bowman's capsule in the normal adult kidney. They are a constitutive cell type of the Bowman's capsule. Therefore, their role in physiology and pathology should be investigated.

  3. A voxel-based morphometry study of regional gray and white matter correlate of self-disclosure.

    Science.gov (United States)

    Wang, ShanShan; Wei, DongTao; Li, WenFu; Li, HaiJiang; Wang, KangCheng; Xue, Song; Zhang, Qinglin; Qiu, Jiang

    2014-01-01

    Self-disclosure is an important performance in human social communication. Generally, an individual is likely to have a good physical and mental health if he is prone to self-disclosure under stressful life events. However, as for now, little is known about the neural structure associated with self-disclosure. Therefore, in this study, we used voxel-based morphometry to explore regional gray matter volume (rGMV) and white matter volume (rWMV) associated with self-disclosure measured by the Jourard Self-disclosure Questionnaire in a large sample of college students. Results showed that individual self-disclosure was significantly and positively associated with rGMV of the left postcentral gyrus, which might be related to strengthen individual's ability of body feeling; while self-disclosure was significantly and negatively associated with rGMV of the right orbitofrontal cortex (OFC), which might be involved in increased positive emotion experience seeking (intrinsically rewarding). In addition, individual self-disclosure was also associated with smaller rWMV in the right inferior parietal lobule (IPL). These findings suggested a biological basis for individual self-disclosure, distributed across different gray and white matter areas of the brain.

  4. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available The aim of the study was to evaluate the value of assessing white matter integrity using diffusion tensor imaging (DTI for classification of mild cognitive impairment (MCI and prediction of cognitive impairments in comparison to brain atrophy measurements using structural MRI. Fifty-one patients with MCI and 66 cognitive normal controls (CN underwent DTI and T1-weighted structural MRI. DTI measures included fractional anisotropy (FA and radial diffusivity (DR from 20 predetermined regions-of-interest (ROIs in the commissural, limbic and association tracts, which are thought to be involved in Alzheimer's disease; measures of regional gray matter (GM volume included 21 ROIs in medial temporal lobe, parietal cortex, and subcortical regions. Significant group differences between MCI and CN were detected by each MRI modality: In particular, reduced FA was found in splenium, left isthmus cingulum and fornix; increased DR was found in splenium, left isthmus cingulum and bilateral uncinate fasciculi; reduced GM volume was found in bilateral hippocampi, left entorhinal cortex, right amygdala and bilateral thalamus; and thinner cortex was found in the left entorhinal cortex. Group classifications based on FA or DR was significant and better than classifications based on GM volume. Using either DR or FA together with GM volume improved classification accuracy. Furthermore, all three measures, FA, DR and GM volume were similarly accurate in predicting cognitive performance in MCI patients. Taken together, the results imply that DTI measures are as accurate as measures of GM volume in detecting brain alterations that are associated with cognitive impairment. Furthermore, a combination of DTI and structural MRI measurements improves classification accuracy.

  5. Cyber Gray Space Deterrence

    Science.gov (United States)

    2017-12-21

    formulate deterrent threats. Avoiding Symbolic Triggers Cyberattackers regularly strike in ways that circum- vent key psychological, cultural , and...display. cfm?pubID=1303>; Frank Hoffman, “The Contemporary Spectrum of Conflict: Protracted, Gray Zone, Ambiguous, and Hybrid Modes of War,” Heritage

  6. Genetics Home Reference: enlarged parietal foramina

    Science.gov (United States)

    ... navigation Home Page Search Home Health Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Share: Email ... parietal foramina: association with cerebral venous and cortical anomalies. Neurology. 2000 Mar 14;54(5):1175-8. ...

  7. Delamination wear mechanism in gray cast irons

    International Nuclear Information System (INIS)

    Salehi, M.

    2000-01-01

    An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a process of plastic deformation at the subsurface, crack nucleation, and crack growth leading to formation of plate like debris and therefore the delamination theory applies. No evidence of adhesion was observed. This could be due to formation of oxides on the wear surface which prevent adhesion. channel type chromium plating ''picked'' up cast iron from the counter-body surfaces by mechanically trapping cast iron debris on and within the cracks. The removal of the plated chromium left a pitted surface on the cast iron

  8. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  9. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...... excitability and PPC–M1 connectivity and is a new approach to modify motor excitability and sensorimotor interaction....

  10. Voxel-based gray and white matter morphometry correlates of hallucinations in schizophrenia: The superior temporal gyrus does not stand alone.

    Science.gov (United States)

    van Tol, Marie-José; van der Meer, Lisette; Bruggeman, Richard; Modinos, Gemma; Knegtering, Henderikus; Aleman, André

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia (SZ) have been proposed to result from abnormal local, interregional and interhemispheric integration of brain signals in regions involved in language production and perception. This abnormal functional integration may find its base in morphological abnormalities. Structurally, AVHs have been frequently linked to abnormal morphology of the superior temporal gyrus (STG), but only a few studies investigated the relation of hallucination presence with both whole-brain gray matter (GM) and white matter (WM) morphometry. Using a unified voxel-based morphometry-DARTEL approach, we investigated correlates of AVH presence in 51 schizophrenia patients (20 non-hallucinating [SZ -], 31 hallucinating [SZ +]), and included 51 age and sex matched healthy participants. Effects are reported at p gyrus, and higher WM volume of the left postcentral and superior parietal lobule than controls. Finally, volume of the putamen was lower in SZ + compared to SZ -. No effects on corpus callosum morphometry were observed. Delusion severity, general positive and negative symptomatology illness duration, and medication status could not explain the results. Results suggest that STG GM abnormalities underlie the general susceptibility to experience psychotic symptoms and that additional abnormalities in a network of medial temporal, ventrolateral, putaminal, and parietal regions related to verbal memory and speech production may specifically increase the likelihood of experiencing AVH. Future studies should clarify the meaning of morphometry abnormalities for functional interregional communication.

  11. Regional Gray Matter Volume Deficits in Adolescents with First-Episode Psychosis

    Science.gov (United States)

    Janssen, Joost; Parellada, Mara; Moreno, Dolores; Graell, Montserrat; Fraguas, David; Zabala, Arantzazu; Vazquez, Veronica Garcia; Desco, Manuel; Arango, Celso

    2008-01-01

    The regional gray matter volumes of adolescents with first-episode psychosis are compared with those of a control group. Magnetic resonance imaging was conducted on 70 patients with early onset FEP and on 51 individuals without FEP. Findings revealed that volume deficits in the left medial frontal gray matter were common in individuals with…

  12. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  13. Mediastinal Gray Zone Lymphoma.

    Science.gov (United States)

    Bhardwaj, Mukesh; Saha, Rajat; Misra, Deepti Shuklia; Malhotra, Veena

    2015-01-01

    A 50-year-old male presented with cough and breathlessness. A positron emissoin tomography scan revealed FDG (Fluorodeoxyglucose) avid mediastinal mass. Tru-cut biopsy showed fibrotic stromal tissue with cellular infiltrate consisting of abnormal lymphoid cells and few large cells with smudged nucleus. Immunohistochemistry revealed diffuse positivity with CD20, focal positivity for CD30 and rare CD15 positive cells. Histological picture and immune profile showed overlaping features of non-Hodgkin's as well as Hodgkin's lymphoma. A diagnosis of mediastinal gray zone lymphoma was made. The patient showed a complete metabolic response to six cycles of chemotherapy.

  14. Right parietal cortex mediates recognition memory for melodies.

    Science.gov (United States)

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Percent wall thickness evaluated by Gd-DTPA enhanced cine MRI as an indicator of local parietal movement in hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masaharu [Tokyo Medical Coll. (Japan)

    1998-11-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease, the basic pathology of which consists of a decrease in left ventricular dilation compliance due to uneven hypertrophy of the left ventricular wall. Magnetic resonance imaging (MRI) is useful in monitoring uneven parietal hypertrophy and kinetics in HCM patients. The present study was undertaken in 47 HCM patients who showed asymmetrical septal hypertrophy to determine if percent thickness can be an indicator of left ventricular local movement using cine MRI. Longest and shortest axis images were acquired by the ECG synchronization method using a 1.5 T MR imager. Cardiac function was analyzed based on longest axis cine images, and telediastolic and telesystolic parietal thickness were measured based on shorter axis cine images at the papillary muscle level. Parietal movement index and percent thickness were used as indicators of local parietal movement. The correlation between these indicators and parietal thickness was evaluated. The percent thickness changed at an earlier stage of hypertrophy than the parietal movement index, thus it is thought to be useful in detecting left ventricular parietal movement disorders at an early stage of HCM. (author)

  16. Representation of Numerosity in Posterior Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie D Roitman

    2012-05-01

    Full Text Available Humans and animals appear to share a similar representation of number as an analog magnitude on an internal, subjective scale. Neurological and neurophysiological data suggest that posterior parietal cortex (PPC is a critical component of the circuits that form the basis of numerical abilities in humans. Patients with parietal lesions are impaired in their ability to access the deep meaning of numbers. Acalculiac patients with inferior parietal damage often have difficulty performing arithmetic (2+4? or number bisection (what is between 3 and 5? tasks, but are able to recite multiplication tables and read or write numerals. Functional imaging studies of neurologically intact humans performing subtraction, number comparison, and nonverbal magnitude comparison tasks show activity in areas within the intraparietal sulcus. Taken together, clinical cases and imaging studies support a critical role for parietal cortex in the mental manipulation of numerical quantities. Further, responses of single PPC neurons in non-human primates are sensitive to the numerosity of visual stimuli independent of low-level stimulus qualities. When monkeys are trained to make explicit judgments about the numerical value of such stimuli, PPC neurons encode their cardinal numerical value; without such training PPC neurons appear to encode numerical magnitude in an analog fashion. Here we suggest that the spatial and integrative properties of PPC neurons contribute to their critical role in numerical cognition.

  17. Benign Osteoblastoma Located in the Parietal Bone

    OpenAIRE

    Lee, Yong Gun; Cho, Chang Won

    2010-01-01

    Benign osteoblastoma is an uncommon primary bone tumor, extremely rare in calvarium. We present a case of a 25-year-old female with an osteoblastoma of parietal bone which was totally resected. The authors discussed the clinical presentation, radiographic finding, differential diagnosis and management of the benign calvarial osteoblastoma with a review of the literature.

  18. Dynamic social adaptation of motion-related neurons in primate parietal cortex.

    Directory of Open Access Journals (Sweden)

    Naotaka Fujii

    Full Text Available Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys-specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network.

  19. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study

    International Nuclear Information System (INIS)

    Lv, Xiao-Fei; Zheng, Xiao-Li; Zhang, Wei-Dong; Liu, Li-Zhi; Zhang, You-Ming; Chen, Ming-Yuan; Li, Li

    2014-01-01

    Evidence is accumulating that temporal lobe radiation necrosis in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT) could involve gray matter (GM). The purpose of the study was to assess the radiation-induced GM volume differences between NPC patients who had and had not received RT and the effect of time after RT on GM volume differences in those patients who had received RT. We used magnetic resonance imaging voxel-based morphometry (VBM) to assess differences in GM volume between 30 NPC patients with normal-appearing whole-brain GM after RT and 15 control patients with newly diagnosed but not yet medically treated NPC. Correlation analyses were used to investigate the relationship between GM volume changes and time after RT. Patients who had received RT had GM volume decreases in the bilateral superior temporal gyrus, left middle temporal gyrus, right fusiform gyrus, right precentral gyrus, and right inferior parietal lobule (p 100 voxels). Moreover, the correlation analysis indicated that regional GM volume loss in the left superior temporal gyrus, left middle temporal gyrus, and right fusiform gyrus were negatively related to the mean dose to the ipsilateral temporal lobe, respectively. These results indicate that GM volume deficits in bilateral temporal lobes in patients who had received RT might be radiation-induced. Our findings might provide new insight into the pathogenesis of radiation-induced structural damage in normal-appearing brain tissue. Yet this is an exploratory study, whose findings should therefore be taken with caution. (orig.)

  20. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers.

    Science.gov (United States)

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F

    2012-04-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention.

    Science.gov (United States)

    Wu, Yan; Wang, Jiaojian; Zhang, Yun; Zheng, Dingchen; Zhang, Jinfeng; Rong, Menglin; Wu, Huawang; Wang, Yinyan; Zhou, Ke; Jiang, Tianzi

    2016-01-01

    The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC) plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL) in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS) and diffusion magnetic resonance imaging (MRI) techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. Transcranial magnetic stimulation (TMS) results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus (MFG), with the ipsilateral inferior frontal gyrus (IFG), and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network.

  2. Why Does Hair Turn Gray?

    Science.gov (United States)

    ... out, but people with naturally lighter hair are just as likely to go gray. From the time a person notices a few gray hairs, it may take more than 10 years for all of that person's hair to turn ... really believe that this happens. Just in case, try not to freak out your ...

  3. Bilateral fronto-parietal integrity in young chronic cigarette smokers: a diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Yanhui Liao

    Full Text Available Cigarette smoking continues to be the leading cause of preventable morbidity and mortality in China and other countries. Previous studies have demonstrated gray matter loss in chronic smokers. However, only a few studies assessed the changes of white matter integrity in this group. Based on those previous reports of alterations in white matter integrity in smokers, the aim of this study was to examine the alteration of white matter integrity in a large, well-matched sample of chronic smokers and non-smokers.Using in vivo diffusion tensor imaging (DTI to measure the differences of whole-brain white matter integrity between 44 chronic smoking subjects (mean age, 28.0±5.6 years and 44 healthy age- and sex-matched comparison non-smoking volunteers (mean age, 26.3±5.8 years. DTI was performed on a 3-Tesla Siemens scanner (Allegra; Siemens Medical System. The data revealed that smokers had higher fractional anisotropy (FA than healthy non-smokers in almost symmetrically bilateral fronto-parietal tracts consisting of a major white matter pathway, the superior longitudinal fasciculus (SLF.We found the almost symmetrically bilateral fronto-parietal whiter matter changes in a relatively large sample of chronic smokers. These findings support the hypothesis that chronic cigarette smoking involves alterations of bilateral fronto-parietal connectivity.

  4. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.

    Science.gov (United States)

    Sheremata, Summer L; Somers, David C; Shomstein, Sarah

    2018-02-07

    Visual short-term memory (VSTM) and attention are distinct yet interrelated processes. While both require selection of information across the visual field, memory additionally requires the maintenance of information across time and distraction. VSTM recruits areas within human (male and female) dorsal and ventral parietal cortex that are also implicated in spatial selection; therefore, it is important to determine whether overlapping activation might reflect shared attentional demands. Here, identical stimuli and controlled sustained attention across both tasks were used to ask whether fMRI signal amplitude, functional connectivity, and contralateral visual field bias reflect memory-specific task demands. While attention and VSTM activated similar cortical areas, BOLD amplitude and functional connectivity in parietal cortex differentiated the two tasks. Relative to attention, VSTM increased BOLD amplitude in dorsal parietal cortex and decreased BOLD amplitude in the angular gyrus. Additionally, the tasks differentially modulated parietal functional connectivity. Contrasting VSTM and attention, intraparietal sulcus (IPS) 1-2 were more strongly connected with anterior frontoparietal areas and more weakly connected with posterior regions. This divergence between tasks demonstrates that parietal activation reflects memory-specific functions and consequently modulates functional connectivity across the cortex. In contrast, both tasks demonstrated hemispheric asymmetries for spatial processing, exhibiting a stronger contralateral visual field bias in the left versus the right hemisphere across tasks, suggesting that asymmetries are characteristic of a shared selection process in IPS. These results demonstrate that parietal activity and patterns of functional connectivity distinguish VSTM from more general attention processes, establishing a central role of the parietal cortex in maintaining visual information. SIGNIFICANCE STATEMENT Visual short-term memory (VSTM) and

  5. Different regional gray matter loss in recent onset PTSD and non PTSD after a single prolonged trauma exposure.

    Directory of Open Access Journals (Sweden)

    Yunchun Chen

    Full Text Available OBJECTIVE: Gray matter loss in the limbic structures was found in recent onset post traumatic stress disorder (PTSD patients. In the present study, we measured regional gray matter volume in trauma survivors to verify the hypothesis that stress may cause different regional gray matter loss in trauma survivors with and without recent onset PTSD. METHOD: High resolution T1-weighted magnetic resonance imaging (MRI were obtained from coal mine flood disaster survivors with (n = 10 and without (n = 10 recent onset PTSD and 20 no trauma exposed normal controls. The voxel-based morphometry (VBM method was used to measure the regional gray matter volume in three groups, the correlations of PTSD symptom severities with the gray matter volume in trauma survivors were also analyzed by multiple regression. RESULTS: Compared with normal controls, recent onset PTSD patients had smaller gray matter volume in left dorsal anterior cingulate cortex (ACC, and non PTSD subjects had smaller gray matter volume in the right pulvinar and left pallidum. The gray matter volume of the trauma survivors correlated negatively with CAPS scores in the right frontal lobe, left anterior and middle cingulate cortex, bilateral cuneus cortex, right middle occipital lobe, while in the recent onset PTSD, the gray matter volume correlated negatively with CAPS scores in bilateral superior medial frontal lobe and right ACC. CONCLUSION: The present study identified gray matter loss in different regions in recent onset PTSD and non PTSD after a single prolonged trauma exposure. The gray matter volume of left dorsal ACC associated with the development of PTSD, while the gray matter volume of right pulvinar and left pallidum associated with the response to the severe stress. The atrophy of the frontal and limbic cortices predicts the symptom severities of the PTSD.

  6. The mirror mechanism in the parietal lobe.

    Science.gov (United States)

    Rizzolatti, Giacomo; Rozzi, Stefano

    2018-01-01

    The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Atrophy of the Parietal Lobe in Preclinical Dementia

    Science.gov (United States)

    Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle

    2011-01-01

    Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…

  8. Information fusion for the Gray Zone

    Science.gov (United States)

    Fenstermacher, Laurie

    2016-05-01

    United States Special Operations Command (SOCOM) recently published a white paper describing the "Gray Zone", security challenges characterized by "ambiguity about the nature of the conflict, opacity of the parties involved…competitive interactions among and within state and non-state actors that fall between the traditional war and peace duality."1 Ambiguity and related uncertainty about actors, situations, relationships, and intent require new approaches to information collection, processing and fusion. General Votel, the current SOCOM commander, during a recent speech on "Operating in the Gray Zone" emphasized that it would be important to get left of the next crises and stated emphatically, "to do that we must understand the Human Domain."2 This understanding of the human domain must come from making meaning based on different perspectives, including the "emic" or first person/participant and "etic" or third person/observer perspectives. Much of the information currently collected and processed is etic. Incorporation and fusion with the emic perspective enables forecasting of behaviors/events and provides context for etic information (e.g., video).3 Gray zone challenges are perspective-dependent; for example, the conflict in Ukraine is interpreted quite differently by Russia, the US and Ukraine. Russia views it as war, necessitating aggressive action, the US views it as a security issue best dealt with by economic sanctions and diplomacy and the Ukraine views it as a threat to its sovereignty.4 General Otto in the Air Force ISR 2023 vision document stated that Air Force ISR is needed to anticipate strategic surprise.5 Anticipatory analysis enabling getting left of a crisis inherently requires a greater focus on information sources that elucidate the human environment as well as new methods that elucidate not only the "who's" and "what's", but the "how's and "why's," extracting features and/or patterns and subtle cues useful for forecasting behaviors and

  9. Right Fronto-Parietal Dysfunction in Children with ADHD and Developmental Dyslexia as Determined by Line Bisection Judgements

    Science.gov (United States)

    Waldie, Karen E.; Hausmann, Markus

    2010-01-01

    Visual line bisection is a reliable and valid laterality task that is typically used with patients with acquired brain damage to assess right hemisphere functioning. Neurologically normal individuals tend to bisect lines to the left of the objective midline whereas those with right parietal damage bisect lines to the right. In this study children…

  10. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    Science.gov (United States)

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood.

  11. Clinical and Morphological Aspects of Gray Matter Heterotopia Type Developmental Malformations

    International Nuclear Information System (INIS)

    Zając-Mnich, Monika; Kostkiewicz, Agnieszka; Guz, Wiesław; Dziurzyńska-Białek, Ewa; Solińska, Anna; Stopa, Joanna; Kucharska-Miąsik, Iwona

    2014-01-01

    Gray matter heterotopia (GMH) is a malformation of the central nervous system characterized by interruption of normal neuroblasts migration between the 7 th and 16 th week of fetal development. The aim of the study was the analysis of clinical symptoms, prevalence rate and the most common concurrent central nervous system (CNS) developmental disorders as well as assessment of characteristic morphological changes of gray matter heterotopia in children hospitalized in our institution between the year 2001 and 2012. We performed a retrospective analysis of patients’ data who were hospitalized in our institution between the year 2001 and 2012. We assessed clinical data and imaging exams in children diagnosed with gray matter heterotopia confirmed in MRI (magnetic resonance imaging). GMH occurred in 26 children hospitalized in our institution between the year 2001 and 2012. Among children with gray matter heterotopia most common clinical symptoms were: epilepsy, intellectual disability and hemiparesis. The commonest location of heterotopic gray matter were fronto-parietal areas of brain parenchyma, mostly subependymal region. Gray matter heterotopia occurred with other developmental disorders of the central nervous system rather than solely and in most cases it was bilateral. Schizencephaly and abnormalities of the corpus callosum were the most often developmental disorders accompanying GMH. 1. Subependymal gray matter heterotopia was more common than subcortical GMH. Subependymal GMH showed tendency to localize in the region of the bodies of the lateral ventricles. The least common was laminar GMH. 2. Gray matter heterotopia occurred more often with other developmental disorders of the central nervous system rather than solely. The most frequent concurrent disorders of the central nervous system were: schizencephaly, developmental abnormalities of the corpus callosum, arachnoid cyst, abnormalities of the septum pellucidum and the fornix. 3. GMH foci were more often

  12. Towards an understanding of parietal mnemonic processes: some conceptual guideposts

    Science.gov (United States)

    Levy, Daniel A.

    2012-01-01

    The posterior parietal lobes have been implicated in a range of episodic memory retrieval tasks, but the nature of parietal contributions to remembering remains unclear. In an attempt to identify fruitful avenues of further research, several heuristic questions about parietal mnemonic activations are considered in light of recent empirical findings: Do such parietal activations reflect memory processes, or their contents? Do they precede, follow, or co-occur with retrieval? What can we learn from their pattern of lateralization? Do they index access to episodic representations, or the feeling of remembering? Are parietal activations graded by memory strength, quantity of retrieved information, or the type of retrieval? How do memory-related activations map onto functional parcellation of parietal lobes suggested by other cognitive phenomena? Consideration of these questions can promote understanding of the relationship between parietal mnemonic effects and perceptual, attentional, and action-oriented cognitive processes. PMID:22783175

  13. Towards an understanding of parietal mnemonic processes: Some conceptual guideposts

    Directory of Open Access Journals (Sweden)

    Daniel A Levy

    2012-07-01

    Full Text Available The posterior parietal lobes have been implicated in a range of episodic memory retrieval tasks, but the nature of parietal contributions to remembering remains unclear. In an attempt to identify fruitful avenues of further research, several heuristic questions about parietal-mnemonic activations are considered in light of recent empirical findings: Do such parietal activations reflect memory processes or their contents? Do they precede, follow, or co-occur with retrieval? What can we learn from their pattern of lateralization? Do they index access to episodic representations or the feeling of remembering? Are parietal activations graded by memory strength, quantity of retrieved information, or the type of retrieval? How do memory-related activations map onto functional parcellation of parietal lobes suggested by other cognitive phenomena? Consideration of these questions can promote understanding of the relationship between parietal-mnemonic effects and perceptual, attentional, and action-oriented cognitive processes.

  14. Gray Whale Population Count Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gray whale abundance is estimated from data collected during the southbound migration from feeding grounds in the Arctic to breeding grounds in the lagoons of...

  15. The Gray whale: Eschrichtius robustus

    National Research Council Canada - National Science Library

    Jones, Mary Lou; Leatherwood, Stephen; Swartz, Steven L

    1984-01-01

    .... Section II documents historical aspects of gray whale exploitation and the economic importance of these whales to humans, beginning with aboriginal societies in Asia and North America, and leading...

  16. Gray Whale Calf Production Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gray whale calf production is estimated from data collected during the northbound migration as whales return to their feeding grounds in the Arctic. Counts of adult...

  17. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  18. Somatosensory-motor adaptation of orofacial actions in posterior parietal and ventral premotor cortices.

    Directory of Open Access Journals (Sweden)

    Krystyna Grabski

    Full Text Available Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.

  19. Electrocorticography of Spatial Shifting and Attentional Selection in Human Superior Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Maarten Schrooten

    2017-05-01

    Full Text Available Spatial-attentional reorienting and selection between competing stimuli are two distinct attentional processes of clinical and fundamental relevance. In the past, reorienting has been mainly associated with inferior parietal cortex. In a patient with a subdural grid covering the upper and lower bank of the left anterior and middle intraparietal sulcus (IPS and the superior parietal lobule (SPL, we examined the involvement of superior parietal cortex using a hybrid spatial cueing paradigm identical to that previously applied in stroke and in healthy controls. In SPL, as early as 164 ms following target onset, an invalidly compared to a validly cued target elicited a positive event-related potential (ERP and an increase in intertrial coherence (ITC in the theta band, regardless of the direction of attention. From around 400–650 ms, functional connectivity [weighted phase lag index (wPLI analysis] between SPL and IPS briefly inverted such that SPL activity was driving IPS activity. In contrast, the presence of a competing distracter elicited a robust change mainly in IPS from 300 to 600 ms. Within superior parietal cortex reorienting of attention is associated with a distinct and early electrophysiological response in SPL while attentional selection is indexed by a relatively late electrophysiological response in the IPS. The long latency suggests a role of IPS in working memory or cognitive control rather than early selection.

  20. Vulnerability of the frontal and parietal regions in hypertensive patients during working memory task.

    Science.gov (United States)

    Li, Xin; Wang, Wenxiao; Wang, Ailin; Li, Peng; Zhang, Junying; Tao, Wuhai; Zhang, Zhanjun

    2017-05-01

    Hypertension is related with cognitive decline in the elderly. The frontal-parietal executive system plays an important role in cognitive aging and is also vulnerable to damage in elderly patients with hypertension. Examination of the brain's functional characteristics in frontal-parietal regions of hypertension is likely to be important for understanding the neural mechanisms of hypertension's effect on cognitive aging. We address this issue by comparing hypertension and control-performers in a functional MRI study. Twenty-eight hypertensive patients and 32 elderly controls were tested with n-back task with two load levels. The hypertensive patients exhibited worse executive and memory abilities than control subjects. The patterns of brain activation changed under different working memory loads in the hypertensive patients, who exhibited reduced activation only in the precentral gyrus under low loads and reduced activation in the middle frontal gyrus, left medial superior frontal gyrus and right precuneus under high loads. Thus, more regions of diminished activation were observed in the frontal and parietal regions with increasing task difficulty. More importantly, we found that lower activation in changed frontal and parietal regions was associated with worse cognitive function in high loads. The results demonstrate the relationship between cognitive function and frontoparietal functional activation in hypertension and their relevance to cognitive aging risk. Our findings provide a better understanding of the mechanism of cognitive decline in hypertension and highlight the importance of brain protection in hypertension.

  1. Seeing is not feeling: posterior parietal but not somatosensory cortex engagement during touch observation.

    Science.gov (United States)

    Chan, Annie W-Y; Baker, Chris I

    2015-01-28

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. Copyright © 2015 the authors 0270-6474/15/351468-13$15.00/0.

  2. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study.

    Science.gov (United States)

    Christidi, Foteini; Karavasilis, Efstratios; Velonakis, Georgios; Rentzos, Michail; Zambelis, Thomas; Zouvelou, Vasiliki; Xirou, Sophia; Ferentinos, Panagiotis; Efstathopoulos, Efstathios; Kelekis, Nikolaos; Evdokimidis, Ioannis; Karandreas, Nikolaos

    2018-02-07

    The association between gray matter (GM) density and neurophysiologic changes is still unclear in amyotrophic lateral sclerosis (ALS). We evaluated the relationship between GM density and motor system integrity combining voxel-based morphometry (VBM) and transcranial magnetic stimulation (TMS) in ALS. We included 17 ALS patients and 22 healthy controls (HC) who underwent 3D-T1-weighted imaging. Among the ALS group, we applied left motor cortex single-pulse TMS. We used whole-brain VBM comparing ALS and HC in GM density. We also conducted regression analysis to examine correlations between GM density and the following TMS parameters: motor evoked potential (MEP)/M ratio and central motor conduction time (CMCT). We found significantly decreased GM density in ALS patients in several frontal, temporal, parietal/occipital and cerebellar regions (p motor area (negative association). CMCT was associated with GM density in (a) inferior frontal gyrus and middle cingulated gyrus (positive association) and (b) superior parietal lobule; cuneus and cerebellum (negative association). Our findings support a significant interaction between motor and extra-motor structural and functional changes and highlight that motor and extra-motor GM integrity may underlie TMS parameters of motor function in ALS patients.

  3. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  4. Activation of right parietal cortex during memory retrieval of nonlinguistic auditory stimuli.

    Science.gov (United States)

    Klostermann, Ellen C; Loui, Psyche; Shimamura, Arthur P

    2009-09-01

    In neuroimaging studies, the left ventral posterior parietal cortex (PPC) is particularly active during memory retrieval. However, most studies have used verbal or verbalizable stimuli. We investigated neural activations associated with the retrieval of short, agrammatical music stimuli (Blackwood, 2004), which have been largely associated with right hemisphere processing. At study, participants listened to music stimuli and rated them on pleasantness. At test, participants made old/new recognition judgments with high/low confidence ratings. Right, but not left, ventral PPC activity was observed during the retrieval of these music stimuli. Thus, rather than indicating a special status of left PPC in retrieval, both right and left ventral PPC participate in memory retrieval, depending on the type of information that is to be remembered.

  5. Gray matter trophism, cognitive impairment, and depression in patients with multiple sclerosis.

    Science.gov (United States)

    Pravatà, Emanuele; Rocca, Maria A; Valsasina, Paola; Riccitelli, Gianna C; Gobbi, Claudio; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-12-01

    Cognitive impairment and depression frequently affects patients with multiple sclerosis (MS). However, the relationship between the occurrence of depression and cognitive impairment and the development of cortical atrophy has not been fully elucidated yet. To investigate the association of cortical and deep gray matter (GM) volume with depression and cognitive impairment in MS. Three-dimensional (3D) T1-weighted scans were obtained from 126 MS patients and 59 matched healthy controls. Cognitive impairment was assessed using the Brief Repeatable Battery of Neuropsychological Tests and depression with the Montgomery-Asberg Depression Rating Scale (MADRS). Using FreeSurfer and FIRST software, we assessed cortical thickness (CTh) and deep GM volumetry. Magnetic resonance imaging (MRI) variables explaining depression and cognitive impairment were investigated using factorial and classification analysis. Multivariate regression models correlated GM abnormalities with symptoms severity. Compared with controls, MS patients exhibited widespread bilateral cortical thinning involving all brain lobes. Depressed MS showed selective CTh decrease in fronto-temporal regions, whereas cognitive impairment MS exhibited widespread fronto-parietal cortical and subcortical GM atrophy. Frontal cortical thinning was the best predictor of depression ( C-statistic = 0.7), whereas thinning of the right precuneus and high T2 lesion volume best predicted cognitive impairment ( C-statistic = 0.8). MADRS severity correlated with right entorhinal cortex thinning, whereas cognitive impairment severity correlated with left entorhinal and thalamus atrophy. MS-related depression is linked to circumscribed CTh changes in areas deputed to emotional behavior, whereas cognitive impairment is correlated with cortical and subcortical GM atrophy of circuits involved in cognition.

  6. Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study.

    Science.gov (United States)

    Strenziok, Maren; Krueger, Frank; Deshpande, Gopikrishna; Lenroot, Rhoshel K; van der Meer, Elke; Grafman, Jordan

    2011-10-01

    Adolescents spend a significant part of their leisure time watching TV programs and movies that portray violence. It is unknown, however, how the extent of violent media use and the severity of aggression displayed affect adolescents' brain function. We investigated skin conductance responses, brain activation and functional brain connectivity to media violence in healthy adolescents. In an event-related functional magnetic resonance imaging experiment, subjects repeatedly viewed normed videos that displayed different degrees of aggressive behavior. We found a downward linear adaptation in skin conductance responses with increasing aggression and desensitization towards more aggressive videos. Our results further revealed adaptation in a fronto-parietal network including the left lateral orbitofrontal cortex (lOFC), right precuneus and bilateral inferior parietal lobules, again showing downward linear adaptations and desensitization towards more aggressive videos. Granger causality mapping analyses revealed attenuation in the left lOFC, indicating that activation during viewing aggressive media is driven by input from parietal regions that decreased over time, for more aggressive videos. We conclude that aggressive media activates an emotion-attention network that has the capability to blunt emotional responses through reduced attention with repeated viewing of aggressive media contents, which may restrict the linking of the consequences of aggression with an emotional response, and therefore potentially promotes aggressive attitudes and behavior.

  7. Fronto-Parietal Network Reconfiguration Supports the Development of Reasoning Ability.

    Science.gov (United States)

    Wendelken, Carter; Ferrer, Emilio; Whitaker, Kirstie J; Bunge, Silvia A

    2016-05-01

    The goal of this fMRI study was to examine how well developmental improvements in reasoning ability can be explained by changes in functional connectivity between specific nodes in prefrontal and parietal cortices. To this end, we examined connectivity within the lateral fronto-parietal network (LFPN) and its relation to reasoning ability in 132 children and adolescents aged 6-18 years, 56 of whom were scanned twice over the course of 1.5 years. Developmental changes in strength of connections within the LFPN were most prominent in late childhood and early adolescence. Reasoning ability was related to functional connectivity between left rostrolateral prefrontal cortex (RLPFC) and inferior parietal lobule (IPL), but only among 12-18-year olds. For 9-11-year olds, reasoning ability was most strongly related to connectivity between left and right RLPFC; this relationship was mediated by working memory. For 6-8-year olds, significant relationships between connectivity and performance were not observed; in this group, processing speed was the primary mediator of improvement in reasoning ability. We conclude that different connections best support reasoning at different points in development and that RLPFC-IPL connectivity becomes an important predictor of reasoning during adolescence. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    Science.gov (United States)

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [A voxel-based morphometric analysis of brain gray matter in online game addicts].

    Science.gov (United States)

    Weng, Chuan-bo; Qian, Ruo-bing; Fu, Xian-ming; Lin, Bin; Ji, Xue-bing; Niu, Chao-shi; Wang, Ye-han

    2012-12-04

    To explore the possible brain mechanism of online game addiction (OGA) in terms of brain morphology through voxel-based morphometric (VBM) analysis. Seventeen subjects with OGA and 17 age- and gender-matched healthy controls (HC group) were recruited from Department of Psychology at our hospital during February-December 2011. The internet addiction scale (IAS) was used to measure the degree of OGA tendency. Magnetic resonance imaging (MRI) scans were performed to acquire 3-dimensional T1-weighted images. And FSL 4.1 software was employed to confirm regional gray matter volume changes. For the regions where OGA subjects showed significantly different gray matter volumes from the controls, the gray matter volumes of these areas were extracted, averaged and regressed against the scores of IAS. The OGA group had lower gray matter volume in left orbitofrontal cortex (OFC), left medial prefrontal cortex (mPFC), bilateral insula (INS), left posterior cingulate cortex (PCC) and left supplementary motor area (SMA). Gray matter volumes of left OFC and bilateral INS showed a negative correlation with the scores of IAS (r = -0.65, r = -0.78, P online game addicts and they may be correlated with the occurrence and maintenance of OGA.

  10. Longitudinal Study of Gray Matter Changes in Parkinson Disease.

    Science.gov (United States)

    Jia, X; Liang, P; Li, Y; Shi, L; Wang, D; Li, K

    2015-12-01

    The pathology of Parkinson disease leads to morphological brain volume changes. So far, the progressive gray matter volume change across time specific to patients with Parkinson disease compared controls remains unclear. Our aim was to investigate the pattern of gray matter changes in patients with Parkinson disease and to explore the progressive gray matter volume change specific to patients with Parkinson disease with disease progression by using voxel-based morphometry analysis. Longitudinal cognitive assessment and structural MR imaging of 89 patients with Parkinson disease (62 men) and 55 healthy controls (33 men) were from the Parkinson's Progression Markers Initiative data base, including the initial baseline and 12-month follow-up data. Two-way analysis of covariance was performed with covariates of age, sex, years of education, imaging data from multiple centers, and total intracranial volume by using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra tool from SPM8 software. Gray matter volume changes for patients with Parkinson disease were detected with decreased gray matter volume in the frontotemporoparietal areas and the bilateral caudate, with increased gray matter volume in the bilateral limbic/paralimbic areas, medial globus pallidus/putamen, and the right occipital cortex compared with healthy controls. Progressive gray matter volume decrease in the bilateral caudate was found for both patients with Parkinson disease and healthy controls, and this caudate volume was positively associated with cognitive ability for both groups. The progressive gray matter volume increase specific to the patients with Parkinson disease was identified close to the left ventral lateral nucleus of thalamus, and a positive relationship was found between the thalamic volume and the tremor scores in a subgroup with tremor-dominant patients with Parkinson disease. The observed progressive changes in gray matter volume in Parkinson disease may provide

  11. Increased Gray Matter Volume and Resting-State Functional Connectivity in Somatosensory Cortex and their Relationship with Autistic Symptoms in Young Boys with Autism Spectrum Disorder.

    Science.gov (United States)

    Wang, Jia; Fu, Kuang; Chen, Lei; Duan, Xujun; Guo, Xiaonan; Chen, Heng; Wu, Qiong; Xia, Wei; Wu, Lijie; Chen, Huafu

    2017-01-01

    Autism spectrum disorder (ASD) has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3-7-year-old children with ASD compared with typically developing controls (TDs), and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM) analysis on structural magnetic resonance imaging (sMRI) data to assess the differences of gray matter volume (GMV) between 31 autistic boys aged 3-7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG) and left postcentral gyrus (PCG) in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG) and greater negative connectivity with right superior parietal gyrus (SPG) and right superior occipital gyrus (SOG), which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory integration in ASD

  12. Increased Gray Matter Volume and Resting-State Functional Connectivity in Somatosensory Cortex and their Relationship with Autistic Symptoms in Young Boys with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2017-08-01

    Full Text Available Autism spectrum disorder (ASD has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3–7-year-old children with ASD compared with typically developing controls (TDs, and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM analysis on structural magnetic resonance imaging (sMRI data to assess the differences of gray matter volume (GMV between 31 autistic boys aged 3–7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG and left postcentral gyrus (PCG in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG and greater negative connectivity with right superior parietal gyrus (SPG and right superior occipital gyrus (SOG, which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory

  13. Advanced gray rod control assembly

    Energy Technology Data Exchange (ETDEWEB)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  14. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  15. Apathy in corticobasal degeneration: possible parietal involvement.

    Science.gov (United States)

    Moretti, Rita; Caberlotto, R; Signori, R

    Corticobasal degeneration is a rare disorder, which usually consists of a combination of complex movement disorders, apraxia and cortical changes. Its definition is still evolving and in 2013 an international consortium tried to develop new criteria, based on a systematic literature review. Over a long period of time, we carefully selected 23 patients who fulfilled the criteria for a diagnosis of corticobasal degeneration; all had the so-called corticobasal syndrome phenotype, in accordance with Armstrong et al. (2013). Through a dedicated study, we set out to study behavioral alterations, specifically apathy, and to compare the results obtained with those deriving from a well-defined Parkinson's disease population. On the basis of our limited but specific results, we argue for a possible role of the parietal neural networks as a determinant of apathy, and provide an overview of emerging data in the imaging and pathology literature.

  16. Verbal and visuospatial working memory during pregnancy: EEG correlation between the prefrontal and parietal cortices.

    Science.gov (United States)

    Almanza-Sepúlveda, Mayra Linné; Hernández-González, Marisela; Hevia-Orozco, Jorge Carlos; Amezcua-Gutiérrez, Claudia; Guevara, Miguel Angel

    2018-02-01

    Pregnancy is a dynamic process during which significant cognitive changes take place. It has been suggested that working memory (WM) is affected during gestation as a result of functional changes among cortical areas, such as the prefrontal and parietal cortices. This study examined cortical electroencephalographic correlations (rEEG) during performance of WM tasks in each trimester of pregnancy. Forty women were divided into 4 groups: first (T1), second (T2), and third (T3) trimester of pregnancy, and a control group of non-pregnant women. Electroencephalographic activity (EEG) was recorded from the frontopolar, dorsolateral and parietal cortices during performance of one verbal and one visuospatial working memory task. Only groups T2 and T3 showed increased onset latency in the visuospatial WM. During the verbal WM task, the T1 group showed a higher correlation between dorsolateral areas in the theta and alpha bands, as well as a lower left prefrontal-parietal correlation in the gamma band. During the visuospatial WM task, the T1 and T3 groups showed a higher left EEG correlation in the delta and alpha1 bands, whereas T2 presented a higher right prefrontal-parietal correlation in the gamma band. Although pregnancy had only a subtle effect on the visuospatial WM task, these different patterns of cortical synchronization in each trimester of pregnancy could represent adaptive mechanisms that enabled the pregnant women to focus their attention and use more cognitive resources and so adequately solve the WM tasks. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Exogenous vs. endogenous attention: Shifting the balance of fronto-parietal activity.

    Science.gov (United States)

    Meyer, Kristin N; Du, Feng; Parks, Emily; Hopfinger, Joseph B

    2018-03-01

    Despite behavioral and electrophysiological evidence for dissociations between endogenous (voluntary) and exogenous (reflexive) attention, fMRI results have yet to consistently and clearly differentiate neural activation patterns between these two types of attention. This study specifically aimed to determine whether activity in the dorsal fronto-parietal network differed between endogenous and exogenous conditions. Participants performed a visual discrimination task in endogenous and exogenous attention conditions while undergoing fMRI scanning. Analyses revealed robust and bilateral activation throughout the dorsal fronto-parietal network for each condition, in line with many previous results. In order to investigate possible differences in the balance of neural activity within this network with greater sensitivity, a priori regions of interest (ROIs) were selected for analysis, centered on the frontal eye fields (FEF) and intraparietal sulcus (IPS) regions identified in previous studies. The results revealed a significant interaction between region, condition, and hemisphere. Specifically, in the left hemisphere, frontal areas were more active than parietal areas, but only during endogenous attention. Activity in the right hemisphere, in contrast, remained relatively consistent for these regions across conditions. Analysis of this activity over time indicates that this left-hemispheric regional imbalance is present within the FEF early, at 3-6.5 s post-stimulus presentation, whereas a regional imbalance in the exogenous condition is not evident until 6.5-8 s post-stimulus presentation. Overall, our results provide new evidence that although the dorsal fronto-parietal network is indeed associated with both types of attentional orienting, regions of the network are differentially engaged over time and across hemispheres depending on the type of attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Fronto-parietal osteoblastoma with secondary aneurysmal bone cyst: a case report.

    Science.gov (United States)

    Kubota, Yoshitaka; Mitsukawa, Nobuyuki; Arikawa, Risa; Akita, Shinsuke; Satoh, Kaneshige

    2013-02-01

    Osteoblastomas and aneurysmal bone cysts each comprise 1% of primary bone tumours. As both osteoblastomas and aneurysmal bone cysts are not common, osteoblastomas with secondary aneurysmal bone cysts of calvaria are extremely rare. Only three cases describing a secondary aneurysmal bone cyst in the setting of a calvarial osteoblastoma can be found in the literature. We report the case of the surgical resection of the fronto-parietal osteoblastoma accompanying a secondary aneurysmal bone cyst. The case is a 24-year-old male with a 2-year history of a painless lump in the hair-bearing region of the left fronto-parietal area without neurologic symptoms. Computed tomography showed an intradiploic tumour with maintained inner and outer cortex of the left front-parietal bones. 3.0-T magnetic resonance imaging showed a well-circumscribed, intradiploic, multilocular cystic tumour. A gadolinium-enhanced sequence showed strong peripheral and septal enhancement. These findings were consistent with an osteoblastoma associated with secondary aneurysmal bone cyst. An en bloc tumour resection with a 10-mm horizontal margin was completed without complications. The calvarial defect was covered by calvarial bone graft harvested from the contralateral fronto-parietal bone. The postoperative course was uneventful. Pathological diagnosis was consistent with the osteoblastoma with secondary aneurysmal bone cyst. After a follow-up period of 2 years, there was no evidence of recurrence. The combination of osteoblastoma and aneurysmal bone cyst of the calvaria is a rare clinical entity. Careful preoperative examination and complete resection of the tumour are essential. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Parietal contributions to visual working memory depend on task difficulty

    Directory of Open Access Journals (Sweden)

    Kevin T. Jones

    2012-09-01

    Full Text Available The nature of parietal contributions to working memory (WM remain poorly understood but of considerable interest. We previously reported that posterior parietal damage selectively impaired WM probed by recognition (Berryhill & Olson, 2008a. Recent studies provided support using a neuromodulatory technique, transcranial direct current stimulation (tDCS applied to the right parietal cortex (P4. These studies confirmed parietal involvement in WM because parietal tDCS altered WM performance: anodal current tDCS improved performance in a change detection task, and cathodal current tDCS impaired performance on a sequential presentation task. In Experiment 1, we applied cathodal and anodal tDCS to the right parietal cortex and tested participants on both previously used WM tasks. When the WM task was difficult, parietal stimulation (anodal or cathodal improved WM performance selectively in participants with high WM capacity. In the low WM capacity group, parietal stimulation (anodal or cathodal impaired WM performance. These nearly equal and opposite effects were only observed when the WM task was challenging, as in the change detection task. Experiment 2 probed the interplay of WM task difficulty and WM capacity in a parametric manner by varying set size in the WM change detection task. Here, the effect of parietal stimulation (anodal or cathodal on the high WM capacity group followed a linear function as WM task difficulty increased with set size. These findings provide evidence that parietal involvement in WM performance depends on both WM capacity and WM task demands. We discuss these findings in terms of alternative WM strategies employed by low and high WM capacity individuals. We speculate that low WM capacity individuals do not recruit the posterior parietal lobe for WM tasks as efficiently as high WM capacity individuals. Consequently, tDCS provides greater benefit to individuals with high WM capacity.

  20. Fetal Testosterone Influences Sexually Dimorphic Gray Matter in the Human Brain

    Science.gov (United States)

    Lombardo, Michael V.; Ashwin, Emma; Auyeung, Bonnie; Chakrabarti, Bhismadev; Taylor, Kevin; Hackett, Gerald; Bullmore, Edward T.; Baron-Cohen, Simon

    2012-01-01

    In non-human species, testosterone is known to have permanent ‘organizing’ effects early in life that predict later expression of sex differences in brain and behavior. However, in humans it is still unknown if such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporo-parietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male>Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a longstanding gap between human and non-human species in showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain. PMID:22238103

  1. The Picture of Dorian Gray

    NARCIS (Netherlands)

    Wilde, Oscar

    2005-01-01

    On its first publication The Picture of Dorian Gray was regarded as dangerously modern in its depiction of fin-de-sicle decadence. In this updated version of the Faust story, the tempter is Lord Henry Wotton, who lives selfishly for amoral pleasure; Dorian's good angel is the portrait painter Basil

  2. On the genus Rheithrosciurus Gray

    NARCIS (Netherlands)

    Jentink, F.A.

    1881-01-01

    As I wrote my paper on Sciurus (Rheithrosciurus) microtis, see Notes from the Leyden Museum, Part I, 1879, p. 40, I knew Rheithrosciurus macrotis only from the both short annotations of the late Gray about that Squirrel. I here verbally copie his descriptions: Proc. Zool. Soc. Lond. 1856, p. 341,

  3. Tsenseerimata Dorian Gray? / Udo Uibo

    Index Scriptorium Estoniae

    Uibo, Udo, 1956-

    2011-01-01

    Harvardi ülikooli kirjastus üllitas 2011. a. kevadel Oscar Wilde'i ainsaks jäänud romaani "Dorian Gray portree" esialgse versiooni, mis on varustatud toimetaja Nicholas Frankeli põhjalike kommentaaridega ja kus eessõna manifesteerib jõuliselt autori esteetilisi vaateid

  4. Inferior parietal lobule encodes visual temporal resolution processes contributing to the critical flicker frequency threshold in humans.

    Directory of Open Access Journals (Sweden)

    Andrea Nardella

    Full Text Available The measurement of the Critical Flicker Frequency threshold is used to study the visual temporal resolution in healthy subjects and in pathological conditions. To better understand the role played by different cortical areas in the Critical Flicker Frequency threshold perception we used continuous Theta Burst Stimulation (cTBS, an inhibitory plasticity-inducing protocol based on repetitive transcranial magnetic stimulation. The Critical Flicker Frequency threshold was measured in twelve healthy subjects before and after cTBS applied over different cortical areas in separate sessions. cTBS over the left inferior parietal lobule altered the Critical Flicker Frequency threshold, whereas cTBS over the left mediotemporal cortex, primary visual cortex and right inferior parietal lobule left the Critical Flicker Frequency threshold unchanged. No statistical difference was found when the red or blue lights were used. Our findings show that left inferior parietal lobule is causally involved in the conscious perception of Critical Flicker Frequency and that Critical Flicker Frequency threshold can be modulated by plasticity-inducing protocols.

  5. Inferior parietal lobule encodes visual temporal resolution processes contributing to the critical flicker frequency threshold in humans.

    Science.gov (United States)

    Nardella, Andrea; Rocchi, Lorenzo; Conte, Antonella; Bologna, Matteo; Suppa, Antonio; Berardelli, Alfredo

    2014-01-01

    The measurement of the Critical Flicker Frequency threshold is used to study the visual temporal resolution in healthy subjects and in pathological conditions. To better understand the role played by different cortical areas in the Critical Flicker Frequency threshold perception we used continuous Theta Burst Stimulation (cTBS), an inhibitory plasticity-inducing protocol based on repetitive transcranial magnetic stimulation. The Critical Flicker Frequency threshold was measured in twelve healthy subjects before and after cTBS applied over different cortical areas in separate sessions. cTBS over the left inferior parietal lobule altered the Critical Flicker Frequency threshold, whereas cTBS over the left mediotemporal cortex, primary visual cortex and right inferior parietal lobule left the Critical Flicker Frequency threshold unchanged. No statistical difference was found when the red or blue lights were used. Our findings show that left inferior parietal lobule is causally involved in the conscious perception of Critical Flicker Frequency and that Critical Flicker Frequency threshold can be modulated by plasticity-inducing protocols.

  6. Short parietal lobe connections of the human and monkey brain

    DEFF Research Database (Denmark)

    Catani, Marco; Robertsson, Naianna; Beyh, Ahmad

    2017-01-01

    The parietal lobe has a unique place in the human brain. Anatomically, it is at the crossroad between the frontal, occipital, and temporal lobes, thus providing a middle ground for multimodal sensory integration. Functionally, it supports higher cognitive functions that are characteristic...... intralobar parietal tracts in twenty-one datasets acquired in vivo from healthy human subjects and eleven ex vivo datasets from five vervet and six macaque monkeys. Three regions of interest (postcentral gyrus, superior parietal lobule and inferior parietal lobule) were used to identify the tracts. Surface...... is a vertical pathway between the superior and inferior parietal lobules. This tract can be divided into an anterior (supramarginal gyrus) and a posterior (angular gyrus) component in both humans and monkey brains. The second prominent intraparietal tract connects the postcentral gyrus to both supramarginal...

  7. Body-centred map in parietal eye fields - functional MRI study

    International Nuclear Information System (INIS)

    Brotchie, P.; Chen, D.Y.; Bradley, W.G.

    2002-01-01

    Full text: In order for us to interact with our environment we need to know where objects are around us, relative to our body. In monkeys, a body-centred map of visual space is known to exist within the parietal eye fields. This map is formed by the modulation of neuronal activity by eye and head position (Brotchie et al, Nature 1995; Synder et al, Nature 1998). In humans no map of body centred space has been demonstrated. By using functional MRI we have localised a region along the intraparietal sulcus which has properties similar to the parietal eye fields of monkeys (Brotchie et al, ISMRM, 2000). The aim of this study was to determine if activity in this region is modulated by head position, consistent with a body centered representation of visual space. Functional MRI was performed on 6 subjects performing simple visually guided saccades using a 1.5 Tesla GE Echospeed scanner. 10 scans were performed on the 6 subjects at left and right body orientations. Regions of interest were selected around the intraparietal sulcus proper (IPSP) of both hemispheres and voxels with BOLD signal which correlated with the paradigm (r>0.35) were selected for further analysis. Comparisons of percentage signal change were made between the left and right IPSP using Student t test. Of the 10 MRI examinations, 6 demonstrated statistically significant differences in the amount of signal change between left and right IPSP. In each of these 6 cases, the signal change was greater within the IPSP contralateral to the direction of head position relative to the body. This indicates a modulation of activity within the IPSP related to head position, most likely reflecting modulation of the underlying neuronal activity and suggests the existence of a body-centred encoding of space within the parietal eye fields of humans. Copyright (2002) Blackwell Science Pty Ltd

  8. Navigating actions through the rodent parietal cortex

    Directory of Open Access Journals (Sweden)

    Jonathan R. Whitlock

    2014-05-01

    Full Text Available The posterior parietal cortex (PPC participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial versus motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 second in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys.

  9. Focal cortical thinning in patients with stable relapsing-remitting multiple sclerosis. Cross-sectional-based novel estimation of gray matter kinetics

    International Nuclear Information System (INIS)

    Orbach, Lior; Menascu, Shay; Hoffmann, Chen; Achiron, Anat; Miron, Shmuel

    2018-01-01

    The aim of our study is to identify radiological patterns of cortical gray matter atrophy (CGMA) that correlate with disease duration in patients with relapsing-remitting multiple sclerosis (RRMS). RRMS patients were randomly selected from the Sheba Multiple Sclerosis (MS) center computerized data registry based on stratification of disease duration up to 10 years. Patients were scanned by 3.0 T (Signa, GE) MRI, using a T1 weighted 3D high resolution, FSPGR, MS protocol. Neurological disability was assessed by the Expanded Disability Status Scale (EDSS). FreeSurfer was used to obtain brain volumetric segmentation and to perform cortical thickness surface-based analysis. Clusters of change in cortical thickness with correlation to disease duration were produced. Two hundred seventy-one RRMS patients, mean ± SD age 33.0 ± 7.0 years, EDSS 1.6 ± 1.2, disease duration 5.0 ± 3.4 years. Cortical thickness analysis demonstrated focal areas of cerebral thinning that correlated with disease duration. Seven clusters accounting for 11.7% of the left hemisphere surface and eight clusters accounting for 10.6% of the right hemisphere surface were identified, with cluster-wise probability of p < 0.002 and p < 0.02, respectively.The clusters included bilateral involvement of areas within the cingulate, precentral, postcentral, paracentral, superior-parietal, superior-frontal gyri and insular cortex. Mean and cluster-wise cortical thickness negatively correlated with EDSS score, p < 0.001, with stronger Spearman rho for cluster-wise measurements. We identified CGMA patterns in sensitive brain regions which give insight and better understanding of the progression of cortical gray matter loss in relation to dissemination in space and time. These patterns may serve as markers to modulate therapeutic interventions to improve the management of MS patients. (orig.)

  10. Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Lee, Hweeling

    2017-01-01

    -parietal areas integrating the evidence into a decision variable that is compared to a decisional threshold. This concurrent transcranial magnetic stimulation (TMS)-fMRI study applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS) to investigate the causal influence of IPS...... on the neural systems involved in perceptual decision-making. Participants had to detect visual signals at threshold intensity that were presented in their left lower visual field on 50% of the trials. Critically, we adjusted the signal strength such that participants failed to detect the visual stimulus...

  11. Exercise Training Increases Parietal Lobe Cerebral Blood Flow in Chronic Stroke: An Observational Study

    Directory of Open Access Journals (Sweden)

    Andrew D. Robertson

    2017-09-01

    Full Text Available Exercise is increasingly recommended as an essential component of stroke rehabilitation, yet uncertainty remains with respect to its direct effect on the cerebral vasculature. The current study first demonstrated the repeatability of pseudo-continuous arterial spin labeling (ASL magnetic resonance imaging (MRI in older adults with stroke, and then investigated the change in cerebrovascular function following a 6-month cardiovascular rehabilitation program. In the repeatability study, 12 participants at least 3 months post-stroke underwent two ASL imaging scans 1 month apart. In the prospective observational study, eight individuals underwent ASL imaging and aerobic fitness testing before and after a 6-month cardiovascular rehabilitation program. Cerebral blood flow (CBF and the spatial coefficient of variation of CBF (sCoV were quantified to characterize tissue-level perfusion and large cerebral artery transit time properties, respectively. In repeat scanning, intraclass correlation (ICC indicated moderate test-retest reliability for global gray matter CBF (ICC = 0.73 and excellent reliability for sCoV (ICC = 0.94. In the observational study, gray matter CBF increased after training (baseline: 40 ± 13 vs. 6-month: 46 ± 12 ml·100 g−1·min−1, P = 0.036. The greatest change occurred in the parietal lobe (+18 ± 12%. Gray matter sCoV, however, did not change following training (P = 0.31. This study provides preliminary evidence that exercise-based rehabilitation in chronic stroke enhances tissue-level perfusion, without changing the relative hemodynamic properties of the large cerebral arteries.

  12. Exercise Training Increases Parietal Lobe Cerebral Blood Flow in Chronic Stroke: An Observational Study

    Science.gov (United States)

    Robertson, Andrew D.; Marzolini, Susan; Middleton, Laura E.; Basile, Vincenzo S.; Oh, Paul I.; MacIntosh, Bradley J.

    2017-01-01

    Exercise is increasingly recommended as an essential component of stroke rehabilitation, yet uncertainty remains with respect to its direct effect on the cerebral vasculature. The current study first demonstrated the repeatability of pseudo-continuous arterial spin labeling (ASL) magnetic resonance imaging (MRI) in older adults with stroke, and then investigated the change in cerebrovascular function following a 6-month cardiovascular rehabilitation program. In the repeatability study, 12 participants at least 3 months post-stroke underwent two ASL imaging scans 1 month apart. In the prospective observational study, eight individuals underwent ASL imaging and aerobic fitness testing before and after a 6-month cardiovascular rehabilitation program. Cerebral blood flow (CBF) and the spatial coefficient of variation of CBF (sCoV) were quantified to characterize tissue-level perfusion and large cerebral artery transit time properties, respectively. In repeat scanning, intraclass correlation (ICC) indicated moderate test-retest reliability for global gray matter CBF (ICC = 0.73) and excellent reliability for sCoV (ICC = 0.94). In the observational study, gray matter CBF increased after training (baseline: 40 ± 13 vs. 6-month: 46 ± 12 ml·100 g−1·min−1, P = 0.036). The greatest change occurred in the parietal lobe (+18 ± 12%). Gray matter sCoV, however, did not change following training (P = 0.31). This study provides preliminary evidence that exercise-based rehabilitation in chronic stroke enhances tissue-level perfusion, without changing the relative hemodynamic properties of the large cerebral arteries. PMID:29033829

  13. Reduced functional connectivity of fronto-parietal sustained attention networks in severe childhood abuse.

    Directory of Open Access Journals (Sweden)

    Heledd Hart

    Full Text Available Childhood maltreatment is associated with attention deficits. We examined the effect of childhood abuse and abuse-by-gene (5-HTTLPR, MAOA, FKBP5 interaction on functional brain connectivity during sustained attention in medication/drug-free adolescents. Functional connectivity was compared, using generalised psychophysiological interaction (gPPI analysis of functional magnetic resonance imaging (fMRI data, between 21 age-and gender-matched adolescents exposed to severe childhood abuse and 27 healthy controls, while they performed a parametrically modulated vigilance task requiring target detection with a progressively increasing load of sustained attention. Behaviourally, participants exposed to childhood abuse had increased omission errors compared to healthy controls. During the most challenging attention condition abused participants relative to controls exhibited reduced connectivity, with a left-hemispheric bias, in typical fronto-parietal attention networks, including dorsolateral, rostromedial and inferior prefrontal and inferior parietal regions. Abuse-related connectivity abnormalities were exacerbated in individuals homozygous for the risky C-allele of the single nucleotide polymorphism rs3800373 of the FK506 Binding Protein 5 (FKBP5 gene. Findings suggest that childhood abuse is associated with decreased functional connectivity in fronto-parietal attention networks and that the FKBP5 genotype moderates neurobiological vulnerability to abuse. These findings represent a first step towards the delineation of abuse-related neurofunctional connectivity abnormalities, which hopefully will facilitate the development of specific treatment strategies for victims of childhood maltreatment.

  14. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiao-Fei; Zheng, Xiao-Li; Zhang, Wei-Dong; Liu, Li-Zhi; Zhang, You-Ming [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Sun Yat-sen University Cancer Center, Department of Medical Imaging and Interventional Radiology, Guangzhou (China); Chen, Ming-Yuan [Sun Yat-sen University Cancer Center, Department of Nasopharyngeal Carcinoma, Guangzhou (China); Li, Li [Sun Yat-sen University Cancer Center, Department of Medical Imaging and Interventional Radiology, Guangzhou (China)

    2014-05-15

    Evidence is accumulating that temporal lobe radiation necrosis in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT) could involve gray matter (GM). The purpose of the study was to assess the radiation-induced GM volume differences between NPC patients who had and had not received RT and the effect of time after RT on GM volume differences in those patients who had received RT. We used magnetic resonance imaging voxel-based morphometry (VBM) to assess differences in GM volume between 30 NPC patients with normal-appearing whole-brain GM after RT and 15 control patients with newly diagnosed but not yet medically treated NPC. Correlation analyses were used to investigate the relationship between GM volume changes and time after RT. Patients who had received RT had GM volume decreases in the bilateral superior temporal gyrus, left middle temporal gyrus, right fusiform gyrus, right precentral gyrus, and right inferior parietal lobule (p < 0.001, uncorrected, cluster size >100 voxels). Moreover, the correlation analysis indicated that regional GM volume loss in the left superior temporal gyrus, left middle temporal gyrus, and right fusiform gyrus were negatively related to the mean dose to the ipsilateral temporal lobe, respectively. These results indicate that GM volume deficits in bilateral temporal lobes in patients who had received RT might be radiation-induced. Our findings might provide new insight into the pathogenesis of radiation-induced structural damage in normal-appearing brain tissue. Yet this is an exploratory study, whose findings should therefore be taken with caution. (orig.)

  15. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  16. Gray- and White-Matter Anatomy of Absolute Pitch Possessors

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Chakravarty, Mallar

    2015-01-01

    structural differences in brains of musicians with and without AP, by means of whole brain vertex- wise cortical thickness analysis and tract-based spatial statistics (TBSS) analysis. AP possessors (APs) displayed increased cortical thickness in a number of areas including the left superior temporal gyrus...... studies indicating an increased left lateralized posterior superior temporal gyrus in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a correlation between the white matter cluster and the right parahippocampal gyrus. This is a novel finding......, the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found increased fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus and the inferior longitudinal fasciculus. The findings in gray matter support previous...

  17. Altered Parietal Activation during Non-symbolic Number Comparison in Children with Prenatal Alcohol Exposure

    Directory of Open Access Journals (Sweden)

    Keri J. Woods

    2018-01-01

    Full Text Available Number processing is a cognitive domain particularly sensitive to prenatal alcohol exposure, which relies on intact parietal functioning. Alcohol-related alterations in brain activation have been found in the parietal lobe during symbolic number processing. However, the effects of prenatal alcohol exposure on the neural correlates of non-symbolic number comparison and the numerical distance effect have not been investigated. Using functional magnetic resonance imaging (fMRI, we examined differences in brain activation associated with prenatal alcohol exposure in five parietal regions involved in number processing during a non-symbolic number comparison task with varying degrees of difficulty. fMRI results are presented for 27 Cape Colored children (6 fetal alcohol syndome (FAS/partial FAS, 5 heavily exposed (HE non-sydromal, 16 controls; mean age ± SD = 11.7 ± 1.1 years. Fetal alcohol exposure was assessed by interviewing mothers using a timeline follow-back approach. Separate subject analyses were performed in each of five regions of interest, bilateral horizontal intraparietal sulci (IPS, bilateral posterior superior parietal lobules (PSPL, and left angular gyrus (left AG, using the general linear model with predictors for number comparison and difficulty level. Mean percent signal change for each predictor was extracted for each subject for each region to examine group differences and associations with continuous measures of alcohol exposure. Although groups did not differ in performance, controls activated the right PSPL more during non-symbolic number comparison than exposed children, but this was not significant after controlling for maternal smoking, and the right IPS more than children with fetal alcohol syndrome (FAS or partial FAS. More heavily exposed children recruited the left AG to a greater extent as task difficulty increased, possibly to compensate, in part, for impairments in function in the PSPL and IPS. Notably, in non

  18. Patterns of Co-occurring Gray Matter Concentration Loss Across the Huntington Disease Prodrome

    Directory of Open Access Journals (Sweden)

    Jennifer Ashley Ciarochi

    2016-09-01

    Full Text Available Huntington disease is caused by an abnormally expanded CAG trinucleotide repeat in the HTT gene. Age and CAG-expansion number are related to age at diagnosis, and can be used to index disease progression. However, observed onset-age variability suggests that other factors also modulate progression. Indexing prodromal (pre-diagnosis progression may highlight therapeutic targets by isolating the earliest-affected factors.We present the largest prodromal Huntington disease application of the univariate method Voxel-based Morphometry, and the first application of the multivariate method Source-based Morphometry, to respectively compare gray matter concentration and capture co-occurring gray matter concentration patterns in control and prodromal participants. Using structural MRI data from 1050 (831 prodromal, 219 control participants, we characterize control-prodromal, whole-brain gray matter concentration differences at various prodromal stages. Our results provide evidence for: (1 Regional co-occurrence and differential patterns of decline across the prodrome, with parietal and occipital differences commonly co-occurring, and frontal and temporal differences being relatively independent from one another, (2 Fronto-striatal circuits being among the earliest and most consistently affected in the prodrome (3 Delayed degradation in some movement-related regions, with increasing subcortical and occipital differences with later progression, (4 An overall superior-to-inferior gradient of gray matter concentration reduction in frontal, parietal, and temporal lobes, (5 The appropriateness of Source-based Morphometry for studying the prodromal Huntington disease population, and its enhanced sensitivity to early prodromal and regionally-concurrent differences.

  19. Bilateral parietal extradural metastatic ewing's sarcoma simulating acute epidural hematoma

    International Nuclear Information System (INIS)

    Aslam, E.; Imran, M.; Faridi, N.M.

    2006-01-01

    Sarcomas usually metastasize to lugs. The following case report describes an unusual metastasis of Ewing's sarcoma to extradural parietal region bilaterally. The primary was found at lower end of ulna. (author)

  20. Observational learning of new movement sequences is reflected in fronto-parietal coherence.

    Directory of Open Access Journals (Sweden)

    Jurjen van der Helden

    Full Text Available Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha and motor (mu rhythms operating in the 10 Hz frequency range for translating "seeing" into "doing". Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for

  1. Temporo-Parietal and Fronto-Parietal Lobe Contributions to Theory of Mind and Executive Control: An fMRI Study of Verbal Jokes

    Directory of Open Access Journals (Sweden)

    Yu-Chen eChan

    2015-09-01

    Full Text Available ‘Getting a joke’ always requires resolving an apparent incongruity but the particular cognitive operations called upon vary depending on the nature of the joke itself. Previous research has identified the primary neural correlates of the cognitive and affective processes called upon to respond to humor generally, but little work has been done on the substrates underlying the distinct cognitive operations required to comprehend particular joke types. This study explored the neural correlates of the cognitive processes required to successfully comprehend three joke types: bridging-inference jokes, exaggeration jokes and ambiguity jokes. For all joke types, the left dlPFC appeared to support common cognitive mechanisms, such as script-shifting, while the vACC was associated with affective appreciation. The temporo-parietal lobe (TPJ and MTG was associated with bridging-inference jokes, suggesting involvement of these regions with ‘theory of mind’ processing. The ventral fronto-parietal lobe (IPL and IFG was associated with both exaggeration and ambiguity jokes, suggesting that it supports executive control processes such as retrieval from episodic memory, self-awareness, and language-based decoding. The social-affective appreciation of verbal jokes was associated with activity in the orbitofrontal cortex, amygdala, ventral anterior cingulate cortex (vACC, and parahippocampal gyrus. These results allow a more precise account of the neural

  2. Predicting oculomotor behaviour from correlated populations of posterior parietal neurons.

    Science.gov (United States)

    Graf, Arnulf B A; Andersen, Richard A

    2015-01-23

    Oculomotor function critically depends on how signals representing saccade direction and eye position are combined across neurons in the lateral intraparietal (LIP) area of the posterior parietal cortex. Here we show that populations of parietal neurons exhibit correlated variability, and that using these interneuronal correlations yields oculomotor predictions that are more accurate and also less uncertain. The structure of LIP population responses is therefore essential for reliable read-out of oculomotor behaviour.

  3. Proprioceptive neuromuscular facilitation increases alpha absolute power in the dorsolateral prefrontal cortex and superior parietal cortex.

    Science.gov (United States)

    Lial, Lysnara; Moreira, Rayele; Correia, Luan; Andrade, Alzira; Pereira, Ane Caroline; Lira, Ricardo; Figueiredo, Rogério; Silva-Júnior, Fernando; Orsini, Marco; Ribeiro, Pedro; Velasques, Bruna; Cagy, Maurício; Teixeira, Silmar; Bastos, Victor Hugo

    2017-09-01

    The physiotherapist's clinical practice includes proprioceptive neuromuscular facilitation (PNF), which is a treatment concept that accelerates the response of neuromuscular mechanisms through spiral and diagonal movements. The adaptations that occur in the nervous system following PNF are still poorly described in the literature. Thus, this study had a goal to investigate the electrophysiological changes in the fronto-parietal circuit during PNF and movement in sagittal and diagonal patterns. This study included 30 female participants, who were divided into three groups (control, PNF, and flexion groups). Electroencephalogram measurements were determined before and after tasks were performed by each group. For the statistical analysis, a two-way ANOVA was performed for the factors group and time. Interactions between the two factors were investigated using a one-way ANOVA. A value of p < 0.004 was considered significant. The results showed an increase in alpha absolute power in the left dorsolateral prefrontal cortex and upper left parietal cortex of the PNF group, suggesting these areas work together to execute a motor action. The PNF group showed a greater alpha absolute power compared with the other groups, indicating a specific cortical demand for planning and attention, reinforcing its use for the rehabilitation of individuals.

  4. Increased diffusivity in gray matter in recent onset schizophrenia is associated with clinical symptoms and social cognition.

    Science.gov (United States)

    Lee, Jung Sun; Kim, Chang-Yoon; Joo, Yeon Ho; Newell, Dominick; Bouix, Sylvain; Shenton, Martha E; Kubicki, Marek

    2016-10-01

    Diffusion weighted MRI (dMRI) is a method sensitive to pathological changes affecting tissue microstructure. Most dMRI studies in schizophrenia, however, have focused solely on white matter. There is a possibility, however, that subtle changes in diffusivity exist in gray matter (GM). Accordingly, we investigated diffusivity in GM in patients with recent onset schizophrenia. We enrolled 45 patients and 21 age and sex-matched healthy controls. All subjects were evaluated using the short form of the Wechsler Adult Intelligence Scale, the Positive and Negative Syndrome Scale (PANSS), and the video based social cognition scale. DMRI and T1W images were acquired on a 3 Tesla magnet, and mean Fractional Anisotropy (FA), Trace (TR) and volume were calculated for each of the 68 cortical GM Regions of Interest parcellated using FreeSurfer. There was no significant difference of FA and GM volume between groups after Bonferroni correction. For the dMRI measures, however, patients evinced increased TR in the left bank of the superior temporal sulcus, the right inferior parietal, the right inferior temporal, and the right middle temporal gyri. In addition, higher TR in the right middle temporal gyrus and the right inferior temporal gyrus, respectively, was associated with decreased social function and higher PANSS score in patients with schizophrenia. This study demonstrates high sensitivity of dMRI to subtle pathology in GM in recent onset schizophrenia, as well as an association between increased diffusivity in temporal GM regions and abnormalities in social cognition and exacerbation of psychiatric symptoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    Science.gov (United States)

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context. Copyright © 2012. Published by Elsevier Ltd.

  6. Infrared image gray adaptive adjusting enhancement algorithm based on gray redundancy histogram-dealing technique

    Science.gov (United States)

    Hao, Zi-long; Liu, Yong; Chen, Ruo-wang

    2016-11-01

    In view of the histogram equalizing algorithm to enhance image in digital image processing, an Infrared Image Gray adaptive adjusting Enhancement Algorithm Based on Gray Redundancy Histogram-dealing Technique is proposed. The algorithm is based on the determination of the entire image gray value, enhanced or lowered the image's overall gray value by increasing appropriate gray points, and then use gray-level redundancy HE method to compress the gray-scale of the image. The algorithm can enhance image detail information. Through MATLAB simulation, this paper compares the algorithm with the histogram equalization method and the algorithm based on gray redundancy histogram-dealing technique , and verifies the effectiveness of the algorithm.

  7. POD Model Reconstruction for Gray-Box Fault Detection

    Science.gov (United States)

    Park, Han; Zak, Michail

    2007-01-01

    Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.

  8. Gray/White Matter Contrast in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Carme Uribe

    2018-03-01

    Full Text Available Gray/white matter contrast (GWC decreases with aging and has been found to be a useful MRI biomarker in Alzheimer’s disease (AD, but its utility in Parkinson’s disease (PD patients has not been investigated. The aims of the study were to test whether GWC is sensitive to aging changes in PD patients, if PD patients differ from healthy controls (HCs in GWC, and whether the use of GWC data would improve the sensitivity of cortical thickness analyses to differentiate PD patients from controls. Using T1-weighted structural images, we obtained individual cortical thickness and GWC values from a sample of 90 PD patients and 27 controls. Images were processed with the automated FreeSurfer stream. GWC was computed by dividing the white matter (WM by the gray matter (GM values and projecting the ratios onto a common surface. The sample characteristics were: 52 patients and 14 controls were males; mean age of 64.4 ± 10.6 years in PD and 64.7 ± 8.6 years in controls; 8.0 ± 5.6 years of disease evolution; 15.6 ± 9.8 UPDRS; and a range of 1.5–3 in Hoehn and Yahr (H&Y stage. In both PD and controls we observed significant correlations between GWC and age involving almost the entire cortex. When applying a stringent cluster-forming threshold of p < 0.0001, the correlation between GWC and age also involved the entire cortex in the PD group; in the control group, the correlation was found in the parahippocampal gyrus and widespread frontal and parietal areas. The GWC of PD patients did not differ from controls’, whereas cortical thickness analyses showed thinning in temporal and parietal cortices in the PD group. Cortical thinning remained unchanged after adjusting for GWC. GWC is a very sensitive measure for detecting aging effects, but did not provide additional information over other parameters of atrophy in PD.

  9. Voxelwise meta-ananlysis of gray matter anomalies in progressive supranuclear palsy and Parkinson’s disease using anatomic likelihood estimation

    Directory of Open Access Journals (Sweden)

    Huifang eShang

    2014-02-01

    Full Text Available Numerous voxel-based morphometry (VBM studies on gray matter (GM of patients with progressive supranuclear palsy (PSP and Parkinson’s disease (PD have been conducted separately. Identifying the different neuroanatomical changes in GM resulting from PSP and PD through meta-analysis will aid the differential diagnosis of PSP and PD. In this study, a systematic review of VBM studies of patients with PSP and PD relative to healthy controls (HC in the Embase and PubMed databases from January 1995 to April 2013 was conducted. The anatomical distribution of the coordinates of GM differences was meta-analyzed using anatomical likelihood estimation. Separate maps of GM changes were constructed and subtraction meta-analysis was performed to explore the differences in GM abnormalities between PSP and PD. Nine PSP studies and 24 PD studies were included. GM reductions were present in the bilateral thalamus, basal ganglia, midbrain, insular cortex and inferior frontal gyrus, and left precentral gyrus and anterior cingulate gyrus in PSP. Atrophy of GM was concentrated in the bilateral middle and inferior frontal gyrus, precuneus, left precentral gyrus, middle temporal gyrus, right superior parietal lobule, and right cuneus in PD. Subtraction meta-analysis indicated that GM volume was lesser in the bilateral midbrain, thalamus, and insula in PSP compared with that in PD. Our meta-analysis indicated that PSP and PD shared a similar distribution of neuroanatomical changes in the frontal lobe, including inferior frontal gyrus and precentral gyrus, and that atrophy of the midbrain, thalamus, and insula are neuroanatomical markers for differentiating PSP from PD.

  10. Local synchronization of resting-state dynamics encodes Gray's trait Anxiety.

    Directory of Open Access Journals (Sweden)

    Tim Hahn

    Full Text Available The Behavioral Inhibition System (BIS as defined within the Reinforcement Sensitivity Theory (RST modulates reactions to stimuli indicating aversive events. Gray's trait Anxiety determines the extent to which stimuli activate the BIS. While studies have identified the amygdala-septo-hippocampal circuit as the key-neural substrate of this system in recent years and measures of resting-state dynamics such as randomness and local synchronization of spontaneous BOLD fluctuations have recently been linked to personality traits, the relation between resting-state dynamics and the BIS remains unexplored. In the present study, we thus examined the local synchronization of spontaneous fMRI BOLD fluctuations as measured by Regional Homogeneity (ReHo in the hippocampus and the amygdala in twenty-seven healthy subjects. Correlation analyses showed that Gray's trait Anxiety was significantly associated with mean ReHo in both the amygdala and the hippocampus. Specifically, Gray's trait Anxiety explained 23% and 17% of resting-state ReHo variance in the left amygdala and the left hippocampus, respectively. In summary, we found individual differences in Gray's trait Anxiety to be associated with ReHo in areas previously associated with BIS functioning. Specifically, higher ReHo in resting-state neural dynamics corresponded to lower sensitivity to punishment scores both in the amygdala and the hippocampus. These findings corroborate and extend recent findings relating resting-state dynamics and personality while providing first evidence linking properties of resting-state fluctuations to Gray's BIS.

  11. Reduced brain gray matter concentration in patients with obstructive sleep apnea syndrome.

    Science.gov (United States)

    Joo, Eun Yeon; Tae, Woo Suk; Lee, Min Joo; Kang, Jung Woo; Park, Hwan Seok; Lee, Jun Young; Suh, Minah; Hong, Seung Bong

    2010-02-01

    To investigate differences in brain gray matter concentrations or volumes in patients with obstructive sleep apnea syndrome (OSA) and healthy volunteers. Optimized voxel-based morphometry, an automated processing technique for MRI, was used to characterize structural differences in gray matter in newly diagnosed male patients. University hospital. The study consisted of 36 male OSA and 31 non-apneic male healthy volunteers matched for age (mean age, 44.8 years). Using the t-test, gray matter differences were identified. The statistical significance level was set to a false discovery rate P 200 voxels. The mean apnea-hypopnea index (AHI) of patients was 52.5/h. On visual inspection of MRI, no structural abnormalities were observed. Compared to healthy volunteers, the gray matter concentrations of OSA patients were significantly decreased in the left gyrus rectus, bilateral superior frontal gyri, left precentral gyrus, bilateral frontomarginal gyri, bilateral anterior cingulate gyri, right insular gyrus, bilateral caudate nuclei, bilateral thalami, bilateral amygdalo-hippocampi, bilateral inferior temporal gyri, and bilateral quadrangular and biventer lobules in the cerebellum (false discovery rate P memory impairment, affective and cardiovascular disturbances, executive dysfunctions, and dysregulation of autonomic and respiratory control frequently found in OSA patients might be related to morphological differences in the brain gray matter areas.

  12. A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study.

    Science.gov (United States)

    Stoeckel, M Cornelia; Weder, Bruno; Binkofski, Ferdinand; Buccino, Giovanni; Shah, N Jon; Seitz, Rüdiger J

    2003-07-01

    Previous studies of somatosensory object discrimination have been focused on the primary and secondary sensorimotor cortices. However, we expected the prefrontal cortex to also become involved in sequential tactile discrimination on the basis of its role in working memory and stimulus discrimination as established in other domains. To investigate the contributions of the different cerebral structures to tactile discrimination of sequentially presented objects, we obtained event-related functional magnetic resonance images from seven healthy volunteers. Our results show that right hand object exploration involved left sensorimotor cortices, bilateral premotor, parietal and temporal cortex, putamen, thalamus, and cerebellum. Tactile exploration of parallelepipeds for subsequent object discrimination activated further areas in the dorsal and ventral portions of the premotor cortex, as well as parietal, midtemporal, and occipital areas of both cerebral hemispheres. Discriminating a parallelepiped from the preceding one involved a bilateral prefrontal-anterior cingulate-superior temporal-posterior parietal circuit. While the prefrontal cortex was active with right hemisphere dominance during discrimination, there was left hemispheric prefrontal activation during the delay period between object presentations. Delay related activity was further seen in the anterior intraparietal area and the fusiform gyrus. The results reveal a prominent role of the human prefrontal cortex for somatosensory object discrimination in correspondence with recent models on stimulus discrimination and working memory.

  13. Development of rostral inferior parietal lobule area functional connectivity from late childhood to early adulthood.

    Science.gov (United States)

    Wang, Mengxing; Zhang, Jilei; Dong, Guangheng; Zhang, Hui; Lu, Haifeng; Du, Xiaoxia

    2017-06-01

    Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Melanocyte stem cell maintenance and hair graying.

    Science.gov (United States)

    Steingrímsson, Eiríkur; Copeland, Neal G; Jenkins, Nancy A

    2005-04-08

    Hair graying is an obvious sign of human aging, yet little was known about its causes. Two recent papers provide compelling evidence that hair graying is due to incomplete melanocyte stem cell maintenance and identify Pax3 and Mitf as key molecules that help regulate the balance between melanocyte stem cell maintenance and differentiation.

  15. The Effect of Illumination on Gray Color

    Science.gov (United States)

    Da Pos, Osvaldo; Baratella, Linda; Sperandio, Gabriele

    2010-01-01

    The present study explored the perceptual process of integration of luminance information in the production of the gray color of an object placed in an environment viewed from a window. The mean luminance of the object was varied for each mean luminance of the environment. Participants matched the gray color of the object with that of Munsell…

  16. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    Science.gov (United States)

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  17. Anterior cingulate volume predicts response to psychotherapy and functional connectivity with the inferior parietal cortex in major depressive disorder.

    Science.gov (United States)

    Sambataro, Fabio; Doerig, Nadja; Hänggi, Jürgen; Wolf, Robert Christian; Brakowski, Janis; Holtforth, Martin Grosse; Seifritz, Erich; Spinelli, Simona

    2018-01-01

    In major depressive disorder (MDD), the anterior cingulate cortex (ACC) has been associated with clinical outcome as well as with antidepressant treatment response. Nonetheless, the association between individual differences in ACC structure and function and the response to cognitive behavioral therapy (CBT) is still unexplored. For this aim, twenty-five unmedicated patients with MDD were scanned with structural and resting state functional magnetic resonance imaging before the beginning of CBT treatment. ACC morphometry was correlated with clinical changes following psychotherapy. Furthermore, whole-brain resting state functional connectivity with the ACC was correlated with clinical measures. Greater volume in the left subgenual (subACC), the right pregenual (preACC), and the bilateral supragenual (supACC) predicted depressive symptoms improvement after CBT. Greater subACC volume was related to stronger functional connectivity with the inferior parietal cortex and dorsolateral prefrontal cortex. Stronger subACC-inferior parietal cortex connectivity correlated with greater adaptive rumination. Greater preACC volume was associated with stronger functional connectivity with the inferior parietal cortex and ventrolateral prefrontal cortex. In contrast, greater right supACC volume was related to lower functional connectivity with the inferior parietal cortex. These results suggest that ACC volume and its functional connectivity with the fronto-parietal cortex are associated with CBT response in MDD, and this may be mediated by adaptive forms of rumination. Our findings support the role of the subACC as a potential predictor for CBT response. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  18. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    Science.gov (United States)

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region.

  19. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study.

    Science.gov (United States)

    Cattaneo, Zaira; Lega, Carlotta; Gardelli, Chiara; Merabet, Lotfi B; Cela-Conde, Camilo J; Nadal, Marcos

    2014-10-01

    To explain the biological foundations of art appreciation is to explain one of our species' distinctive traits. Previous neuroimaging and electrophysiological studies have pointed to the prefrontal and the parietal cortex as two critical regions mediating esthetic appreciation of visual art. In this study, we applied transcranial magnetic stimulation (TMS) over the left prefrontal cortex and the right posterior parietal cortex while participants were evaluating whether they liked, and by how much, a particular painting. By depolarizing cell membranes in the targeted regions, TMS transiently interferes with the activity of specific cortical areas, which allows clarifying their role in a given task. Our results show that both regions play a fundamental role in mediating esthetic appreciation. Critically though, the effects of TMS varied depending on the type of art considered (i.e. representational vs. abstract) and on participants' a-priori inclination toward one or the other. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Fronto-Parietal Contributions to Phonological Processes in Successful Artificial Grammar Learning

    Science.gov (United States)

    Goranskaya, Dariya; Kreitewolf, Jens; Mueller, Jutta L.; Friederici, Angela D.; Hartwigsen, Gesa

    2016-01-01

    Sensitivity to regularities plays a crucial role in the acquisition of various linguistic features from spoken language input. Artificial grammar learning paradigms explore pattern recognition abilities in a set of structured sequences (i.e., of syllables or letters). In the present study, we investigated the functional underpinnings of learning phonological regularities in auditorily presented syllable sequences. While previous neuroimaging studies either focused on functional differences between the processing of correct vs. incorrect sequences or between different levels of sequence complexity, here the focus is on the neural foundation of the actual learning success. During functional magnetic resonance imaging (fMRI), participants were exposed to a set of syllable sequences with an underlying phonological rule system, known to ensure performance differences between participants. We expected that successful learning and rule application would require phonological segmentation and phoneme comparison. As an outcome of four alternating learning and test fMRI sessions, participants split into successful learners and non-learners. Relative to non-learners, successful learners showed increased task-related activity in a fronto-parietal network of brain areas encompassing the left lateral premotor cortex as well as bilateral superior and inferior parietal cortices during both learning and rule application. These areas were previously associated with phonological segmentation, phoneme comparison, and verbal working memory. Based on these activity patterns and the phonological strategies for rule acquisition and application, we argue that successful learning and processing of complex phonological rules in our paradigm is mediated via a fronto-parietal network for phonological processes. PMID:27877120

  1. Fronto-parietal contributions to phonological processes in successful artificial grammar learning

    Directory of Open Access Journals (Sweden)

    Dariya Goranskaya

    2016-11-01

    Full Text Available Sensitivity to regularities plays a crucial role in the acquisition of various linguistic features from spoken language input. Artificial grammar (AG learning paradigms explore pattern recognition abilities in a set of structured sequences (i.e. of syllables or letters. In the present study, we investigated the functional underpinnings of learning phonological regularities in auditorily presented syllable sequences. While previous neuroimaging studies either focused on functional differences between the processing of correct vs. incorrect sequences or between different levels of sequence complexity, here the focus is on the neural foundation of the actual learning success. During functional magnetic resonance imaging (fMRI, participants were exposed to a set of syllable sequences with an underlying phonological rule system, known to ensure performance differences between participants. We expected that successful learning and rule application would require phonological segmentation and phoneme comparison. As an outcome of four alternating learning and test fMRI sessions, participants split into successful learners and non-learners. Relative to non-learners, successful learners showed increased task-related activity in a fronto-parietal network of brain areas encompassing the left lateral premotor cortex as well as bilateral superior and inferior parietal cortices during both learning and rule application. These areas were previously associated with phonological segmentation, phoneme comparison and verbal working memory. Based on these activity patterns and the phonological strategies for rule acquisition and application, we argue that successful learning and processing of complex phonological rules in our paradigm is mediated via a fronto-parietal network for phonological processes.

  2. Dimensional analysis of the parietal bone in areas of surgical interest and relationship between parietal thickness and cephalic index.

    Science.gov (United States)

    de Souza Fernandes, Atson Carlos; Neto, Antonio Irineu Trindade; de Freitas, André Carlos; de Moraes, Márcio

    2011-11-01

    The aim of this study was to determine the thickness of the parietal bone in bone graft donor sites and to study the relationship between parietal bone thickness and gender or cephalic index. We studied 300 parietal bones from 150 human skulls (84 male and 66 female) from individuals aged 18 to 60 years at the time of death. On each parietal bone, 9 areas were drawn by use of reference anatomic landmarks (bregma, lambda, asterion, and pterion), and bone thickness was determined in the areas adjoining the sagittal suture--superior-anterior (Sa), superior-medial (Sm), and superior-posterior (Sp). Mean thickness measurements ranged from 2.30 to 11.25 mm in the Sa area, from 3.08 to 13.32 mm in the Sm area, and from 2.88 to 12.26 in the Sp area. Smaller mean measurements were observed in the Sa area, with the smallest mean thickness being found in brachycephalic female specimens. The largest mean thickness was also found in female specimens in the Sm area. Statistically significant differences between genders were found only in the Sa area in dolichocephalic and mesocephalic specimens. Although the best bone graft donor site surgically is different in individuals of different genders and with different cephalic indexes, our findings suggest that harvesting from the anterosuperior area of the parietal bone should not be performed. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Gray matter deficits and altered resting-state connectivity in the superior temporal gyrus among individuals with problematic hypersexual behavior.

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-04-01

    Neuroimaging studies on the characteristics of hypersexual disorder have been accumulating, yet alternations in brain structures and functional connectivity in individuals with problematic hypersexual behavior (PHB) has only recently been studied. This study aimed to investigate gray matter deficits and resting-state abnormalities in individuals with PHB using voxel-based morphometry and resting-state connectivity analysis. Seventeen individuals with PHB and 19 age-matched healthy controls participated in this study. Gray matter volume of the brain and resting-state connectivity were measured using 3T magnetic resonance imaging. Compared to healthy subjects, individuals with PHB had significant reductions in gray matter volume in the left superior temporal gyrus (STG) and right middle temporal gyrus. Individuals with PHB also exhibited a decrease in resting-state functional connectivity between the left STG and left precuneus and between the left STG and right caudate. The gray matter volume of the left STG and its resting-state functional connectivity with the right caudate both showed significant negative correlations with the severity of PHB. The findings suggest that structural deficits and resting-state functional impairments in the left STG might be linked to PHB and provide new insights into the underlying neural mechanisms of PHB. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The role of human parietal area 7A as a link between sequencing in hand actions and in overt speech production

    Directory of Open Access Journals (Sweden)

    Stefan eHeim

    2012-12-01

    Full Text Available Research on the evolutionary basis of the human language faculty has proposed the mirror neuron system as a link between motor processing and speech development. Consequently, most work has focussed on the left inferior frontal cortex, in particular Broca's region, and the left inferior parietal cortex. However, the direct link between planning of hand motor and speech actions remains to be elucidated. Thus, the present study investigated whether sequencing of hand motor actions vs. speech motor actions has a common neural denominator. For the hand motor task, 25 subjects performed single, repeated, or sequenced button presses with either the left or right hand. The speech task was in analogy; the same subjects produced the syllable "po" once or repeatedly, or a sequence of different syllables (po-pi-po. Speech motor vs. hand motor effectors resulted in increased perisylvian activation including Broca's region (left area 44 and areas medially adjacent to left area 45. In contrast, common activation for sequenced vs. repeated production of button presses and syllables revealed the effector-independent involvement of left area 7A in the superior parietal lobule (SPL in sequencing. These data demonstrate that sequencing of vocal gestures, an important precondition for ordered utterances and ultimately human speech, shares area 7A, rather than inferior parietal regions, as a common cortical module with hand motor sequencing. Interestingly, area 7A has previously also been shown to be involved in the observation of hand and non-hand actions. In combination with the literature, the present data thus suggest a distinction between area 44, which is specifically recruited for (cognitive aspects of speech, and SPL area 7A for general aspects of motor sequencing. In sum, the study demonstrates a yet little considered role of the superior parietal lobule in the origins of speech, and may be discussed in the light of embodiment of speech and language in the

  5. Creating Colored Letters: Familial Markers of Grapheme-Color Synesthesia in Parietal Lobe Activation and Structure.

    Science.gov (United States)

    Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; Rouw, Romke

    2017-07-01

    Perception is inherently subjective, and individual differences in phenomenology are well illustrated by the phenomenon of synesthesia (highly specific, consistent, and automatic cross-modal experiences, in which the external stimulus corresponding to the additional sensation is absent). It is unknown why some people develop synesthesia and others do not. In the current study, we tested whether neural markers related to having synesthesia in the family were evident in brain function and structure. Relatives of synesthetes (who did not have any type of synesthesia themselves) and matched controls read specially prepared books with colored letters for several weeks and were scanned before and after reading using magnetic resonance imaging. Effects of acquired letter-color associations were evident in brain activation. Training-related activation (while viewing black letters) in the right angular gyrus of the parietal lobe was directly related to the strength of the learned letter-color associations (behavioral Stroop effect). Within this obtained angular gyrus ROI, the familial trait of synesthesia related to brain activation differences while participants viewed both black and colored letters. Finally, we compared brain structure using voxel-based morphometry and diffusion tensor imaging to test for group differences and training effects. One cluster in the left superior parietal lobe had significantly more coherent white matter in the relatives compared with controls. No evidence for experience-dependent plasticity was obtained. For the first time, we present evidence suggesting that the (nonsynesthete) relatives of grapheme-color synesthetes show atypical grapheme processing as well as increased brain connectivity.

  6. Pericardial Parietal Mesothelial Cells: Source of the Angiotensin-Converting-Enzyme of the Bovine Pericardial Fluid

    Directory of Open Access Journals (Sweden)

    Ilsione Ribeiro de Sousa Filho

    Full Text Available Abstract Background: Angiotensin II (Ang II, the primary effector hormone of the renin-angiotensin system (RAS, acts systemically or locally, being produced by the action of angiotensin-converting-enzyme (ACE on angiotensin I. Although several tissue RASs, such as cardiac RAS, have been described, little is known about the presence of an RAS in the pericardial fluid and its possible sources. Locally produced Ang II has paracrine and autocrine effects, inducing left ventricular hypertrophy, fibrosis, heart failure and cardiac dysfunction. Because of the difficulties inherent in human pericardial fluid collection, appropriate experimental models are useful to obtain data regarding the characteristics of the pericardial fluid and surrounding tissues. Objectives: To evidence the presence of constituents of the Ang II production paths in bovine pericardial fluid and parietal pericardium. Methods: Albumin-free crude extracts of bovine pericardial fluid, immunoprecipitated with anti-ACE antibody, were submitted to electrophoresis (SDS-PAGE and gels stained with coomassie blue. Duplicates of gels were probed with anti-ACE antibody. In the pericardial membranes, ACE was detected by use of immunofluorescence. Results: Immunodetection on nitrocellulose membranes showed a 146-KDa ACE isoform in the bovine pericardial fluid. On the pericardial membrane sections, ACE was immunolocalized in the mesothelial layer. Conclusions: The ACE isoform in the bovine pericardial fluid and parietal pericardium should account at least partially for the production of Ang II in the pericardial space, and should be considered when assessing the cardiac RAS.

  7. Common substrate for mental arithmetic and finger representation in the parietal cortex.

    Science.gov (United States)

    Andres, Michael; Michaux, Nicolas; Pesenti, Mauro

    2012-09-01

    The history of mathematics provides several examples of the use of fingers to count or calculate. These observations converge with developmental data showing that fingers play a critical role in the acquisition of arithmetic knowledge. Further studies evidenced specific interference of finger movements with arithmetic problem solving in adults, raising the question of whether or not finger and number manipulations rely on common brain areas. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the possible overlap between the brain areas involved in mental arithmetic and those involved in finger discrimination. Solving subtraction and multiplication problems was found to increase cerebral activation bilaterally in the horizontal part of the intraparietal sulcus (hIPS) and in the posterior part of the superior parietal lobule (PSPL). Finger discrimination was associated with increased activity in a bilateral occipito-parieto-precentral network extending from the extrastriate body area to the primary somatosensory and motor cortices. A conjunction analysis showed common areas for mental arithmetic and finger representation in the hIPS and PSPL bilaterally. Voxelwise correlations further showed that finger discrimination and mental arithmetic induced a similar pattern of activity within the parietal areas only. Pattern similarity was more important for the left than for the right hIPS and for subtraction than for multiplication. These findings provide the first evidence that the brain circuits involved in finger representation also underlie arithmetic operations in adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Dyscalculia, dysgraphia, and left-right confusion from a left posterior peri-insular infarct.

    Science.gov (United States)

    Bhattacharyya, S; Cai, X; Klein, J P

    2014-01-01

    The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI) showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation.

  9. Dyscalculia, Dysgraphia, and Left-Right Confusion from a Left Posterior Peri-Insular Infarct

    Directory of Open Access Journals (Sweden)

    S. Bhattacharyya

    2014-01-01

    Full Text Available The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation.

  10. Premature hair graying and bone mineral density.

    Science.gov (United States)

    Orr-Walker, B J; Evans, M C; Ames, R W; Clearwater, J M; Reid, I R

    1997-11-01

    In a recent case-control study, premature hair graying was found to be associated with osteopenia, suggesting that this might be a clinically useful risk factor for osteoporosis. We report a reexamination of this possibility in 293 healthy postmenopausal women. Subjects experiencing onset of hair graying in their 20s tended to have lower bone mineral density throughout the skeleton (adjusted for age and weight) than those with onset of graying later in life. The same was true for those in whom the majority of their hair was gray by the age of 40 yr (n = 16), in whom bone density was reduced by 7% in the femoral neck, 8% in the femoral trochanter, and 4% in the total body (P gray. Bone density at the lumbar spine and Ward's triangle showed similar trends that were not significant. However, premature hair graying explained only 0.6-1.3% of the variance in bone mineral density within the population. We conclude that premature hair graying is associated with low bone density, but that its infrequency in the normal postmenopausal population leads to its accounting for only a tiny fraction of the variance of bone density.

  11. Graying of the human hair follicle.

    Science.gov (United States)

    Peters, Eva M J; Imfeld, Dominik; Gräub, Remo

    2011-01-01

    Quality of life in our society depends crucially on healthy aging, a hallmark of which is the graying hair follicle. During anagen melanocyte precursors migrate to the hair bulb to form the pigmentary unit where they mature and synthesize melanin. Melanin is transferred to the hair shaft forming keratinocytes giving the hair its colour. Graying is the process in which distinct mechanisms lead to deterioration of the hair follicle melanocyte population. We briefly review the hair graying process and state that the aging hair follicle is a valid model for tissue specific aging and a promising target to test therapeutic intervention.

  12. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    Science.gov (United States)

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Investigation of Parietal Polysaccharides from Retama raetam Roots ...

    African Journals Online (AJOL)

    These results indicate the presence of the homogalacturonans and rhamnogalacturonans in pectin. This study constitutes the preliminary data obtained in the biochemical analysis of the parietal compounds of the roots of a species which grows in an arid area in comparison with those of its aerial parts. Keywords: Retama ...

  14. Significance of parietal projection in radiosotope scintigraphy of the brain

    International Nuclear Information System (INIS)

    Fomchenkov, E.P.

    1978-01-01

    The diagnostic value of the isotope scintigraphy of the brain in the parieal projection with the change of the dip angle of the gamma-chamber detector to the plane of the physiological horizontal was revealed. The observation was made on 100 patients with suspected presence of the volumetric process of the brain. Three variants of placing were studied: the parietal projection - standard (collimator plane parallel to the plane of physiological horizontal and strictly perpendicular to the sagittal plane); the placing with an angle of 30 deg between the detector plane and the physiological horizontal, opened at the front (posterio-parietal); placing with an angle of 30 deg between the detector plane and the physiological horizontal opened at the back (anterio-parietal). A comparative analysis of scintigrams with focal processes of the brain showed the largest informativeness of the proposed modification of the parietal projection in the form of a change of the dip angle of the gamma-chamber detector plane to the plane of the physiological horizontal opened at the back; this makes it possible to reveal more thoroughly the focus of the increased, pathological accumulation of the isotope in different parts of the skull, where the use of as standard placing is of small informativeness

  15. Bilateral, posterior parietal polymicrogyria as part of speech therapy ...

    African Journals Online (AJOL)

    parietal polymicrogyria in a child with speech pathology. Introduction. Polymicrogyria is an abnormality in the ... Academic Hospital Speech Therapy and Audiology Department. The parents' main concern was the child's ... A clinical diagnosis of oral apraxia was made. During the video fluoroscopy it was very difficult to ...

  16. Parietal epithelial cells: their role in health and disease.

    Science.gov (United States)

    Romagnani, Paola

    2011-01-01

    Parietal epithelial cells of Bowman's capsules were first described by Sir William Bowman in 1842 in his paper On the Structure and Use of the Malpighian Bodies of the Kidney [London, Taylor, 1842], but since then their functions have remained poorly understood. A large body of evidence has recently suggested that parietal epithelial cells represent a reservoir of renal progenitors in adult human kidney which generate novel podocytes during childhood and adolescence, and can regenerate injured podocytes. The discovery that parietal epithelial cells represent a potential source for podocyte regeneration suggests that podocyte injury can be repaired. However, recent results also suggest that an abnormal proliferative response of renal progenitors to podocyte injury can generate hyperplastic glomerular lesions that are observed in crescentic glomerulonephritis and other types of glomerular disorders. Taken together, these results establish an entirely novel view that changes the way of thinking about renal physiology and pathophysiology, and suggest that understanding how self-renewal and fate decision of parietal epithelial cells in response to podocyte injury may be perturbed or modulated will be crucial for obtaining novel tools for prevention and treatment of glomerulosclerosis. Copyright © 2011 S. Karger AG, Basel.

  17. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  18. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  19. Parietal cells-new perspectives in glomerular disease

    NARCIS (Netherlands)

    Miesen, L.; Steenbergen, E.; Smeets, B.

    2017-01-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and

  20. Bilaterally symmetrical foramina on the parietal bone of the bovine ...

    African Journals Online (AJOL)

    Different bovine skull developmental defects have been reported with variable frequency of occurrence. We hereby report a bilaterally symmetrical parietal foramina in a processed skull meant for osteological practical at the Department of Veterinary Anatomy, University of Jos, Nigeria. The depths of each of the foramina ...

  1. Spatial transformations in the parietal cortex using basis functions.

    Science.gov (United States)

    Pouget, A; Sejnowski, T J

    1997-03-01

    Sensorimotor transformations are nonlinear mappings of sensory inputs to motor responses. We explore here the possibility that the responses of single neurons in the parietal cortex serve as basis functions for these transformations. Basis function decomposition is a general method for approximating nonlinear functions that is computationally efficient and well suited for adaptive modification. In particular, the responses of single parietal neurons can be approximated by the product of a Gaussian function of retinal location and a sigmoid function of eye position, called a gain field. A large set of such functions forms a basis set that can be used to perform an arbitrary motor response through a direct projection. We compare this hypothesis with other approaches that are commonly used to model population codes, such as computational maps and vectorial representations. Neither of these alternatives can fully account for the responses of parietal neurons, and they are computationally less efficient for nonlinear transformations. Basis functions also have the advantage of not depending on any coordinate system or reference frame. As a consequence, the position of an object can be represented in multiple reference frames simultaneously, a property consistent with the behavior of hemineglect patients with lesions in the parietal cortex.

  2. Gray and white matter correlates of the Big Five personality traits.

    Science.gov (United States)

    Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto

    2017-05-04

    Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. ARE LEFT HANDED SURGEONS LEFT OUT?

    OpenAIRE

    SriKamkshi Kothandaraman; Balasubramanian Thiagarajan

    2012-01-01

    Being a left-handed surgeon, more specifically a left-handed ENT surgeon, presents a unique pattern of difficulties.This article is an overview of left-handedness and a personal account of the specific difficulties a left-handed ENT surgeon faces.

  4. [Brodmann Areas 39 and 40: Human Parietal Association Area and Higher Cortical Function].

    Science.gov (United States)

    Sakurai, Yasuhisa

    2017-04-01

    The anatomy and function of the angular gyrus (Brodmann Area 39) and supramarginal gyrus (Brodmann Area 40) are described here. Both gyri constitute the inferior part of the parietal lobe. Association fibers from the angular gyrus project to the dorsolateral prefrontal cortex via the superior longitudinal fasciculus (SLF) II/arcuate fasciculus (AF), whereas those from the supramarginal gyrus project to the ventrolateral prefrontal cortex via SLF III/AF. Damage to the left angular gyrus causes kanji agraphia (lexical agraphia) and mild anomia, whereas damage to the left supramarginal gyrus causes kana alexia (phonological dyslexia) and kana agraphia (phonological agraphia). Damage to either gyrus causes Gerstmann's syndrome (finger agnosia, left-right disorientation, agraphia and acalculia) and verbal short-term memory impairment. "Angular alexia with agraphia" results from damage to the middle occipital gyrus posterior to the angular gyrus. Alexia and agraphia, with lesions in the angular or supramarginal gyrus, are characterized by kana transposition errors in reading words, which suggests the impairment of sequential phonological processing.

  5. Association of regional gray matter volumes in the brain with disruptive behavior disorders in male and female children.

    Science.gov (United States)

    Michalska, Kalina J; Decety, Jean; Zeffiro, Thomas A; Lahey, Benjamin B

    2015-01-01

    Because the disruptive behavior disorders are highly impairing conditions, it is important to determine if structural variations in brain are associated early in life with these problems among children. Structural MRI data were acquired from 111 9-11 year olds (58 girls and 53 boys), 43 who met diagnostic criteria for oppositional defiant disorder and/or conduct disorder and 68 healthy controls. Voxel-based morphometry was used to examine associations of behavioral measures with gray matter volumes in whole-brain analyses. Unlike previous studies, variation in gray matter volume was not found to be associated with a disruptive behavior disorder diagnosis in any brain region at p < .05 with FWE correction. Nonetheless, an inverse nonlinear association of the number of conduct disorder (CD) symptoms with gray matter volume along the left superior temporal sulcus was significant in the full sample (p < .05 with FWE correction), with a trend in the right hemisphere (p < 0.001 uncorrected). There also was a trend toward a stronger association of the number of CD symptoms with gray matter volume along the left superior temporal sulcus in girls than boys. The present findings did not replicate previous findings of reduced gray matter volumes in the anterior insula, amygdala, and frontal cortex in youth with CD, but are consistent with previous findings of reduced gray matter volumes in temporal regions, particularly in girls.

  6. Electrochemical conversion of micropollutants in gray water

    NARCIS (Netherlands)

    Butkovskyi, A.; Jeremiasse, A.W.; Hernandez Leal, L.; Zande, van der T.; Rijnaarts, H.; Zeeman, G.

    2014-01-01

    Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor

  7. Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study.

    Science.gov (United States)

    Motomura, Kazuya; Fujii, Masazumi; Maesawa, Satoshi; Kuramitsu, Shunichiro; Natsume, Atsushi; Wakabayashi, Toshihiko

    2014-07-01

    Alexia and agraphia are disorders common to the left inferior parietal lobule, including the angular and supramarginal gyri. However, it is still unclear how these cortical regions interact with other cortical sites and what the most important white matter tracts are in relation to reading and writing processes. Here, the authors present the case of a patient who underwent an awake craniotomy for a left inferior parietal lobule glioma using direct cortical and subcortical electrostimulation. The use of subcortical stimulation allowed identification of the specific white matter tracts associated with reading and writing. These tracts were found as portions of the dorsal inferior frontooccipital fasciculus (IFOF) fibers in the deep parietal lobe that are responsible for connecting the frontal lobe to the superior parietal lobule. These findings are consistent with previous diffusion tensor imaging tractography and functional MRI studies, which suggest that the IFOF may play a role in the reading and writing processes. This is the first report of transient alexia and agraphia elicited through intraoperative direct subcortical electrostimulation, and the findings support the crucial role of the IFOF in reading and writing.

  8. Differential activation of frontal and parietal regions during visual word recognition: an optical topography study.

    Science.gov (United States)

    Hofmann, Markus J; Herrmann, Martin J; Dan, Ippeita; Obrig, Hellmuth; Conrad, Markus; Kuchinke, Lars; Jacobs, Arthur M; Fallgatter, Andreas J

    2008-04-15

    The present study examined cortical oxygenation changes during lexical decision on words and pseudowords using functional Near-Infrared Spectroscopy (fNIRS). Focal hyperoxygenation as an indicator of functional activation was compared over three target areas over the left hemisphere. A 52-channel Hitachi ETG-4000 was used covering the superior frontal gyrus (SFG), the left inferior parietal gyrus (IPG) and the left inferior frontal gyrus (IFG). To allow for anatomical inference a recently developed probabilistic mapping method was used to determine the most likely anatomic locations of the changes in cortical activation [Tsuzuki, D., Jurcak, V., Singh, A.K., Okamoto, M., Watanabe, E., Dan, I., 2007. Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage 43 (4), 1506-1518. Subjects made lexical decisions on 50 low and 50 high frequency words and 100 pseudowords. With respect to the lexicality effect, words elicited a larger focal hyperoxygenation in comparison to pseudowords in two regions identified as the SFG and left IPG. The SFG activation difference was interpreted to reflect decision-related mechanisms according to the Multiple Read-Out Model [Grainger, J., Jacobs, A.M., 1996. Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review 103, 518-565]. The greater oxygenation response to words in the left IPG suggests that this region connects orthographic, phonological and semantic representations. A decrease of deoxygenated hemoglobin was observed to low frequency in comparison to high frequency words in a region identified as IFG. This region's sensitivity to word frequency suggests its involvement in grapheme-phoneme conversion, or its role during the selection of pre-activated semantic candidates.

  9. Louis Harold Gray (1905-1965)

    International Nuclear Information System (INIS)

    Tomljenovic, I.

    2003-01-01

    15th CGPM (Conference General de Poids et Mesures) conference of 1975 accepted gray (Gy) as the unit of absorbed dose in honour of British physicist and radiation biologist Louis Harold Gray. This unit is a part of the SI system for units and measures. The idea of the article is to give a closer look into the life and work of this great scientist. (author)

  10. Eye, nose, hair, and throat: external anatomy of the head of a neonate gray whale (Cetacea, Mysticeti, Eschrichtiidae).

    Science.gov (United States)

    Berta, Annalisa; Ekdale, Eric G; Zellmer, Nicholas T; Deméré, Thomas A; Kienle, Sarah S; Smallcomb, Meghan

    2015-04-01

    Information is scarce on gray whale (Eschrichtius robustus) anatomy and that of mysticetes in general. Dissection of the head of a neonatal gray whale revealed novel anatomical details of the eye, blowhole, incisive papilla with associated nasopalatine ducts, sensory hairs, and throat grooves. Compared to a similar sized right whale calf, the gray whale eyeball is nearly twice as long. The nasal cartilages of the gray whale, located between the blowholes, differ from the bowhead in having accessory cartilages. A small, fleshy incisive papilla bordered by two blind nasopalatine pits near the palate's rostral tip, previously undescribed in gray whales, may be associated with the vomeronasal organ, although histological evidence is needed for definitive identification. Less well known among mysticetes are the numerous elongated, stiff sensory hairs (vibrissae) observed on the gray whale rostrum from the ventral tip to the blowhole and on the mandible. These hairs are concentrated on the chin, and those on the lower jaw are arranged in a V-shaped pattern. We confirm the presence of two primary, anteriorly converging throat grooves, confined to the throat region similar to those of ziphiid and physeteroid odontocetes. A third, shorter groove occurs lateral to the left primary groove. The throat grooves in the gray whale have been implicated in gular expansion during suction feeding. © 2015 Wiley Periodicals, Inc.

  11. MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-420 MQ-1C Gray Eagle Unmanned Aircraft System (MQ-1C Gray Eagle ) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 21, 2016 17:33:19 UNCLASSIFIED MQ-1C Gray Eagle December 2015 SAR March 21...Gray Eagle December 2015 SAR March 21, 2016 17:33:19 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM

  12. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    Science.gov (United States)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  13. Gray matter atrophy in narcolepsy: An activation likelihood estimation meta-analysis.

    Science.gov (United States)

    Weng, Hsu-Huei; Chen, Chih-Feng; Tsai, Yuan-Hsiung; Wu, Chih-Ying; Lee, Meng; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang; Yang, Chun-Yuh

    2015-12-01

    The authors reviewed the literature on the use of voxel-based morphometry (VBM) in narcolepsy magnetic resonance imaging (MRI) studies via the use of a meta-analysis of neuroimaging to identify concordant and specific structural deficits in patients with narcolepsy as compared with healthy subjects. We used PubMed to retrieve articles published between January 2000 and March 2014. The authors included all VBM research on narcolepsy and compared the findings of the studies by using gray matter volume (GMV) or gray matter concentration (GMC) to index differences in gray matter. Stereotactic data were extracted from 8 VBM studies of 149 narcoleptic patients and 162 control subjects. We applied activation likelihood estimation (ALE) technique and found significant regional gray matter reduction in the bilateral hypothalamus, thalamus, globus pallidus, extending to nucleus accumbens (NAcc) and anterior cingulate cortex (ACC), left mid orbital and rectal gyri (BAs 10 and 11), right inferior frontal gyrus (BA 47), and the right superior temporal gyrus (BA 41) in patients with narcolepsy. The significant gray matter deficits in narcoleptic patients occurred in the bilateral hypothalamus and frontotemporal regions, which may be related to the emotional processing abnormalities and orexin/hypocretin pathway common among populations of patients with narcolepsy. Copyright © 2015. Published by Elsevier Ltd.

  14. Acoustic cue selection and discrimination under degradation: differential contributions of the inferior parietal and posterior temporal cortices.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Obleser, Jonas

    2015-02-01

    Auditory categorization is a vital skill for perceiving the acoustic environment. Categorization depends on the discriminability of the sensory input as well as on the ability of the listener to adaptively make use of the relevant features of the sound. Previous studies on categorization have focused either on speech sounds when studying discriminability or on visual stimuli when assessing optimal cue utilization. Here, by contrast, we examined neural sensitivity to stimulus discriminability and optimal cue utilization when categorizing novel, non-speech auditory stimuli not affected by long-term familiarity. In a functional magnetic resonance imaging (fMRI) experiment, listeners categorized sounds from two category distributions, differing along two acoustic dimensions: spectral shape and duration. By introducing spectral degradation after the first half of the experiment, we manipulated both stimulus discriminability and the relative informativeness of acoustic cues. Degradation caused an overall decrease in discriminability based on spectral shape, and therefore enhanced the informativeness of duration. A relative increase in duration-cue utilization was accompanied by increased activity in left parietal cortex. Further, discriminability modulated right planum temporale activity to a higher degree when stimuli were spectrally degraded than when they were not. These findings provide support for separable contributions of parietal and posterior temporal areas to perceptual categorization. The parietal cortex seems to support the selective utilization of informative stimulus cues, while the posterior superior temporal cortex as a primarily auditory brain area supports discriminability particularly under acoustic degradation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Patterns of gray matter atrophy in dementia with Lewy bodies: a voxel-based morphometry study.

    Science.gov (United States)

    Watson, Rosie; O'Brien, John T; Barber, Robert; Blamire, Andrew M

    2012-04-01

    Dementia with Lewy bodies (DLB) is a common form of dementia characterized by visual hallucinations, cognitive fluctuation and parkinsonism. We aimed to compare the patterns of gray matter atrophy in DLB with those in Alzheimer's disease (AD) and normal aging, and to investigate the relationship between atrophy and cognitive measures. We used voxel-based morphometry (VBM) to investigate gray matter (GM) loss in DLB (n = 35; mean age = 78.4; MMSE = 20.3), AD (n = 36; mean age = 78.3; MMSE = 19.5) and similar aged controls (n = 35; mean age = 76.7; MMSE = 29.1). T1 weighted MRI scans were acquired at 3 Tesla from all subjects and analyzed using VBM-DARTEL in SPM8. Cognitive function was assessed using the Cambridge Cognitive Examination (CAMCOG). We found reduced gray matter in temporal, parietal, occipital, and subcortical structures in DLB when compared to normal controls. The degree of atrophy was less than that observed in AD. There was significantly more medial temporal lobe atrophy in the AD group when compared with DLB. We did not find a correlation between total CAMCOG score and atrophy, but the CAMCOG memory subscale score correlated with temporal lobe atrophy in both the DLB and combined DLB/AD group. DLB is associated with less gray matter atrophy and relative preservation of the medial temporal lobe when compared to AD. Degree of medial temporal atrophy may be a useful imaging biomarker and our results provide support for its inclusion in the revised consensus criteria for DLB.

  16. Voxel-based morphometry (VBM) based assessment of gray matter loss in medial temporal lobe epilepsy; comparison with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye Jin; Lee, Ho Young; Lee, Jae Sung; Kang, Eun Joo; Lee, Sang Gun; Chang, Kee Hyun; Lee, Dong Soo [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-02-01

    The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron emission tomography (FDG PET). MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was performed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

  17. Voxel-based morphometry (VBM) based assessment of gray matter loss in medial temporal lobe epilepsy; comparison with FDG PET

    International Nuclear Information System (INIS)

    Kang, Hye Jin; Lee, Ho Young; Lee, Jae Sung; Kang, Eun Joo; Lee, Sang Gun; Chang, Kee Hyun; Lee, Dong Soo

    2004-01-01

    The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron emission tomography (FDG PET). MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was performed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones

  18. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    OpenAIRE

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glo...

  19. Evaluation of skull strength following parietal bone graft harvest.

    Science.gov (United States)

    Laure, Boris; Tranquart, François; Geais, Laurent; Goga, Dominique

    2010-11-01

    Parietal bone grafts are commonly used in craniomaxillofacial surgery. The primary aim of this study was to quantify the loss of strength following monocortical parietal bone graft harvest. The secondary aim was to establish a correlation between strength and thickness of calvaria. Thirty fresh human cadaver heads (nonfrozen, unembalmed heads) were used for this study. Loss of strength was determined by comparing the maximum impact resistance of bone on the donor side versus the intact side, using a precalibrated pendulum Charpy impact testing machine. Thickness was measured using a surgical navigation system with optoelectronic tracking. Loss of strength at the donor site was 36 percent (p=0.0000000001) for a 40 percent loss of thickness. Although correlation between these two parameters is rather moderate (r=0.46), it is highly significant (p<0.0001). Although loss of strength is quite significant, serious complications at the donor site are rare. As shown in this study, these risks are nonnegligible. However, because of strong legal pressure, surgeons must carefully weigh the risks incurred by the patient against the expected benefits, whether immediate or deferred. Therefore, the patient should receive well-documented information before such monocortical parietal bone graft harvest is performed.

  20. Gestalt perception is associated with reduced parietal beta oscillations.

    Science.gov (United States)

    Zaretskaya, Natalia; Bartels, Andreas

    2015-05-15

    The ability to perceive composite objects as a whole is fundamental for visual perception in a complex and cluttered natural environment. This ability may be mediated by increased communication between neural representations of distinct object elements, and has been linked to increased synchronization of oscillatory brain activity in the gamma band. Previous studies of perceptual grouping either guided attention between local and global aspects of a given stimulus or manipulated its physical properties to achieve grouped and ungrouped perceptual conditions. In contrast to those studies, we fully matched the physical properties underlying global and local percepts using a bistable stimulus that causes the viewer to perceive either local motion of multiple elements or global motion of two illusory shapes without any external change. To test the synchronization hypothesis we recorded brain activity with EEG, while human participants viewed the stimulus and reported changes in their perception. In contrast to previous findings we show that power of the beta-band was lower during perception of global Gestalt than during that of local elements. Source localization places these differences in the posterior parietal cortex, overlapping with a site previously associated with both attention and Gestalt perception. These findings reveal a role of parietal beta-band activity in internally, rather than externally or attention-driven processes of Gestalt perception. They also add to the growing evidence for shared neural substrates of attention and Gestalt perception, both being linked to parietal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Anodal transcranial direct current stimulation of parietal cortex enhances action naming in Corticobasal Syndrome

    Directory of Open Access Journals (Sweden)

    Rosa eManenti

    2015-04-01

    Full Text Available Background: Corticobasal Syndrome (CBS is a neurodegenerative disorder that overlaps both clinically and neuropathologically with Frontotemporal dementia and is characterized by apraxia, alien limb phenomena, cortical sensory loss, cognitive impairment, behavioural changes and aphasia. It has been recently demonstrated that transcranial direct current stimulation (tDCS improves naming in healthy subjects and in subjects with language deficits.Objective: The aim of the present study was to explore the extent to which anodal transcranial direct current stimulation (anodal tDCS over the parietal cortex (PARC could facilitate naming performance in CBS subjects. Methods: Anodal tDCS was applied to the left and right PARC during object and action naming in seventeen patients with a diagnosis of possible CBS. Participants underwent two sessions of anodal tDCS (left and right and one session of placebo tDCS. Vocal responses were recorded and analyzed for accuracy and vocal Reaction Times (vRTs. Results: A shortening of naming latency for actions was observed only after active anodal stimulation over the left PARC, as compared to placebo and right stimulations. No effects have been reported for accuracy.Conclusions: Our preliminary finding demonstrated that tDCS decreased vocal reaction time during action naming in a sample of patients with CBS. A possible explanation of our results is that anodal tDCS over the left PARC effects the brain network implicated in action observation and representation. Further studies, based on larger patient samples, should be conducted to investigate the usefulness of tDCS as an additional treatment of linguistic deficits in CBS patients.

  2. Retention and relearning of spatial delayed alternation in rats after combined or sequential lesions of the prefrontal and parietal cortex

    DEFF Research Database (Denmark)

    Wörtwein, Gitta; Mogensen, Jesper; Divac, Ivan

    1993-01-01

    Neurobiologi, præfrontal cortex, delayed alternation, rotte, parietal cortex, funktionel genopretning......Neurobiologi, præfrontal cortex, delayed alternation, rotte, parietal cortex, funktionel genopretning...

  3. Gray Matter Volume of the Lingual Gyrus Mediates the Relationship between Inhibition Function and Divergent Thinking

    Directory of Open Access Journals (Sweden)

    Lijie Zhang

    2016-10-01

    Full Text Available Abstract: Although previous research provides converging evidence for the role of posterior regions of the brain (including temporal, occipital, and parietal regions involved in inhibition on creative thinking, it remains unclear as to how these regions influence individual differences in creative thinking. Thus, we explored the relationship between posterior regions (i.e., hippocampal, parahippocampal, lingual gyrus, precuneus, and cuneus , inhibition function, and divergent thinking in 128 healthy college students. The results revealed that lower inhibition was associated with larger gray matter volume (GMV in the lingual gyrus, which in turn was associated with higher divergent thinking. In addition, GMV in the lingual gyrus mediated the association between inhibition and divergent thinking. These results provide new evidence for the role of inhibition in creative thinking. Inhibition may affect the amount of information stored in long-term memory, which, in turn influences divergent thinking.

  4. Online repetitive transcranial magnetic stimulation (TMS) to the parietal operculum disrupts haptic memory for grasping.

    Science.gov (United States)

    Cattaneo, Luigi; Maule, Francesca; Tabarelli, Davide; Brochier, Thomas; Barchiesi, Guido

    2015-11-01

    The parietal operculum (OP) contains haptic memory on the geometry of objects that is readily transferrable to the motor cortex but a causal role of OP in memory-guided grasping is only speculative. We explored this issue by using online high-frequency repetitive transcranial magnetic stimulation (rTMS). The experimental task was performed by blindfolded participants acting on objects of variable size. Trials consisted in three phases: haptic exploration of an object, delay, and reach-grasp movement onto the explored object. Motor performance was evaluated by the kinematics of finger aperture. Online rTMS was applied to the left OP region separately in each of the three phases of the task. The results showed that rTMS altered grip aperture only when applied in the delay phase to the OP. In a second experiment a haptic discriminative (match-to-sample) task was carried out on objects similar to those used in the first experiment. Online rTMS was applied to the left OP. No psychophysical effects were induced by rTMS on the detection of explicit haptic object size. We conclude that neural activity in the OP region is necessary for proficient memory-guided haptic grasping. The function of OP seems to be critical while maintaining the haptic memory trace and less so while encoding it or retrieving it. © 2015 Wiley Periodicals, Inc.

  5. Conflicting Demands of Abstract and Specific Visual Object Processing Resolved by Fronto-Parietal Networks

    Science.gov (United States)

    McMenamin, Brenton W.; Marsolek, Chad J.; Morseth, Brianna K.; Speer, MacKenzie F.; Burton, Philip C.; Burgund, E. Darcy

    2016-01-01

    Object categorization and exemplar identification place conflicting demands on the visual system, yet humans easily perform these fundamentally contradictory tasks. Previous studies suggest the existence of dissociable visual processing subsystems to accomplish the two abilities – an abstract category (AC) subsystem that operates effectively in the left hemisphere, and a specific exemplar (SE) subsystem that operates effectively in the right hemisphere. This multiple subsystems theory explains a range of visual abilities, but previous studies have not explored what mechanisms exist for coordinating the function of multiple subsystems and/or resolving the conflicts that would arise between them. We collected functional MRI data while participants performed two variants of a cue-probe working memory task that required AC or SE processing. During the maintenance phase of the task, the bilateral intraparietal sulcus (IPS) exhibited hemispheric asymmetries in functional connectivity consistent with exerting proactive control over the two visual subsystems: greater connectivity to the left hemisphere during the AC task, and greater connectivity to the right hemisphere during the SE task. Moreover, probe-evoked activation revealed activity in a broad fronto-parietal network (containing IPS) associated with reactive control when the two visual subsystems were in conflict, and variations in this conflict signal across trials was related to the visual similarity of the cue/probe stimulus pairs. Although many studies have confirmed the existence of multiple visual processing subsystems, this study is the first to identify the mechanisms responsible for coordinating their operations. PMID:26883940

  6. Fronto-Parietal Brain Responses to Visuotactile Congruence in an Anatomical Reference Frame

    Directory of Open Access Journals (Sweden)

    Jakub Limanowski

    2018-03-01

    Full Text Available Spatially and temporally congruent visuotactile stimulation of a fake hand together with one’s real hand may result in an illusory self-attribution of the fake hand. Although this illusion relies on a representation of the two touched body parts in external space, there is tentative evidence that, for the illusion to occur, the seen and felt touches also need to be congruent in an anatomical reference frame. We used functional magnetic resonance imaging and a somatotopical, virtual reality-based setup to isolate the neuronal basis of such a comparison. Participants’ index or little finger was synchronously touched with the index or little finger of a virtual hand, under congruent or incongruent orientations of the real and virtual hands. The left ventral premotor cortex responded significantly more strongly to visuotactile co-stimulation of the same versus different fingers of the virtual and real hand. Conversely, the left anterior intraparietal sulcus responded significantly more strongly to co-stimulation of different versus same fingers. Both responses were independent of hand orientation congruence and of spatial congruence of the visuotactile stimuli. Our results suggest that fronto-parietal areas previously associated with multisensory processing within peripersonal space and with tactile remapping evaluate the congruence of visuotactile stimulation on the body according to an anatomical reference frame.

  7. Transcranial direct current stimulation to the parietal cortex in hemispatial neglect: A feasibility study.

    Science.gov (United States)

    Smit, Miranda; Schutter, Dennis J L G; Nijboer, Tanja C W; Visser-Meily, Johanna M A; Kappelle, L Jaap; Kant, Neeltje; Penninx, Janne; Dijkerman, H Chris

    2015-07-01

    Prior research suggests that dampening neural activity of the intact, presumably overactive hemisphere, combined with increasing neural activity in the damaged hemisphere, might restore cortical interhemispheric balance and reduce neglect. In the present study we repeatedly applied a relatively new technique, transcranial direct current stimulation (tDCS), to the posterior parietal cortex to modulate spontaneous neural activity levels in a polarity dependent fashion to find evidence for improvements in severe hemispatial neglect in chronic patients. Eighty-nine patients were initially identified from our databases as having neglect, after thoroughly screening databases, consulting medical practitioners and baseline testing, only five met our inclusion criteria and agreed to participate. Sixty-five patients were excluded as they did not meet safety criteria for tDCS (epilepsy, metal implants), suffered from other medical conditions (i.e., heart disease, epilepsy, current psychiatric disorder) or displayed only mild neglect at baseline testing. Five patients with severe chronic hemispatial neglect were enrolled in a double-blind, placebo-controlled treatment program. TDCS or placebo was applied for 20 minutes over the left (cathodal) and right (anodal) posterior parietal cortex at an intensity of 2 mA on five consecutive days. Treatment conditions were separated by a four week wash-out period. Baseline corrected change in performance on the conventional subtests of the Behavioral Inattention Test (BIT) was our primary endpoint. No treatment-related effects were observed for the BIT change scores and performance on individual subtests. Moreover, patients' performance somewhat improved only during the stimulation period (day one vs day five, irrespective of whether it was placebo or tDCS), but not thirty days later, indicating a practice effect. The present study does not provide evidence that tDCS to the posterior parietal cortex improves chronic hemispatial neglect

  8. Gray Matter Alterations in Adults with Attention-Deficit/Hyperactivity Disorder Identified by Voxel Based Morphometry

    Science.gov (United States)

    Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos

    2014-01-01

    Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160

  9. Meta-analysis: How does posterior parietal cortex contribute to reasoning?

    Directory of Open Access Journals (Sweden)

    Carter eWendelken

    2015-01-01

    Full Text Available Reasoning depends on the contribution of posterior parietal cortex (PPC. But PPC is involved in many basic operations -- including spatial attention, mathematical cognition, working memory, long-term memory, and language -- and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: 1 reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing, 2 reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC, and 3 reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest. Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL. Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific

  10. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Directory of Open Access Journals (Sweden)

    Marjorie Dole

    Full Text Available In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG and the superior temporal Sulcus (STS in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution

  11. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  12. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Science.gov (United States)

    Dole, Marjorie; Meunier, Fanny; Hoen, Michel

    2013-01-01

    In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG) and the superior temporal Sulcus (STS) in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution anomalies and the

  13. Comparing Gray and White Mineral Trioxide Aggregate as a Repair Material for Furcation Perforation: An in Vitro Dye Extraction Study

    Science.gov (United States)

    Patel, Kiran; Baba, Suheel Manzoor; Jaiswal, Shikha; Venkataraghavan, Karthik; Jani, Mehul

    2014-01-01

    Introduction: Furcation perforation can have a negative impact on the prognosis of the affected tooth by compromising the attached apparatus. Hence these perforations require immediate repair. A variety of materials have been suggested for repair, of that MTA is the most promising material. The purpose of this study was to compare the ability of Gray and White MTA to seal furcation perforations using a dye extraction method under spectrophotometer. Materials and Methods: A total of 60 permanent mandibular molars were randomly divided into four experimental groups of 15 samples each as follows: Group A: Perforation repaired with White MTA. Group B: Perforation repaired with Gray MTA. Group C: Perforation left unsealed (positive). Group D: without perforation (negative). Dye extraction was performed using full concentration nitric acid. Dye absorbance was measured at 550 nm using spectrophotometer. The data analyzed using one-way-Anova Ratio and Unpaired t-test showing statistically significance difference among the groups. Result: It was seen that Group D samples without perforation showed least absorbance followed by Group A (perforation repaired with White MTA) and Group B (perforation repaired with Gray MTA). Group C (perforation left unsealed) showed highest absorbance. Conclusion: The White and Gray Mineral Trioxide Aggregate performed similarly as a furcation perforation repair material. There was no significant difference between the Gray MTA and White MTA. PMID:25478452

  14. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan, E-mail: clare1475@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lin Fuchun, E-mail: fclin@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Du Yasong, E-mail: yasongdu@yahoo.com.cn [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Qin Lingdi, E-mail: flyingfool838@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Zhao Zhimin, E-mail: zmzsky@163.com [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Xu Jianrong, E-mail: xujianr@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lei Hao, E-mail: leihao@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-07-15

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  15. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Zhou Yan; Lin Fuchun; Du Yasong; Qin Lingdi; Zhao Zhimin; Xu Jianrong; Lei Hao

    2011-01-01

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  16. Optimized VBM in patients with Alzheimer's disease: gray matter loss and its correlation with cognitive function

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Hyeong; Moon, Won Jin; Chung, Eun Chul; Lee, Min Hee; Roh, Hong Gee; Park, Kwang Bo; Na, Duck Ryul [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2005-11-15

    To investigate the regional changes in gray matter volume by using optimized voxel based morphometry in the whole brain of patients with Alzheimer's disease (AD) and to determine its correlation with cognitive function. Nineteen patients with AD (mean mini mental state examination (MMSE) score = 20.4) and 19 age-matched control subjects (mean MMSE score 29) participated in this prospective study. T1-weighted 3D-SPGR scans were obtained for each subject. These T1-weighted images were spatially normalized into study-specific T1 template and segmented into gray matter, white matter and CSF. After the images were modulated and smoothed, all of the gray matter images were compared with control images by using voxel-wise statistical parametric test (two-sample-test). In patients with AD, total gray matter volume was significantly smaller than normal control (552 {+-} 39 mL vs. 632 {+-} 51 mL, {rho} 0.001). Significant gray matter loss was seen in both the hippocampus and amygdala complexs, and the parahippocampi and frontoparietal cortices ({rho} < 0.01, family wise error corrected). Left cerebral atrophy was more prominent than the right. Loss of gray matter volume in both the superior frontal gyri and left inferior temporal gyrus had a strong correlation with lower MMSE score. Optimized VBM was able to visualize pathologic changes of AD in vivo. In AD there was widespread gray matter volume loss in the frontoparietal lobes as well as the medial temporal lobes and had a strong correlation between volume loss of specific cortical areas and MMSE score.

  17. Syndecan-1 in the mouse parietal peritoneum microcirculation in inflammation.

    Directory of Open Access Journals (Sweden)

    Paulina M Kowalewska

    Full Text Available BACKGROUND: The heparan sulfate proteoglycan syndecan-1 (CD138 was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. METHODS: Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2, anti-KC (CXCL1 or anti-MCP-1 (CCL2. RESULTS AND CONCLUSION: Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β2 integrin (CD18, ICAM-1 (CD54 and VCAM-1 (CD106 did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte

  18. Temporal Evolution of Target Representation, Movement Direction Planning, and Reach Execution in Occipital-Parietal-Frontal Cortex: An fMRI Study.

    Science.gov (United States)

    Cappadocia, David C; Monaco, Simona; Chen, Ying; Blohm, Gunnar; Crawford, J Douglas

    2017-11-01

    The cortical mechanisms for reach have been studied extensively, but directionally selective mechanisms for visuospatial target memory, movement planning, and movement execution have not been clearly differentiated in the human. We used an event-related fMRI design with a visuospatial memory delay, followed by a pro-/anti-reach instruction, a planning delay, and finally a "go" instruction for movement. This sequence yielded temporally separable preparatory responses that expanded from modest parieto-frontal activation for visual target memory to broad occipital-parietal-frontal activation during planning and execution. Using the pro/anti instruction to differentiate visual and motor directional selectivity during planning, we found that one occipital area showed contralateral "visual" selectivity, whereas a broad constellation of left hemisphere occipital, parietal, and frontal areas showed contralateral "movement" selectivity. Temporal analysis of these areas through the entire memory-planning sequence revealed early visual selectivity in most areas, followed by movement selectivity in most areas, with all areas showing a stereotypical visuo-movement transition. Cross-correlation of these spatial parameters through time revealed separate spatiotemporally correlated modules for visual input, motor output, and visuo-movement transformations that spanned occipital, parietal, and frontal cortex. These results demonstrate a highly distributed occipital-parietal-frontal reach network involved in the transformation of retrospective sensory information into prospective movement plans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Blasel, Stella; Pilatus, Ulrich; Magerkurth, Joerg; Vronski, Dmitri; Mueller, Manuel; Hattingen, Elke [University of Frankfurt, Institute of Neuroradiology, Frankfurt (Germany); Stauffenberg, Maya von [Clementine Children Hospital Frankfurt, Department of Psychosomatic Medicine, Frankfurt (Germany); Woeckel, Lars [Clienia Littenheid AG, Clinic for Psychiatry and Psychotherapy, Littenheid (Switzerland)

    2012-07-15

    There are hints for changes in phospholipid membrane metabolism and structure in the brain of adolescents with anorexia nervosa (AN) using either proton ({sup 1}H) or phosphorus ({sup 31}P) magnetic resonance spectroscopic imaging (MRSI). We aimed to specify these pathological metabolite changes by combining both methods with additional focus on the neuronal metabolites glutamate (Glu) and N-acetyl-l-aspartate (NAA). Twenty-one female patients (mean 14.4 {+-} 1.9 years) and 29 female controls (mean 16 {+-} 1.6 years) underwent {sup 1}H and {sup 31}P MRSI at 3 T applied to the centrum semiovale including the anterior cingulate cortex. We assessed gray matter (GM) and white matter (WM) metabolite concentration changes of the frontal and parietal brain measuring choline(Cho)- and ethanolamine(Eth)-containing compounds, Glutamate (Glu) and glutamine (Gln) and their sum (Glx), myoinositol, NAA, and high-energy phosphates. For {sup 1}H MRSI, a clear discrimination between GM and WM concentrations was possible, showing an increase of Glx (p < 0.001), NAA (frontal p < 0.05), pooled creatine (tCr) (p < 0.001), and choline (tCho) (p < 0.05) in the GM of AN patients. The lipid catabolites glycerophosphocholine (p < 0.07) and glycerophosphoethanolamine (p < 0.03) were increased in the parietal region. Significant changes in GM metabolite concentrations were observed in AN possibly triggered by elevated excitotoxin Glu. Increased tCho may indicate modifications of membrane phospholipids due to increased catabolism in the parietal region. Since no significant changes in phosphorylated choline compounds were found for the frontal region, the tCho increase in this region may hint to fluidity changes. (orig.)

  20. Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy

    International Nuclear Information System (INIS)

    Blasel, Stella; Pilatus, Ulrich; Magerkurth, Joerg; Vronski, Dmitri; Mueller, Manuel; Hattingen, Elke; Stauffenberg, Maya von; Woeckel, Lars

    2012-01-01

    There are hints for changes in phospholipid membrane metabolism and structure in the brain of adolescents with anorexia nervosa (AN) using either proton ( 1 H) or phosphorus ( 31 P) magnetic resonance spectroscopic imaging (MRSI). We aimed to specify these pathological metabolite changes by combining both methods with additional focus on the neuronal metabolites glutamate (Glu) and N-acetyl-l-aspartate (NAA). Twenty-one female patients (mean 14.4 ± 1.9 years) and 29 female controls (mean 16 ± 1.6 years) underwent 1 H and 31 P MRSI at 3 T applied to the centrum semiovale including the anterior cingulate cortex. We assessed gray matter (GM) and white matter (WM) metabolite concentration changes of the frontal and parietal brain measuring choline(Cho)- and ethanolamine(Eth)-containing compounds, Glutamate (Glu) and glutamine (Gln) and their sum (Glx), myoinositol, NAA, and high-energy phosphates. For 1 H MRSI, a clear discrimination between GM and WM concentrations was possible, showing an increase of Glx (p < 0.001), NAA (frontal p < 0.05), pooled creatine (tCr) (p < 0.001), and choline (tCho) (p < 0.05) in the GM of AN patients. The lipid catabolites glycerophosphocholine (p < 0.07) and glycerophosphoethanolamine (p < 0.03) were increased in the parietal region. Significant changes in GM metabolite concentrations were observed in AN possibly triggered by elevated excitotoxin Glu. Increased tCho may indicate modifications of membrane phospholipids due to increased catabolism in the parietal region. Since no significant changes in phosphorylated choline compounds were found for the frontal region, the tCho increase in this region may hint to fluidity changes. (orig.)

  1. Gray, White Matter Concentration Changes and Their Correlation with Heterotopic Neurons in Temporal Lobe Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk; Joo, Eun Yun; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-02-15

    To identify changes in gray and white matter concentrations (GMC, WMC), and their relation to heterotopic neuron numbers in mesial temporal lobe epilepsy (mTLE). The gray matter or white matter concentrations of 16 left and 15 right mTLE patients who achieved an excellent surgical outcome were compared with those of 24 healthy volunteers for the left group and with 23 healthy volunteers for the right group, by optimized voxel-based morphometry using unmodulated and modulated images. A histologic count of heterotopic neurons was obtained in the white matter of the anterior temporal lobe originating from the patients' surgical specimens. In addition, the number of heterotopic neurons were tested to determine if there was a correlation with the GMC or WMC. The GMCs of the left and right mTLE groups were reduced in the ipsilateral hippocampi, bilateral thalami, precentral gyri, and in the cerebellum. The WMCs were reduced in the ipsilateral white matter of the anterior temporal lobe, bilateral parahippocampal gyri, and internal capsules, but increased in the pons and bilateral precentral gyri. The heterotopic neuron counts in the left mTLE group showed a positive correlation (r = 0.819, p < 0.0001) with GMCs and a negative correlation (r = - 0.839, p < 0.0001) with WMCs in the white matter of the anterior temporal lobe. The present study shows the abnormalities of the cortico-thalamo- hippocampal network including a gray matter volume reduction in the anterior frontal lobes and an abnormality of brain tissue concentration in the pontine area. Furthermore, heterotopic neuron numbers were significantly correlated with GMC or WMC in the left white matter of anterior temporal lobe.

  2. Transvaginal gray-scale imaging of ureteral jets in the evaluation of ureteral patency.

    Science.gov (United States)

    Haratz-Rubinstein, N; Murphy, K E; Monteagudo, A; Timor-Tritsch, I E

    1997-11-01

    We have previously reported on the value of transvaginal color Doppler evaluation of the ureteral jets to confirm ureteral patency. In this study, we attempt to validate the simple and widely available gray-scale ultrasound technique to perform the same task. Fifty consecutive patients without a history of urinary complaints were recruited. The presence or absence of the right and left ureteral jets was registered using gray-scale imaging, comparing the technique to color Doppler as the 'gold standard'. The time to the detection of the first jet as well as the total scanning time were documented for each side. The jets were seen with equal frequency on both the right and the left sides (34 observations each). In 24 patients, both jets were visualized. The median time to detection of the first jet was 47 s (range 34-79 s) for the right jet and 53 s (36-84 s) for the left jet (p = 0.42). The median total scanning time was 176 s (139-259 s). Gray-scale imaging was associated with a sensitivity of 68% and a positive predictive value of 100%. Although color Doppler results may be more attractive because of their impressive color-coded appearance, the major disadvantage of this technique is that it requires sophisticated and costly equipment. Transvaginal gray-scale imaging is a reliable and useful test for the detection of ureteral jets in the bladder. It can be used as a first-line diagnostic tool, particularly in settings where color Doppler is not available. Its benefits include safety, low cost, convenience and simplicity. With a positive predictive value of 100%, this test may be used in the postoperative patient, especially when ureteral patency is in question.

  3. Preliminary evidence for performance enhancement following parietal lobe stimulation in Developmental Dyscalculia

    Directory of Open Access Journals (Sweden)

    Teresa eIuculano

    2014-02-01

    Full Text Available Nearly 7% of the population exhibit difficulties in dealing with numbers and performing arithmetic, a condition named Developmental Dyscalculia (DD, which significantly affects the educational and professional outcomes of these individuals, as it often persists into adulthood. Research has mainly focused on behavioral rehabilitation, while little is known about performance changes and neuroplasticity induced by the concurrent application of brain-behavioral approaches. It has been shown that numerical proficiency can be enhanced by applying a small – yet constant – current through the brain, a non-invasive technique named transcranial electrical stimulation (tES. Here we combined a numerical learning paradigm with transcranial direct current stimulation (tDCS in two adults with DD to assess the potential benefits of this methodology to remediate their numerical difficulties. Subjects learned to associate artificial symbols to numerical quantities within the context of a trial and error paradigm, while tDCS was applied to the posterior parietal cortex (PPC. The first subject (DD1 received anodal stimulation to the right PPC and cathodal stimulation to the left PPC, which has been associated with numerical performance’s improvements in healthy subjects. The second subject (DD2 received anodal stimulation to the left PPC and cathodal stimulation to the right PPC, which has been shown to impair numerical performance in healthy subjects. We examined two indices of numerical proficiency: (i automaticity of number processing; and (ii mapping of numbers onto space. Our results are opposite to previous findings with non-dyscalculic subjects. Only anodal stimulation to the left PPC improved both indices of numerical proficiency. These initial results represent an important step to inform the rehabilitation of developmental learning disabilities, and have relevant applications for basic and applied research in cognitive neuroscience, rehabilitation

  4. Estudos sobre thrombose cardiaca e endocardite parietal de origem não valvular On thrombosis of heart and on mural endocarditis of non-valvular origin

    Directory of Open Access Journals (Sweden)

    C. Magarinos Torres

    1928-01-01

    is foamy and blood-streaked than by the classic signs. Cerebral embolism was a terminal accident on various cases. Yet, in some of them, along with the signs of septicemia and of cardiac insufficiency, occurred vascular, arterial (abdominal aorta, common illiac and femurals arteries and venous (extern jugular veins thromboses. 5. The autopsy revealed an inflammatory process located on the parietal endocardium, accompanied by abundant formation of ancient and recent thrombi, being the apex of the left ventricle, the junction of the anterior wall of the same ventricle, with the interventricular septum, and the right auricular appendage, the usual seats of the inflammatory changes. The region of the left branch of HIS’ bundle is spared. The other changes found consist of fibrosis of the myocardium (healed infarcts and circumscribed interstitial myocarditis, of recent visceral infarcts chiefly in lungs, spleen and brain, of recent or old infarcts in the kidneys (embolic nephrocirrhosis and in the spleen, and of vascular thromboses (abdominal aorta, common illiacs and femurals arteries and external jugular veins, aside from hydrothorax, hydroperitoneum, cutaneous oedema, chronic passive congestion of the liver, lungs, spleen and kidneys and slight ictericia. 6. In the subacute parietal endocarditis the primary lesions sometimes locate themselves at the myocardium, depending on the ischemic necrosis associated to the arteriosclerosis of the coronariae arteries, or on an specific myocarditis. Other times, the absence of these conditions is suggestive of a primary attack to the parietal endocardium which is then the primary seat of the lesions. It matters little whatever may be the initial pathogenic mechanism; once injured the parietal endocardium and there being settled the infectious injury, the endocarditis develops with peculiar clinical and anatomical characters of remarkable uniformity, constituting an anatomo-clinical syndrome. 7.-The histologic sections show that

  5. The Return to Gray Flannel Thinking.

    Science.gov (United States)

    Shields, James J., Jr.

    1979-01-01

    The liberal mood of the 1960s has given way to a conservatism reminiscent of the gray flannel thinking of the 1950s. Today's young people are cautious, cynical, and dead serious about personal survival. Innovation and liberalism in education are being replaced by fiscal conservatism and emphasis on standards. (Author/SJL)

  6. Norma Gray: Leading the Way for Children.

    Science.gov (United States)

    Casto, James E.

    1999-01-01

    Founded by Norma Gray in 1972 as an early-childhood demonstration center, River Valley Child Development Services now operates various programs related to young children in nine southern West Virginia counties and a statewide apprenticeship program for child-development specialists. Programs provide child care, after-school programs,…

  7. Spatial hearing in Cope's gray treefrog

    DEFF Research Database (Denmark)

    Caldwell, Michael S; Lee, Norman; Schrode, Katrina M

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones...

  8. Response to Biber, Gray, and Poonpon (2011)

    Science.gov (United States)

    Yang, WeiWei

    2013-01-01

    The recent "TESOL Quarterly" article by Biber, Gray, and Poonpon (2011) raises important considerations with respect to the use of syntactic complexity (SC) measures in second language (L2) studies. The article draws the field's attention to one particular measure--complexity of noun phrases (NP) (i.e., noun phrases with modifiers, such as…

  9. Structural differences in gray matter between glider pilots and non-pilots. A voxel based morphometry study.

    Directory of Open Access Journals (Sweden)

    Tosif eAhamed

    2014-11-01

    Full Text Available Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full body rotations. In the present study we investigated the neural correlates of flying a glider using voxel-based morphometry (VBM. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying such as joystick control, visuo-vestibular interaction and oculomotor control.

  10. Sylvian Fissure and Parietal Anatomy in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Tracey A. Knaus

    2012-01-01

    Full Text Available Autism spectrum disorder (ASD is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7–14 years, matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions.

  11. Elderly Patients with Ongoing Migraine Show Reduced Gray Matter Volume in Second Somatosensory Cortex.

    Science.gov (United States)

    Celle, Sébastien; Créac'h, Christelle; Boutet, Claire; Roche, Frédéric; Chouchou, Florian; Barthélémy, Jean-Claude; Peyron, Roland

    To identify structural changes in gray matter in suspected migraine generators (the hypothalamus and/or brainstem nuclei) and pain pathways and to evaluate whether structural changes in migraine are definitive or resolve with age. Voxel-based morphometry (VBM) was used to assess differences in gray matter between 39 healthy controls (HC), 25 episodic migraine (EM) subjects, and 37 subjects with a history of migraine (HM). In addition, morphometric changes were specifically investigated in suspected migraine generators and/or pain pathways. For statistical analyses, t tests between the groups were performed, and a correction for multiple comparisons was used. Whole-brain analysis did not reveal any gray or white matter changes. However, when the analysis was limited to the pain matrix, a lower gray matter volume was observed in the left second somatosensory (SII) cortex in EM subjects compared to HC subjects. This volume was significantly reduced in the EM group compared to the HC group and to the HM group, but not in the HM group compared to the HC group. Morphometric abnormalities in the SII in subjects with ongoing migraine but not in subjects with a resolved migrainous disease are likely to characterize a migrainous state rather than be a marker of brain susceptibility to migraine.

  12. Morphometric analysis of gray matter integrity in individuals with early-treated phenylketonuria.

    Science.gov (United States)

    Christ, Shawn E; Price, Mason H; Bodner, Kimberly E; Saville, Christopher; Moffitt, Amanda J; Peck, Dawn

    2016-05-01

    The most widely-reported neurologic finding in individuals with early-treated phenylketonuria (PKU) is abnormality in the white matter of the brain. In contrast, much less is known regarding the impact of PKU on cortical gray matter (GM) structures. Presently, we applied advanced morphometric methods to the analysis of high-resolution structural MRI images from a sample of 19 individuals with early-treated PKU and an age- and gender-matched comparison group of 22 healthy individuals without PKU. Data analysis revealed decreased GM volume in parietal cortex for the PKU group compared with the non-PKU group. A similar trend was observed for occipital GM volume. There was no evidence of group-related differences in frontal or temporal GM volume. Within the PKU group, we also found a significant relationship between blood phenylalanine levels and GM volume for select posterior cortical sub-regions. Taken together with previous research on white matter and gray matter abnormalities in PKU, the present findings point to the posterior cortices as the primary site of neurostructural changes related to early-treated PKU. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Smokers? hair: Does smoking cause premature hair graying?

    OpenAIRE

    Zayed, Ayman A.; Shahait, Awni D.; Ayoub, Musa N.; Yousef, Al-Motassem

    2013-01-01

    Aims: To determine if there is a significant association between premature hair graying and cigarette smoking. Materials and Methods: A cross-sectional observational study was conducted in a nonclinical setting on 207 participants on August 24 until 25, 2010. Participants were classified into two groups [premature hair graying (PHG) and normal hair graying]. PHG was defined as the first appearance of gray hair before the age of 30. Data were collected using an interview questionnaire and meas...

  14. Parietal cortex mediates conscious perception of illusory gestalt.

    Science.gov (United States)

    Zaretskaya, Natalia; Anstis, Stuart; Bartels, Andreas

    2013-01-09

    Grouping local elements into a holistic percept, also known as spatial binding, is crucial for meaningful perception. Previous studies have shown that neurons in early visual areas V1 and V2 can signal complex grouping-related information, such as illusory contours or object-border ownerships. However, relatively little is known about higher-level processes contributing to these signals and mediating global Gestalt perception. We used a novel bistable motion illusion that induced alternating and mutually exclusive vivid conscious experiences of either dynamic illusory contours forming a global Gestalt or moving ungrouped local elements while the visual stimulation remained the same. fMRI in healthy human volunteers revealed that activity fluctuations in two sites of the parietal cortex, the superior parietal lobe and the anterior intraparietal sulcus (aIPS), correlated specifically with the perception of the grouped illusory Gestalt as opposed to perception of ungrouped local elements. We then disturbed activity at these two sites in the same participants using transcranial magnetic stimulation (TMS). TMS over aIPS led to a selective shortening of the duration of the global Gestalt percept, with no effect on that of local elements. The results suggest that aIPS activity is directly involved in the process of spatial binding during effortless viewing in the healthy brain. Conscious perception of global Gestalt is therefore associated with aIPS function, similar to attention and perceptual selection.

  15. [Tourette syndrome and reading disorder in a boy with left parietofrontal tract disruption].

    Science.gov (United States)

    Martín Fernández-Mayoralas, D; Fernández-Jaén, A; Gómez Herrera, J J; Jiménez de la Peña, M

    2014-01-01

    We present the case of a nine-year-old boy with Tourette syndrome and reading disorder with a history of a severe infectious process in the late neonatal period. Brain MRI showed a left parietal malacotic cavity and diffusion tensor imaging and tractography showed a striking disruption of the white matter bundle that joins the left parietal region with the ipsilateral frontal region with involvement of the left superior longitudinal fasciculus and of the left arcuate fasciculus. Although Tourette syndrome and reading disorder are fundamentally hereditary neuropsychiatric disorders, they can also occur secondary to cerebral alterations like those existing in this boy. The introduction of modern neuroimaging techniques in patients with neuropsychiatric disorders (or the risk of developing them) can be very useful in the diagnosis and prognosis in the future. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  16. Mental Number Line Disruption in a Right-Neglect Patient after a Left-Hemisphere Stroke

    Science.gov (United States)

    Pia, Lorenzo; Corazzini, Luca Latini; Folegatti, Alessia; Gindri, Patrizia; Cauda, Franco

    2009-01-01

    A right-neglect patient with focal left-hemisphere damage to the posterior superior parietal lobe was assessed for numerical knowledge and tested on the bisection of numerical intervals and visual lines. The semantic and verbal knowledge of numbers was preserved, whereas the performance in numerical tasks that strongly emphasize the visuo-spatial…

  17. Premature graying of hair: An independent risk marker for coronary ...

    African Journals Online (AJOL)

    The presence of premature graying of hair was associated with 3.24 times the risk of CAD on multiple logistic regression analysis. CONCLUSION: The presence of premature graying of hair was associated with an increased risk of CAD in young smokers. Premature graying of hair can be used as preliminary evidence by ...

  18. Disrupted functional connectivity of periaqueductal gray subregions in episodic migraine.

    Science.gov (United States)

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Liu, Shuangfeng; Ma, Lin; Yu, Shengyuan

    2017-12-01

    The periaqueductal gray (PAG) dysfunction was recognized in migraine, and the altered dysfunction of PAG subregions were not totally detected up to now. The aim of this study is to investigate the altered functional connectivity of PAG subregions in EM patients. The brain structural images and resting state functional MR imaging (rs-fMRI) data were obtained from 18 normal controls (NC) and 18 EM patients on 3.0 T MR system. Seven subregions of PAG were classified as bilateral ventrolateral PAG (vlPAG), lateral PAG (lPAG), dorsolateral PAG (dlPAG) and dorsomedial PAG (dmPAG). The functional connectivity maps of each PAG subregion were calculated, and Two sample t-test was applied with age and sex as covariables. Bilateral vlPAG and left dlPAG presented decreased functional connectivity, and the other subregions (bilateral lPAGs, right dlPAG and dmPAG) showed no significant altered functional connectivity in EM compared with NC. The brain regions with decreased functional connectivity mainly located in bilateral prefrontal cortex(PFC), middle temporal gyrus, primary motor area (PMA) and supplementary motor area (SMA) and right ventrolateral PFC (vlPFC) in EM patients in this study. Disease duration was positively related to the functional connectivity of bilateral vlPAG on the bilateral thalamus and putamen, left pallidum and right medial orbitofrontal gyrus in EM patients. The present study suggested that the dysfunction of bilateral vlPAG and left dlPAG presented in EM, and functional evaluation of PAG subregions may be help for the diagnosis and understanding of EM pathogenesis.

  19. Interleukin-17A Promotes Parietal Cell Atrophy by Inducing ApoptosisSummary

    Directory of Open Access Journals (Sweden)

    Kevin A. Bockerstett

    Full Text Available Background & Aims: Atrophic gastritis caused by chronic inflammation in the gastric mucosa leads to the loss of gastric glandular cells, including acid-secreting parietal cells. Parietal cell atrophy in a setting of chronic inflammation induces spasmolytic polypeptide expressing metaplasia, a critical step in gastric carcinogenesis. However, the mechanisms by which inflammation causes parietal cell atrophy and spasmolytic polypeptide expressing metaplasia are not well defined. We investigated the role of interleukin-17A (IL-17A in causing parietal cell atrophy. Methods: A mouse model of autoimmune atrophic gastritis was used to examine IL-17A production during early and late stages of disease. Organoids derived from corpus glands were used to determine the direct effects of IL-17A on gastric epithelial cells. Immunofluorescent staining was used to examine IL-17A receptors and the direct effect of signaling on parietal cells. Mice were infected with an IL-17A-producing adenovirus to determine the effects of IL-17A on parietal cells in vivo. Finally, IL-17A neutralizing antibodies were administered to mice with active atrophic gastritis to evaluate the effects on parietal cell atrophy and metaplasia. Results: Increased IL-17A correlated with disease severity in mice with chronic atrophic gastritis. IL-17A caused caspase-dependent gastric organoid degeneration, which could not be rescued with a necroptosis inhibitor. Parietal cells expressed IL-17A receptors and IL-17A treatment induced apoptosis in parietal cells. Overexpressing IL-17A in vivo induced caspase-3 activation and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining in parietal cells. Finally, IL-17A neutralizing antibody decreased parietal cell atrophy and metaplasia in mice with chronic atrophic gastritis. Conclusions: These data identify IL-17A as a cytokine that promotes parietal cell apoptosis during atrophic gastritis, a

  20. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    Directory of Open Access Journals (Sweden)

    Andreas A Ioannides

    2013-08-01

    Full Text Available Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1 and motor (M1 cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45 to 70 Hz activity at latencies of 20 to 50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occured in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  1. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject.

    Science.gov (United States)

    Ioannides, Andreas A; Liu, Lichan; Poghosyan, Vahe; Saridis, George A; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45-70 Hz activity at latencies of 20-50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex.

  2. Inconsistent Effects of Parietal α-tACS on Pseudoneglect across Two Experiments: A Failed Internal Replication

    Directory of Open Access Journals (Sweden)

    Domenica Veniero

    2017-06-01

    Full Text Available Transcranial electrical stimulation (tES is being investigated as an experimental and clinical interventional technique in human participants. While promising, important limitations have been identified, including weak effect sizes and high inter- and intra-individual variability of outcomes. Here, we compared two “inhibitory” tES-techniques with supposedly different mechanisms of action as to their effects on performance in a visuospatial attention task, and report on a direct replication attempt. In two experiments, 2 × 20 healthy participants underwent tES in three separate sessions testing different protocols (10 min stimulation each with a montage targeting right parietal cortex (right parietal–left frontal, electrode-sizes: 3cm × 3cm–7 cm × 5 cm, while performing a perceptual line bisection (landmark task. The tES-protocols were compared as to their ability to modulate pseudoneglect (thought to be under right hemispheric control. In experiment 1, sham-tES was compared to transcranial alternating current stimulation at alpha frequency (10 Hz; α-tACS (expected to entrain “inhibitory” alpha oscillations and to cathodal transcranial direct current stimulation (c-tDCS (shown to suppress neuronal spiking activity. In experiment 2, we attempted to replicate the findings of experiment 1, and establish frequency-specificity by adding a 45 Hz-tACS condition to α-tACS and sham. In experiment 1, right parietal α-tACS led to the expected changes in spatial attention bias, namely a rightward shift in subjective midpoint estimation (relative to sham. However, this was not confirmed in experiment 2 and in the complete sample. Right parietal c-tDCS and 45 Hz-tACS had no effect. These results highlight the importance of replication studies, adequate statistical power and optimizing tES-interventions for establishing the robustness and reliability of electrical stimulation effects, and best practice.

  3. Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex.

    Science.gov (United States)

    Pisella, Laure

    2017-06-01

    Visual perception involves complex and active processes. We will start by explaining why visual perception is dependent on visuospatial working memory, especially the spatiotemporal integration of the perceived elements through the ocular exploration of visual scenes. Then we will present neuropsychology, transcranial magnetic stimulation and neuroimaging data yielding information on the specific role of the posterior parietal cortex of the right hemisphere in visuospatial working memory. Within the posterior parietal cortex, neuropsychology data also suggest that there might be dissociated neural substrates for deployment of attention (superior parietal lobules) and spatiotemporal integration (right inferior parietal lobule). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Is incest common in gray wolf packs?

    Science.gov (United States)

    Smith, Deborah E; Meier, Thomas J.; Geffen, Eli; Mech, L. David; Burch, John W.; Adams, Layne G.; Wayne, Robert K.

    1997-01-01

    Wolf packs generally consist of a breeding pair and their maturing offspring that help provision and protect pack young. Because the reproductive tenure in wolves is often short, reproductively mature offspring might replace their parents, resulting in sibling or parent-offspring matings. To determine the extent of incestuous pairings, we measured relatedness based on variability in 20 microsatellite loci of mated pairs, parent-offspring pairs, and siblings in two populations of gray wolves. Our 16 sampled mated pairs had values of relatedness not overlapping those of known parent-offspring or sibling dyads, which is consistent with their being unrelated or distantly related. These results suggest that full siblings or a parent and its offspring rarely mate and that incest avoidance is an important constraint on gray wolf behavioral ecology.

  5. Parietal cortex and representation of the mental Self

    DEFF Research Database (Denmark)

    Lou, Hans C; Luber, Bruce; Crupain, Michael

    2004-01-01

    For a coherent and meaningful life, conscious self-representation is mandatory. Such explicit "autonoetic consciousness" is thought to emerge by retrieval of memory of personally experienced events ("episodic memory"). During episodic retrieval, functional imaging studies consistently show differ......, confirming the hypothesis. This network is strikingly similar to the network of the resting conscious state, suggesting that self-monitoring is a core function in resting consciousness.......For a coherent and meaningful life, conscious self-representation is mandatory. Such explicit "autonoetic consciousness" is thought to emerge by retrieval of memory of personally experienced events ("episodic memory"). During episodic retrieval, functional imaging studies consistently show...... differential activity in medial prefrontal and medial parietal cortices. With positron-emission tomography, we here show that these medial regions are functionally connected and interact with lateral regions that are activated according to the degree of self-reference. During retrieval of previous judgments...

  6. Parietal lobe: from action organization to intention understanding.

    Science.gov (United States)

    Fogassi, Leonardo; Ferrari, Pier Francesco; Gesierich, Benno; Rozzi, Stefano; Chersi, Fabian; Rizzolatti, Giacomo

    2005-04-29

    Inferior parietal lobule (IPL) neurons were studied when monkeys performed motor acts embedded in different actions and when they observed similar acts done by an experimenter. Most motor IPL neurons coding a specific act (e.g., grasping) showed markedly different activations when this act was part of different actions (e.g., for eating or for placing). Many motor IPL neurons also discharged during the observation of acts done by others. Most responded differentially when the same observed act was embedded in a specific action. These neurons fired during the observation of an act, before the beginning of the subsequent acts specifying the action. Thus, these neurons not only code the observed motor act but also allow the observer to understand the agent's intentions.

  7. Development of Right-hemispheric Dominance of Inferior Parietal Lobule in Proprioceptive Illusion Task.

    Science.gov (United States)

    Naito, Eiichi; Morita, Tomoyo; Saito, Daisuke N; Ban, Midori; Shimada, Koji; Okamoto, Yuko; Kosaka, Hirotaka; Okazawa, Hidehiko; Asada, Minoru

    2017-11-01

    Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8-11 years), adolescents (12-15 years), and young adults (18-23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing. © The Author 2017. Published by Oxford University Press.

  8. Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory.

    Science.gov (United States)

    Ku, Yixuan; Zhao, Di; Bodner, Mark; Zhou, Yong-Di

    2015-08-01

    In the present study, causal roles of both the primary somatosensory cortex (SI) and the posterior parietal cortex (PPC) were investigated in a tactile unimodal working memory (WM) task. Individual magnetic resonance imaging-based single-pulse transcranial magnetic stimulation (spTMS) was applied, respectively, to the left SI (ipsilateral to tactile stimuli), right SI (contralateral to tactile stimuli) and right PPC (contralateral to tactile stimuli), while human participants were performing a tactile-tactile unimodal delayed matching-to-sample task. The time points of spTMS were 300, 600 and 900 ms after the onset of the tactile sample stimulus (duration: 200 ms). Compared with ipsilateral SI, application of spTMS over either contralateral SI or contralateral PPC at those time points significantly impaired the accuracy of task performance. Meanwhile, the deterioration in accuracy did not vary with the stimulating time points. Together, these results indicate that the tactile information is processed cooperatively by SI and PPC in the same hemisphere, starting from the early delay of the tactile unimodal WM task. This pattern of processing of tactile information is different from the pattern in tactile-visual cross-modal WM. In a tactile-visual cross-modal WM task, SI and PPC contribute to the processing sequentially, suggesting a process of sensory information transfer during the early delay between modalities. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. The role of the right temporo-parietal junction in social decision-making.

    Science.gov (United States)

    Bitsch, Florian; Berger, Philipp; Nagels, Arne; Falkenberg, Irina; Straube, Benjamin

    2018-03-26

    Identifying someone else's noncooperative intentions can prevent exploitation in social interactions. Hence, the inference of another person's mental state might be most pronounced in order to improve social decision-making. Here, we tested the hypothesis that brain regions associated with Theory of Mind (ToM), particularly the right temporo-parietal junction (rTPJ), show higher neural responses when interacting with a selfish person and that the rTPJ-activity as well as cooperative tendencies will change over time. We used functional magnetic resonance imaging (fMRI) and a modified prisoner's dilemma game in which 20 participants interacted with three fictive playing partners who behaved according to stable strategies either competitively, cooperatively or randomly during seven interaction blocks. The rTPJ and the posterior-medial prefrontal cortex showed higher activity during the interaction with a competitive compared with a cooperative playing partner. Only the rTPJ showed a high response during an early interaction phase, which preceded participants increase in defective decisions. Enhanced functional connectivity between the rTPJ and the left hippocampus suggests that social cognition and learning processes co-occur when behavioral adaptation seems beneficial. © 2018 Wiley Periodicals, Inc.

  10. Modulating Mimetic Preference with Theta Burst Stimulation of the Inferior Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Luca F. Ticini

    2017-12-01

    Full Text Available We like an object more when we see someone else reaching for it. To what extent is action observation causally linked to object valuation? In this study, we set out to answer to this question by applying continuous theta burst stimulation (cTBS over the left inferior parietal lobule (IPL. Previous studies pointed to this region as critical in the representation of others' actions and in tool manipulation. However, it is unclear to what extent IPL's involvement simply reflects action observation, rather than a casual role in objects' valuation. To clarify this issue, we measured cTBS-dependent modulations of participants' “mimetic preference ratings”, i.e., the difference between the ratings of pairs of familiar objects that were (vs. were not reached out for by other individuals. Our result shows that cTBS increased mimetic preference ratings for tools, when compared to a control condition without stimulation. This effect was selective for items that were reached for or manipulated by another individual, whilst it was not detected in non-tool objects. Although preliminary, this finding suggests that the automatic and covert simulation of an observed action, even when there is no intention to act on an object, influences explicit affective judgments for objects. This work supports embodied cognition theories by substantiating that our subjective preference is grounded in action.

  11. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts.

    Science.gov (United States)

    Heinen, Klaartje; Feredoes, Eva; Ruff, Christian C; Driver, Jon

    2017-05-01

    It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Lateralization of the posterior parietal cortex for internal monitoring of self- versus externally generated movements.

    Science.gov (United States)

    Ogawa, Kenji; Inui, Toshio

    2007-11-01

    Internal monitoring or state estimation of movements is essential for human motor control to compensate for inherent delays and noise in sensorimotor loops. Two types of internal estimation of movements exist: self-generated movements, and externally generated movements. We used functional magnetic resonance imaging to investigate differences in brain activity for internal monitoring of self- versus externally generated movements during visual occlusion. Participants tracked a sinusoidally moving target with a mouse cursor. On some trials, vision of either target (externally generated) or cursor (self-generated) movement was transiently occluded, during which subjects continued tracking by estimating current position of either the invisible target or cursor on screen. Analysis revealed that both occlusion conditions were associated with increased activity in the presupplementary motor area and decreased activity in the right lateral occipital cortex compared to a control condition with no occlusion. Moreover, the right and left posterior parietal cortex (PPC) showed greater activation during occlusion of target and cursor movements, respectively. This study suggests lateralization of the PPC for internal monitoring of internally versus externally generated movements, fully consistent with previously reported clinical findings.

  13. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    Directory of Open Access Journals (Sweden)

    Izumi Matsudaira

    Full Text Available A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old. We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM following magnetic resonance imaging (MRI. In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between

  14. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    Science.gov (United States)

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific

  15. Cultural methods and environmental conditions affecting gray mold and its management in lisianthus.

    Science.gov (United States)

    Shpialter, Lena; David, Dalia Rav; Dori, Irit; Yermiahu, Uri; Pivonia, Shimon; Levite, Rahel; Elad, Yigal

    2009-05-01

    Gray mold, caused by Botrytis cinerea, severely affects the base of the stems of lisianthus (Eustoma grandiflorum) plants as well as the cut stems left after flowers are harvested. This study examined infection of lisianthus plants by B. cinerea under laboratory and commercial greenhouse production conditions typical for Israel and evaluated cultural methods for manipulating disease development in commercial greenhouses. Although the lower nodes of lisianthus stems are typically infected, in this study, the inherent susceptibility of these nodes was less than that of nodes midway up the stem. Greater light intensity (4,860 lux) was associated with significantly more severe stem wounds than lower light intensities of 140 to 1,020 lux. Lower light intensity (140 lux) was associated with significantly more severe leaf infection. The development of gray mold along leaves toward the stem was slower at 26 degrees C than at 18 to 20 degrees C and was fastest at relative humidity (RH) levels close to saturation (>99%). B. cinerea infection developed in all stem wounds exposed to 65 to 99% RH and at temperatures of 12 to 29 degrees C. Infection severity in stem wounds (measured as lesion length) on whole plants was significantly less at 26 degrees C than at 18 or 22 degrees C, and was significantly higher at 99% RH compared with 70 to 85 and 85 to 95% RH. Severity of gray mold was the greatest at 15 to 22 degrees C and 85 to 99% RH. Under commercial greenhouse conditions, supplemental calcium (Ca(NO3)2) applied in fertigation or as a spray led to moderate yet significant reduction in disease severity. In addition, polyethylene soil cover and the use of buried drip irrigation instead of surface drip irrigation suppressed gray mold significantly on cut stems following harvest. Covering the soil with polyethylene also suppressed gray mold significantly as compared with the common practice of growing lisianthus in bare soil.

  16. Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.

    Science.gov (United States)

    Masse, Nicolas Y; Hodnefield, Jonathan M; Freedman, David J

    2017-06-21

    Persistent activity within the frontoparietal network is consistently observed during tasks that require working memory. However, the neural circuit mechanisms underlying persistent neuronal encoding within this network remain unresolved. Here, we ask how neural circuits support persistent activity by examining population recordings from posterior parietal (PPC) and prefrontal (PFC) cortices in two male monkeys that performed spatial and motion direction-based tasks that required working memory. While spatially selective persistent activity was observed in both areas, robust selective persistent activity for motion direction was only observed in PFC. Crucially, we find that this difference between mnemonic encoding in PPC and PFC is associated with the presence of functional clustering: PPC and PFC neurons up to ∼700 μm apart preferred similar spatial locations, and PFC neurons up to ∼700 μm apart preferred similar motion directions. In contrast, motion-direction tuning similarity between nearby PPC neurons was much weaker and decayed rapidly beyond ∼200 μm. We also observed a similar association between persistent activity and functional clustering in trained recurrent neural network models embedded with a columnar topology. These results suggest that functional clustering facilitates mnemonic encoding of sensory information. SIGNIFICANCE STATEMENT Working memory refers to our ability to temporarily store and manipulate information. Numerous studies have observed that, during working memory, neurons in higher cortical areas, such as the parietal and prefrontal cortices, mnemonically encode the remembered stimulus. However, several recent studies have failed to observe mnemonic encoding during working memory, raising the question as to why mnemonic encoding is observed during some, but not all, conditions. In this study, we show that mnemonic encoding occurs when a cortical area is organized such that nearby neurons preferentially respond to the same

  17. Generative complexity of Gray-Scott model

    Science.gov (United States)

    Adamatzky, Andrew

    2018-03-01

    In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).

  18. Functional development of fronto-striato-parietal networks associated with time perception

    Directory of Open Access Journals (Sweden)

    Anna eSmith

    2011-11-01

    Full Text Available Compared to our understanding of the functional maturation of executive functions, little is known about the neurofunctional development of perceptive functions. Time perception develops during late adolescence, underpinning many functions including motor and verbal processing, as well as late maturing higher order cognitive skills such as forward planning and future-related decision-making. Nothing, however, is known about the neurofunctional changes associated with time perception from childhood to adulthood. Using functional magnetic resonance imaging we explored the effects of age on the brain activation and functional connectivity of 32 male participants from 10 to 53 years of age during a time discrimination task that required the discrimination of temporal intervals of seconds differing by several hundred milliseconds. Increasing development was associated with progressive activation increases within left lateralised dorsolateral and inferior fronto-parieto-striato-thalamic brain regions. Furthermore, despite comparable task performance, adults showed increased functional connectivity between inferior/dorsolateral interhemispheric fronto-frontal activation as well as between inferior fronto-parietal regions compared with adolescents. Activation in caudate, specifically, was associated with both increasing age and better temporal discrimination. Progressive decreases in activation with age were observed in ventromedial prefrontal cortex, limbic regions and cerebellum. The findings demonstrate age-dependent developmentally dissociated neural networks for time discrimination. With increasing age there is progressive recruitment of later maturing left hemispheric and lateralised fronto-parieto-striato-thalamic networks, known to mediate time discrimination in adults, while earlier developing brain regions such as ventromedial prefrontal cortex, limbic and paralimbic areas and cerebellum subserve fine-temporal processing functions in children

  19. Transcranial magnetic stimulation over posterior parietal cortex disrupts transsaccadic memory of multiple objects.

    Science.gov (United States)

    Prime, Steven L; Vesia, Michael; Crawford, J Douglas

    2008-07-02

    The posterior parietal cortex (PPC) plays a role in spatial updating of goals for eye and arm movements across saccades, but less is known about its role in updating perceptual memory. We reported previously that transsaccadic memory has a capacity for storing the orientations of three to four Gabor patches either within a single fixation (fixation task) or between separate fixations (saccade task). Here, we tested the role of the PPC in transsaccadic memory in eight subjects by simultaneously applying single-pulse transcranial magnetic stimulation (TMS) over the right and left PPC, over several control sites, and comparing these to behavioral controls with no TMS. In TMS trials, we randomly delivered pulses at one of three different time intervals around the time of the saccade, or at an equivalent time in the fixation task. Controls confirmed that subjects could normally retain at least three visual features. TMS over the left PPC and a control site had no significant effect on this performance. However, TMS over the right PPC disrupted memory performance in both tasks. This TMS-induced effect was most disruptive in the saccade task, in particular when stimulation coincided more closely with saccade timing. Here, the capacity to compare presaccadic and postsaccadic features was reduced to one object, as expected if the spatial aspect of memory was disrupted. This finding suggests that right PPC plays a role in the spatial processing involved in transsaccadic memory of visual features. We propose that this process uses saccade-related feedback signals similar to those observed in spatial updating.

  20. A structural MRI study: gray matter changes in mesial temporal lobe epilepsy patients with different seizure types

    Directory of Open Access Journals (Sweden)

    Jun-hao XIAO

    2018-04-01

    Full Text Available Objective To observe gray matter volume changes and evaluate the relation between gray matter changes and duration of mesial temporal lobe epilepsy (mTLE patients with different seizure types. Methods A total of 40 patients with mTLE, including 20 with partial seizures (mTLE-PS group and 20 with secondarily generalized seizures (mTLE-sGS group, and 20 sex- and age-matched healthy volunteers (control group were recruited. T1-three-dimensional magnetization-prepared rapid gradient echo (T1-3D-MPRAGE was scanned for voxel.based morphometry (VBM. Bilateral frontal lobes and thalami were selected as regions of interest (ROIs to compare gray matter volume of brain regions among 3 groups. Spearman rank correlation analysis was used to evaluate the correlation between gray matter volume of brain regions and duration. Results There were significant differences in gray matter volumes in bilateral superior frontal gyri, right middle frontal gyrus, right medial frontal gyrus, right angular gyrus, right middle temproral gyrus, right hippocampus, bilateral thalami and bilateral cerebellar hemispheres among 3 groups (P < 0.01, for all; FWE correction. Compared with control group, gray matter volumes in bilateral superior frontal gyri, bilateral cerebellar hemispheres, right middle temproral gyrus, right hippocampus and right thalamus in mTLE-PS group were significantly decreased (P < 0.01, for all; FWE correction. Compared with control group, gray matter volumes in bilateral superior frontal gyri, bilateral thalami, bilateral cerebellar hemispheres, right angular gyrus, right middle temporal gyrus and right hippocampus in mTLE-sGS group were significantly decreased (P < 0.01, for all; FWE correction. Compared with mTLE-PS group, gray matter volumes in bilateral superior frontal gyri, bilateral thalami, right medial frontal gyrus and right gyrus rectus in mTLE-sGS group were significantly reduced (P < 0.01, for all; FWE correction. Gray matter volumes in left

  1. EEG upper/low alpha frequency power ratio relates to temporo-parietal brain atrophy and memory performances in mild cognitive impairment.

    Science.gov (United States)

    Moretti, Davide V; Paternicò, Donata; Binetti, Giuliano; Zanetti, Orazio; Frisoni, Giovanni B

    2013-01-01

    Temporo-parietal cortex thinning is associated to mild cognitive impairment (MCI) due to Alzheimer disease (AD). The increase of EEG upper/low alpha power ratio has been associated with AD-converter MCI subjects. We investigated the association of alpha3/alpha2 ratio with patterns of cortical thickness in MCI. Seventy-four adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG) recording and high resolution 3D magnetic resonance imaging. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of upper/low alpha power ratio. Difference of cortical thickness among the groups was estimated. Pearson's r was used to assess the topography of the correlation between cortical thinning and memory impairment. High upper/low alpha power ratio group had total cortical gray matter volume reduction of 471 mm(2) than low upper/low alpha power ratio group (p Upper/low alpha group showed a similar but less marked pattern (160 mm(2)) of cortical thinning when compared to middle upper/low alpha power ratio group (p upper/low alpha group had wider cortical thinning than other groups, mapped to the Supramarginal and Precuneus bilaterally. Finally, in high upper/low alpha group temporo-parietal cortical thickness was correlated to memory performance. No significant cortical thickness differences was found between middle and low alpha3/alpha2 power ratio groups. High EEG upper/low alpha power ratio was associated with temporo-parietal cortical thinning and memory impairment in MCI subjects. The combination of EEG upper/low alpha ratio and cortical thickness measure could be useful for identifying individuals at risk for progression to AD dementia and may be of value in clinical context.

  2. The effect of dual-hemisphere transcranial direct current stimulation over the parietal operculum on tactile orientation discrimination

    DEFF Research Database (Denmark)

    Fujimoto, Shuhei; Tanaka, Satoshi; Laakso, Ilkka

    2017-01-01

    The parietal operculum (PO) often shows ipsilateral activation during tactile object perception in neuroimaging experiments. However, the relative contribution of the PO to tactile judgment remains unclear. Here, we examined the effect of transcranial direct current stimulation (tDCS) over...... bilateral PO to test the relative contributions of the ipsilateral PO to tactile object processing. Ten healthy adults participated in this study, which had a double-blind, sham-controlled, cross-over design. Participants discriminated grating orientation during three tDCS and sham conditions. In the dual...... electrode. Importantly, dual-hemisphere tDCS with the anodal electrode over the left PO yielded a decreased threshold in the right finger compared with the uni-hemisphere tDCS condition. These results suggest that the ipsilateral PO inhibits tactile processing of grating orientation, indicating...

  3. Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant

    NARCIS (Netherlands)

    Fatima, H.; Moeller, M.J.; Smeets, B.; Yang, H.C.; D'Agati, V.D.; Alpers, C.E.; Fogo, A.B.

    2012-01-01

    BACKGROUND AND OBJECTIVES: Podocyte loss is key in glomerulosclerosis. Activated parietal epithelial cells are proposed to contribute to pathogenesis of glomerulosclerosis and may serve as stem cells that can transition to podocytes. CD44 is a marker for activated parietal epithelial cells. This

  4. Learning new color names produces rapid increase in gray matter in the intact adult human cortex.

    Science.gov (United States)

    Kwok, Veronica; Niu, Zhendong; Kay, Paul; Zhou, Ke; Mo, Lei; Jin, Zhen; So, Kwok-Fai; Tan, Li Hai

    2011-04-19

    The human brain has been shown to exhibit changes in the volume and density of gray matter as a result of training over periods of several weeks or longer. We show that these changes can be induced much faster by using a training method that is claimed to simulate the rapid learning of word meanings by children. Using whole-brain magnetic resonance imaging (MRI) we show that learning newly defined and named subcategories of the universal categories green and blue in a period of 2 h increases the volume of gray matter in V2/3 of the left visual cortex, a region known to mediate color vision. This pattern of findings demonstrates that the anatomical structure of the adult human brain can change very quickly, specifically during the acquisition of new, named categories. Also, prior behavioral and neuroimaging research has shown that differences between languages in the boundaries of named color categories influence the categorical perception of color, as assessed by judgments of relative similarity, by response time in alternative forced-choice tasks, and by visual search. Moreover, further behavioral studies (visual search) and brain imaging studies have suggested strongly that the categorical effect of language on color processing is left-lateralized, i.e., mediated by activity in the left cerebral hemisphere in adults (hence "lateralized Whorfian" effects). The present results appear to provide a structural basis in the brain for the behavioral and neurophysiologically observed indices of these Whorfian effects on color processing.

  5. Aspirin induces morphological transformation to the secretory state in isolated rabbit parietal cells.

    Science.gov (United States)

    Murthy, U K; Levine, R A

    1991-08-01

    The morphological response of rabbit parietal cells to aspirin was evaluated by grading several ultra-structural features including the extent of the tubulovesicular system, intracellular secretory canaliculi, and microvilli. After exposure of isolated parietal cells and gastric glands to aspirin or histamine, there was an approximately twofold increase in the ratio of secretory to nonsecretory parietal cells, and depletion of extracellular Ca2+ abolished the aspirin-induced morphological changes. Morphometry in parietal cells showed that aspirin induced a sixfold increase in secretory canalicular membrane elaboration. Aspirin potentiated histamine-induced parietal cell respiration and aminopyrine uptake ratio but did not increase basal respiration or aminopyrine uptake, suggesting an apparent dissociation from aspirin-induced morphological changes.

  6. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    International Nuclear Information System (INIS)

    Pandya, D.N.; Seltzer, B.

    1982-01-01

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer

  7. Attention as the 'glue' for object integration in parietal extinction.

    Science.gov (United States)

    Conci, Markus; Groß, Julia; Keller, Ingo; Müller, Hermann J; Finke, Kathrin

    2018-04-01

    Patients with unilateral, parietal brain damage frequently show visual extinction, which manifests in a failure to identify contralesional stimuli when presented simultaneously with other, ipsilesional stimuli (but full awareness for single stimulus presentations). Extinction reflects an impairment of spatial selective attention, leaving basic preattentive processing unaffected. For instance, access to bilaterally grouped objects is usually spared in extinction, suggesting that grouping occurs at a stage preceding (in the patients: abnormally biased) spatial-attentional selection. Here, we reinvestigated this notion by comparing (largely between participants, but also within a single-case participant) conditions with objects that varied in their dominant direction of grouping: from the attended to the non-attended hemifield (data from Conci et al., 2009) versus from the non-attended to the attended hemifield (new data). We observe complete absence of extinction when shape completion extended from the attended hemifield. By contrast, extinction was not diminished when object groupings propagate from the unattended hemifield. Moreover, we found the individual severity of the attentional impairment (assessed by a standard "inattention" test) to be directly related to the degree of completion in the unattended hemifield. This pattern indicates that grouping can overcome visual extinction only when object integration departs from the attended visual field, implying, contrary to many previous accounts, that attention is crucial for grouping to be initiated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Parietal cells-new perspectives in glomerular disease.

    Science.gov (United States)

    Miesen, Laura; Steenbergen, Eric; Smeets, Bart

    2017-07-01

    In normal glomeruli, parietal epithelial cells (PECs) line the inside of Bowman's capsule and form an inconspicuous sheet of flat epithelial cells in continuity with the proximal tubular epithelial cells (PTECs) at the urinary pole and with the podocytes at the vascular pole. PECs, PTECs and podocytes have a common mesenchymal origin and are the result of divergent differentiation during embryogenesis. Podocytes and PTECs are highly differentiated cells with well-established functions pertaining to the maintenance of the filtration barrier and transport, respectively. For PECs, no specific function other than a structural one has been known until recently. Possible important functions for PECs in the fate of the glomerulus in glomerular disease have now become apparent: (1) PECs may be involved in the replacement of lost podocytes; (2) PECs form the basis of extracapillary proliferative lesions and subsequent sclerosis in glomerular disease. In addition to the acknowledgement that PECs are crucial in glomerular disease, knowledge has been gained regarding the molecular processes driving the phenotypic changes and behavior of PECs. Understanding these molecular processes is important for the development of specific therapeutic approaches aimed at either stimulation of the regenerative function of PECs or inhibition of the pro-sclerotic action of PECs. In this review, we discuss recent advances pertaining to the role of PECs in glomerular regeneration and disease and address the major molecular processes involved.

  9. The regenerative potential of parietal epithelial cells in adult mice.

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-04-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.

  10. Dichromatic Gray Pixel for Camera-agnostic Color Constancy

    OpenAIRE

    Qian, Yanlin; Chen, Ke; Nikkanen, Jarno; Kämäräinen, Joni-Kristian; Matas, Jiri

    2018-01-01

    We propose a novel statistical color constancy method, especially suitable for the Camera-agnostic Color Constancy, i.e. the scenario where nothing is known a priori about the capturing devices. The method, called Dichromatic Gray Pixel, or DGP, relies on a novel gray pixel detection algorithm derived using the Dichromatic Reflection Model. DGP is suitable for camera-agnostic color constancy since varying devices are set to make achromatic pixels look gray under standard neutral illumination....

  11. Multiwavelength pyrometer for gray and non-gray surfaces in the presence of interfering radiation

    Science.gov (United States)

    Ng, Daniel L. P. (Inventor)

    1994-01-01

    A method and apparatus for detecting the temperature of gray and non-gray bodies in the presence of interfering radiation are presented. A gray body has a constant emissivity less than 1 and a non-gray body has an emissivity which varies with wavelength. The emissivity and reflectivity of the surface is determined over a range of wavelengths. Spectra are also measured of the extraneous interference radiation source and the surface of the object to be measured in the presence of the extraneous interference radiation source. An auxiliary radiation source is used to determine the reflectivity of the surface and also the emissivity. The measured spectrum of the surfaces in the presence of the extraneous interference radiation source is set equal to the emissivity of the surface multiplied by a Planck function containing a temperature term T plus the surface reflectivity multiplied by the spectrum of the extraneous interference radiation source. The equation is then solved for T to determine the temperature of the surface.

  12. Premature graying of hair is a risk marker for osteopenia.

    Science.gov (United States)

    Rosen, C J; Holick, M F; Millard, P S

    1994-09-01

    Premature graying of hair is associated with several endocrine disorders, vitiligo, and the aging process. Although the pathophysiology of melanin depletion in hair follicles is unknown, genetic factors regulate the expression of this trait. As acquisition of bone mass is also genetically determined, we performed an exploratory case control study of the association between premature graying of hair and osteopenia (lumbar bone density t score, below -1.0). Subjects were recruited from a single metabolic bone clinic. Premature graying of hair in 36 men and women with osteopenia (cases) was compared to that in 27 men and women without osteopenia (controls). Subjects with premature graying but no other identifiable risk factor were 4.4 times as likely to have osteopenia as subjects without premature graying (P = 0.02). Subjects with osteopenia and premature graying in their teens and twenties had a stronger family history of osteoporosis than those who had osteopenia and graying later in their thirties (P = 0.06), but bone density and other characteristics were not different. The association between premature graying and low bone mass could be related to genes that control peak bone mass or factors that regulate bone turnover. Premature graying of hair may be an important risk marker for osteopenia.

  13. Gray Matter Changes in Demyelinating Disease: Correlations with Clinical Scores.

    Science.gov (United States)

    Onu, Mihaela; Aroceanu, Adina; Ferastraoaru, Victor; Bajenaru, Ovidiu

    2015-09-01

    Recent MR studies have shown that, in multiple sclerosis, selective regional, but not global gray matter atrophy occurs in multiple sclerosis. Our aim was to identify specific areas of gray matter volume changes and explore the relationship between atrophy and clinical motor outcomes. Nine patients with relapsing remitting MS and 9 matched healthy controls were recruited. The Multiple Sclerosis Functional Composite was administered. For MR acquisitions, a GE- Genesis- Signa, 1.5T MR system, was used. A voxel-based morphometry (VBM), subcortical structures segmentation (FIRST) and volumetric (SIENAx) FSL tools were used in the study. Group comparison showed atrophy for several gray matter regions. The most important volume reductions were found for subcortical deep gray matter areas. Correlations with clinical scores were checked and specific gray matter areas showed significant volume reductions associated with motor scores (9-hole peg time and 25-feet walk time) and EDSS (Expanded Disability Status Scale). We performed a voxelwise analysis of gray matter changes in MS and found a more prominent atrophy for the subcortical structures than for cortical gray matter. Using an additional analysis (FIRST and SIENAx segmentation/volumetry) we were able to confirm the VBM results and to quantify the degree of atrophy in specific structures. Specific gray matter regions which volume reductions correlate with 25-feet walk, 9-hole peg times and EDSS suggest that 25-feet walk time is the best predictor of disease progression in terms of gray matter reduction.

  14. Frequency of gray coat color in native Chinese horse breeds.

    Science.gov (United States)

    Gao, K X; Chen, N B; Liu, W J; Li, R; Lan, X Y; Chen, H; Lei, C Z; Dang, R H

    2015-10-30

    Gray horses are born colored, and they then gradually lose their hair pigmentation. Tremendous progress has been made in identifying the genes responsible for graying with age in horses in recent years. Results show that gray coat color in horses is caused by a 4.6-kb duplication in intron 6 of the syntaxin 17 gene (STX17), which constitutes a cis-acting-regulatory mutation. However, little is known about the gray phenotype in native Chinese horses. This study was conducted to explore the frequency distribution of the gray mutation in native Chinese horse breeds. A total of 489 samples from 14 native Chinese horse breeds were genotyped for the STX17 duplication using a simplified conventional PCR-based method. The results show that the gray mutation was present in 12 native Chinese horse breeds, except the Balikun and Guanzhong breeds. The Chakouyi and Hequ breeds had the highest frequency of the gray mutation (P(G) = 0.367 and P(G) = 0.274, respectively). There was no significant geographical difference in the distribution of gray coat color across native Chinese horse breeds. Our results suggest that gray is a common coat color in Chinese horses.

  15. The greenhouse effect in a gray planetary atmosphere.

    Science.gov (United States)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  16. The alteration of gray matter volume in children with mental retardation: the differences between the patients presented with operation deficit predominantly and those presented with language deficit mainly

    International Nuclear Information System (INIS)

    Yuan Xinyu; Jiang Xuexiang; Jin Chunhua; Zhang Yuanchao; Bai Zhenhua; Yi Xiaoli; Xiao Jiangxi

    2012-01-01

    Objective: To detect the differences of grey matter volume between the patients with mental retardation (MR) presented clinically as operation deficit (OD) or as language deficit (LD) and the children with typical normal development using optimal VBM. The developmental connections between brain gray matter and language or operation skills were examined. Methods: Magnetic resonance imaging was obtained from 9 children with mental retardation presented as OD predominantly and 11 children with mental retardation presented as LD mainly, as well as the age-matched control group (11 and 14 normal children,respectively) on a 1.5 T scanner. Voxel-based morphometry analysis with an optimization of spatial segmentation and normalization procedures was applied to compare the volume of grey matter between the two groups (OD VS.control; LD VS.control). Statistically, the total and local gray matter volumes were compared between the two groups with t test. Results: The total gray matter volume of OD group was [(1.030 ± 0.078) × 10 6 mm 3 ]. Compared to that of controls [(0.984 ± 0.058) × 10 6 mm 3 ], it was increased significantly (t=-2.6, P<0.05). And the gray matter volume in the posterior cingulated gyrus, left superior prefrontal gyrus, left cuneus, left middle prefrontal gyrus and the body of left caudate nucleus showed significantly increased. Meanwhile, the total gray matter volume of the MR children presented as LD [(1.002 ± 0.068) × 10 6 mm 3 ] showed significantly increased(t=-3.0, P<0.05) compared with that of control group [(0.957 ±0.057) × 10 6 mm 3 ]. The gray matter volume in bilateral thalami, the left inferior temporal gyrus,the left inferior frontal gyrus, and the left cerebellum of the LD group was more than that of normal children. Conclusion: As revealed by VBM, there are differences in alterations of gray matter volume between MR children presented with OD and with LD relative to control. (authors)

  17. Parietal Wall Hydatid Cyst Presenting as a Primary Lesion | Gharde ...

    African Journals Online (AJOL)

    Hydatid cyst is the disease of liver and lungs and is common in some regions especially sheep rearing countries of the world, but this disease may occur in any part of world and anywhere in the body. This report presents primary hydatid cysts located in intramuscular region of left side of the abdomen. A 54.year.old female ...

  18. Dysconnection of right parietal and frontal cortex in neglect syndrome

    DEFF Research Database (Denmark)

    Dietz, Martin; Nielsen, Jørgen Feldbæk; Roepstorff, Andreas

    2017-01-01

    network, rather than a disruption of computation in any particular brain region. To test this hypothesis, we used Bayesian analysis of effective connectivity based on electroencephalographic recordings in patients with left-sided neglect after a right-hemisphere lesion. While age-matched healthy controls...

  19. Genetics Modulate Gray Matter Variation Beyond Disease Burden in Prodromal Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Jingyu Liu

    2018-03-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder caused by an expansion mutation of the cytosine–adenine–guanine (CAG trinucleotide in the HTT gene. Decline in cognitive and motor functioning during the prodromal phase has been reported, and understanding genetic influences on prodromal disease progression beyond CAG will benefit intervention therapies. From a prodromal HD cohort (N = 715, we extracted gray matter (GM components through independent component analysis and tested them for associations with cognitive and motor functioning that cannot be accounted for by CAG-induced disease burden (cumulative effects of CAG expansion and age. Furthermore, we examined genetic associations (at the genomic, HD pathway, and candidate region levels with the GM components that were related to functional decline. After accounting for disease burden, GM in a component containing cuneus, lingual, and middle occipital regions was positively associated with attention and working memory performance, and the effect size was about a tenth of that of disease burden. Prodromal participants with at least one dystonia sign also had significantly lower GM volume in a bilateral inferior parietal component than participants without dystonia, after controlling for the disease burden. Two single-nucleotide polymorphisms (SNPs: rs71358386 in NCOR1 and rs71358386 in ADORA2B in the HD pathway were significantly associated with GM volume in the cuneus component, with minor alleles being linked to reduced GM volume. Additionally, homozygous minor allele carriers of SNPs in a candidate region of ch15q13.3 had significantly higher GM volume in the inferior parietal component, and one minor allele copy was associated with a total motor score decrease of 0.14 U. Our findings depict an early genetical GM reduction in prodromal HD that occurs irrespective of disease burden and affects regions important for cognitive and motor functioning.

  20. Inoculated Slightly Hypereutectic Gray Cast Irons

    Science.gov (United States)

    Chisamera, Mihai; Riposan, Iulian; Stan, Stelian; Militaru, Cristina; Anton, Irina; Barstow, Michael

    2012-03-01

    The current experimental investigation in this article was designed to characterize the structure of mold (M) and ladle (L) inoculated, low-S (0.025 wt.% S), low-Al (0.003 wt.% Al), slightly hypereutectic (CE = 4.4-4.5 wt.%) electric melted gray irons, typical for high performance thin-wall castings. It describes the effect of a Ca, Al, Zr-FeSi inoculant addition of 0-0.25 wt.% on structure characteristics, and compares to similar treatments with hypoeutectic irons (3.5-3.6 wt.% CE, 0.025 wt.% S, and 0.003 wt.% Al). A complex structure including primary graphite, austenite dendrites, and eutectic cells is obtained in hypereutectic irons, as the result of nonequilibrium solidification following the concept of a coexisting region. Dendrites appear to be distributed between eutectic cells at higher eutectic undercooling, while in inoculated irons and for lower undercooling, the eutectic cells are "reinforced" by eutectic austenite dendrites. A Zr, Ca, Al-FeSi alloy appears to be an effective inoculant in low S, low Al, gray cast irons, especially for a late inoculation technique, with beneficial effects on both graphite and austenite phases. First, inoculation influenced the nucleation of graphite/eutectic cell, and then their characteristics. A further role of these active elements directly contributed to form nucleation sites for austenite, as complex (Mn,X)S particles.

  1. Decreased Left Putamen and Thalamus Volume Correlates with Delusions in First-Episode Schizophrenia Patients

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundDelusional thinking is one of the hallmark symptoms of schizophrenia. However, the underlying neural substrate for delusions in schizophrenia remains unknown. In an attempt to further our understanding of the neural basis of delusions, we explored gray matter deficits and their clinical associations in first-episode schizophrenia patients with and without delusions.MethodsTwenty-four first-episode schizophrenia patients with delusions and 18 without delusions as well as 26 healthy controls (HC underwent clinical assessment and whole-brain structural imaging which were acquired a 3.0 T scanner. Voxel-based morphometry was used to explore inter-group differences in gray matter volume using analysis of covariance, and Spearman correlation coefficients (rho between the Scale for the Assessment of Positive Symptoms (SAPS-delusion scores and mean regional brain volumes was obtained.ResultsPatients with delusions showed decreased brain gray matter volumes in the left putamen, thalamus, and caudate regions compared with HC. Patients with delusions also showed decreased regional volume in the left putamen and thalamus compared with patients without delusions. SAPS-delusion scores were negatively correlated with the gray matter volumes of the left putamen and thalamus.DiscussionLeft putamen and thalamus volume loss may be biological correlates of delusions in schizophrenia.

  2. Origin of parietal podocytes in atubular glomeruli mapped by lineage tracing.

    Science.gov (United States)

    Schulte, Kevin; Berger, Katja; Boor, Peter; Jirak, Peggy; Gelman, Irwin H; Arkill, Kenton P; Neal, Christopher R; Kriz, Wilhelm; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-01-01

    Parietal podocytes are fully differentiated podocytes lining Bowman's capsule where normally only parietal epithelial cells (PECs) are found. Parietal podocytes form throughout life and are regularly observed in human biopsies, particularly in atubular glomeruli of diseased kidneys; however, the origin of parietal podocytes is unresolved. To assess the capacity of PECs to transdifferentiate into parietal podocytes, we developed and characterized a novel method for creating atubular glomeruli by electrocoagulation of the renal cortex in mice. Electrocoagulation produced multiple atubular glomeruli containing PECs as well as parietal podocytes that projected from the vascular pole and lined Bowman's capsule. Notably, induction of cell death was evident in some PECs. In contrast, Bowman's capsules of control animals and normal glomeruli of electrocoagulated kidneys rarely contained podocytes. PECs and podocytes were traced by inducible and irreversible genetic tagging using triple transgenic mice (PEC- or Pod-rtTA/LC1/R26R). Examination of serial cryosections indicated that visceral podocytes migrated onto Bowman's capsule via the vascular stalk; direct transdifferentiation from PECs to podocytes was not observed. Similar results were obtained in a unilateral ureter obstruction model and in human diseased kidney biopsies, in which overlap of PEC- or podocyte-specific antibody staining indicative of gradual differentiation did not occur. These results suggest that induction of atubular glomeruli leads to ablation of PECs and subsequent migration of visceral podocytes onto Bowman's capsule, rather than transdifferentiation from PECs to parietal podocytes.

  3. Left atrial volume index

    DEFF Research Database (Denmark)

    Poulsen, Mikael K; Dahl, Jordi S; Henriksen, Jan Erik

    2013-01-01

    To determine the prognostic importance of left atrial (LA) dilatation in patients with type 2 diabetes (T2DM) and no history of cardiovascular disease.......To determine the prognostic importance of left atrial (LA) dilatation in patients with type 2 diabetes (T2DM) and no history of cardiovascular disease....

  4. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van [The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Melbourne, Victoria 3010 (Australia)], E-mail: i.vandriel@unimelb.edu.au

    2008-09-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain {approx}60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H{sup +}/K{sup +} ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H{sup +}/K{sup +} ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H{sup +}/K{sup +} ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in {approx}30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H{sup +}/K{sup +} ATPase which underpin the regulation of acid secretion.

  5. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  6. CSF Biomarker and PIB-PET–Derived Beta-Amyloid Signature Predicts Metabolic, Gray Matter, and Cognitive Changes in Nondemented Subjects

    Science.gov (United States)

    Insel, Philip; Jagust, William J.; Shaw, Leslie; Trojanowski J, John Q.; Aisen, Paul; Petersen, Ronald C.; Schuff, Norbert; Weiner, Michael W.

    2012-01-01

    Beta-amyloid (Aβ) is a histopathological hallmark of Alzheimer’s disease dementia, but high levels of Aβ in the brain can also be found in a substantial proportion of nondemented subjects. Here we investigated which 2-year rate of brain and cognitive changes are present in nondemented subjects with high and low Aβ levels, as assessed with cerebrospinal fluid and molecular positron emission tomography (PET)–based biomarkers of Aβ. In subjects with mild cognitive impairment, increased brain Aβ levels were associated with significantly faster cognitive decline, progression of gray matter atrophy within temporal and parietal brain regions, and a trend for a faster decline in parietal Fludeoxyglucose (FDG)-PET metabolism. Changes in gray matter and FDG-PET mediated the association between Aβ and cognitive decline. In contrast, elderly cognitively healthy controls (HC) with high Aβ levels showed only a faster medial temporal lobe and precuneus volume decline compared with HC with low Aβ. In conclusion, the current results suggest not only that both functional and volumetric brain changes are associated with high Aβ years before the onset of dementia but also that HC with substantial Aβ levels show higher Aβ pathology resistance, lack other pathologies that condition neurotoxic effects of Aβ, or accumulated Aβ for a shorter time period. PMID:22038908

  7. Hand Shape Representations in the Human Posterior Parietal Cortex.

    Science.gov (United States)

    Klaes, Christian; Kellis, Spencer; Aflalo, Tyson; Lee, Brian; Pejsa, Kelsie; Shanfield, Kathleen; Hayes-Jackson, Stephanie; Aisen, Mindy; Heck, Christi; Liu, Charles; Andersen, Richard A

    2015-11-18

    Humans shape their hands to grasp, manipulate objects, and to communicate. From nonhuman primate studies, we know that visual and motor properties for grasps can be derived from cells in the posterior parietal cortex (PPC). Are non-grasp-related hand shapes in humans represented similarly? Here we show for the first time how single neurons in the PPC of humans are selective for particular imagined hand shapes independent of graspable objects. We find that motor imagery to shape the hand can be successfully decoded from the PPC by implementing a version of the popular Rock-Paper-Scissors game and its extension Rock-Paper-Scissors-Lizard-Spock. By simultaneous presentation of visual and auditory cues, we can discriminate motor imagery from visual information and show differences in auditory and visual information processing in the PPC. These results also demonstrate that neural signals from human PPC can be used to drive a dexterous cortical neuroprosthesis. This study shows for the first time hand-shape decoding from human PPC. Unlike nonhuman primate studies in which the visual stimuli are the objects to be grasped, the visually cued hand shapes that we use are independent of the stimuli. Furthermore, we can show that distinct neuronal populations are activated for the visual cue and the imagined hand shape. Additionally we found that auditory and visual stimuli that cue the same hand shape are processed differently in PPC. Early on in a trial, only the visual stimuli and not the auditory stimuli can be decoded. During the later stages of a trial, the motor imagery for a particular hand shape can be decoded for both modalities. Copyright © 2015 the authors 0270-6474/15/3515466-11$15.00/0.

  8. A frontal but not parietal neural correlate of auditory consciousness.

    Science.gov (United States)

    Brancucci, Alfredo; Lugli, Victor; Perrucci, Mauro Gianni; Del Gratta, Cosimo; Tommasi, Luca

    2016-01-01

    Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience.

  9. Podocyte and Parietal Epithelial Cell Interactions in Health and Disease.

    Science.gov (United States)

    Al Hussain, Turki; Al Mana, Hadeel; Hussein, Maged H; Akhtar, Mohammed

    2017-01-01

    The glomerulus has 3 resident cells namely mesangial cells that produce the mesangial matrix, endothelial cells that line the glomerular capillaries, and podocytes that cover the outer surface of the glomerular basement membrane. Parietal epithelial cells (PrECs), which line the Bowman's capsule are not part of the glomerular tuft but may have an important role in the normal function of the glomerulus. A significant progress has been made in recent years regarding our understanding of the role and function of these cells in normal kidney and in kidneys with various types of glomerulopathy. In crescentic glomerulonephritis necrotizing injury of the glomerular tuft results in activation and leakage of fibrinogen which provides the trigger for excessive proliferation of PrECs giving rise to glomerular crescents. In cases of collapsing glomerulopathy, podocyte injury causes collapse of the glomerular capillaries and activation and proliferation of PrECs, which accumulate within the urinary space in the form of pseudocrescents. Many of the noninflammatory glomerular lesions such as focal segmental glomerulosclerosis and global glomerulosclerosis also result from podocyte injury which causes variable loss of podocytes. In these cases podocyte injury leads to activation of PrECs that extend on to the glomerular tuft where they cause segmental and/or global sclerosis by producing excess matrix, resulting in obliteration of the capillary lumina. In diabetic nephropathy, in addition to increased matrix production in the mesangium and glomerular basement membranes, increased loss of podocytes is an important determinant of long-term prognosis. Contrary to prior belief there is no convincing evidence for an active podocyte proliferation in any of the above mentioned glomerulopathies.

  10. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis.

    Science.gov (United States)

    Takahashi, Tsutomu; Wood, Stephen J; Yung, Alison R; Soulsby, Bridget; McGorry, Patrick D; Suzuki, Michio; Kawasaki, Yasuhiro; Phillips, Lisa J; Velakoulis, Dennis; Pantelis, Christos

    2009-04-01

    Longitudinal magnetic resonance imaging studies have shown progressive gray matter reduction in the superior temporal gyrus during the earliest phases of schizophrenia. It is unknown whether these progressive processes predate the onset of psychosis. To examine gray matter reduction of the superior temporal gyrus over time in individuals at risk for psychosis and in patients with first-episode psychosis. Cross-sectional and longitudinal comparisons. Personal Assessment and Crisis Evaluation Clinic and Early Psychosis Preventions and Intervention Centre. Thirty-five ultrahigh-risk individuals (of whom 12 later developed psychosis [UHRP] and 23 did not [UHRNP]), 23 patients with first-episode psychosis (FEP), and 22 control subjects recruited from the community. Volumes of superior temporal subregions (planum polare, Heschl gyrus, planum temporale, and rostral and caudal regions) were measured at baseline and follow-up (mean, 1.8 years) and were compared across groups. In cross-sectional comparisons, only the FEP group had significantly smaller planum temporale and caudal superior temporal gyrus than other groups at baseline, whereas male UHRP subjects also had a smaller planum temporale than controls at follow-up. In longitudinal comparison, UHRP and FEP patients showed significant gray matter reduction (approximately 2%-6% per year) in the planum polare, planum temporale, and caudal region compared with controls and/or UHRNP subjects. The FEP patients also exhibited progressive gray matter loss in the left Heschl gyrus (3.0% per year) and rostral region (3.8% per year), which were correlated with the severity of delusions at follow-up. A progressive process in the superior temporal gyrus precedes the first expression of florid psychosis. These findings have important implications for underlying neurobiologic features of emerging psychotic disorders and emphasize the importance of early intervention during or before the first episode of psychosis.

  11. Gray matter maturation and cognition in children with different APOE ε genotypes.

    Science.gov (United States)

    Chang, Linda; Douet, Vanessa; Bloss, Cinnamon; Lee, Kristin; Pritchett, Alexandra; Jernigan, Terry L; Akshoomoff, Natacha; Murray, Sarah S; Frazier, Jean; Kennedy, David N; Amaral, David G; Gruen, Jeffrey; Kaufmann, Walter E; Casey, B J; Sowell, Elizabeth; Ernst, Thomas

    2016-08-09

    The aims of the current study were to determine whether children with the 6 different APOE ε genotypes show differences in gray matter maturation, particularly for those with ε4 and ε2 alleles, which are associated with poorer outcomes in many neurologic disorders. A total of 1,187 healthy children (aged 3-20 years, 52.1% boys, 47.9% girls) with acceptable data from the cross-sectional Pediatric Imaging Neurocognition and Genetics Study were evaluated for the effects of 6 APOE ε genotypes on macroscopic and microscopic cortical and subcortical gray matter structures (measured with 3-tesla MRI and FreeSurfer for automated morphometry) and on cognition (NIH Toolbox). Among APOE ε4 carriers, age-related changes in brain structures and cognition varied depending on genotype, with the smallest hippocampi in ε2ε4 children, the lowest hippocampal fractional anisotropy in younger ε4ε4 children, the largest medial orbitofrontal cortical areas in ε3ε4 children, and age-dependent thinning of the entorhinal cortex in ε4ε4 children. Younger ε4ε4 children had the lowest scores on executive function and working memory, while younger ε2ε4 children performed worse on attention tasks. Larger parietal gyri in the younger ε2ε4 children, and thinner temporal and cingulate isthmus cortices or smaller hippocampi in the younger ε4ε4 children, predicted poorer performance on attention or working memory. Our findings validated and extended prior smaller studies that showed altered brain development in APOE ε4-carrier children. The ε4ε4 and ε2ε4 genotypes may negatively influence brain development and brain aging at the extremes of age. Studying APOE ε polymorphisms in young children may provide the earliest indicators for individuals who might benefit from early interventions or preventive measures for future brain injuries and dementia. © 2016 American Academy of Neurology.

  12. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  13. Adverse Effects of the Apolipoprotein E ε4 Allele on Episodic Memory, Task Switching and Gray Matter Volume in Healthy Young Adults

    Directory of Open Access Journals (Sweden)

    Jianfei Nao

    2017-06-01

    Full Text Available Many studies have shown that healthy elderly subjects and patients with Alzheimer’s disease (AD who carry the apolipoprotein E (ApoE ε4 allele have worse cognitive function and more severe brain atrophy than non-carriers. However, it remains unclear whether this ApoE polymorphism leads to changes of cognition and brain morphology in healthy young adults. In this study, we used an established model to measure verbal episodic memory and core executive function (EF components (response inhibition, working memory and task switching in 32 ApoE ε4 carriers and 40 non-carriers between 20 years and 40 years of age. To do this, we carried out an adapted auditory verbal learning test and three computerized EF tasks. High-resolution head magnetic resonance scans were performed in all participants and voxel-based morphometry (VBM was used for image processing and analysis. Multivariate analysis of variance (ANOVA performed on memory measures showed that the overall verbal episodic memory of ApoE ε4 carriers was significantly worse than non-carriers (Wilk’s λ = 4.884, P = 0.004. No significant differences were detected in overall EF between the two groups. Post hoc analyses revealed group differences in terms of immediate recall, recognition and task switching, which favored non-carriers. VBM analysis showed gray matter (GM bilateral reductions in the medial and dorsolateral frontal, parietal and left temporal cortices in the carrier group relative to the non-carrier group, which were most significant in the bilateral anterior and middle cingulate gyri. However, these changes in GM volume were not directly associated with changes in cognitive function. Our data show that the ApoE ε4 allele is associated with poorer performance in verbal episodic memory and task switching, and a reduction in GM volume in healthy young adults, suggesting that the effects of ApoE ε4 upon cognition and brain morphology exist long before the possible occurrence of AD.

  14. Glutamatergic and Neuronal Dysfunction in Gray and White Matter: A Spectroscopic Imaging Study in a Large Schizophrenia Sample.

    Science.gov (United States)

    Bustillo, Juan R; Jones, Thomas; Chen, Hongji; Lemke, Nicholas; Abbott, Christopher; Qualls, Clifford; Stromberg, Shannon; Canive, Jose; Gasparovic, Charles

    2017-05-01

    Glutamine plus glutamate (Glx), as well as N-acetylaspartate compounds (NAAc, N-acetylaspartate plus N-acetyl-aspartyl-glutamate), a marker of neuronal viability, can be quantified with proton magnetic resonance spectroscopy (1H-MRS). We used 1H-MRS imaging to assess Glx and NAAc, as well as total-choline (glycerophospho-choline plus phospho-choline), myo-inositol and total-creatine (creatine plus phosphocreatine) from an axial supraventricular slab of gray matter (GM, medial-frontal and medial-parietal) and white matter (WM, bilateral-frontal and bilateral-parietal) voxels. Schizophrenia subjects (N = 104) and healthy controls (N = 97) with a broad age range (16 to 65) were studied. In schizophrenia, Glx was increased in GM (P schizophrenia. In patients, total creatine decreased with age in WM (P schizophrenia group (NAAc, P schizophrenia. Later in the illness, disease progression is suggested by increased cortical compaction without neuronal loss (elevated NAAc) and reduced axonal integrity (lower NAAc). Furthermore, this process is associated with fundamentally altered relationships between neurometabolite concentrations and cognitive function in schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Smokers' hair: Does smoking cause premature hair graying?

    Science.gov (United States)

    Zayed, Ayman A; Shahait, Awni D; Ayoub, Musa N; Yousef, Al-Motassem

    2013-04-01

    To determine if there is a significant association between premature hair graying and cigarette smoking. A cross-sectional observational study was conducted in a nonclinical setting on 207 participants on August 24 until 25, 2010. Participants were classified into two groups [premature hair graying (PHG) and normal hair graying]. PHG was defined as the first appearance of gray hair before the age of 30. Data were collected using an interview questionnaire and measurements of body mass index, waist circumference, fasting blood glucose and blood pressure. Collected data were statistically analyzed using SPSS 16, Chicago, IL. Of the 207 subjects, 104 (50.2%) had first appearance of gray hair before the age of 30 (PHG group) while the other 103 (49.8%) were considered normal hair graying group. The prevalence of smokers in the "PHG" group was higher (40.2% vs. 24.7%, P = 0.031). Smokers had earlier onset of hair graying (smokers: 31 (7.4) vs. nonsmokers: 34 (8.6), P = 0.034). Using multiple logistic regression with conditional likelihood, smokers were two and half times (95% CI: 1.5-4.6) more prone to develop PHG. This study suggests that there is a significant relation (with adjusted odds ratio of two and half) between onset of gray hair before the age of 30 and cigarette smoking.

  16. Smokers’ hair: Does smoking cause premature hair graying?

    Science.gov (United States)

    Zayed, Ayman A.; Shahait, Awni D.; Ayoub, Musa N.; Yousef, Al-Motassem

    2013-01-01

    Aims: To determine if there is a significant association between premature hair graying and cigarette smoking. Materials and Methods: A cross-sectional observational study was conducted in a nonclinical setting on 207 participants on August 24 until 25, 2010. Participants were classified into two groups [premature hair graying (PHG) and normal hair graying]. PHG was defined as the first appearance of gray hair before the age of 30. Data were collected using an interview questionnaire and measurements of body mass index, waist circumference, fasting blood glucose and blood pressure. Collected data were statistically analyzed using SPSS 16, Chicago, IL. Results: Of the 207 subjects, 104 (50.2%) had first appearance of gray hair before the age of 30 (PHG group) while the other 103 (49.8%) were considered normal hair graying group. The prevalence of smokers in the “PHG” group was higher (40.2% vs. 24.7%, P = 0.031). Smokers had earlier onset of hair graying (smokers: 31 (7.4) vs. nonsmokers: 34 (8.6), P = 0.034). Using multiple logistic regression with conditional likelihood, smokers were two and half times (95% CI: 1.5-4.6) more prone to develop PHG. Conclusion: This study suggests that there is a significant relation (with adjusted odds ratio of two and half) between onset of gray hair before the age of 30 and cigarette smoking. PMID:23741662

  17. Smokers′ hair: Does smoking cause premature hair graying?

    Directory of Open Access Journals (Sweden)

    Ayman A Zayed

    2013-01-01

    Full Text Available Aims: To determine if there is a significant association between premature hair graying and cigarette smoking. Materials and Methods: A cross-sectional observational study was conducted in a nonclinical setting on 207 participants on August 24 until 25, 2010. Participants were classified into two groups [premature hair graying (PHG and normal hair graying]. PHG was defined as the first appearance of gray hair before the age of 30. Data were collected using an interview questionnaire and measurements of body mass index, waist circumference, fasting blood glucose and blood pressure. Collected data were statistically analyzed using SPSS 16, Chicago, IL. Results: Of the 207 subjects, 104 (50.2% had first appearance of gray hair before the age of 30 (PHG group while the other 103 (49.8% were considered normal hair graying group. The prevalence of smokers in the "PHG" group was higher (40.2% vs. 24.7%, P = 0.031. Smokers had earlier onset of hair graying (smokers: 31 (7.4 vs. nonsmokers: 34 (8.6, P = 0.034. Using multiple logistic regression with conditional likelihood, smokers were two and half times (95% CI: 1.5-4.6 more prone to develop PHG. Conclusion: This study suggests that there is a significant relation (with adjusted odds ratio of two and half between onset of gray hair before the age of 30 and cigarette smoking.

  18. On the motivational drivers of gray entrepreneurship: an exploratory study

    NARCIS (Netherlands)

    Harms, Rainer; Luck, Florian; Kraus, Sascha; Walsh, Steven Thomas

    2014-01-01

    Against the background of demographic change, gray entrepreneurship has become more prevalent. When gray entrepreneurs chose to leave paid employment to become self-employed, it is of concern for companies who may lose highly capable older employees. One of the reasons for this can be a failure to

  19. Patchy alopecia areata sparing gray hairs: a case series.

    Science.gov (United States)

    Jia, Wei-Xue; Mao, Qiu-Xia; Xiao, Xue-Min; Li, Zhi-Liang; Yu, Rui-Xing; Li, Cheng-Rang

    2014-05-01

    Alopecia areata is an unpredictable, non-scarring hair loss condition. Patchy alopecia areata sparing gray hairs is rare. Here we present 4 cases with patchy non-scarring hair loss, which attacked pigmented hairs only and spared gray hairs. It should be differentiated from vitiligo, colocalization of vitiligo and alopecia areata, and depigmented hair regrowth after alopecia areata.

  20. Patchy alopecia areata sparing gray hairs: a case series

    OpenAIRE

    Jia, Wei-Xue; Mao, Qiu-Xia; Xiao, Xue-Min; Li, Zhi-Liang; Yu, Rui-Xing; Li, Cheng-Rang

    2014-01-01

    Alopecia areata is an unpredictable, non-scarring hair loss condition. Patchy alopecia areata sparing gray hairs is rare. Here we present 4 cases with patchy non-scarring hair loss, which attacked pigmented hairs only and spared gray hairs. It should be differentiated from vitiligo, colocalization of vitiligo and alopecia areata, and depigmented hair regrowth after alopecia areata.

  1. James N Gray – An eScience Visionary

    Indian Academy of Sciences (India)

    IAS Admin

    James N Gray (Jim Gray) was a computer scientist whose major contributions include formalising a theory for reliable transaction processing of large databases and implementing systems based on his theory. This work was crucial to imple- ment reliable financial transactions by banks and other finan- cial institutions.

  2. Gray matter loss in young relatives at risk for schizophrenia: relation with prodromal psychopathology

    Science.gov (United States)

    Bhojraj, Tejas S.; Sweeney, J A; Prasad, Konasale M.; Eack, Shaun M.; Francis, Alan N.; Miewald, Jean M.; Montrose, Debra M.; Keshavan, Matcheri S.

    2010-01-01

    The maturation of neocortical regions mediating social cognition during adolescence and young adulthood in relatives of schizophrenia patients may be vulnerable to heritable alterations of neurodevelopment. Prodromal psychotic symptoms, commonly emerging during this period in relatives, have been hypothesized to result from alterations in brain regions mediating social cognition. We hypothesized these regions to show longitudinal alterations and these alterations to predict prodromal symptoms in adolescent and young adult relatives of schizophrenia patients. 27 Healthy controls and 23 relatives were assessed at baseline and one year follow-up using scale of prodromal symptoms and gray matter volumes of hypothesized regions from T1-MRI images. Regional volumes showing deficits on ANCOVA and repeated-measures-ANCOVAs (controlling intra cranial volume, age and gender) were correlated with prodromal symptoms. At baseline, bilateral amygdalae, bilateral pars triangulares, left lateral orbitofrontal, right frontal pole, angular and supramarginal gyrii were smaller in relatives compared to controls. Relatives declined but controls increased or remained stable on bilateral lateral orbitofrontal, left rostral anterior cingulate, left medial prefrontal, right inferior frontal gyrus and left temporal pole volumes at follow-up relative to baseline. Smaller volumes predicted greater severity of prodromal symptoms at both cross-sectional assessments. Longitudinally, smaller baseline volumes predicted greater prodromal symptoms at follow-up; greater longitudinal decreases in volumes predicted worsening (increase) of prodromal symptoms over time. These preliminary findings suggest that abnormal longitudinal gray matter loss may occur in regions mediating social cognition and may convey risk for prodromal symptoms during adolescence and early adulthood in individuals with a familial diathesis for schizophrenia. PMID:20441795

  3. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry.

    Directory of Open Access Journals (Sweden)

    Sonia Doallo

    Full Text Available Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory, processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9, less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years binge drinking pattern of alcohol use (n = 11; age 22.43 ± 1.03 and control subjects (n = 21; age 22.18 ± 1.08 to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9 in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol -that does not meet criteria for alcohol dependence- throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory.

  4. Distinctive laterality of neural networks supporting action understanding in left- and right-handed individuals: An EEG coherence study.

    Science.gov (United States)

    Kelly, Rachel; Mizelle, J C; Wheaton, Lewis A

    2015-08-01

    Prior work has demonstrated that perspective and handedness of observed actions can affect action understanding differently in right and left-handed persons, suggesting potential differences in the neural networks underlying action understanding between right and left-handed individuals. We sought to evaluate potential differences in these neural networks using electroencephalography (EEG). Right- and left-handed participants observed images of tool-use actions from egocentric and allocentric perspectives, with right- and left-handed actors performing the actions. Participants judged the outcome of the observed actions, and response accuracy and latency were recorded. Behaviorally, the highest accuracy and shortest latency was found in the egocentric perspective for right- and left-handed observers. Handedness of subject showed an effect on accuracy and latency also, where right-handed observers were faster to respond than left-handed observers, but on average were less accurate. Mu band (8-10 Hz) cortico-cortical coherence analysis indicated that right-handed observers have coherence in the motor dominant left parietal-premotor networks when looking at an egocentric right or allocentric left hands. When looking in an egocentric perspective at a left hand or allocentric right hand, coherence was lateralized to right parietal-premotor areas. In left-handed observers, bilateral parietal-premotor coherence patterns were observed regardless of actor handedness. These findings suggest that the cortical networks involved in understanding action outcomes are dependent on hand dominance, and notably right handed participants seem to utilize motor systems based on the limb seen performing the action. The decreased accuracy for right-handed participants on allocentric images could be due to asymmetrical lateralization of encoding action and motoric dominance, which may interfere with translating allocentric limb action outcomes. Further neurophysiological studies will

  5. The oft-neglected role of parietal EEG asymmetry and risk for major depressive disorder.

    Science.gov (United States)

    Stewart, Jennifer L; Towers, David N; Coan, James A; Allen, John J B

    2011-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n=143) and without (n=163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women displayed relatively less right parietal activity than current MDD+ and MDD- women, replicating prior work. Recent caffeine intake, an index of arousal, moderated the relationship between depression and EEG asymmetry for women and men. Findings suggest that sex differences and arousal should be examined in studies of depression and regional brain activity. Copyright © 2010 Society for Psychophysiological Research.

  6. Global increase in task-related fronto-parietal activity after focal frontal lobe lesion.

    Science.gov (United States)

    Woolgar, Alexandra; Bor, Daniel; Duncan, John

    2013-09-01

    A critical question for neuropsychology is how complex brain networks react to damage. Here, we address this question for the well-known executive control or multiple-demand (MD) system, a fronto-parietal network showing increased activity with many different kinds of cognitive demand, including standard tests of fluid intelligence. Using fMRI, we ask how focal frontal lobe damage affects MD activity during a standard fluid intelligence task. Despite poor behavioral performance, frontal patients showed increased fronto-parietal activity relative to controls. The activation difference was not accounted for by difference in IQ. Moreover, rather than specific focus on perilesional or contralesional cortex, additional recruitment was distributed throughout the MD regions and surrounding cortex and included parietal MD regions distant from the injury. The data suggest that, following local frontal lobe damage, there is a global compensatory recruitment of an adaptive and integrated fronto-parietal network.

  7. [Functional connectivity of temporal parietal junction in online game addicts:a resting-state functional magnetic resonance imaging study].

    Science.gov (United States)

    Yuan, Ji; Qian, Ruobing; Lin, Bin; Fu, Xianming; Wei, Xiangpin; Weng, Chuanbo; Niu, Chaoshi; Wang, Yehan

    2014-02-11

    To explore the functions of temporal parietal junction (TPJ) as parts of attention networks in the pathogenesis of online game addiction using resting-state functional magnetic resonance imaging (fMRI). A total of 17 online game addicts (OGA) were recruited as OGA group and 17 healthy controls during the same period were recruited as CON group. The neuropsychological tests were performed for all of them to compare the inter-group differences in the results of Internet Addiction Test (IAT) and attention functions. All fMRI data were preprocessed after resting-state fMRI scanning. Then left and right TPJ were selected as regions of interest (ROIs) to calculate the linear correlation between TPJ and entire brain to compare the inter-group differences. Obvious differences existed between OGA group (71 ± 5 scores) and CON group (19 ± 7 scores) in the IAT results and attention function (P online game addicts showed decreased functional connectivity with bilateral ventromedial prefrontal cortex (VMPFC), bilateral hippocampal gyrus and bilateral amygdaloid nucleus, but increased functional connectivity with right cuneus.However, left TPJ demonstrated decreased functional connectivity with bilateral superior frontal gyrus and bilateral middle frontal gyrus, but increased functional connectivity with bilateral cuneus (P online game addicts.It suggests that TPJ is an important component of attention networks participating in the generation of online game addiction.

  8. Gray Zone Legislation and Activities: Evaluating the Orchestration of Convergence Within the Gray Zone

    Science.gov (United States)

    2017-06-01

    contemporary view that Title 10 and 50 legislation directs convergence based on legal context. Murphy then introduces classic military theory as a method to...determining convergence or divergence. In the end, classical military theory directs the convergence and divergence of military and intelligence activities...Code has not fundamentally changed in response to the Gray Zone and has sparked concern for the future of a seemingly inevitable convergence trend

  9. Gray literature: An important resource in systematic reviews.

    Science.gov (United States)

    Paez, Arsenio

    2017-08-01

    Systematic reviews aide the analysis and dissemination of evidence, using rigorous and transparent methods to generate empirically attained answers to focused research questions. Identifying all evidence relevant to the research questions is an essential component, and challenge, of systematic reviews. Gray literature, or evidence not published in commercial publications, can make important contributions to a systematic review. Gray literature can include academic papers, including theses and dissertations, research and committee reports, government reports, conference papers, and ongoing research, among others. It may provide data not found within commercially published literature, providing an important forum for disseminating studies with null or negative results that might not otherwise be disseminated. Gray literature may thusly reduce publication bias, increase reviews' comprehensiveness and timeliness, and foster a balanced picture of available evidence. Gray literature's diverse formats and audiences can present a significant challenge in a systematic search for evidence. However, the benefits of including gray literature may far outweigh the cost in time and resource needed to search for it, and it is important for it to be included in a systematic review or review of evidence. A carefully thought out gray literature search strategy may be an invaluable component of a systematic review. This narrative review provides guidance about the benefits of including gray literature in a systematic review, and sources for searching through gray literature. An illustrative example of a search for evidence within gray literature sources is presented to highlight the potential contributions of such a search to a systematic review. Benefits and challenges of gray literature search methods are discussed, and recommendations made. © 2017 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  10. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Peng Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Liu Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie Binbin, E-mail: niebb@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Li Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Shan Baoci, E-mail: shanbc@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Wang Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China)

    2011-11-15

    Purpose: To investigate cerebral and cerebellar gray matter abnormalities in patients with first-episode major depressive disorder (MDD). Materials and methods: We examined the structural difference in regional gray matter density (GMD) between 22 first-episode MDD patients and 30 age-, gender- and education-matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging. Results: Compared with healthy controls, MDD patients showed decreased GMD in the right medial and left lateral orbitofrontal cortex, right dorsolateral prefrontal cortex (DLPFC), bilateral temporal pole, right superior temporal gyrus, bilateral anterior insular cortex, left parahippocampal gyrus, and left cerebellum. In addition, in MDD patients, there was a negative correlation between GMD values of the right DLPFC and the score of the depression rating scale. Conclusions: Our findings provided additional support for the involvement of limbic-cortical circuits in the pathophysiology of MDD and preliminary evidence that a defect involving the cerebellum may also be implicated.

  11. Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Mandl, RC

    2006-01-01

    best reflect the genetic and environmental risk factors in the brains of patients with schizophrenia remains unresolved. 1.5-T MRI brain scans of 11 monozygotic and 11 same-sex dizygotic twin-pairs discordant for schizophrenia were compared to 11 monozygotic and 11 same-sex dizygotic healthy control......Global gray matter brain tissue volume decreases in schizophrenia have been associated to disease-related (possibly nongenetic) factors. Global white matter brain tissue volume decreases were related to genetic risk factors for the disease. However, which focal gray and white matter brain regions...... gyrus in twin-pairs discordant for schizophrenia as compared to healthy twin-pairs. Focal changes in left medial (orbito)frontal and left sensory motor gyri may reflect the increased genetic risk to develop schizophrenia. Focal changes in the left anterior hemisphere may therefore be particularly...

  12. Left heart catheterization

    Science.gov (United States)

    Catheterization - left heart ... to help guide the catheters up into your heart and arteries. Dye (sometimes called "contrast") will be ... in the blood vessels that lead to your heart. The catheter is then moved through the aortic ...

  13. The rehabilitative effects on written language of a combined language and parietal dual-tDCS treatment in a stroke case.

    Science.gov (United States)

    De Tommaso, Barbara; Piedimonte, Alessandro; Caglio, Marcella M; D'Agata, Federico; Campagnoli, Marcello; Orsi, Laura; Raimondo, Simona; Vighetti, Sergio; Mortara, Paolo; Massazza, Giuseppe; Pinessi, Lorenzo

    2017-09-01

    In this paper we report the effect of a combined transcranial direct current stimulation (tDCS) and speech language therapy on linguistic deficits following left brain damage in a stroke case. We show that simultaneous electrical excitatory stimulation to the left and inhibitory stimulation to the right parietal regions (dual-tDCS) affected writing and reading rehabilitation, enhancing speech therapy outcomes. The results of a comparison with healthy controls showed that application of dual-tDCS could improve, in particular, sub-lexical transcoding and, specifically, the reading of non-words with increasing length and complexity. Positive repercussions on patient's quality of functional communication were also ascertained. Significant changes were also found in other language and cognitive tasks not directly treated (comprehension and constructive apraxia).

  14. The inferior parietal lobule and recognition memory : expectancy violation or successful retrieval?

    OpenAIRE

    O'Connor, Akira R.; Han, Sanghoon; Dobbins, Ian G.

    2010-01-01

    Functional neuroimaging studies of episodic recognition demonstrate an increased lateral parietal response for studied versus new materials, often termed a retrieval success effect. Using a novel memory analog of attentional cueing, we manipulated the correspondence between anticipated and actual recognition evidence by presenting valid or invalid anticipatory cues (e. g., "likely old") before recognition judgments. Although a superior parietal region demonstrated the retrieval success patter...

  15. The relative contributions of frontal and parietal cortex for generalized quantifier comprehension

    Directory of Open Access Journals (Sweden)

    Christopher A Olm

    2014-08-01

    Full Text Available Quantifiers, like some or few, are frequent in daily language. Linguists posit at least three distinct classes of quantifiers: cardinal quantifiers that rely on numerosity, majority quantifiers that additionally depend on executive resources, and logical quantifiers that rely on perceptual attention. We used BOLD fMRI to investigate the roles of frontal and parietal regions in quantifier comprehension. Participants performed a sentence-picture verification task to determine whether a sentence containing a quantifier accurately describes a picture. A whole-brain analysis identified a network involved in quantifier comprehension: This implicated bilateral inferior parietal, superior parietal and dorsolateral prefrontal cortices, and right inferior frontal cortex. We then performed region-of-interest analyses to assess the relative contribution of each region for each quantifier class. Inferior parietal cortex was equally activated across all quantifier classes, consistent with prior studies implicating the region for quantifier comprehension due in part to its role in the representation of number knowledge. Right superior parietal cortex was up-regulated in comparison to frontal regions for cardinal and logical quantifiers, but parietal and frontal regions were equally activated for majority quantifiers and each frontal region is most highly activated for majority quantifiers. This finding is consistent with the hypothesis that majority quantifiers rely on numerosity mechanisms in parietal cortex and executive mechanisms in frontal cortex. Also, right inferior frontal cortex was up-regulated for logical compared to cardinal quantifiers, which may be related to selection demands associated with logical quantifier comprehension. We conclude that distinct components of a large-scale fronto-parietal network contribute to specific aspects of quantifier comprehension, and that this biologically-defined network is consistent with cognitive theories of

  16. Bilateral front-parietal polymicrogyria accompanied by cobblestone lissencephaly: 3T MR imaging findings of a case

    International Nuclear Information System (INIS)

    Bozkurt, Y.; Battal, B.; Ozcan, E.; Kocaoglu, M.

    2012-01-01

    Full text: Background: The cerebral cortex develops in three overlapping stages: cell proliferation, neuronal migration, and cortical organization. Lissencephaly (smooth brain) is a severe malformation of the cerebral cortex that results from impaired neuronal migration. Polymicrogyria is a disorder of late migration or cortical organization, and supposed to reflect a disruption of normal neuronal migration with subsequent disordered cortical organization. A combination of cobblestone lissencephaly and polymicrogyria is very rare in the same patient's brain. Objective: To present clinical and 3T magnetic resonance (MR) imaging findings of a 17-year-old male with bilateral fronto-parietal polimicrogyria accompanied by cobblestone lissencaphaly. Materials and methods: A 17-year-old male who had seizures and involuntary muscular spasm from birth, was referred to our Hospital. The patient was evaluated by a complete history, physical examination, a laboratory work-up, and cranial MR examination for evaluate the central nervous system. Results: A sharp wave paroxysm in the left temporal area was observed in the electroencephalogram (EEG). The neurological examination of our patient was normal. A slight increase have seen in the aspartate aminotransferase (SGOT) levels. The other biochemical tests were found to be normal. Cranial MR imaging showed an irregular nodular cortex with hypomyelination of the white matter at the lateral and posterior part of the right occipital lobe. We also observed the changes compatible with polymicrogyria in a large area of the medial parts of the bilateral temporal and parietal lobes. Conclusion: The role of radiological modalities for diagnosis of cortical formation disorders are very important. MR imaging are fairly useful for evaluation of these anomalies

  17. Brain activity dynamics in human parietal regions during spontaneous switches in bistable perception.

    Science.gov (United States)

    Megumi, Fukuda; Bahrami, Bahador; Kanai, Ryota; Rees, Geraint

    2015-02-15

    The neural mechanisms underlying conscious visual perception have been extensively investigated using bistable perception paradigms. Previous functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) studies suggest that the right anterior superior parietal (r-aSPL) and the right posterior superior parietal lobule (r-pSPL) have opposite roles in triggering perceptual reversals. It has been proposed that these two areas are part of a hierarchical network whose dynamics determine perceptual switches. However, how these two parietal regions interact with each other and with the rest of the brain during bistable perception is not known. Here, we investigated such a model by recording brain activity using fMRI while participants viewed a bistable structure-from-motion stimulus. Using dynamic causal modeling (DCM), we found that resolving such perceptual ambiguity was specifically associated with reciprocal interactions between these parietal regions and V5/MT. Strikingly, the strength of bottom-up coupling between V5/MT to r-pSPL and from r-pSPL to r-aSPL predicted individual mean dominance duration. Our findings are consistent with a hierarchical predictive coding model of parietal involvement in bistable perception and suggest that visual information processing underlying spontaneous perceptual switches can be described as changes in connectivity strength between parietal and visual cortical regions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Characteristics of alpha males in Nepal gray langurs.

    Science.gov (United States)

    Borries, Carola; Perlman, Rachel F; Koenig, Andreas

    2017-07-01

    In species with strong male-male competition, access to females in multimale-multifemale groups is usually regulated via a dominance hierarchy. The highest ranking (alpha) male often has priority of access and sires most offspring. The alpha male can change in three basic ways: (i) a recent immigrant or a resident challenges and becomes the new alpha; (ii) formation of a new group; (iii) succession-becoming alpha after higher ranking males have left. When, in a given primate population, the alpha male changes in different ways, two questions arise: (a) which is the most successful tactic and (b) do male attributes, such as age, aggressiveness or propensity to commit infanticide, affect the outcome? We examined these questions in the seasonally breeding Nepal gray langurs (Semnopithecus schistaceus) at Ramnagar, where new alpha males were either recent immigrants or residents. Success was measured as alpha tenure, residency duration, and the number of offspring sired (paternity exclusion based on DNA analysis, 28 infants). We documented 12 alpha-male tenures across two multimale-multifemale groups between 1991 and 1997. The predominant mode of change was the immigrant tactic. Age had no effect perhaps because alpha males were among the youngest adult males in their group. As expected, infanticidal males performed similarly to non-infanticidal ones. Alpha tenure was highly variable and longer for immigrant alphas and hyper-aggressive ones. However, none of the tactics or attributes examined resulted in significantly longer residencies or more offspring, likely because of the timing of immigrations and stochastic effects (i.e., the number of conceptions occurring per alpha tenure). The influence of female mate choice on male reproductive success requires further investigation. Furthermore, it remains to be examined why resident alpha males-with their presumed better knowledge of their opponents -performed so poorly. Am. J. Primatol. 79:e22437, 2017. © 2015 Wiley

  19. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Guihu Zhao

    Full Text Available A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci in subcortical gray matter (GM in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD, a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales of subcortical GM in this disorder. Probabilistic (entropy-based information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR images in chronic patients with schizophrenia (n = 19 and age-matched healthy controls (n = 19 (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old. We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0, the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1, as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473 in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  20. Premature hair graying: a probable coronary risk factor.

    Science.gov (United States)

    Gould, L; Reddy, C V; Oh, K C; Kim, S G; Becker, W

    1978-11-01

    Hypertension, diabetes mellitus, hypercholesterolemia, and smoking are known coronary risk factors. It has been our impression that premature graying of the hair also predisposes individuals to myocardial infarctions. To test this hypothesis, we evaluated all of the patients under the age of 50 who were admitted to the coronary care unit between 1974 and 1976 with a proven diagnosis of a myocardial infarction. There were 50 patients. Thirty-eight did not have premature graying. Twelve of the male patients (24%) had virtual total graying of the hair which made them appear older than their stated age. The graying in these patients started on the average at 29 years. Five of these patients state that other family members had premature hair graying. The incidence of diabetes, hypertension, and smoking was similar in those with and without premature hair graying. This preliminary study suggests that premature graying of the hair is associated with premature cardiovascular disease. It should probably be regarded as a coronary risk factor and used to identify patients at increased risk.

  1. Black and gray Helmholtz-Kerr soliton refraction

    International Nuclear Information System (INIS)

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-01

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  2. The trajectory of gray matter development in Broca’s area is abnormal in people who stutter.

    Directory of Open Access Journals (Sweden)

    Deryk Scott Beal

    2015-03-01

    Full Text Available The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in

  3. Differences in quantitative assessment of myocardial scar and gray zone by LGE-CMR imaging using established gray zone protocols.

    Science.gov (United States)

    Mesubi, Olurotimi; Ego-Osuala, Kelechi; Jeudy, Jean; Purtilo, James; Synowski, Stephen; Abutaleb, Ameer; Niekoop, Michelle; Abdulghani, Mohammed; Asoglu, Ramazan; See, Vincent; Saliaris, Anastasios; Shorofsky, Stephen; Dickfeld, Timm

    2015-02-01

    Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) imaging is the gold standard for myocardial scar evaluation. Heterogeneous areas of scar ('gray zone'), may serve as arrhythmogenic substrate. Various gray zone protocols have been correlated to clinical outcomes and ventricular tachycardia channels. This study assessed the quantitative differences in gray zone and scar core sizes as defined by previously validated signal intensity (SI) threshold algorithms. High quality LGE-CMR images performed in 41 cardiomyopathy patients [ischemic (33) or non-ischemic (8)] were analyzed using previously validated SI threshold methods [Full Width at Half Maximum (FWHM), n-standard deviation (NSD) and modified-FWHM]. Myocardial scar was defined as scar core and gray zone using SI thresholds based on these methods. Scar core, gray zone and total scar sizes were then computed and compared among these models. The median gray zone mass was 2-3 times larger with FWHM (15 g, IQR: 8-26 g) compared to NSD or modified-FWHM (5 g, IQR: 3-9 g; and 8 g. IQR: 6-12 g respectively, p zone extent (percentage of total scar that was gray zone) also varied significantly among the three methods, 51 % (IQR: 42-61 %), 17 % (IQR: 11-21 %) versus 38 % (IQR: 33-43 %) for FWHM, NSD and modified-FWHM respectively (p zone and scar core. Infarct core and total myocardial scar mass also differ using these methods. Further evaluation of the most accurate quantification method is needed.

  4. Viscoelasticity of subcortical gray matter structures.

    Science.gov (United States)

    Johnson, Curtis L; Schwarb, Hillary; D J McGarry, Matthew; Anderson, Aaron T; Huesmann, Graham R; Sutton, Bradley P; Cohen, Neal J

    2016-12-01

    Viscoelastic mechanical properties of the brain assessed with magnetic resonance elastography (MRE) are sensitive measures of microstructural tissue health in neurodegenerative conditions. Recent efforts have targeted measurements localized to specific neuroanatomical regions differentially affected in disease. In this work, we present a method for measuring the viscoelasticity in subcortical gray matter (SGM) structures, including the amygdala, hippocampus, caudate, putamen, pallidum, and thalamus. The method is based on incorporating high spatial resolution MRE imaging (1.6 mm isotropic voxels) with a mechanical inversion scheme designed to improve local measures in pre-defined regions (soft prior regularization [SPR]). We find that in 21 healthy, young volunteers SGM structures differ from each other in viscoelasticity, quantified as the shear stiffness and damping ratio, but also differ from the global viscoelasticity of the cerebrum. Through repeated examinations on a single volunteer, we estimate the uncertainty to be between 3 and 7% for each SGM measure. Furthermore, we demonstrate that the use of specific methodological considerations-higher spatial resolution and SPR-both decrease uncertainty and increase sensitivity of the SGM measures. The proposed method allows for reliable MRE measures of SGM viscoelasticity for future studies of neurodegenerative conditions. Hum Brain Mapp 37:4221-4233, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. [Recurrent left atrial myxoma].

    Science.gov (United States)

    Moreno Martínez, Francisco L; Lagomasino Hidalgo, Alvaro; Mirabal Rodríguez, Roger; López Bermúdez, Félix H; López Bernal, Omaida J

    2003-01-01

    Primary cardiac tumors are rare. Mixomas are the most common among them; 75% are located in the left atrium, 20% in the right atrium, and the rest in the ventricles. The seldom appear in atrio-ventricular valves. Recidivant mixoma are also rare, appearing in 1-5% of all patients that have undergone surgical treatment of a mixoma. In this paper we present our experience with a female patient, who 8 years after having been operated of a left atrial mixoma, began with symptoms of mild heart failure. Transthoracic echocardiography revealed recurrence of the tumor, and was therefore subjected to a second open-heart surgery from which she recovered without complications.

  6. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies

    Directory of Open Access Journals (Sweden)

    Chemin Lin

    2016-01-01

    Full Text Available Over the years, studies have demonstrated morphological changes in the brain of fibromyalgia (FMS. We aimed to conduct a coordinate-based meta-analytic research through systemic review on voxel-based morphometry (VBM imaging results to identify consistent gray matter (GM difference between FMS patients and healthy subjects. We performed a comprehensive literature search in PubMed (January 2000–December 2015 and included six VBM publication on FMS. Stereotactic data were extracted from 180 patients of FMS and 123 healthy controls. By means of activation likelihood estimation (ALE technique, regional GM reduction in left medial prefrontal cortex and right dorsal posterior cingulate cortex was identified. Both regions are within the default mode network. In conclusion, the gray matter deficit is related to the both affective and nonaffective components of pain processing. This result also provided the neuroanatomical correlates for emotional and cognitive symptoms in FMS.

  7. Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians.

    Science.gov (United States)

    Sluming, Vanessa; Barrick, Thomas; Howard, Matthew; Cezayirli, Enis; Mayes, Andrew; Roberts, Neil

    2002-11-01

    Broca's area is a major neuroanatomical substrate for spoken language and various musically relevant abilities, including visuospatial and audiospatial localization. Sight reading is a musician-specific visuospatial analysis task, and spatial ability is known to be amenable to training effects. Musicians have been reported to perform significantly better than nonmusicians on spatial ability tests, which is supported by our findings with the Benton judgement of line orientation (JOL) test (P musicians. Voxel-based morphometry (VBM) and stereological analyses were applied to high-resolution 3D MR images in male orchestral musicians (n = 26) and sex, handedness, and IQ-matched nonmusicians (n = 26). The wide age range (26 to 66 years) of volunteers permitted a secondary analysis of age-related effects. VBM with small volume correction (SVC) revealed a significant (P = 0.002) region of increased gray matter in Broca's area in the left inferior frontal gyrus in musicians. We observed significant age-related volume reductions in cerebral hemispheres, dorsolateral prefrontal cortex subfields bilaterally and gray matter density in the left inferior frontal gyrus in controls but not musicians; a positive correlation between JOL test score and age in musicians but not controls; a positive correlation between years of playing and the volume of gray matter in a significant region identified by VBM in under-50-year-old musicians. We suggest that orchestral musical performance promotes use-dependent retention, and possibly expansion, of gray matter involving Broca's area and that this provides further support for shared neural substrates underpinning expressive output in music and language.

  8. Fabrication of Partially Transparent Petaled Masks Using Gray Scale Lithography

    Data.gov (United States)

    National Aeronautics and Space Administration — In this study we intend to fabricate partially transparent petal (PTP) masks using gray scale lithography on high-energy beam sensitive (HEBS) glass and evaluate its...

  9. Gray Matter Is Targeted in First-Attack Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao; Schepmoes, Athena A.; Xie, Fang; Bergquist, Jonas P.; Vecsei, Lazlo' ; Zadori, Denes; Camp, David G.; Holland, Bart K.; Smith, Richard D.; Coyle, Patricia K.

    2013-09-10

    The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.

  10. Severe maxillary osteomyelitis in a Gray Wolf (Canis lupus)

    Science.gov (United States)

    Barber-Meyer, Shannon

    2012-01-01

    Dental injuries to or abnormalities in functionally important teeth and associated bones in predators may significantly reduce the ability to kill and consume prey (Lazar et al. 2009). This impairment is likely exacerbated in coursing predators, such as Gray Wolves, that bite and hold onto fleeing and kicking prey with their teeth. Damage to carnassials (upper fourth premolar, P4, and lower first molar, M1) and associated bones in Gray Wolves may especially inhibit the consumption of prey because these teeth slice meat and crush bone. Here I report maxillary osteomyelitis involving the carnassials in a wild Gray Wolf from northeastern Minnesota of such severity that I hypothesize it ultimately caused the Gray Wolf to starve to death.

  11. Left atrial appendage occlusion

    Directory of Open Access Journals (Sweden)

    Ahmad Mirdamadi

    2013-01-01

    Full Text Available Left atrial appendage (LAA occlusion is a treatment strategy to prevent blood clot formation in atrial appendage. Although, LAA occlusion usually was done by catheter-based techniques, especially percutaneous trans-luminal mitral commissurotomy (PTMC, it can be done during closed and open mitral valve commissurotomy (CMVC, OMVC and mitral valve replacement (MVR too. Nowadays, PTMC is performed as an optimal management of severe mitral stenosis (MS and many patients currently are treated by PTMC instead of previous surgical methods. One of the most important contraindications of PTMC is presence of clot in LAA. So, each patient who suffers of severe MS is evaluated by Trans-Esophageal Echocardiogram to rule out thrombus in LAA before PTMC. At open heart surgery, replacement of the mitral valve was performed for 49-year-old woman. Also, left atrial appendage occlusion was done during surgery. Immediately after surgery, echocardiography demonstrates an echo imitated the presence of a thrombus in left atrial appendage area, although there was not any evidence of thrombus in pre-pump TEE. We can conclude from this case report that when we suspect of thrombus of left atrial, we should obtain exact history of previous surgery of mitral valve to avoid misdiagnosis clotted LAA, instead of obliterated LAA. Consequently, it can prevent additional evaluations and treatments such as oral anticoagulation and exclusion or postponing surgeries including PTMC.

  12. Early math achievement and functional connectivity in the fronto-parietal network.

    Science.gov (United States)

    Emerson, Robert W; Cantlon, Jessica F

    2012-02-15

    In this study we test the hypothesis that the functional connectivity of the frontal and parietal regions that children recruit during a basic numerical task (matching Arabic numerals to arrays of dots) is predictive of their math test scores (TEMA-3; Ginsburg, 2003). Specifically, we tested 4-11-year-old children on a matching task during fMRI to localize a fronto-parietal network that responds more strongly during numerical matching than matching faces, words, or shapes. We then tested the functional connectivity between those regions during an independent task: natural viewing of an educational video that included math topics. Using this novel natural viewing method, we found that the connectivity between frontal and parietal regions during task-independent free-viewing of educational material is correlated with children's basic number matching ability, as well as their scores on the standardized test of mathematical ability (the TEMA). The correlation between children's mathematics scores and fronto-parietal connectivity is math-specific in the sense that it is independent of children's verbal IQ scores. Moreover, a control network, selective for faces, showed no correlation with mathematics performance. Finally, brain regions that correlate with subjects' overall response times in the matching task do not account for our number- and math-related effects. We suggest that the functional intersection of number-related frontal and parietal regions is math-specific. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The ARGOS system used for tracking gray whales

    Science.gov (United States)

    Mate, B. R.; Beaty, D.; Hoisington, C.; Kutz, R.; Mate, M. L.

    1983-01-01

    The development of satellite whale tags used to track gray whales in the eastern north Pacific Ocean is summarized. Two gray whales were radio-tagged in San Ignacio Lagoon (Mexico) and tracked on their northbound migration. One of the transmitters was modified to record and relay depth-of-dive information at 15 sec intervals throughout the course of the dive. Technical elements of data acquisition and analysis are outlined. The major biological findings are discussed.

  14. 8-Bit Gray Scale Images of Fingerprint Image Groups

    Science.gov (United States)

    NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (Web, free access)   The NIST database of fingerprint images contains 2000 8-bit gray scale fingerprint image pairs. A newer version of the compression/decompression software on the CDROM can be found at the website http://www.nist.gov/itl/iad/ig/nigos.cfm as part of the NBIS package.

  15. Comparison of Cox and Gray's survival models in severe sepsis

    DEFF Research Database (Denmark)

    Kasal, Jan; Andersen, Zorana Jovanovic; Clermont, Gilles

    2004-01-01

    Although survival is traditionally modeled using Cox proportional hazards modeling, this approach may be inappropriate in sepsis, in which the proportional hazards assumption does not hold. Newer, more flexible models, such as Gray's model, may be more appropriate.......Although survival is traditionally modeled using Cox proportional hazards modeling, this approach may be inappropriate in sepsis, in which the proportional hazards assumption does not hold. Newer, more flexible models, such as Gray's model, may be more appropriate....

  16. US Army Conventional Forces in Gray Zone Conflict

    Science.gov (United States)

    2017-05-25

    Defense, February 2014): vi, ix , xii, accessed February 16, 2017, http://archive.defense.gov/pubs/2014_Quadrennial_Defense_Review.pdf. 20 John Shy...National Security Strategy asserts that the modern operational environment is complex and situations of national concern may not lend themselves to “ quick ...States, x; for the three characteristics of gray zone conflict, see Freier, “Outplayed: Regaining Strategic Initiative in the Gray Zone,” ix , 3-4. 27 25

  17. Hypoplastic left heart syndrome

    Directory of Open Access Journals (Sweden)

    Thiagarajan Ravi

    2007-05-01

    Full Text Available Abstract Hypoplastic left heart syndrome(HLHS refers to the abnormal development of the left-sided cardiac structures, resulting in obstruction to blood flow from the left ventricular outflow tract. In addition, the syndrome includes underdevelopment of the left ventricle, aorta, and aortic arch, as well as mitral atresia or stenosis. HLHS has been reported to occur in approximately 0.016 to 0.036% of all live births. Newborn infants with the condition generally are born at full term and initially appear healthy. As the arterial duct closes, the systemic perfusion becomes decreased, resulting in hypoxemia, acidosis, and shock. Usually, no heart murmur, or a non-specific heart murmur, may be detected. The second heart sound is loud and single because of aortic atresia. Often the liver is enlarged secondary to congestive heart failure. The embryologic cause of the disease, as in the case of most congenital cardiac defects, is not fully known. The most useful diagnostic modality is the echocardiogram. The syndrome can be diagnosed by fetal echocardiography between 18 and 22 weeks of gestation. Differential diagnosis includes other left-sided obstructive lesions where the systemic circulation is dependent on ductal flow (critical aortic stenosis, coarctation of the aorta, interrupted aortic arch. Children with the syndrome require surgery as neonates, as they have duct-dependent systemic circulation. Currently, there are two major modalities, primary cardiac transplantation or a series of staged functionally univentricular palliations. The treatment chosen is dependent on the preference of the institution, its experience, and also preference. Although survival following initial surgical intervention has improved significantly over the last 20 years, significant mortality and morbidity are present for both surgical strategies. As a result pediatric cardiologists continue to be challenged by discussions with families regarding initial decision

  18. Superior Temporal Gyrus Volume Abnormalities and Thought Disorder in Left-Handed Schizophrenic Men

    Science.gov (United States)

    Holinger, Dorothy P.; Shenton, Martha E.; Wible, Cynthia G.; Donnino, Robert; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.

    2010-01-01

    Objective Studies of schizophrenia have not clearly defined handedness as a differentiating variable. Moreover, the relationship between thought disorder and anatomical anomalies has not been studied extensively in left-handed schizophrenic men. The twofold purpose of this study was to investigate gray matter volumes in the superior temporal gyrus of the temporal lobe (left and right hemispheres) in left-handed schizophrenic men and left-handed comparison men, in order to determine whether thought disorder in the left-handed schizophrenic men correlated with tissue volume abnormalities. Method Left-handed male patients (N=8) with DSM-III-R diagnoses of schizophrenia were compared with left-handed comparison men (N=10) matched for age, socioeconomic status, and IQ. Magnetic resonance imaging (MRI) with a 1.5-T magnet was used to obtain scans, which consisted of contiguous 1.5-mm slices of the whole brain. MRI analyses (as previously defined by the authors) included the anterior, posterior, and total superior temporal gyrus in both the left and right hemispheres. Results There were three significant findings regarding the left-handed schizophrenic men: 1) bilaterally smaller gray matter volumes in the posterior superior temporal gyrus (16% smaller on the right, 15% smaller on the left); 2) a smaller volume on the right side of the total superior temporal gyrus; and 3) a positive correlation between thought disorder and tissue volume in the right anterior superior temporal gyrus. Conclusions These results suggest that expression of brain pathology differs between left-handed and right-handed schizophrenic men and that the pathology is related to cognitive disturbance. PMID:10553736

  19. Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-09-01

    Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. We used voxel-based morphometry (VBM) and a questionnaire (Emotional Intelligence Scale) to measure EI to identify the gray matter correlates of each factor of individual EI (Intrapersonal factor, Interpersonal factor, Situation Management factor). We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry. Copyright © 2010 Wiley-Liss, Inc.

  20. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG.

    Science.gov (United States)

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L; Iriye, Heather; Seth, Anil K; Kanai, Ryota

    2016-08-16

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant's individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception.

  1. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    Science.gov (United States)

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Primary culture of secretagogue-responsive parietal cells from rabbit gastric mucosa

    International Nuclear Information System (INIS)

    Chew, C.S.; Ljungstroem, M.S.; Smolka, A.; Brown, M.R.

    1989-01-01

    A new procedure for isolation and primary culture of gastric parietal cells is described. Parietal cells from rabbit gastric mucosa are enriched to greater than 95% purity by combining a Nycodenz gradient separation with centrifugal elutriation. Cells are plated on the basement membrane matrix, Matrigel, and maintained in culture for at least 1 wk. Parietal cells cultured in this manner remain differentiated, cross-react with monoclonal H+-K+-ATPase antibodies, and respond to histamine, gastrin, and cholinergic stimulation with increased acid production as measured by accumulation of the weak base, [ 14 C]aminopyrine. When stimulated, cultured cells undergo ultrastructural changes in which intracellular canaliculi expand and numerous microvilli are observed. These ultrastructural changes are similar to those previously found to occur in vivo and in acutely isolated parietal cells. Morphological transformations in living cells can also be observed with differential interference contrast optics in the light microscope. After histamine stimulation, intracellular canaliculi gradually expand to form large vacuolar spaces. When the H2 receptor antagonist, cimetidine, is added to histamine-stimulated cells, these vacuoles gradually disappear. The ability to maintain hormonally responsive parietal cells in primary culture should make it possible to study direct, long-term effects of a variety of agonists and antagonists on parietal cell secretory-related activity. These cultured cells should also prove to be useful for the study of calcium transients, ion fluxes, and intracellular pH as related to acid secretion in single cells, particularly since morphological transformations can be used to monitor physiological responses at the same time within the same cell

  3. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Katrin Hanken

    2016-09-01

    Full Text Available Background: Fatigue in multiple sclerosis (MS patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS over the right parietal or frontal cortex counteracts fatigue-associated vigilance decrement and subjective fatigue. Methods: In study I, a randomized double-blind placebo-controlled study, anodal tDCS (1,5mA was delivered to the right parietal cortex or the right frontal cortex of 52 healthy participants during the first 20min of a 40min lasting visual vigilance task. Study II, also a randomized double-blind placebo-controlled study, investigated the effect of anodal tDCS (1.5mA over the right parietal cortex in 46 MS patients experiencing cognitive fatigue. TDCS was delivered for 20min before patients performed a 20min lasting visual vigilance task.Results: Study I showed that right parietal stimulation, but not right frontal stimulation, counteracts the increase in reaction time associated with vigilance decrement. Hence, only right parietal stimulation was applied to the MS patients in study II. Stimulation had a significant effect on vigilance decrement in mildly to moderately cognitively fatigued MS patients. Vigilance testing significantly increased the feeling of fatigue independent of stimulation.Conclusions: Anodal tDCS over the right parietal cortex can counteract the increase in reaction times during vigilance performance but not the increase in subjective fatigue. This finding is compatible with our model of fatigue in MS, suggesting a dissociation between the feeling and the behavioral characteristics of fatigue.

  4. Analysis of cell hyperplasia and parietal cell dysfunction induced by Ostertagia ostertagi infection.

    Science.gov (United States)

    Mihi, Belgacem; Van Meulder, Frederik; Rinaldi, Manuela; Van Coppernolle, Stefanie; Chiers, Koen; Van den Broeck, Wim; Goddeeris, Bruno; Vercruysse, Jozef; Claerebout, Edwin; Geldhof, Peter

    2013-12-11

    Infections in cattle with the gastric nematode Ostertagia ostertagi are associated with decreased acid secretion and profound physio-morphological changes of the gastric mucosa. The purpose of the current study was to investigate the mechanisms triggering these pathophysiological changes. O. ostertagi infection resulted in a marked cellular hyperplasia, which can be explained by increased transcriptional levels of signaling molecules related to the homeostasis of gastric epithelial cells such as HES1, WNT5A, FGF10, HB-EGF, AREG, ADAM10 and ADAM17. Intriguingly, histological analysis indicated that the rapid rise in the gastric pH, observed following the emergence of adult worms, cannot be explained by a loss of parietal cells, as a decrease in the number of parietal cells was only observed following a long term infection of several weeks, but is likely to be caused by an inhibition of parietal cell activity. To investigate whether this inhibition is caused by a direct effect of the parasites, parietal cells were co-cultured with parasite Excretory/Secretory products (ESP) and subsequently analyzed for acid production. The results indicate that adult ESP inhibited acid secretion, whereas ESP from the L4 larval stages did not alter parietal cell function. In addition, our data show that the inhibition of parietal cell activity could be mediated by a marked upregulation of inflammatory factors, which are partly induced by adult ESP in abomasal epithelial cells. In conclusion, this study shows that the emergence of adult O. ostertagi worms is associated with marked cellular changes that can be partly triggered by the worm's Excretory/secretory antigens.

  5. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  6. Decrease in temporal gyrus gray matter volume in first-episode, early onset schizophrenia: an MRI study.

    Directory of Open Access Journals (Sweden)

    Jinsong Tang

    Full Text Available BACKGROUND: Loss of gray matter has been previously found in early-onset schizophrenic patients. However, there are no consistent findings between studies due to different methods used to measure grey matter volume/density and influences of confounding factors. METHODS: The volume of gray matter (GM was measured in 29 first episode early-onset schizophrenia (EOS and 34 well-matched healthy controls by using voxel-based morphometry (VBM. Psychotic symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS. The correlations between the GM volume and PANSS scores, age of psychosis onset, duration of psychosis, and chlorpromazine (CPZ equivalent value were investigated. RESULTS: Relative to healthy subjects, the patients with first episode EOS showed significantly lower GM volume in the left middle and superior temporal gyrus. The loss of GM volume negatively correlated with PANSS-positive symptoms (p = 0.002, but not with PANSS-negative symptoms, PANSS-general psychopathology, and PANSS-total score. No significant correlation was found between GM volume and age of psychosis onset, duration of psychosis, and CPZ equivalent value. CONCLUSION: Patients with first episode EOS have evidence of reduced GM in the left middle and superior temporal gyrus. Structural abnormalities in the left middle and superior temporal gyrus may contribute to the pathophysiology of schizophrenia.

  7. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study.

    Science.gov (United States)

    Balestrini, Simona; Francione, Stefano; Mai, Roberto; Castana, Laura; Casaceli, Giuseppe; Marino, Daniela; Provinciali, Leandro; Cardinale, Francesco; Tassi, Laura

    2015-09-01

    The functional complexity of the parietal lobe still represents a challenge for neurophysiological and functional neuroimaging studies. While the somatosensory functions of the anterior parietal cortex are well established, the posterior parietal cortex has a relevant role in processing the sensory information, including visuo-spatial perception, visual attention, visuo-motor transformations and other complex and not completely understood functions. We retrospectively analysed all the clinical manifestations induced by intracerebral bipolar electrical stimulation in 172 patients suffering from drug-resistant focal epilepsy (mean age 25.6, standard deviation 11.6; 44% females and 56% males) with at least one electrode stereotactically implanted in the parietal cortex. A total of 1186 electrical stimulations were included in the analysis, of which 88 were subsequently excluded because of eliciting pathological electric activity or inducing ictal symptomatology. In the dominant parietal lobe, clinical responses were observed for 56 (25%) of the low-frequency stimulations and for 76 (50%) of the high-frequency stimulations. In the non-dominant parietal lobe, 111 (27%) low-frequency and 176 (55%) high-frequency stimulations were associated with a clinical response. Body scheme alteration was the only clinical effect showing a lateralization, as they were evoked only in the non-dominant hemisphere. The occurrence of somatosensory sensations, motor symptoms, dysarthria and multimodal responses were significantly associated with stimulation of the postcentral gyrus (odds ratio: 5.83, P < 0.001; odds ratio: 8.77, P < 0.001; odds ratio: 5.44, P = 0.011; odds ratio: 8.33, P = 0.006; respectively). Stimulation of the intraparietal sulcus was associated with the occurrence of sensory illusions or hallucinations (odds ratio: 8.68, P < 0.001) and eyeball/eyelid movements or sensations (odds ratio: 4.35, P = 0.047). To our knowledge, this is the only currently available complete

  8. Community violence exposure correlates with smaller gray matter volume and lower IQ in urban adolescents.

    Science.gov (United States)

    Butler, Oisin; Yang, Xiao-Fei; Laube, Corinna; Kühn, Simone; Immordino-Yang, Mary Helen

    2018-02-15

    Adolescents' exposure to community violence is a significant public health issue in urban settings and has been associated with poorer cognitive performance and increased risk for psychiatric illnesses, including PTSD. However, no study to date has investigated the neural correlates of community violence exposure in adolescents. Sixty-five healthy adolescents (age = 14-18 years; 36 females, 29 males) from moderate- to high-crime neighborhoods in Los Angeles reported their violence exposure, parents' education level, and free/reduced school lunch status (socio-economic status, SES), and underwent structural neuroimaging and intelligence testing. Violence exposure negatively correlated with measures of SES, IQ, and gray matter volume. Above and beyond the effect of SES, violence exposure negatively correlated with IQ and with gray matter volume in the left inferior frontal gyrus and anterior cingulate cortex, regions involved in high-level cognitive functions and autonomic modulation, and previously shown to be reduced in PTSD and combat-exposed military populations. The current results provide first evidence that frontal brain regions involved in cognition and affect appear to be selectively affected by exposure to community violence, even in healthy nondelinquent adolescents who are not the direct victims or perpetrators of violence. © 2018 Wiley Periodicals, Inc.

  9. Anomalous gray matter patterns in specific reading comprehension deficit are independent of dyslexia.

    Science.gov (United States)

    Bailey, Stephen; Hoeft, Fumiko; Aboud, Katherine; Cutting, Laurie

    2016-10-01

    Specific reading comprehension deficit (SRCD) affects up to 10 % of all children. SRCD is distinct from dyslexia (DYS) in that individuals with SRCD show poor comprehension despite adequate decoding skills. Despite its prevalence and considerable behavioral research, there is not yet a unified cognitive profile of SRCD. While its neuroanatomical basis is unknown, SRCD could be anomalous in regions subserving their commonly reported cognitive weaknesses in semantic processing or executive function. Here we investigated, for the first time, patterns of gray matter volume difference in SRCD as compared to DYS and typical developing (TD) adolescent readers (N = 41). A linear support vector machine algorithm was applied to whole brain gray matter volumes generated through voxel-based morphometry. As expected, DYS differed significantly from TD in a pattern that included features from left fusiform and supramarginal gyri (DYS vs. TD: 80.0 %, p analysis. These areas are thought to subserve executive processes relevant for reading, such as monitoring and manipulating mental representations. Thus, preliminary analyses suggest that SRCD readers possess a distinct neural profile compared to both TD and DYS readers and that these differences might be linked to domain-general abilities. This work provides a foundation for further investigation into variants of reading disability beyond DYS.

  10. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21–45 years old

    Science.gov (United States)

    El-Beltagi, Ahmed; Cherian, Jigi; Gejo, Grace; Al-Jazzaf, Abrar; Ismail, Mohammad

    2015-01-01

    Previous and more recent work of analyzing structural changes in the brain suggest that certain brain regions such as the frontal lobe are among the brain regions profoundly affected by the aging process across males and females. Also, a unified model of structural changes in a normally aging brain is still lacking. The present study investigated age-related structural brain changes in gray matter from young to early middle-age adulthood for males and females. Magnetic resonance images of 215 normal and healthy participants between the ages of 21–45 years were acquired. Changes in gray matter were assessed using voxel-based morphometry and gray matter volumetric analysis. The results showed significant decrease in gray matter volume between the youngest and oldest groups in the following brain regions: frontal, temporal, and parietal lobes. Grey matter loss in the frontal lobe was among the most widespread of all brain regions across the comparison groups that showed significant age-related changes in grey matter for both males and females. This work provides a unique pattern of age-related decline of normal and healthy adult males and females that can aid in the future development of a unified model of normal brain aging. PMID:26306927

  11. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21-45 years old.

    Science.gov (United States)

    Bourisly, Ali K; El-Beltagi, Ahmed; Cherian, Jigi; Gejo, Grace; Al-Jazzaf, Abrar; Ismail, Mohammad

    2015-10-01

    Previous and more recent work of analyzing structural changes in the brain suggest that certain brain regions such as the frontal lobe are among the brain regions profoundly affected by the aging process across males and females. Also, a unified model of structural changes in a normally aging brain is still lacking. The present study investigated age-related structural brain changes in gray matter from young to early middle-age adulthood for males and females. Magnetic resonance images of 215 normal and healthy participants between the ages of 21-45 years were acquired. Changes in gray matter were assessed using voxel-based morphometry and gray matter volumetric analysis. The results showed significant decrease in gray matter volume between the youngest and oldest groups in the following brain regions: frontal, temporal, and parietal lobes. Grey matter loss in the frontal lobe was among the most widespread of all brain regions across the comparison groups that showed significant age-related changes in grey matter for both males and females. This work provides a unique pattern of age-related decline of normal and healthy adult males and females that can aid in the future development of a unified model of normal brain aging. © The Author(s) 2015.

  12. Increased brain gray matter in the primary somatosensory cortex is associated with increased pain and mood disturbance in patients with interstitial cystitis/painful bladder syndrome.

    Science.gov (United States)

    Kairys, Anson E; Schmidt-Wilcke, Tobias; Puiu, Tudor; Ichesco, Eric; Labus, Jennifer S; Martucci, Katherine; Farmer, Melissa A; Ness, Timothy J; Deutsch, Georg; Mayer, Emeran A; Mackey, Sean; Apkarian, A Vania; Maravilla, Kenneth; Clauw, Daniel J; Harris, Richard E

    2015-01-01

    Interstitial cystitis is a highly prevalent pain condition estimated to affect 3% to 6% of women in the United States. Emerging data suggest there are central neurobiological components to the etiology of this disease. We report the first brain structural imaging findings from the MAPP network with data on more than 300 participants. We used voxel based morphometry to determine whether human patients with chronic interstitial cystitis display changes in brain morphology compared to healthy controls. A total of 33 female patients with interstitial cystitis without comorbidities and 33 age and gender matched controls taken from the larger sample underwent structural magnetic resonance imaging at 5 MAPP sites across the United States. Compared to controls, females with interstitial cystitis displayed significant increased gray matter volume in several regions of the brain including the right primary somatosensory cortex, the superior parietal lobule bilaterally and the right supplementary motor area. Gray matter volume in the right primary somatosensory cortex was associated with greater pain, mood (anxiety) and urological symptoms. We explored these correlations in a linear regression model, and found independent effects of these 3 measures on primary somatosensory cortex gray matter volume, namely clinical pain (McGill pain sensory total), a measure of urgency and anxiety (HADS). These data support the notion that changes in somatosensory gray matter may have an important role in pain sensitivity as well as affective and sensory aspects of interstitial cystitis. Further studies are needed to confirm the generalizability of these findings to other pain conditions. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Focal Gray Matter Plasticity as a Function of Long Duration Bedrest: Preliminary Results

    Science.gov (United States)

    Koppelmans, V.; Erdeniz, B.; De Dios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    from pre to in bed rest. Over the same time period, there was an increase in gray matter density in the cerebellum, occipital, and parietal cortices. The majority of these changes did not recover from during to post bed rest. TBSS analyses will also be presented. Extended bed rest, which is an analog for microgravity, can result in gray matter changes and potentially in microstructural white matter changes in areas that are important for neuromotor behavior and cognition. These changes did not recover at two weeks post bed rest. These results have significant public health implications, and will also aid in interpretation of our future data obtained pre and post spaceflight. Whether the effects of bed rest wear off at longer times post bed rest, and if they are associated with behavior are important questions that warrant further research.

  14. Left Ventricular Assist Devices

    Directory of Open Access Journals (Sweden)

    Khuansiri Narajeenron

    2017-04-01

    Full Text Available Audience: The audience for this classic team-based learning (cTBL session is emergency medicine residents, faculty, and students; although this topic is applicable to internal medicine and family medicine residents. Introduction: A left ventricular assist device (LVAD is a mechanical circulatory support device that can be placed in critically-ill patients who have poor left ventricular function. After LVAD implantation, patients have improved quality of life.1 The number of LVAD patients worldwide continues to rise. Left-ventricular assist device patients may present to the emergency department (ED with severe, life-threatening conditions. It is essential that emergency physicians have a good understanding of LVADs and their complications. Objectives: Upon completion of this cTBL module, the learner will be able to: 1 Properly assess LVAD patients’ circulatory status; 2 appropriately resuscitate LVAD patients; 3 identify common LVAD complications; 4 evaluate and appropriately manage patients with LVAD malfunctions. Method: The method for this didactic session is cTBL.

  15. Mental space travel: damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories.

    Science.gov (United States)

    Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-05-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  16. The parietal opercular auditory-sensorimotor network in musicians: A resting-state fMRI study.

    Science.gov (United States)

    Tanaka, Shoji; Kirino, Eiji

    2018-02-01

    Auditory-sensorimotor coupling is critical for musical performance, during which auditory and somatosensory feedback signals are used to ensure desired outputs. Previous studies reported opercular activation in subjects performing or listening to music. A functional connectivity analysis suggested the parietal operculum (PO) as a connector hub that links auditory, somatosensory, and motor cortical areas. We therefore examined whether this PO network differs between musicians and non-musicians. We analyzed resting-state PO functional connectivity with Heschl's gyrus (HG), the planum temporale (PT), the precentral gyrus (preCG), and the postcentral gyrus (postCG) in 35 musicians and 35 non-musicians. In musicians, the left PO exhibited increased functional connectivity with the ipsilateral HG, PT, preCG, and postCG, whereas the right PO exhibited enhanced functional connectivity with the contralateral HG, preCG, and postCG and the ipsilateral postCG. Direct functional connectivity between an auditory area (the HG or PT) and a sensorimotor area (the preCG or postCG) did not significantly differ between the groups. The PO's functional connectivity with auditory and sensorimotor areas is enhanced in musicians relative to non-musicians. We propose that the PO network facilitates musical performance by mediating multimodal integration for modulating auditory-sensorimotor control. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Deep gray matter volume loss drives disability worsening in multiple sclerosis.

    Science.gov (United States)

    Eshaghi, Arman; Prados, Ferran; Brownlee, Wallace J; Altmann, Daniel R; Tur, Carmen; Cardoso, M Jorge; De Angelis, Floriana; van de Pavert, Steven H; Cawley, Niamh; De Stefano, Nicola; Stromillo, M Laura; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Vrenken, Hugo; Leurs, Cyra E; Killestein, Joep; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Wheeler-Kingshott, Claudia A M Gandini; Chard, Declan; Thompson, Alan J; Alexander, Daniel C; Barkhof, Frederik; Ciccarelli, Olga

    2018-02-01

    Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). This large

  18. Involvement of the Left Supramarginal Gyrus in Manipulation Judgment Tasks: Contributions to Theories of Tool Use.

    Science.gov (United States)

    Lesourd, Mathieu; Osiurak, François; Navarro, Jordan; Reynaud, Emanuelle

    2017-09-01

    Two theories of tool use, namely the gesture engram and the technical reasoning theories, make distinct predictions about the involvement of the left inferior parietal lobe (IPL) in manipulation judgement tasks. The objective here is to test these alternative predictions based on previous studies on manipulation judgment tasks using transcranial magnetic stimulations (TMS) targeting the left supramarginal gyrus (SMG). We review recent TMS studies on manipulation judgement tasks and confront these data with predictions made by both tool use theories. The left SMG is a highly intertwined region, organized following several functionally distinct areas and TMS may have disrupted a cortical network involved in the ability to use tools rather than only one functional area supporting manipulation knowledge. Moreover, manipulation judgement tasks may be impaired following virtual lesions outside the IPL. These data are more in line with the technical reasoning hypothesis, which assumes that the left IPL does not store manipulation knowledge per se. (JINS, 2017, 23, 685-691).

  19. Disruptions in the left frontoparietal network underlie resting state endophenotypic markers in schizophrenia.

    Science.gov (United States)

    Chahine, George; Richter, Anja; Wolter, Sarah; Goya-Maldonado, Roberto; Gruber, Oliver

    2017-04-01

    Advances in functional brain imaging have improved the search for potential endophenotypic markers in schizophrenia. Here, we employed independent component analysis (ICA) and dynamic causal modeling (DCM) in resting state fMRI on a sample of 35 schizophrenia patients, 20 first-degree relatives and 35 control subjects. Analysis on ICA-derived networks revealed increased functional connectivity between the left frontoparietal network (FPN) and left temporal and parietal regions in schizophrenia patients (P schizophrenia patients from all other nodes of the left FPN (P schizophrenia has been previously associated with a range of abnormalities, including formal thought disorder, working memory dysfunction and sensory hallucinations. Our analysis uncovered new potential endophenotypic markers of schizophrenia and shed light on the organization of the left FPN in patients and their first-degree relatives. Hum Brain Mapp 38:1741-1750, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Sex differences in the association between gray matter volume and verbal creativity.

    Science.gov (United States)

    Shi, Baoguo; Xu, Li; Chen, Qunlin; Qiu, Jiang

    2017-08-02

    The explanation for why significant sex differences are found in creativity has become an increasingly important topic. The current study applied a cognitive neuroscience perspective and voxel-based morphometry to investigate the sex differences for the association between verbal creativity and gray matter volume (GMV) in a large sample of healthy adults from the Chinese Mainland (163 men and 193 women). Furthermore, we sought to determine which brain regions are responsible for these differences. Our behavioral results showed a significant sex difference. Specifically, women scored higher than men on originality. The voxel-based morphometry results indicated that the relationship between originality and GMV differed between men and women in the left temporo-occipital junction. Higher originality scores in women were associated with more GMV. In contrast, higher originality scores in men were related to less GMV. These findings suggest the left temporo-occipital junction GMV plays a unique role in the sex differences in verbal creativity because women usually surpass men in semantic processing, which is the major function of the left temporal region.

  1. Assessment of in vivo microstructure alterations in gray matter using DKI in Internet gaming addiction.

    Science.gov (United States)

    Sun, Yawen; Sun, Jinhua; Zhou, Yan; Ding, Weina; Chen, Xue; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong

    2014-10-24

    The aim of the current study was to investigate the utility of diffusional kurtosis imaging (DKI) in the detection of gray matter (GM) alterations in people suffering from Internet Gaming Addiction (IGA). DKI was applied to 18 subjects with IGA and to 21 healthy controls (HC). Whole-brain voxel-based analyses were performed with the following derived parameters: mean kurtosis metrics (MK), radial kurtosis (K⊥), and axial kurtosis (K//). A significance threshold was set at P Addiction Scale (CIAS) and the DKI-derived metrics of regions that differed between groups. Additionally, we used voxel-based morphometry (VBM) to detect GM-volume differences between the two groups. Compared with the HC group, the IGA group demonstrated diffusional kurtosis parameters that were significantly less in GM of the right anterolateral cerebellum, right inferior and superior temporal gyri, right supplementary motor area, middle occipital gyrus, right precuneus, postcentral gyrus, right inferior frontal gyrus, left lateral lingual gyrus, left paracentral lobule, left anterior cingulate cortex, and median cingulate cortex. The bilateral fusiform gyrus, insula, posterior cingulate cortex (PCC), and thalamus also exhibited less diffusional kurtosis in the IGA group. MK in the left PCC and K⊥ in the right PCC were positively correlated with CIAS scores. VBM showed that IGA subjects had higher GM volume in the right inferior and middle temporal gyri, and right parahippocampal gyrus, and lower GM volume in the left precentral gyrus. The lower diffusional kurtosis parameters in IGA suggest multiple differences in brain microstructure, which may contribute to the underlying pathophysiology of IGA. DKI may provide sensitive imaging biomarkers for assessing IGA severity.

  2. The effects of left and right monocular viewing on hemispheric activation.

    Science.gov (United States)

    Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M

    2018-03-01

    Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.

  3. Impairment of language is related to left parieto-temporal glucose metabolism in aphasic stroke patients.

    Science.gov (United States)

    Karbe, H; Szelies, B; Herholz, K; Heiss, W D

    1990-02-01

    Twenty-six aphasic patients who had an ischaemic infarct in the territory of the left middle cerebral artery (MCA) were investigated. Cranial computed tomography (CT) showed various lesion sites: infarcts restricted to cortical structures in 12 patients, combined cortical and subcortical infarcts in 7 and isolated subcortical infarcts sparing the left cortex in another 7 cases. 18F-2-fluoro-2-deoxyglucose positron emission tomography revealed remote hypometabolism of the left convexity cortex and of the left basal ganglia, which was extended further than the morphological infarct zone in all cases. Types and degrees of aphasia were classified using the Aachener Aphasie Test (AAT): 10 patients had global aphasia, 2 Broca's, 5 Wernicke's, and 5 amnesic aphasia. Four patients suffered from minimal or residual aphasic symptoms. The AAT results were compared with the regional cerebral metabolic rates of glucose of the left hemisphere. Irrespective of the infarct location all five AAT subtests (Token test, repetition, written language, confrontation naming, auditory and reading comprehension) were closely correlated among each other and with left parieto-temporal metabolic rates, whereas left frontal and left basal ganglia metabolism showed no significant correlation. The close relation between left temporo-parietal functional activity and all five AAT subtests suggests that the different aspects of aphasia tested by AAT can be related to a common disorder of language processing in those areas.

  4. Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space.

    Science.gov (United States)

    Koch, Giacomo; Fernandez Del Olmo, Miguel; Cheeran, Binith; Schippling, Sven; Caltagirone, Carlo; Driver, Jon; Rothwell, John C

    2008-06-04

    Posterior parietal cortex (PPC) has connections with motor and premotor cortex, thought to transfer information relevant for planning movements in space. We used twin-coil transcranial magnetic stimulation (tcTMS) methods to show that the functional interplay between human right PPC and ipsilateral motor cortex (M1) varies with current motor plans. tcTMS during the reaction time of a reach task revealed facilitatory influences of right PPC on right M1 only when planning a (contralateral) leftward rather than rightward reach, at two specific time intervals (50 and 125 ms) after an auditory cue. The earlier reach-direction-specific facilitatory influence from PPC on M1 occurred when subjects were blindfolded or when the targets were presented briefly, so that visual feedback corrections could not occur. PPC-M1 interplay was similar within the left hemisphere but was specific to (contralateral) rightward planned reaches, with peaks at 50 and 100 ms. Functional interplay between human parietal and motor cortex is enhanced during early stages of planning a reach in the contralateral direction.

  5. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition

    Science.gov (United States)

    Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.

    2003-01-01

    The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.

  6. Gray matter structure and morphosyntax within a spoken narrative in typically developing children and children with high functioning autism.

    Science.gov (United States)

    Mills, Brian D; Lai, Janie; Brown, Timothy T; Erhart, Matthew; Halgren, Eric; Reilly, Judy; Appelbaum, Mark; Moses, Pamela

    2013-01-01

    This study examined the relationship between magnetic resonance imaging (MRI)-based measures of gray matter structure and morphosyntax production in a spoken narrative in 17 typical children (TD) and 11 children with high functioning autism (HFA) between 6 and 13 years of age. In the TD group, cortical structure was related to narrative performance in the left inferior frontal gyrus (Broca's area), the right middle frontal sulcus, and the right inferior temporal sulcus. No associations were found in children with HFA. These findings suggest a systematic coupling between brain structure and spontaneous language in TD children and a disruption of these relationships in children with HFA.

  7. Higher Adolescent Body Mass Index is Associated with Lower Regional Gray and White Matter Volumes and Lower Levels of Positive Emotionality

    Directory of Open Access Journals (Sweden)

    James T Kennedy

    2016-09-01

    Full Text Available Adolescent obesity is associated with an increased chance of developing serious health risks later in life. Identifying the neurobiological and personality factors related to increases in adiposity is important to understanding what drives maladaptive consummatory and exercise behaviors that result in obesity. Previous research has largely focused on adults with few findings published on interactions among adiposity, brain structure, and personality. In this study, Voxel Based Morphometry (VBM was used to identify associations between gray and white matter volumes and increasing adiposity, as measured by Body Mass Index percentile (BMI%, in 137 adolescents (age range: 9-20 years, Body Mass Index percentile range: 5.16-99.56. Variations in gray and white matter volume and BMI% were then linked to individual differences in personality measures from the Multidimensional Personality Questionnaire (MPQ. After controlling for age and other covariates, BMI% correlated negatively with gray matter volume in the bilateral caudate (right: partial r = -0.338, left: r -0.404, medial prefrontal cortex (partial r = -0.339, anterior cingulate (partial r = -0.312, bilateral frontal pole (right: partial r = -0.368, left: r= -0.316, and uncus (partial r = -0.475 as well as white matter volume bilaterally in the anterior limb of the internal capsule (right: partial r = -0.34, left: r = -0.386, extending to the left middle frontal subgyral white matter. Agentic Positive Emotionality (PEM-AG was correlated negatively with BMI% (partial r = -0.384. PEM-AG was correlated positively with gray matter volume in the right uncus (partial r = 0.329. These results suggest that higher levels of adiposity in adolescents are associated with lower trait levels in reward-related personality domains, as well as structural variations in brain regions associated with reward processing, control, and sensory integration.

  8. A tensor based morphometry study of longitudinal gray matter contraction in FTD

    Science.gov (United States)

    Brambati, Simona M.; Renda, Natasha C.; Rankin, Katherine P.; Rosen, Howard J.; Seeley, William W.; Ashburner, John; Weiner, Michael W.; Miller, Bruce L.; Gorno-Tempini, Maria Luisa

    2008-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by progressive behavioural abnormalities and frontotemporal atrophy. Here we used tensor based morphometry (TBM) to identify regions of longitudinal progression of gray matter atrophy in FTD compared to controls. T1-weighted MRI images were acquired at presentation and 1-year follow-up from 12 patients with mild to moderate FTD and 12 healthy controls. Using TBM as implemented in SPM2, a voxel-wise estimation of regional tissue volume change was derived from the deformation field required to warp a subject’s late to early anatomical images. A whole brain analysis was performed, in which a level of significance of pBased on prior studies, a region of interest (ROI) analysis was also performed, including in the search area bilateral medial and orbital frontal regions, anterior cingulate gyrus, insula, amygdala and hippocampus. Within this ROI a level of significance of p<0.001 uncorrected was accepted. In the whole brain analysis, the anterior cingulate/paracingulate gyri were the only regions that showed significant atrophy change over 1 year. In the ROI analysis, the left ventro-medial frontal cortex, right medial superior frontal gyrus, anterior insulae and left amygdala/hippocampus showed significant longitudinal changes. In conclusion, limbic and paralimbic regions showed detectable gray matter contraction over 1 year in FTD, confirming the susceptibility of these regions to the disease and the consistency with their putative role in causing typical presenting behaviours. These results suggest that TBM might be useful in tracking progression of regional atrophy in FTD. PMID:17350290

  9. Protective effect of superoxide dismutase against hair graying in a mouse model.

    Science.gov (United States)

    Emerit, I; Filipe, P; Freitas, J; Vassy, J

    2004-01-01

    Oxygen free radicals play a role in the aging process, and the protective effect of various antioxidants has been intensively studied, in particular for cutaneous aging. Besides hereditary factors, free radical-mediated damage to melanocytes of the hair follicle has been considered as a mechanism for aging of the hair. It was the aim of this study to evaluate the role of photosensitization reactions for hair graying and to demonstrate potential protective effects of superoxide dismutase (SOD). Mice with black hair were depilated with the fingertips on a surface of 6 x 2.5 cm on both sides of the dorsum. The right side received five applications of a SOD-containing gel before exposure to psoralen (concentration 0.5 mg/mL) plus UV-A (365 nm, 4 J/cm2). The left side was pretreated in the same way with a gel free of SOD. When the hair started growing again, the SOD-protected side was covered with black hair, whereas the hair on the vehicle-treated side was gray or white in 27 of the 30 animals studied. The 0.01% SOD concentration was as protective as the 0.1% concentration. Heat-inactivated SOD, applied in another five animals, was not protective. Using fluorescent labeling of the SOD with fluorescein isothiocyanate, epifluorescence microscopy and digital imaging processing, we show that SOD applied to the skin surface penetrates through the follicular appendages, as well as through the unbroken stratum corneum. Our findings suggest that superoxide radicals, generated by interaction of UV-A light with the sensitizer, initiated the formation of secondary products with well-known DNA-damaging effects, such as lipid peroxidation products and tumor necrosis factor alpha. SOD prevented the damage to melanocyte DNA by dismutating superoxide. Photosensitization may be another mechanism for hair graying, which can be influenced by antioxidants. Given the large number of exogenous and endogenous sensitizers, this mechanism deserves further study for human hair graying.

  10. The pattern of hair dyeing in koreans with gray hair.

    Science.gov (United States)

    Jo, Seong Jin; Shin, Hyoseung; Paik, Seung Hwan; Choi, Jae Woo; Lee, Jong Hee; Cho, Soyun; Kwon, Ohsang

    2013-11-01

    Hair graying is considered as a part of normal ageing process. Nonetheless, this process raises a significant cosmetic concern, especially among ethnic Korean elderly whose baseline hair color is black. For this reason, Korean elderly dye their hair with frequency despite the risk of dermatologic problems such as allergic contact dermatitis. In this study, the authors investigate the prevalence and pattern of hair dyeing and its relation with scalp diseases in Korea. Six hundred twenty subjects (330 men and 290 women) with graying hair were given a questionnaire survery and underwent a physical examination. Of the 620 total, 272 subjects (43.9%) dyed their hair. Hair dyeing was significantly more frequent among women than among men (phair dyeing when compared to either younger or older groups. Subjective self-assessment of the extent of hair graying was associated with increased prevalence of hair dyeing, that is, individuals who feel graying has advanced by more than 20% of the overall hair were much more likely to dye their hair (pHair dyeing did not correlate with either alopecia or scalp disease. Our survey has found that the prevalence of hair dyeing is higher among Korean women than men. People in their fifties and sixties and people with more than 20% extent of grayness were more likely to dye their hair than otherwise. Hair dyeing was not associated with any increase in the prevalence of scalp diseases.

  11. Gray cases of child abuse: Investigating factors associated with uncertainty.

    Science.gov (United States)

    Chaiyachati, Barbara H; Asnes, Andrea G; Moles, Rebecca L; Schaeffer, Paula; Leventhal, John M

    2016-01-01

    Research in child abuse pediatrics has advanced clinicians' abilities to discriminate abusive from accidental injuries. Less attention, however, has been paid to cases with uncertain diagnoses. These uncertain cases - the "gray" cases between decisions of abuse and not abuse - represent a meaningful challenge in the practice of child abuse pediatricians. In this study, we describe a series of gray cases, representing 17% of 134 consecutive children who were hospitalized at a single pediatric hospital and referred to a child abuse pediatrician for concerns of possible abuse. Gray cases were defined by scores of 3, 4, or 5 on a 7-point clinical judgment scale of the likelihood of abuse. We evaluated details of the case presentation, including incident history, patient medical and developmental histories, family social histories, medical studies, and injuries from the medical record and sought to identify unique and shared characteristics compared with abuse and accidental cases. Overall, the gray cases had incident histories that were ambiguous, medical and social histories that were more similar to abuse cases, and injuries that were similar to accidental injuries. Thus, the lack of clarity in these cases was not attributable to any single element of the incident, history, or injury. Gray cases represent a clinical challenge in child abuse pediatrics and deserve continued attention in research. Published by Elsevier Ltd.

  12. Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex

    Science.gov (United States)

    Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne

    2009-01-01

    Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…

  13. Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin.

    NARCIS (Netherlands)

    Kabgani, N.; Grigoleit, T.; Schulte, K.; Sechi, A.; Sauer-Lehnen, S.; Tag, C.; Boor, P.; Kuppe, C.; Warsow, G.; Schordan, S.; Mostertz, J.; Chilukoti, R.K.; Homuth, G.; Endlich, N.; Tacke, F.; Weiskirchen, R.; Fuellen, G.; Endlich, K.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) are crucially involved in the pathogenesis of rapidly progressive glomerulonephritis (RPGN) as well as in focal and segmental glomerulosclerosis (FSGS). In this study, transgenic mouse lines were used to isolate pure, genetically tagged primary cultures of PECs or

  14. Transfer of Cognitive Training across Magnitude Dimensions Achieved with Concurrent Brain Stimulation of the Parietal Lobe

    Science.gov (United States)

    Gessaroli, Erica; Hithersay, Rosalyn; Mitolo, Micaela; Didino, Daniele; Kanai, Ryota; Cohen Kadosh, Roi; Walsh, Vincent

    2013-01-01

    Improvement in performance following cognitive training is known to be further enhanced when coupled with brain stimulation. Here we ask whether training-induced changes can be maintained long term and, crucially, whether they can extend to other related but untrained skills. We trained overall 40 human participants on a simple and well established paradigm assessing the ability to discriminate numerosity–or the number of items in a set–which is thought to rely on an “approximate number sense” (ANS) associated with parietal lobes. We coupled training with parietal stimulation in the form of transcranial random noise stimulation (tRNS), a noninvasive technique that modulates neural activity. This yielded significantly better and longer lasting improvement (up to 16 weeks post-training) of the precision of the ANS compared with cognitive training in absence of stimulation, stimulation in absence of cognitive training, and cognitive training coupled to stimulation to a control site (motor areas). Critically, only ANS improvement induced by parietal tRNS + Training transferred to proficiency in other parietal lobe-based quantity judgment, i.e., time and space discrimination, but not to quantity-unrelated tasks measuring attention, executive functions, and visual pattern recognition. These results indicate that coupling intensive cognitive training with tRNS to critical brain regions resulted not only in the greatest and longer lasting improvement of numerosity discrimination, but importantly in this enhancement being transferable when trained and untrained abilities are carefully chosen to share common cognitive and neuronal components. PMID:24027289

  15. Simultaneous maxillary sinus lifting and implant placement with autogenous parietal bone graft: outcome of 17 cases.

    Science.gov (United States)

    Sakka, Salah; Krenkel, Christian

    2011-04-01

    The aim of this study was to retrospectively evaluate the surgical technique of sinus floor elevation with autogenous parietal bone grafting in conjunction with immediate dental implants for the reconstruction of the maxilla in deficient maxillary alveolar ridges. Seventeen patients who underwent sinus floor elevation with bone graft from the parietal bone between 2005 and 2007 were included in the study. Cases of extremely deficient bone level in the alveolar ridgeAnkylos®) with different length and diameter were placed immediately after the graft was placed. Strict oral hygiene was required for the patients. Presurgical and postsurgical panoramic radiographs were taken. A high-quality reconstruction with an increase in lifted sinus bone height was achieved with parietal bone particulates. Seventy-three implants were clinically osseointegrated and four implants were lost giving a success rate 94.8%. No correlation was found between failure and the surgery. The encouraging results of this study suggest that the technique of reconstruction of the sinus floor and the resorbed alveolar ridge using an autogenous parietal bone graft is reliable, giving the surgeon the opportunity to successfully perform immediate implant placement in more difficult and deficient maxillary alveolar bone height. Copyright © 2010. Published by Elsevier Ltd.

  16. Interconnected Cortical Networks Between Primary Somatosensory Cortex Septal Columns and Posterior Parietal Cortex in Rat

    NARCIS (Netherlands)

    Lee, Taehee; Alloway, Kevin D.; Kim, Uhnoh

    2011-01-01

    Visual and somesthetic cues are used for spatial processing in the posterior parietal cortex (PPC) of the mammalian brain. In rats, somatic information collected by the mystacial whiskers is critically involved in constructing a neural representation of the external space. Here, we delineated the

  17. Characterization of a dermatan sulfate proteoglycan synthesized by murine parietal yolk sac (PYS-2) cells

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A; Höök, M

    1985-01-01

    A dermatan sulfate proteoglycan has been isolated from a murine parietal yolk sac cell line, which in culture synthesizes basement membrane components. The proteoglycan has a molecular weight of 200,000-300,000 with 10-15 dermatan sulfate chains of Mr = 14,000-16,000. The glycosaminoglycan chains...

  18. The role of frontal and parietal brain areas in bistable perception

    NARCIS (Netherlands)

    Knapen, T.; Brascamp, J.; Pearson, J.; van Ee, R.; Blake, R.

    2011-01-01

    When sensory input allows for multiple, competing perceptual interpretations, observers' perception can fluctuate over time, which is called bistable perception. Imaging studies in humans have revealed transient responses in a right-lateralized network in the frontal-parietal cortex (rFPC) around

  19. Analysis of dynamics and propagation of parietal cingulate seizures with secondary mesial temporal involvement.

    Science.gov (United States)

    Koubeissi, Mohamad Z; Jouny, Christophe C; Blakeley, Jaishri O; Bergey, Gregory K

    2009-01-01

    Cingulate-onset seizures, particularly those originating from parietal cingulate regions, are inadequately described and confounded by patterns of propagation. We analyzed scalp and depth electrode recordings in a patient whose seizures originated from a lesion in the right posterior cingulate region and produced secondary seizure activity in ipsilateral mesial temporal structures. Analyses included the matching pursuit (MP) method of time-frequency decomposition and the Gabor atom density (GAD) measure of signal complexity. Although scalp recordings suggested a right temporal onset, seizures recorded with depth electrodes clearly began in the parietal cingulate region before producing a secondary discharge in ipsilateral mesial structures. GAD revealed a significant increase in complexity during ictal cingulate activity and a consistent pattern of subsequent complexity changes in the hippocampus 30 seconds later. MP and GAD measures were valuable supplements to confirm the stereotyped pattern of both time-frequency changes and complexity. This provides additional evidence for pathways between the parietal cingulate region and mesial temporal structures and raises questions as to whether parietal cingulate seizures can produce clinical symptoms independent of regional or remote propagation.

  20. Fronto-parietal Mechanisms Supporting Attention to Location and Intensity of Painful Stimuli

    Science.gov (United States)

    Lobanov, Oleg V.; Quevedo, Alexandre S.; Hadsel, Morten S.; Kraft, Robert A.; Coghill, Robert C.

    2013-01-01

    Attention can profoundly shape the experience of pain. However, little is known about the neural mechanisms that support directed attention to nociceptive information. In the present study, subjects were cued to attend to either the spatial location or intensity of sequentially presented pairs of painful heat stimuli during a delayed match to sample discrimination task. We hypothesized that attention-related brain activation would be initiated following the presentation of the attentional cue and would be sustained through the discrimination task. Conjunction analysis confirmed that bilateral portions of the posterior parietal cortex (intraparietal sulcus, IPS and superior parietal lobule) exhibited this sustained activity during attention to spatial but not intensity features of pain. Analyses contrasting activation during spatial and intensity attention tasks revealed that the right IPS region of the posterior parietal cortex was consistently more activated across multiple phases of the spatial task. However, attention to either feature of the noxious stimulus was associated with activation of fronto-parietal areas (IPS and frontal eye fields) as well as priming of the primary somatosensory cortex. Taken together, these results delineate the neural substrates that support selective amplification of different features of noxious stimuli for utilization in discriminative processes. PMID:23711484

  1. Integration of Target and Effector Information in Human Posterior Parietal Cortex for the Planning of Action

    NARCIS (Netherlands)

    Medendorp, W.P.; Goltz, H.C.; Crawford, J.D.; Vilis, T.

    2005-01-01

    Recently, using event-related functional MRI (fMRI), we located a bilateral region in the human posterior parietal cortex (retIPS) that topographically represents and updates targets for saccades and pointing movements in eye-centered coordinates. To generate movements, this spatial information must

  2. Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe.

    Science.gov (United States)

    Cappelletti, Marinella; Gessaroli, Erica; Hithersay, Rosalyn; Mitolo, Micaela; Didino, Daniele; Kanai, Ryota; Cohen Kadosh, Roi; Walsh, Vincent

    2013-09-11

    Improvement in performance following cognitive training is known to be further enhanced when coupled with brain stimulation. Here we ask whether training-induced changes can be maintained long term and, crucially, whether they can extend to other related but untrained skills. We trained overall 40 human participants on a simple and well established paradigm assessing the ability to discriminate numerosity--or the number of items in a set--which is thought to rely on an "approximate number sense" (ANS) associated with parietal lobes. We coupled training with parietal stimulation in the form of transcranial random noise stimulation (tRNS), a noninvasive technique that modulates neural activity. This yielded significantly better and longer lasting improvement (up to 16 weeks post-training) of the precision of the ANS compared with cognitive training in absence of stimulation, stimulation in absence of cognitive training, and cognitive training coupled to stimulation to a control site (motor areas). Critically, only ANS improvement induced by parietal tRNS + Training transferred to proficiency in other parietal lobe-based quantity judgment, i.e., time and space discrimination, but not to quantity-unrelated tasks measuring attention, executive functions, and visual pattern recognition. These results indicate that coupling intensive cognitive training with tRNS to critical brain regions resulted not only in the greatest and longer lasting improvement of numerosity discrimination, but importantly in this enhancement being transferable when trained and untrained abilities are carefully chosen to share common cognitive and neuronal components.

  3. [Mother and son with enlarged parietal foramina, persistent fetal vein, and ALX4 mutation].

    Science.gov (United States)

    Morita, Motoaki; Nanba, Eiji; Adachi, Kaori; Ohno, Kousaku

    2016-05-01

    Enlarged parietal foramina (EPF) are rare congenital skull defects. These round or oval defects are situated on each parietal bone approximately 1 cm from the midline. Most patients with EPF have a positive family history. The condition is inherited as an autosomal dominant trait with relatively high, but not full, penetrance. Mutation in either MSX2 or ALX4 genes is associated with enlarged parietal foramina. Case 1 is a boy who was noticed to have a large anterior fontanelle, large posterior fontanelle, and widely opened sagittal suture at 2 months. During development, the anterior fontanelle and sagittal suture closed at 3 years and the posterior fontanelle subsequently divided into two foramina with ossification of the midline bridge by 4 years. The foramina were about 2.5 x 2.5 cm in diameter at 8 years. Case 2 is the 34-year-old mother of Case 1. She showed similar bone defects in her cranium, again about 2.5 x 2.5 cm in diameter. Neither patient showed any neurological symptoms. Genetic analysis revealed a mutation in the ALX4 gene in both patients, and magnetic resonance imaging showed a persistent falcine sinus and a hypoplastic straight sinus. Further evaluation revealed that the mother of Case 2 also had a mutation in the ALX4 gene, but no enlarged parietal foramina. Although high penetrance of this condition has been reported, this family suggests incomplete penetrance of this disorder.

  4. Autoimmune gastritis and parietal cell reactivity in two children with abnormal intestinal permeability

    NARCIS (Netherlands)

    Greenwood, Deanne L. V.; Crock, Patricia; Braye, Stephen; Davidson, Patricia; Sentry, John W.

    Autoimmune gastritis is characterised by lymphocytic infiltration of the gastric submucosa, with loss of parietal and chief cells and achlorhydria. Often, gastritis is expressed clinically as cobalamin deficiency with megaloblastic anaemia, which is generally described as a disease of the elderly.

  5. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells.

    NARCIS (Netherlands)

    Smeets, B.; Uhlig, S.; Fuss, A.; Mooren, F.; Wetzels, J.F.M.; Floege, J.; Moeller, M.J.

    2009-01-01

    Cellular lesions form in Bowman's space in both crescentic glomerulonephritis and collapsing glomerulopathy. The pathomechanism and origin of the proliferating cells in these lesions are unknown. In this study, we examined proliferating cells by lineage tracing of either podocytes or parietal

  6. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells.

    NARCIS (Netherlands)

    Dijkman, H.B.P.M.; Weening, J.J.; Smeets, B.; Verrijp, K.; Kuppevelt, A.H.M.S.M. van; Assmann, K.K.; Steenbergen, E.; Wetzels, J.F.M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  7. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells

    NARCIS (Netherlands)

    Dijkman, H. B. P. M.; Weening, J. J.; Smeets, B.; Verrijp, K. C. N.; van Kuppevelt, T. H.; Assmann, K. K. J. M.; Steenbergen, E. J.; Wetzels, J. F. M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  8. The role of parietal cortex in the formation of colour and motion based concepts

    Directory of Open Access Journals (Sweden)

    Samuel William Cheadle

    2014-07-01

    Full Text Available Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS, are engaged when stimuli are grouped according to colour and to motion (Zeki and Stutters 2013. Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI, and choosing the recognition of concept-based colour or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the intraparietal sulcus (IPS, a region whose homologue in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to colour concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of colour and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas.

  9. Actions of parathyroid hormone related peptide in mouse parietal endoderm formation

    NARCIS (Netherlands)

    Veltmaat, J.M.

    2001-01-01

    Summary Since about a decade, several reports have strongly suggested a role for parathyroid hormone related peptide (PTHrP) in the formation of parietal endoderm (PE) in the mouse embryo. This thesis is aimed first at elucidating the biological significance of parathyroid hormone related peptide

  10. Altered network properties of the fronto-parietal network and the thalamus in impaired consciousness☆

    Science.gov (United States)

    Crone, Julia Sophia; Soddu, Andrea; Höller, Yvonne; Vanhaudenhuyse, Audrey; Schurz, Matthias; Bergmann, Jürgen; Schmid, Elisabeth; Trinka, Eugen; Laureys, Steven; Kronbichler, Martin

    2013-01-01

    Recovery of consciousness has been associated with connectivity in the frontal cortex and parietal regions modulated by the thalamus. To examine this model and to relate alterations to deficits in cognitive functioning and conscious processing, we investigated topological network properties in patients with chronic disorders of consciousness recovered from coma. Resting state fMRI data of 34 patients with unresponsive wakefulness syndrome and 25 in minimally conscious state were compared to 28 healthy controls. We investigated global and local network characteristics. Additionally, behavioral measures were correlated with the local metrics of 28 regions within the fronto-parietal network and the thalamus. In chronic disorders of consciousness, modularity at the global level was reduced suggesting a disturbance in the optimal balance between segregation and integration. Moreover, network properties were altered in several regions which are associated with conscious processing (particularly, in medial parietal, and frontal regions, as well as in the thalamus). Between minimally conscious and unconscious patients the local efficiency of medial parietal regions differed. Alterations in the thalamus were particularly evident in non-conscious patients. Most of the regions affected in patients with impaired consciousness belong to the so-called ‘rich club’ of highly interconnected central nodes. Disturbances in their topological characteristics have severe impact on information integration and are reflected in deficits in cognitive functioning probably leading to a total breakdown of consciousness. PMID:24455474

  11. Carbamoylcholine and gastrin induce inositol lipid turnover in canine gastric parietal cells

    International Nuclear Information System (INIS)

    Chiba, T.; Fisher, S.K.; Park, J.; Seguin, E.B.; Agranoff, B.W.; Yamada, Tadataka

    1988-01-01

    The potential role of inositol phospholipid turnover in mediating acid secretion was examined in a preparation enriched for isolated canine gastric parietal cells. The stimulatory effects of carbamoylcholine (carbachol) and gastrin on parietal cell uptake of [ 14 C]aminopyrine were linked to dose- and time-dependent selective reduction in cellular phosphatidylinositol content, although the specific fatty acid composition of the phosphoinositides was not altered. Analysis of [ 3 H]inositol phosphates accumulated in cells prelabeled with [ 3 H]inositol revealed an increase in labeled inositol trisphosphate by 5 min of incubation with either carbachol or gastrin. Furthermore, after preincubation of parietal cells in medium containing [ 32 P]orthophosphate, the two secretagogues elicited a time-dependent decrease in 32 P labeling of phosphatidylinositol 4,5-bisphosphate and concomitant increase in labeling of phosphatidic acid. These data demonstrate that the acid secretagogue actions of carbachol and gastrin are correlated with turnover of cellular inositol phospholipids in a preparation consisting predominantly of parietal cells

  12. Left Ventricular Pseudoaneurysm Perceived as a Left Lung Mass

    Directory of Open Access Journals (Sweden)

    Ugur Gocen

    2013-02-01

    Full Text Available Left ventricular pseudo-aneurysm is a rare complication of aneurysmectomy. We present a case of surgically-treated left ventricular pseudo-aneurysm which was diagnosed three years after coronary artery bypass grafting and left ventricular aneurysmectomy. The presenting symptoms, diagnostic evaluation and surgical repair are described. [Cukurova Med J 2013; 38(1.000: 123-125

  13. The Importance of Aging in Gray Matter Changes Within Tinnitus Patients Shown in Cortical Thickness, Surface Area and Volume.

    Science.gov (United States)

    Yoo, Hye Bin; De Ridder, Dirk; Vanneste, Sven

    2016-11-01

    Aging and sensorineural hearing loss are known to be involved in the development of chronic tinnitus. This study explores the structural changes of gray matter using surface base methods and focuses more specifically on changes in cortical thickness in 127 tinnitus patients. The linear relationships between cortical thickness and behavioral measures including aging, tinnitus loudness, tinnitus duration, tinnitus distress, and hearing loss were analyzed. Three dimensional T1-weighted MR images were acquired and cortical gray matter volumes were segmented using FreeSurfer on Talairach space. The results showed that cortical thickness and volume are negatively correlated to age in widespread regions of frontal cortices, and positively to bilateral entorhinal cortex and left rostral anterior cingulate cortex. The cortical thickness changes related to hearing loss overlap with those related to normal aging. The gray matter volumes of bilateral amygdalae, hippocampi, nuclei accumbens, and thalami are all significantly negatively correlated to age. Tinnitus-related distress level and subjective loudness were negatively correlated only to the thalamic volume. The results suggest that the primary factor of long-term structural changes in chronic tinnitus patients is age and age related hearing loss, rather than hearing loss per se. Tinnitus related factors such as subjective tinnitus loudness, tinnitus duration, and the level of chronic tinnitus related distress were not correlated to important morphometric changes in this study.

  14. Posterior Parietal Cortex Encoding of Dynamic Hand Force Underlying Hand-Object Interaction.

    Science.gov (United States)

    Ferrari-Toniolo, Simone; Visco-Comandini, Federica; Papazachariadis, Odysseas; Caminiti, Roberto; Battaglia-Mayer, Alexandra

    2015-08-05

    Major achievements of primate evolution are skilled hand-object interaction and tool use, both in part dependent on parietal cortex expansion. We recorded spiking activity from macaque inferior parietal cortex during directional manipulation of an isometric tool, which required the application of hand forces to control a cursor's motion on a screen. In areas PFG/PF, the activity of ∼ 70% neurons was modulated by the hand force necessary to implement the desired target motion, reflecting an inverse model, rather than by the intended motion of the visual cursor (forward model). The population vector matched the direction and amplitude of the instantaneous force increments over time. When exposed to a new force condition, that obliged the monkey to change the force output to successfully bring the cursor to the final target, the activity of a consistent subpopulation of neurons changed in an orderly fashion and, at the end of a "Wash-out" session, retained memory of the new learned association, at the service of predictive control of force. Our findings suggest that areas PFG/PF represent a crucial node of the distributed control of hand force, by encoding instantaneous force variations and serving as a memory reservoir of hand dynamics required for object manipulation and tool use. This is coherent with previous studies in humans showing the following: (1) impaired adaptation to a new force field under TMS parietal perturbation; (2) defective control of direction of hand force after parietal lesion; and (3) fMRI activation of parietal cortex during object manipulation requiring control of fine hand forces. Skilled object manipulation and tool use are major achievements of primate evolution, both largely dependent on posterior parietal cortex (PPC) expansion. Neurophysiological and fMRI studies in macaque and humans had documented a crucial role of PPC in encoding the hand kinematics underlying these functions, leaving to premotor and motor areas the role of

  15. Structural alterations in lateral prefrontal, parietal and posterior midline regions of men with chronic posttraumatic stress disorder.

    Science.gov (United States)

    Eckart, Cindy; Stoppel, Christian; Kaufmann, Jörn; Tempelmann, Claus; Hinrichs, Hermann; Elbert, Thomas; Heinze, Hans-Jochen; Kolassa, Iris-Tatjana

    2011-05-01

    So far, the neural network associated with posttraumatic stress disorder (PTSD) has been suggested to mainly involve the amygdala, hippocampus and medial prefrontal cortex. However, increasing evidence indicates that cortical regions extending beyond this network might also be implicated in the pathophysiology of PTSD. We aimed to investigate PTSD-related structural alterations in some of these regions. We enrolled highly traumatized refugees with and without (traumatized controls) PTSD and nontraumatized controls in the study. To increase the validity of our results, we combined an automatic cortical parcellation technique and voxel-based morphometry. In all, 39 refugees (20 with and 19 without PTSD) and 13 controls participated in the study. Participants were middle-aged men who were free of psychoactive substances and consumed little to no alcohol. Patients with PTSD (and to a lesser extent traumatized controls) showed reduced volumes in the right inferior parietal cortex, the left rostral middle frontal cortex, the bilateral lateral orbitofrontal cortex and the bilateral isthmus of the cingulate. An influence of cumulative traumatic stress on the isthmus of the cingulate and the lateral orbitofrontal cortex indicated that, at least in these regions, structural alterations might be associated with repeated stress experiences. Voxel-based morphometry analyses produced largely consistent results, but because of a poorer signal-to-noise ratio, conventional statistics did not reach significance. Although we controlled for several important confounding variables (e.g., sex, alcohol abuse) with our particular sample, this might limit the generalizibility of our data. Moreover, high comorbidity of PTSD and major depression hinders a definite separation of these conditions in our findings. Finally, the results concerning the lateral orbito frontal cortex should be interpreted with caution, as magnetic resonance imaging acquisition in this region is affected by a general

  16. Investigating the effects of nitrous oxide sedation on frontal-parietal interactions.

    Science.gov (United States)

    Ryu, Ji-Ho; Kim, Pil-Jong; Kim, Hong-Gee; Koo, Yong-Seo; Shin, Teo Jeon

    2017-06-09

    Although functional connectivity has received considerable attention in the study of consciousness, few studies have investigated functional connectivity limited to the sedated state where consciousness is maintained but impaired. The aim of the present study was to investigate changes in functional connectivity of the parietal-frontal network resulting from nitrous oxide-induced sedation, and to determine the neural correlates of cognitive impairment during consciousness transition states. Electroencephalography was acquired from healthy adult patients who underwent nitrous oxide inhalation to induce cognitive impairment, and was analyzed using Granger causality (GC). Periods of awake, sedation and recovery for GC between frontal and parietal areas in the delta, theta, alpha, beta, gamma and total frequency bands were obtained. The Friedman test with post-hoc analysis was conducted for GC values of each period for comparison. As a sedated state was induced by nitrous oxide inhalation, power in the low frequency band showed increased activity in frontal regions that was reversed with discontinuation of nitrous oxide. Feedback and feedforward connections analyzed in spectral GC were changed differently in accordance with EEG frequency bands in the sedated state by nitrous oxide administration. Calculated spectral GC of the theta, alpha, and beta frequency regions in the parietal-to-frontal direction was significantly decreased in the sedated state while spectral GC in the reverse direction did not show significant change. Frontal-parietal functional connectivity is significantly affected by nitrous oxide inhalation. Significantly decreased parietal-to-frontal interaction may induce a sedated state. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex.

    Science.gov (United States)

    Becke, Andreas; Müller, Notger; Vellage, Anne; Schoenfeld, Mircea Ariel; Hopf, Jens-Max

    2015-04-15

    Maintaining information in visual working memory is reliably indexed by the contralateral delay activity (CDA) - a sustained modulation of the event-related potential (ERP) with a topographical maximum over posterior scalp regions contralateral to the memorized input. Based on scalp topography, it is hypothesized that the CDA reflects neural activity in the parietal cortex, but the precise cortical origin of underlying electric activity was never determined. Here we combine ERP recordings with magnetoencephalography based source localization to characterize the cortical current sources generating the CDA. Observers performed a cued delayed match to sample task where either the color or the relative position of colored dots had to be maintained in memory. A detailed source-localization analysis of the magnetic activity in the retention interval revealed that the magnetic analog of the CDA (mCDA) is generated by current sources in the parietal cortex. Importantly, we find that the mCDA also receives contribution from current sources in the ventral extrastriate cortex that display a time-course similar to the parietal sources. On the basis of the magnetic responses, forward modeling of ERP data reveals that the ventral sources have non-optimal projections and that these sources are therefore concealed in the ERP by overlapping fields with parietal projections. The present observations indicate that visual working memory maintenance, as indexed by the CDA, involves the parietal cortical regions as well as the ventral extrastriate regions, which code the sensory representation of the memorized content. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Aging, graying and loss of melanocyte stem cells.

    Science.gov (United States)

    Sarin, Kavita Y; Artandi, Steven E

    2007-01-01

    Hair graying is one of the prototypical signs of human aging. Maintenance of hair pigmentation is dependent on the presence and functionality of melanocytes, neural crest derived cells which synthesize pigment for growing hair. The melanocytes, themselves, are maintained by a small number of stem cells which reside in the bulge region of the hair follicle. The recent characterization of the melanocyte lineage during aging has significantly accelerated our understanding of how age-related changes in the melanocyte stem cell compartment contribute to hair graying. This review will discuss our current understanding of hair graying, drawing on evidence from human and mouse studies, and consider the contribution of melanocyte stem cells to this process. Furthermore, using the melanocyte lineage as an example, it will discuss common theories of tissue and stem cell aging.

  19. Changing expression of the genes related to human hair graying.

    Science.gov (United States)

    Choi, Young Jin; Yoon, Tae Jin; Lee, Young Ho

    2008-01-01

    Hair graying is one of the prototypical signs of human aging, but its mechanism is largely unknown. To elucidate the mechanism of hair graying, we investigated gene expression related to melanogenesis in human hair. The key molecules in melanogenesis, microphthalmia-associated transcription factor-M (MITF-M), Sox10, Pax3, tyrosine related protein-1 (TRP-1), and tyrosinase, were absent or greatly reduced in the bulbs of white hair compared to black hair. Melanocyte stem cells (MSCs) or melanocytes express markers for neural crest cells, Sox10, Pax3, and MITF-M. Taken together, our data suggest that hair graying is caused by defective migration of MSCs into the bulb area of hair.

  20. Distinct effects of late adulthood cognitive and physical activities on gray matter volume.

    Science.gov (United States)

    Arenaza-Urquijo, Eider M; de Flores, Robin; Gonneaud, Julie; Wirth, Miranka; Ourry, Valentin; Callewaert, William; Landeau, Brigitte; Egret, Stéphanie; Mézenge, Florence; Desgranges, Béatrice; Chételat, Gaël

    2017-04-01

    Engagement in cognitive activity (CA) and physical activity (PA) during the lifespan may counteract brain atrophy later in life. Here, we investigated engagement in CA and PA during late adulthood in association with gray matter volume (GM) in normal older adults, with special focus on the hippocampus. Forty-five cognitively normal older individuals (mean age: 72) underwent T1-weighted MRI and self-reported CA and PA assessment. Whole brain voxel-wise multiple regression models were carried out to assess the relationships between CA, PA and GM volume adjusted by age and sex. Further adjustment for years of education and risk factors were performed. Voxel-wise analyses were projected on 3D hippocampal surface views. Cognitive activity and PA demonstrated independent regional associations with GM after adjustment for confounders. Cognitive activity was related to greater GM in extended brain areas including frontal, temporal and parietal cortices, while PA was associated with increased GM in the prefrontal, insular and motor cortices. Regression maps projected on the hippocampal surface showed a common association of PA and CA within the anterior part of the hippocampus, although the effect of CA was more subtle and also extended to the posterior part. Engagement in PA and CA in late adulthood were independently related to regional GM volume, notably in aging and AD vulnerable areas. These results support the idea that both PA and CA- based interventions may be suitable to promote brain health in late adulthood. The potential synergistic effects of PA and CA need to be addressed in future studies including larger samples.

  1. Hemispatial PCA dissociates temporal from parietal ERP generator patterns: CSD components in healthy adults and depressed patients during a dichotic oddball task.

    Science.gov (United States)

    Tenke, Craig E; Kayser, Jürgen; Shankman, Stewart A; Griggs, Carlye B; Leite, Paul; Stewart, Jonathan W; Bruder, Gerard E

    2008-01-01

    Event-related potentials (31-channel ERPs) were recorded from 38 depressed, unmedicated outpatients and 26 healthy adults (all right-handed) in tonal and phonetic oddball tasks developed to exploit the perceptual challenge of a dichotic stimulation. Tonal nontargets were pairs of complex tones (corresponding to musical notes G and B above middle C) presented simultaneously to each ear (L/R) in an alternating series (G/B or B/G; 2-s fixed SOA). A target tone (note A) replaced one of the pair on 20% of the trials (A/B, G/A, B/A, A/G). Phonetic nontargets were L/R pairs of syllables (/ba/, /da/) with a short voice onset time (VOT), and targets contained a syllable (/ta/) with a long VOT. Subjects responded with a left or right button press to targets (counterbalanced across blocks). Target detection was poorer in patients than controls and for tones than syllables. Reference-free current source densities (CSDs; spherical spline Laplacian) derived from ERP waveforms were simplified and measured using temporal, covariance-based PCA followed by unrestricted Varimax rotation. Target-related N2 sinks and mid-parietal P3 sources were represented by CSD factors peaking at 245 and 440 ms. The P3 source topography included a secondary, left-lateralized temporal lobe maximum for both targets and nontargets. However, a subsequent hemispheric spatiotemporal PCA disentangled temporal lobe N1 and P3 sources as distinct factors. P3 sources were reduced in patients compared with controls, even after using performance as a covariate. Results are consistent with prior reports of P3 reduction in depression and implicate distinct parietal and temporal generators of P3 when using a dichotic oddball paradigm.

  2. Motor cortex-periaqueductal gray-spinal cord neuronal circuitry may involve in modulation of nociception: a virally mediated transsynaptic tracing study in spinally transected transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Da-Wei Ye

    Full Text Available Several studies have shown that motor cortex stimulation provided pain relief by motor cortex plasticity and activating descending inhibitory pain control systems. Recent evidence indicated that the melanocortin-4 receptor (MC4R in the periaqueductal gray played an important role in neuropathic pain. This study was designed to assess whether MC4R signaling existed in motor cortex-periaqueductal gray-spinal cord neuronal circuitry modulated the activity of sympathetic pathway by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV-614 was injected into the left gastrocnemius muscle in adult male MC4R-green fluorescent protein (GFP transgenic mice (n = 15. After a survival time of 4-6 days, the mice (n = 5 were randomly assigned to humanely sacrifice, and spinal cords and brains were removed and sectioned, and processed for PRV-614 visualization. Neurons involved in the efferent control of the left gastrocnemius muscle were identified following visualization of PRV-614 retrograde tracing. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in spinal IML, periaqueductal gray and motor cortex. Our findings support the hypothesis that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may participate in the modulation of the melanocortin-sympathetic signaling and contribute to the descending modulation of nociceptive transmission, suggesting that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may modulate the activity of sympathetic outflow sensitive to nociceptive signals.

  3. Wave-splitting in the bistable Gray-Scott model

    DEFF Research Database (Denmark)

    Rasmussen, K.E.; Mazin, W.; Mosekilde, Erik

    1996-01-01

    The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator concentra......The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator...

  4. Value of analyzing deep gray matter and occipital lobe perfusion to differentiate dementia with Lewy bodies from Alzheimer's disease.

    Science.gov (United States)

    Shimizu, Soichiro; Hanyu, Haruo; Hirao, Kentaro; Sato, Tomohiko; Iwamoto, Toshihiko; Koizumi, Kiyoshi

    2008-12-01

    Dementia with Lewy bodies (DLB) is generally characterized by a decrease in regional cerebral blood flow (rCBF) in the occipital lobe. However, not all patients with DLB have this feature. We explored characteristics of rCBF pattern changes to improve the identification of DLB, in addition to occipital hypoperfusion. The study population comprised 30 patients with probable DLB and 49 patients with probable Alzheimer's disease (AD) who underwent single-photon emission computed tomography. The data were analyzed using Neurological Statistical Image Analysis Software (NEUROSTAT). We established a template of the region of interest (ROI) presenting the parietal lobe, posterior cingulate, striatum, thalamus, and occipital lobe on the standard brain atlas. We then compared the mean Z scores in each ROI between DLB and AD. Moreover, we investigated the value of analyzing relative rCBF changes in both the deep gray matter and occipital lobe in differentiating DLB from AD. The DLB group showed a significant relative rCBF increase in the bilateral striatum and thalamus, and a significant relative rCBF decrease in the bilateral occipital lobe when compared with the AD group. Receiver-operating characteristic analysis revealed that determining the hyperperfusion in the thalamus together with the hypoperfusion in the occipital lobe enabled a more accurate differentiation between DLB and AD than studying individual areas. Studying the relative increase of rCBF in the deep gray matter, and the relative decrease of that in the occipital lobe achieved a high differentiation between DLB and AD. This suggests that determining both an increase and a decrease in rCBF pattern may be important in differentiating between the two diseases.

  5. Why Dora Left

    DEFF Research Database (Denmark)

    Gammelgård, Judy

    2017-01-01

    The question of why Dora left her treatment before it was brought to a satisfactory end and the equally important question of why Freud chose to publish this problematic and fragmentary story have both been dealt with at great length by Freud’s successors. Dora has been read by analysts, literary...... critics, and not least by feminists. The aim of this paper is to point out the position Freud took toward his patient. Dora stands out as the one case among Freud’s 5 great case stories that has a female protagonist, and reading the case it becomes clear that Freud stumbled because of an unresolved...... problem toward femininity, both Dora’s and his own. In Dora, it is argued, Freud took a new stance toward the object of his investigation, speaking from the position of the master. Freud presents himself as the one who knows, in great contrast to the position he takes when unraveling the dream. Here he...

  6. Comparison of gray matter and metabolic reduction in mild Alzheimer's disease using FDG-PET and voxel-based morphometric MR studies

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazunari; Sasaki, Hiroki; Kono, Atsushi K.; Miyamoto, Naokazu; Fukuda, Tetsuya [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Mori, Etsuro [Hyogo Brain and Heart Center, Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan)

    2005-08-01

    The aim of this study was to investigate regional differences between morphologic and functional changes in the same patients with mild Alzheimer's disease (AD) using statistical parametric mapping (SPM) and voxel-based morphometry (VBM). Thirty patients with very mild AD (mean age 66.8 years, mean MMSE score 24.0) and 30 age- and sex-matched normal volunteers underwent both{sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and three-dimensional spoiled gradient echo (SPGR) magnetic resonance imaging (MRI). Statistical parametric mapping was used to conduct VBM analysis of the morphological data, which were compared voxel by voxel with the results of a similar analysis of the glucose metabolic data. In AD patients, VBM data indicated a significant gray matter volume density decrease in bilateral amygdala/hippocampus complex (p<0.05, corrected), while FDG-PET analysis showed significant glucose metabolic reductions in the posterior cingulate gyri and the right parietal lobule, compared with those in the normal control group. In very mild AD, morphological change occurs in the medial temporal lobes, while in contrast, metabolic changes occur in the posterior cingulate gyri and parietal lobule. (orig.)

  7. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  8. EEG Correlates of Preparatory Orienting, Contextual Updating, and Inhibition of Sensory Processing in Left Spatial Neglect.

    Science.gov (United States)

    Lasaponara, Stefano; D'Onofrio, Marianna; Pinto, Mario; Dragone, Alessio; Menicagli, Dario; Bueti, Domenica; De Lucia, Marzia; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2018-04-11

    Studies with event-related potentials have highlighted deficits in the early phases of orienting to left visual targets in right-brain-damaged patients with left spatial neglect (N+). However, brain responses associated with preparatory orienting of attention, with target novelty and with the detection of a match/mismatch between expected and actual targets (contextual updating), have not been explored in N+. Here in a study in healthy humans and brain-damaged patients of both sexes we demonstrate that frontal activity that reflects supramodal mechanisms of attentional orienting (Anterior Directing Attention Negativity, ADAN) is entirely spared in N+. In contrast, posterior responses that mark the early phases of cued orienting (Early Directing Attention Negativity, EDAN) and the setting up of sensory facilitation over the visual cortex (Late Directing Attention Positivity, LDAP) are suppressed in N+. This uncoupling is associated with damage of parietal-frontal white matter. N+ also exhibit exaggerated novelty reaction to targets in the right side of space and reduced novelty reaction for those in the left side (P3a) together with impaired contextual updating (P3b) in the left space. Finally, we highlight a drop in the amplitude and latency of the P1 that over the left hemisphere signals the early blocking of sensory processing in the right space when targets occur in the left one: this identifies a new electrophysiological marker of the rightward attentional bias in N+. The heterogeneous effects and spatial biases produced by localized brain damage on the different phases of attentional processing indicate relevant functional independence among their underlying neural mechanisms and improve the understanding of the spatial neglect syndrome. SIGNIFICANCE STATEMENT Our investigation answers important questions: are the different components of preparatory orienting (EDAN, ADAN, LDAP) functionally independent in the healthy brain? Is preparatory orienting of

  9. Osteoblastic cytokine response to gray and white mineral trioxide aggregate.

    Science.gov (United States)

    Bidar, Maryam; Zarrabi, Mohammad Hasan; Tavakol Afshari, Jalil; Aghasizadeh, Navid; Naghavi, Neda; Forghanirad, Maryam; Attaran, Niloufar

    2011-01-01

    The materials used for root-end filling and perforation repair are in direct contact with live tissues e.g. bone and connective tissue; their effects however, are uncertain. The aim of this ex vivostudy was to evaluate the osteoblastic secretory activity adjacent to gray and white mineral trioxide aggregate (MTA) and Intermediate Restorative Material (IRM). The studied materials were prepared and placed in 24-wells plate. Human MG-63 osteoblasts were introduced to materials after their initial set. The supernatant fluid was collected after 1, 3, and 7 days and the level of interleukin-1β was measured by ELISA test. A microscopic exam was also performed to assess proliferation and viability of the cells. Kruskal-Wallis and Tukey tests were used for analysis. T here were significant higher levels of interleukin-1β in the gray and white MTA groups compared to IRM group (P0.05).Morphologic appearance of osteoblasts adjacent to gray and white MTA was similar to normal osteoblasts in all observation periods, however cells adjacent to IRM were round, signifying cytotoxicity of the adjacent material. Human osteoblasts' has a favorable biologic response to white and gray MTA compared to IRM.

  10. Jim Gray on eScience: A Transformed Scientific Method

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 8. Jim Gray on eScience: A Transformed Scientific Method. Classics Volume 21 Issue 8 August 2016 pp 749-763. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/021/08/0749-0763. Abstract ...

  11. Jim Gray on eScience: A Transformed Scientific Method

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 8. Jim Gray on eScience: A Transformed Scientific Method. Classics Volume 21 Issue 8 August 2016 pp 749-763. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/021/08/0749-0763. Abstract ...

  12. Mentoring Graduate Students: The Good, Bad, and Gray

    Science.gov (United States)

    Ballantine, Jeanne H.; Jolly-Ballantine, John-Andrew

    2015-01-01

    Good mentoring of graduate students influences their perseverance and success to completion, whereas bad mentoring can result in negative outcomes, including delayed degree completion or non-completion. What the authors refer to as the gray zone is that which falls between good and bad mentoring. Examples are partial mentoring or changes in…

  13. Ultraviolet damage on natural gray hair and its photoprotection.

    Science.gov (United States)

    Gao, T; Bedell, A

    2001-01-01

    The physicochemical properties of natural gray hair obtained from the heads of individuals and as well as commercial samples were investigated. No statistically significant differences were observed in terms of their central maximum diameter, central cross-sectional area, central ellipticity, average tensile strength, and average extent of transverse swelling between gray and black hair. The correlation between the elongation and the contraction of the cross-sectional area of hair fibers during extension was established as a statistically linear function, with a coefficient of 0.758. The damage on natural gray hair from ultraviolet (UV) irradiation were assessed by measuring the following parameters: hair color, Young's modulus, stress-to-break, wet combing force, dynamic advancing contact angle, tryptophan damage, cuticle abrasion, and transverse swelling of hair fiber in 0.1 N NaOH solution. It has been found that gray hair undergoes more severe UV damage and needs more UV protection than dark brown hair. Experimental results indicate that the quaternized UV absorber, cinnamidopropyltrimonium chloride (CATC), delivered from a simple shampoo system, is more substantive on hair and more effective in protecting hair from UV damage than a conventional UV filter. CATC also provided an additional conditioning benefit on hair.

  14. Lateral cervical nucleus projections to periaqueductal gray matter in cat

    NARCIS (Netherlands)

    Mouton, LJ; Klop, EM; Broman, J; Zhang, ML; Holstege, G; Zhang, Mengliang

    2004-01-01

    The midbrain periaqueductal gray matter (PAG) integrates the basic responses necessary for survival of individuals and species. Examples are defense behaviors such as fight, flight, and freezing, but also sexual behavior, vocalization, and micturition. To control these behaviors the PAG depends on

  15. Anophthalmia in a Wild Eastern Gray Squirrel (Sciurus carolinensis).

    Science.gov (United States)

    Rothenburger, Jamie L; Hartnett, Elizabeth A; James, Fiona M K; Grahn, Bruce H

    2017-10-01

    We describe bilateral true anophthalmia in a juvenile female eastern gray squirrel (Sciurus carolinensis) with histologic confirmation that orbital contents lacked ocular tissues. Additionally, the optic chiasm of the brain was absent and axon density in the optic tract adjacent to the lateral geniculate nucleus was reduced.

  16. The occurrence of hepatozoon in the gray squirrel (Sciurus carolinensis)

    Science.gov (United States)

    Herman, C.M.; Price, D.L.

    1955-01-01

    Hepatozoon sciuri (Coles, 1914) is reported from gray squirrels (Sciurus carolinensis) in Washington, D.C. and Maryland. Blood smears stained with Giemsa's stain revealed a parasitemia in 16 to 71% of the squirrels examined. A technique for laking the red cells and concentrating the white cells in blood samples demonstrated this protozoon to be present in every squirrel so tested.

  17. Dance and music share gray matter structural correlates.

    Science.gov (United States)

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2017-02-15

    Intensive practise of sensorimotor skills, such as music and dance, is associated with brain structural plasticity. While the neural correlates of music have been well-investigated, less is known about the neural correlates of dance. Additionally, the gray matter structural correlates of dance versus music training have not yet been directly compared. The objectives of the present study were to compare gray matter structure as measured by surface- and voxel-based morphometry between expert dancers, expert musicians and untrained controls, as well as to correlate gray matter structure with performance on dance- and music-related tasks. Dancers and musicians were found to have increased cortical thickness compared to controls in superior temporal regions. Gray matter structure in the superior temporal gyrus was also correlated with performance on dance imitation, rhythm synchronization and melody discrimination tasks. These results suggest that superior temporal regions are important in both dance- and music-related skills and may be affected similarly by both types of long-term intensive training. This work advances knowledge of the neural correlates of dance and music, as well as training-associated brain plasticity in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ovarian mucinous cystadenoma in a gray brocket deer (Mazama gouazoupira).

    Science.gov (United States)

    Monteiro, Lidianne N; Salgado, Breno S; Grandi, Fabrizio; Fernandes, Thaís R; Miranda, Bruna S; Teixeira, Carlos R; Rocha, Rafael M; Rocha, Noeme S

    2011-05-01

    An ovarian mucinous cystadenoma is described in a gray brocket deer (Mazama gouazoupira). The tumor was histologically characterized by the presence of cysts and proliferation of papillae, both lined by single- or multi-layered pleomorphic epithelial cells that contained alcian blue-positive mucins. © 2011 The Author(s)

  19. James N Gray – An eScience Visionary

    Indian Academy of Sciences (India)

    IAS Admin

    exchanges, and in e-commerce among many applications which we take for granted today. However, it was Jim Gray whose leadership and rigorous theoretical formulation of the problem and implementation that led to reliable transaction processing which is essential in all financial transactions. It is a tribute to his.

  20. Non-compact left ventricle/hypertrabeculated left ventricle

    International Nuclear Information System (INIS)

    Restrepo, Gustavo; Castano, Rafael; Marmol, Alejandro

    2005-01-01

    Non-compact left ventricle/hypertrabeculated left ventricle is a myocardiopatie produced by an arrest of the normal left ventricular compaction process during the early embryogenesis. It is associated to cardiac anomalies (congenital cardiopaties) as well as to extracardial conditions (neurological, facial, hematologic, cutaneous, skeletal and endocrinological anomalies). This entity is frequently unnoticed, being diagnosed only in centers with great experience in the diagnosis and treatment of myocardiopathies. Many cases of non-compact left ventricle have been initially misdiagnosed as hypertrophic myocardiopatie, endocardial fibroelastosis, dilated cardiomyopatie, restrictive cardiomyopathy and endocardial fibrosis. It is reported the case of a 74 years old man with a history of chronic arterial hypertension and diabetes mellitus, prechordial chest pain and mild dyspnoea. An echocardiogram showed signs of non-compact left ventricle with prominent trabeculations and deep inter-trabecular recesses involving left ventricular apical segment and extending to the lateral and inferior walls. Literature on this topic is reviewed

  1. Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Arie Nouwen

    2017-01-01

    Conclusion/interpretation: Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities.

  2. Mechanical discordance between left atrium and left atrial appendage

    Directory of Open Access Journals (Sweden)

    Arash Khamooshian

    2018-01-01

    Full Text Available During standard transesophageal echocardiographic examinations in sinus rhythm (SR patients, the left atrial appendage (LAA is not routinely assessed with Doppler. Despite having a SR, it is still possible to have irregular activity in the LAA. This situation is even more important for SR patients where assessment of the left atrium is often foregone. We describe a case where we encountered this situation and briefly review how to assess the left atrium and its appendage in such a case scenario.

  3. Executive dysfunction and gray matter atrophy in amnestic mild cognitive impairment.

    Science.gov (United States)

    Zheng, Dongming; Sun, Hongzan; Dong, Xiaoyu; Liu, Baiwei; Xu, Yongchuan; Chen, Sipan; Song, Lichun; Zhang, Hong; Wang, Xiaoming

    2014-03-01

    Recent studies have shown that impairment in executive function (EF) is common in patients with amnestic mild cognitive impairment (aMCI). However, the neuroanatomic basis of executive impairment in patients with aMCI remains unclear. In this study, multiple regression voxel-based morphometry analyses were used to examine the relationship between regional gray matter volumes and EF performance in 50 patients with aMCI and 48 healthy age-matched controls. The core EF components (response inhibition, working memory and task switching, based on the EF model of Miyake et al) were accessed with computerized tasks. Atrophic brain areas related to decreases in the three EF components in patients with aMCI were located in the frontal and temporal cortices. Within the frontal cortex, the brain region related to response inhibition was identified in the right inferior frontal gyrus. Brain regions related to working memory were located in the left anterior cingulate gyrus, left premotor cortex, and right inferior frontal gyrus, and brain regions related to task shifting were distributed in the bilateral frontal cortex. Atrophy in the right inferior frontal gyrus was most closely associated with a decrease in all three EF components in patients with aMCI. Our data, from the perspective of brain morphology, contribute to a better understanding of the role of these brain areas in the neural network of EF. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Relationship between Brain Age-Related Reduction in Gray Matter and Educational Attainment.

    Directory of Open Access Journals (Sweden)

    Patricia Rzezak

    Full Text Available Inter-subject variability in age-related brain changes may relate to educational attainment, as suggested by cognitive reserve theories. This voxel-based morphometry study investigated the impact of very low educational level on the relationship between regional gray matter (rGM volumes and age in healthy elders. Magnetic resonance imaging data were acquired in elders with low educational attainment (less than 4 years (n = 122 and high educational level (n = 66, pulling together individuals examined using either of three MRI scanners/acquisition protocols. Voxelwise group comparisons showed no rGM differences (p<0.05, family-wise error corrected for multiple comparisons. When within-group voxelwise patterns of linear correlation were compared between high and low education groups, there was one cluster of greater rGM loss with aging in low versus high education elders in the left anterior cingulate cortex (p<0.05, FWE-corrected, as well as a trend in the left dorsomedial prefrontal cortex (p<0.10. These results provide preliminary indication that education might exert subtle protective effects against age-related brain changes in healthy subjects. The anterior cingulate cortex, critical to inhibitory control processes, may be particularly sensitive to such effects, possibly given its involvement in cognitive stimulating activities at school or later throughout life.

  5. Voxelwise meta-analysis of gray matter abnormalities in dementia with Lewy bodies.

    Science.gov (United States)

    Zhong, JianGuo; Pan, PingLei; Dai, ZhenYu; Shi, HaiCun

    2014-10-01

    Increasing neuroimaging studies have revealed brain gray matter (GM) atrophy by voxel-based morphometry (VBM) studies in patients with dementia with Lewy bodies (DLB) relative to healthy controls. However, the spatial localization of GM abnormalities reported in the existing studies is heterogeneous. Here, we aimed to investigate concurrence across VBM studies to help clarify the structural abnormalities underpinning this condition. A systematic search for VBM studies of DLB patients and healthy controls published in PubMed database from January 2000 to March 2014 was conducted. A quantitative meta-analysis of whole-brain VBM studies in DLB patients and healthy controls was performed by means of Anisotropic Effect Size version of Signed Differential Mapping (AES-SDM) software package. Seven studies comprising 218 DLB patients and 219 healthy controls were included in the present study. Compared to healthy subjects, the patients group showed consistent decreased GM in right lateral temporal/insular cortex and left lenticular nucleus/insular cortex. The results remained largely unchanged in the following jackknife sensitivity analyses. Meta-regression analysis indicated an increased probability of finding brain atrophy in left superior temporal gyrus in patients with lower MMSE scores. The present meta-analysis quantitatively demonstrates a characteristic pattern of GM alternations that contributed to the understanding of pathophysiology underlying DLB. Future studies will benefit from employing meta-analytical comparisons to other dementia subtypes with solid evidence to extend these findings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Anorexia Nervosa during Adolescence Is Associated with Decreased Gray Matter Volume in the Inferior Frontal Gyrus.

    Directory of Open Access Journals (Sweden)

    Takashi X Fujisawa

    Full Text Available Anorexia nervosa (AN is an eating disorder characterized by the relentless pursuit to lose weight, mostly through self-starvation, and a distorted body image. AN tends to begin during adolescence among women. However, the underlying neural mechanisms related to AN remain unclear. Using voxel-based morphometry based on magnetic resonance imaging scans, we investigated whether the presence of AN was associated with discernible changes in brain morphology. Participants were 20 un-medicated, right-handed patients with early-onset AN and 14 healthy control subjects. Group differences in gray matter volume (GMV were assessed using high-resolution, T1-weighted, volumetric magnetic resonance imaging datasets (3T Trio scanner; Siemens AG and analyzed after controlling for age and total GMV, which was decreased in the bilateral inferior frontal gyrus (IFG (left IFG: FWE corrected, p < 0.05; right IFG: uncorrected, p < 0.05 of patients with AN. The GMV in the bilateral IFG correlated significantly with current age (left IFG: r = -.481, p < .05; right IFG: r = -.601, p < .01 and was limited to the AN group. We speculate that decreased IFG volume might lead to deficits in executive functioning or inhibitory control within neural reward systems. Precocious or unbalanced neurological trimming within this particular region might be an important factor for the pathogenesis of AN onset.

  7. Effect of Simulated Microgravity on Human Brain Gray Matter and White Matter--Evidence from MRI.

    Directory of Open Access Journals (Sweden)

    Ke Li

    Full Text Available There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM and white matter (WM of the brain due to microgravity.Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain.We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA changes were also observed in multiple WM tracts.These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition.

  8. [Left-handedness and health].

    Science.gov (United States)

    Milenković, Sanja; Belojević, Goran; Kocijancić, Radojka

    2010-01-01

    Hand dominance is defined as a proneness to use one hand rather than another in performing the majority of activities and this is the most obvious example of cerebral lateralization and an exclusive human characteristic. Left-handed people comprise 6-14% of the total population, while in Serbia, this percentage is 5-10%, moving from undeveloped to developed environments, where a socio-cultural pressure is less present. There is no agreement between investigators who in fact may be considered a left-handed person, about the percentage of left-handers in the population and about the etiology of left-handedness. In the scientific literature left-handedness has been related to health disorders (spine deformities, immunological disorders, migraine, neurosis, depressive psychosis, schizophrenia, insomnia, homosexuality, diabetes mellitus, arterial hypertension, sleep apnea, enuresis nocturna and Down Syndrome), developmental disorders (autism, dislexia and sttutering) and traumatism. The most reliable scientific evidences have been published about the relationship between left-handedness and spinal deformities in school children in puberty and with traumatism in general population. The controversy of other results in up-to-now investigations of health aspects of left-handedness may partly be explained by a scientific disagreement whether writing with the left hand is a sufficient criterium for left-handedness, or is it necessary to investigate other parameters for laterality assessment. Explanation of health aspects of left-handedness is dominantly based on Geschwind-Galaburda model about "anomalous" cerebral domination, as a consequence of hormonal disbalance.

  9. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. "Mr. Database" : Jim Gray and the History of Database Technologies.

    Science.gov (United States)

    Hanwahr, Nils C

    2017-12-01

    Although the widespread use of the term "Big Data" is comparatively recent, it invokes a phenomenon in the developments of database technology with distinct historical contexts. The database engineer Jim Gray, known as "Mr. Database" in Silicon Valley before his disappearance at sea in 2007, was involved in many of the crucial developments since the 1970s that constitute the foundation of exceedingly large and distributed databases. Jim Gray was involved in the development of relational database systems based on the concepts of Edgar F. Codd at IBM in the 1970s before he went on to develop principles of Transaction Processing that enable the parallel and highly distributed performance of databases today. He was also involved in creating forums for discourse between academia and industry, which influenced industry performance standards as well as database research agendas. As a co-founder of the San Francisco branch of Microsoft Research, Gray increasingly turned toward scientific applications of database technologies, e. g. leading the TerraServer project, an online database of satellite images. Inspired by Vannevar Bush's idea of the memex, Gray laid out his vision of a Personal Memex as well as a World Memex, eventually postulating a new era of data-based scientific discovery termed "Fourth Paradigm Science". This article gives an overview of Gray's contributions to the development of database technology as well as his research agendas and shows that central notions of Big Data have been occupying database engineers for much longer than the actual term has been in use.

  11. Gray fox (Urocyon cinereoargenteus parasite diversity in central Mexico

    Directory of Open Access Journals (Sweden)

    Norma Hernández-Camacho

    2016-08-01

    Full Text Available Mexico has a long history of parasitological studies in communities of vertebrates. However, the mega diversity of the country makes fauna inventories an ongoing priority. Presently, there is little published on the parasite fauna of gray foxes (Urocyon cinereoargenteus Schereber, 1775 and this study provides new records of parasites for gray foxes in central Mexico. It is a continuation of a series of previous parasitological studies conducted with this carnivore in Mexico from 2003 to the present. A total of 24 foxes in the Parque Nacional El Cimatario (PANEC were trapped, anaesthetized, and parasites recovered. The species found were Dirofilaria immitis, Ctenocephalides canis, C. felis, Euhoplopsillus glacialis affinis (first report for gray foxes in Mexico Pulex simulants, and Ixodes sp. Three additional gray fox carcasses were necropsied and the parasites collected were adult nematodes Physaloptera praeputialis and Toxocara canis. The intensive study of the gray fox population selected for the 2013–2015 recent period allowed for a two-fold increase in the number of parasite species recorded for this carnivore since 2003 (nine to 18 parasite species, mainly recording parasitic arthropods, Dirofilaria immitis filariae and adult nematodes. The parasite species recorded are generalists that can survive in anthropic environments; which is characteristic of the present ecological scenario in central Mexico. The close proximity of the PANEC to the city of Santiago de Queretaro suggests possible parasite transmission between the foxes and domestic and feral dogs. Furthermore, packs of feral dogs in the PANEC might have altered habitat use by foxes, with possible impacts on transmission.

  12. Gray fox (Urocyon cinereoargenteus) parasite diversity in central Mexico.

    Science.gov (United States)

    Hernández-Camacho, Norma; Pineda-López, Raúl Francisco; de Jesús Guerrero-Carrillo, María; Cantó-Alarcón, Germinal Jorge; Jones, Robert Wallace; Moreno-Pérez, Marco Antonio; Mosqueda-Gualito, Juan Joel; Zamora-Ledesma, Salvador; Camacho-Macías, Brenda

    2016-08-01

    Mexico has a long history of parasitological studies in communities of vertebrates. However, the mega diversity of the country makes fauna inventories an ongoing priority. Presently, there is little published on the parasite fauna of gray foxes (Urocyon cinereoargenteus Schereber, 1775) and this study provides new records of parasites for gray foxes in central Mexico. It is a continuation of a series of previous parasitological studies conducted with this carnivore in Mexico from 2003 to the present. A total of 24 foxes in the Parque Nacional El Cimatario (PANEC) were trapped, anaesthetized, and parasites recovered. The species found were Dirofilaria immitis, Ctenocephalides canis, C. felis, Euhoplopsillus glacialis affinis (first report for gray foxes in Mexico) Pulex simulants, and Ixodes sp. Three additional gray fox carcasses were necropsied and the parasites collected were adult nematodes Physaloptera praeputialis and Toxocara canis. The intensive study of the gray fox population selected for the 2013-2015 recent period allowed for a two-fold increase in the number of parasite species recorded for this carnivore since 2003 (nine to 18 parasite species), mainly recording parasitic arthropods, Dirofilaria immitis filariae and adult nematodes. The parasite species recorded are generalists that can survive in anthropic environments; which is characteristic of the present ecological scenario in central Mexico. The close proximity of the PANEC to the city of Santiago de Queretaro suggests possible parasite transmission between the foxes and domestic and feral dogs. Furthermore, packs of feral dogs in the PANEC might have altered habitat use by foxes, with possible impacts on transmission.

  13. Metabolic Hyperactivity of the Medial Posterior Parietal Lobes in Psychogenic Tremor

    Directory of Open Access Journals (Sweden)

    Peter Hedera

    2012-05-01

    Full Text Available Background: The pathophysiology of psychogenic movement disorders, including psychogenic tremor (PT, is only emerging. Case Report: This is a single case report of a patient who met diagnostic criteria for PT. He underwent positron emission tomography (PET of brain with 18F-deoxyglucose at resting state. His PET study showed symmetrically increased 18F-deoxyglucose uptake in both posterior medial parietal lobes. There was no corresponding abnormality on structural imaging. Discussion: Hypermetabolism of the medial aspects of posterior parietal lobes bilaterally may reflect abnormal activity of sensory integration that is important in the pathogenesis of PT. This further supports the idea that non-organic movement disorders may be associated with detectable functional brain abnormalities.

  14. Use of permacol in parietal and general surgery: a bibliographic review.

    Science.gov (United States)

    Balayssac, David; Poinas, Anne Claire; Pereira, Bruno; Pezet, Denis

    2013-04-01

    The use of synthetic meshes on infected incisional hernias often fails and is therefore contraindicated. Biological meshes offer a novel solution. Among them, Permacol requires a bibliographic analysis of its efficacy and tolerance. A bibliographic analysis was carried out on the efficacy and tolerance of Permacol in parietal and general surgery. A total of 22 publications described the use of Permacol in digestive surgery. The advantages of Permacol would be usability in contaminated surgical fields, biocompatibility, no erosion of intestinal wall, and less risk of adhesions. The main drawback of Permacol is its high cost. Even so, Permacol can play an important part in the short-term management of complex or contaminated abdominal wall defects. The lack of long-term studies and the high cost of the implant call for a medical cost-effectiveness assessment to determine the indications for Permacol in parietal and general surgery.

  15. Parietal intradiploic encephalocele: Report of a case and review of the literature.

    Science.gov (United States)

    Arevalo-Perez, Julio; Millán-Juncos, José M

    2015-06-01

    Encephaloceles consist of brain tissue and meninges that has herniated through a skull defect, usually located in the midline. They are seen more commonly in children and very rarely in adults. We present a case of an 84-year-old patient who was incidentally diagnosed with a lytic bone lesion in the right parietal intradiploic space, after computed tomography of the head was performed. A magnetic resonance imaging scan of the brain showed herniation of brain tissue through the defect. Magnetic resonance imaging was crucial in demonstrating the presence of parenchyma and its continuity with the rest of the brain, consequently distinguishing it from other entities. We report the imaging findings of a parietal indradiploic encephalocele with its differential diagnosis and a review of the relevant literature. © The Author(s) 2015.

  16. Parietal and occipital encephalocele in same child: A rarest variety of double encephalocele.

    Science.gov (United States)

    Sharma, Somnath; Ojha, Bal Krishan; Chandra, Anil; Singh, Sunil Kumar; Srivastava, Chhitij

    2016-05-01

    An encephalocele is a protrusion of the brain and/or meninges through a defect in the skull. Based on the location of the skull defect they are classified into sincipital, basal, occipital or parietal varieties. Occurrence of more than one Encephalocele in a patient is very rare and very few cases of double encephalocele are reported. We report an interesting case where a parietal and an occipital encephalocele were present together. The patient was a 2 months boy who was brought to us with complaints of two swelling on the scalp since birth. Neuroimaging studies confirmed it to be a case of double encephalocele. The rarity of the findings prompted us to report this case. The presentation and management of the case along with and review of the relevant literature is presented. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  17. Optic ataxia: from Balint’s syndrome to the parietal reach region

    Science.gov (United States)

    Andersen, Richard A.; Andersen, Kristen N.; Hwang, EunJung; Hauschild, Markus

    2014-01-01

    Optic ataxia is a high order deficit in reaching to visual goals that occurs with posterior parietal cortex (PPC) lesions. It is a component of Balint’s syndrome that also includes attentional and gaze disorders. Aspects of optic ataxia are misreaching in the contralesional visual field, difficulty preshaping the hand for grasping, and an inability to correct reaches online. Recent research in non-human primates (NHPs) suggests that many aspects of Balint’s syndrome and optic ataxia are a result of damage to specific functional modules for reaching, saccades, grasp, attention, and state estimation. The deficits from large lesions in humans are likely composite effects from damage to combinations of these functional modules. Interactions between these modules, either within posterior parietal cortex or downstream within frontal cortex, may account for more complex behaviors such as hand-eye coordination and reach-to-grasp. PMID:24607223

  18. Parietal dysfunction during number processing in children with fetal alcohol spectrum disorders

    Directory of Open Access Journals (Sweden)

    K.J. Woods

    2015-01-01

    Full Text Available Number processing deficits are frequently seen in children prenatally exposed to alcohol. Although the parietal lobe, which is known to mediate several key aspects of number processing, has been shown to be structurally impaired in fetal alcohol spectrum disorders (FASD, effects on functional activity in this region during number processing have not previously been investigated. This fMRI study of 49 children examined differences in activation associated with prenatal alcohol exposure in five key parietal regions involved in number processing, using tasks involving simple addition and magnitude comparison. Despite generally similar behavioral performance, in both tasks greater prenatal alcohol exposure was related to less activation in an anterior section of the right horizontal intraparietal sulcus known to mediate mental representation and manipulation of quantity. Children with fetal alcohol syndrome and partial fetal alcohol syndrome appeared to compensate for this deficit by increased activation of the angular gyrus during the magnitude comparison task.

  19. Spatial imagery relies on a sensory independent, though sensory sensitive, functional organization within the parietal cortex: a fMRI study of angle discrimination in sighted and congenitally blind individuals.

    Science.gov (United States)

    Bonino, Daniela; Ricciardi, Emiliano; Bernardi, Giulio; Sani, Lorenzo; Gentili, Claudio; Vecchi, Tomaso; Pietrini, Pietro

    2015-02-01

    Although vision offers distinctive information to space representation, individuals who lack vision since birth often show perceptual and representational skills comparable to those found in sighted individuals. However, congenitally blind individuals may result in impaired spatial analysis, when engaging in 'visual' spatial features (e.g., perspective or angle representation) or complex spatial mental abilities. In the present study, we measured behavioral and brain responses using functional magnetic resonance imaging in sighted and congenitally blind individuals during spatial imagery based on a modified version of the mental clock task (e.g., angle discrimination) and a simple recognition control condition, as conveyed across distinct sensory modalities: visual (sighted individuals only), tactile and auditory. Blind individuals were significantly less accurate during the auditory task, but comparable-to-sighted during the tactile task. As expected, both groups showed common neural activations in intraparietal and superior parietal regions across visual and non-visual spatial perception and imagery conditions, indicating the more abstract, sensory independent functional organization of these cortical areas, a property that we named supramodality. At the same time, however, comparisons in brain responses and functional connectivity patterns across experimental conditions demonstrated also a functional lateralization, in a way that correlated with the distinct behavioral performance in blind and sighted individuals. Specifically, blind individuals relied more on right parietal regions, mainly in the tactile and less in the auditory spatial processing. In sighted, spatial representation across modalities relied more on left parietal regions. In conclusions, intraparietal and superior parietal regions subserve supramodal spatial representations in sighted and congenitally blind individuals. Differences in their recruitment across non-visual spatial processing in

  20. Depletion of CD200+ Hair Follicle Stem Cells in Human Prematurely Gray Hair Follicles

    OpenAIRE

    Mohanty, Sujata; Kumar, Anil; Dhawan, Jyoti; Sharma, Vinod K; Gupta, Somesh

    2013-01-01

    Introduction: Melanocyte stem cells (MelSCs) are known to be depleted in gray hair follicles. Hair follicle stem cells (HFSCs) are important for maintenance of stemness of MelSCs. Methods: We compared the proportion of CD200+ (Cluster of Differentiation 200 positive) stem cells in the outer root sheath cell suspension of gray and pigmented hair follicles of three patients with the premature graying of hair. In addition, explants culture for HFSCs was also carried out from gray and pigmented h...

  1. Representation of remembered stimuli and task information in the monkey dorsolateral prefrontal and posterior parietal cortex.

    Science.gov (United States)

    Qi, Xue-Lian; Elworthy, Anthony C; Lambert, Bryce C; Constantinidis, Christos

    2015-01-01

    Both dorsolateral prefrontal and posterior parietal cortex have been implicated in spatial working memory and representation of task information. Prior experiments training animals to recall the first of a sequence of stimuli and examining the effect of subsequent distractors have identified increased ability of the prefrontal cortex to represent remembered stimuli and filter distractors. It is unclear, however, if this prefrontal functional specialization extends to stimuli appearing earlier in a sequence, when subjects are cued to remember subsequent ones. It is also not known how task information interacts with persistent activity representing remembered stimuli and distractors in the two areas. To address these questions, we trained monkeys to remember either the first or second of two stimuli presented in sequence and recorded neuronal activity from the posterior parietal and dorsolateral prefrontal cortex. The prefrontal cortex was better able to represent the actively remembered stimulus, whereas the posterior parietal cortex was more modulated by distractors; however, task effects interfered with this representation. As a result, large proportions of neurons with persistent activity and task effects exhibited a preference for a stimulus when it appeared as a distractor in both areas. Additionally, prefrontal neurons were modulated to a greater extent by task factors during the delay period of the task. The results indicate that the prefrontal cortex is better able than the posterior parietal cortex to differentiate between distractors and actively remembered stimuli and is more modulated by the task; however, this relative preference is highly context dependent and depends on the specific requirements of the task. Copyright © 2015 the American Physiological Society.

  2. Distinguishing Intentions from Desires: Contributions of the Frontal and Parietal Lobes

    Science.gov (United States)

    Chiavarino, Claudia; Apperly, Ian A.; Humphreys, Glyn W.

    2010-01-01

    The ability to represent desires and intentions as two distinct mental states was investigated in patients with parietal (N = 8) and frontal (N = 6) lesions and in age-matched controls (N = 7). A task was used where the satisfaction of the desire and the fulfilment of the intention did not co-vary and were manipulated in a 2 x 2 set. In two…

  3. Neuronal oscillations during contour integration of dynamic visual stimuli form parietal/frontal networks

    Directory of Open Access Journals (Sweden)

    Marta eCastellano

    2014-08-01

    Full Text Available The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz frequency. Simultaneously, fronto-parietal beta (13-30 Hz phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e. the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  4. Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory

    OpenAIRE

    Heinen, Klaartje; Sagliano, Laura; Candini, Michela; Husain, Masud; Cappelletti, Marinella; Zokaei, Nahid

    2016-01-01

    In this study, we investigated the effects of tDCS over the posterior parietal cortex (PPC) during a visual working memory (WM) task, which probes different sources of response error underlying the precision of WM recall. In two separate experiments, we demonstrated that tDCS enhanced WM precision when applied bilaterally over the PPC, independent of electrode configuration. In a third experiment, we demonstrated with unilateral electrode configuration over the right PPC, that only cathodal t...

  5. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  6. Metaplasia of the parietal layer of Bowman's capsule. A histopathological survey of the human kidney

    OpenAIRE

    Haensly, William E.; Lee, J.C.

    1986-01-01

    Human kidney sections taken at autopsy were examined to determine the incidence of metaplasia of the Bowman's parietal epithelium. Autopsy records were consulted to determine if there was any correlation between clinical disease, histopathological changes in organ systems and metaplasia of Bowman's capsule. The sections represented both sexes in 9 age groups from 2 to 87 years. The sections were fixed in neutral formalin, embedded in paraffin, sectioned at 6 pm...

  7. Posterior parietal cortex and long-term memory: some data from laboratory animals

    OpenAIRE

    Myskiw, Jociane C.; Izquierdo, Iván

    2012-01-01

    The posterior parietal cortex (PPC) was long viewed as just involved in the perception of spatial relationships between the body and its surroundings and of movements related to them. In recent years the PPC has been shown to participate in many other cognitive processes, among which working memory and the consolidation and retrieval of episodic memory. The neurotransmitter and other molecular processes involved have been determined to a degree in rodents. More research will no doubt determin...

  8. Noninvasive brain stimulation of the parietal lobe for improving neurologic, neuropsychologic, and neuropsychiatric deficits.

    Science.gov (United States)

    Bolognini, Nadia; Miniussi, Carlo

    2018-01-01

    Transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES) are noninvasive brain stimulation (NIBS) tools that are now widely used in neuroscientific research in humans. The fact that both TMS and tES are able to modulate brain plasticity and, in turn, affect behavior is opening up new horizons in the treatment of brain circuit and plasticity disorders. In the present chapter, we will first provide the reader with a brief background on the basic principles of NIBS, describing the electromagnetic and physical foundations of TMS and tES, as well as the current knowledge of the neurophysiologic basis of their effects on brain activity and plasticity. In the main part, we will outline studies aimed at improving persistent symptoms and deficits in patients suffering from neurologic and neuropsychiatric disorders featured by dysfunction of the parietal lobe. The emerging view is that NIBS of parietal areas holds the promise to overcome various sensory, motor, and cognitive disorders that are often refractory to standard medical or behavioral therapies. The chapter closes with an outlook on further developments in this realm, discussing novel therapeutic approaches that could lead to more effective rehabilitation procedures, better suited for the specific parietal lobe dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  10. Static Magnetic Field Stimulation over Parietal Cortex Enhances Somatosensory Detection in Humans.

    Science.gov (United States)

    Carrasco-López, Carmen; Soto-León, Vanesa; Céspedes, Virginia; Profice, Paolo; Strange, Bryan A; Foffani, Guglielmo; Oliviero, Antonio

    2017-04-05

    The role of neuronal oscillations in human somatosensory perception is currently unclear. To address this, here we use noninvasive brain stimulation to artificially modulate cortical network dynamics in the context of neurophysiological and behavioral recordings. We demonstrate that transcranial static magnetic field stimulation (tSMS) over the somatosensory parietal cortex increases oscillatory power specifically in the alpha range, without significantly affecting bottom-up thalamocortical inputs indexed by the early cortical component of somatosensory evoked potentials. Critically, we next show that parietal tSMS enhances the detection of near-threshold somatosensory stimuli. Interestingly, this behavioral improvement reflects a decrease of habituation to somatosensation. Our data therefore provide causal evidence that somatosensory perception depends on parietal alpha activity. SIGNIFICANCE STATEMENT Artificially increasing alpha power by placing a powerful magnetic field over the somatosensory cortex overcomes the natural decline in detection probability of a repeated near-threshold sensory stimulus. Copyright © 2017 the authors 0270-6474/17/373840-08$15.00/0.

  11. Asymmetric Multisensory Interactions of Visual and Somatosensory Responses in a Region of the Rat Parietal Cortex

    Science.gov (United States)

    Lippert, Michael T.; Takagaki, Kentaroh

    2013-01-01

    Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD) responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level. PMID:23667650

  12. Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory.

    Science.gov (United States)

    Galeano Weber, Elena M; Hahn, Tim; Hilger, Kirsten; Fiebach, Christian J

    2017-02-01

    Limitations in visual working memory (WM) quality (i.e., WM precision) may depend on perceptual and attentional limitations during stimulus encoding, thereby affecting WM capacity. WM encoding relies on the interaction between sensory processing systems and fronto-parietal 'control' regions, and differences in the quality of this interaction are a plausible source of individual differences in WM capacity. Accordingly, we hypothesized that the coupling between perceptual and attentional systems affects the quality of WM encoding. We combined fMRI connectivity analysis with behavioral modeling by fitting a variable precision and fixed capacity model to the performance data obtained while participants performed a visual delayed continuous response WM task. We quantified functional connectivity during WM encoding between occipital and parietal brain regions activated during both perception and WM encoding, as determined using a conjunction of two independent experiments. The multivariate pattern of voxel-wise inter-areal functional connectivity significantly predicted WM performance, most specifically the mean of WM precision but not the individual number of items that could be stored in memory. In particular, higher occipito-parietal connectivity was associated with higher behavioral mean precision. These results are consistent with a network perspective of WM capacity, suggesting that the efficiency of information flow between perceptual and attentional neural systems is a critical determinant of limitations in WM quality. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tool-use practice induces changes in intrinsic functional connectivity of parietal areas

    Directory of Open Access Journals (Sweden)

    Kwangsun eYoo

    2013-02-01

    Full Text Available Intrinsic functional connectivity from resting state functional magnetic resonance imaging (rsfMRI has increasingly received attention as a possible predictor of cognitive function and performance. In this study, we investigated the influence of practicing skillful tool manipulation on intrinsic functional connectivity in the resting brain. Acquisition of tool-use skill has two aspects such as formation of motor representation for skillful manipulation and acquisition of the tool concept. To dissociate these two processes, we chose chopsticks-handling with the non-dominant hand. Because participants were already adept at chopsticks-handling with their dominant hand, practice with the non-dominant hand involved only acquiring the skill for tool manipulation with existing knowledge. Eight young participants practiced chopsticks-handling with their non-dominant hand for 8 weeks. They underwent fMRI sessions before and after the practice. As a result, functional connectivity among tool-use-related regions of the brain decreased after practice. We found decreased functional connectivity centered on parietal areas, mainly the supramarginal gyrus and superior parietal lobule and additionally between the primary sensorimotor area and cerebellum. These results suggest that the parietal lobe and cerebellum purely mediate motor learning for skillful tool-use. This decreased functional connectivity may represent increased efficiency of functional network.

  14. Similar coding of freely chosen and externally cued intentions in a fronto-parietal network.

    Science.gov (United States)

    Wisniewski, David; Goschke, Thomas; Haynes, John-Dylan

    2016-07-01

    Intentional action is essential to human behavior, yet its neural basis remains poorly understood. In order to identify neural networks specifically involved in intentional action, freely chosen and externally cued intentions have previously been contrasted. This has led to the identification of a fronto-parietal network, which is involved in freely choosing one's intentions. However, it remains unclear whether this network encodes specific intentions, or whether it merely reflects general preparatory or control processes correlated with intentional action. Here, we used MVPA on fMRI data to identify brain regions encoding non-motor intentions that were either freely chosen or externally cued. We found that a fronto-parietal network, including the lateral prefrontal cortex, premotor, and parietal cortex, contained information about both freely chosen and externally cued intentions. Importantly, MVPA cross-classification indicated that this network represents the content of our intentions similarly, regardless of whether these intentions are freely chosen or externally cued. This finding suggests that the intention network has a general role in processing and representing intentions independent of their origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effect of histamine on regional cerebral blood flow of the parietal lobe in rats.

    Science.gov (United States)

    Yang, Peng-Bo; Chen, Xin-Lin; Zhao, Jian-Jun; Zhang, Jian-Shui; Zhang, Jun-Feng; Tian, Yu-Mei; Liu, Yong

    2010-09-01

    Histamine is a powerful modulator that regulates blood vessels and blood flow. The effect of histamine on the extracortical vessels has been well described, while much less is known about the effect of histamine on intracortical vessels. In this study, we investigated the effect of histamine on regional cerebral blood flow in rat parietal lobe with laser Doppler flowmetry. The pharmacological characteristics of distinct ways (intracerebroventricular injection, intraperitoneal injection, and cranial window infusion) in applying histamine to the brain were also obtained and compared. Histamine applied in three ways all produced a decrease of rCBF in parietal lobe in a concentration-dependent manner. Cranial window infusion was the most effective way and intraperitoneal injection of L-histidine was the most ineffective, although it is a simple and applied way. To determine which type of receptor takes part in the vessel contraction induced by histamine, H1 receptor antagonist, diphenhydramine, and H2 receptor antagonist, cimetidine, were applied, respectively, before histamine administration. When the injection of cimetidine was conducted in advance, histamine still resulted in a decrease of infusion amount; while the injection of diphenhydramine was conducted in advance, the infusion of blood amount wasn't changed. These findings indicated that histamine could result in a reduction of rCBF in the rat parietal lobe and this effect of histamine may attribute partly to its combination with H1 receptor.

  16. Gas1 expression in parietal cells of Bowman's capsule in experimental diabetic nephropathy.

    Science.gov (United States)

    Luna-Antonio, Brenda I; Rodriguez-Muñoz, Rafael; Namorado-Tonix, Carmen; Vergara, Paula; Segovia, Jose; Reyes, Jose L

    2017-07-01

    Gas1 (Growth Arrest-Specific 1) is a pleiotropic protein with novel functions including anti-proliferative and proapoptotic activities. In the kidney, the expression of Gas1 has been described in mesangial cells. In this study, we described that renal parietal cells of Bowman's capsule (BC) and the distal nephron cells also express Gas1. The role of Gas1 in the kidney is not yet known. There is a subpopulation of progenitor cells in Bowman's capsule with self-renewal properties which can eventually differentiate into podocytes as a possible mechanism of regeneration in the early stages of diabetic nephropathy. We analyzed the expression of Gas1 in the parietal cells of Bowman's capsule in murine experimental diabetes. We found that diabetes reduced the expression of Gas1 and increased the expression of progenitor markers like NCAM, CD24, and SIX1/2, and mesenchymal markers like PAX2 in the Bowman's capsule. We also analyzed the expression of WT1 (a podocyte-specific marker) on BC and observed an increase in the number of WT1 positive cells in diabetes. In contrast, nephrin, another podocyte-specific protein, decreases its expression in the first week of diabetes in the glomerular tuft, which is gradually restored during the second and third weeks of diabetes. These results suggest that in diabetes the decrease of Gas1 promotes the activation of parietal progenitor cells of Bowman's capsule that might differentiate into podocytes and compensate their loss observed in this pathology.

  17. Peritoneal Dialysis Catheter Increases Leukocyte Recruitment in the Mouse Parietal Peritoneum Microcirculation and Causes Fibrosis.

    Science.gov (United States)

    Kowalewska, Paulina M; Margetts, Peter J; Fox-Robichaud, Alison E

    2016-01-01

    ♦ The objective of this study was to examine the effects of a conventional dialysis solution and peritoneal catheter on leukocyte-endothelial cell interactions in the microcirculation of the parietal peritoneum in a subacute peritoneal dialysis (PD) mouse model. ♦ An intraperitoneal (IP) catheter with a subcutaneous injection port was implanted into mice and, after a 2-week healing period, the animals were injected daily for 6 weeks with a 2.5% dextrose solution. Intravital microscopy (IVM) of the parietal peritoneum microcirculation was performed 4 hours after the last injection of the dialysis solution. Leukocyte-endothelial cell interactions were quantified and compared with catheterized controls without dialysis treatment and naïve mice. ♦ The number of rolling and extravascular leukocytes along with peritoneal fibrosis and neovascularization were significantly increased in the catheterized animals compared with naïve mice but did not significantly differ between the 2 groups of catheterized animals with sham injections or dialysis solution treatment. ♦ The peritoneal catheter implant increased leukocyte rolling and extravasation, peritoneal fibrosis and vascularization in the parietal peritoneum independently from the dialysis solution treatment. Copyright © 2016 International Society for Peritoneal Dialysis.

  18. Drug-resistant parietal epilepsy: polymorphic ictal semiology does not preclude good post-surgical outcome.

    Science.gov (United States)

    Francione, Stefano; Liava, Alexandra; Mai, Roberto; Nobili, Lino; Sartori, Ivana; Tassi, Laura; Scarpa, Pina; Cardinale, Francesco; Castana, Laura; Cossu, Massimo; Lo Russo, Giorgio

    2015-03-01

    We investigated the anatomo-electro-clinical features and clinical outcome of surgical resections strictly confined to the parietal lobe in 40 consecutive patients who received surgery for pharmacoresistant seizures. The population was subcategorized into a paediatric (11 subjects; mean age at surgery: 7.2+/-3.7 years) and an adult group (29 patients; mean age at surgery: 30+/-10.8 years). The paediatric group more frequently exhibited personal antecedents, neurological impairment, high seizure frequency, and dysplastic lesions. Nonetheless, compared with adults, children had better outcome and more frequently reached definitive drug discontinuation after surgery. After a mean follow-up of 9.4 years (range: 3.1-16.7), 30 subjects (75%) were classified as Engel Class I. The presence of multiple types of aura in the same patient, as well as a high incidence of secondary generalization, represented a characteristic feature of parietal seizures and did not correlate negatively with surgical outcome. A total resection of the epileptogenic zone and a localizing/regional interictal EEG were statistically significant predictive factors of outcome. Intracerebral investigation, performed in 55% of cases, contributed to complete tailored resections of the epileptogenic area and determination of prognosis. Frequent subjective manifestations of parietal lobe seizures, such as vertiginous, cephalic and visual-moving sensations, underscore their potential misdiagnosis as non-epileptic events.

  19. Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex.

    Directory of Open Access Journals (Sweden)

    Michael T Lippert

    Full Text Available Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a