WorldWideScience

Sample records for left hemisphere stroke

  1. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Jiang, Xiong; Harris-Love, Michelle L.; Zeng, Jinsheng

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor’s lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion–symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  2. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  3. Apraxia and spatial inattention dissociate in left hemisphere stroke.

    Science.gov (United States)

    Timpert, David C; Weiss, Peter H; Vossel, Simone; Dovern, Anna; Fink, Gereon R

    2015-10-01

    Theories of lateralized cognitive functions propose a dominance of the left hemisphere for motor control and of the right hemisphere for spatial attention. Accordingly, spatial attention deficits (e.g., neglect) are more frequently observed after right-hemispheric stroke, whereas apraxia is a common consequence of left-hemispheric stroke. Clinical reports of spatial attentional deficits after left hemisphere (LH) stroke also exist, but are often neglected. By applying parallel analysis (PA) and voxel-based lesion-symptom mapping (VLSM) to data from a comprehensive neuropsychological assessment of 74 LH stroke patients, we here systematically investigate the relationship between spatial inattention and apraxia and their neural bases. PA revealed that apraxic (and language comprehension) deficits loaded on one common component, while deficits in attention tests were explained by another independent component. Statistical lesion analyses with the individual component scores showed that apraxic (and language comprehension) deficits were significantly associated with lesions of the left superior longitudinal fascicle (SLF). Data suggest that in LH stroke spatial attention deficits dissociate from apraxic (and language comprehension) deficits. These findings contribute to models of lateralised cognitive functions in the human brain. Moreover, our findings strongly suggest that LH stroke patients should be assessed systematically for spatial attention deficits so that these can be included in their rehabilitation regime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Neural correlates supporting sensory discrimination after left hemisphere stroke

    Science.gov (United States)

    Borstad, Alexandra; Schmalbrock, Petra; Choi, Seongjin; Nichols-Larsen, Deborah S.

    2012-01-01

    Background Nearly half of stroke patients have impaired sensory discrimination, however, the neural structures that support post-stroke sensory function have not been described. Objectives 1) To evaluate the role of the primary somatosensory (S1) cortex in post-stroke sensory discrimination and 2) To determine the relationship between post-stroke sensory discrimination and structural integrity of the sensory component of the superior thalamic radiation (sSTR). Methods 10 healthy adults and 10 individuals with left hemisphere stroke participated. Stroke participants completed sensory discrimination testing. An fMRI was conducted during right, impaired hand sensory discrimination. Fractional anisotropy and volume of the sSTR were quantified using diffusion tensor tractography. Results Sensory discrimination was impaired in 60% of participants with left stroke. Peak activation in the left (S1) did not correlate with sensory discrimination ability, rather a more distributed pattern of activation was evident in post-stroke subjects with a positive correlation between peak activation in the parietal cortex and discrimination ability (r=.70, p=.023). The only brain region in which stroke participants had significantly different cortical activation than control participants was the precuneus. Region of interest analysis of the precuneus across stroke participants revealed a positive correlation between peak activation and sensory discrimination ability (r=.77, p=.008). The L/R ratio of sSTR fractional anisotropy also correlated with right hand sensory discrimination (r=.69, p=.027). Conclusions Precuneus cortex, distributed parietal lobe activity, and microstructure of the sSTR support sensory discrimination after left hemisphere stroke. PMID:22592076

  5. Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke.

    Science.gov (United States)

    Poole, Janet L; Sadek, Joseph; Haaland, Kathleen Y

    2009-10-01

    Poole JL, Sadek J, Haaland KY. Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke. To examine 1-handed shoe tying performance and whether cognitive deficits more associated with left or right hemisphere damage differentially affect it after unilateral stroke. Observational cohort comparing ipsilesional shoe tying, spatial and language skills, and limb praxis. Primary care Veterans Affairs and private medical center. Not applicable. Volunteer right-handed sample of adults with left or right hemisphere damage and healthy demographically matched adults. The number of correct trials and the total time to complete 10 trials tying a shoe using the 1-handed method. Both stroke groups had fewer correct trials and were significantly slower tying the shoe than the control group. Spatial skills predicted accuracy and speed after right hemisphere damage. After left hemisphere damage, accuracy was predicted by spatial skills and limb praxis, while speed was predicted by limb praxis only. Ipsilesional shoe tying is similarly impaired after left or right hemisphere damage, but for different reasons. Spatial deficits had a greater influence after right hemisphere damage, and limb apraxia had a greater influence after left hemisphere damage. Language deficits did not affect performance, indicating that aphasia does not preclude using this therapy approach. These results suggest that rehabilitation professionals should consider assessment of limb apraxia and ipsilesional skill training in the performance of everyday tasks.

  6. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes.

    Science.gov (United States)

    Donkervoort, M; Dekker, J; van den Ende, E; Stehmann-Saris, J C; Deelman, B G

    2000-04-01

    To investigate the prevalence of apraxia in patients with a first left hemisphere stroke. Left hemisphere stroke patients staying at an inpatient care unit of a rehabilitation centre or nursing home and receiving occupational therapy (n = 600). A short questionnaire on general patient characteristics and stroke-related aspects was completed by occupational therapists for every left hemisphere stroke patient they treated. A diagnosis of apraxia or nonapraxia was made in every patient, on the basis of a set of clinical criteria. The prevalence of apraxia among 492 first left hemisphere stroke patients in rehabilitation centres was 28% (96/338) and in nursing homes 37% (57/154). No relationship was found between the prevalence of apraxia and age, gender or type of stroke (haemorrhage or infarct). This study shows that approximately one-third of left hemisphere stroke patients has apraxia.

  7. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes.

    OpenAIRE

    Donkervoort, M.; Dekker, J.; Ende, E. van den; Stehmann-Saris, J.C.; Deelman, B.G.

    2000-01-01

    OBJECTIVE: To investigate the prevalence of apraxia in patients with a first left hemisphere stroke. SUBJECTS: Left hemisphere stroke patients staying at an inpatient care unit of a rehabilitation centre or nursing home and receiving occupational therapy (n = 600). MEASURES: A short questionnaire on general patient characteristics and stroke-related aspects was completed by occupational therapists for every left hemisphere stroke patient they treated. A diagnosis of apraxia or nonapraxia was ...

  8. Acquired dysgraphia in adults following right or left-hemisphere stroke

    Directory of Open Access Journals (Sweden)

    Jaqueline de Carvalho Rodrigues

    Full Text Available OBJECTIVE: This study aimed to assess the strengths and difficulties in word and pseudoword writing in adults with left- and right-hemisphere strokes, and discuss the profiles of acquired dysgraphia in these individuals.METHODS: The profiles of six adults with acquired dysgraphia in left- or right-hemisphere strokes were investigated by comparing their performance on word and pseudoword writing tasks against that of neurologically healthy adults. A case series analysis was performed on the patients whose impairments on the task were indicative of acquired dysgraphia.RESULTS: Two patients were diagnosed with lexical dysgraphia (one with left hemisphere damage, and the other with right hemisphere damage, one with phonological dysgraphia, another patient with peripheral dysgraphia, one patient with mixed dysgraphia and the last with dysgraphia due to damage to the graphemic buffer. The latter patients all had left-hemisphere damage (LHD. The patterns of impairment observed in each patient were discussed based on the dual-route model of writing.CONCLUSION: The fact that most patients had LHD rather than right-hemisphere damage (RHD highlights the importance of the former structure for word processing. However, the fact that lexical dysgraphia was also diagnosed in a patient with RHD suggests that these individuals may develop writing impairments due to damage to the lexical route, leading to heavier reliance on phonological processing. Our results are of significant importance to the planning of writing interventions in neuropsychology.

  9. Cognitive alterations in motor imagery process after left hemispheric ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available BACKGROUND: Motor imagery training is a promising rehabilitation strategy for stroke patients. However, few studies had focused on the neural mechanisms in time course of its cognitive process. This study investigated the cognitive alterations after left hemispheric ischemic stroke during motor imagery task. METHODOLOGY/PRINCIPAL FINDINGS: Eleven patients with ischemic stroke in left hemisphere and eleven age-matched control subjects participated in mental rotation task (MRT of hand pictures. Behavior performance, event-related potential (ERP and event-related (desynchronization (ERD/ERS in beta band were analyzed to investigate the cortical activation. We found that: (1 The response time increased with orientation angles in both groups, called "angle effect", however, stoke patients' responses were impaired with significantly longer response time and lower accuracy rate; (2 In early visual perceptual cognitive process, stroke patients showed hypo-activations in frontal and central brain areas in aspects of both P200 and ERD; (3 During mental rotation process, P300 amplitude in control subjects decreased while angle increased, called "amplitude modulation effect", which was not observed in stroke patients. Spatially, patients showed significant lateralization of P300 with activation only in contralesional (right parietal cortex while control subjects showed P300 in both parietal lobes. Stroke patients also showed an overall cortical hypo-activation of ERD during this sub-stage; (4 In the response sub-stage, control subjects showed higher ERD values with more activated cortical areas particularly in the right hemisphere while angle increased, named "angle effect", which was not observed in stroke patients. In addition, stroke patients showed significant lower ERD for affected hand (right response than that for unaffected hand. CONCLUSIONS/SIGNIFICANCE: Cortical activation was altered differently in each cognitive sub-stage of motor imagery after

  10. Efficacy of strategy training in left hemisphere stroke patients with apraxia: a randomised clinical trial.

    NARCIS (Netherlands)

    Donkervoort, M.; Dekker, J.; Stehmann-Saris, F.C.; Deelman, B.G.

    2001-01-01

    The objective of the present study was to determine in a controlled study the efficacy of strategy training in left hemisphere stroke patients with apraxia. A total of 113 left hemisphere stroke patients with apraxia were randomly assigned to two treatment groups; (1) strategy training integrated

  11. Efficacy of strategy training in left hemisphere stroke patients with apraxia : A randomised clinical trial

    NARCIS (Netherlands)

    Donkervoort, M; Dekker, J; Stehmann-Saris, FC; Deelman, B. G.

    2001-01-01

    The objective of the present study was to determine in a controlled study the efficacy of strategy training in left hemisphere stroke patients with apraxia. A total of 113 left hemisphere stroke patients with apraxia were randomly assigned to two treatment groups; (1) strategy training integrated

  12. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes.

    NARCIS (Netherlands)

    Donkervoort, M.; Dekker, J.; Ende, E. van den; Stehmann-Saris, J.C.; Deelman, B.G.

    2000-01-01

    OBJECTIVE: To investigate the prevalence of apraxia in patients with a first left hemisphere stroke. SUBJECTS: Left hemisphere stroke patients staying at an inpatient care unit of a rehabilitation centre or nursing home and receiving occupational therapy (n = 600). MEASURES: A short questionnaire on

  13. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes

    NARCIS (Netherlands)

    Donkervoort, M; Dekker, J; van den Ende, E; Stehmann-Saris, J. C.; Deelman, B. G.

    Objective: To investigate the prevalence of apraxia in patients with a first left hemisphere stroke. Subjects. Left hemisphere stroke patients staying at an inpatient care unit of a rehabilitation centre or nursing home and receiving occupational therapy (n = 600). Measures: A short questionnaire on

  14. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions

    Directory of Open Access Journals (Sweden)

    Peter Goodin

    Full Text Available One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC data was extracted from four seed regions, i.e. primary (S1 and secondary (S2 somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2, and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group and contra-lesional S2 (both groups. We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other

  15. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions.

    Science.gov (United States)

    Goodin, Peter; Lamp, Gemma; Vidyasagar, Rishma; McArdle, David; Seitz, Rüdiger J; Carey, Leeanne M

    2018-01-01

    One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke

  16. Efficacy of strategy training in left hemisphere stroke patients with apraxia: a randomized clinical trial.

    NARCIS (Netherlands)

    Dekker, J.; Donkervoort, M.; Stehman, F.C.; Deelman, B.G.

    2001-01-01

    The objective of the present study was to determine in a controlled study the efficacy of strategy training in left hemisphere stroke patients with apraxia. 113 Left hemisphere assigned to two treatment groups: i) strategy training integrated into usual occupational therapy and ii) usual

  17. The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes.

    NARCIS (Netherlands)

    Donkervoort, M.; Dekker, J.; Deelman, B.

    2006-01-01

    OBJECTIVE: To study the course of apraxia and daily life functioning (ADL) in left hemisphere stroke patients with apraxia. DESIGN: Prospective cohort study. SETTING: Rehabilitation centres and nursing homes. SUBJECTS: One hundred and eight left hemisphere stroke patients with apraxia, hospitalized

  18. Organizational strategy influence on visual memory performance after stroke: cortical/subcortical and left/right hemisphere contrasts.

    Science.gov (United States)

    Lange, G; Waked, W; Kirshblum, S; DeLuca, J

    2000-01-01

    To examine how organizational strategy at encoding influences visual memory performance in stroke patients. Case control study. Postacute rehabilitation hospital. Stroke patients with right hemisphere damage (n = 20) versus left hemisphere damage (n = 15), and stroke patients with cortical damage (n = 11) versus subcortical damage (n = 19). Organizational strategy scores, recall performance on the Rey-Osterrieth Complex Figure (ROCF). Results demonstrated significantly greater organizational impairment and less accurate copy performance (i.e., encoding of visuospatial information on the ROCF) in the right compared to the left hemisphere group, and in the cortical relative to the subcortical group. Organizational strategy and copy accuracy scores were significantly related to each other. The absolute amount of immediate and delayed recall was significantly associated with poor organizational strategy scores. However, relative to the amount of visual information originally encoded, memory performances did not differ between groups. These findings suggest that visual memory impairments after stroke may be caused by a lack of organizational strategy affecting information encoding, rather than an impairment in memory storage or retrieval.

  19. The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes.

    OpenAIRE

    Donkervoort, M.; Dekker, J.; Deelman, B.

    2006-01-01

    OBJECTIVE: To study the course of apraxia and daily life functioning (ADL) in left hemisphere stroke patients with apraxia. DESIGN: Prospective cohort study. SETTING: Rehabilitation centres and nursing homes. SUBJECTS: One hundred and eight left hemisphere stroke patients with apraxia, hospitalized in rehabilitation centres and nursing homes. MEASURES: ADL-observations, Barthel ADL Index, Apraxia Test, Motricity Index. RESULTS: During the study period of 20 weeks, patients showed small improv...

  20. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke

    Directory of Open Access Journals (Sweden)

    Joseph C. Griffis

    2017-01-01

    Full Text Available Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  1. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p right hemisphere dominance in processing negative emotions.

  2. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval

    Science.gov (United States)

    Ries, Stephanie K.; Dronkers, Nina F.; Knight, Robert T.

    2015-01-01

    Language is considered to be one of the most lateralized human brain functions. Left hemisphere dominance for language has been consistently confirmed in clinical and experimental settings and constitutes one of the main axioms of neurology and neuroscience. However, functional neuroimaging studies are finding that the right hemisphere also plays a role in diverse language functions. Critically, the right hemisphere may also compensate for the loss or degradation of language functions following extensive stroke-induced damage to the left hemisphere. Here, we review studies that focus on our ability to choose words as we speak. Although fluidly performed in individuals with intact language, this process is routinely compromised in aphasic patients. We suggest that parceling word retrieval into its sub-processes—lexical activation and lexical selection—and examining which of these can be compensated for after left hemisphere stroke can advance the understanding of the lateralization of word retrieval in speech production. In particular, the domain-general nature of the brain regions associated with each process may be a helpful indicator of the right hemisphere's propensity for compensation. PMID:26766393

  3. The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes.

    Science.gov (United States)

    Donkervoort, Mireille; Dekker, Joost; Deelman, Betto

    2006-12-01

    To study the course of apraxia and daily life functioning (ADL) in left hemisphere stroke patients with apraxia. Prospective cohort study. Rehabilitation centres and nursing homes. One hundred and eight left hemisphere stroke patients with apraxia, hospitalized in rehabilitation centres and nursing homes. ADL-observations, Barthel ADL Index, Apraxia Test, Motricity Index. During the study period of 20 weeks, patients showed small improvements in apraxia (standardized mean differences of 0.19 and 0.33) and medium-sized improvements in ADL functioning (standardized mean differences from 0.37 to 0.61). About 88% of the patients were still apraxic at week 20. Less improvement in apraxia was observed in initially less severe apraxic patients. Less improvement in ADL functioning was found to be associated with more severe apraxia, a more independent initial ADL score, higher age, impaired motor functioning and longer time between stroke and first assessment. Apraxia in stroke patients is a persistent disorder, which has an adverse influence on ADL recovery.

  4. Left hemisphere regions are critical for language in the face of early left focal brain injury

    OpenAIRE

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left h...

  5. Left Hemisphere Regions Are Critical for Language in the Face of Early Left Focal Brain Injury

    Science.gov (United States)

    Beharelle, Anjali Raja; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we…

  6. Bilateral versus ipsilesional cortico-subcortical activity patterns in stroke show hemispheric dependence.

    Science.gov (United States)

    Vidal, Ana C; Banca, Paula; Pascoal, Augusto G; Cordeiro, Gustavo; Sargento-Freitas, João; Gouveia, Ana; Castelo-Branco, Miguel

    2018-01-01

    Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used a functional magnetic resonance imaging block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction (n = 20, with balanced left/right lesion sites). Results Analysis of 10 right hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right hemispheric stroke. Left hemispheric stroke was, in general, characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts is novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.

  7. Anosognosia for hemiparesis after left-sided stroke.

    Science.gov (United States)

    Baier, Bernhard; Vucurevic, Goran; Müller-Forell, Wibke; Glassl, Oliver; Geber, Christian; Dieterich, Marianne; Karnath, Hans-Otto

    2014-12-01

    In patients with left-sided lesions, anosognosia for hemiparesis (AHP) seems to be a rare phenomenon. It has been discussed whether this rareness might be due to an inevitable bias due to language dysfunction and whether the left hemisphere's role for our self-awareness of motor actions thus is underestimated. By applying functional magnetic resonance imaging (fMRI) we examined whether patients with AHP following a left hemisphere stroke show a regular, left-sided or a reversed, right-sided lateralization of language functions. Only the former observation would argue for an original role of the left hemisphere in self-awareness about limb function. In a consecutive series of 44 acute left-sided stroke patients, only one patient (=2%) was identified showing AHP. In this case, we could verify by using fMRI that lateralization of AHP and spatial neglect on the one hand and of language functions on the other hand were reversed. The present single case observation thus argues against an original role of the left hemisphere in self-awareness about limb function. We discuss the data in the context of previous observations in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Changes in regional cerebral blood flow in the right cortex homologous to left language areas are directly affected by left hemispheric damage in aphasic stroke patients: evaluation by Tc-ECD SPECT and novel analytic software.

    Science.gov (United States)

    Uruma, G; Kakuda, W; Abo, M

    2010-03-01

    The objective of this study was to clarify the influence of regional cerebral blood flow (rCBF) changes in language-relevant areas of the dominant hemisphere on rCBF in each region in the non-dominant hemisphere in post-stroke aphasic patients. The study subjects were 27 aphasic patients who suffered their first symptomatic stroke in the left hemisphere. In each subject, we measured rCBF by means of 99mTc-ethylcysteinate dimmer single photon emission computed tomography (SPECT). The SPECT images were analyzed by the statistical imaging analysis programs easy Z-score Imaging System (eZIS) and voxel-based stereotactic extraction estimation (vbSEE). Segmented into Brodmann Area (BA) levels, Regions of Interest (ROIs) were set in language-relevant areas bilaterally, and changes in the relative rCBF as average negative and positive Z-values were computed fully automatically. To assess the relationship between rCBF changes of each ROIs in the left and right hemispheres, the Spearman ranked correlation analysis and stepwise multiple regression analysis were applied. Globally, a negative and asymmetric influence of rCBF changes in the language-relevant areas of the dominant hemisphere on the right hemisphere was found. The rCBF decrease in left BA22 significantly influenced the rCBF increase in right BA39, BA40, BA44 and BA45. The results suggested that the chronic increase in rCBF in the right language-relevant areas is due at least in part to reduction in the trancallosal inhibitory activity of the language-dominant left hemisphere caused by the stroke lesion itself and that these relationships are not always symmetric.

  9. Heterogeneity in semantic priming effect with a lexical decision task in patients after left hemisphere stroke

    Directory of Open Access Journals (Sweden)

    Candice Steffen Holderbaum

    Full Text Available ABSTRACT Investigations on the semantic priming effect (SPE in patients after left hemisphere (LH lesions have shown disparities that may be explained by the variability in performance found among patients. The aim of the present study was to verify the existence of subgroups of patients after LH stroke by searching for dissociations between performance on the lexical decision task based on the semantic priming paradigm and performance on direct memory, semantic association and language tasks. All 17 patients with LH lesions after stroke (ten non-fluent aphasics and seven non aphasics were analyzed individually. Results indicated the presence of three groups of patients according to SPE: one exhibiting SPE at both stimulus onset asynchronies (SOAs, one with SPE only at long SOA, and another, larger group with no SPE.

  10. Right-hemispheric processing of non-linguistic word features: implications for mapping language recovery after stroke.

    Science.gov (United States)

    Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig

    2013-06-01

    Verbal stimuli often induce right-hemispheric activation in patients with aphasia after left-hemispheric stroke. This right-hemispheric activation is commonly attributed to functional reorganization within the language system. Yet previous evidence suggests that functional activation in right-hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made perceptual, semantic, or phonological decisions on the same set of auditorily and visually presented word stimuli. Perceptual decisions required judgements about stimulus-inherent changes in font size (visual modality) or fundamental frequency contour (auditory modality). The semantic judgement required subjects to decide whether a stimulus is natural or man-made; the phonologic decision required a decision on whether a stimulus contains two or three syllables. Compared to phonologic or semantic decision, nonlinguistic perceptual decisions resulted in a stronger right-hemispheric activation. Specifically, the right inferior frontal gyrus (IFG), an area previously suggested to support language recovery after left-hemispheric stroke, displayed modality-independent activation during perceptual processing of word stimuli. Our findings indicate that activation of the right hemisphere during language tasks may, in some instances, be driven by a "nonlinguistic perceptual processing" mode that focuses on nonlinguistic word features. This raises the possibility that stronger activation of right inferior frontal areas during language tasks in aphasic patients with left-hemispheric stroke may at least partially reflect increased attentional focus on nonlinguistic perceptual aspects of language. Copyright © 2012 Wiley Periodicals, Inc.

  11. Phonotactic awareness deficit following left-hemisphere stroke

    Directory of Open Access Journals (Sweden)

    Maryam Ghaleh

    2015-04-01

    Likert-type scale responses were z-transformed and coded accurate for positive z-values in condition 3 and negative z-values in condition 1 trials. Accuracy was analyzed using binomial mixed effects models and z-transformed scale responses were analyzed using linear mixed effects models. For both analyses, the fixed effects of stimulus, trial number, group (patient/control, education, age, response time, phonotactic regularity (1/3, and gender were examined along with all relevant interactions. Random effects for participant and stimuli as well as random slopes were also included. Model fitting was performed in a backward-stepwise iterative fashion, followed by forward fitting of maximal random effects structure. Models were evaluated by model fitness comparisons using Akaike Information Criterion and Bayesian Information Criterion. Accuracy analysis revealed that healthy participants were significantly more accurate than patients [β = 0.47, p<0.001] in Englishness rating. Scale response analysis revealed a significant effect of phonotactic regularity [β = 1.65, p<0.0001] indicating that participants were sensitive to phonotactic regularity differences among non-words. However, the significant interaction of group and phonotactic regularity [β = -0.5, p= 0.02] further demonstrated that, compared to healthy adults, patients were less able to recognize the phonotactic regularity differences between non-words. Results suggest that left-hemisphere lesions cause impaired phonotactic processing and that the left hemisphere might be necessary for phonotactic awareness. These preliminary findings will be followed up by further analyses investigating the interactions between phonotactic processing and participants’ scores on other linguistic/cognitive tasks as well as lesion-symptom mapping.

  12. Imaging network level language recovery after left PCA stroke.

    Science.gov (United States)

    Sebastian, Rajani; Long, Charltien; Purcell, Jeremy J; Faria, Andreia V; Lindquist, Martin; Jarso, Samson; Race, David; Davis, Cameron; Posner, Joseph; Wright, Amy; Hillis, Argye E

    2016-05-11

    The neural mechanisms that support aphasia recovery are not yet fully understood. Our goal was to evaluate longitudinal changes in naming recovery in participants with posterior cerebral artery (PCA) stroke using a case-by-case analysis. Using task based and resting state functional magnetic resonance imaging (fMRI) and detailed language testing, we longitudinally studied the recovery of the naming network in four participants with PCA stroke with naming deficits at the acute (0 week), sub acute (3-5 weeks), and chronic time point (5-7 months) post stroke. Behavioral and imaging analyses (task related and resting state functional connectivity) were carried out to elucidate longitudinal changes in naming recovery. Behavioral and imaging analysis revealed that an improvement in naming accuracy from the acute to the chronic stage was reflected by increased connectivity within and between left and right hemisphere "language" regions. One participant who had persistent moderate naming deficit showed weak and decreasing connectivity longitudinally within and between left and right hemisphere language regions. These findings emphasize a network view of aphasia recovery, and show that the degree of inter- and intra- hemispheric balance between the language-specific regions is necessary for optimal recovery of naming, at least in participants with PCA stroke.

  13. Hemispheric distribution of middle cerebral artery ischemic strokes in patients admitted to military hospital rawalpindi

    International Nuclear Information System (INIS)

    Tariq, M.; Ishtiaq, S.; Zulfiqar, S.O.

    2016-01-01

    Objective: To determine the difference in the frequency of middle cerebral artery (MCA) ischemic strokes between left and right cerebral hemispheres in the adult patients admitted to the Military Hospital (MH) Rawalpindi. Study Design: A descriptive study. Place and Duration of Study: MH Rawalpindi from 01 Dec 2013 to 30 Mar 2014. Patients and Methods: Seventy eight adult patients admitted to MH Rawalpindi with neurologic deficits consistent with MCA strokes and having no evidence of intracerebral haemorrhage on Computed Tomographic (CT) scan of brain. Descriptive Statistics were calculated using SPSS version 17. Results: A total of 78 patients met the inclusion criteria of the study; 35 (45 percent) patients had right MCA stroke while 43 (55 percent) had left MCA stroke. Conclusion: Left MCA ischemic strokes are more common than right MCA ischemic strokes. (author)

  14. Multi-tasking uncovers right spatial neglect and extinction in chronic left-hemisphere stroke patients.

    Science.gov (United States)

    Blini, Elvio; Romeo, Zaira; Spironelli, Chiara; Pitteri, Marco; Meneghello, Francesca; Bonato, Mario; Zorzi, Marco

    2016-11-01

    Unilateral Spatial Neglect, the most dramatic manifestation of contralesional space unawareness, is a highly heterogeneous syndrome. The presence of neglect is related to core spatially lateralized deficits, but its severity is also modulated by several domain-general factors (such as alertness or sustained attention) and by task demands. We previously showed that a computer-based dual-task paradigm exploiting both lateralized and non-lateralized factors (i.e., attentional load/multitasking) better captures this complex scenario and exacerbates deficits for the contralesional space after right hemisphere damage. Here we asked whether multitasking would reveal contralesional spatial disorders in chronic left-hemisphere damaged (LHD) stroke patients, a population in which impaired spatial processing is thought to be uncommon. Ten consecutive LHD patients with no signs of right-sided neglect at standard neuropsychological testing performed a computerized spatial monitoring task with and without concurrent secondary tasks (i.e., multitasking). Severe contralesional (right) space unawareness emerged in most patients under attentional load in both the visual and auditory modalities. Multitasking affected the detection of contralesional stimuli both when presented concurrently with an ipsilesional one (i.e., extinction for bilateral targets) and when presented in isolation (i.e., left neglect for right-sided targets). No spatial bias emerged in a control group of healthy elderly participants, who performed at ceiling, as well as in a second control group composed of patients with Mild Cognitive Impairment. We conclude that the pathological spatial asymmetry in LHD patients cannot be attributed to a global reduction of cognitive resources but it is the consequence of unilateral brain damage. Clinical and theoretical implications of the load-dependent lack of awareness for contralesional hemispace following LHD are discussed. Copyright © 2016. Published by Elsevier Ltd.

  15. Hemispheric association and dissociation of voice and speech information processing in stroke.

    Science.gov (United States)

    Jones, Anna B; Farrall, Andrew J; Belin, Pascal; Pernet, Cyril R

    2015-10-01

    As we listen to someone speaking, we extract both linguistic and non-linguistic information. Knowing how these two sets of information are processed in the brain is fundamental for the general understanding of social communication, speech recognition and therapy of language impairments. We investigated the pattern of performances in phoneme versus gender categorization in left and right hemisphere stroke patients, and found an anatomo-functional dissociation in the right frontal cortex, establishing a new syndrome in voice discrimination abilities. In addition, phoneme and gender performances were most often associated than dissociated in the left hemisphere patients, suggesting a common neural underpinnings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Hospital acquired pneumonia is linked to right hemispheric peri-insular stroke.

    Directory of Open Access Journals (Sweden)

    André Kemmling

    Full Text Available Hospital acquired pneumonia (HAP is a major complication of stroke. We sought to determine associations between infarction of specific brain regions and HAP.215 consecutive acute stroke patients with HAP (2003-2009 were carefully matched with 215 non-pneumonia controls by gender, then NIHSS, then age. Admission imaging and binary masks of infarction were registered to MNI-152 space. Regional atlas and voxel-based log-odds were calculated to assess the relationship between infarct location and the likelihood of HAP. An independently validated penalized conditional logistic regression model was used to identify HAP associated imaging regions.The HAP and control patients were well matched by gender (100%, age (95% within 5-years, NIHSS (98% within 1-point, infarct size, dysphagia, and six other clinical variables. Right hemispheric infarcts were more frequent in patients with HAP versus controls (43.3% vs. 34.0%, p = 0.054, whereas left hemispheric infarcts were more frequent in controls (56.7% vs. 44.7%, p = 0.012; there was no significant difference between groups in the rate of brainstem strokes (p = 1.0. Of the 10 most infarcted regions, only right insular cortex volume was different in HAP versus controls (20 vs. 12 ml, p = 0.02. In univariate analyses, the highest log-odds regions for pneumonia were right hemisphere, cerebellum, and brainstem. The best performing multivariate model selected 7 brain regions of infarction and 2 infarct volume-based variables independently associated with HAP.HAP is associated with right hemispheric peri-insular stroke. These associations may be related to autonomic modulation of immune mechanisms, supporting recent hypotheses of stroke mediated immune suppression.

  17. Stroke Laterality Bias in the Management of Acute Ischemic Stroke.

    Science.gov (United States)

    McCluskey, Gavin; Wade, Carrie; McKee, Jacqueline; McCarron, Peter; McVerry, Ferghal; McCarron, Mark O

    2016-11-01

    Little is known of the impact of stroke laterality on the management process and outcome of patients with acute ischemic stroke (AIS). Consecutive patients admitted to a general hospital over 1 year with supratentorial AIS were eligible for inclusion in the study. Baseline characteristics and risk factors, delays in hospital admission, imaging, intrahospital transfer to an acute stoke unit, stroke severity and classification, length of hospital admission, as well as 10-year mortality were measured and compared among right and left hemisphere AIS patients. There were 141 patients (77 men, 64 women; median age 73 [interquartile range 63-79] years), There were 71 patients with left hemisphere AIS and 70 with right hemisphere AIS. Delays to hospital admission from stroke onset to neuroimaging were similar among right and left hemisphere AIS patients. Delay in transfer to an acute stroke unit (ASU) following hospital admission was on average 14 hours more for right hemisphere compared to left hemisphere AIS patients (P = .01). Laterality was not associated with any difference in 10-year survival. Patients with mild and nondominant AIS merit particular attention to minimize their intrahospital transfer time to an ASU. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. Predictors of functional outcome vary by the hemisphere of involvement in major ischemic stroke treated with intra-arterial therapy: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Pryor Johnny C

    2010-04-01

    Full Text Available Abstract Background Conflicting data exists regarding the effect of hemispheric lateralization on acute ischemic stroke outcome. Some of this variability may be related to heterogeneous study populations, particularly with respect to the level of arterial occlusion. Furthermore, little is known about the relationship between stroke lateralization and predictors of outcome. The purpose of this study was to characterize the impact of stroke lateralization on both functional outcome and its predictors in a well-defined population of anterior circulation proximal artery occlusions treated with IAT. Methods Thirty-five consecutive left- and 35 consecutive right-sided stroke patients with intracranial ICA and/or MCA occlusions who underwent IAT were retrospectively analyzed. Ischemic change on pre-treatment imaging was quantified. Reperfusion success was graded using the Mori scale. Good outcome at three months was defined as an mRS ≤ 2. Left- and right-sided strokes were compared for outcome and its predictors. Result Of 70 patients with median NIHSS score of 18 (IQR, 14-21, 19 (27.1% had a good outcome. There were 21 terminal ICA and 49 MCA occlusions. There was no difference in the rate of good outcomes between left- (n = 9 and right-sided (n = 10 strokes (p = 0.99. There were no significant differences in occlusion level, age, ischemic change on initial imaging and degree of reperfusion between left- and right-sided strokes. Left-sided strokes had higher baseline NIHSS scores (p = 0.02 and lower admission SBP (p = 0.009. Independent predictors of outcome for left-sided strokes were NIHSS (p = 0.0002 and reperfusion (p = 0.006, and for right-sided strokes were age (p = 0.002 and reperfusion (p = 0.003. In univariate analysis, pre-treatment ischemic change on NCCT was associated with outcome only for left-sided strokes (p = 0.05. Conclusions In anterior circulation proximal artery occlusions treated with IAT, hemispheric lateralization influences

  19. Homotopic Language Reorganization in the Right Hemisphere after Early Left Hemisphere Injury

    Science.gov (United States)

    Tivarus, Madalina E.; Starling, Sarah J.; Newport, Elissa L.; Langfitt, John T.

    2012-01-01

    To determine the areas involved in reorganization of language to the right hemisphere after early left hemisphere injury, we compared fMRI activation patterns during four production and comprehension tasks in post-surgical epilepsy patients with either left (LH) or right hemisphere (RH) speech dominance (determined by Wada testing) and healthy…

  20. The significance of clumsy gestures in apraxia following a left hemisphere stroke.

    Science.gov (United States)

    Kangas, Maria; Tate, Robyn L

    2006-02-01

    Individuals who sustain a cerebrovascular accident (CVA) in the dominant (typically left) hemisphere, are at increased risk of developing motor skill deficits due to motor-sensory impairments, as well as cognitive impairments (e.g., apraxia). Clumsiness is a central component affecting motor skills in individuals with a left hemisphere CVA (LCVA). The term "clumsiness" however, has not been adequately operationalised in the apraxia literature in clinical terms, thereby making diagnosis difficult and its contribution to apraxic disorders uncertain. Accordingly, in this study "clumsiness" was explicitly defined by establishing a set of four criteria. The non-dominant (left) hand movements of three groups of participants were examined: 10 individuals with limb-apraxia (APX); 8 individuals without limb apraxia who had sustained a LCVA (NAPX); and 19 healthy individuals without a history of brain impairment (NBD). Performance was examined on four sets of motor tasks, including a conventional praxis test, basic perceptual-motor co-ordination and fine movement tasks, and a naturalistic actions test. A striking finding that emerged was that clumsy errors occurred frequently in all groups, including the NBD group, particularly on the praxis and fine motor tasks. In terms of quantity of clumsy errors emitted, the APX group made significantly more clumsy gestures across all four tasks in comparison to the NBD group. No differences emerged between the two clinical groups, however, in terms of total clumsy gestures emitted on the naturalistic action tasks, or the type of clumsy errors emitted on the fine motor tasks. Thus, frequency and types of clumsy gestures were partly determined by task demands. These results highlight the need to consider the contribution of clumsy gestures in limb functioning following hemispheric brain damage. In broad terms, these findings emphasise the importance of adopting more detailed analyses of movement errors in apraxia and assessments of

  1. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  2. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    Science.gov (United States)

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  3. Stroke

    Science.gov (United States)

    ... doctor Preventing falls Stroke - discharge Swallowing problems Images Brain Carotid stenosis, x-ray of the left artery Carotid stenosis, x-ray of the right artery Stroke Brainstem function Cerebellum - function Circle of Willis Left cerebral hemisphere - ...

  4. Enhanced activation of the left hemisphere promotes normative decision making.

    Science.gov (United States)

    Corser, Ryan; Jasper, John D

    2014-01-01

    Previous studies have reported that enhanced activation of the left cerebral hemisphere reduces risky-choice, attribute, and goal-framing effects relative to enhanced activation of the right cerebral hemisphere. The present study sought to extend these findings and show that enhanced activation of the left hemisphere also reduces violations of other normative principles, besides the invariance principle. Participants completed ratio bias (Experiment 1, N = 296) and base rate neglect problems (Experiment 2, N = 145) under normal (control) viewing or with the right or left hemisphere primarily activated by imposing a unidirectional gaze. In Experiment 1 we found that enhanced left hemispheric activation reduced the ratio bias relative to normal viewing and a group experiencing enhanced right hemispheric activation. In Experiment 2 enhanced left hemispheric activation resulted in using base rates more than normal viewing, but not significantly more than enhanced right hemispheric activation. Results suggest that hemispheric asymmetries can affect higher-order cognitive processes, such as decision-making biases. Possible theoretical accounts are discussed as well as implications for dual-process theories.

  5. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  6. The effects of left and right monocular viewing on hemispheric activation.

    Science.gov (United States)

    Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M

    2018-03-01

    Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.

  7. The Effectiveness of 1 Hz rTMS Over the Primary Motor Area of the Unaffected Hemisphere to Improve Hand Function After Stroke Depends on Hemispheric Dominance.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Theilig, Steven; Wiederer, Ralf; Nowak, Dennis Alexander

    2015-01-01

    Inhibition of motor cortex excitability of the contralesional hemisphere may improve dexterity of the affected hand after stroke. 40 patients (17 dominant hemispheric stroke, 23 non-dominant hemispheric stroke) with a mild to moderate upper limb motor impairment were enrolled in a double-blind, randomized, placebo-controlled trial with two parallel-groups. Both groups received 15 daily sessions of motor training preceded by either 1 Hz rTMS or sham rTMS. Behavioral and neurophysiological evaluations were performed at baseline, after the first week and after the third week of treatment, and after a 6 months follow-up. In both groups motor function of the affected hand improved significantly. Patients with stroke of the non-dominant hemisphere made a similar improvement, regardless of whether the motor training was preceded by sham or 1 Hz rTMS. Patients with stroke of the dominant hemisphere had a less favorable improvement than those with stroke of the non-dominant hemisphere after motor training preceded by sham rTMS. However, when 1 Hz rTMS preceded the motor training, patients with stroke of the dominant hemisphere made a similar improvement as those with stroke of the non-dominant hemisphere. Motor recovery of the affected upper limb after stroke is determined by dominance of the affected hemisphere. Stroke of the dominant hemisphere is associated with per se poorer improvement of the affected hand. 1 Hz rTMS over the contralesional M1 significantly improves dexterity of the affected hand in patients with stroke of the dominant hemisphere, but not in those with stroke of the non-dominant hemisphere. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Behavioral evidence for left-hemisphere specialization of motor planning

    NARCIS (Netherlands)

    Janssen, L.; Meulenbroek, R.G.; Steenbergen, B.

    2011-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However,

  9. Right hemispheric reversible cerebral vasoconstriction syndrome in a patient with left hemispheric partial seizures.

    Science.gov (United States)

    Perez, Gina S; McCaslin, Justin; Shamim, Sadat

    2017-04-01

    We report a right-handed 19-year-old girl who developed reversible cerebral vasoconstriction syndrome (RCVS) lateralized to the right hemisphere with simultaneous new-onset left hemispheric seizures. RCVS, typically more diffuse, was lateralized to one of the cerebral hemispheres.

  10. Theories of inter-hemispheric interactions in aphasia: the role of tDCS in rehabilitation of post-stroke aphasia

    Directory of Open Access Journals (Sweden)

    Roy H Hamilton

    2014-04-01

    Full Text Available Mounting data from behavioral and neuroimaging studies have shown that the process of recovery from aphasia is largely driven by the reorganization of brain networks related to language. Evidence implicates a variety of potential mechanisms in this reorganization, some of which involve substantive changes in brain functional activity within and between cerebral hemispheres. These changes include intrahemispheric recruitment of perilesional left-hemisphere regions and transcallosal interhemispheric interactions between lesioned left-hemisphere language areas and homologous regions in the right hemisphere. With respect to the role of the right hemisphere, it is debated whether interhemispheric interactions are beneficial or deleterious to recovering language networks. Recent years have also seen the emergence of noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS as potential novel treatments for post-stroke aphasia. Because these techniques are predicated on either focal excitation or inhibition of brain areas, characterization of the functional roles of the left and right hemispheres and transcallosal interactions in aphasia recovery is of central importance to the development and refinement of stimulation-based therapies. However, most treatment studies involving noninvasive brain stimulation in aphasia have tacitly accepted the interhemispheric inhibition model, in which right hemisphere activity interferes with language recovery that is mediated by left hemisphere perisylvian regions. Based on this account, many studies in aphasia involving TMS and tDCS have adopted one of two approaches consistent with the model: left hemisphere excitation or right hemisphere inhibition. In this presentation, we will review both clinical and cognitive neuroscience evidence that elucidates different hemispheric mechanisms that influence recovery from aphasia after stroke

  11. The influence of naturalistic, directionally non-specific motion on the spatial deployment of visual attention in right-hemispheric stroke.

    Science.gov (United States)

    Cazzoli, Dario; Hopfner, Simone; Preisig, Basil; Zito, Giuseppe; Vanbellingen, Tim; Jäger, Michael; Nef, Tobias; Mosimann, Urs; Bohlhalter, Stephan; Müri, René M; Nyffeler, Thomas

    2016-11-01

    An impairment of the spatial deployment of visual attention during exploration of static (i.e., motionless) stimuli is a common finding after an acute, right-hemispheric stroke. However, less is known about how these deficits: (a) are modulated through naturalistic motion (i.e., without directional, specific spatial features); and, (b) evolve in the subacute/chronic post-stroke phase. In the present study, we investigated free visual exploration in three patient groups with subacute/chronic right-hemispheric stroke and in healthy subjects. The first group included patients with left visual neglect and a left visual field defect (VFD), the second patients with a left VFD but no neglect, and the third patients without neglect or VFD. Eye movements were measured in all participants while they freely explored a traffic scene without (static condition) and with (dynamic condition) naturalistic motion, i.e., cars moving from the right or left. In the static condition, all patient groups showed similar deployment of visual exploration (i.e., as measured by the cumulative fixation duration) as compared to healthy subjects, suggesting that recovery processes took place, with normal spatial allocation of attention. However, the more demanding dynamic condition with moving cars elicited different re-distribution patterns of visual attention, quite similar to those typically observed in acute stroke. Neglect patients with VFD showed a significant decrease of visual exploration in the contralesional space, whereas patients with VFD but no neglect showed a significant increase of visual exploration in the contralesional space. No differences, as compared to healthy subjects, were found in patients without neglect or VFD. These results suggest that naturalistic motion, without directional, specific spatial features, may critically influence the spatial distribution of visual attention in subacute/chronic stroke patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.

    Science.gov (United States)

    Vallone, Fabio; Lai, Stefano; Spalletti, Cristina; Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo

    2016-01-01

    Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating dominance

  13. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex.

    Directory of Open Access Journals (Sweden)

    Fabio Vallone

    Full Text Available Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs may "take over" control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA, generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral.Local field potentials (LFPs were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis.Spectral analysis demonstrated an early decrease (day 9 in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23, inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance.These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional coupling and a fluctuating

  14. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    Science.gov (United States)

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  15. Caffeine improves left hemisphere processing of positive words.

    Science.gov (United States)

    Kuchinke, Lars; Lux, Vanessa

    2012-01-01

    A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition.

  16. Caffeine improves left hemisphere processing of positive words.

    Directory of Open Access Journals (Sweden)

    Lars Kuchinke

    Full Text Available A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition.

  17. Functional significance of ipsilesional motor deficits after unilateral stroke.

    Science.gov (United States)

    Chestnut, Caitilin; Haaland, Kathleen Y

    2008-01-01

    To determine whether ipsilesional motor skills, which have been related to independent functioning, are present chronically after unilateral stroke and are more common in people with apraxia than in those without apraxia. Observational cohort comparing the performance of an able-bodied control group, stroke patients with left- or right-hemisphere damage matched for lesion volume, and left-hemisphere stroke patients with and without ideomotor limb apraxia. Primary care Veterans Affairs and private medical center. Volunteer right-handed sample; stroke patients with left- or right-hemisphere damage about 4 years poststroke; a control group of demographically matched, able-bodied adults. Not applicable. Total time to perform the (1) Williams doors test and the (2) timed manual performance test (TMPT), which includes parts of the Jebsen-Taylor Hand Function Test. Ipsilesional motor deficits were present after left- or right-hemisphere stroke when using both measures, but deficits were consistently more common in patients with limb apraxia only for the TMPT. These findings add to a growing literature that suggests that ipsilesional motor deficits may have a functional impact in unilateral stroke patients, especially in patients with ideomotor limb apraxia.

  18. THE IMPACT OF LEFT HEMISPHERE STROKE ON FORCE CONTROL WITH FAMILIAR AND NOVEL OBJECTS: NEUROANATOMIC SUBSTRATES AND RELATIONSHIP TO APRAXIA

    Science.gov (United States)

    Dawson, Amanda M.; Buxbaum, Laurel J.; Duff, Susan V.

    2010-01-01

    Fingertip force scaling for lifting objects frequently occurs in anticipation of finger contact. An ongoing question concerns the types of memories that are used to inform predictive control. Object-specific information such as weight may be stored and retrieved when previously encountered objects are lifted again. Alternatively, visual size and shape cues may provide estimates of object density each time objects are encountered. We reasoned that differences in performance with familiar versus novel objects would provide support for the former possibility. Anticipatory force production with both familiar and novel objects was assessed in 6 left hemisphere stroke patients, 2 of whom exhibited deficient actions with familiar objects (ideomotor apraxia; IMA), along with 5 control subjects. In contrast to healthy controls and stroke participants without IMA, participants with IMA displayed poor anticipatory scaling with familiar objects. However, like the other groups, IMA participants learned to differentiate fingertip forces with repeated lifts of both familiar and novel objects. Finally, there was a significant correlation between damage to the inferior parietal and superior and middle temporal lobes, and impaired anticipatory control for familiar objects. These data support the hypotheses that anticipatory control during lifts of familiar objects in IMA patients are based on object-specific memories, and that the ventro-dorsal stream is involved in the long-term storage of internal models used for anticipatory scaling during object manipulation. PMID:19945445

  19. Theory of Mind and Executive Functioning Following Stroke.

    Science.gov (United States)

    Hamilton, Jackie; Radlak, Bogna; Morris, Paul G; Phillips, Louise H

    2017-08-01

    Cognitive deficits following stroke are well documented, but less is known about problems with social skills such as understanding others' thoughts and feelings. This study investigated the effect of stroke on a visual-affective measure of social understanding: the Reading the Mind in the Eyes test (RMET). The aims were to investigate whether right hemisphere stroke was particularly detrimental to this aspect of Theory of Mind (ToM), and investigate the relationship between ToM ability and executive function following stroke. Performance of stroke patients (right hemisphere stroke, n = 15; left hemisphere stroke, n = 15) was compared to that of controls (n = 40) matched for age, years of education, and IQ on tasks measuring ToM and executive functioning. Right hemisphere stroke was associated with impaired ToM ability, but left hemisphere stroke was not. There was no effect of stroke on a matched non-ToM control task. High correlations were found between performance on the RMET and some measures of executive functioning in participants with right hemisphere stroke only. Further analyses suggested that deficits in executive functioning could not statistically explain all of the difficulties shown by stroke participants on the RMET. A reduction in the ability to attribute mental states to others following right hemisphere stroke may adversely affect psychosocial functioning, disrupt interpersonal relationships, and lead to reduced quality of life. The clinical importance of these findings, implications for clinical practice and future research are discussed. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    Science.gov (United States)

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  1. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    OpenAIRE

    Tyler, Lorraine K.; Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Stamatakis, Emmanuel A.

    2010-01-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to b...

  2. The 'Hub Disruption Index', a reliable index sensitive to the brain networks reorganization. A study of the contralesional hemisphere in stroke

    Directory of Open Access Journals (Sweden)

    Maite Termenon

    2016-08-01

    Full Text Available Stroke, resulting in focal structural damage, induces changes in brain function at both local and global levels. Following stroke, cerebral networks present structural and functional reorganization to compensate for the dysfunctioning provoked by the lesion itself and its remote effects. As some recent studies underlined the role of the contralesional hemisphere during recovery, we studied its role %of the contralesional hemispherein the reorganization of brain function of stroke patients using resting state fMRI and graph theory. We explored this reorganization using the 'hub disruption index' (kappa, a global index sensitive to the reorganization of nodes within the graph. For a given graph metric, kappa of a subject corresponds to the slope of the linear regression model between the mean local network measures of a reference group, and the difference between that reference and the subject under study. In order to translate the use of kappa in clinical context, a prerequisite to achieve meaningful results is to investigate the reliability of this index. In a preliminary part, we studied the reliability of kappa by computing the intraclass correlation coefficient in a cohort of 100 subjects from the Human Connectome Project. Then, we measured intra-hemispheric kappa index in the contralesional hemisphere of 20 subacute stroke patients compared to 20 age-matched healthy controls. Finally, due to the small number of patients, we tested the robustness of our results repeating the experiment 1000 times by bootstrapping on the Human Connectome Project database. Statistical analysis showed a significant reduction of kappa for the contralesional hemisphere of right stroke patients compared to healthy controls. Similar results were observed for the right contralesional hemisphere of left stroke patients. We showed that kappa, is more reliable than global graph metrics and more sensitive to detect differences between groups of patients as compared to

  3. Hemispheric lateralization in an analysis of speech sounds. Left hemisphere dominance replicated in Japanese subjects.

    Science.gov (United States)

    Koyama, S; Gunji, A; Yabe, H; Oiwa, S; Akahane-Yamada, R; Kakigi, R; Näätänen, R

    2000-09-01

    Evoked magnetic responses to speech sounds [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M. Vainio, P. Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.] were recorded from 13 Japanese subjects (right-handed). Infrequently presented vowels ([o]) among repetitive vowels ([e]) elicited the magnetic counterpart of mismatch negativity, MMNm (Bilateral, nine subjects; Left hemisphere alone, three subjects; Right hemisphere alone, one subject). The estimated source of the MMNm was stronger in the left than in the right auditory cortex. The sources were located posteriorly in the left than in the right auditory cortex. These findings are consistent with the results obtained in Finnish [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M.Vainio, P.Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.][T. Rinne, K. Alho, P. Alku, M. Holi, J. Sinkkonen, J. Virtanen, O. Bertrand and R. Näätänen, Analysis of speech sounds is left-hemisphere predominant at 100-150 ms after sound onset. Neuroreport, 10 (1999) 1113-1117.] and English [K. Alho, J.F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko and R.J. Ilmoniemi, Hemispheric lateralization in preattentive processing of speech sounds. Neurosci. Lett., 258 (1998) 9-12.] subjects. Instead of the P1m observed in Finnish [M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi and R. Näätänen, Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. Neuroimage, 9 (1999) 330-336.] and English [K. Alho, J. F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko

  4. Transcranial brain stimulation (TMS and tDCS for post-stroke aphasia rehabilitation: Controversies

    Directory of Open Access Journals (Sweden)

    Lucia Iracema Zanotto de Mendonça

    Full Text Available Transcranial brain stimulation (TS techniques have been investigated for use in the rehabilitation of post-stroke aphasia. According to previous reports, functional recovery by the left hemisphere improves recovery from aphasia, when compared with right hemisphere participation. TS has been applied to stimulate the activity of the left hemisphere or to inhibit homotopic areas in the right hemisphere. Various factors can interfere with the brain's response to TS, including the size and location of the lesion, the time elapsed since the causal event, and individual differences in the hemispheric language dominance pattern. The following questions are discussed in the present article: [a] Is inhibition of the right hemisphere truly beneficial?; [b] Is the transference of the language network to the left hemisphere truly desirable in all patients?; [c] Is the use of TS during the post-stroke subacute phase truly appropriate? Different patterns of neuroplasticity must occur in post-stroke aphasia.

  5. Effects of Direction and Index of Difficulty on Aiming Movements after Stroke

    Directory of Open Access Journals (Sweden)

    Paola Ribeiro Coqueiro

    2014-01-01

    Full Text Available Background. Brain hemispheres play different roles in the control of aiming movements that are impaired after unilateral stroke. It is not clear whether those roles are influenced by the direction and the difficulty of the task. Objective. To evaluate the influence of direction and index of difficulty (ID of the task on performance of ipsilesional aiming movements after unilateral stroke. Methods. Ten individuals with right hemisphere stroke, ten with left hemisphere stroke, and ten age- and gender-matched controls performed the aiming movements on a digitizing tablet as fast as possible. Stroke individuals used their ipsilesional arm. The direction (ipsilateral or contralateral, size (0.8 or 1.6 cm, and distance (9 or 18 cm of the targets, presented on a monitor, were manipulated and determined to be of different ID (3.5, 4.5, and 5.5. Results. Individuals with right hemisphere lesion were more sensitive to ID of the task, affecting planning and final position accuracy. Left hemisphere lesion generated slower and less smooth movements and was more influenced by target distance. Contralateral movements and higher ID increased planning demands and hindered movement execution. Conclusion. Right and left hemisphere damages are differentially influenced by task constraints which suggest their complementary roles in the control of aiming movements.

  6. Right-hemispheric processing of non-linguistic word features

    DEFF Research Database (Denmark)

    Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig

    2013-01-01

    -hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made...... perceptual, semantic, or phonological decisions on the same set of auditorily and visually presented word stimuli. Perceptual decisions required judgements about stimulus-inherent changes in font size (visual modality) or fundamental frequency contour (auditory modality). The semantic judgement required......, the right inferior frontal gyrus (IFG), an area previously suggested to support language recovery after left-hemispheric stroke, displayed modality-independent activation during perceptual processing of word stimuli. Our findings indicate that activation of the right hemisphere during language tasks may...

  7. The Role of Left Hemispheric Structures for Emotional Processing as a Monitor of Bodily Reaction and Felt Chill - a Case-Control Functional Imaging Study.

    Science.gov (United States)

    Grunkina, Viktoria; Holtz, Katharina; Klepzig, Kai; Neubert, Jörg; Horn, Ulrike; Domin, Martin; Hamm, Alfons O; Lotze, Martin

    2016-01-01

    Background: The particular function of the left anterior human insula on emotional arousal has been illustrated with several case studies. Only after left hemispheric insula lesions, patients lose their pleasure in habits such as listening to joyful music. In functional magnetic resonance imaging studies (fMRI) activation in the left anterior insula has been associated with both processing of emotional valence and arousal. Tight interactions with different areas of the prefrontal cortex are involved in bodily response monitoring and cognitive appraisal of a given stimulus. Therefore, a large left hemispheric lesion including the left insula should impair the bodily response of chill experience (objective chill response) but leave the cognitive aspects of chill processing (subjective chill response) unaffected. Methods: We investigated a patient (MC) with a complete left hemispheric media cerebral artery stroke, testing fMRI representation of pleasant (music) and unpleasant (harsh sounds) chill response. Results: Although chill response to both pleasant and unpleasant rated sounds was confirmed verbally at passages also rated as chilling by healthy participants, skin conductance response was almost absent in MC. For a healthy control (HC) objective and subjective chill response was positively associated. Bilateral prefrontal fMRI-response to chill stimuli was sustained in MC whereas insula activation restricted to the right hemisphere. Diffusion imaging together with lesion maps revealed that left lateral tracts were completely damaged but medial prefrontal structures were intact. Conclusion: With this case study we demonstrate how bodily response and cognitive appraisal are differentially participating in the internal monitor of chill response.

  8. Changes of functional connectivity in the left frontoparietal network following aphasic stroke

    Directory of Open Access Journals (Sweden)

    Dan eZhu

    2014-05-01

    Full Text Available Language is an essential higher cognitive function supported by large-scale brain networks. In this study, we investigated functional connectivity changes in the left frontoparietal network (LFPN, a language-cognition related brain network in aphasic patients. We enrolled thirteen aphasic patients who had undergone a stroke in the left hemisphere and age-, gender-, educational level-matched controls and analyzed the data by integrating independent component analysis (ICA with a network connectivity analysis method. Resting state functional magnetic resonance imaging (fMRI and clinical evaluation of language function were assessed at two stages: one and two months after stroke onset. We found reduced functional connectivity between the LFPN and the right middle frontal cortex, medial frontal cortex and right inferior frontal cortex in aphasic patients as compared to controls. Correlation analysis showed that stronger functional connectivity between the LFPN and the right middle frontal cortex and medial frontal cortex coincided with more preserved language comprehension ability after stroke. Network connectivity analysis showed reduced LFPN connectivity as indicated by the mean network connectivity index of key regions in the LFPN of aphasic patients. The decreased LFPN connectivity in stroke patients was significantly associated with the impairment of language function in their comprehension ability. We also found significant association between recovery of comprehension ability and the mean changes in intrinsic LFPN connectivity. Our findings suggest that brain lesions may influence language comprehension by altering functional connectivity between regions and that the patterns of abnormal functional connectivity may contribute to the recovery of language deficits.

  9. Urinary Retention Associated with Stroke.

    Science.gov (United States)

    Umemura, Takeru; Ohta, Hirotsugu; Yokota, Akira; Yarimizu, Shiroh; Nishizawa, Shigeru

    Patients often exhibit urinary retention following a stroke. Various neuropathological and animal studies have implicated the medulla oblongata, pons, limbic system, frontal lobe as areas responsible for micturition control, although the exact area responsible for urinary retention after stroke is not clear. The purpose of this study was to identify the stroke area responsible for urinary retention by localizing the areas where strokes occur. We assessed 110 patients with cerebral infarction and 27 patients with cerebral hemorrhage (78 men, 59 women; mean age, 73.0 years) who had been admitted to our hospital between October, 2012 and September, 2013. We used computed tomography (CT) and magnetic resonance imaging (MRI) to investigate the stroke location, and evaluated whether post-stroke urinary retention occurred. Twelve (8.8%) of the 137 patients (7 men, 5 women; mean age, 78.8 years) exhibited urinary retention after a stroke. Stroke occurred in the right/left dominant hemisphere in 7 patients; nondominant hemisphere in 1; cerebellum in 3; and brainstem in 1. Strokes in the dominant hemisphere were associated with urinary retention (P = 0.0314), particularly in the area of the insula (P < 0.01). We concluded that stroke affecting the insula of the dominant hemisphere tends to cause urinary retention.

  10. Reorganization of the Cerebro-Cerebellar Network of Language Production in Patients with Congenital Left-Hemispheric Brain Lesions

    Science.gov (United States)

    Lidzba, K.; Wilke, M.; Staudt, M.; Krageloh-Mann, I.; Grodd, W.

    2008-01-01

    Patients with congenital lesions of the left cerebral hemisphere may reorganize language functions into the right hemisphere. In these patients, language production is represented homotopically to the left-hemispheric language areas. We studied cerebellar activation in five patients with congenital lesions of the left cerebral hemisphere to assess…

  11. Right-ear precedence and vocal emotion contagion: The role of the left hemisphere.

    Science.gov (United States)

    Schepman, Astrid; Rodway, Paul; Cornmell, Louise; Smith, Bethany; de Sa, Sabrina Lauren; Borwick, Ciara; Belfon-Thompson, Elisha

    2018-05-01

    Much evidence suggests that the processing of emotions is lateralized to the right hemisphere of the brain. However, under some circumstances the left hemisphere might play a role, particularly for positive emotions and emotional experiences. We explored whether emotion contagion was right-lateralized, lateralized valence-specifically, or potentially left-lateralized. In two experiments, right-handed female listeners rated to what extent emotionally intoned pseudo-sentences evoked target emotions in them. These sound stimuli had a 7 ms ear lead in the left or right channel, leading to stronger stimulation of the contralateral hemisphere. In both experiments, the results revealed that right ear lead stimuli received subtly but significantly higher evocation scores, suggesting a left hemisphere dominance for emotion contagion. A control experiment using an emotion identification task showed no effect of ear lead. The findings are discussed in relation to prior findings that have linked the processing of emotional prosody to left-hemisphere brain regions that regulate emotions, control orofacial musculature, are involved in affective empathy processing areas, or have an affinity for processing emotions socially. Future work is needed to eliminate alternative interpretations and understand the mechanisms involved. Our novel binaural asynchrony method may be useful in future work in auditory laterality.

  12. Comparison of Balance Abilities of Patients with Right and Left Hemiplegics Stroke

    Directory of Open Access Journals (Sweden)

    Alireza Shamsoddini

    2008-01-01

    Full Text Available Objective: Improvement of independence of hemiplegics patient especially in balance maintenance is most significant aim of such rehabilitation. Areas of brain lesions in hemiplegics patient and also function of their right and left brain hemispheres were different. We study balance abilities in this two groups of patients. Materials & Methods: In this comparative and cross sectional study 30 patients with brain stroke were selected with non probability and simple selection in two groups by right hemiplegics (16 objects and left hemiplegics (14 objects. Ranges of Their age were 30 – 58 years and 6 months passed of stroke. The patient balance ability evaluated by Berg Balance Scale (B.B.S and Forward Functional Reach (F.F.R and data were analyzed by use of statistical tests such as: Kolmogorov – Smirnov, Independent T and paired T test. Results: According to results, average difference of two groups in (B.B.S test was significant (P=0.030 but average of score of right group (38/36 was more than left group (28/90. But in (F.F.R test, average difference between two groups wasn’t significant (P=0.841. Conclusion: According to results, balance especially dynamic balance was related to the side of lesion but in static balance, there was no difference between two groups. According to such results, we can consider good rehabilitation program for improvement of balance of such patients.

  13. Stroke admissions in Kubwa General Hospital: A 30-month review

    Directory of Open Access Journals (Sweden)

    Osaze Ojo

    2017-01-01

    Full Text Available >Background: Stroke is a common neurological disorder that contributes significantly to the morbidity and mortality of medical admissions.Objectives: To review the types, risk factors, hemispheric involvement, and outcomes of admitted stroke patients in Kubwa General Hospital, Abuja, Nigeria.Subjects and Methods: We carried out a retrospective study of patients who had a clinical diagnosis of stroke in Kubwa General Hospital, Abuja, Nigeria, between January 2013 and June 2015.Results: A total of 60 patients who had stroke were admitted during this period, accounting for 4.25% of medical admissions. Men and women accounted for 68.3% and 31.7%, respectively, with a male-to-female ratio of 2:1. Their mean age was 54.9 ± 13.5 years while the median age was 52.5 years. The mean hospital stay for these patients was 8.4 ± 5.5 days. Ischemic stroke occurred more frequently (65% compared with hemorrhagic stroke (35%. Hypertension (65%, alcohol (25%, previous stroke (18.3%, diabetes mellitus, and hypercholesterolemia (18.3% were the common identifiable risk factors for stroke. Ten patients (16.7% had two risk factors for stroke, whereas 8 patients (13.3% had three risk factors for stroke. The mean systolic and diastolic blood pressures on admission were 171.5 ± 41.6 mmHg and 103.3 ± 24.0 mmHg, respectively. The left hemisphere (53.3% was more often affected than the right hemisphere in these patients. Majority of the patients (48.3% were discharged following improvement while the case fatality was 11.7%.Conclusion: Stroke is not uncommon as a cause of medical admission in Kubwa General Hospital. Ischemic stroke occurred more commonly and the left hemisphere was more often involved compared with the right hemisphere. Hypertension was the most common risk factor for stroke in these patients.

  14. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats.

    Science.gov (United States)

    Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne

    2014-11-01

    Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.

  15. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  16. Hand movements with a phase structure and gestures that depict action stem from a left hemispheric system of conceptualization.

    Science.gov (United States)

    Helmich, I; Lausberg, H

    2014-10-01

    The present study addresses the previously discussed controversy on the contribution of the right and left cerebral hemispheres to the production and conceptualization of spontaneous hand movements and gestures. Although it has been shown that each hemisphere contains the ability to produce hand movements, results of left hemispherically lateralized motor functions challenge the view of a contralateral hand movement production system. To examine hemispheric specialization in hand movement and gesture production, ten right-handed participants were tachistoscopically presented pictures of everyday life actions. The participants were asked to demonstrate with their hands, but without speaking what they had seen on the drawing. Two independent blind raters evaluated the videotaped hand movements and gestures employing the Neuropsychological Gesture Coding System. The results showed that the overall frequency of right- and left-hand movements is equal independent of stimulus lateralization. When hand movements were analyzed considering their Structure, the presentation of the action stimuli to the left hemisphere resulted in more hand movements with a phase structure than the presentation to the right hemisphere. Furthermore, the presentation to the left hemisphere resulted in more right and left-hand movements with a phase structure, whereas the presentation to the right hemisphere only increased contralateral left-hand movements with a phase structure as compared to hand movements without a phase structure. Gestures that depict action were primarily displayed in response to stimuli presented in the right visual field than in the left one. The present study shows that both hemispheres possess the faculty to produce hand movements in response to action stimuli. However, the left hemisphere dominates the production of hand movements with a phase structure and gestures that depict action. We therefore conclude that hand movements with a phase structure and gestures that

  17. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.

    Science.gov (United States)

    Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping

    2013-12-01

    For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.

  18. Aphasic Patients Exhibit a Reversal of Hemispheric Asymmetries in Categorical Color Discrimination

    Science.gov (United States)

    Paluy, Yulia; Gilbert, Aubrey L.; Baldo, Juliana V.; Dronkers, Nina F.; Ivry, Richard B.

    2011-01-01

    Patients with left hemisphere (LH) or right hemisphere (RH) brain injury due to stroke were tested on a speeded, color discrimination task in which two factors were manipulated: (1) the categorical relationship between the target and the distracters and (2) the visual field in which the target was presented. Similar to controls, the RH patients…

  19. Cognitive-communication disorder following right hemisphere stroke: exploring rehabilitation access and outcomes.

    Science.gov (United States)

    Hewetson, Ronelle; Cornwell, Petrea; Shum, David

    2017-07-01

    Rehabilitation positively influences return to activities and social roles in people with aphasia. The cognitive-communication disorder (CCD) found following a right hemisphere stroke has been less extensively researched with rehabilitation access and outcomes yet to be determined. To document rehabilitation access and outcomes for people with CCD post-stroke; and compare outcomes based on presence (viz CCD; aphasia) or absence of communication impairment. A retrospective chart audit was completed for patients with first onset unilateral stroke, with a hospital length of stay (LOS) of at least two days and a communication assessment by a speech pathologist. Data extracted included presence and severity of communication impairment, access to and LOS in a rehabilitation unit, and functional outcome measures recorded at rehabilitation discharge. The majority of the 115 patients who met inclusion criteria were living independently (n = 112, 97.4%) at the time of stroke. CCD (66%) was diagnosed with similar frequency to aphasia (68%). The presence of communication impairment did not result in significant differences in rehabilitation LOS and discharge destination when compared to hemispheric strokes without communication impairment. Severity of CCD was an independent predictor of functional gain by rehabilitation discharge. People with CCD require comparable access to rehabilitation as people with aphasia, and severity of CCD should be considered in determining rehabilitation LOS. A large number of people are discharged with ongoing CCD which warrants exploration of potential participation restrictions created by the communication impairment.

  20. Left and Right Memory Revisited: Electrophysiological Investigations of Hemispheric Asymmetries at Retrieval

    Science.gov (United States)

    Evans, Karen M.; Federmeier, Kara D.

    2009-01-01

    Hemispheric differences in the use of memory retrieval cues were examined in a continuous recognition design, using visual half-field presentation to bias the processing of test words. A speeded recognition task revealed general accuracy and response time advantages for items whose test presentation was biased to the left hemisphere. A second…

  1. Percutaneous left atrial appendage closure for stroke prevention

    DEFF Research Database (Denmark)

    De Backer, Ole; Loupis, Anastasia M; Ihlemann, Nikolaj

    2014-01-01

    INTRODUCTION: In atrial fibrillation (AF) patients with an increased stroke risk, oral anticoagulation (OAC) is the standard treatment for stroke prevention. However, this therapy carries a high risk of major bleeding. Percutaneous closure of the left atrial appendage (LAA) is suggested as an alt...

  2. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    Science.gov (United States)

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  3. Ipsilateral hippocampal atrophy is associated with long-term memory dysfunction after ischemic stroke in young adults.

    Science.gov (United States)

    Schaapsmeerders, Pauline; van Uden, Inge W M; Tuladhar, Anil M; Maaijwee, Noortje A M; van Dijk, Ewoud J; Rutten-Jacobs, Loes C A; Arntz, Renate M; Schoonderwaldt, Hennie C; Dorresteijn, Lucille D A; de Leeuw, Frank-Erik; Kessels, Roy P C

    2015-07-01

    Memory impairment after stroke in young adults is poorly understood. In elderly stroke survivors memory impairments and the concomitant loss of hippocampal volume are usually explained by coexisting neurodegenerative disease (e.g., amyloid pathology) in interaction with stroke. However, neurodegenerative disease, such as amyloid pathology, is generally absent at young age. Accumulating evidence suggests that infarction itself may cause secondary neurodegeneration in remote areas. Therefore, we investigated the relation between long-term memory performance and hippocampal volume in young patients with first-ever ischemic stroke. We studied all consecutive first-ever ischemic stroke patients, aged 18-50 years, admitted to our academic hospital center between 1980 and 2010. Episodic memory of 173 patients was assessed using the Rey Auditory Verbal Learning Test and the Rey Complex Figure and compared with 87 stroke-free controls. Hippocampal volume was determined using FSL-FIRST, with manual correction. On average 10 years after stroke, patients had smaller ipsilateral hippocampal volumes compared with controls after left-hemispheric stroke (5.4%) and right-hemispheric stroke (7.7%), with most apparent memory dysfunctioning after left-hemispheric stroke. A larger hemispheric stroke was associated with a smaller ipsilateral hippocampal volume (b=-0.003, Pstroke (b=-0.028 ml, P=0.002) and right-hemispheric stroke (b=-0.015 ml, P=0.03). Our results suggest that infarction is associated with remote injury to the hippocampus, which may lower or expedite the threshold for cognitive impairment or even dementia later in life. © 2015 Wiley Periodicals, Inc.

  4. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  5. Left hemisphere EEG coherence in infancy predicts infant declarative pointing and preschool epistemic language.

    Science.gov (United States)

    Kühn-Popp, N; Kristen, S; Paulus, M; Meinhardt, J; Sodian, B

    2016-01-01

    Pointing plays a central role in preverbal communication. While imperative pointing aims at influencing another person's behavior, declarative gestures serve to convey epistemic information and to share interest in an object. Further, the latter are hypothesized to be a precursor ability of epistemic language. So far, little is known about their underlying brain maturation processes. Therefore, the present study investigated the relation between brain maturation processes and the production of imperative and declarative motives as well as epistemic language in N = 32 infants. EEG coherence scores were measured at 14 months, imperative and declarative point production at 15 months and epistemic language at 48 months. Results of correlational analyses suggest distinct behavioral and neural patterns for imperative and declarative pointing, with declarative pointing being associated with the maturation of the left hemisphere. Further, EEG coherence measures of the left hemisphere at 14 months and declarative pointing at 15 months are related to individual differences in epistemic language skills at 48 months, independently of child IQ. In regression analyses, coherence measures of the left hemisphere prove to be the most important predictor of epistemic language skills. Thus, neural processes of the left hemisphere seem particularly relevant to social communication.

  6. Manual and oral apraxia in acute stroke, frequency and influence on functional outcome: The Copenhagen Stroke Study.

    Science.gov (United States)

    Pedersen, P M; Jørgensen, H S; Kammersgaard, L P; Nakayama, H; Raaschou, H O; Olsen, T S

    2001-09-01

    To determine the frequency of manual and oral apraxia in acute stroke and to examine the influence of these symptoms on functional outcome. Seven hundred seventy six unselected, acute stroke patients who were admitted within seven days of stroke onset with unimpaired consciousness were included. If possible, the patients were assessed for manual and oral apraxia on acute admission. Neurologic stroke severity including aphasia was assessed with the Scandinavian Stroke Scale, and activities of daily living function was assessed with the Barthel Index. All patients completed their rehabilitation in the same large stroke unit. Six hundred eighteen patients could cooperate with the apraxia assessments. Manual apraxia was found in 7% of subjects (10% in left and 4% in right hemispheric stroke; chi2 = 9.0; P = 0.003). Oral apraxia was found in 6% (9% in left and 4% in right hemispheric stroke; chi2 = 5.4; P = 0.02). Both manual and oral apraxia were related to increasing stroke severity, and manual, but not oral, apraxia was associated with increasing age. There was no gender difference in frequency of apraxia. Patients with either type of apraxia had temporal lobe involvement more often than patients without. When analyzed with multiple linear and logistic regression analyses, neither manual nor oral apraxia had any independent influence on functional outcome. Apraxia is significantly less frequent in unselected patients with acute stroke than has previously been assumed and has no independent negative influence on functional outcome.

  7. Priming vs. Rhyming: Orthographic and Phonological Representations in the Left and Right Hemispheres

    Science.gov (United States)

    Lindell, Annukka K.; Lum, Jarrad A. G.

    2008-01-01

    The right cerebral hemisphere has long been argued to lack phonological processing capacity. Recently, however, a sex difference in the cortical representation of phonology has been proposed, suggesting discrete left hemisphere lateralization in males and more distributed, bilateral representation of function in females. To evaluate this…

  8. Moral judgement by the disconnected left and right cerebral hemispheres: a split-brain investigation.

    Science.gov (United States)

    Steckler, Conor M; Hamlin, J Kiley; Miller, Michael B; King, Danielle; Kingstone, Alan

    2017-07-01

    Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.

  9. Herniation despite Decompressive Hemicraniectomy in Large Hemispherical Ischemic Strokes.

    Science.gov (United States)

    Hinduja, Archana; Samant, Rohan; Feng, Dongxia; Hannawi, Yousef

    2018-02-01

    Despite decompressive hemicraniectomy (DHC), progressive herniation resulting in death has been reported following middle cerebral artery (MCA) strokes. We aimed to determine the surgical parameters measured on brain computed tomography (CT) scan that are associated with progressive herniation despite DHC in large MCA strokes. Retrospective chart review of medical records of patients with malignant hemispheric infarction who underwent DHC for cerebral edema was performed. Infarct volume was calculated on CT scans obtained within 24 hours of ictus. Radiological parameters of craniectomy bone flap size, brain volume protruding out of the skull, adequate centering of the craniectomy over the stroke bed, and the infarct volume outside the craniectomy bed (volume not centered [VNC]) were measured on the postoperative brain CT. Of 41 patients who underwent DHC, 7 had progressive herniation leading to death. Radiographic parameters significantly associated with progressive herniation included insufficient centering of craniectomy bed on the stroke bed (P = .03), VNC (P = .011), additional anterior cerebral artery infarction (P = .047), and smaller craniectomy length (P = .05). Multivariate logistic regression analysis for progressive herniation using craniectomy length and VNC as independent variables demonstrated that a higher VNC was significantly associated with progressive herniation despite surgery (P = .029). In large MCA strokes, identification of large infarct volume outside the craniectomy bed was associated with progressive herniation despite surgery. These results will need to be verified in larger prospective studies. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Common hemisphericity of language and music in a musician. A case report.

    Science.gov (United States)

    Hofman, S; Klein, C; Arlazoroff, A

    1993-06-01

    Aphasia coupled with amusia is reported in a 73-year-old male musician who was a lawyer by profession. This condition followed an ischemic stroke in the lateral aspect of the parieto-occipital region of the left hemisphere. The patient's music production exhibits jargon amusia, similar to that in his verbal production. This case supports the thesis that language and music may share a common hemisphere.

  11. Compensatory cerebral motor control following presumed perinatal ischemic stroke

    NARCIS (Netherlands)

    van der Hoorn, Anouk; Potgieser, Adriaan R E; Brouwer, Oebele F; de Jong, Bauke M

    Case: A fifteen year-old left-handed girl presented with right-sided focal motor seizures. Neuroimaging showed a large left hemisphere lesion compatible with a middle cerebral artery stroke of presumed perinatal origin. She was not previously diagnosed with a motor deficit, although neurological

  12. Differences in trace element concentrations between the right and left hemispheres of human brain using INAA

    International Nuclear Information System (INIS)

    Panayi, A.E.; Surrey Univ.; Spyrou, N.M.; Akanle, O.A.; Ubertalli, L.C.; Part, P.

    2000-01-01

    Very few publications have quoted differences between the same regions in both the right and left hemispheres of the human brain. It may be possible that the two hemispheres have different trace elemental concentrations, since it is known that they both have different functions. In this study, three brain regions from both the right and left hemispheres of the cortex have been sampled from five elderly individuals (three 'normal' and two Alzheimer's disease) and their elemental concentrations have been determined by instrumental neutron activation analysis (INAA). (author)

  13. Characteristics and dynamics of cognitive impairment in patients with primary and recurrent cerebral ischemic hemispheric stroke

    Directory of Open Access Journals (Sweden)

    A. A. Kozyolkin

    2014-08-01

    Full Text Available Acute cerebrovascular disease is a global medical and social problem of the modern angioneurology, occupying leading positions in the structure of morbidity and mortality among adult population of the world. Ischemic stroke – is one of the most common pathology. Today this disease took out the world pandemic. More than 16 million new cases of cerebral infarction recorded in the world each year and it “kills” about 7 million of people. About 111,953 cases of cerebral stroke were registered in 2013 in Ukraine. Cognitive impairment, t hat significantly disrupt daily activities and life of the patient, is one of the most significant post-stroke complications that have social, medical and biological significance. Aim. The purpose of this investigation was to study features and dynamics of cognitive impairments in patients with primary and recurrent cerebral hemispheric ischemic stroke (CHIS in the acute stage of the disease. Materials and methods. To achieve the aim, and the decision of tasks in the clinic of nervous diseases Zaporozhye State Medical University (supervisor - Doctor of Medicine, Professor Kozelkin A. based on the department of acute cerebrovascular disease were performed comparative, prospective cohort study, which included comprehensive clinical and paraclinical examinations of 41 patients (26 men and 15 women aged 45 to 85 years (mean age 66,4 ± 1,4 years with acute left-hemispheric (2 patients and right - hemispheric (39 patients CHIS . First up was a group of 28 patients (19 men and 9 women, mean age 65,6 ± 1,6 years, who suffered from primary CHIS. The second group consisted of 13 patients (7 men and 6 women, mean age 68,1 ± 2,5 years with recurrent CHIS. The groups were matched by age, sex, localization of the lesion and the initial level of neurological deficit. All patients underwent physical examination, neurological examination. Dynamic clinical neurological examination assessing the severity of stroke was conducted

  14. Visual Attention in Posterior Stroke and Relations to Alexia

    DEFF Research Database (Denmark)

    Petersen, Anders; Vangkilde, Signe; Fabricius, Charlotte

    2016-01-01

    that reduced visual speed and span may explain pure alexia. Eight patients with unilateral PCA strokes (four left hemisphere, four right hemisphere) were selected on the basis of lesion location, rather than the presence of any visual symptoms. Visual attention was characterized by a whole report paradigm......Impaired visual attention is common following strokes in the territory of the middle cerebral artery, particularly in the right hemisphere, while attentional effects of more posterior lesions are less clear. Commonly, such deficits are investigated in relation to specific syndromes like visual...... agnosia or pure alexia. The aim of this study was to characterize visual processing speed and apprehension span following posterior cerebral artery (PCA) stroke. In addition, the relationship between these attentional parameters and single word reading is investigated, as previous studies have suggested...

  15. The left atrium, atrial fibrillation, and the risk of stroke in hypertensive patients with left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Wachtell, K.; Devereux, R.B.; Lyle, P.A.

    2008-01-01

    was superior to atenolol-based treatment for reducing new-onset AF and complications, especially stroke, associated with new-onset or pre-existing AF. Potential mechanisms of AF prevention by angiotensin receptor blockade supported by LIFE results include greater reduction in left atrial size and LV......The Losartan Intervention For Endpoint reduction in hypertension (LIFE) study provided extensive data on predisposing factors, consequences, and prevention of atrial fibrillation (AF) in patients with hypertension and left ventricular (LV) hypertrophy. Randomized losartan-based treatment...... hypertrophy. Differential effects of antihypertensive treatment on the left atrium and left ventricle may help prevent AF and reduce risk of stroke associated with hypertensive heart disease Udgivelsesdato: 2008/12...

  16. Remote effect in patients with thalamic stroke. A study using positron emission tomography

    International Nuclear Information System (INIS)

    Komaba, Yuichi; Kitamura, Shin; Terashi, Akiro

    1998-01-01

    The purpose of this study was to investigate the functional relation between the thalamus and other cortical regions in patients with thalamic stroke from the view of cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO 2 ) using positron emission tomography (PET). Twenty patients with thalamic stroke (right lesion=8, left lesion=12) and 7 normal controls were studied. Five patients were diagnosed as having thalamic infarction, and 15 (patients were diagnosed) as having thalamic hemorrhage by X-CT and/or MRI scan. Regional cerebral blood flow and cerebral metabolic rate of oxygen were measured by PET using C 15 O 2 and 15 O 2 steady state inhalation technique. In the left thalamic stroke group, CMRO 2 was significantly decreased in the left cingulate, superior frontal, superior temporal, middle temporal, medial occipital, and thalamic regions, compared with the normal control group. In the right thalamic stroke group, CMRO 2 was decreased in the left cingulate, medial occipital, right hippocampal, thalamic, and the bilateral cerebellar regions, compared with the normal control group. In the left thalamic stroke group, CBF was decreased significantly in the left cingulate, middle temporal, hippocampal, thalamic, and right cerebellar regions, compared with the normal control group. In the right thalamic stroke group, CBF was significantly decreased in the right hippocampal, thalamic and left cerebellar regions compared with the normal control group. These results indicate that CBF and CMRO 2 decrease in some distant regions from thalamic lesions, perhaps due to a disconnection of neuronal fiber. Especially in the left thalamic stroke group, CMRO 2 was decreased in the ipsilateral temporal regions. This result suggests that there are more intimate functional fiber connections between the thalamus and temporal cortex in the left hemisphere than in the right hemisphere. (author)

  17. Schizophrenia as failure of left hemispheric dominance for the phonological component of language.

    Science.gov (United States)

    Angrilli, Alessandro; Spironelli, Chiara; Elbert, Thomas; Crow, Timothy J; Marano, Gianfranco; Stegagno, Luciano

    2009-01-01

    T. J. Crow suggested that the genetic variance associated with the evolution in Homo sapiens of hemispheric dominance for language carries with it the hazard of the symptoms of schizophrenia. Individuals lacking the typical left hemisphere advantage for language, in particular for phonological components, would be at increased risk of the typical symptoms such as auditory hallucinations and delusions. Twelve schizophrenic patients treated with low levels of neuroleptics and twelve matched healthy controls participated in an event-related potential experiment. Subjects matched word-pairs in three tasks: rhyming/phonological, semantic judgment and word recognition. Slow evoked potentials were recorded from 26 scalp electrodes, and a laterality index was computed for anterior and posterior regions during the inter stimulus interval. During phonological processing individuals with schizophrenia failed to achieve the left hemispheric dominance consistently observed in healthy controls. The effect involved anterior (fronto-temporal) brain regions and was specific for the Phonological task; group differences were small or absent when subjects processed the same stimulus material in a Semantic task or during Word Recognition, i.e. during tasks that typically activate more widespread areas in both hemispheres. We show for the first time how the deficit of lateralization in the schizophrenic brain is specific for the phonological component of language. This loss of hemispheric dominance would explain typical symptoms, e.g. when an individual's own thoughts are perceived as an external intruding voice. The change can be interpreted as a consequence of "hemispheric indecision", a failure to segregate phonological engrams in one hemisphere.

  18. Schizophrenia as failure of left hemispheric dominance for the phonological component of language.

    Directory of Open Access Journals (Sweden)

    Alessandro Angrilli

    Full Text Available BACKGROUND: T. J. Crow suggested that the genetic variance associated with the evolution in Homo sapiens of hemispheric dominance for language carries with it the hazard of the symptoms of schizophrenia. Individuals lacking the typical left hemisphere advantage for language, in particular for phonological components, would be at increased risk of the typical symptoms such as auditory hallucinations and delusions. METHODOLOGY/PRINCIPAL FINDINGS: Twelve schizophrenic patients treated with low levels of neuroleptics and twelve matched healthy controls participated in an event-related potential experiment. Subjects matched word-pairs in three tasks: rhyming/phonological, semantic judgment and word recognition. Slow evoked potentials were recorded from 26 scalp electrodes, and a laterality index was computed for anterior and posterior regions during the inter stimulus interval. During phonological processing individuals with schizophrenia failed to achieve the left hemispheric dominance consistently observed in healthy controls. The effect involved anterior (fronto-temporal brain regions and was specific for the Phonological task; group differences were small or absent when subjects processed the same stimulus material in a Semantic task or during Word Recognition, i.e. during tasks that typically activate more widespread areas in both hemispheres. CONCLUSIONS/SIGNIFICANCE: We show for the first time how the deficit of lateralization in the schizophrenic brain is specific for the phonological component of language. This loss of hemispheric dominance would explain typical symptoms, e.g. when an individual's own thoughts are perceived as an external intruding voice. The change can be interpreted as a consequence of "hemispheric indecision", a failure to segregate phonological engrams in one hemisphere.

  19. Reversible hemispheric hypoperfusion in two cases of SMART syndrome.

    Science.gov (United States)

    Wai, Karmen; Balabanski, Anna; Chia, Nicholas; Kleinig, Timothy

    2017-09-01

    Stroke-like migraine attacks after radiation therapy (SMART) syndrome manifests as prolonged episodes of cortical dysfunction, years after cranial irradiation. We present two cases demonstrating reversible hemispheric hypoperfusion. Case 1 presented with left hemispheric symptoms following previous similar episodes. CT perfusion (CTP) demonstrated reversible hemispheric hypoperfusion; subsequent investigations were consistent with SMART syndrome. Case 2 presented following the third episode of a hemispheric syndrome with near-identical CTP abnormalities. L-arginine was administered with rapid reversal of clinical and CTP abnormalities. We conclude that SMART syndrome may demonstrate significant hypoperfusion on hyperacute CTP without subsequent infarction. Impaired cerebrovascular autoregulation probably contributes to cortical dysfunction in SMART syndrome. L-arginine warrants investigation as a potential treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Agents with left and right dominant hemispheres and quantum statistics

    Science.gov (United States)

    Ezhov, Alexandr A.; Khrennikov, Andrei Yu.

    2005-01-01

    We present a multiagent model illustrating the emergence of two different quantum statistics, Bose-Einstein and Fermi-Dirac, in a friendly population of individuals with the right-brain dominance and in a competitive population of individuals with the left-brain hemisphere dominance, correspondingly. Doing so, we adduce the arguments that Lefebvre’s “algebra of conscience” can be used in a natural way to describe decision-making strategies of agents simulating people with different brain dominance. One can suggest that the emergence of the two principal statistical distributions is able to illustrate different types of society organization and also to be used in order to simulate market phenomena and psychic disorders, when a switching of hemisphere dominance is involved.

  1. Reducing chronic visuo-spatial neglect following right hemisphere stroke through instrument playing

    Directory of Open Access Journals (Sweden)

    Rebeka eBodak

    2014-06-01

    Full Text Available Unilateral visuo-spatial neglect is a neuropsychological syndrome commonly resulting from right hemisphere strokes at the temporo-parietal junction of the infero-posterior parietal cortex. Neglect is characterised by reduced awareness of stimuli presented on patients’ contralesional side of space and has previously been shown to be improved by a number of motivational influences, including listening to preferred music and numerical sequence completion. Here we examined whether playing musical sequences on chime bars – an instrument with a horizontal alignment – would bring about clinically significant improvement in chronic neglect.Two left neglect patients completed an intervention comprising four weekly 30-minute music sessions involving playing scales and familiar melodies on chime bars from right to left. Two cancellation tests (Mesulam shape, BIT star, the line bisection test, and the neglect subtest from the computerised TAP (Test for Attentional Performance battery were administered three times during a preliminary baseline phase, before and after each music session during the rehabilitation phase to investigate short-term effects, as well as one week after the last intervention session to investigate whether any effects would persist.Both patients demonstrated significant short-term and longer-lasting improvements on the Mesulam shape cancellation test. One patient also showed longer-lasting effects on the BIT star cancellation test and scored in the normal range one week after the intervention. These findings provide preliminary evidence that active music-making may help neglect patients attend more to their affected side.

  2. Neuropragmatics: Extralinguistic Pragmatic Ability is Better Preserved in Left-Hemisphere-Damaged Patients than in Right-Hemisphere-Damaged Patients

    Science.gov (United States)

    Cutica, Ilaria; Bucciarelli, Monica; Bara, Bruno G.

    2006-01-01

    The aim of the present study is to compare the pragmatic ability of right- and left-hemisphere-damaged patients excluding the possible interference of linguistic deficits. To this aim, we study extralinguistic communication, that is communication performed only through gestures. The Cognitive Pragmatics Theory provides the theoretical framework:…

  3. Why the Left Hemisphere Is Dominant for Speech Production: Connecting the Dots

    Directory of Open Access Journals (Sweden)

    Harvey Martin Sussman

    2015-12-01

    Full Text Available Evidence from seemingly disparate areas of speech/language research is reviewed to form a unified theoretical account for why the left hemisphere is specialized for speech production. Research findings from studies investigating hemispheric lateralization of infant babbling, the primacy of the syllable in phonological structure, rhyming performance in split-brain patients, rhyming ability and phonetic categorization in children diagnosed with developmental apraxia of speech, rules governing exchange errors in spoonerisms, organizational principles of neocortical control of learned motor behaviors, and multi-electrode recordings of human neuronal responses to speech sounds are described and common threads highlighted. It is suggested that the emergence, in developmental neurogenesis, of a hard-wired, syllabically-organized, neural substrate representing the phonemic sound elements of one’s language, particularly the vocalic nucleus, is the crucial factor underlying the left hemisphere’s dominance for speech production.

  4. [Amusia and aphasia of Bolero's creator--influence of the right hemisphere on music].

    Science.gov (United States)

    Tudor, Lorraine; Sikirić, Predrag; Tudor, Katarina Ivana; Cambi-Sapunar, Liana; Radonić, Vedran; Tudor, Mario; Buca, Ante; Carija, Robert

    2008-07-01

    The experience with cortical localization (BA 44, 45, 22) of language (Broca, Wernicke and others) in the left hemisphere has been repeatedly tested over the last 150 years and is now generally accepted. A single case report with autopsy findings (Leborgne, Tan tan), has enabled to localize the seat of spoken language in the left third frontal convolution. As music and language have a lot in common and even share the same hearing system, it is logical to try to localize the cognitive centers for music too. The disabling neurological disease illness of Maurice Ravel (1875-1937), a French impressionist composer, is not the right example to localize music center as that of Broca's language center, but it demonstrates the role of the right hemisphere in music production. In the last five years of his life, Ravel suffered from an unknown disease that affected the left hemisphere causing aphasia, apraxia, alexia, agraphia and amusia. It was the reason why Ravel could not compose during the last years of his life. In contrast to Ravel, Shebalin and Britten continued writing music works of their own although aphasic after having sustained two strokes to the left hemisphere. While lacking clinical cases with selective ablative brain lesions, research into the music localization can be done using modern imaging technologies such as fMRI and PET. Exercising music (professionally) develops analytical process in the left hemisphere whereas other individuals process music in their right hemisphere. There is right ear (left hemisphere) predominance in musicians and vice versa in musical amateurs. Music lateralization towards the right hemisphere is seen in women and in inattentive listeners. It can be subject to cultural influence, so the Japanese process their traditional popular music in the left hemisphere, whereas Westerners process the same music in the right hemisphere. Music and language are processed separately; they are localized in homologous regions of the opposite

  5. A dual task priming investigation of right hemisphere inhibition for people with left hemisphere lesions

    Directory of Open Access Journals (Sweden)

    Smith-Conway Erin R

    2012-03-01

    Full Text Available Abstract Background During normal semantic processing, the left hemisphere (LH is suggested to restrict right hemisphere (RH performance via interhemispheric suppression. However, a lesion in the LH or the use of concurrent tasks to overload the LH's attentional resource balance has been reported to result in RH disinhibition with subsequent improvements in RH performance. The current study examines variations in RH semantic processing in the context of unilateral LH lesions and the manipulation of the interhemispheric processing resource balance, in order to explore the relevance of RH disinhibition to hemispheric contributions to semantic processing following a unilateral LH lesion. Methods RH disinhibition was examined for nine participants with a single LH lesion and 13 matched controls using the dual task paradigm. Hemispheric performance on a divided visual field lexical decision semantic priming task was compared over three verbal memory load conditions, of zero-, two- and six-words. Related stimuli consisted of categorically related, associatively related, and categorically and associatively related prime-target pairs. Response time and accuracy data were recorded and analyzed using linear mixed model analysis, and planned contrasts were performed to compare priming effects in both visual fields, for each of the memory load conditions. Results Control participants exhibited significant bilateral visual field priming for all related conditions (p Conclusions The results from the control group are consistent with suggestions of an age related hemispheric asymmetry reduction and indicate that in healthy aging compensatory bilateral activation may reduce the impact of inhibition. In comparison, the results for the LHD group indicate that following a LH lesion RH semantic processing can be manipulated and enhanced by the introduction of a verbal memory task designed to engage LH resources and allow disinhibition of RH processing.

  6. Radionuclide stroke count ratios for assessment of right and left ventricular volume overload in children

    International Nuclear Information System (INIS)

    Parrish, M.D.; Graham, T.P. Jr.; Born, M.L.; Jones, J.P.; Boucek, R.J. Jr.; Artman, M.; Partain, C.L.

    1983-01-01

    The ratio of left ventricular to right ventricular stroke counts measured by radionuclide angiography has been used in adults to estimate the severity of left-sided valvular regurgitation. The validation of this technique in children for assessment of right and left ventricular volume overload is reported herein. Radionuclide stroke count ratios in 60 children aged 0.5 to 19 years (mean 11) were determined. Based on their diagnoses, the patients were divided into 3 groups: (1) normal--40 patients with no shunts or valvular regurgitation, (2) left ventricular volume overload--13 patients with mitral or aortic regurgitation, or both, and (3) right ventricular volume overload--7 patients, 2 with severe tricuspid regurgitation, 3 with atrial septal defects, and 2 with total anomalous pulmonary venous drainage. The radionuclide stroke count ratio clearly differentiated these groups (p less than 0.05): normal patients had a stroke count ratio of 1.04 +/- 0.17 (mean +/- 1 standard deviation), the left ventricular volume overload group had a stroke count ratio of 2.43 +/- 0.86, and the right ventricular volume overload group had a stroke count ratio of 0.44 +/- 0.17. In 22 of our 60 patients, radionuclide stroke count ratios were compared with cineangiographic stroke volume ratios, resulting in a correlation coefficient of 0.88. It is concluded that radionuclide ventriculography is an excellent tool for qualitative and quantitative assessment of valvular regurgitation in children

  7. Ischemic Stroke in a Young Patient Heralding a Left Ventricular Noncompaction Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Fanny Lestienne

    2017-08-01

    Full Text Available Strokes in young patients may be the clinical expression of many complex and extremely rare diseases. Uncommon causes constitute less than 5% of all strokes, but are present in 30% of strokes in young patients. We report the case of a young woman whose ischemic stroke led to the diagnosis of a rare embolic cardiomyopathy, left ventricular noncompaction cardiomyopathy, requiring a heart transplant.

  8. Ischemic Volume and Neurological Deficit: Correlation of Computed Tomography Perfusion with the National Institutes of Health Stroke Scale Score in Acute Ischemic Stroke.

    Science.gov (United States)

    Furlanis, Giovanni; Ajčević, Miloš; Stragapede, Lara; Lugnan, Carlo; Ridolfi, Mariana; Caruso, Paola; Naccarato, Marcello; Ukmar, Maja; Manganotti, Paolo

    2018-04-30

    The National Institutes of Health Stroke Scale (NIHSS) is the most adopted stroke patients' evaluation tool in emergency settings to assess the severity of stroke and to determine the patients' eligibility for specific treatments. Computed tomography perfusion (CTP) is crucial to identify salvageable tissue that can benefit from the reperfusion treatment. The aim of this study is to identify the relation between the NIHSS scores and the hypoperfused volumes evaluated by CTP in patients with hyperacute ischemic stroke. This retrospective study was conducted on 105 patients with ischemic stroke who underwent NIHSS assessment and CTP in the hyperacute phase. Hypoperfused volume was evaluated by CTP maps processed with semi-automatic algorithm. An analysis was conducted to determine the degree of correlation between the NIHSS scores and the ischemic lesion volumes and to investigate the relation between the anterior and the posterior circulation strokes, as well as between the right and the left hemispheric strokes. A significant correlation was found between ischemic volume and NIHSS score at baseline (r = .82; P correlation was identified in the anterior circulation stroke (r = .76; P correlated for the left and the right hemispheric strokes (r = .83 and .81; P correlation between the baseline NIHSS score and the ischemic volume estimated by CTP. We confirmed that NIHSS is a reliable predictor of perfusion deficits in acute ischemic stroke. CTP allows fast imaging assessment in the hyperacute phase. The results highlight the importance of these diagnostic tools in the assessment of stroke severity and in acute decision-making. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. A case of expressive-vocal amusia in a right-handed patient with left hemispheric cerebral infarction.

    Science.gov (United States)

    Uetsuki, Shizuka; Kinoshita, Hiroshi; Takahashi, Ryuichi; Obata, Satoshi; Kakigi, Tatsuya; Wada, Yoshiko; Yokoyama, Kazumasa

    2016-03-01

    A 53-year-old right-handed woman had an extensive lesion in the left hemisphere due to an infarction caused by vasospasm secondary to subarachnoid bleeding. She exhibited persistent expressive-vocal amusia with no symptoms of aphasia. Evaluation of the patient's musical competence using the Montreal Battery for Evaluation of Amusia, rhythm reproduction tests, acoustic analysis of pitch upon singing familiar music, Japanese standard language tests, and other detailed clinical examinations revealed that her amusia was more dominantly related to pitch production. The intactness of her speech provided strong evidence that the right hemisphere played a major role in her linguistic processing. Data from functional magnetic resonance imaging while she was singing a familiar song, a scale, and reciting lyrics indicated that perilesional residual activation in the left hemisphere was associated with poor pitch production, while right hemispheric activation was involved in linguistic processing. The localization of infarction more anterior to the left Sylvian fissure might be related to the dominant deficits in expressive aspects of the singing of the patient. Compromised motor programming producing a single tone may have made a major contribution to her poor singing. Imperfect auditory feedback due to borderline perceptual ability or improper audio-motor associations might also have played a role. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Errors on the Trail Making Test Are Associated with Right Hemispheric Frontal Lobe Damage in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Bruno Kopp

    2015-01-01

    Full Text Available Measures of performance on the Trail Making Test (TMT are among the most popular neuropsychological assessment techniques. Completion time on TMT-A is considered to provide a measure of processing speed, whereas completion time on TMT-B is considered to constitute a behavioral measure of the ability to shift between cognitive sets (cognitive flexibility, commonly attributed to the frontal lobes. However, empirical evidence linking performance on the TMT-B to localized frontal lesions is mostly lacking. Here, we examined the association of frontal lesions following stroke with TMT-B performance measures (i.e., completion time and completion accuracy measures using voxel-based lesion-behavior mapping, with a focus on right hemispheric frontal lobe lesions. Our results suggest that the number of errors, but not completion time on the TMT-B, is associated with right hemispheric frontal lesions. This finding contradicts common clinical practice—the use of completion time on the TMT-B to measure cognitive flexibility, and it underscores the need for additional research on the association between cognitive flexibility and the frontal lobes. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether our observation is specific for right frontal lesions.

  11. Better together: Left and right hemisphere engagement to reduce age-related memory loss.

    Science.gov (United States)

    Brambilla, Michela; Manenti, Rosa; Ferrari, Clarissa; Cotelli, Maria

    2015-10-15

    Episodic memory is a cognitive function that appears more susceptible than others to the effects of aging. The main aim of this study is to investigate if the magnitude of functional hemispheric lateralization during episodic memory test was positively correlated with memory performance, proving the presence of a beneficial pattern of neural processing in high-performing older adults but not in low-performing participants. We have applied anodal transcranial Direct Current Stimulation (tDCS) or sham stimulation over left and right hemisphere in a group of young subjects and in high-performing and low-performing older participants during an experimental verbal episodic memory task. Remarkably, young individuals and high-performing older adults exhibited similar performances on episodic memory tasks and both groups showed symmetrical recruitment of left and right areas during memory retrieval. In contrast, low-performing older adults, who obtained lower scores on the memory tasks, demonstrated a greater engagement of the left hemisphere during verbal memory task. Furthermore, structural equation model was performed for analyzing the interrelations between the index of interhemispheric asymmetry and several neuropsychological domains. We found that the bilateral engagement of dorsolateral prefrontal cortex and parietal cortex regions had a direct correlation with memory and executive functions evaluated as latent constructs. These findings drew attention to brain maintenance hypothesis. The potential of neurostimulation in cognitive enhancement is particularly promising to prevent memory loss during aging. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Crossed aphasia: an analysis of the symptoms, their frequency, and a comparison with left-hemisphere aphasia symptomatology.

    Science.gov (United States)

    Coppens, Patrick; Hungerford, Suzanne; Yamaguchi, Satoshi; Yamadori, Atsushi

    2002-12-01

    This study presents a thorough analysis of published crossed aphasia (CA) cases, including for the first time the cases published in Japanese. The frequency of specific symptoms was determined, and symptomatology differences based on gender, familial sinistrality, and CA subtype were investigated. Results suggested that the CA population is comparable to the left-hemisphere patient population. However, male were significantly more likely than female CA subjects to show a positive history of familial sinistrality. Typical right-hemisphere (i.e., nonlanguage-dominant) symptoms were frequent but rarely carefully reported or assessed. Results are compared with previous CA reviews and left-hemisphere aphasia. Suggestions for a more systematic assessment of the CA symptomatology are presented.

  13. When Left Means Right: An Explanation of the Left Cradling Bias in Terms of Right Hemisphere Specializations

    Science.gov (United States)

    Bourne, Victoria J.; Todd, Brenda K.

    2004-01-01

    Previous research has indicated that 70-85% of women and girls show a bias to hold infants, or dolls, to the left side of their body. This bias is not matched in males (e.g. deChateau, Holmberg & Winberg, 1978; Todd, 1995). This study tests an explanation of cradling preferences in terms of hemispheric specialization for the perception of facial…

  14. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    Science.gov (United States)

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  15. Cortical motor representation of the rectus femoris does not differ between the left and right hemisphere.

    Science.gov (United States)

    Ward, Sarah; Bryant, Adam L; Pietrosimone, Brian; Bennell, Kim L; Clark, Ross; Pearce, Alan J

    2016-06-01

    Transcranial magnetic stimulation (TMS) involves non-invasive magnetic stimulation of the brain, and can be used to explore the corticomotor excitability and motor representations of skeletal muscles. However there is a lack of motor mapping studies in the lower limb and few conducted in healthy cohorts. The cortical motor representations of muscles can vary between individuals in terms of center position and area despite having a general localized region within the motor cortex. It is important to characterize the normal range for these variables in healthy cohorts to be able to evaluate changes in clinical populations. TMS was used in this cross-sectional study to assess the active motor threshold (AMT) and cortical representation area for rectus femoris in 15 healthy individuals (11M/4F 27.3±5.9years). No differences were found between hemispheres (Left vs. Right P=0.130) for AMT. In terms of y-axis center position no differences were found between hemispheres (Left vs. Right P=0.539), or for the x-axis center position (Left vs. Right P=0.076). Similarly, no differences in calculated area of the motor representation were found (Left vs. Right P=0.699) indicating symmetry between hemispheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Left hemisphere dysfunction during verbal dichotic listening tests in patients who have social phobia with or without comorbid depressive disorder.

    Science.gov (United States)

    Bruder, Gerard E; Schneier, Franklin R; Stewart, Jonathan W; McGrath, Patrick J; Quitkin, Frederic

    2004-01-01

    Behavioral, electrophysiological, and imaging studies have found evidence that anxiety disorders are associated with left hemisphere dysfunction or higher than normal activation of right hemisphere regions. Few studies, however, have examined hemispheric asymmetries of function in social phobia, and the influence of comorbidity with depressive disorders is unknown. The present study used dichotic listening tests to assess lateralized cognitive processing in patients with social phobia, depression, or comorbid social phobia and depression. The study used a two-by-two factorial design in which one factor was social phobia (present versus absent) and the second factor was depressive disorder (present versus absent). A total of 125 unmedicated patients with social phobia, depressive disorder, or comorbid social phobia and depressive disorder and 44 healthy comparison subjects were tested on dichotic fused-words, consonant-vowel syllable, and complex tone tests. Patients with social phobia with or without a comorbid depressive disorder had a smaller left hemisphere advantage for processing words and syllables, compared with subjects without social phobia, whereas no difference between groups was found in the right hemisphere advantage for processing complex tones. Depressed women had a larger left hemisphere advantage for processing words, compared with nondepressed women, but this difference was not seen among men. The results support the hypothesis that social phobia is associated with dysfunction of left hemisphere regions mediating verbal processing. Given the importance of verbal processes in social interactions, this dysfunction may contribute to the stress and difficulty experienced by patients with social phobia in social situations.

  17. Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia

    Directory of Open Access Journals (Sweden)

    Cynthia K. Thompson

    2017-01-01

    Full Text Available Stroke-induced alterations in cerebral blood flow (perfusion may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere, no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0–6 mm, with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function.

  18. Changes of deceleration and acceleration capacity of heart rate in patients with acute hemispheric ischemic stroke

    Directory of Open Access Journals (Sweden)

    Xu YH

    2016-03-01

    Full Text Available Yan-Hong Xu,1 Xing-De Wang,2 Jia-Jun Yang,1 Li Zhou,2 Yong-Chao Pan1 1Department of Neurology, 2Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China Background and purpose: Autonomic dysfunction is common after stroke, which is correlated with unfavorable outcome. Phase-rectified signal averaging is a newly developed technique for assessing cardiac autonomic function, by detecting sympathetic and vagal nerve activity separately through calculating acceleration capacity (AC and deceleration capacity (DC of heart rate. In this study, we used this technique for the first time to investigate the cardiac autonomic function of patients with acute hemispheric ischemic stroke. Methods: A 24-hour Holter monitoring was performed in 63 patients with first-ever acute ischemic stroke in hemisphere and sinus rhythm, as well as in 50 controls with high risk of stroke. DC, AC, heart rate variability parameters, standard deviation of all normal-to-normal intervals (SDNN, and square root of the mean of the sum of the squares of differences between adjacent normal-to-normal intervals (RMSSD were calculated. The National Institutes of Health Stroke Scale (NIHSS was used to assess the severity of stroke. We analyzed the changes of DC, AC, SDNN, and RMSSD and also studied the correlations between these parameters and NIHSS scores. Results: The R–R (R wave to R wave on electrocardiogram intervals, DC, AC, and SDNN in the cerebral infarction group were lower than those in controls (P=0.003, P=0.002, P=0.006, and P=0.043, but the difference of RMSSD and the D-value and ratio between absolute value of AC (|AC| and DC were not statistically significant compared with those in controls. The DC of the infarction group was significantly correlated with |AC|, SDNN, and RMSSD (r=0.857, r=0.619, and r=0.358; P=0.000, P=0.000, and P=0.004. Correlation analysis also showed that DC, |AC|, and SDNN

  19. The effect of viewing speech on auditory speech processing is different in the left and right hemispheres.

    Science.gov (United States)

    Davis, Chris; Kislyuk, Daniel; Kim, Jeesun; Sams, Mikko

    2008-11-25

    We used whole-head magnetoencephalograpy (MEG) to record changes in neuromagnetic N100m responses generated in the left and right auditory cortex as a function of the match between visual and auditory speech signals. Stimuli were auditory-only (AO) and auditory-visual (AV) presentations of /pi/, /ti/ and /vi/. Three types of intensity matched auditory stimuli were used: intact speech (Normal), frequency band filtered speech (Band) and speech-shaped white noise (Noise). The behavioural task was to detect the /vi/ syllables which comprised 12% of stimuli. N100m responses were measured to averaged /pi/ and /ti/ stimuli. Behavioural data showed that identification of the stimuli was faster and more accurate for Normal than for Band stimuli, and for Band than for Noise stimuli. Reaction times were faster for AV than AO stimuli. MEG data showed that in the left hemisphere, N100m to both AO and AV stimuli was largest for the Normal, smaller for Band and smallest for Noise stimuli. In the right hemisphere, Normal and Band AO stimuli elicited N100m responses of quite similar amplitudes, but N100m amplitude to Noise was about half of that. There was a reduction in N100m for the AV compared to the AO conditions. The size of this reduction for each stimulus type was same in the left hemisphere but graded in the right (being largest to the Normal, smaller to the Band and smallest to the Noise stimuli). The N100m decrease for the Normal stimuli was significantly larger in the right than in the left hemisphere. We suggest that the effect of processing visual speech seen in the right hemisphere likely reflects suppression of the auditory response based on AV cues for place of articulation.

  20. Neglect severity after left and right brain damage.

    Science.gov (United States)

    Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto

    2012-05-01

    While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.

    Science.gov (United States)

    Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim

    2015-01-01

    Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.

  2. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    Science.gov (United States)

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  3. Post-stroke hemiparesis: Does chronicity, etiology, and lesion side are associated with gait pattern?

    Science.gov (United States)

    Gama, Gabriela Lopes; Larissa, Coutinho de Lucena; Brasileiro, Ana Carolina de Azevedo Lima; Silva, Emília Márcia Gomes de Souza; Galvão, Élida Rayanne Viana Pinheiro; Maciel, Álvaro Cavalcanti; Lindquist, Ana Raquel Rodrigues

    2017-07-01

    Studies that evaluate gait rehabilitation programs for individuals with stroke often consider time since stroke of more than six months. In addition, most of these studies do not use lesion etiology or affected cerebral hemisphere as study factors. However, it is unknown whether these factors are associated with post-stroke motor performance after the spontaneous recovery period. To investigate whether time since stroke onset, etiology, and lesion side is associated with spatiotemporal and angular gait parameters of individuals with chronic stroke. Fifty individuals with chronic hemiparesis (20 women) were evaluated. The sample was stratified according to time since stroke (between 6 and 12 months, between 13 and 36 months, and over 36 months), affected cerebral hemisphere (left or right) and lesion etiology (ischemic and hemorrhagic). The participants were evaluated during overground walking at self-selected gait speed, and spatiotemporal and angular gait parameters were calculated. Results Differences between gait speed, stride length, hip flexion, and knee flexion were observed in subgroups stratified based on lesion etiology. Survivors of a hemorrhagic stroke exhibited more severe gait impairment. Subgroups stratified based on time since stroke only showed intergroup differences for stride length, and subgroups stratified based on affected cerebral hemisphere displayed between-group differences for swing time symmetry ratio. In order to recruit a more homogeneous sample, more accurate results were obtained and an appropriate rehabilitation program was offered, researchers and clinicians should consider that gait pattern might be associated with time since stroke, affected cerebral hemisphere and lesion etiology.

  4. The Effect of Virtual Reality Training on Unilateral Spatial Neglect in Stroke Patients

    OpenAIRE

    Kim, Yong Mi; Chun, Min Ho; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun

    2011-01-01

    Objective To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Method Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group rec...

  5. Left hemisphere structural connectivity abnormality in pediatric hydrocephalus patients following surgery

    Directory of Open Access Journals (Sweden)

    Weihong Yuan

    2016-01-01

    Full Text Available Neuroimaging research in surgically treated pediatric hydrocephalus patients remains challenging due to the artifact caused by programmable shunt. Our previous study has demonstrated significant alterations in the whole brain white matter structural connectivity based on diffusion tensor imaging (DTI and graph theoretical analysis in children with hydrocephalus prior to surgery or in surgically treated children without programmable shunts. This study seeks to investigate the impact of brain injury on the topological features in the left hemisphere, contratelateral to the shunt placement, which will avoid the influence of shunt artifacts and makes further group comparisons feasible for children with programmable shunt valves. Three groups of children (34 in the control group, 12 in the 3-month post-surgery group, and 24 in the 12-month post-surgery group, age between 1 and 18 years were included in the study. The structural connectivity data processing and analysis were performed based on DTI and graph theoretical analysis. Specific procedures were revised to include only left brain imaging data in normalization, parcellation, and fiber counting from DTI tractography. Our results showed that, when compared to controls, children with hydrocephalus in both the 3-month and 12-month post-surgery groups had significantly lower normalized clustering coefficient, lower small-worldness, and higher global efficiency (all p < 0.05, corrected. At a regional level, both patient groups showed significant alteration in one or more regional connectivity measures in a series of brain regions in the left hemisphere (8 and 10 regions in the 3-month post-surgery and the 12-month post-surgery group, respectively, all p < 0.05, corrected. No significant correlation was found between any of the global or regional measures and the contemporaneous neuropsychological outcomes [the General Adaptive Composite (GAC from the Adaptive Behavior Assessment System, Second

  6. The relationship between mood state, interpersonal attitudes and psychological distress in stroke patients.

    Science.gov (United States)

    Turner, Margaret A; Andrewes, David G

    2010-03-01

    This study investigated whether increasing positive mood improved interpersonal attitudes and relieved depression in depressed stroke patients despite levels of cognitive and emotional dysfunction. Depressed stroke (n = 30) and rheumatic/orthopaedic controls (n = 30) were compared on the effect of verbal and nonverbal positive and neutral mood induction on mood state, interpersonal attitudes, psychological distress and related cognitive and emotional processing deficits. Compared with the neutral mood induction condition, the positive mood induction significantly improved mood state, interpersonal attitudes and psychological distress, irrespective of cognitive and emotional processing deficits. The nonverbal material was effective for all patients but was more marked for the left hemisphere stroke group. There was no obvious influence of humour appreciation despite reduced understanding in the right hemisphere stroke group. Although the effect is likely to be short-lived, these results support the trial of positive mood induction within therapy programmes to relieve depression.

  7. Visual attention in posterior stroke

    DEFF Research Database (Denmark)

    Fabricius, Charlotte; Petersen, Anders; Iversen, Helle K

    Objective: Impaired visual attention is common following strokes in the territory of the middle cerebral artery, particularly in the right hemisphere. However, attentional effects of more posterior lesions are less clear. The aim of this study was to characterize visual processing speed...... and apprehension span following posterior cerebral artery (PCA) stroke. We also relate these attentional parameters to visual word recognition, as previous studies have suggested that reduced visual speed and span may explain pure alexia. Methods: Nine patients with MR-verified focal lesions in the PCA......-territory (four left PCA; four right PCA; one bilateral, all >1 year post stroke) were compared to 25 controls using single case statistics. Visual attention was characterized by a whole report paradigm allowing for hemifield-specific speed and span measurements. We also characterized visual field defects...

  8. Visual attention in posterior stroke and relations to alexia.

    Science.gov (United States)

    Petersen, A; Vangkilde, S; Fabricius, C; Iversen, H K; Delfi, T S; Starrfelt, R

    2016-11-01

    Impaired visual attention is common following strokes in the territory of the middle cerebral artery, particularly in the right hemisphere, while attentional effects of more posterior lesions are less clear. Commonly, such deficits are investigated in relation to specific syndromes like visual agnosia or pure alexia. The aim of this study was to characterize visual processing speed and apprehension span following posterior cerebral artery (PCA) stroke. In addition, the relationship between these attentional parameters and single word reading is investigated, as previous studies have suggested that reduced visual speed and span may explain pure alexia. Eight patients with unilateral PCA strokes (four left hemisphere, four right hemisphere) were selected on the basis of lesion location, rather than the presence of any visual symptoms. Visual attention was characterized by a whole report paradigm allowing for hemifield-specific measurements of processing speed and apprehension span. All patients showed reductions in visual span contralateral to the lesion site, and four patients showed bilateral reductions in visual span despite unilateral lesions (2L; 2R). Six patients showed selective deficits in visual span, though processing speed was unaffected in the same field (ipsi- or contralesionally). Only patients with right hemifield reductions in visual span were impaired in reading, and this could follow either right or left lateralized stroke and was irrespective of visual field impairments. In conclusion, visual span may be affected bilaterally by unilateral PCA-lesions. Reductions in visual span may also be confined to one hemifield, and may be affected in spite of preserved visual processing speed. Furthermore, reduced span in the right visual field seems to be related to reading impairment in this group, regardless of lesion lateralization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Characteristics of Syntactic Comprehension Deficits Following Closed Head Injury versus Left Cerebrovascular Accident.

    Science.gov (United States)

    Butler-Hinz, Susan; And Others

    1990-01-01

    Two studies examined the ability to assign thematic roles and to coindex referentially dependent noun phrases in closed head injured adults (N=20), adult stroke patients (N=20), and normal adults (N=20). Results suggested that syntactic comprehension disturbances are similar following left cerebral hemisphere infarction and closed head injury.…

  10. Is the basic trunk control recovery different between stroke patients with right and left hemiparesis?

    Science.gov (United States)

    Pappalardo, A; Ciancio, M R; Patti, F

    2014-01-01

    Basic trunk movement control is often impaired after stroke and its recovery is a "miliary stone" in rehabilitation. In this prospective, observational, parallel-group study, we investigated whether there are differences in terms of post-stroke recovery of basic trunk control between patients with left or with right hemiparesis. We recruited 94 patients with loss of postural trunk control due to stroke. Patients were divided into Group A (48 patients with left hemiparesis) and Group B (46 patients with right hemiparesis). We administered the Trunk Control Test (TCT) and the 13 motor items included on the Functional Independence Measure. Evaluation was performed at admission (To) and discharge (T1). TCT increased respectively from 46.7 ± 23.3 to 62.6 ± 19.5 (mean ± standard deviation-SD, p hemiparesis could affect the degree of recovery of basic trunk control after stroke. Patients with right hemiparesis benefit more than those with left hemiparesis. Improvement of basic trunk control was not responsible for an advantage on functional independence.

  11. Brain Stimulation and the Role of the Right Hemisphere in Aphasia Recovery.

    Science.gov (United States)

    Turkeltaub, Peter E

    2015-11-01

    Aphasia is a common consequence of left hemisphere stroke and causes a disabling loss of language and communication ability. Current treatments for aphasia are inadequate, leaving a majority of aphasia sufferers with ongoing communication difficulties for the rest of their lives. In the past decade, two forms of noninvasive brain stimulation, repetitive transcranial magnetic stimulation and transcranial direct current stimulation, have emerged as promising new treatments for aphasia. The most common brain stimulation protocols attempt to inhibit the intact right hemisphere based on the hypothesis that maladaptive activity in the right hemisphere limits language recovery in the left. There is now sufficient evidence to demonstrate that this approach, at least for repetitive transcranial magnetic stimulation, improves specific language abilities in aphasia. However, the biological mechanisms that produce these behavioral improvements remain poorly understood. Taken in the context of the larger neurobiological literature on aphasia recovery, the role of the right hemisphere in aphasia recovery remains unclear. Additional research is needed to understand biological mechanisms of recovery, in order to optimize brain stimulation treatments for aphasia. This article summarizes the current evidence on noninvasive brain stimulation methods for aphasia and the neuroscientific considerations surrounding treatments using right hemisphere inhibition. Suggestions are provided for further investigation and for clinicians whose patients ask about brain stimulation treatments for aphasia.

  12. Huge Left Ventricular Thrombus and Apical Ballooning associated with Recurrent Massive Strokes in a Septic Shock Patient

    Directory of Open Access Journals (Sweden)

    Hyun-Jung Lee

    2016-02-01

    Full Text Available The most feared complication of left ventricular thrombus (LVT is the occurrence of systemic thromboembolic events, especially in the brain. Herein, we report a patient with severe sepsis who suffered recurrent devastating embolic stroke. Transthoracic echocardiography revealed apical ballooning of the left ventricle with a huge LVT, which had not been observed in chest computed tomography before the stroke. This case emphasizes the importance of serial cardiac evaluation in patients with stroke and severe medical illness.

  13. Language learning and brain reorganization in a 3.5-year-old child with left perinatal stroke revealed using structural and functional connectivity.

    Science.gov (United States)

    François, Clément; Ripollés, Pablo; Bosch, Laura; Garcia-Alix, Alfredo; Muchart, Jordi; Sierpowska, Joanna; Fons, Carme; Solé, Jorgina; Rebollo, Monica; Gaitán, Helena; Rodriguez-Fornells, Antoni

    2016-04-01

    Brain imaging methods have contributed to shed light on the possible mechanisms of recovery and cortical reorganization after early brain insult. The idea that a functional left hemisphere is crucial for achieving a normalized pattern of language development after left perinatal stroke is still under debate. We report the case of a 3.5-year-old boy born at term with a perinatal ischemic stroke of the left middle cerebral artery, affecting mainly the supramarginal gyrus, superior parietal and insular cortex extending to the precentral and postcentral gyri. Neurocognitive development was assessed at 25 and 42 months of age. Language outcomes were more extensively evaluated at the latter age with measures on receptive vocabulary, phonological whole-word production and linguistic complexity in spontaneous speech. Word learning abilities were assessed using a fast-mapping task to assess immediate and delayed recall of newly mapped words. Functional and structural imaging data as well as a measure of intrinsic connectivity were also acquired. While cognitive, motor and language levels from the Bayley Scales fell within the average range at 25 months, language scores were below at 42 months. Receptive vocabulary fell within normal limits but whole word production was delayed and the child had limited spontaneous speech. Critically, the child showed clear difficulties in both the immediate and delayed recall of the novel words, significantly differing from an age-matched control group. Neuroimaging data revealed spared classical cortical language areas but an affected left dorsal white-matter pathway together with right lateralized functional activations. In the framework of the model for Social Communication and Language Development, these data confirm the important role of the left arcuate fasciculus in understanding and producing morpho-syntactic elements in sentences beyond two word combinations and, most importantly, in learning novel word-referent associations, a

  14. Language-specific dysgraphia in Korean stroke patients.

    Science.gov (United States)

    Yoon, Ji Hye; Suh, Mee Kyung; Kim, HyangHee

    2010-12-01

    We investigated how changes in the writing of 14 Korean stroke patients reflect the unique features of the Korean writing system. The Korean writing system, Han-geul, has both linguistic and visuospatial/constructive characteristics. In the visuospatial construction of a syllable, the component consonant(s) and vowel(s) must be arranged from top-to-bottom and/or left-to-right within the form of a square. This syllabic organization, unique to Korean writing, may distinguish dysgraphia in Korean patients from the disorder in other languages, and reveal the effects of stroke on visuospatial/constructive abilities. We compared 2 groups of patients affected by stroke, 1 group with left hemisphere (LH) lesions and the other with right hemisphere (RH) lesions. We instructed them to write from a dictation of 90 monosyllabic stimuli, each presented with a real word cue. Patients had to repeat a target syllable and a word cue, and then to write the target syllable only. Patients with LH and RH lesions produced qualitatively different error patterns. While the LH lesion group produced primarily linguistic errors, visuospatial/constructive errors predominated in the group with RH lesions. With regard to language-specific features, these Korean patients with RH lesions produced diverse visuospatial/constructive errors not commonly observed in dysgraphia of the English language. Language-specific writing errors by Korean stroke patients reflect the unique characteristics of Korean writing, which include the arrangement of strokes and graphemes within a square syllabic form by dimensional and spatial rules. These findings support the notion that the Korean writing system possesses a language-specific nature with both linguistic and visuospatial/constructive processes. Distinctive patterns of dysgraphia in the Korean language also suggest interactivity between linguistic and visuospatial/constructive levels of processing. This study is noteworthy for its systematic description of

  15. Visuospatial asymmetry and non-spatial attention in subacute stroke patients with and without neglect

    NARCIS (Netherlands)

    Van Kessel, M.E.; Van Nes, I.J.W.; Brouwer, W.H.; Geurts, A.C.H.; Fasotti, L

    Asymmetry in performance and an association with non-lateralized attention are often mentioned as two important aspects of the clinical manifestation of visuospatial neglect. Both these aspects were investigated in 21 left (LH) and 24 right hemisphere (RH) stroke patients and in 20 healthy subjects.

  16. Severity of unilateral spatial neglect is an independent predictor of functional outcome after acute inpatient rehabilitation in individuals with right hemispheric stroke.

    Science.gov (United States)

    Di Monaco, Marco; Schintu, Selene; Dotta, Manuela; Barba, Sonia; Tappero, Rosa; Gindri, Patrizia

    2011-08-01

    To investigate the relationship between severity of unilateral spatial neglect (USN) and functional recovery in activities of daily living after a right-hemisphere stroke. Observational study. Rehabilitation hospital in Italy. We investigated 107 of 131 inpatients with right-hemisphere stroke who were consecutively admitted to our rehabilitation hospital. Not applicable. To assess USN severity, conventional and nonconventional Behavioral Inattention Tests (BITs) were performed at admission to inpatient rehabilitation at a median of 19 days after stroke occurrence. FIM was performed both on admission to and discharge from inpatient rehabilitation to assess functional autonomy. FIM efficiency (improvement of FIM score per day of stay length) and FIM effectiveness (proportion of potential improvement achieved) were calculated. Fifty-four (50.5%) of the 107 patients were affected by USN. In these 54 patients, both conventional and nonconventional BIT scores were significantly correlated with FIM scores assessed at discharge from rehabilitation: ρ values were .385 (P=.004) and .396 (P=.003), respectively. After adjustment for 7 potential confounders, including FIM scores before rehabilitation, we found a significant positive association between either conventional or nonconventional BIT scores and FIM scores after rehabilitation (r=.276, P=.047 and r=.296, P=.033, respectively), FIM efficiency (r=.315, P=.022 and r=.307, P=.025, respectively), and FIM effectiveness (r=.371, P=.006 and r=.306, P=.026, respectively). Data support the independent prognostic role of USN severity assessed at admission to inpatient rehabilitation after a right-hemisphere stroke. Models aimed at predicting the functional outcome in stroke survivors may benefit from inclusion of USN severity. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Is a lone right hemisphere enough? Neurolinguistic architecture in a case with a very early left hemispherectomy.

    Science.gov (United States)

    Danelli, Laura; Cossu, Giuseppe; Berlingeri, Manuela; Bottini, Gabriella; Sberna, Maurizio; Paulesu, Eraldo

    2013-01-01

    We studied the linguistic profile and neurolinguistic organization of a 14-year-old adolescent (EB) who underwent a left hemispherectomy at the age of 2.5 years. After initial aphasia, his language skills recovered within 2 years, with the exception of some word finding problems. Over the years, the neuropsychological assessments showed that EB's language was near-to-normal, with the exception of lexical competence, which lagged slightly behind for both auditory and written language. Moreover, EB's accuracy and speed in both reading and writing words and non-words were within the normal range, whereas difficulties emerged in reading loan words and in tasks with homophones. EB's functional magnetic resonance imaging (fMRI) patterns for several linguistic and metalinguistic tasks were similar to those observed in the dominant hemisphere of controls, suggesting that his language network conforms to a left-like linguistic neural blueprint. However, a stronger frontal recruitment suggests that linguistic tasks are more demanding for him. Finally, no specific reading activation was found in EB's occipitotemporal region, a finding consistent with the surface dyslexia-like behavioral pattern of the patient. While a lone right hemisphere may not be sufficient to guarantee full blown linguistic competences after early hemispherectomy, EB's behavioral and fMRI patterns suggest that his lone right hemisphere followed a left-like blueprint of the linguistic network.

  18. Corticospinal tract integrity and motor function following neonatal stroke: a case study

    Directory of Open Access Journals (Sweden)

    Gordon Anne L

    2012-07-01

    Full Text Available Abstract Background New MRI techniques enable visualisation of corticospinal tracts and cortical motor activity. The objective of this case study was to describe the magnetic resonance evidence of corticospinal pathway reorganisation following neonatal stroke. Case presentation An 11 year old boy with a neonatal right middle cerebral artery territory ischaemic stroke was studied. Functional MRI was undertaken with a whole hand squeezing task, comparing areas of cortical activation between hands. White matter tracts, seeded from the area of peak activation in the cortex, were visualised using a diffusion weighted imaging probabilistic tractography method. Standardised evaluations of unilateral and bilateral motor function were undertaken. Clinically, the child presented with a left hemiparesis. Functional MRI demonstrated that movement of the hemiparetic hand resulted in activation in the ipsi-lesional (right hemisphere only. Diffusion tractography revealed pathways in the right (lesioned hemisphere tracked perilesionally to the cortical area identified by functional MRI. Conclusion Our case demonstrates that neonatal stroke is associated with maintenance of organization of corticospinal pathways sufficient to maintain some degree of hand function in the affected hemisphere. Functional MRI and diffusion weighted imaging tractography may inform our understanding of recovery, organisation and reorganisation and have the potential to monitor responses to intervention following neonatal stroke.

  19. Severity of Post-stroke Aphasia According to Aphasia Type and Lesion Location in Koreans

    OpenAIRE

    Kang, Eun Kyoung; Sohn, Hae Min; Han, Moon-Ku; Kim, Won; Han, Tai Ryoon; Paik, Nam-Jong

    2009-01-01

    To determine the relations between post-stroke aphasia severity and aphasia type and lesion location, a retrospective review was undertaken using the medical records of 97 Korean patients, treated within 90 days of onset, for aphasia caused by unilateral left hemispheric stroke. Types of aphasia were classified according to the validated Korean version of the Western Aphasia Battery (K-WAB), and severities of aphasia were quantified using WAB Aphasia Quotients (AQ). Lesion locations were clas...

  20. Is Remodelling of Corticospinal Tract Terminations Originating in the Intact Hemisphere Associated with Recovery following Transient Ischaemic Stroke in the Rat?

    Directory of Open Access Journals (Sweden)

    Emma J Mitchell

    Full Text Available Following large strokes that encompass the cerebral cortex, it has been suggested that the corticospinal tract originating from the non-ischaemic hemisphere reorganises its pattern of terminal arborisation within the spinal cord to compensate for loss of function. However many strokes in humans predominantly affect subcortical structures with minimal involvement of the cerebral cortex. The aim of the present study was to determine whether remodelling of corticospinal terminals arising from the non-ischaemic hemisphere was associated with spontaneous recovery in rats with subcortical infarcts. Rats were subjected to transient middle cerebral artery occlusion or sham surgery and 28 days later, when animals exhibited functional recovery, cholera toxin b subunit was injected into the contralesional, intact forelimb motor cortex in order to anterogradely label terminals within cervical spinal cord segments. Infarcts were limited to subcortical structures and resulted in partial loss of corticospinal tract axons from the ischaemic hemisphere. Quantitative analysis revealed there was no significant difference in the numbers of terminals on the contralesional side of the spinal grey matter between ischaemic and sham rats. The results indicate that significant remodelling of the corticospinal tract from the non-ischaemic hemisphere is not associated with functional recovery in animals with subcortical infarcts.

  1. You may now kiss the bride: Interpretation of social situations by individuals with right or left hemisphere injury.

    Science.gov (United States)

    Baldo, Juliana V; Kacinik, Natalie A; Moncrief, Amber; Beghin, Francesca; Dronkers, Nina F

    2016-01-08

    While left hemisphere damage (LHD) has been clearly shown to cause a range of language impairments, patients with right hemisphere damage (RHD) also exhibit communication deficits, such as difficulties processing prosody, discourse, and social contexts. In the current study, individuals with RHD and LHD were directly compared on their ability to interpret what a character in a cartoon might be saying or thinking, in order to better understand the relative role of the right and left hemisphere in social communication. The cartoon stimuli were manipulated so as to elicit more or less formulaic responses (e.g., a scene of a couple being married by a priest vs. a scene of two people talking, respectively). Participants' responses were scored by blind raters on how appropriately they captured the gist of the social situation, as well as how formulaic and typical their responses were. Results showed that RHD individuals' responses were rated as significantly less appropriate than controls and were also significantly less typical than controls and individuals with LHD. Individuals with RHD produced a numerically lower proportion of formulaic expressions than controls, but this difference was only a trend. Counter to prediction, the pattern of performance across participant groups was not affected by how constrained/formulaic the social situation was. The current findings expand our understanding of the roles that the right and left hemispheres play in social processing and communication and have implications for the potential treatment of social communication deficits in individuals with RHD. Published by Elsevier Ltd.

  2. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    LENUS (Irish Health Repository)

    Kharoshankaya, Liudmila

    2014-07-01

    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  3. When left-hemisphere reading is compromised: Comparing reading ability in participants after left cerebral hemispherectomy and participants with developmental dyslexia.

    Science.gov (United States)

    Katzir, Tami; Christodoulou, Joanna A; de Bode, Stella

    2016-10-01

    We investigated reading skills in individuals who have undergone left cerebral hemispherectomy and in readers with developmental dyslexia to understand diverse characteristics contributing to reading difficulty. Although dyslexia is a developmental disorder, left hemispherectomy requires that patients (re)establish the language process needed to perform the language-based tasks in the nondominant (right) hemisphere to become readers. Participants with developmental dyslexia (DD; n = 11) and participants who had undergone left hemispherectomy (HEMI; n = 11) were matched on age and gender, and were compared on timed and untimed measures of single word and pseudo-word reading. The hemispherectomy group was subdivided into prenatal (in utero) and postnatal (>3 years) insult groups, indicating the timing of the primary lesion that ultimately required surgical intervention. On an untimed reading measure, the readers with DD were comparable to individuals who had undergone left hemispherectomy due to prenatal insult, but both scored higher than the postnatal hemispherectomy group. Timed word reading differed across groups. The hemispherectomy prenatal subgroup had low average scores on both timed and untimed tests. The group with dyslexia had average scores on untimed measures and below average scores on timed reading. The hemispherectomy postnatal group had the lowest scores among the groups by a significant margin, and the most pronounced reading difficulty. Patients with prenatal lesions leading to an isolated right hemisphere (RH) have the potential to develop reading to a degree comparable to that in persons with dyslexia for single word reading. This potential sharply diminishes in individuals who undergo hemispherectomy due to postnatal insult. The higher scores of the prenatal hemispherectomy group on timed reading suggest that under these conditions, individuals with an isolated RH can compensate to a significant degree. Wiley Periodicals, Inc. © 2016

  4. Selection and application of familiar and novel tools in patients with left and right hemispheric stroke: Psychometrics and normative data.

    Science.gov (United States)

    Buchmann, Ilka; Randerath, Jennifer

    2017-09-01

    Frequently left brain damage (LBD) leads to limb apraxia, a disorder that can affect tool-use. Despite its impact on daily life, classical tests examining the pantomime of tool-use and imitation of gestures are seldom applied in clinical practice. The study's aim was to present a diagnostic approach which appears more strongly related to actions in daily life in order to sensitize applicants and patients about the relevance of the disorder before patients are discharged. Two tests were introduced that evaluate actual tool selection and tool-object-application: the Novel Tools (NTT) and the Familiar Tools (FTT) Test (parts of the DILA-S: Diagnostic Instrument for Limb Apraxia - Short Version). Normative data in healthy subjects (N = 82) was collected. Then the tests were applied in stroke patients with unilateral left brain damage (LBD: N = 33), a control right brain damage group (RBD: N = 20) as well as healthy age and gender matched controls (CL: N = 28, and CR, N = 18). The tests showed appropriate interrater-reliability and internal consistency as well as concurrent and divergent validity. To examine criterion validity based on the well-known left lateralization of limb apraxia, group comparisons were run. As expected, the LBD group demonstrated a high prevalence of tool-use apraxia (NTT: 36.4%, FTT: 48.5%) ranging from mild to severe impairment and scored worse than their control group (CL). A few RBD patients did demonstrate impairments in tool-use (NTT: 15%, FTT: 15%). On a group level they did not differ from their healthy controls (CR). Further, it was demonstrated that the selection and application of familiar and novel tools can be impaired selectively. Our study results suggest that real tool-use tests evaluating tool selection and tool application should be considered for standard diagnosis of limb apraxia in left as well as right brain damaged patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  6. Cognitive outcome after awake surgery for left and right hemisphere tumours

    Directory of Open Access Journals (Sweden)

    Elke De Witte

    2015-04-01

    Full Text Available INTRODUCTION: Awake surgery in eloquent brain regions is performed to preserve language and other cognitive functions. Although in general, no major permanent cognitive deficits are found after awake brain surgery, clinically relevant impairments are detected and cognitive recovery takes longer than generally assumed (3 months (Santini et al., 2012; Satoer et al., 2014; Talacchi et al., 2012. However, as there is a lack of extensive cognitive follow-up data it is unknown when recovery takes place. In addition, the influence of critical language sites identified by direct electrical stimulation (DES and tumour variables (e.g. left/right tumour location, tumour grade on long-term cognitive findings remains unclear. METHODS: In this longitudinal study the short-term and long-term effects of awake surgery on cognition were investigated in 40 patients (29 patients with left and 11 with right hemisphere tumours. Language, memory, attentional, executive and visuospatial functions were assessed in the preoperative phase, at short-term follow-up (6 weeks postsurgery and at long-term follow-up (6 months postsurgery with a neuropsychological protocol. In addition, the effect of intraoperative critical language sites, left/right tumour location, hemispheric language dominance, extent of resection and adjuvant treatment on cognitive change was studied. RESULTS: Both pre- and postoperatively, the mean performance of the patients was worse (impairment = z-score below -2 than the performance of the normal population in the language domain, the memory domain, the attentional and executive domain (p .05. Awake surgery negatively affected language, attentional and executive functions but not memory and visuospatial functions. At 6 weeks postsurgery, performance on all language, attentional and executive tasks deteriorated (object/action naming, semantic/phonological fluency from DuLIP, Token test; Trail Making Test A & B, Stroop I, II, & III. At 6 months

  7. Hypothalamic digoxin, hemispheric chemical dominance, and eating behavior.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in eating disorders. The patterns were compared in those with right hemispheric and left hemispheric dominance. The serum HMG CoA reductase activity, RBC membrane Na+-K+ ATPase activity, serum digoxin, magnesium, tryptophan catabolites (serotonin, quinolinic acid, strychnine, and nicotine), and tyrosine catabolites (morphine, dopamine, and noradrenaline) were measured in anorexia nervosa, bulimia nervosa, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. Digoxin synthesis was increased with upregulated tryptophan catabolism and downregulated tyrosine catabolism in those with anorexia nervosa and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism and upregulated tyrosine catabolism in those with bulimia nervosa and left hemispheric chemical dominance. The membrane Na+-K+ ATPase activity and serum magnesium were decreased in anorexia nervosa and right hemispheric chemical dominance while they were increased in bulimia nervosa and left hemispheric chemical dominance. Hypothalamic digoxin and hemispheric chemical dominance play a central role in the regulation of eating behavior. Anorexia nervosa represents the right hemispheric chemically dominant/hyperdigoxinemic state and bulimia nervosa the left hemispheric chemically dominant/hypodigoxinemic state.

  8. Hemispheric processing asymmetries: implications for memory.

    Science.gov (United States)

    Funnell, M G; Corballis, P M; Gazzaniga, M S

    2001-01-01

    Recent research has demonstrated that memory for words elicits left hemisphere activation, faces right hemisphere activation, and nameable objects bilateral activation. This pattern of results was attributed to dual coding of information, with the left hemisphere employing a verbal code and the right a nonverbal code. Nameable objects can be encoded either verbally or nonverbally and this accounts for their bilateral activation. We investigated this hypothesis in a callosotomy patient. Consistent with dual coding, the left hemisphere was superior to the right in memory for words, whereas the right was superior for faces. Contrary to prediction, performance on nameable pictures was not equivalent in the two hemispheres, but rather resulted in a right hemisphere superiority. In addition, memory for pictures was significantly better than for either words or faces. These findings suggest that the dual code hypothesis is an oversimplification of the processing capabilities of the two hemispheres.

  9. Interaction of cerebral hemispheres and artistic thinking

    Science.gov (United States)

    Nikolaenko, Nikolay N.

    1998-07-01

    Study of drawings by patients with local lesions of the right or left hemisphere allows to understand how artistic thinking is supported by brain structures. The role of the right hemisphere is significant at the early stage of creative process. The right hemisphere is a generator of nonverbal visuo-spatial thinking. It operates with blurred nonverbal images and arrange them in a visual space. With the help of iconic signs the right hemisphere reflects the world and creates perceptive visual standards which are stored in the long-term right hemisphere memory. The image, which appeared in the `inner' space, should be transferred into a principally different language, i.e. a left hemispheric sign language. This language operates with a number of discrete units, logical succession and learned grammar rules. This process can be explained by activation (information) transfer from the right hemisphere to the left one. Thus, natural and spontaneous creative process, which is finished by a conscious effort, can be understood as an activation impulse transfer from the right hemisphere to the left one and back.

  10. Oxygenation and hemodynamics in left and right cerebral hemispheres during induction of veno-arterial extracorporeal membrane oxygenation.

    NARCIS (Netherlands)

    Heyst, A.F.J. van; Liem, D.; Hopman, J.C.W.; Staak, F.H.J.M. van der; Sengers, R.C.A.

    2004-01-01

    OBJECTIVE: Oxygenation and hemodynamics in the left and right cerebral hemispheres were measured during induction of veno-arterial extracorporeal membrane oxygenation (VA-ECMO). STUDY DESIGN: Using near infrared spectrophotometry, effects of right common carotid artery (RCCA) and right internal

  11. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815

  12. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  13. Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network.

    Science.gov (United States)

    Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi

    2017-01-01

    Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to

  14. Understanding Actions of Others: The Electrodynamics of the Left and Right Hemispheres. A High-Density EEG Neuroimaging Study

    Science.gov (United States)

    Ortigue, Stephanie; Sinigaglia, Corrado; Rizzolatti, Giacomo; Grafton, Scott T.

    2010-01-01

    Background When we observe an individual performing a motor act (e.g. grasping a cup) we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping) and the intention underlying it (i.e. grasping for drinking). Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer's capacity to understand what the agent is doing and why. Methodology/Principal Findings Volunteers were presented with two-frame video-clips. The first frame (T0) showed an object with or without context; the second frame (T1) showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs) were recorded time-locked with the frame showing the hand-object interaction (T1). The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatio-temporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1) bilateral posterior cortical activations; 2) a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3) a significant increase of the activations of the right temporo-parietal region with simultaneously co-active left hemispheric sources, and 4) a significant global decrease of cortical activity accompanied by the appearance of activation of the orbito-frontal cortex. Conclusions/Significance We conclude that the early striking left hemisphere involvement is due to the activation of a lateralized action-observation/action execution network. The activation of this lateralized network mediates the

  15. Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.

    Science.gov (United States)

    Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R

    1999-04-06

    Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.

  16. Hemispheric Dominance for Stereognosis in a Patient With an Infarct of the Left Postcentral Sensory Hand Area.

    Science.gov (United States)

    Moll, Jorge; de Oliveira-Souza, Ricardo

    2017-09-01

    The concept of left hemispheric dominance for praxis, speech, and language has been one of the pillars of neurology since the mid-19th century. In 1906, Hermann Oppenheim reported a patient with bilateral stereoagnosia (astereognosis) caused by a left parietal lobe tumor and proposed that the left hemisphere was also dominant for stereognosis. Surprisingly, few cases of bilateral stereoagnosia caused by a unilateral cerebral lesion have been documented in the literature since then. Here we report a 75-year-old right-handed man who developed bilateral stereoagnosia after suffering a small infarct in the crown of the left postcentral gyrus. He could not recognize objects with either hand, but retained the ability to localize stimuli applied to the palm of his left (ipsilesional) hand. He was severely disabled in ordinary activities requiring the use of his hands. The lesion corresponded to Brodmann area 1, where probabilistic anatomic, functional, and electrophysiologic studies have located one of the multiple somatosensory representations of the hand. The lesion was in a strategic position to interrupt both the processing of afferent tactile information issuing from the primary somatosensory cortex (areas 3a and 3b) and the forward higher-order processing in area 2, the secondary sensory cortex, and the contralateral area 1. The lesion also deprived the motor hand area of its afferent regulation from the sensory hand area (grasping), while leaving intact the visuomotor projections from the occipital cortex (reaching). Our patient supports Oppenheim's proposal that the left postcentral gyrus of some individuals is dominant for stereognosis.

  17. Modulating transcallosal and intra-hemispheric brain connectivity with tDCS: Implications for interventions in Aphasia.

    Science.gov (United States)

    Zheng, Xin; Dai, Weiying; Alsop, David C; Schlaug, Gottfried

    2016-07-25

    Transcranial direct current stimulation (tDCS) can enhance or diminish cortical excitability levels depending on the polarity of the stimulation. One application of non-invasive brain-stimulation has been to modulate a possible inter-hemispheric disinhibition after a stroke. This disinhibition model has been developed mainly for the upper extremity motor system, but it is not known whether the language/speech-motor system shows a similar inter-hemispheric interaction. We aimed to examine physiological evidence of inter- and intra-hemispheric connectivity changes induced by tDCS of the right inferior frontal gyrus (IFG) using arterial-spin labeling (ASL) MRI. Using an MR-compatible DC-Stimulator, we applied anodal stimulation to the right IFG region of nine healthy adults while undergoing non-invasive cerebral blood flow imaging with arterial-spin labeling (ASL) before, during, and after the stimulation. All ASL images were then normalized and timecourses were extracted in regions of interest (ROIs), which were the left and right IFG regions, and the right supramarginal gyrus (SMG) in the inferior parietal lobule. Two additional ROIs (the right occipital lobe and the left fronto-orbital region) were taken as control regions. Using regional correlation coefficients as a surrogate marker of connectivity, we could show that inter-hemispheric connectivity (right IFG with left IFG) decreased significantly (p < 0.05; r-scores from 0.67 to 0.53) between baseline and post-stimulation, while the intra-hemispheric connectivity (right IFG with right SMG) increased significantly (p < 0.05;r-scores from 0.74 to 0.81). A 2 × 2 ANOVA found a significant main effect of HEMISPHERE (F(8) = 6.83, p < 0.01) and a significant HEMISPHERE-by-TIME interaction (F(8) = 4.24, p < 0.05) in connectivity changes. The correlation scores did not change significantly in the control region pairs (right IFG with right occipital and right IFG with left fronto-orbital) over

  18. Reliability of lower limb transcranial magnetic stimulation outcomes in the ipsi- and contralesional hemispheres of adults with chronic stroke.

    Science.gov (United States)

    Beaulieu, Louis-David; Massé-Alarie, Hugo; Ribot-Ciscar, Edith; Schneider, Cyril

    2017-07-01

    To investigate the ability of transcranial magnetic stimulation (TMS) outcomes in the chronic stroke population to (i) track individual plastic changes and (ii) detect differences between individuals. To this end, intrarater "test-retest" reliability (relative and absolute) was tested for the ipsilesional and contralesional hemispheres. Thirteen participants with a unilateral stroke (≥6months ago) and sensorimotor impairments were enrolled. Single and paired-pulse TMS outcomes were obtained from the primary motor cortex (M1) representation of the tibialis anterior muscle in both hemispheres and at two sessions separated by one week. The standard error of the measurement (SEM eas ), minimal detectable change (MDC) and intraclass correlation coefficient (ICC) were studied. Active motor threshold and latency of motor evoked potentials provided the lowest SEM eas and highest ICCs for both ipsi- and contralesional hemispheres. However, MDC were generally large, thus questioning the use of TMS outcomes to track individual plastic changes of M1. Our study provided supporting evidence of good to excellent intrarater reliability for a few TMS outcomes and proposed recommendations on the interpretation and the use of that knowledge in future work. Psychometric properties of TMS measures should be further addressed in order to better understand how to refine their use in clinical settings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Spatial Analysis after Perinatal Stroke: Patterns of Neglect and Exploration in Extra-Personal Space

    Science.gov (United States)

    Thareja, Tarika; Ballantyne, Angela O.; Trauner, Doris A.

    2012-01-01

    This study was conducted to determine whether school-aged children who had experienced a perinatal stroke demonstrate evidence of persistent spatial neglect, and if such neglect was specific to the visual domain or was more generalized. Two studies were carried out. In the first, 38 children with either left hemisphere (LH) or right hemisphere…

  20. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    OpenAIRE

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel coun...

  1. Risk factors for swallowing dysfunction in stroke patients

    Directory of Open Access Journals (Sweden)

    Anna Flávia Ferraz Barros Baroni

    2012-06-01

    Full Text Available CONTEXT: Stroke is a frequent cause of dysphagia. OBJECTIVE: To evaluate in a tertiary care hospital the prevalence of swallowing dysfunction in stroke patients, to analyze factors associated with the dysfunction and to relate swallowing dysfunction to mortality 3 months after the stroke. METHODS: Clinical evaluation of deglutition was performed in 212 consecutive patients with a medical and radiologic diagnosis of stroke. The occurrence of death was determined 3 months after the stroke. RESULTS: It was observed that 63% of the patients had swallowing dysfunction. The variables gender and specific location of the lesion were not associated with the presence or absence of swallowing dysfunction. The patients with swallowing dysfunction had more frequently a previous stroke, had a stroke in the left hemisphere, motor and/or sensitivity alterations, difficulty in oral comprehension, alteration of oral expression, alteration of the level of consciousness, complications such as fever and pneumonia, high indexes on the Rankin scale, and low indexes on the Barthel scale. These patients had a higher mortality rate. CONCLUSIONS: Swallowing evaluation should be done in all patients with stroke, since swallowing dysfunction is associated with complications and an increased risk of death.

  2. Carotid Artery Stenting Successfully Prevents Progressive Stroke Due to Mobile Plaque

    Directory of Open Access Journals (Sweden)

    Masahiro Oomura

    2015-05-01

    Full Text Available We report a case of progressive ischemic stroke due to a mobile plaque, in which carotid artery stenting successfully prevented further infarctions. A 78-year-old man developed acute multiple infarcts in the right hemisphere, and a duplex ultrasound showed a mobile plaque involving the bifurcation of the left common carotid artery. Maximal medical therapy failed to prevent further infarcts, and the number of infarcts increased with his neurological deterioration. Our present case suggests that the deployment of a closed-cell stent is effective to prevent the progression of the ischemic stroke due to the mobile plaque.

  3. Radionuclide determination of right and left ventricular stroke volumes

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei Feng; Roubin, G S; Choong, C Y.P.; Harris, P J; Flether, P J; Kelly, D T; Uren, R F; Hutton, B F

    1985-03-01

    The relationship between radionuclide and thermodilution measurement of stroke volumes (SV) was investigated in 30 patients without valvular regurgitation or intracardiac shunt (group A) at rest and during exercise. Both attenuated radionuclide right ventricular (RV) and left ventricular (LV) SV measurements correlated well with the SV determined by the thermodilution method (r = 0.87 and r = 0.93, all P < 0.001). The reliability of the radionuclide method to estimate SV was evaluated prospectively in two additional groups of patients. In 11 patients without valvular regurgitation or intracardiac shunt (group B) the radionuclide RVSV and LVSV closely approximated to thermodilution SV at rest and during exercise. In 15 patients with aortic regurgitation (group C) the radionuclide stroke volume ratio correlated well with the angiographic regurgitant fraction. Thus, both RVSV and LVSV and the severity of aortic regurgitation can be reliably measured with gated radionuclide ventriculography.

  4. Pathological generosity: an atypical impulse control disorder after a left subcortical stroke.

    Science.gov (United States)

    Ferreira-Garcia, Rafael; Fontenelle, Leonardo F; Moll, Jorge; de Oliveira-Souza, Ricardo

    2014-01-01

    Changes in socio-emotional behavior and conduct, which are characteristic symptoms of frontal lobe damage, have less often been described in patients with focal subcortical injuries. We report on a case of pathological generosity secondary to a left lenticulocapsular stroke with hypoperfusion of several anatomically intact cortical areas. A 49-year-old man developed excessive and persistent generosity as he recovered from a left lenticulocapsular hematoma. His symptoms resembled an impulse control disorder. (99m)Tc-HMPAO SPECT demonstrated hypoperfusion mostly in the ipsilateral striatum, dorsolateral, and orbitofrontal cortex. This case study adds pathological generosity to the range of behavioral changes that may result from discrete unilateral lesions of the lenticular nucleus and nearby pathways. In our particular case, post-stroke pathological generosity was not ascribable to disinhibition, apathy, mania, or depression. Because pathological generosity may lead to significant distress and financial burden upon patients and their families, it may warrant further consideration as a potential type of impulse control disorder.

  5. Atherosclerotic plaque in the left carotid artery is more vulnerable than in the right.

    Science.gov (United States)

    Selwaness, Mariana; van den Bouwhuijsen, Quirijn; van Onkelen, Robbert S; Hofman, Albert; Franco, Oscar H; van der Lugt, Aad; Wentzel, Jolanda J; Vernooij, Meike

    2014-11-01

    Ischemic stroke is more often diagnosed in the left hemisphere than in the right. It is unknown whether this asymmetrical prevalence relates to differences in carotid atherosclerosis. We compared atherosclerotic plaque prevalence, severity, and composition between left and right carotid arteries. In a population-based cohort, carotid MRI scanning was performed in 1414 stroke-free participants (≥45 years). Using a multisequence MRI protocol, we assessed the prevalence, stenosis, and thickness of the plaque and its predominant component (ie, lipid core, intraplaque hemorrhage, calcification, or fibrous tissue in each carotid artery). Differences between left and right side were tested using paired t tests, McNemar test and Generalized Estimating Equation analyses. The majority (85%) of the participants had bilateral carotid plaques. Unilateral plaques were twice more prevalent on the left than on the right side (67% versus 33%; Pthe left (3.1±1.2 versus 2.9±1.3 mm; Pthe left (9.1 versus 5.9%; Pthe right (37.4 versus 31.6% at the left; Pright-sided plaques, which are more calcified and therefore considered more stable. © 2014 American Heart Association, Inc.

  6. The assessment of premorbid intellectual ability following right-hemisphere stroke: reliability of a lexical decision task.

    Science.gov (United States)

    Gillespie, David C; Bowen, Audrey; Foster, Jonathan K

    2012-01-01

    Comparing current with estimated premorbid performance helps identify acquired cognitive deficits after brain injury. Tests of reading pronunciation, often used to measure premorbid ability, are inappropriate for stroke patients with motor speech problems. The Spot-the-Word Test (STWT), a measure of lexical decision, offers an alternative approach for estimating premorbid capacity in those with speech problems. However, little is known about the STWT's reliability. In the present study, a consecutive sample of right-hemisphere stroke (RHS) patients (n = 56) completed the STWT at 4 and 16 weeks poststroke. A control group, individually matched to the patients for age and initial STWT score, also completed the STWT on two occasions. More than 80% of patients had STWT scores at retest within 2 scaled score points of their initial score, suggesting that the STWT is a reliable measure for most individuals with RHS. However, RHS patients had significantly greater score change than controls. Limits of agreement analysis revealed that approximately 1 in 7 patients obtained abnormally large STWT score improvements at retest. It is concluded that although the STWT is a useful assessment tool for stroke clinicians, this instrument may significantly underestimate premorbid level of ability in approximately 14% of stroke patients.

  7. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  8. Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study.

    Directory of Open Access Journals (Sweden)

    Stephanie Ortigue

    Full Text Available BACKGROUND: When we observe an individual performing a motor act (e.g. grasping a cup we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping and the intention underlying it (i.e. grasping for drinking. Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer's capacity to understand what the agent is doing and why. METHODOLOGY/PRINCIPAL FINDINGS: Volunteers were presented with two-frame video-clips. The first frame (T0 showed an object with or without context; the second frame (T1 showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs were recorded time-locked with the frame showing the hand-object interaction (T1. The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatio-temporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1 bilateral posterior cortical activations; 2 a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3 a significant increase of the activations of the right temporo-parietal region with simultaneously co-active left hemispheric sources, and 4 a significant global decrease of cortical activity accompanied by the appearance of activation of the orbito-frontal cortex. CONCLUSIONS/SIGNIFICANCE: We conclude that the early striking left hemisphere involvement is due to the activation of a lateralized action-observation/action execution network. The activation of this lateralized network

  9. Communication in conversation in stroke patients.

    Science.gov (United States)

    Rousseaux, Marc; Daveluy, Walter; Kozlowski, Odile

    2010-07-01

    In stroke patients, it has been suggested that communication disorders could result from lexical and syntactic disorders in left hemisphere lesions and from pragmatics problems in right lesions. However, we have little information on patient behaviour in dyadic communication, especially in conversation. Here, we analyzed the various processes participating in communication difficulties at the rehabilitation phase (1-6 months) post-stroke, in order to define the main mechanisms of verbal and non-verbal communication (VC, NVC) disorders and their relationship with aphasic disorders. Sixty-three patients were recruited, who belonged to six groups, with left or right cortico-sub-cortical (L-CSC, R-CSC) or sub-cortical (L-SC, R-SC), frontal (Fro) or posterior fossa (PF) lesions. They were compared with an equivalent control group (gender, age, education level). We used the Lille Communication Test, which comprises three parts: participation to communication (greeting, attention, engagement), verbal communication (verbal comprehension, speech outflow, intelligibility, word production, syntax, verbal pragmatics and verbal feedback) and non-verbal communication (understanding gestures, affective expressivity, producing gestures, pragmatics and feedback). We also used the Functional Communication Profile and the Boston Diagnostic Aphasia Examination (BDAE). Decrease in participation was found in L-CSC, R-CSC and Fro patients. Verbal communication was essentially disrupted in L-SCS and L-SC groups, including by verbal pragmatic disorders, and to a lesser degree in frontal patients. Nonverbal communication was mainly affected in R-CSC patients, especially by pragmatic difficulties. L-CSC patients showed an increase in gesture production, compensating for aphasia. In conclusion, communication disorders were relatively complex and could not be summarised by syntactical and lexical difficulties in left stroke and pragmatic problems in right stroke. The former also showed severe

  10. False memories to emotional stimuli are not equally affected in right- and left-brain-damaged stroke patients.

    Science.gov (United States)

    Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky

    2014-10-01

    Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Hemispheric specialization in dogs for processing different acoustic stimuli.

    Directory of Open Access Journals (Sweden)

    Marcello Siniscalchi

    Full Text Available Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions.

  12. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    Science.gov (United States)

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Posterior reversible encephalopathy syndrome mimicking a left middle cerebral artery stroke.

    Science.gov (United States)

    Terranova, Santo; Kumar, Jai Dev; Libman, Richard B

    2012-01-01

    Certain Acute Clinical presentations are highly suggestive of stroke caused by specific mechanisms. One example of this would be the sudden onset of aphasia without hemiparesis often reflecting cerebral embolism, frequently from a cardiac source. Posterior reversible encephalopathy syndrome (PRES) describes a usually reversible neurologic syndrome with a variety of presenting symptoms from headache, altered mental status, seizures, vomiting, diminished spontaneity and speech, abnormalities of visual perception and visual loss. We report a patient presenting with elevated blood pressure, CT characteristics of PRES but a highly circumscribed neurologic syndrome (Wernicke's Aphasia without hemiparesis) suggestive of a cardioembolic stroke affecting the left MCA territory. That is, PRES mimicked a focal stroke syndrome. The importance of recognizing this possibility is that his deficits resolved with blood pressure control, while other treatments, such as intensifying his anticoagulation would have been inappropriate. In addition, allowing his blood pressure to remain elevated as is often done in the setting of an acute stroke might have perpetuated the underlying pathophysiology of PRES leading to a worse clinical outcome. For this reason PRES needs to be recognized quickly and treated appropriately.

  14. Left atrial function to identify patients with atrial fibrillation at high risk of stroke: new insights from a large registry.

    Science.gov (United States)

    Leung, Melissa; van Rosendael, Philippe J; Abou, Rachid; Ajmone Marsan, Nina; Leung, Dominic Y; Delgado, Victoria; Bax, Jeroen J

    2018-04-21

    Atrial fibrillation (AF) is an independent risk factor for ischaemic stroke. The CHA2DS2-VASc is the most widely used risk stratification model; however, echocardiographic refinement may be useful, particularly in low risk AF patients. The present study examined the association between advanced echocardiographic parameters and ischaemic stroke, independent of CHA2DS2-VASc score. One thousand, three hundred and sixty-one patients (mean age 65±12 years, 74% males) with first diagnosis of AF and baseline transthoracic echocardiogram were followed by chart review for the occurrence of stroke over a mean of 7.9 years. Left atrial (LA) volumes, LA reservoir strain, P-wave to A' duration on tissue Doppler imaging (PA-TDI, reflecting total atrial conduction time), and left ventricular (LV) global longitudinal strain (GLS) were evaluated in patients with and without stroke. The independent association of these echocardiographic parameters with the occurrence of ischaemic stroke was evaluated with Cox proportional hazard models. One-hundred patients (7%) developed an ischaemic stroke, representing an annualized stroke rate of 0.9%. The incident stroke rate in the year following the first diagnosis of AF was 2.6% in the entire population and higher than the remainder of the follow-up period. Left atrial reservoir (14.5% vs. 18.9%, P = 0.005) and conduit strains were reduced (10.5% vs. 13.5%, P = 0.013), and PA-TDI lengthened (166 ms vs. 141 ms, P Left atrial reservoir strain and PA-TDI were independently associated with risk of stroke in a model including CHA2DS2-VASc score, age, and anticoagulant use. The assessment of LA reservoir strain and PA-TDI on echocardiography after initial CHA2DS2-VASc scoring provides additional risk stratification for stroke and may be useful to guide decisions regarding anticoagulation for patients upon first diagnosis of AF.

  15. The association between hemispheric specialization for language production and for spatial attention depends on left-hand preference strength.

    Science.gov (United States)

    Zago, Laure; Petit, Laurent; Mellet, Emmanuel; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2016-12-01

    Cerebral lateralization for language production and spatial attention and their relationships with manual preference strength (MPS) were assessed in a sample of 293 healthy volunteers, including 151 left-handers, using fMRI during covert sentence production (PROD) and line bisection judgment (LBJ) tasks, as compared to high- and low-level reference tasks. At the group level, we found the expected complementary hemispheric specialization (HS) with leftward asymmetries for PROD within frontal and temporal regions and rightward asymmetries for LBJ within frontal and posterior occipito-parieto-temporal regions. Individual hemispheric (HLI) and regional (frontal and occipital) lateralization indices (LI) were then calculated on the activation maps for PROD and LBJ. We found a correlation between the degree of rightward cerebral asymmetry and the leftward behavioral attentional bias recorded during LBJ task. This correlation was found when LBJ-LI was computed over the hemispheres, in the frontal lobes, but not in the occipital lobes. We then investigated whether language production and spatial attention cerebral lateralization relate to each other, and whether manual preference was a variable that impacted the complementary HS of these functions. No correlation was found between spatial and language LIs in the majority of our sample of participants, including right-handers with a strong right-hand preference (sRH, n=97) and mixed-handers (MH, n=97), indicating that these functions lateralized independently. By contrast, in the group of left-handers with a strong left-hand preference (sLH, n= 99), a negative correlation was found between language and spatial lateralization. This negative correlation was found when LBJ-LI and PROD-LI were computed over the hemispheres, in the frontal lobes and between the occipital lobes for LBJ and the frontal lobes for PROD. These findings underline the importance to include sLH in the study sample to reveal the underlying mechanisms of

  16. Multimodality language mapping in patients with left-hemispheric language dominance on Wada test.

    Science.gov (United States)

    Kojima, Katsuaki; Brown, Erik C; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi

    2012-10-01

    We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p hemispheric language-dominance. Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Directory of Open Access Journals (Sweden)

    Melissa Zavaglia

    2015-01-01

    Full Text Available Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA, to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS. The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’.

  18. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  19. Left atrial size in patients with cryptogenic stroke as a predictor of occurrence of atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Antonio Cruz Culebras

    2017-04-01

    Full Text Available Objective: To determine whether the left atrial size can predict the development of atrial fibrillation (AF in patients with embolic stroke of undetermined source (ESUS. Methods: Patients with ischemic stroke were included prospectively (January 2015-July 2015 when ESUS was suspected. Clinical and cardiac imaging data were recorded. Patients with cardiac failure were excluded. Results: a total of 55 patients were included. Medium age was 71 years. The proportion of patients who developed AF during the follow-up (1 year was 23, 63%. 10 % of patients did not have any vascular risk factor. Basal ECG was normal in 98% of cases. The left atrial size volume was 36, 08 ml in patients who developed AF and 27, 14 ml in patients who did not. Conclusions: In patients with ESUS, left atrial size dimensions do not predict the occurrence of AF.

  20. Co-speech hand movements during narrations: What is the impact of right vs. left hemisphere brain damage?

    Science.gov (United States)

    Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda

    2016-12-01

    Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Impairment on theory of mind and empathy in patients with stroke.

    Science.gov (United States)

    Yeh, Zai-Ting; Tsai, Chung-Fen

    2014-08-01

    Impaired social function has been described in patients following stroke. The present study was designed to explore the degree of impairment in the ability to infer mental states in others, or cognitive and affective theory of mind, and empathy, in patients with stroke. A total of 34 patients with stroke were compared to 40 control subjects on tasks testing verbal and non-verbal theory of mind and empathy. Results indicated that patients with stroke were significantly impaired in both cognitive and affective theory of mind, even controlling for basic cognitive function and emotional processing. The patients with right stroke had poorer performance than those with left stroke on the cognitive component of non-verbal theory of mind. On the subscale of cognitive empathy, the right stroke group had poorer performance on perspective-taking than the control group. The right hemisphere may play an important role in decoding non-verbal cues to infer others' minds as well as the processing of empathy, especially the ability of perspective-taking. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  2. Rehabilitation of limb apraxia improves daily life activities in patients with stroke.

    Science.gov (United States)

    Smania, N; Aglioti, S M; Girardi, F; Tinazzi, M; Fiaschi, A; Cosentino, A; Corato, E

    2006-12-12

    We randomly assigned 33 patients with left hemisphere stroke, limb apraxia, and aphasia to an apraxia or a control (aphasia) treatment group. Before and after each treatment, patients underwent a comprehensive neuropsychological testing battery and a caregiver evaluation of patient's activities of daily life (ADL) independence. Apraxia severity was related with ADL independence. Control (aphasia) treatment improved patients' language and intelligence performance. Apraxia treatment specifically improved praxic function and ADL.

  3. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.; Blinder, B.; Derrfler, M.; Tai, W.Y.; Hazlett, E.; Sicotte, N. (Univ. of California, Irvine (USA))

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion that bulimia is a diagnostic grouping distinct from these disorders.

  4. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  5. Altered resting-state network connectivity in stroke patients with and without apraxia of speech.

    Science.gov (United States)

    New, Anneliese B; Robin, Donald A; Parkinson, Amy L; Duffy, Joseph R; McNeil, Malcom R; Piguet, Olivier; Hornberger, Michael; Price, Cathy J; Eickhoff, Simon B; Ballard, Kirrie J

    2015-01-01

    Motor speech disorders, including apraxia of speech (AOS), account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS), inferior frontal gyrus (IFG), and ventral premotor cortex (PM)) in a group of 32 left hemisphere stroke patients and 18 healthy, age-matched controls. Two expert clinicians rated severity of AOS, dysarthria and nonverbal oral apraxia of the patients. Fifteen individuals were categorized as AOS and 17 were AOS-absent. Comparison of connectivity in patients with and without AOS demonstrated that AOS patients had reduced connectivity between bilateral PM, and this reduction correlated with the severity of AOS impairment. In addition, AOS patients had negative connectivity between the left PM and right aINS and this effect decreased with increasing severity of non-verbal oral apraxia. These results highlight left PM involvement in AOS, begin to differentiate its neural mechanisms from those of other motor impairments following stroke, and help inform us of the neural mechanisms driving differences in speech motor planning and programming impairment following stroke.

  6. Altered resting-state network connectivity in stroke patients with and without apraxia of speech

    Directory of Open Access Journals (Sweden)

    Anneliese B. New

    2015-01-01

    Full Text Available Motor speech disorders, including apraxia of speech (AOS, account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS, inferior frontal gyrus (IFG, and ventral premotor cortex (PM in a group of 32 left hemisphere stroke patients and 18 healthy, age-matched controls. Two expert clinicians rated severity of AOS, dysarthria and nonverbal oral apraxia of the patients. Fifteen individuals were categorized as AOS and 17 were AOS-absent. Comparison of connectivity in patients with and without AOS demonstrated that AOS patients had reduced connectivity between bilateral PM, and this reduction correlated with the severity of AOS impairment. In addition, AOS patients had negative connectivity between the left PM and right aINS and this effect decreased with increasing severity of non-verbal oral apraxia. These results highlight left PM involvement in AOS, begin to differentiate its neural mechanisms from those of other motor impairments following stroke, and help inform us of the neural mechanisms driving differences in speech motor planning and programming impairment following stroke.

  7. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  8. Atypical hemispheric dominance for attention: functional MRI topography.

    Science.gov (United States)

    Flöel, Agnes; Jansen, Andreas; Deppe, Michael; Kanowski, Martin; Konrad, Carsten; Sommer, Jens; Knecht, Stefan

    2005-09-01

    The right hemisphere is predominantly involved in tasks associated with spatial attention. However, left hemispheric dominance for spatial attention can be found in healthy individuals, and both spatial attention and language can be lateralized to the same hemisphere. Little is known about the underlying regional distribution of neural activation in these 'atypical' individuals. Previously a large number of healthy subjects were screened for hemispheric dominance of visuospatial attention and language, using functional Doppler ultrasonography. From this group, subjects were chosen who were 'atypical' for hemispheric dominance of visuospatial attention and language, and their pattern of brain activation was studied with functional magnetic resonance imaging during a task probing spatial attention. Right-handed subjects with the 'typical' pattern of brain organization served as control subjects. It was found that subjects with an inverted lateralization of language and spatial attention (language right, attention left) recruited left-hemispheric areas in the attention task, homotopic to those recruited by control subjects in the right hemisphere. Subjects with lateralization of both language and attention to the right hemisphere activated an attentional network in the right hemisphere that was comparable to control subjects. The present findings suggest that not the hemispheric side, but the intrahemispheric pattern of activation is the distinct feature for the neural processes underlying language and attention.

  9. Non-invasive measurement of stroke volume and left ventricular ejection fraction. Radionuclide cardiography compared with left ventricular cardioangiography

    DEFF Research Database (Denmark)

    Kelbaek, H; Svendsen, J H; Aldershvile, J

    1988-01-01

    The stroke volume (SV) was determined by first passage radionuclide cardiography and the left ventricular ejection fraction (LVEF) by multigated radionuclide cardiography in 20 patients with ischemic heart disease. The results were evaluated against those obtained by the invasive dye dilution or ...... are reliable. The discrepancy between the non-invasive and invasive LVEF values raises the question, whether LVEF is overestimated by cardioangiography or underestimated by radionuclide cardiography....

  10. Hemorrhagic Cardioembolic Stroke Secondary to a Left Ventricular Thrombus: a Therapeutic Dilemma

    Directory of Open Access Journals (Sweden)

    Khalil Al-Farsi

    2013-01-01

    Full Text Available Cardiogenic embolism is a major cause of stroke and often leads to significant morbidity and mortality. Despite the recent advances in our understanding of the pathophysiology of stroke and its risk factors, diagnosis and therapy; some case scenarios still present a real challenge for the treating physicians. We report a case of a 50 year old male patient presenting with multi-territory cerebral infarctions due to a left ventricular mobile thrombus complicated with hemorrhagic transformation at the time of presentation. Gradual introduction of anticoagulation coupled with a multidisciplinary team approach advocating careful daily clinical assessment of the patient and regular echocardiographic and neuroimaging studies have resulted in a better management and achievement of therapeutic goals.

  11. Effects of age, sex and arm on the precision of arm position sense-left-arm superiority in healthy right-handers.

    Science.gov (United States)

    Schmidt, Lena; Depper, Lena; Kerkhoff, Georg

    2013-01-01

    Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed.

  12. Predicting hemispheric dominance for language production in healthy individuals using support vector machine.

    Science.gov (United States)

    Zago, Laure; Hervé, Pierre-Yves; Genuer, Robin; Laurent, Alexandre; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie; Joliot, Marc

    2017-12-01

    We used a Support Vector Machine (SVM) classifier to assess hemispheric pattern of language dominance of 47 individuals categorized as non-typical for language from their hemispheric functional laterality index (HFLI) measured on a sentence minus word-list production fMRI-BOLD contrast map. The SVM classifier was trained at discriminating between Dominant and Non-Dominant hemispheric language production activation pattern on a group of 250 participants previously identified as Typicals (HFLI strongly leftward). Then, SVM was applied to each hemispheric language activation pattern of 47 non-typical individuals. The results showed that at least one hemisphere (left or right) was found to be Dominant in every, except 3 individuals, indicating that the "dominant" type of functional organization is the most frequent in non-typicals. Specifically, left hemisphere dominance was predicted in all non-typical right-handers (RH) and in 57.4% of non-typical left-handers (LH). When both hemisphere classifications were jointly considered, four types of brain patterns were observed. The most often predicted pattern (51%) was left-dominant (Dominant left-hemisphere and Non-Dominant right-hemisphere), followed by right-dominant (23%, Dominant right-hemisphere and Non-Dominant left-hemisphere) and co-dominant (19%, 2 Dominant hemispheres) patterns. Co-non-dominant was rare (6%, 2 Non-Dominant hemispheres), but was normal variants of hemispheric specialization. In RH, only left-dominant (72%) and co-dominant patterns were detected, while for LH, all types were found, although with different occurrences. Among the 10 LH with a strong rightward HFLI, 8 had a right-dominant brain pattern. Whole-brain analysis of the right-dominant pattern group confirmed that it exhibited a functional organization strictly mirroring that of left-dominant pattern group. Hum Brain Mapp 38:5871-5889, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices.

    Science.gov (United States)

    Frontera, Jennifer A; Starling, Randall; Cho, Sung-Min; Nowacki, Amy S; Uchino, Ken; Hussain, M Shazam; Mountis, Maria; Moazami, Nader

    2017-06-01

    Stroke is a major cause of mortality after left ventricular assist device (LVAD) placement. Prospectively collected data of patients with HeartMate II (n = 332) and HeartWare (n = 70) LVADs from October 21, 2004, to May 19, 2015, were reviewed. Predictors of early (during index hospitalization) and late (post-discharge) ischemic and hemorrhagic stroke and association of stroke subtypes with mortality were assessed. Of 402 patients, 83 strokes occurred in 69 patients (17%; 0.14 events per patient-year [EPPY]): early ischemic stroke in 18/402 (4%; 0.03 EPPY), early hemorrhagic stroke in 11/402 (3%; 0.02 EPPY), late ischemic stroke in 25/402 (6%; 0.04 EPPY) and late hemorrhagic stroke in 29/402 (7%; 0.05 EPPY). Risk of stroke and death among patients with stroke was bimodal with highest risks immediately post-implant and increasing again 9-12 months later. Risk of death declined over time in patients without stroke. Modifiable stroke risk factors varied according to timing and stroke type, including tobacco use, bacteremia, pump thrombosis, pump infection, and hypertension (all p hemorrhagic stroke (adjusted odds ratio [aOR] 4.3, 95% confidence interval [CI] 1.0-17.8, p = 0.04), late ischemic stroke (aOR 3.2, 95% CI 1.1-9.0, p = 0.03), and late hemorrhagic stroke (aOR 3.7, 95% CI 1.5-9.2, p = 0.005) predicted death, whereas early ischemic stroke did not. Stroke is a leading cause and predictor of death in patients with LVADs. Risk of stroke and death among patients with stroke is bimodal, with highest risk at time of implant and increasing risk again after 9-12 months. Management of modifiable risk factors may reduce stroke and mortality rates. Copyright © 2017 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  14. Global aphasia as a predictor of mortality in the acute phase of a first stroke

    Directory of Open Access Journals (Sweden)

    F F Oliveira

    2011-01-01

    Full Text Available OBJECTIVE: To establish whether vascular aphasic syndromes can predict stroke outcomes. METHOD: Thirty-seven adults were evaluated for speech and language within 72 hours after a single first-ever ischemic brain lesion, in blind association to CT and/or MR. RESULTS: Speech or language disabilities were found in seven (87.5% of the eight deceased patients and twenty-six (89.7% of the twenty-nine survivors. Global aphasia was identified in eleven patients, all with left hemisphere lesions (nine mute; five deceased, consisting on a risk factor for death in the acute stroke phase (ρ=0.022. Age (z=1.65; ρ>0.09, thrombolysis (ρ=0.591, infarct size (ρ=0.076 and side (ρ=0.649 did not significantly influence survival. Absence of aphasia did not predict a better evolution, regardless of the affected hemisphere. Prevalence of cardiovascular risk factors was similar for all patient groups. CONCLUSION: Global aphasia in acute stroke can adversely affect prognosis, translated into impairment of dominant perisylvian vascular territories, with mutism as an important semiological element.

  15. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  16. Meningiomatosis restricted to the left cerebral hemisphere with acute clinical deterioration: Case presentation and discussion of treatment options.

    Science.gov (United States)

    Ohla, Victoria; Scheiwe, Christian

    2015-01-01

    True multiple meningiomas are defined as meningiomas occurring at several intracranial locations simultaneously without the presence of neurofibromatosis. Though the prognosis does not differ from benign solitary meningiomas, the simultaneous occurrence of different grades of malignancy has been reported in one-third of patients with multiple meningiomas. Due to its rarity, unclear etiology, and questions related to proper management, we are presenting our case of meningiomatosis and discuss possible pathophysiological mechanisms. We illustrate the case of a 55-year-old female with multiple meningothelial meningeomas exclusively located in the left cerebral hemisphere. The patient presented with acute vigilance decrement, aphasia, and vomiting. Further deterioration with sopor and nondirectional movements required oral intubation. Emergent magnetic resonance imaging (MRI) with MR-angiography disclosed a massive midline shift to the right due to widespread, plaque-like lesions suspicious for meningeomatosis, purely restricted to the left cerebral hemisphere. Emergency partial tumor resection was performed. Postoperative computed tomography (CT) scan showed markedly reduction of cerebral edema and midline shift. After tapering the sedation a right-sided hemiparesis resolved within 2 weeks, leaving the patient neurologically intact. Although multiple meningeomas are reported frequently, the presence of meningeomatosis purely restricted to one cerebral hemisphere is very rare. As with other accessible and symptomatic lesions, the treatment of choice is complete resection with clean margins to avoid local recurrence. In case of widespread distribution a step-by-step resection with the option of postoperative radiation of tumor remnants may be an option.

  17. Hypothalamic-mediated model for systemic lupus erythematosis: relation to hemispheric chemical dominance.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-11-01

    The isoprenoid pathway including endogenous digoxin was assessed in systemic lupus erythematosis (SLE). All the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. This was also studied for comparison in patients with right hemispheric and left hemispheric dominance. The isoprenoid pathway was upregulated with increased digoxin synthesis in patients with SLE and in those with right hemispheric dominance. In this group of patients (i) the tryptophan catabolites were increased and the tyrosine catabolites reduced, (ii) the dolichol and glycoconjugate levels were elevated, (iii) lysosomal stability was reduced, (iv) ubiquinone levels were low and free radical levels increased, and (v) the membrane cholesterol:phospholipid ratios were increased and membrane glycoconjugates reduced. On the other hand, in patients with left hemispheric dominance the reverse patterns were obtained. The biochemical patterns obtained in SLE is similar to those obtained in left-handed/right hemispheric chemically dominant individuals. But all the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. SLE occurs in right hemispheric chemically dominant individuals, and is a reflection of altered brain function. The role of the isoprenoid pathway in the pathogenesis of SLE and its relation to hemispheric dominance is discussed.

  18. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  19. Reading the Wrong Way with the Right Hemisphere

    Directory of Open Access Journals (Sweden)

    Ian J. Kirk

    2013-07-01

    Full Text Available Reading is a complex process, drawing on a variety of brain functions in order to link symbols to words and concepts. The three major brain areas linked to reading and phonological analysis include the left temporoparietal region, the left occipitotemporal region and the inferior frontal gyrus. Decreased activation of the left posterior language system in dyslexia is well documented but there is relatively limited attention given to the role of the right hemisphere. The current study investigated differences in right and left hemisphere activation between individuals with dyslexia and non-impaired readers in lexical decision tasks (regular words, irregular words, pseudowords during functional Magnetic Resonance Imaging (fMRI. Results revealed the expected hypo-activation in the left posterior areas in those with dyslexia but also areas of overactivation in the right hemisphere. During pseudoword decisions, for example, adults with dyslexia showed more right inferior occipital gyrus activation than controls. In general the increased activation of left-hemisphere language areas found in response to both regular and pseudowords was absent in dyslexics. Laterality indices showed that while controls showed left lateralised activation of the temporal lobe during lexical decision making, dyslexic readers showed right activation. Findings will inform theories of reading and will have implications for the design of reading interventions.

  20. Reading the wrong way with the right hemisphere.

    Science.gov (United States)

    Waldie, Karen E; Haigh, Charlotte E; Badzakova-Trajkov, Gjurgjica; Buckley, Jude; Kirk, Ian J

    2013-07-17

    Reading is a complex process, drawing on a variety of brain functions in order to link symbols to words and concepts. The three major brain areas linked to reading and phonological analysis include the left temporoparietal region, the left occipitotemporal region and the inferior frontal gyrus. Decreased activation of the left posterior language system in dyslexia is well documented but there is relatively limited attention given to the role of the right hemisphere. The current study investigated differences in right and left hemisphere activation between individuals with dyslexia and non-impaired readers in lexical decision tasks (regular words, irregular words, pseudowords) during functional Magnetic Resonance Imaging (fMRI). Results revealed the expected hypo-activation in the left posterior areas in those with dyslexia but also areas of overactivation in the right hemisphere. During pseudoword decisions, for example, adults with dyslexia showed more right inferior occipital gyrus activation than controls. In general the increased activation of left-hemisphere language areas found in response to both regular and pseudowords was absent in dyslexics. Laterality indices showed that while controls showed left lateralised activation of the temporal lobe during lexical decision making, dyslexic readers showed right activation. Findings will inform theories of reading and will have implications for the design of reading interventions.

  1. Left-handedness and language lateralization in children.

    Science.gov (United States)

    Szaflarski, Jerzy P; Rajagopal, Akila; Altaye, Mekibib; Byars, Anna W; Jacola, Lisa; Schmithorst, Vincent J; Schapiro, Mark B; Plante, Elena; Holland, Scott K

    2012-01-18

    This fMRI study investigated the development of language lateralization in left- and righthanded children between 5 and 18 years of age. Twenty-seven left-handed children (17 boys, 10 girls) and 54 age- and gender-matched right-handed children were included. We used functional MRI at 3T and a verb generation task to measure hemispheric language dominance based on either frontal or temporo-parietal regions of interest (ROIs) defined for the entire group and applied on an individual basis. Based on the frontal ROI, in the left-handed group, 23 participants (85%) demonstrated left-hemispheric language lateralization, 3 (11%) demonstrated symmetric activation, and 1 (4%) demonstrated right-hemispheric lateralization. In contrast, 50 (93%) of the right-handed children showed left-hemispheric lateralization and 3 (6%) demonstrated a symmetric activation pattern, while one (2%) demonstrated a right-hemispheric lateralization. The corresponding values for the temporo-parietal ROI for the left-handed children were 18 (67%) left-dominant, 6 (22%) symmetric, 3 (11%) right-dominant and for the right-handed children 49 (91%), 4 (7%), 1 (2%), respectively. Left-hemispheric language lateralization increased with age in both groups but somewhat different lateralization trajectories were observed in girls when compared to boys. The incidence of atypical language lateralization in left-handed children in this study was similar to that reported in adults. We also found similar rates of increase in left-hemispheric language lateralization with age between groups (i.e., independent of handedness) indicating the presence of similar mechanisms for language lateralization in left- and right-handed children. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. [Autopsy case of Lissauer's general paresis with rapidly progressive left hemiparesis].

    Science.gov (United States)

    Kato, Hiroko; Yoshida, Mari; Ando, Tetsuo; Sugiura, Makoto; Hashizume, Yoshio

    2009-06-01

    A 48-years-old man presented with slowly progressive bradykinesia, personality change and rapidly progressive left hemiparesis. On admission, he presented dementia, poor judgment, left hemiparesis. MRI revealed a widespread high intensity area in right hemisphere and MRA was almost normal. Serological tests of serum and CSF demonstrated high titers of antibodies to Treponema pallidum. He was treated for syphilis with daily penicillin injections without improvement. He died of sepsis eight months after admission. At autopsy, the brain weighed 1,100 g and the right cerebral hemisphere was atrophic, especially in frontal base, temporal, parietal, angular, and posterior regions covered by thickened, fibrotic leptomeninges. Microscopically, chronic meningoencephalitis was observed. Severe neuronal loss with gliosis was seen in the right cerebral cortices. Scattered rod-shaped microglia and inflammatory cell infiltration were visible in the cerebral parenchyma. The dorsal column of the spinal cord was not involved and meningovascular syphilis was unclear. The distribution of the encephalitic lesions was well correlated with the clinical and neuroradiological findings. This was a rare autopsy case presenting Lissauer's general paresis, clinically manifesting as rapidly progressive stroke-like episode.

  3. Association of ischemic stroke, hormone therapy, and right to left shunt in postmenopausal women.

    Science.gov (United States)

    Greep, Nancy C; Liebeskind, David S; Gevorgyan, Rubine; Truong, Tam; Cua, Bennett; Tseng, Chi-Hong; Dodick, David W; Demaerschalk, Bart M; Thaler, David E; Tobis, Jonathan M

    2014-09-01

    Postmenopausal hormone therapy (HT) increases the risk of venous thrombosis and ischemic stroke. We postulated that HT might increase the risk of ischemic stroke by promoting venous clots that travel to the brain through a right to left shunt (RLS). A total of 2,389 records were studied. After eliminating the premenopausal patients, and those with TIAs and non-ischemic strokes, the medical records of 1846 postmenopausal women hospitalized at four institutions for ischemic stroke were reviewed to identify those who had undergone an adequate study to assess for RLS. The proportion of women with a shunt in users and non-users of HT was compared in stroke patients and in a reference population consisting of postmenopausal women undergoing elective cardiac catheterization. There were 363 (20%) records that had complete data and were included in the analysis. A shunt was more prevalent in patients with a cryptogenic stroke than in patients with a stroke of known cause (55/88 (63%) vs. 53/275 (19%), P women 31/136 (23%), and the proportion of women with a shunt was similar in non-users and current users of HT (14% vs. 20%, P = 0.40). However, among patients with a cryptogenic stroke, the prevalence of a shunt was 1.5 times higher in current users than non-users of HT (82% vs. 56%, P = 0.04). Approximately 23% of older women have a RLS. HT in these women may increase the risk of ischemic stroke by promoting paradoxical embolism. © 2014 Wiley Periodicals, Inc.

  4. Left hemisphere structural connectivity abnormality in pediatric hydrocephalus patients following surgery.

    Science.gov (United States)

    Yuan, Weihong; Meller, Artur; Shimony, Joshua S; Nash, Tiffany; Jones, Blaise V; Holland, Scott K; Altaye, Mekibib; Barnard, Holly; Phillips, Jannel; Powell, Stephanie; McKinstry, Robert C; Limbrick, David D; Rajagopal, Akila; Mangano, Francesco T

    2016-01-01

    Neuroimaging research in surgically treated pediatric hydrocephalus patients remains challenging due to the artifact caused by programmable shunt. Our previous study has demonstrated significant alterations in the whole brain white matter structural connectivity based on diffusion tensor imaging (DTI) and graph theoretical analysis in children with hydrocephalus prior to surgery or in surgically treated children without programmable shunts. This study seeks to investigate the impact of brain injury on the topological features in the left hemisphere, contratelateral to the shunt placement, which will avoid the influence of shunt artifacts and makes further group comparisons feasible for children with programmable shunt valves. Three groups of children (34 in the control group, 12 in the 3-month post-surgery group, and 24 in the 12-month post-surgery group, age between 1 and 18 years) were included in the study. The structural connectivity data processing and analysis were performed based on DTI and graph theoretical analysis. Specific procedures were revised to include only left brain imaging data in normalization, parcellation, and fiber counting from DTI tractography. Our results showed that, when compared to controls, children with hydrocephalus in both the 3-month and 12-month post-surgery groups had significantly lower normalized clustering coefficient, lower small-worldness, and higher global efficiency (all p  hydrocephalus surgically treated with programmable shunts.

  5. Hemispheric resource limitations in comprehending ambiguous pictures.

    Science.gov (United States)

    White, H; Minor, S W

    1990-03-01

    Ambiguous pictures (Roschach inkblots) were lateralized for 100 msec vs. 200 msec to the right and left hemispheres (RH and LH) of 32 normal right-handed males who determined which of two previously presented words (an accurate or inaccurate one) better described the inkblot. Over the first 32 trials, subjects receiving each stimulus exposure duration were less accurate when the hemisphere receiving the stimulus also controlled the hand used to register a keypress response (RH-left hand and LH-right hand trials) than when hemispheric resources were shared, i.e., when one hemisphere controlled stimulus processing and the other controlled response programming. These differences were eliminated when the 32 trials were repeated.

  6. Electrophysiological evidence for the action of a center-surround mechanism on semantic processing in the left hemisphere

    Directory of Open Access Journals (Sweden)

    Diana eDeacon

    2013-12-01

    Full Text Available Physiological evidence was sought for a center-surround attentional mechanism (CSM, which has been proposed to assist in the retrieval of weakly activated items from semantic memory. The CSM operates by facilitating strongly related items in the center of the weakly activated area of semantic memory, and inhibiting less strongly related items in its surround. In this study weak activation was created by having subjects acquire the meanings of new words to a recall criterion of only 50%. Subjects who attained this approximate criterion level of performance were subsequently included in a semantic priming task, during which ERPs were recorded. Primes were newly learned rare words, and targets were either synonyms, nonsynonymously related words, or unrelated words. All stimuli were presented to the RVF/LH (right visual field/left hemisphere or the LVF/RH (left visual field/right hemisphere. Under RVF/LH stimulation the newly learned word primes produced facilitation on N400 for synonym targets, and inhibition for related targets. No differences were observed under LVF/RH stimulation. The LH thus, supports a CSM, whereby a synonym in the center of attention focused on the newly learned word is facilitated, whereas a related word in the surround is inhibited. The data are consistent with the view of this laboratory that semantic memory is subserved by a spreading activation system in the LH. Also consistent with our view, there was no evidence of spreading activation in the RH. The findings are discussed in the context of additional recent theories of semantic memory. Finally, the adult right hemisphere may require more learning than the LH in order to demonstrate evidence of meaning acquisition.

  7. Right-Brained Kids in Left-Brained Schools

    Science.gov (United States)

    Hunter, Madeline

    1976-01-01

    Students who learn well through left hemisphere brain input (oral and written) have minimal practice in using the right hemisphere, while those who are more proficient in right hemisphere (visual) input processing are handicapped by having to use primarily their left brains. (MB)

  8. Motivation and motor control: hemispheric specialization for approach motivation reverses with handedness.

    Science.gov (United States)

    Brookshire, Geoffrey; Casasanto, Daniel

    2012-01-01

    According to decades of research on affective motivation in the human brain, approach motivational states are supported primarily by the left hemisphere and avoidance states by the right hemisphere. The underlying cause of this specialization, however, has remained unknown. Here we conducted a first test of the Sword and Shield Hypothesis (SSH), according to which the hemispheric laterality of affective motivation depends on the laterality of motor control for the dominant hand (i.e., the "sword hand," used preferentially to perform approach actions) and the nondominant hand (i.e., the "shield hand," used preferentially to perform avoidance actions). To determine whether the laterality of approach motivation varies with handedness, we measured alpha-band power (an inverse index of neural activity) in right- and left-handers during resting-state electroencephalography and analyzed hemispheric alpha-power asymmetries as a function of the participants' trait approach motivational tendencies. Stronger approach motivation was associated with more left-hemisphere activity in right-handers, but with more right-hemisphere activity in left-handers. The hemispheric correlates of approach motivation reversed between right- and left-handers, consistent with the way they typically use their dominant and nondominant hands to perform approach and avoidance actions. In both right- and left-handers, approach motivation was lateralized to the same hemisphere that controls the dominant hand. This covariation between neural systems for action and emotion provides initial support for the SSH.

  9. Right Hemisphere Dominance in Visual Statistical Learning

    Science.gov (United States)

    Roser, Matthew E.; Fiser, Jozsef; Aslin, Richard N.; Gazzaniga, Michael S.

    2011-01-01

    Several studies report a right hemisphere advantage for visuospatial integration and a left hemisphere advantage for inferring conceptual knowledge from patterns of covariation. The present study examined hemispheric asymmetry in the implicit learning of new visual feature combinations. A split-brain patient and normal control participants viewed…

  10. Altered resting-state network connectivity in stroke patients with and without apraxia of speech

    OpenAIRE

    New, Anneliese B.; Robin, Donald A.; Parkinson, Amy L.; Duffy, Joseph R.; McNeil, Malcom R.; Piguet, Olivier; Hornberger, Michael; Price, Cathy J.; Eickhoff, Simon B.; Ballard, Kirrie J.

    2015-01-01

    Motor speech disorders, including apraxia of speech (AOS), account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS), inferior frontal gyrus (IFG), and ventral premotor cortex (PM)) in a group of 32 left hemisphere ...

  11. Left atrial appendage morphology in patients with suspected cardiogenic stroke without known atrial fibrillation.

    Directory of Open Access Journals (Sweden)

    Miika Korhonen

    Full Text Available The left atrial appendage (LAA is the typical origin for intracardiac thrombus formation. Whether LAA morphology is associated with increased stroke/TIA risk is controversial and, if it does, which morphological type most predisposes to thrombus formation. We assessed LAA morphology in stroke patients with cryptogenic or suspected cardiogenic etiology and in age- and gender-matched healthy controls. LAA morphology and volume were analyzed by cardiac computed tomography in 111 patients (74 males; mean age 60 ± 11 years with acute ischemic stroke of cryptogenic or suspected cardiogenic etiology other than known atrial fibrillation (AF. A subgroup of 40 patients was compared to an age- and gender-matched control group of 40 healthy individuals (21 males in each; mean age 54 ± 9 years. LAA was classified into four morphology types (Cactus, ChickenWing, WindSock, CauliFlower modified with a quantitative qualifier. The proportions of LAA morphology types in the main stroke group, matched stroke subgroup, and control group were as follows: Cactus (9.0%, 5.0%, 20.0%, ChickenWing (23.4%, 37.5%, 10.0%, WindSock (47.7%, 35.0%, 67.5%, and CauliFlower (19.8%, 22.5%, 2.5%. The distribution of morphology types differed significantly (P<0.001 between the matched stroke subgroup and control group. The proportion of single-lobed LAA was significantly higher (P<0.001 in the matched stroke subgroup (55% than the control group (6%. LAA volumes were significantly larger (P<0.001 in both stroke study groups compared to controls patients. To conclude, LAA morphology differed significantly between stroke patients and controls, and single-lobed LAAs were overrepresented and LAA volume was larger in patients with acute ischemic stroke of cryptogenic or suspected cardiogenic etiology.

  12. Hypothalamic digoxin, hemispheric chemical dominance and sarcoidosis.

    Science.gov (United States)

    Ravi Kumar, A; Kurup, Parameswara Achutha

    2004-06-01

    The isoprenoid pathway produces three key metabolites: endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins) and ubiquinone (free radical scavenger). The role of the isoprenoid pathway in the pathogenesis of sarcoidosis in relation to hemispheric dominance was studied. The isoprenoid pathway-related cascade was assessed in patients with systemic sarcoidosis with pulmonary involvement. The pathway was also assessed in patients with right hemispheric, left hemispheric and bihemispheric dominance for comparison to find out the role of hemispheric dominance in the pathogenesis of sarcoidosis. In patients with sarcoidosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in the cholesterol:phospholipid ratio and a reduction in the glycoconjugate level of red blood cell (RBC) membrane in this group of patients. The same biochemical patterns were obtained in individuals with right hemispheric dominance. In individuals with left hemispheric dominance the patterns were reversed. Endogenous digoxin, by activating the calcineurin signal transduction pathway of T cells, can contribute to immune activation in sarcoidosis. An altered glycoconjugate metabolism can lead to the generation of endogenous self-glycoprotein antigens in the lung as well as other tissues. Increased free radical generation can also lead to immune activation. The role of a dysfunctional isoprenoid pathway and endogenous digoxin in the pathogenesis of sarcoidosis in relation to right hemispheric chemical dominance is discussed. All the patients with sarcoidosis were right-handed/left hemispheric dominant according to the dichotic listening test, but their biochemical patterns

  13. Concurrence of Crossed Cerebellar Diaschisis and Parakinesia Brachialis Oscitans in a Patient with Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Yung-Tsan Wu

    2013-01-01

    Full Text Available Crossed cerebellar diaschisis (CCD is defined as a reduction in blood flow in the cerebellar hemisphere contralateral to the supratentorial focal lesion. The phenomenon termed parakinesia brachialis oscitans (PBO in which stroke patients experience involuntary stretching of the hemiplegic arm during yawning is rarely reported. The concurrence of CCD and PBO has never been described. A 52-year-old man had putaminal hemorrhage and demonstrated no significant recovery in his left hemiplegia after intensive rehabilitation, but his gait improved gradually. Two months after the stroke, the single photon emission computed tomography (SPECT showed CCD. Four months after the stroke, the patient noticed PBO. The follow-up SPECT showed persistent CCD and the patient’s arm was still plegic. The frequency and intensity of PBO have increased with time since the stroke. We speculate that the two phenomena CCD and PBO might share similar neuroanatomical pathways and be valuable for predicting clinical recovery after stroke.

  14. Hypothalamic digoxin, hemispheric chemical dominance, and the tridosha theory.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    Ayurveda, the traditional Indian System of Medicine, deals with the theory of the three tridosha states (both physical and psychological): Vata, Pitta, and Kapha. They are the three major human constitutional types that both depend on psychological and physical characteristics. The Pitta state is described as a critical, discriminative, and rational psychological state of mind, while the Kapha state is described as being dominant for emotional stimuli. The Vata state is an intermediate unstable shifting state. The Pitta types are of average height and built with well developed musculature. The Vata types are thin individuals with low body mass index. The Kapha types are short stocky individuals that tend toward obesity, and who are sedentary. The study assessed the biochemical differences between right hemispheric dominant, bihemispheric dominant, and left hemispheric dominant individuals, and then compared this with the patterns obtained in the Vata, Pitta, and Kapha states. The isoprenoid metabolites (digoxin, dolichol, and ubiquinone), glycoconjugate metabolism, free radical metabolism, and the RBC membrane composition were studied. The hemispheric chemical dominance in various systemic diseases and psychological states was also investigated. The results showed that right hemispheric chemically dominant/Kapha state had elevated digoxin levels, increased free radical production and reduced scavenging, increased tryptophan catabolites and reduced tyrosine catabolites, increased glycoconjugate levels and increased cholesterol: phospholipid ratio of RBC membranes. Left hemispheric chemically dominant/Pitta states had the opposite biochemical patterns. The patterns were normal or intermediate in the bihemispheric chemically dominant/Vata state. This pattern could be correlated with various systemic and neuropsychiatric diseases and personality traits. Right hemispheric chemical dominance/Kapha state represents a hyperdigoxinemic state with membrane sodium

  15. Words, Hemispheres, and Dissociable Subsystems: The Effects of Exposure Duration, Case Alternation, Priming, and Continuity of Form on Word Recognition in the Left and Right Visual Fields

    Science.gov (United States)

    Ellis, Andrew W.; Ansorge, Lydia; Lavidor, Michal

    2007-01-01

    Three experiments explore aspects of the dissociable neural subsystems theory of hemispheric specialisation proposed by Marsolek and colleagues, and in particular a study by [Deason, R. G., & Marsolek, C. J. (2005). A critical boundary to the left-hemisphere advantage in word processing. "Brain and Language," 92, 251-261]. Experiment 1A showed…

  16. Morphological risk factors of stroke during thoracic endovascular aortic repair.

    Science.gov (United States)

    Kotelis, Drosos; Bischoff, Moritz S; Jobst, Bertram; von Tengg-Kobligk, Hendrik; Hinz, Ulf; Geisbüsch, Philipp; Böckler, Dittmar

    2012-12-01

    This study aims to identify independent factors correlating to an increased risk of perioperative stroke during thoracic endovascular aortic repair (TEVAR). A prospective maintained TEVAR database, medical records, and imaging studies of 300 patients (205 men; median age of all, 66 years, range 21-89), who underwent TEVAR between March 1997 and February 2011, were reviewed. Preoperative CT data sets were reviewed by two experienced radiologists with focus on the atheroma burden in the aortic arch (grade I, normal, to grade V, ulcerated or pedunculated atheroma). Aortic arch geometry (arch types I-III) was documented. Further parameters included in the univariate analysis were age, gender, urgency of repair, duration of procedure, adenosine-induced cardiac arrest or rapid pacing, proximal landing zone, left subclavian artery (LSA) coverage, and number of stent grafts. Multivariate logistic regression analysis was performed to assess the independent correlations of potential risk factors. Atherosclerotic aneurysm was the most common pathology (44%). One hundred and fifty-four of our patients (51%) were treated under urgent or emergent conditions. Seventeen percent of all patients had significant arch atheroma (grade IV or V), and 43% had a steep type III aortic arch. The perioperative stroke was 4% (12 patients; median age, 73 years, range 31-78). Two strokes were lethal (0.7%). All strokes were classified as embolic based on imaging characteristics. In eight patients, strokes were located in the left cerebral hemisphere (seven of them in the anterior and one in the posterior circulation). Four stroke patients (one in the left posterior circulation) underwent LSA coverage without revascularization. Three stroke patients had severe arch atheroma grade V. Five patients suffering stroke were recognized to have a type III aortic arch. Strokes were equally distributed between zones 0-2 vs. 3-4 (n = 6 each, 5 vs. 3.3%). The highest incidence was found in zone 1 (11

  17. Stroke, music, and creative output: Alfred Schnittke and other composers.

    Science.gov (United States)

    Zagvazdin, Yuri

    2015-01-01

    Alfred Schnittke (1934-1998), a celebrated Russian composer of the twentieth century, suffered from several strokes which affected his left cerebral hemisphere. The disease, however, did not diminish his musical talent. Moreover, he stated that his illness in a way facilitated his work. The composer showed amazingly high productivity after his first and second injuries of the central nervous system. The main topic of this chapter is the effect of strokes on Schnittke's output, creativity, and style of music. A brief biography of the composer with the chronology of his brain hemorrhages is included. In addition, the influence of cerebrovascular lesions on creative potential of other prominent composers such as Benjamin Britten, Jean Langlais, Vissarion Shebalin, Igor Stravinsky, and Ira Randall Thompson is discussed. © 2015 Elsevier B.V. All rights reserved.

  18. Item hierarchy-based analysis of the Rivermead Mobility Index resulted in improved interpretation and enabled faster scoring in patients undergoing rehabilitation after stroke.

    Science.gov (United States)

    Roorda, Leo D; Green, John R; Houwink, Annemieke; Bagley, Pam J; Smith, Jane; Molenaar, Ivo W; Geurts, Alexander C

    2012-06-01

    To enable improved interpretation of the total score and faster scoring of the Rivermead Mobility Index (RMI) by studying item ordering or hierarchy and formulating start-and-stop rules in patients after stroke. Cohort study. Rehabilitation center in the Netherlands; stroke rehabilitation units and the community in the United Kingdom. Item hierarchy of the RMI was studied in an initial group of patients (n=620; mean age ± SD, 69.2±12.5y; 297 [48%] men; 304 [49%] left hemisphere lesion, and 269 [43%] right hemisphere lesion), and the adequacy of the item hierarchy-based start-and-stop rules was checked in a second group of patients (n=237; mean age ± SD, 60.0±11.3y; 139 [59%] men; 103 [44%] left hemisphere lesion, and 93 [39%] right hemisphere lesion) undergoing rehabilitation after stroke. Not applicable. Mokken scale analysis was used to investigate the fit of the double monotonicity model, indicating hierarchical item ordering. The percentages of patients with a difference between the RMI total score and the scores based on the start-and-stop rules were calculated to check the adequacy of these rules. The RMI had good fit of the double monotonicity model (coefficient H(T)=.87). The interpretation of the total score improved. Item hierarchy-based start-and-stop rules were formulated. The percentages of patients with a difference between the RMI total score and the score based on the recommended start-and-stop rules were 3% and 5%, respectively. Ten of the original 15 items had to be scored after applying the start-and-stop rules. Item hierarchy was established, enabling improved interpretation and faster scoring of the RMI. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Lesion patterns in patients with cryptogenic stroke with and without right-to-left-shunt.

    Science.gov (United States)

    Feurer, R; Sadikovic, S; Esposito, L; Schwarze, J; Bockelbrink, A; Hemmer, B; Sander, D; Poppert, H

    2009-10-01

    Despite numerous studies, the role of patent foramen ovale (PFO) as a risk factor for stroke due to paradoxical embolism is still controversial. On the assumption that specific lesion patterns, in particular multiple acute ischaemic lesions on diffusion-weighted magnetic resonance imaging, indicate a cardioembolic origin, we compared the MRI findings in stroke patients with right-to-left shunt (RLS) and those without. The records of 486 patients with diagnosis of cerebral ischaemia were reviewed. For detection of RLS, contrast-enhanced transcranial Doppler (c-TCD) was carried out in all patients. An MRI scan of the brain was performed in all patients. Affected vascular territories were divided into anterior cerebral artery, middle cerebral artery, vertebrobasilar artery system including posterior cerebral artery, brain stem and cerebellar stroke, and strokes occurring in more than one territory. We did not find a specific difference in neuroradiological lesion patterns in patients with RLS compared with patients without RLS. In particular, 23 of 165 patients (13.9%) with RLS showed multiple ischaemic lesions on MRI in comparison with 45 of 321 patients (14.0%) without RLS (P = 0.98). These findings also applied for the subgroup of cryptogenic strokes with and without RLS. We found no association between an ischaemic lesion pattern that is considered as being typical for stroke due to cardiac embolism and the existence of PFO. Therefore, our findings do not provide any support for the common theory of paradoxical embolism as a major cause of stroke in PFO carriers.

  20. Hypothalamic digoxin, hemispheric chemical dominance, and sleep.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The isoprenoid path way produces endogenous digoxin, a substance that can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in individuals with chronic insomnia. The patterns were compared in those with right hemispheric and left hemispheric dominance. The activity of HMG GoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in individuals with chronic insomnia and in individuals with differing hemispheric dominance. Digoxin synthesis was increased with upregulated tryptophan catabolism (increased levels of serotonin, strychnine, and nicotine), and downregulated tyrosine catabolism (decreased levels of dopamine, noradrenaline, and morphine) in those with chronic insomnia and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism (decreased levels of serotonin, strychnine, and nicotine) and upregulated tyrosine catabolism (increased levels of dopamine, noradrenaline, and morphine) in those with normal sleep patterns and left hemispheric chemical dominance. Hypothalamic digoxin plays a central role in the regulation of sleep behavior. Hemispheric chemical dominance in relation to digoxin status is also crucial.

  1. Post-stroke pure apraxia of speech - A rare experience.

    Science.gov (United States)

    Polanowska, Katarzyna Ewa; Pietrzyk-Krawczyk, Iwona

    Apraxia of speech (AOS) is a motor speech disorder, most typically caused by stroke, which in its "pure" form (without other speech-language deficits) is very rare in clinical practice. Because some observable characteristics of AOS overlap with more common verbal communication neurologic syndromes (i.e. aphasia, dysarthria) distinguishing them may be difficult. The present study describes AOS in a 49-year-old right-handed male after left-hemispheric stroke. Analysis of his articulatory and prosodic abnormalities in the context of intact communicative abilities as well as description of symptoms dynamics over time provides valuable information for clinical diagnosis of this specific disorder and prognosis for its recovery. This in turn is the basis for the selection of appropriate rehabilitative interventions. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Delusional misidentifications and duplications: right brain lesions, left brain delusions.

    Science.gov (United States)

    Devinsky, Orrin

    2009-01-06

    When the delusional misidentification syndromes reduplicative paramnesia and Capgras syndromes result from neurologic disease, lesions are usually bifrontal and/or right hemispheric. The related disorders of confabulation and anosognosis share overlapping mechanisms and anatomic pathology. A dual mechanism is postulated for the delusional misidentification syndromes: negative effects from right hemisphere and frontal lobe dysfunction as well as positive effects from release (i.e., overactivity) of preserved left hemisphere areas. Negative effects of right hemisphere injury impair self-monitoring, ego boundaries, and attaching emotional valence and familiarity to stimuli. The unchecked left hemisphere unleashes a creative narrator from the monitoring of self, memory, and reality by the frontal and right hemisphere areas, leading to excessive and false explanations. Further, the left hemisphere's cognitive style of categorization, often into dual categories, leads it to invent a duplicate or impostor to resolve conflicting information. Delusions result from right hemisphere lesions. But it is the left hemisphere that is deluded.

  3. Interindividual variability in the hemispheric organization for speech.

    Science.gov (United States)

    Tzourio-Mazoyer, N; Josse, G; Crivello, F; Mazoyer, B

    2004-01-01

    A PET activation study was designed to investigate hemispheric specialization during speech comprehension and production in right- and left-handed subjects. Normalized regional cerebral blood flow (NrCBF) was repeatedly monitored while subjects either listened to factual stories (Story) or covertly generated verbs semantically related to heard nouns (Gener), using silent resting (Rest) as a common control condition. NrCBF variations in each task, as compared to Rest, as well as functional asymmetry indices (FAI = right minus left NrCBF variations), were computed in anatomical regions of interest (AROIs) defined on the single-subject MNI template. FAIs were predominantly leftward in all regions during both tasks, although larger FAIs were observed during Gener. Subjects were declared "typical" for language hemispheric specialization based on the presence of significant leftward asymmetries (FAI Gener, and in the middle and inferior temporal AROIs during Story. Six subjects (including five LH) showed an atypical language representation. Among them, one presented a right hemisphere specialization during both tasks, another a shift in hemispheric specialization from production to comprehension (left during Gener, right during Story). The group of 14 typical subjects showed significant positive correlation between homologous left and right AROIs NrCBF variations in temporal areas during Story, and in temporal and inferior frontal areas during Gener, almost all regions presenting a leftward FAI. Such correlations were also present in deactivated areas with strong leftward asymmetry (supramarginalis gyrus, inferior parietal region). These results suggest that entry into a language task translates into a hemispheric reconfiguration of lateral cortical areas with global NrCBF increase in the dominant hemisphere and decrease in the minor hemisphere. This can be considered as the setting up of a "language mode", under the control of a mechanism that operates at a perisylvian

  4. Hypothalamic digoxin, hemispheric chemical dominance, and peptic ulcer disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin-like factor (EDLF) (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), ubiquinone (free radical scavenger), and dolichol (regulator of glycoconjugate metabolism). The pathway was assessed in peptic ulcer and acid peptic disease and its relation to hemispheric dominance studied. The activity of HMG CoA reductase, serum levels of EDLF, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in acid peptic disease, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. All the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listening test. The pathway was upregulated with increased EDLF synthesis in peptic ulcer disease (PUD). There was increase in tryptophan catabolites and reduction in tyrosine catabolites in these patients. The ubiquinone levels were low and free radical production increased. Dolichol and glycoconjugate levels were increased and lysosomal stability reduced in patients with acid peptic disease (APD). There was increase in cholesterol:phospholipid ratio with decreased glyco conjugate levels in membranes of patients with PUD. Acid peptic disease represents an elevated EDLF state which can modulate gastric acid secretion and the structure of the gastric mucous barrier. It can also lead to persistence of Helicobacter pylori infection. The biochemical pattern obtained in peptic ulcer disease is similar to those obtained in left-handed/right hemispheric chemically dominant individuals. But all the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listen ing test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Peptic ulcer disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  5. Lesion mapping in acute stroke aphasia and its implications for recovery.

    Science.gov (United States)

    Forkel, Stephanie J; Catani, Marco

    2018-03-29

    Patients with stroke lesions offer a unique window into understanding human brain function. Studying stroke lesions poses several challenges due to the complexity of the lesion anatomy and the mechanisms causing local and remote disruptions on brain networks. In this prospective longitudinal study, we compare standard and advanced approaches to white matter lesion mapping applied to acute stroke patients with aphasia. Eighteen patients with acute left hemisphere stroke were recruited and scanned within two weeks from symptom onset. Aphasia assessment was performed at baseline and six-month follow-up. Structural and diffusion MRI contrasts indicated an area of maximum overlap in the anterior external/extreme capsule with diffusion images showing a larger overlap extending into posterior perisylvian regions. Predictors of recovery included damage to ipsilesional tracts (as shown by both structural and diffusion images) and contralesional tracts (as shown by diffusion images only). These findings indicate converging results from structural and diffusion lesions mapping analysis but clear differences between the two approaches in their ability to identify predictors of recovery. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Left atrial appendage occlusion for stroke prevention in atrial fibrillation in Europe

    DEFF Research Database (Denmark)

    Lip, Gregory Y.H.; Dagres, Nikolaos; Proclemer, Alessandro

    2013-01-01

    The purpose of this EP wire survey was to assess clinical practice in relation to the use of left atrial appendage occlusion (LAAO) devices for stroke prevention in atrial fibrillation (AF) among members of the European Heart Rhythm Association research network. The average number of performed LA...... are most often performed by interventional cardiologists. Experience varied widely, and this was reflected in the wide range of thromboembolic and procedural (tamponade, bleeding) complications reported by the respondents to this EP wire survey....

  7. Prognostic Value of Cortically Induced Motor Evoked Activity by TMS in Chronic Stroke: Caveats from a Revealing Single Clinical Case

    LENUS (Irish Health Repository)

    Amengual, Julià L

    2012-06-08

    AbstractBackgroundWe report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand.Case presentationMultimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations.ConclusionsThe potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.

  8. Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: Caveats from a revealing single clinical case

    Directory of Open Access Journals (Sweden)

    Amengual Julià L

    2012-06-01

    Full Text Available Abstract Background We report the case of a chronic stroke patient (62 months after injury showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP, and Cortical Silent period (CSP as well as functional magnetic resonance imaging (fMRI of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI Tractography of corticospinal tract (CST. Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG activity (indexed by CSP demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.

  9. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  10. Hemispheric Lateralization of Motor Thresholds in Relation to Stuttering

    Science.gov (United States)

    Alm, Per A.; Karlsson, Ragnhild; Sundberg, Madeleine; Axelson, Hans W.

    2013-01-01

    Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS). This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry) and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15) and in controls (n = 15). In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026), with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049). The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control. PMID:24146930

  11. Hemispheric lateralization of motor thresholds in relation to stuttering.

    Directory of Open Access Journals (Sweden)

    Per A Alm

    Full Text Available Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS. This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15 and in controls (n = 15. In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026, with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049. The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control.

  12. A vision of graded hemispheric specialization.

    Science.gov (United States)

    Behrmann, Marlene; Plaut, David C

    2015-11-01

    Understanding the process by which the cerebral hemispheres reach their mature functional organization remains challenging. We propose a theoretical account in which, in the domain of vision, faces and words come to be represented adjacent to retinotopic cortex by virtue of the need to discriminate among homogeneous exemplars. Orthographic representations are further constrained to be proximal to typically left-lateralized language-related information to minimize connectivity length between visual and language areas. As reading is acquired, orthography comes to rely more heavily (albeit not exclusively) on the left fusiform region to bridge vision and language. Consequently, due to competition from emerging word representations, face representations that were initially bilateral become lateralized to the right fusiform region (albeit, again, not exclusively). We review recent research that describes constraints that give rise to this graded hemispheric arrangement. We then summarize empirical evidence from a variety of studies (behavioral, evoked response potential, functional imaging) across different populations (children, adolescents, and adults; left handers and individuals with developmental dyslexia) that supports the claims that hemispheric lateralization is graded rather than binary and that this graded organization emerges dynamically over the course of development. Perturbations of this system either during development or in adulthood provide further insights into the principles governing hemispheric organization. © 2015 New York Academy of Sciences.

  13. Hemispheric dominance and cell phone use.

    Science.gov (United States)

    Seidman, Michael D; Siegel, Bianca; Shah, Priyanka; Bowyer, Susan M

    2013-05-01

    A thorough understanding of why we hold a cell phone to a particular ear may be of importance when studying the impact of cell phone safety. To determine if there is an obvious association between sidedness of cell phone use and auditory hemispheric dominance (AHD) or language hemispheric dominance (LHD). It is known that 70% to 95% of the population are right-handed, and of these, 96% have left-brain LHD. We have observed that most people use their cell phones in their right ear. An Internet survey was e-mailed to individuals through surveymonkey.com. The survey used a modified Edinburgh Handedness Inventory protocol. Sample questions surveyed which hand was used to write with, whether the right or left ear was used for phone conversations, as well as whether a brain tumor was present. General community. An Internet survey was randomly e-mailed to 5000 individuals selected from an otology online group, patients undergoing Wada testing and functional magnetic resonance imaging, as well as persons on the university listserv, of which 717 surveys were completed. Determination of hemispheric dominance based on preferred ear for cell phone use. A total of 717 surveys were returned. Ninety percent of the respondents were right handed, and 9% were left handed. Sixty-eight percent of the right-handed people used the cell phone in their right ear, 25% in the left ear, and 7% had no preference. Seventy-two of the left-handed respondents used their left ear, 23% used their right ear, and 5% had no preference. Cell phone use averaged 540 minutes per month over the past 9 years. An association exists between hand dominance laterality of cell phone use (73%) and our ability to predict hemispheric dominance. Most right-handed people have left-brain LHD and use their cell phone in their right ear. Similarly, most left-handed people use their cell phone in their left ear. Our study suggests that AHD may differ from LHD owing to the difference in handedness and cell phone ear use

  14. Functional magnetic resonance imaging to determine hemispheric language dominance prior to carotid endarterectomy.

    Science.gov (United States)

    Smits, M; Wieberdink, R G; Bakker, S L M; Dippel, D W J

    2011-04-01

    We describe a left-handed patient with transient aphasia and bilateral carotid stenosis. Computed tomography (CT) arteriography showed a 90% stenosis of the right and 30% stenosis of the left internal carotid artery. Head CT and magnetic resonance imaging (MRI) of the brain showed no recent ischemic changes. As only the symptomatic side would require surgical intervention, and because hemispheric dominance for language in left-handed patients may be either left or right sided, a preoperative assessment of hemispheric dominance was required. We used functional MRI to determine hemispheric dominance for language and hence to establish the indication for carotid endarterectomy surgery. Functional MRI demonstrated right hemispheric dominance for language and right-sided carotid endarterectomy was performed. We propose that the clinical use of functional MRI as a noninvasive imaging technique for the assessment of hemispheric language dominance may be extended to the assessment of hemispheric language dominance prior to carotid endarterectomy. Copyright © 2010 by the American Society of Neuroimaging.

  15. Multimodal Therapy for the Treatment of Severe Ischemic Stroke Combining Endovascular Embolectomy and Stenting of Long Intracranial Artery Occlusion

    Science.gov (United States)

    Bunc, Matjaž; Kocijančič, Igor J.; Pregelj, Rado; Dolenc, Vinko V.

    2010-01-01

    Embolic occlusion of cerebral arteries is a major cause for stroke. Intravenous thrombolysis showed positive results in this condition, however even when strict criteria are used, the risk of hemorrhagic transformation is possible. Microsurgical embolectomy has been described earlier. Purpose. We performed multimodal therapy of cerebral artery occlusion. Case Report. We present a case of a 49-year-old female patient who—according to the National Institute of Health Stroke Scale (NIHSS)—was rated as 19 due to acute occlusion of the horizontal segment of the left middle cerebral artery (MCA). After failed i.v. thrombolysis, only a part of the clot could be evacuated by the endovascular approach—without restoration of blood flow. Normal patency of the left MCA was re-established after stenting. Within 72 hours, the patient had an NIHSS score of 14, with a small haematoma in the left hemisphere. Conclusion. In our case multimodal therapy combining i.v. thrombolysis, mechanical disruption of thrombus, MCA stenting and platelet function antagonists, resulted in successful recanalization of the acutely occluded left MCA. PMID:20671974

  16. Multimodal therapy for the treatment of severe ischemic stroke combining endovascular embolectomy and stenting of long intracranial artery occlusion.

    Science.gov (United States)

    Bunc, Matjaz; Kocijancic, Igor J; Pregelj, Rado; Dolenc, Vinko V

    2010-01-01

    Embolic occlusion of cerebral arteries is a major cause for stroke. Intravenous thrombolysis showed positive results in this condition, however even when strict criteria are used, the risk of hemorrhagic transformation is possible. Microsurgical embolectomy has been described earlier. Purpose. We performed multimodal therapy of cerebral artery occlusion. Case Report. We present a case of a 49-year-old female patient who-according to the National Institute of Health Stroke Scale (NIHSS)-was rated as 19 due to acute occlusion of the horizontal segment of the left middle cerebral artery (MCA). After failed i.v. thrombolysis, only a part of the clot could be evacuated by the endovascular approach-without restoration of blood flow. Normal patency of the left MCA was re-established after stenting. Within 72 hours, the patient had an NIHSS score of 14, with a small haematoma in the left hemisphere. Conclusion. In our case multimodal therapy combining i.v. thrombolysis, mechanical disruption of thrombus, MCA stenting and platelet function antagonists, resulted in successful recanalization of the acutely occluded left MCA.

  17. Hemispheric specialisation in selective attention and short-term memory: A fine-coarse model of left and right ear disadvantages

    Directory of Open Access Journals (Sweden)

    John E. Marsh

    2013-12-01

    Full Text Available Serial short-term memory is impaired by irrelevant sound, particularly when the sound changes acoustically. This acoustic effect is larger when the sound is presented to the left compared to the right ear (a left-ear disadvantage. Serial memory appears relatively insensitive to distraction from the semantic properties of a background sound. In contrast, short-term free recall of semantic-category exemplars is impaired by the semantic properties of background speech and relatively insensitive to the sound’s acoustic properties. This semantic effect is larger when the sound is presented to the right compared to the left ear (a right-ear disadvantage. In this paper, we outline a speculative neurocognitive fine-coarse model of these hemispheric differences in relation to short-term memory and selective attention, and explicate empirical directions in which this model can be critically evaluated.

  18. [What is hidden behind the Baking Tray Task? Study of sensibility and specificity in right-hemispheric stroke patients].

    Science.gov (United States)

    Garcia-Fernandez, Juan; Garcia-Molina, Alberto; Aparicio-Lopez, Celeste; Sanchez-Carrion, Rocío; Ensenat, Antònia; Pena-Casanova, Jordi; Roig-Rovira, Teresa

    2015-12-16

    Tham and Tegner proposed the Baking Tray Task (BTT) as a fast simple assessment test for detecting spatial negligence. However, very few studies have examined its validity as a diagnostic test. To analyse the diagnostic validity of the BTT by measuring its specificity and sensitivity in a sample of subjects with right hemisphere strokes. Forty-eight patients with right hemisphere vascular lesions were distributed in two groups (negligence group, n = 35; non-negligence group, n = 13) according to the scores obtained in a battery of visuospatial examination tests. The participants' performance on the BTT was compared with that of a healthy control group (n = 12). The results showed a high level of sensitivity of the BTT, but low specificity. The performance on the BTT of eight of the 13 members of the non-negligence group was suggestive of negligence. The BTT has proved to be a sensitive test for the detection of spatial negligence. Yet, based on its low specificity, its use alone as a single diagnostic test is not recommended.

  19. Personality, Hemispheric Dominance, and Cognitive Style.

    Science.gov (United States)

    Hylton, Jaime; Hartman, Steve E.

    1997-01-01

    Shows that 154 medical students and 526 undergraduates (samples treated separately) who were judged left- or right-hemisphere dominant (by the Hemispheric Mode Indicator) were found to have very different personalities (as measured by the Myers-Briggs Type Indicator). Considers some of the practical ramifications of the psychometric overlap of…

  20. Hypothalamic digoxin, hemispheric chemical dominance, and mesenteric artery occlusion.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Paramesware Achutha

    2003-12-01

    The role of the isoprenoid pathway in vascular thrombosis, especially mesenteric artery occlusion and its relation to hemispheric dominance, was assessed in this study. The following parameters were measured in patients with mesenteric artery occlusion and individuals with right hemispheric, left hemispheric, and bihemispheric dominance: (1) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (2) tryptophan/tyrosine catabolic patterns; (3) free radical metabolism; (4) glycoconjugate metabolism; and (5) membrane composition. In patients with mesenteric artery occlusion there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, low ubiquinone, and elevated free radical levels. The RBC membrane Na(+)-K+ ATPase activity and serum magnesium were decreased. There was also an increase in tryptophan catabolites and reduction in tyrosine catabolites in the serum. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these patients. The biochemical patterns obtained in mesenteric artery occlusion is similar to those obtained in left-handed/right hemispheric dominant individuals by the dichotic listening test. But all the patients with mesenteric artery occlusion were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Mesenteric artery occlusion occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function. Hemispheric chemical dominance may thus control the risk for developing vascular thrombosis in individuals.

  1. The Joint Development of Hemispheric Lateralization for Words and Faces

    Science.gov (United States)

    Dundas, Eva M.; Plaut, David C.; Behrmann, Marlene

    2013-01-01

    Consistent with long-standing findings from behavioral studies, neuroimaging investigations have identified a region of the inferior temporal cortex that, in adults, shows greater face selectivity in the right than left hemisphere and, conversely, a region that shows greater word selectivity in the left than right hemisphere. What has not been…

  2. Neurophysiologic Correlates of Post-Stroke Mood and Emotional Control

    Directory of Open Access Journals (Sweden)

    Deniz Doruk

    2016-08-01

    Full Text Available Objective: Emotional disturbance is a common complication of stroke significantly affecting functional recovery and quality of life. Identifying relevant neurophysiologic markers associated with post-stroke emotional disturbance may lead to a better understanding of this disabling condition, guiding the diagnosis, development of new interventions and the assessments of treatment response. Methods: Thirty-five subjects with chronic stroke were enrolled in this study. The emotion sub-domain of Stroke Impact Scale (SIS-Emotion was used to assess post-stroke mood and emotional control. The relation between SIS-Emotion and neurophysiologic measures was assessed by using covariance mapping and univariate linear regression. Multivariate analyses were conducted to identify and adjust for potential confounders. Neurophysiologic measures included power asymmetry and coherence assessed by electroencephalography (EEG; and motor threshold, intracortical inhibition (ICI and intracortical facilitation (ICF measured by transcranial magnetic stimulation (TMS. Results: Lower scores on SIS-Emotion was associated with 1 frontal EEG power asymmetry in alpha and beta bands, 2 central EEG power asymmetry in alpha and theta bands, and 3 lower inter-hemispheric coherence over frontal and central areas in alpha band. SIS-Emotion also correlated with higher ICF and MT in the unlesioned hemisphere as measured by TMS. Conclusions: To our knowledge, this is the first study using EEG and TMS to index neurophysiologic changes associated with post-stroke mood and emotional control. Our results suggest that inter-hemispheric imbalance measured by EEG power and coherence, as well as an increased intracortical facilitation in the unlesioned hemisphere measured by TMS might be relevant markers associated with post-stroke mood and emotional control which can guide future studies investigating new diagnostic and treatment modalities in stroke rehabilitation.

  3. Word and face recognition deficits following posterior cerebral artery stroke

    DEFF Research Database (Denmark)

    Kuhn, Christina D.; Asperud Thomsen, Johanne; Delfi, Tzvetelina

    2016-01-01

    Abstract Recent findings have challenged the existence of category specific brain areas for perceptual processing of words and faces, suggesting the existence of a common network supporting the recognition of both. We examined the performance of patients with focal lesions in posterior cortical...... areas to investigate whether deficits in recognition of words and faces systematically co-occur as would be expected if both functions rely on a common cerebral network. Seven right-handed patients with unilateral brain damage following stroke in areas supplied by the posterior cerebral artery were...... included (four with right hemisphere damage, three with left, tested at least 1 year post stroke). We examined word and face recognition using a delayed match-to-sample paradigm using four different categories of stimuli: cropped faces, full faces, words, and cars. Reading speed and word length effects...

  4. Cognitive deficits in post-stroke aphasia

    Directory of Open Access Journals (Sweden)

    Milena V. Bonini

    2015-10-01

    Full Text Available The assessment of aphasics’ cognitive performance is challenging and such patients are generally excluded from studies that describe cognitive deficits after stroke. We evaluated aphasics’ performance in cognitive tasks compared to non-aphasic subjects. A sample of 47 patients (21 aphasics, 17 non-aphasics with left hemisphere lesions and 9 non-aphasics with right hemisphere lesions performed cognitive tasks (attention, verbal and visual memory, executive functions, visuospatial skills and praxis. Aphasic patients performed poorer than all non-aphasics in Digit Span (p < 0.001, Clock-Drawing Test (p = 0.006, Verbal memory (p = 0.002, Visual Memory (p < 0.01, Verbal Fluency (p < 0.001, and Gesture Praxis (p < 0.001. Aphasia severity correlated with performance in Trail Making test part B (p = 0.004, Digit Span forward (p < 0.001 and backwards (p = 0.011, and Gesture Praxis (p = 0.002. Aphasia is accompanied by deficits not always easy to be evaluated by cognitive tests due to speech production and motor impairments. Assessment of cognitive functions in aphasics might contribute to optimize therapeutic intervention.

  5. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics.

    Science.gov (United States)

    Heiss, Wolf-Dieter; Hartmann, Alexander; Rubi-Fessen, Ilona; Anglade, Carole; Kracht, Lutz; Kessler, Josef; Weiduschat, Nora; Rommel, Thomas; Thiel, Alexander

    2013-01-01

    Accumulating evidence from single case studies, small case series and randomized controlled trials seems to suggest that inhibitory noninvasive brain stimulation (NIBS) over the contralesional inferior frontal gyrus (IFG) of right-handers in conjunction with speech and language therapy (SLT) improves recovery from poststroke aphasia. Application of inhibitory NIBS to improve recovery in left-handed patients has not yet been reported. A total of 29 right-handed subacute poststroke aphasics were randomized to receive either 10 sessions of SLT following 20 min of inhibitory repetitive transcranial magnetic stimulation (rTMS) over the contralesional IFG or 10 sessions of SLT following sham stimulation; 2 left-handers were treated according to the same protocol with real rTMS. Language activation patterns were assessed with positron emission tomography prior to and after the treatment; 95% confidence intervals for changes in language performance scores and the activated brain volumes in both hemispheres were derived from TMS- and sham-treated right-handed patients and compared to the same parameters in left-handers. Right-handed patients treated with rTMS showed better recovery of language function in global aphasia test scores (t test, p right-handers. In treated right-handers, a shift of activation to the ipsilesional hemisphere was observed, while sham-treated patients consolidated network activity in the contralesional hemisphere (repeated-measures ANOVA, p = 0.009). Both left-handed patients also improved, with 1 patient within the confidence limits of TMS-treated right-handers (23 points, 15.9-28.9) and the other patient within the limits of sham-treated subjects (8 points, 2.8-14.5). Both patients exhibited only a very small interhemispheric shift, much less than expected in TMS-treated right-handers, and more or less consolidated initially active networks in both hemispheres. Inhibitory rTMS over the nondominant IFG appears to be a safe and effective treatment

  6. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Directory of Open Access Journals (Sweden)

    Teppo Särkämö

    2010-12-01

    Full Text Available Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm recordings. Fifty-three patients with a left (n = 24 or right (n = 29 hemisphere MCA stroke (MRI verified were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA. We found that amusia caused by right hemisphere damage (RHD, especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD. Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  7. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Science.gov (United States)

    Särkämö, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M; Laine, Matti; Hietanen, Marja; Pihko, Elina

    2010-12-02

    Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA) territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG) measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm) recordings. Fifty-three patients with a left (n = 24) or right (n = 29) hemisphere MCA stroke (MRI verified) were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA). We found that amusia caused by right hemisphere damage (RHD), especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD). Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC) showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  8. Right Hemisphere Grey Matter Volume and Language Functions in Stroke Aphasia

    Directory of Open Access Journals (Sweden)

    Sladjana Lukic

    2017-01-01

    Full Text Available The role of the right hemisphere (RH in recovery from aphasia is incompletely understood. The present study quantified RH grey matter (GM volume in individuals with chronic stroke-induced aphasia and cognitively healthy people using voxel-based morphometry. We compared group differences in GM volume in the entire RH and in RH regions-of-interest. Given that lesion site is a critical source of heterogeneity associated with poststroke language ability, we used voxel-based lesion symptom mapping (VLSM to examine the relation between lesion site and language performance in the aphasic participants. Finally, using results derived from the VLSM as a covariate, we evaluated the relation between GM volume in the RH and language ability across domains, including comprehension and production processes both at the word and sentence levels and across spoken and written modalities. Between-subject comparisons showed that GM volume in the RH SMA was reduced in the aphasic group compared to the healthy controls. We also found that, for the aphasic group, increased RH volume in the MTG and the SMA was associated with better language comprehension and production scores, respectively. These data suggest that the RH may support functions previously performed by LH regions and have important implications for understanding poststroke reorganization.

  9. Hypothalamic digoxin, hemispheric chemical dominance, and chronic bronchitis emphysema.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-09-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator, and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins), and ubiquinone (free radical scavenger). This was assessed in patients with chronic bronchitis emphysema. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find the role of hemispheric dominance in the pathogenesis of chronic bronchitis emphysema. All the 15 patients with chronic bronchitis emphysema were right-handed/left hemispheric dominant by the dichotic listening test. In patients with chronic bronchitis emphysema there was elevated digoxin synthesis, increased dolichol, and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate levels of RBC membrane in patients with chronic bronchitis emphysema. The same biochemical patterns were obtained in individuals with right hemispheric dominance. Endogenous digoxin by activating the calcineurin signal transduction pathway of T-cell can contribute to immune activation in chronic bronchitis emphysema. Increased free radical generation can also lead to immune activation. Endogenous synthesis of nicotine can contribute to the pathogenesis of the disease. Altered glycoconjugate metabolism and membranogenesis can lead to defective lysosomal stability contributing to the disease process by increased release of lysosomal proteases. The role of an endogenous digoxin and hemispheric dominance in the pathogenesis of chronic bronchitis emphysema and in the regulation of lung structure/function is discussed. The biochemical patterns obtained in chronic bronchitis emphysema is similar to those obtained in left

  10. Age-related shifts in hemispheric dominance for syntactic processing.

    Science.gov (United States)

    Leckey, Michelle; Federmeier, Kara D

    2017-12-01

    Recent ERP data from young adults have revealed that simple syntactic anomalies elicit different patterns of lateralization in right-handed participants depending upon their familial sinistrality profile (whether or not they have left-handed biological relatives). Right-handed participants who do not have left-handed relatives showed a strongly lateralized response pattern, with P600 responses following left-hemisphere-biased presentations and N400 responses following right-hemisphere-biased presentations. Given that the literature on aging has documented a tendency to change across adulthood from asymmetry of function to a more bilateral pattern, we tested the stability of this asymmetric response to syntactic violations by recording ERPs as 24 older adults (age 60+) with no history of familial sinistrality made grammaticality judgments on simple two-word phrases. Results showed that the asymmetric pattern observed in right-handed adults without familial sinistrality indeed changes with age, such that P600 responses come to be elicited not only with left-hemisphere-biased but also with right-hemisphere-biased presentations in older adults. These findings suggest that, as with many other cognitive functions, syntactic processing becomes more bilateral with age. © 2017 Society for Psychophysiological Research.

  11. Multimodal Therapy for the Treatment of Severe Ischemic Stroke Combining Endovascular Embolectomy and Stenting of Long Intracranial Artery Occlusion

    Directory of Open Access Journals (Sweden)

    Matjaž Bunc

    2010-01-01

    Case Report. We present a case of a 49-year-old female patient who—according to the National Institute of Health Stroke Scale (NIHSS—was rated as 19 due to acute occlusion of the horizontal segment of the left middle cerebral artery (MCA. After failed i.v. thrombolysis, only a part of the clot could be evacuated by the endovascular approach—without restoration of blood flow. Normal patency of the left MCA was re-established after stenting. Within 72 hours, the patient had an NIHSS score of 14, with a small haematoma in the left hemisphere. Conclusion. In our case multimodal therapy combining i.v. thrombolysis, mechanical disruption of thrombus, MCA stenting and platelet function antagonists, resulted in successful recanalization of the acutely occluded left MCA.

  12. The Visual Word Form Area remains in the dominant hemisphere for language in late-onset left occipital lobe epilepsies: A postsurgery analysis of two cases.

    Science.gov (United States)

    Lopes, Ricardo; Nunes, Rita Gouveia; Simões, Mário Rodrigues; Secca, Mário Forjaz; Leal, Alberto

    2015-05-01

    Automatic recognition of words from letter strings is a critical processing step in reading that is lateralized to the left-hemisphere middle fusiform gyrus in the so-called Visual Word Form Area (VWFA). Surgical lesions in this location can lead to irreversible alexia. Very early left hemispheric lesions can lead to transfer of the VWFA to the nondominant hemisphere, but it is currently unknown if this capability is preserved in epilepsies developing after reading acquisition. In this study, we aimed to determine the lateralization of the VWFA in late-onset left inferior occipital lobe epilepsies and also the effect of surgical disconnection from the adjacent secondary visual areas. Two patients with focal epilepsies with onset near the VWFA underwent to surgery for epilepsy, with sparing of this area. Neuropsychology evaluations were performed before and after surgery, as well as quantitative evaluation of the speed of word reading. Comparison of the surgical localization of the lesion, with the BOLD activation associated with the contrast of words-strings, was performed, as well as a study of the associated main white fiber pathways using diffusion-weighted imaging. Neither of the patients developed alexia after surgery (similar word reading speed before and after surgery) despite the fact that the inferior occipital surgical lesions reached the neighborhood (less than 1cm) of the VWFA. Surgeries partly disconnected the VWFA from left secondary visual areas, suggesting that pathways connecting to the posterior visual ventral stream were severely affected but did not induce alexia. The anterior and superior limits of the resection suggest that the critical connection between the VWFA and the Wernicke's Angular Gyrus cortex was not affected, which is supported by the detection of this tract with probabilistic tractography. Left occipital lobe epilepsies developing after reading acquisition did not produce atypical localizations of the VWFA, even with foci in the

  13. Game Utilization as a Media to Train the Balance of Left and Right Brain

    Directory of Open Access Journals (Sweden)

    Evan Wijaya

    2017-10-01

    Full Text Available Human have two brain hemispheres, left hemisphere and right hemisphere. Left hemisphere is used for processing language, words, numbers, equations, etc. Right hemisphere is used for processing creativity, imagination, music, color, etc. Every human should have balance between left and right hemisphere. One method that could be used for balancing brain hemispheres is to use left and right hands for using tools, writing, or typing. “Typing Rhythm” is a game for PC platform, the purpose of this game is for brain balancing exercise by typing lyric of a song while the song is played.

  14. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Directory of Open Access Journals (Sweden)

    Vincenzo eDi Lazzaro

    2016-01-01

    Full Text Available The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization.We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH and unaffected hemisphere (UH by measuring resting and active motor threshold and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI, to evidence hemispheric asymmetry. Active motor threshold differed significantly between AH and UH only in the male group (p=0.004, not in females (p>0.200, and both LIAMT and LIRMT were significantly higher in males than in females (respectively p=0.033 and p=0.042. LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery.

  15. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Science.gov (United States)

    Di Lazzaro, Vincenzo; Pellegrino, Giovanni; Di Pino, Giovanni; Ranieri, Federico; Lotti, Fiorenza; Florio, Lucia; Capone, Fioravante

    2016-01-01

    The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery. PMID:26858590

  16. Taxonomic and ad hoc categorization within the two cerebral hemispheres.

    Science.gov (United States)

    Shen, Yeshayahu; Aharoni, Bat-El; Mashal, Nira

    2015-01-01

    A typicality effect refers to categorization which is performed more quickly or more accurately for typical than for atypical members of a given category. Previous studies reported a typicality effect for category members presented in the left visual field/right hemisphere (RH), suggesting that the RH applies a similarity-based categorization strategy. However, findings regarding the typicality effect within the left hemisphere (LH) are less conclusive. The current study tested the pattern of typicality effects within each hemisphere for both taxonomic and ad hoc categories, using words presented to the left or right visual fields. Experiment 1 tested typical and atypical members of taxonomic categories as well as non-members, and Experiment 2 tested typical and atypical members of ad hoc categories as well as non-members. The results revealed a typicality effect in both hemispheres and in both types of categories. Furthermore, the RH categorized atypical stimuli more accurately than did the LH. Our findings suggest that both hemispheres rely on a similarity-based categorization strategy, but the coarse semantic coding of the RH seems to facilitate the categorization of atypical members.

  17. Hypothalamic digoxin, hemispheric chemical dominance, and interstitial lung disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with idiopathic pulmonary fibrosis and in individuals of differing hemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of idiopathic pulmonary fibrosis. All 15 cases of interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. The isoprenoidal metabolites--digoxin, dolichol, and ubiquinone, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, tyrosine/tryptophan catabolic patterns, free radical metabolism, glycoconjugate metabolism, and RBC membrane composition--were assessed in idiopathic pulmonary fibrosis as well as in individuals with differing hemispheric dominance. In patients with idiopathic pulmonary fibrosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in patients with idiopathic pulmonary fibrosis. Isoprenoid pathway dysfunction con tributes to the pathogenesis of idiopathic pulmonary fibrosis. The biochemical patterns obtained in interstitial lung disease are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. However, all the patients with interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Interstitial lung disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  18. Functional language shift to the right hemisphere in patients with language-eloquent brain tumors.

    Science.gov (United States)

    Krieg, Sandro M; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian

    2013-01-01

    Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1 = left dominant; ratio right dominant). Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning "all errors" and "all errors without hesitations", which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur.

  19. Bimanual tapping of a syncopated rhythm reveals hemispheric preferences for relative movement frequencies.

    Science.gov (United States)

    Pflug, Anja; Gompf, Florian; Kell, Christian Alexander

    2017-08-01

    In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Slower EEG alpha generation, synchronization and "flow"-possible biomarkers of cognitive impairment and neuropathology of minor stroke.

    Science.gov (United States)

    Petrovic, Jelena; Milosevic, Vuk; Zivkovic, Miroslava; Stojanov, Dragan; Milojkovic, Olga; Kalauzi, Aleksandar; Saponjic, Jasna

    2017-01-01

    We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal-Wallis ANOVA with a post-hoc Mann-Whitney U two-tailed test, and Spearman's correlation. We demonstrated transient cognitive impairment alongside a slower alpha frequency ( α AVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered "alpha flow", indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a

  1. Hemispheric lateralization of linguistic prosody recognition in comparison to speech and speaker recognition.

    Science.gov (United States)

    Kreitewolf, Jens; Friederici, Angela D; von Kriegstein, Katharina

    2014-11-15

    Hemispheric specialization for linguistic prosody is a controversial issue. While it is commonly assumed that linguistic prosody and emotional prosody are preferentially processed in the right hemisphere, neuropsychological work directly comparing processes of linguistic prosody and emotional prosody suggests a predominant role of the left hemisphere for linguistic prosody processing. Here, we used two functional magnetic resonance imaging (fMRI) experiments to clarify the role of left and right hemispheres in the neural processing of linguistic prosody. In the first experiment, we sought to confirm previous findings showing that linguistic prosody processing compared to other speech-related processes predominantly involves the right hemisphere. Unlike previous studies, we controlled for stimulus influences by employing a prosody and speech task using the same speech material. The second experiment was designed to investigate whether a left-hemispheric involvement in linguistic prosody processing is specific to contrasts between linguistic prosody and emotional prosody or whether it also occurs when linguistic prosody is contrasted against other non-linguistic processes (i.e., speaker recognition). Prosody and speaker tasks were performed on the same stimulus material. In both experiments, linguistic prosody processing was associated with activity in temporal, frontal, parietal and cerebellar regions. Activation in temporo-frontal regions showed differential lateralization depending on whether the control task required recognition of speech or speaker: recognition of linguistic prosody predominantly involved right temporo-frontal areas when it was contrasted against speech recognition; when contrasted against speaker recognition, recognition of linguistic prosody predominantly involved left temporo-frontal areas. The results show that linguistic prosody processing involves functions of both hemispheres and suggest that recognition of linguistic prosody is based on

  2. Learning-related brain hemispheric dominance in sleeping songbirds

    NARCIS (Netherlands)

    Moorman, Sanne; Gobes, Sharon M H; van de Kamp, Ferdinand C; Zandbergen, Matthijs A; Bolhuis, Johan J

    2015-01-01

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops

  3. Mapping number to space in the two hemispheres of the avian brain.

    Science.gov (United States)

    Rugani, Rosa; Vallortigara, Giorgio; Regolin, Lucia

    2016-09-01

    Pre-verbal infants and non-human animals associate small numbers with the left space and large numbers with the right space. Birds and primates, trained to identify a given position in a sagittal series of identical positions, whenever required to respond on a left/right oriented series, referred the given position starting from the left end. Here, we extended this evidence by selectively investigating the role of either cerebral hemisphere, using the temporary monocular occlusion technique. In birds, lacking the corpus callosum, visual input is fed mainly to the contralateral hemisphere. We trained 4-day-old chicks to identify the 4th element in a sagittal series of 10 identical elements. At test, the series was identical but left/right oriented. Test was conducted in right monocular, left monocular or binocular condition of vision. Right monocular chicks pecked at the 4th right element; left monocular and binocular chicks pecked at the 4th left element. Data on monocular chicks demonstrate that both hemispheres deal with an ordinal (sequential) task. Data on binocular chicks indicate that the left bias is linked to a right hemisphere dominance, that allocates the attention toward the left hemispace. This constitutes a first step towards understanding the neural basis of number space mapping. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Remote Lower White Matter Integrity Increases the Risk of Long-Term Cognitive Impairment After Ischemic Stroke in Young Adults.

    Science.gov (United States)

    Schaapsmeerders, Pauline; Tuladhar, Anil M; Arntz, Renate M; Franssen, Sieske; Maaijwee, Noortje A M; Rutten-Jacobs, Loes C A; Schoonderwaldt, Hennie C; Dorresteijn, Lucille D A; van Dijk, Ewoud J; Kessels, Roy P C; de Leeuw, Frank-Erik

    2016-10-01

    Poststroke cognitive impairment occurs frequently in young patients with ischemic stroke (18 through 50 years of age). Accumulating data suggest that stroke is associated with lower white matter integrity remote from the stroke impact area, which might explain why some patients have good long-term cognitive outcome and others do not. Given the life expectancy of decades in young patients, we therefore investigated remote white matter in relation to long-term cognitive function. We included all consecutive first-ever ischemic stroke patients, left/right hemisphere, without recurrent stroke or transient ischemic attack during follow-up, aged 18 through 50 years, admitted to our university medical center between 1980 and 2010. One hundred seventeen patients underwent magnetic resonance imaging scanning including a T1-weighted scan, a diffusion tensor imaging scan, and completed a neuropsychological assessment. Patients were compared with a matched stroke-free control group (age, sex, and education matched). Cognitive impairment was defined as >1.5 SD below the mean cognitive index score of controls and no cognitive impairment as ≤1 SD. Tract-Based Spatial Statistics was used to assess the white matter integrity (fractional anisotropy and mean diffusivity). About 11 years after ischemic stroke, lower remote white matter integrity was associated with a worse long-term cognitive performance. A lower remote white matter integrity, even in the contralesional hemisphere, was observed in cognitively impaired patients (n=25) compared with cognitively unimpaired patients (n=71). These findings indicate that although stroke has an acute onset, it might have long lasting effects on remote white matter integrity and thereby increases the risk of long-term cognitive impairment. © 2016 American Heart Association, Inc.

  5. Transcranial direct current stimulation for motor recovery of upper limb function after stroke.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Rothhardt, Sandra; Verheyden, Geert; Nowak, Dennis Alexander

    2014-11-01

    Changes in neural processing after stroke have been postulated to impede recovery from stroke. Transcranial direct current stimulation has the potential to alter cortico-spinal excitability and thereby might be beneficial in stroke recovery. We review the pertinent literature prior to 30/09/2013 on transcranial direct current stimulation in promoting motor recovery of the affected upper limb after stroke. We found overall 23 trials (they included 523 participants). All stimulation protocols pride on interhemispheric imbalance model. In a comparative approach, methodology and effectiveness of (a) facilitation of the affected hemisphere, (b) inhibition of the unaffected hemisphere and (c) combined application of transcranial direct current stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Transcranial direct current stimulation is associated with improvement of the affected upper limb after stroke, but current evidence does not support its routine use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  7. Inpatient rehabilitation outcomes of patients with apraxia after stroke.

    Science.gov (United States)

    Wu, Andy J; Burgard, Emily; Radel, Jeff

    2014-01-01

    Stroke-induced paresis commands much attention during rehabilitation; other stroke-related consequences receive less consideration. Apraxia is a stroke disorder that may have important implications for rehabilitation and recovery. To investigate association of apraxia with stroke rehabilitation outcomes during inpatient rehabilitation. This cohort study compared patients with and without apraxia after a first left hemispheric stroke. All study patients received standard of care. Clinical measures were the Functional Independence Measure (FIM) and the upper extremity section of the Fugl-Meyer Assessment (FMA) administered upon admission and at discharge. Length of stay was also documented. Florida Apraxia Battery subtests were used to classify patients with apraxia. Fifteen patients were included in this study, 10 of whom had apraxia. Data analysis revealed that patients with apraxia exhibited improvement from admission to discharge in clinical measures; however, admission FIM score was significantly lower compared to patients without apraxia. There was no statistically significant difference between groups on FMA score, length of stay, or amount of change on clinical measures. This study of acute patients found those with apraxia to be significantly less independent upon admission to inpatient rehabilitation compared to patients without apraxia. Although both groups improved a similar amount during rehabilitation, patients with apraxia discharged at a level of independence comparable to patients without apraxia upon admission. Such disparity in independence is of concern, and apraxia as a factor in stroke rehabilitation and recovery deserves further attention.

  8. Right: Left:: East: West. Evidence that individuals from East Asian and South Asian cultures emphasize right hemisphere functions in comparison to Euro-American cultures.

    Science.gov (United States)

    Rozin, Paul; Moscovitch, Morris; Imada, Sumio

    2016-09-01

    We present evidence that individuals from East or South Asian cultures (Japanese college students in Japan and East or South Asian born and raised college students in the USA) tend to exhibit default thinking that corresponds to right hemisphere holistic functions, as compared to Caucasian individuals from a Western culture (born and raised in the USA). In two lateralized tasks (locating the nose in a scrambled face, and global-local letter task), both Asian groups showed a greater right hemisphere bias than the Western group. In a third lateralized task, judging similarity in terms of visual form versus functional/semantic categorizations, there was not a reliable difference between the groups. On a classic, ambiguous face composed of vegetables, both Eastern groups displayed a greater right hemisphere (holistic face processing) bias than the Western group. These results support an "East - Right Hemisphere, West - Left Hemisphere" hypothesis, as originally proposed by Ornstein (1972). This hypothesis is open as to the degree to which social-cultural forces were involved in hemispheric specialization, or the opposite, or both. Our aim is to encourage a more thorough analysis of this hypothesis, suggesting both lateralization studies corresponding to documented East-West differences, and East-West studies corresponding to lateralization differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Motivation, affect, and hemispheric asymmetry: power versus affiliation.

    Science.gov (United States)

    Kuhl, Julius; Kazén, Miguel

    2008-08-01

    In 4 experiments, the authors examined to what extent information related to different social needs (i.e., power vs. affiliation) is associated with hemispheric laterality. Response latencies to a lateralized dot-probe task following lateralized pictures or verbal labels that were associated with positive or negative episodes related to power, affiliation, or achievement revealed clear-cut laterality effects. These effects were a function of need content rather than of valence: Power-related stimuli were associated with right visual field (left hemisphere) superiority, whereas affiliation-related stimuli were associated with left visual field (right hemisphere) superiority. Additional results demonstrated that in contrast to power, affiliation primes were associated with better discrimination between coherent word triads (e.g., goat, pass, and green, all related to mountain) and noncoherent triads, a remote associate task known to activate areas of the right hemisphere. (c) 2008 APA, all rights reserved

  10. The Influence of Context on Hemispheric Recruitment during Metaphor Processing

    Science.gov (United States)

    Diaz, Michele T.; Hogstrom, Larson J.

    2011-01-01

    Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify…

  11. Functional Language Shift to the Right Hemisphere in Patients with Language-Eloquent Brain Tumors

    Science.gov (United States)

    Krieg, Sandro M.; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian

    2013-01-01

    Objectives Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Experimental design Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1  =  left dominant; ratio dominant). Results Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning “all errors” and “all errors without hesitations”, which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. Conclusions This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur. PMID:24069410

  12. Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function

    Directory of Open Access Journals (Sweden)

    Aurore Thibaut

    2017-05-01

    Full Text Available What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation—TMS and brain oscillations (electroencephalography—EEG. In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke were recruited in two sites. We analyzed TMS measures (i.e., motor threshold—MT—of the affected and unaffected sides and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery.

  13. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    Science.gov (United States)

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. An Attempt to Determine the Construct Validity of Measures Hypothesized to Represent an Orientation to Right, Left, or Integrated Hemispheric Brain Function for a Sample of Primary School Children.

    Science.gov (United States)

    Dumbrower, Jule; And Others

    1981-01-01

    This study attempts to obtain evidence of the construct validity of pupil ability tests hypothesized to represent orientation to right, left, or integrated hemispheric function, and of teacher observation subscales intended to reveal behaviors in school setting that were hypothesized to portray preference for right or left brain function. (Author)

  15. The Influence of Visual and Auditory Information on the Perception of Speech and Non-Speech Oral Movements in Patients with Left Hemisphere Lesions

    Science.gov (United States)

    Schmid, Gabriele; Thielmann, Anke; Ziegler, Wolfram

    2009-01-01

    Patients with lesions of the left hemisphere often suffer from oral-facial apraxia, apraxia of speech, and aphasia. In these patients, visual features often play a critical role in speech and language therapy, when pictured lip shapes or the therapist's visible mouth movements are used to facilitate speech production and articulation. This demands…

  16. The nature of hemispheric specialization for linguistic and emotional prosodic perception: a meta-analysis of the lesion literature.

    Science.gov (United States)

    Witteman, Jurriaan; van Ijzendoorn, Marinus H; van de Velde, Daan; van Heuven, Vincent J J P; Schiller, Niels O

    2011-11-01

    It is unclear whether there is hemispheric specialization for prosodic perception and, if so, what the nature of this hemispheric asymmetry is. Using the lesion-approach, many studies have attempted to test whether there is hemispheric specialization for emotional and linguistic prosodic perception by examining the impact of left vs. right hemispheric damage on prosodic perception task performance. However, so far no consensus has been reached. In an attempt to find a consistent pattern of lateralization for prosodic perception, a meta-analysis was performed on 38 lesion studies (including 450 left hemisphere damaged patients, 534 right hemisphere damaged patients and 491 controls) of prosodic perception. It was found that both left and right hemispheric damage compromise emotional and linguistic prosodic perception task performance. Furthermore, right hemispheric damage degraded emotional prosodic perception more than left hemispheric damage (trimmed g=-0.37, 95% CI [-0.66; -0.09], N=620 patients). It is concluded that prosodic perception is under bihemispheric control with relative specialization of the right hemisphere for emotional prosodic perception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Hemispheric Asymmetries in the Activation and Monitoring of Memory Errors

    Science.gov (United States)

    Giammattei, Jeannette; Arndt, Jason

    2012-01-01

    Previous research on the lateralization of memory errors suggests that the right hemisphere's tendency to produce more memory errors than the left hemisphere reflects hemispheric differences in semantic activation. However, all prior research that has examined the lateralization of memory errors has used self-paced recognition judgments. Because…

  18. A supervised framework for lesion segmentation and automated VLSM analyses in left hemispheric stroke

    Directory of Open Access Journals (Sweden)

    Dorian Pustina

    2015-05-01

    Full Text Available INTRODUCTION: Voxel-based lesion-symptom mapping (VLSM is conventionally performed using skill and knowledge of experts to manually delineate brain lesions. This process requires time, and is likely to have substantial inter-rater variability. Here, we propose a supervised machine learning framework for lesion segmentation capable of learning from a single modality and existing manual segmentations in order to delineate lesions in new patients. METHODS: Data from 60 patients with chronic stroke aphasia were utilized in the study (age: 59.7±11.5yrs, post-stroke interval: 5±2.9yrs, male/female ratio: 34/26. Using a single T1 image of each subject, additional features were created that provided complementary information, such as, difference from template, tissue segmentation, brain asymmetries, gradient magnitude, and deviances of these images from 80 age and gender matched controls. These features were fed into MRV-NRF (multi-resolution voxel-wise neighborhood random forest; Tustison et al., 2014 prediction algorithm implemented in ANTsR (Avants, 2015. The algorithm incorporates information from each voxel and its surrounding neighbors from all above features, in a hierarchy of random forest predictions from low to high resolution. The validity of the framework was tested with a 6-fold cross validation (i.e., train from 50 subjects, predict 10. The process was repeated ten times, producing ten segmentations for each subject, from which the average solution was binarized. Predicted lesions were compared to manually defined lesions, and VLSM models were built on 4 language measures: repetition and comprehension subscores from the WAB (Kertesz, 1982, WAB-AQ, and PNT naming accuracy (Roach, Schwartz, Martin, Grewal, & Brecher, 1996. RESULTS: Manual and predicted lesion size showed high correlation (r=0.96. Compared to manual lesions, the predicted lesions had a dice overlap of 0.72 (±0.14 STD, a case-wise maximum distance (Hausdorff of 21mm (±16

  19. Left ventricular hypertrophy and risk of fatal and non-fatal stroke EUROSTROKE: a collaborative study among research centres in Europe

    NARCIS (Netherlands)

    M.L. Bots (Michiel); J. Tuomilehto; D.E. Grobbee (Diederick); P.J. Koudstaal (Peter Jan); Y. Nikitin; J.T. Salonen; P.C. Elwood; S. Malyutina; A. Freire de Concalves; J. Sivenius; A. di Carlo; P. Lagiou

    2002-01-01

    textabstractBACKGROUND: This study investigated the association between electrocardiographically assessed left ventricular hypertrophy (LVH) and fatal, non-fatal, haemorrhagic and ischaemic stroke in four European cohorts participating in EUROSTROKE. METHODS: EUROSTROKE is a

  20. Split-brain reveals separate but equal self-recognition in the two cerebral hemispheres.

    Science.gov (United States)

    Uddin, Lucina Q; Rayman, Jan; Zaidel, Eran

    2005-09-01

    To assess the ability of the disconnected cerebral hemispheres to recognize images of the self, a split-brain patient (an individual who underwent complete cerebral commissurotomy to relieve intractable epilepsy) was tested using morphed self-face images presented to one visual hemifield (projecting to one hemisphere) at a time while making "self/other" judgments. The performance of the right and left hemispheres of this patient as assessed by a signal detection method was not significantly different, though a measure of bias did reveal hemispheric differences. The right and left hemispheres of this patient independently and equally possessed the ability to self-recognize, but only the right hemisphere could successfully recognize familiar others. This supports a modular concept of self-recognition and other-recognition, separately present in each cerebral hemisphere.

  1. Crossed Aphasia in a Dextral without “Minor” Hemisphere Signs

    Directory of Open Access Journals (Sweden)

    J. C. Marshall

    1992-01-01

    Full Text Available A case of severe aphasia after right hemisphere stroke, confirmed by CT, in an unambiguously dextral patient is reported. The patient showed no limb apraxia, and performed well on a test of “closure” (Mooney faces. Extensive testing revealed no signs of visuo-spatial neglect. We conclude that “pure” crossed aphasia can occur in the absence of symptoms normally associated with right hemisphere lesions.

  2. Deficits of reach-to-grasp coordination following stroke: Comparison of instructed and natural movements.

    Science.gov (United States)

    Baak, Benjamin; Bock, Otmar; Dovern, Anna; Saliger, Jochen; Karbe, Hans; Weiss, Peter H

    2015-10-01

    The present work evaluates whether stroke-induced deficits of reach-to-grasp movements, established by typical laboratory paradigms, transfer unconditionally to more natural situations. Sixteen patients with a stroke to the motor-dominant left hemisphere and 16 age- and gender-matched healthy control subjects executed grasping movements with their left (ipsilesional, non-dominant) hand. All movements started in the same position, were aimed at the same object positioned in the same location, and were followed by forward displacement of that object along the same path. Twenty movements were performed as a repetitive, externally triggered task executed for their own sake (context L, as in typical laboratory tasks). Twenty movements were performed as part of a self-initiated action sequence aimed at winning a reward (context E, similar to many everyday situations). The kinematics and dynamics of the transport, grasp and manipulation component of each reach-to-grasp movement were quantified by 41 parameters. Analyses of variance yielded a significant effect of Context for 29 parameters, a significant effect of Group for 9 parameters (mostly related to the coupling of hand transport and grip aperture), and a significant interaction for 5 parameters (all related to the coupling of hand transport and grip aperture). The interaction reflected the fact that stroke patients' movement parameters were more abnormal in context E than in context L. Our data indicate that unilateral stroke degrades the grasp-transport coupling, and that stroke-related motor deficits may be more pronounced in a natural than in a laboratory context. Thus, for stroke patients, assessments and rehabilitation regimes should mainly use activities that are as natural as possible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Coronary artery disease, left ventricular hypertrophy and diastolic dysfunction are associated with stroke in patients affected by persistent non-valvular atrial fibrillation: a case-control study

    Directory of Open Access Journals (Sweden)

    Andrea Passantino

    2009-04-01

    Full Text Available Persistent non-valvular atrial fibrillation (NVAF is associated with an increased risk of cardiovascular events such as stroke, and its rate is expected to rise because of the ageing population. The absolute rate of stroke depends on age and comorbidity. Risk stratification for stroke in patients with NVAF derives from populations enrolled in randomized clinical trials. However, participants in clinical trials are often not representative of the general population. Many stroke risk stratification scores have been used, but they do not include transthoracic echocardiogram (TTE, pulsate wave Doppler (PWD and tissue Doppler imaging (TDI, simple and non-invasive diagnostic tools. The role of TTE, PWD and TDI findings has not been previously determined. Our study goal was to determine the association between TTE and PWD findings and stroke prevalence in a population of NVAF prone outpatients. Patients were divided into two groups: P for stroke prone and F for stroke free. There were no statistically significant differences between the two groups concerning cardiovascular risk factors, age (p=0.2, sex (p=0.2, smoking (p=0.3, diabetes (p=0.1 and hypercholesterolemia (p=0.2; hypertension was statistically significant (p less than 0.001. There were statistically significant differences concerning coronary artery disease, previous acute myocardial infarction (AMI (p less than 0.05 and non- AMI coronaropathy (p less than 0.04, a higher rate being in the P group. Concerning echo-Doppler findings, a higher statistically significant rate of left ventricular hypertrophy (LVH (p less than  0.05 and left ventricular diastolic dysfunction (p less than 0.001 was found in the P group and dilated left atrium (p Hemispheric biases and the control of visuospatial attention: an ERP study

    Directory of Open Access Journals (Sweden)

    Banich Marie T

    2005-08-01

    Full Text Available Abstract Background We examined whether individual differences in hemispheric utilization can interact with the intrinsic attentional biases of the cerebral hemispheres. Evidence suggests that the hemispheres have competing biases to direct attention contralaterally, with the left hemisphere (LH having a stronger bias than the right hemisphere. There is also evidence that individuals have characteristic biases to utilize one hemisphere more than the other for processing information, which can induce a bias to direct attention to contralateral space. We predicted that LH-biased individuals would display a strong rightward attentional bias, which would create difficulty in selectively attending to target stimuli in the left visual field (LVF as compared to right in the performance of a bilateral flanker task. Results Consistent with our hypothesis, flanker interference effects were found on the N2c event-related brain potential and error rate for LH-biased individuals in the Attend-LVF condition. The error rate effect was correlated with the degree of hemispheric utilization bias for the LH-Bias group. Conclusion We conclude that hemispheric utilization bias can enhance a hemisphere's contralateral attentional bias, at least for individuals with a LH utilization bias. Hemispheric utilization bias may play an important and largely unrecognized role in visuospatial attention.

  4. Improving left spatial neglect through music scale playing.

    Science.gov (United States)

    Bernardi, Nicolò Francesco; Cioffi, Maria Cristina; Ronchi, Roberta; Maravita, Angelo; Bricolo, Emanuela; Zigiotto, Luca; Perucca, Laura; Vallar, Giuseppe

    2017-03-01

    The study assessed whether the auditory reference provided by a music scale could improve spatial exploration of a standard musical instrument keyboard in right-brain-damaged patients with left spatial neglect. As performing music scales involves the production of predictable successive pitches, the expectation of the subsequent note may facilitate patients to explore a larger extension of space in the left affected side, during the production of music scales from right to left. Eleven right-brain-damaged stroke patients with left spatial neglect, 12 patients without neglect, and 12 age-matched healthy participants played descending scales on a music keyboard. In a counterbalanced design, the participants' exploratory performance was assessed while producing scales in three feedback conditions: With congruent sound, no-sound, or random sound feedback provided by the keyboard. The number of keys played and the timing of key press were recorded. Spatial exploration by patients with left neglect was superior with congruent sound feedback, compared to both Silence and Random sound conditions. Both the congruent and incongruent sound conditions were associated with a greater deceleration in all groups. The frame provided by the music scale improves exploration of the left side of space, contralateral to the right hemisphere, damaged in patients with left neglect. Performing a scale with congruent sounds may trigger at some extent preserved auditory and spatial multisensory representations of successive sounds, thus influencing the time course of space scanning, and ultimately resulting in a more extensive spatial exploration. These findings offer new perspectives also for the rehabilitation of the disorder. © 2015 The British Psychological Society.

  5. Emotion-related hemisphere asymmetry: subjective emotional responses to laterally presented films.

    Science.gov (United States)

    Wittling, W; Roschmann, R

    1993-09-01

    To investigate whether the cerebral hemispheres differ in their subjective emotional responses 54 adult subjects were presented two films of different emotion-related qualities (positive and negative film) either to their left or right hemisphere. The films were exposed by means of a technique for the lateralization of visual input that allows prolonged viewing while permitting free ocular scanning. Subjective emotional responses were assessed by means of a continuous rating of emotional arousal experienced during the movie as well as by retrospective ratings of ten different emotional qualities. Presenting both films to the right hemisphere resulted in stronger subjective responses in the continuous emotion rating as well as in some retrospectively assessed ratings compared to left-hemispheric presentation. The effects were more pronounced for the negative film. Taken together, the findings suggest a higher responsiveness of the right hemisphere in subjective emotional experience.

  6. Comparison of the two cerebral hemispheres in inhibitory processes operative during movement preparation

    Science.gov (United States)

    Klein, Pierre-Alexandre; Duque, Julie; Labruna, Ludovica; Ivry, Richard B.

    2015-01-01

    Neuroimaging and neuropsychological studies suggest that in right-handed individuals, the left hemisphere plays a dominant role in praxis, relative to the right hemisphere. However hemispheric asymmetries assessed with transcranial magnetic stimulation (TMS) has not shown consistent differences in corticospinal (CS) excitability of the two hemispheres during movements. In the current study, we systematically explored hemispheric asymmetries in inhibitory processes that are manifest during movement preparation and initiation. Single-pulse TMS was applied over the left or right primary motor cortex (M1LEFT and M1RIGHT, respectively) to elicit motor-evoked potentials (MEPs) in the contralateral hand while participants performed a two-choice reaction time task requiring a cued movement of the left or right index finger. In Experiments 1 and 2, TMS probes were obtained during a delay period following the presentation of the preparatory cue that provided partial or full information about the required response. MEPs were suppressed relative to baseline regardless of whether they were elicited in a cued or uncued hand. Importantly, the magnitude of these inhibitory changes in CS excitability was similar when TMS was applied over M1LEFT or M1RIGHT, irrespective of the amount of information carried by the preparatory cue. In Experiment 3, there was no preparatory cue and TMS was applied at various time points after the imperative signal. When CS excitability was probed in the cued effector, MEPs were initially inhibited and then rose across the reaction time interval. This function was similar for M1LEFT and M1RIGHT TMS. When CS excitability was probed in the uncued effector, MEPs remained inhibited throughout the RT interval. However, MEPs in right FDI became more inhibited during selection and initiation of a left hand movement, whereas MEPs in left FDI remained relatively invariant across RT interval for the right hand. In addition to these task-specific effects, there

  7. Hemispheric dominance underlying the neural substrate for learned vocalizations develops with experience.

    Science.gov (United States)

    Chirathivat, Napim; Raja, Sahitya C; Gobes, Sharon M H

    2015-06-22

    Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers' song, just like Wernicke's area in the left hemisphere of the human brain is dominant for speech perception. However, it is unclear if hemispheric specialization is due to pre-existing functional asymmetry or the result of learning itself. Here we show that in juvenile male and female zebra finches that had never heard an adult song before, neuronal activation after initial exposure to a conspecific song is bilateral. Thus, like in humans, hemispheric dominance develops with vocal proficiency. A left-lateralized functional system that develops through auditory-vocal learning may be an evolutionary adaptation that could increase the efficiency of transferring information within one hemisphere, benefiting the production and perception of learned communication signals.

  8. A predictive model for diagnosing stroke-related apraxia of speech.

    Science.gov (United States)

    Ballard, Kirrie J; Azizi, Lamiae; Duffy, Joseph R; McNeil, Malcolm R; Halaki, Mark; O'Dwyer, Nicholas; Layfield, Claire; Scholl, Dominique I; Vogel, Adam P; Robin, Donald A

    2016-01-29

    Diagnosis of the speech motor planning/programming disorder, apraxia of speech (AOS), has proven challenging, largely due to its common co-occurrence with the language-based impairment of aphasia. Currently, diagnosis is based on perceptually identifying and rating the severity of several speech features. It is not known whether all, or a subset of the features, are required for a positive diagnosis. The purpose of this study was to assess predictor variables for the presence of AOS after left-hemisphere stroke, with the goal of increasing diagnostic objectivity and efficiency. This population-based case-control study involved a sample of 72 cases, using the outcome measure of expert judgment on presence of AOS and including a large number of independently collected candidate predictors representing behavioral measures of linguistic, cognitive, nonspeech oral motor, and speech motor ability. We constructed a predictive model using multiple imputation to deal with missing data; the Least Absolute Shrinkage and Selection Operator (Lasso) technique for variable selection to define the most relevant predictors, and bootstrapping to check the model stability and quantify the optimism of the developed model. Two measures were sufficient to distinguish between participants with AOS plus aphasia and those with aphasia alone, (1) a measure of speech errors with words of increasing length and (2) a measure of relative vowel duration in three-syllable words with weak-strong stress pattern (e.g., banana, potato). The model has high discriminative ability to distinguish between cases with and without AOS (c-index=0.93) and good agreement between observed and predicted probabilities (calibration slope=0.94). Some caution is warranted, given the relatively small sample specific to left-hemisphere stroke, and the limitations of imputing missing data. These two speech measures are straightforward to collect and analyse, facilitating use in research and clinical settings. Copyright

  9. White matter structure and clinical characteristics of stroke patients: A diffusion tensor MRI study.

    Science.gov (United States)

    Ueda, Ryo; Yamada, Naoki; Kakuda, Wataru; Abo, Masahiro; Senoo, Atsushi

    2016-03-15

    Fractional anisotropy has been used in many studies that examined post-stroke changes in white matter. This study was performed to clarify cerebral white matter changes after stroke using generalized fractional anisotropy (GFA). White matter structure was visualized using diffusion tensor imaging in 72 patients with post-stroke arm paralysis. Exercise-related brain regions were examined in cerebral white matter using GFA. The relationship between GFA and clinical characteristics was examined. Overall, the mean GFA of the lesioned hemisphere was significantly lower than that of the non-lesioned hemisphere (PBrodmann area 5 of the non-lesioned hemisphere. Age correlated negatively with GFA in Brodmann areas 5 and 7 of the lesioned hemisphere. Though these results may be due to a decrease in the frequency of use of the paralyzed limb over time, GFA overall was significantly and negatively affected by the subject's age. The GFA values of patients with paralysis of the dominant hand were significantly different from those of patients with paralysis of the nondominant hand in Brodmann areas 4 and 6 of the non-lesioned hemisphere and Brodmann area 4 of the lesioned hemisphere (P<0.05). The stroke size and location were not associated with GFA differences. Differences between the GFA of the lesioned and non-lesioned hemispheres varied depending on the affected brain region, age at onset of paralysis, and paralysis of the dominant or non-dominant hand. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Slower EEG alpha generation, synchronization and “flow”—possible biomarkers of cognitive impairment and neuropathology of minor stroke

    Directory of Open Access Journals (Sweden)

    Jelena Petrovic

    2017-09-01

    Full Text Available Background We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. Methods We included 10 patients with right middle cerebral artery (MCA ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS, whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA and MoCA memory index (MoCA-MIS. The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8, and corresponding lateral posterior (P3, P4, T5, T6 electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG, the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure, the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs. Statistical analysis was done using a Kruskal–Wallis ANOVA with a post-hoc Mann–Whitney U two-tailed test, and Spearman’s correlation. Results We demonstrated transient cognitive impairment alongside a slower alpha frequency (αAVG in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered “alpha flow”, indicating the sustained augmentation of inter-hemispheric interactions

  11. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    The role of the right hemisphere in aphasia recovery after left hemisphere damage remains unclear. Increased activation of the right hemisphere has been observed after left hemisphere damage. This may simply reflect a release from transcallosal inhibition that does not contribute to language...... functions. Alternatively, the right hemisphere may actively contribute to language functions by supporting disrupted processing in the left hemisphere via interhemispheric connections. To test this hypothesis, we applied off-line continuous theta burst stimulation (cTBS) over the left inferior frontal gyrus...... (IFG) in healthy volunteers, then used functional MRI to investigate acute changes in effective connectivity between the left and right hemispheres during repetition of auditory and visual words and pseudowords. In separate sessions, we applied cTBS over the left anterior IFG (aIFG) or posterior IFG (p...

  12. Hemispheric Division of Function Is the Result of Independent Probabilistic Biases

    Science.gov (United States)

    Whitehouse, Andrew J. O.; Bishop, Dorothy V. M.

    2009-01-01

    Verbal and visuospatial abilities are typically subserved by different cerebral hemispheres: the left hemisphere for the former and the right hemisphere for the latter. However little is known of the origin of this division of function. Causal theories propose that functional asymmetry is an obligatory pattern of organisation, while statistical…

  13. Damage to the Left Precentral Gyrus Is Associated With Apraxia of Speech in Acute Stroke.

    Science.gov (United States)

    Itabashi, Ryo; Nishio, Yoshiyuki; Kataoka, Yuka; Yazawa, Yukako; Furui, Eisuke; Matsuda, Minoru; Mori, Etsuro

    2016-01-01

    Apraxia of speech (AOS) is a motor speech disorder, which is clinically characterized by the combination of phonemic segmental changes and articulatory distortions. AOS has been believed to arise from impairment in motor speech planning/programming and differentiated from both aphasia and dysarthria. The brain regions associated with AOS are still a matter of debate. The aim of this study was to address this issue in a large number of consecutive acute ischemic stroke patients. We retrospectively studied 136 patients with isolated nonlacunar infarcts in the left middle cerebral artery territory (70.5±12.9 years old, 79 males). In accordance with speech and language assessments, the patients were classified into the following groups: pure form of AOS (pure AOS), AOS with aphasia (AOS-aphasia), and without AOS (non-AOS). Voxel-based lesion-symptom mapping analysis was performed on T2-weighted images or fluid-attenuated inversion recovery images. Using the Liebermeister method, group-wise comparisons were made between the all AOS (pure AOS plus AOS-aphasia) and non-AOS, pure AOS and non-AOS, AOS-aphasia and non-AOS, and pure AOS and AOS-aphasia groups. Of the 136 patients, 22 patients were diagnosed with AOS (7 patients with pure AOS and 15 patients with AOS-aphasia). The voxel-based lesion-symptom mapping analysis demonstrated that the brain regions associated with AOS were centered on the left precentral gyrus. Damage to the left precentral gyrus is associated with AOS in acute to subacute stroke patients, suggesting a role of this brain region in motor speech production. © 2015 American Heart Association, Inc.

  14. Inference comprehension in text reading: Performance of individuals with right- versus left-hemisphere lesions and the influence of cognitive functions.

    Science.gov (United States)

    Silagi, Marcela Lima; Radanovic, Marcia; Conforto, Adriana Bastos; Mendonça, Lucia Iracema Zanotto; Mansur, Leticia Lessa

    2018-01-01

    Right-hemisphere lesions (RHL) may impair inference comprehension. However, comparative studies between left-hemisphere lesions (LHL) and RHL are rare, especially regarding reading comprehension. Moreover, further knowledge of the influence of cognition on inferential processing in this task is needed. To compare the performance of patients with RHL and LHL on an inference reading comprehension task. We also aimed to analyze the effects of lesion site and to verify correlations between cognitive functions and performance on the task. Seventy-five subjects were equally divided into the groups RHL, LHL, and control group (CG). The Implicit Management Test was used to evaluate inference comprehension. In this test, subjects read short written passages and subsequently answer five types of questions (explicit, logical, distractor, pragmatic, and other), which require different types of inferential reasoning. The cognitive functional domains of attention, memory, executive functions, language, and visuospatial abilities were assessed using the Cognitive Linguistic Quick Test (CLQT). The LHL and RHL groups presented difficulties in inferential comprehension in comparison with the CG. However, the RHL group presented lower scores than the LHL group on logical, pragmatic and other questions. A covariance analysis did not show any effect of lesion site within the hemispheres. Overall, all cognitive domains were correlated with all the types of questions from the inference test (especially logical, pragmatic, and other). Attention and visuospatial abilities affected the scores of both the RHL and LHL groups, and only memory influenced the performance of the RHL group. Lesions in either hemisphere may cause difficulties in making inferences during reading. However, processing more complex inferences was more difficult for patients with RHL than for those with LHL, which suggests that the right hemisphere plays an important role in tasks with higher comprehension demands

  15. Inference comprehension in text reading: Performance of individuals with right- versus left-hemisphere lesions and the influence of cognitive functions.

    Directory of Open Access Journals (Sweden)

    Marcela Lima Silagi

    Full Text Available Right-hemisphere lesions (RHL may impair inference comprehension. However, comparative studies between left-hemisphere lesions (LHL and RHL are rare, especially regarding reading comprehension. Moreover, further knowledge of the influence of cognition on inferential processing in this task is needed.To compare the performance of patients with RHL and LHL on an inference reading comprehension task. We also aimed to analyze the effects of lesion site and to verify correlations between cognitive functions and performance on the task.Seventy-five subjects were equally divided into the groups RHL, LHL, and control group (CG. The Implicit Management Test was used to evaluate inference comprehension. In this test, subjects read short written passages and subsequently answer five types of questions (explicit, logical, distractor, pragmatic, and other, which require different types of inferential reasoning. The cognitive functional domains of attention, memory, executive functions, language, and visuospatial abilities were assessed using the Cognitive Linguistic Quick Test (CLQT.The LHL and RHL groups presented difficulties in inferential comprehension in comparison with the CG. However, the RHL group presented lower scores than the LHL group on logical, pragmatic and other questions. A covariance analysis did not show any effect of lesion site within the hemispheres. Overall, all cognitive domains were correlated with all the types of questions from the inference test (especially logical, pragmatic, and other. Attention and visuospatial abilities affected the scores of both the RHL and LHL groups, and only memory influenced the performance of the RHL group.Lesions in either hemisphere may cause difficulties in making inferences during reading. However, processing more complex inferences was more difficult for patients with RHL than for those with LHL, which suggests that the right hemisphere plays an important role in tasks with higher comprehension

  16. Hemisphericity and information processing in North American Native (Ojibwa) and non-native adolescents.

    Science.gov (United States)

    Morton, L L; Allen, J D; Williams, N H

    1994-04-01

    Thirty-two male and female adolescents of native ancestry (Ojibwa) and 32 controls were tested using (1) four WISC-R subtests and (2) two dichotic listening tasks which employed a focused-attention paradigm for processing consonant-vowel combinations (CVs) and musical melodies. On the WISC-R, natives scored higher than controls on Block Design and Picture Completion subtests but lower on Vocabulary and Similarities subtests. On laterality measures more native males showed a left ear advantage on the CV task and the melody task. For CVs the left ear advantage was due to native males' lower right ear (i.e., left hemisphere) involvement. For melodies, the laterality index pointed to less left hemisphere involvement for native males, however, the raw scores showed that natives were performing lower overall. The findings are consistent with culturally-based strategy differences, possibly linked to "hemisphericity," but additional clarifying research regarding the cause and extent of such differences is warranted. Thus, implications for education are premature but a focus on teaching "left hemisphere type" strategies to all individuals not utilizing such skills, including many native males, may prove beneficial.

  17. Endovascular Mechanical Thrombectomy of an Occluded Superior Division Branch of the Left MCA for Acute Cardioembolic Stroke

    International Nuclear Information System (INIS)

    Schumacher, H. C.; Meyers, P. M.; Yavagal, D. R.; Harel, N. Y.; Elkind, M. S. V.; Mohr, J. P.; Pile-Spellman, J.

    2003-01-01

    Cardiac embolism accounts for a large proportion of ischemic stroke. Revascularization using systemic or intra-arterial thrombolysis is associated with increasing risks of cerebral hemorrhageas time passes from stroke onset. We report successful mechanicalthrombectomy from a distal branch of the middle cerebral artery (MCA)using a novel technique. A 72-year old man suffered an acute ischemic stroke from an echocardiographically proven ventricular thrombus due toa recent myocardial infarction. Intra-arterial administration of 4 mgrt-PA initiated at 5.7 hours post-ictus failed to recanalize an occluded superior division branch of the left MCA. At 6 hours,symptomatic embolic occlusion persisted. Mechanical extraction of the clot using an Attracter-18 device (Target Therapeutics, Freemont, CA) resulted in immediate recanalization of the MCA branch. Attracter-18 for acute occlusion of MCA branches may be considered in selected patients who fail conventional thrombolysis or are nearing closure of the therapeutic window for use of thrombolytic agents

  18. Homotopic organization of essential language sites in right and bilateral cerebral hemispheric dominance.

    Science.gov (United States)

    Chang, Edward F; Wang, Doris D; Perry, David W; Barbaro, Nicholas M; Berger, Mitchel S

    2011-04-01

    Language dominance in the right hemisphere is rare. Therefore, the organization of essential language sites in the dominant right hemisphere is unclear, especially compared with cases involving the more prevalent left dominant hemisphere. The authors reviewed the medical records of 15 patients who underwent awake craniotomy for tumor or epilepsy surgery and speech mapping of right hemisphere perisylvian language areas at the University of California, San Francisco. All patients were determined to have either complete right-sided or bilateral language dominance by preoperative Wada testing. All patients but one were left-handed. Of more than 331 total stimulation sites, 27 total sites were identified as essential for language function (14 sites for speech arrest/anarthria; 12 for anomia; and 1 for alexia). While significant interindividual variability was observed, the general pattern of language organization was similar to classic descriptions of frontal language production and posterior temporal language integration for the left hemisphere. Speech arrest sites were clustered in the ventral precentral gyrus and pars opercularis. Anomia sites were more widely distributed, but were focused in the posterior superior and middle temporal gyri as well as the inferior parietal gyrus. One alexia site was found over the superior temporal gyrus. Face sensory and motor cortical sites were also identified along the ventral sensorimotor strip. The prevalence and specificity of essential language sites were greater in unilateral right hemisphere-dominant patients, compared with those with bilateral dominance by Wada testing. The authors' results suggest that the organization of language in right hemisphere dominance mirrors that of left hemisphere dominance. Awake speech mapping is a safe and reliable surgical adjunct in these rare clinical cases and should be done in the setting of right hemisphere dominance to avoid preventable postoperative aphasia.

  19. Synthetic cannabis and acute ischemic stroke.

    Science.gov (United States)

    Bernson-Leung, Miya E; Leung, Lester Y; Kumar, Sandeep

    2014-01-01

    An association between marijuana use and stroke has been previously reported. However, the health risks of newer synthetic cannabinoid compounds are less well known. We describe 2 cases that introduce a previously unreported association between synthetic cannabis use and ischemic stroke in young adults. A 22-year-old woman presented with dysarthria, left hemiplegia, and left hemianesthesia within hours of first use of synthetic cannabis. She was healthy and without identified stroke risk factors other than oral contraceptive use and a patent foramen ovale without venous thromboses. A 26-year-old woman presented with nonfluent aphasia, left facial droop, and left hemianesthesia approximately 12 hours after first use of synthetic cannabis. Her other stroke risk factors included migraine with aura, oral contraceptive use, smoking, and a family history of superficial thrombophlebitis. Both women were found to have acute, large-territory infarctions of the right middle cerebral artery. Our 2 cases had risk factors for ischemic stroke but were otherwise young and healthy and the onset of their deficits occurred within hours after first-time exposure to synthetic cannabis. Synthetic cannabis use is an important consideration in the investigation of stroke in young adults. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke.

    Science.gov (United States)

    Gorgoraptis, Nikos; Mah, Yee-Haur; Machner, Bjoern; Singh-Curry, Victoria; Malhotra, Paresh; Hadji-Michael, Maria; Cohen, David; Simister, Robert; Nair, Ajoy; Kulinskaya, Elena; Ward, Nick; Greenwood, Richard; Husain, Masud

    2012-08-01

    Hemispatial neglect following right-hemisphere stroke is a common and disabling disorder, for which there is currently no effective pharmacological treatment. Dopamine agonists have been shown to play a role in selective attention and working memory, two core cognitive components of neglect. Here, we investigated whether the dopamine agonist rotigotine would have a beneficial effect on hemispatial neglect in stroke patients. A double-blind, randomized, placebo-controlled ABA design was used, in which each patient was assessed for 20 testing sessions, in three phases: pretreatment (Phase A1), on transdermal rotigotine for 7-11 days (Phase B) and post-treatment (Phase A2), with the exact duration of each phase randomized within limits. Outcome measures included performance on cancellation (visual search), line bisection, visual working memory, selective attention and sustained attention tasks, as well as measures of motor control. Sixteen right-hemisphere stroke patients were recruited, all of whom completed the trial. Performance on the Mesulam shape cancellation task improved significantly while on rotigotine, with the number of targets found on the left side increasing by 12.8% (P = 0.012) on treatment and spatial bias reducing by 8.1% (P = 0.016). This improvement in visual search was associated with an enhancement in selective attention but not on our measures of working memory or sustained attention. The positive effect of rotigotine on visual search was not associated with the degree of preservation of prefrontal cortex and occurred even in patients with significant prefrontal involvement. Rotigotine was not associated with any significant improvement in motor performance. This proof-of-concept study suggests a beneficial role of dopaminergic modulation on visual search and selective attention in patients with hemispatial neglect following stroke.

  2. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus.

    Science.gov (United States)

    Restle, Julia; Murakami, Takenobu; Ziemann, Ulf

    2012-07-01

    The posterior part of the inferior frontal gyrus (pIFG) in the left hemisphere is thought to form part of the putative human mirror neuron system and is assigned a key role in mapping sensory perception onto motor action. Accordingly, the pIFG is involved in motor imitation of the observed actions of others but it is not known to what extent speech repetition of auditory-presented sentences is also a function of the pIFG. Here we applied fMRI-guided facilitating intermittent theta burst transcranial magnetic stimulation (iTBS), or depressant continuous TBS (cTBS), or intermediate TBS (imTBS) over the left pIFG of healthy subjects and compared speech repetition accuracy of foreign Japanese sentences before and after TBS. We found that repetition accuracy improved after iTBS and, to a lesser extent, after imTBS, but remained unchanged after cTBS. In a control experiment, iTBS was applied over the left middle occipital gyrus (MOG), a region not involved in sensorimotor processing of auditory-presented speech. Repetition accuracy remained unchanged after iTBS of MOG. We argue that the stimulation type and stimulation site specific facilitating effect of iTBS over left pIFG on speech repetition accuracy indicates a causal role of the human left-hemispheric pIFG in the translation of phonological perception to motor articulatory output for repetition of speech. This effect may prove useful in rehabilitation strategies that combine repetitive speech training with iTBS of the left pIFG in speech disorders, such as aphasia after cerebral stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Hypothalamic digoxin, hemispheric chemical dominance, and inflammatory bowel disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-09-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. It was considered pertinent to assess the pathway in inflammatory bowel disease (ulcerative colitis and regional ileitis). Since endogenous digoxin can regulate neurotransmitter transport, the pathway and the related cascade were also assessed in individuals with differing hemispheric dominance to find out the role of hemispheric dominance in its pathogenesis. All the patients with inflammatory bowel disease were right-handed/left hemispheric dominant by the dichotic listening test. The following parameters were measured in patients with inflammatory bowel disease and in individuals with differing hemispheric dominance: (1) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (2) tryptophan/tyrosine catabolic patterns; (3) free-radical metabolism; (4) glycoconjugate metabolism; and (5) membrane composition and RBC membrane Na+-K+ ATPase activity. Statistical analysis was done by ANOVA. In patients with inflammatory bowel disease there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these groups of patients. Inflammatory bowel disease is associated with an upregulated isoprenoid pathway and elevated digoxin secretion from the hypothalamus. This can contribute to immune activation, defective glycoprotein bowel antigen presentation, and autoimmunity and a schizophreniform psychosis important in its pathogenesis. The biochemical patterns obtained in inflammatory bowel disease is similar to those obtained in left-handed/right hemispheric dominant individuals by the dichotic listening test. But all the patients with peptic ulcer disease were right-handed/left

  4. Processing of unconventional stimuli requires the recruitment of the non-specialized hemisphere

    Directory of Open Access Journals (Sweden)

    Yoed Nissan Kenett

    2015-02-01

    Full Text Available In the present study we investigate hemispheric processing of conventional and unconventional visual stimuli in the context of visual and verbal creative ability. In Experiment 1, we studied two unconventional visual recognition tasks – Mooney face and objects' silhouette recognition – and found a significant relationship between measures of verbal creativity and unconventional face recognition. In Experiment 2 we used the split visual field paradigm to investigate hemispheric processing of conventional and unconventional faces and its relation to verbal and visual characteristics of creativity. Results showed that while conventional faces were better processed by the specialized right hemisphere, unconventional faces were better processed by the non-specialized left hemisphere. In addition, only unconventional face processing by the non-specialized left hemisphere was related to verbal and visual measures of creative ability. Our findings demonstrate the role of the non-specialized hemisphere in processing unconventional stimuli and how it relates to creativity.

  5. Factors Influencing Right Hemisphere Engagement During Metaphor Comprehension

    Science.gov (United States)

    Diaz, Michele T.; Eppes, Anna

    2018-01-01

    Although the left hemisphere is critical for language, clinical, behavioral, and neuroimaging research suggest that the right hemisphere also contributes to language comprehension. In particular, research has suggested that figurative language may be one type of language that preferentially engages right hemisphere regions. However, there is disagreement about whether these regions within the right hemisphere are sensitive to figurative language per se or to other factors that co-vary with figurativeness. In this article, we will review the neuroimaging literature on figurative language processing, focusing on metaphors, within the context of several theoretical perspectives that have been proposed about hemispheric function in language. Then we will examine three factors that may influence right hemisphere engagement: novelty, task difficulty, and context. We propose that factors that increase integration demands drive right hemisphere involvement in language processing, and that such recruitment is not limited to figurative language. PMID:29643825

  6. Fine-coarse semantic processing in schizophrenia: a reversed pattern of hemispheric dominance.

    Science.gov (United States)

    Zeev-Wolf, Maor; Goldstein, Abraham; Levkovitz, Yechiel; Faust, Miriam

    2014-04-01

    Left lateralization for language processing is a feature of neurotypical brains. In individuals with schizophrenia, lack of left lateralization is associated with the language impairments manifested in this population. Beeman׳s fine-coarse semantic coding model asserts left hemisphere specialization in fine (i.e., conventionalized) semantic coding and right hemisphere specialization in coarse (i.e., non-conventionalized) semantic coding. Applying this model to schizophrenia would suggest that language impairments in this population are a result of greater reliance on coarse semantic coding. We investigated this hypothesis and examined whether a reversed pattern of hemispheric involvement in fine-coarse semantic coding along the time course of activation could be detected in individuals with schizophrenia. Seventeen individuals with schizophrenia and 30 neurotypical participants were presented with two word expressions of four types: literal, conventional metaphoric, unrelated (exemplars of fine semantic coding) and novel metaphoric (an exemplar of coarse semantic coding). Expressions were separated by either a short (250 ms) or long (750 ms) delay. Findings indicate that whereas during novel metaphor processing, controls displayed a left hemisphere advantage at 250 ms delay and right hemisphere advantage at 750 ms, individuals with schizophrenia displayed the opposite. For conventional metaphoric and unrelated expressions, controls showed left hemisphere advantage across times, while individuals with schizophrenia showed a right hemisphere advantage. Furthermore, whereas individuals with schizophrenia were less accurate than control at judging literal, conventional metaphoric and unrelated expressions they were more accurate when judging novel metaphors. Results suggest that individuals with schizophrenia display a reversed pattern of lateralization for semantic coding which causes them to rely more heavily on coarse semantic coding. Thus, for individuals with

  7. Opposed hemispheric specializations for human hypersexuality and orgasm?

    Science.gov (United States)

    Suffren, Sabrina; Braun, Claude M J; Guimond, Anik; Devinsky, Orrin

    2011-05-01

    With a multiple case report analysis we demonstrate that hypersexuality more often results from right hemisphere (RH) (n=26) than left hemisphere (LH) (n=7) lesions, possibly because of LH release after the RH lesion, and that ictal orgasm more often occurs in patients with right-sided (n=23) than left-sided (n=8) seizure foci, with the symptom probably resulting from RH activation. The LH may be specialized for increasing sexual tension, whereas the RH may be specialized for release of this tension (orgasm), the former being catabolic and the latter anabolic. Several other interpretations of the findings are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Brain State-dependent Functional Hemispheric Specialization in Men but not in Women

    OpenAIRE

    Mohr, Christine; Michel, Christoph M.; Lantz, Goran; Ortigue, Stephanie; Viaud-Delmon, Isabelle; Landis, Theodor

    2017-01-01

    Hemispheric specialization is reliably demonstrated in patients with unilateral lesions or disconnected hemispheres, but is inconsistent in healthy populations. The reason for this paradox is unclear. We propose that functional hemispheric specialization in healthy participants depends upon functional brain states at stimulus arrival (FBS). Brain activity was recorded from 123 surface electrodes while 22 participants (11 women) performed lateralized lexical decisions (left hemisphere processi...

  9. Cost-effectiveness analysis of left atrial appendage occlusion compared with pharmacological strategies for stroke prevention in atrial fibrillation.

    Science.gov (United States)

    Lee, Vivian Wing-Yan; Tsai, Ronald Bing-Ching; Chow, Ines Hang-Iao; Yan, Bryan Ping-Yen; Kaya, Mehmet Gungor; Park, Jai-Wun; Lam, Yat-Yin

    2016-08-31

    Transcatheter left atrial appendage occlusion (LAAO) is a promising therapy for stroke prophylaxis in non-valvular atrial fibrillation (NVAF) but its cost-effectiveness remains understudied. This study evaluated the cost-effectiveness of LAAO for stroke prophylaxis in NVAF. A Markov decision analytic model was used to compare the cost-effectiveness of LAAO with 7 pharmacological strategies: aspirin alone, clopidogrel plus aspirin, warfarin, dabigatran 110 mg, dabigatran 150 mg, apixaban, and rivaroxaban. Outcome measures included quality-adjusted life years (QALYs), lifetime costs and incremental cost-effectiveness ratios (ICERs). Base-case data were derived from ACTIVE, RE-LY, ARISTOTLE, ROCKET-AF, PROTECT-AF and PREVAIL trials. One-way sensitivity analysis varied by CHADS2 score, HAS-BLED score, time horizons, and LAAO costs; and probabilistic sensitivity analysis using 10,000 Monte Carlo simulations was conducted to assess parameter uncertainty. LAAO was considered cost-effective compared with aspirin, clopidogrel plus aspirin, and warfarin, with ICER of US$5,115, $2,447, and $6,298 per QALY gained, respectively. LAAO was dominant (i.e. less costly but more effective) compared to other strategies. Sensitivity analysis demonstrated favorable ICERs of LAAO against other strategies in varied CHADS2 score, HAS-BLED score, time horizons (5 to 15 years) and LAAO costs. LAAO was cost-effective in 86.24 % of 10,000 simulations using a threshold of US$50,000/QALY. Transcatheter LAAO is cost-effective for prevention of stroke in NVAF compared with 7 pharmacological strategies. The transcatheter left atrial appendage occlusion (LAAO) is considered cost-effective against the standard 7 oral pharmacological strategies including acetylsalicylic acid (ASA) alone, clopidogrel plus ASA, warfarin, dabigatran 110 mg, dabigatran 150 mg, apixaban, and rivaroxaban for stroke prophylaxis in non-valvular atrial fibrillation management.

  10. Real-time monitoring of ischemic and contralateral brain pO2 during stroke by variable length multisite resonators.

    Science.gov (United States)

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Khan, Nadeem; Swartz, Harold

    2014-06-01

    Electron paramagnetic resonance (EPR) oximetry using variable length multi-probe implantable resonator (IR), was used to investigate the temporal changes in the ischemic and contralateral brain pO2 during stroke in rats. The EPR signal to noise ratio (S/N) of the IR with four sensor loops at a depth of up to 11 mm were compared with direct implantation of lithium phthalocyanine (LiPc, oximetry probe) deposits in vitro. These IRs were used to follow the temporal changes in pO2 at two sites in each hemisphere during ischemia induced by left middle cerebral artery occlusion (MCAO) in rats breathing 30% O2 or 100% O2. The S/N ratios of the IRs were significantly greater than the LiPc deposits. A similar pO2 at two sites in each hemisphere prior to the onset of ischemia was observed in rats breathing 30% O2. However, a significant decline in the pO2 of the left cortex and striatum occurred during ischemia, but no change in the pO2 of the contralateral brain was observed. A significant increase in the pO2 of only the contralateral non-ischemic brain was observed in the rats breathing 100% O2. No significant difference in the infarct volume was evident between the animals breathing 30% O2 or 100% O2 during ischemia. EPR oximetry with IRs can repeatedly assess temporal changes in the brain pO2 at four sites simultaneously during stroke. This oximetry approach can be used to test and develop interventions to rescue ischemic tissue by modulating cerebral pO2 during stroke. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Metabolite changes in the ipsilateral and contralateral cerebral hemispheres in rats with middle cerebral artery occlusion

    Directory of Open Access Journals (Sweden)

    Lei Ruan

    2017-01-01

    Full Text Available Cerebral ischemia not only causes pathological changes in the ischemic areas but also induces a series of secondary changes in more distal brain regions (such as the contralateral cerebral hemisphere. The impact of supratentorial lesions, which are the most common type of lesion, on the contralateral cerebellum has been studied in patients by positron emission tomography, single photon emission computed tomography, magnetic resonance imaging and diffusion tensor imaging. In the present study, we investigated metabolite changes in the contralateral cerebral hemisphere after supratentorial unilateral ischemia using nuclear magnetic resonance spectroscopy-based metabonomics. The permanent middle cerebral artery occlusion model of ischemic stroke was established in rats. Rats were randomly divided into the middle cerebral artery occlusion 1-, 3-, 9- and 24-hour groups and the sham group. 1H nuclear magnetic resonance spectroscopy was used to detect metabolites in the left and right cerebral hemispheres. Compared with the sham group, the concentrations of lactate, alanine, γ-aminobutyric acid, choline and glycine in the ischemic cerebral hemisphere were increased in the acute stage, while the concentrations of N-acetyl aspartate, creatinine, glutamate and aspartate were decreased. This demonstrates that there is an upregulation of anaerobic glycolysis (shown by the increase in lactate, a perturbation of choline metabolism (suggested by the increase in choline, neuronal cell damage (shown by the decrease in N-acetyl aspartate and neurotransmitter imbalance (evidenced by the increase in γ-aminobutyric acid and glycine and by the decrease in glutamate and aspartate in the acute stage of cerebral ischemia. In the contralateral hemisphere, the concentrations of lactate, alanine, glycine, choline and aspartate were increased, while the concentrations of γ-aminobutyric acid, glutamate and creatinine were decreased. This suggests that there is a

  12. An interesting case of cryptogenic stroke in a young man due to left ventricular non-compaction: role of cardiac MRI in the accurate diagnosis.

    Science.gov (United States)

    Kannan, Arun; Das, Anindita; Janardhanan, Rajesh

    2014-06-24

    A 28-year-old man arrived for an outpatient cardiac MRI (CMR) study to evaluate cardiac structure. At the age of 24 the patient presented with acute onset expressive aphasia and was diagnosed with ischaemic stroke. Echocardiography at that time was reported as 'apical wall thickening consistent with apical hypertrophic cardiomyopathy'. CMR revealed a moderately dilated left ventricle with abnormal appearance of the left ventricular (LV) apical segments. Further evaluation was consistent with a diagnosis of LV non-compaction (LVNC) cardiomyopathy with a ratio of non-compacted to compacted myocardium measuring 3. There was extensive delayed hyperenhancement signal involving multiple segments representing a significant myocardial scar which is shown to have a prognostic role. Our patient, with no significant cerebrovascular risk factors, would likely have had an embolic stroke. This case demonstrates the role of CMR in accurately diagnosing LVNC in a patient with young stroke where prior echocardiography was non-diagnostic. 2014 BMJ Publishing Group Ltd.

  13. [fMRI study of the dominant hemisphere for language in patients with brain tumor].

    Science.gov (United States)

    Buklina, S B; Podoprigora, A E; Pronin, I N; Shishkina, L V; Boldyreva, G N; Bondarenko, A A; Fadeeva, L M; Kornienko, V N; Zhukov, V Iu

    2013-01-01

    Paper describes a study of language lateralization of patients with brain tumors, measured by preoperative functional magnetic resonance imaging (fMRI) and comparison results with tumor histology and profile of functional asymmetry. During the study 21 patient underwent fMRI scan. 15 patients had a tumor in the left and 6 in the right hemisphere. Tumors were localized mainly in the frontal, temporal and fronto-temporal regions. Histological diagnosis in 8 cases was malignant Grade IV, in 13 cases--Grade I-III. fMRI study was perfomed on scanner "Signa Exite" with a field strength of 1.5 As speech test reciting the months of the year in reverse order was used. fMRI scan results were compared with the profile of functional asymmetry, which was received with the results of questionnaire Annette and dichotic listening test. Broca's area was found in 7 cases in the left hemisphere, 6 had a tumor Grade I-III. And one patient with glioblastoma had a tumor of the right hemisphere. Broca's area in the right hemisphere was found in 3 patients (2 patients with left sided tumor, and one with right-sided tumor). One patient with left-sided tumor had mild motor aphasia. Bilateral activation in both hemispheres of the brain was observed in 6 patients. All of them had tumor Grade II-III of the left hemisphere. Signs of left-handedness were revealed only in half of these patients. Broca's area was not found in 4 cases. All of them had large malignant tumors Grade IV. One patient couldn't handle program of the research. Results of fMRI scans, questionnaire Annette and dichotic listening test frequently were not the same, which is significant. Bilateral activation in speech-loads may be a reflection of brain plasticity in cases of long-growing tumors. Thus it's important to consider the full range of clinical data in studying the problem of the dominant hemisphere for language.

  14. The effect of virtual reality training on unilateral spatial neglect in stroke patients.

    Science.gov (United States)

    Kim, Yong Mi; Chun, Min Ho; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun

    2011-06-01

    To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group received conventional neglect therapy such as visual scanning training. Both groups received therapy for 30 minutes a day, five days per week for three weeks. Outcome measurements included star cancellation test, line bisection test, Catherine Bergego scale (CBS), and the Korean version of modified Barthel index (K-MBI). These measurements were taken before and after treatment. There were no significant differences in the baseline characteristics and initial values between the two groups. The changes in star cancellation test results and CBS in the VR group were significantly higher than those of the control group after treatment. The changes in line bisection test score and the K-MBI in the VR group were not statistically significant. This study suggests that virtual reality training may be a beneficial therapeutic technique on unilateral spatial neglect in stroke patients.

  15. Functional recovery of gait and joint kinematics after right hemispheric stroke

    NARCIS (Netherlands)

    Huitema, RB; Mulder, T; Brouwer, WH; Dekker, R; Postema, K; Hof, A.L.

    2004-01-01

    Objective: To gain insight into the relation between changes in gait patterns over time and functional recovery of walking ability in stroke patients. Design: Cohort study. Setting: Inpatient rehabilitation center of a university hospital in the Netherlands. Participants: Thirteen stroke patients

  16. Higher levels of serum fibrin-monomer reflect hypercoagulable state and thrombus formation in the left atrial appendage in patients with acute ischemic stroke.

    Science.gov (United States)

    Okuyama, Hidenobu; Hirono, Osamu; Liu, Ling; Takeishi, Yasuchika; Kayama, Takamasa; Kubota, Isao

    2006-08-01

    It is sometimes difficult to make a diagnosis of cardioembolic stroke in the stroke care unit, because of the splashing and vanishing of the intracardiac source of the emboli on transesophageal echocardiography. Serum fibrin-monomer (FM) is a new marker for coagulation activity that is useful for identifying older individuals at increased risk of ischemic stroke. Two hundred and four patients with acute ischemic stroke were examined for serum coagulation and fibrinolytic activity on admission, and underwent transesophageal echocardiography within 7 days of onset. Serum levels of FM was significantly higher in patients with left atrial appendage (LAA) thrombus formation (n=24) than in those with no thrombus (88+/-52 vs 14+/-9 microg/ml, pvs 8+/-5 microg/ml, pstroke.

  17. Molecular Basis of Impaired Glycogen Metabolism during Ischemic Stroke and Hypoxia

    Science.gov (United States)

    Hossain, Mohammed Iqbal; Roulston, Carli Lorraine; Stapleton, David Ian

    2014-01-01

    Background Ischemic stroke is the combinatorial effect of many pathological processes including the loss of energy supplies, excessive intracellular calcium accumulation, oxidative stress, and inflammatory responses. The brain's ability to maintain energy demand through this process involves metabolism of glycogen, which is critical for release of stored glucose. However, regulation of glycogen metabolism in ischemic stroke remains unknown. In the present study, we investigate the role and regulation of glycogen metabolizing enzymes and their effects on the fate of glycogen during ischemic stroke. Results Ischemic stroke was induced in rats by peri-vascular application of the vasoconstrictor endothelin-1 and forebrains were collected at 1, 3, 6 and 24 hours post-stroke. Glycogen levels and the expression and activity of enzymes involved in glycogen metabolism were analyzed. We found elevated glycogen levels in the ipsilateral hemispheres compared with contralateral hemispheres at 6 and 24 hours (25% and 39% increase respectively; PGlycogen synthase activity and glycogen branching enzyme expression were found to be similar between the ipsilateral, contralateral, and sham control hemispheres. In contrast, the rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 58% lower activity (Pglycogen debranching enzyme expression 24 hours post-stroke was 77% (Pglycogen phosphorylase activity and increased glycogen accumulation but did not alter glycogen synthase activity. Furthermore, elevated glycogen levels provided metabolic support to astrocytes during hypoxia. Conclusion Our study has identified that glycogen breakdown is impaired during ischemic stroke, the molecular basis of which includes reduced glycogen debranching enzyme expression level together with reduced glycogen phosphorylase and PKA activity. PMID:24858129

  18. Hemispheric dominance underlying the neural substrate for learned vocalizations develops with experience

    OpenAIRE

    Chirathivat, Napim; Raja, Sahitya C.; Gobes, Sharon M. H.

    2015-01-01

    Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers? song, just like Wernicke?s area in the left hemisphere of the hum...

  19. Handedness results from Complementary Hemispheric Dominance, not Global Hemispheric Dominance: Evidence from Mechanically Coupled Bilateral Movements.

    Science.gov (United States)

    Woytowicz, Elizabeth J; Westlake, Kelly P; Whitall, Jill; Sainburg, Robert L

    2018-05-09

    Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g. bread) with one hand while applying forces to the object (e.g. slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand, while moving the other hand to a target. Thus, the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right hand reach and left hand stabilize; left hand reach and right hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction, such that the right hand showed straighter reaching performance while the left showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks.

  20. Changes of resting cerebral activities in subacute ischemic stroke patients

    Directory of Open Access Journals (Sweden)

    Ping Wu

    2015-01-01

    Full Text Available This study aimed to detect the difference in resting cerebral activities between ischemic stroke patients and healthy participants, define the abnormal site, and provide new evidence for pathological mechanisms, clinical diagnosis, prognosis prediction and efficacy evaluation of ischemic stroke. At present, the majority of functional magnetic resonance imaging studies focus on the motor dysfunction and the acute stage of ischemic stroke. This study recruited 15 right-handed ischemic stroke patients at subacute stage (15 days to 11.5 weeks and 15 age-matched healthy participants. A resting-state functional magnetic resonance imaging scan was performed on each subject to detect cerebral activity. Regional homogeneity analysis was used to investigate the difference in cerebral activities between ischemic stroke patients and healthy participants. The results showed that the ischemic stroke patients had lower regional homogeneity in anterior cingulate and left cerebrum and higher regional homogeneity in cerebellum, left precuneus and left frontal lobe, compared with healthy participants. The experimental findings demonstrate that the areas in which regional homogeneity was different between ischemic stroke patients and healthy participants are in the cerebellum, left precuneus, left triangle inferior frontal gyrus, left inferior temporal gyrus and anterior cingulate. These locations, related to the motor, sensory and emotion areas, are likely potential targets for the neural regeneration of subacute ischemic stroke patients.

  1. Anosognosia, neglect and quality of life of right hemisphere stroke survivors.

    Science.gov (United States)

    Dai, C-Y; Liu, W-M; Chen, S-W; Yang, C-A; Tung, Y-C; Chou, L-W; Lin, L-C

    2014-05-01

    Anosognosia and neglect may coexist in stroke patients. Neglect patients often report poor quality of life (QOL), whereas patients suffering from other cognition disorders with poor insight report better QOL. This study investigates the relationship between anosognosia, neglect and QOL amongst stroke survivors. Stroke survivors who met the criteria were used as a sampling pool. Sixty stroke patients were observed in this study, amongst whom 20 patients with anosognosia and neglect (A+N+), 20 patients with neglect but not anosognosia (A-N+) and 20 patients with neither anosognosia nor neglect (A-N-) were selected from the sampling pool based on demographic characteristics matched with the A+N+ group. A questionnaire (SS-QOL) was used to collect the QOL perceived by the stroke survivors. The perceived QOL of the A+N+ group was significantly better than those of the other groups, including the subscales of self-care, mobility, work/productivity, upper extremity, mood, family role and social role. However, the A+N+ group had poor balance level and more fall incidents were reported. The A+N+ group perceived better QOL but had more falls and poorer balance than the other groups. Health providers should work with caregivers aggressively in preventing accidents. © 2014 The Author(s) European Journal of Neurology © 2014 EFNS.

  2. LEFT ATRIAL APPENDAGE CLOSURE AS AN ALTERNATIVE TO WARFARIN FOR STROKE PREVENTION IN ATRIAL FIBRILLATION: A PATIENT¬LEVEL META¬ANALYSIS

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Full Text Available Holmes D.R. Jr, Doshi S.K., Kar S., et al. Left Atrial Appendage Closure as an Alternative to Warfarin for Stroke Prevention in Atrial Fibrillation: A Patient­Level Meta­Analysis // J. Am. Coll. Cardiol. – 2015. – Vol. 65. – P. 2614–2623.

  3. Hypothalamic digoxin, hemispheric chemical dominance, and spirituality.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-03-01

    The isoprenoid pathway was assessed in atheistic and spiritually inclined individuals. The pathway was also assessed in individuals with differing hemispheric dominance to assess whether hemispheric dominance has a correlation with spiritual and atheistic tendency. HMG CoA reductase activity, serum digoxin, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, and tyrosine/tryptophan catabolic patterns were assessed in spiritual/atheistic individuals and in those differing hemispheric dominance. In spiritually-inclined individuals, there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in spiritually-inclined individuals correlated with right hemispheric chemical dominance. In atheistic individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolities (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in atheistic individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to spirituality or atheism.

  4. Temporal processing asymmetries between the cerebral hemispheres: evidence and implications.

    Science.gov (United States)

    Nicholls, M E

    1996-07-01

    This paper reviews a large body of research which has investigated the capacities of the cerebral hemispheres to process temporal information. This research includes clinical, non-clinical, and electrophysiological experimentation. On the whole, the research supports the notion of a left hemisphere advantage for temporal resolution. The existence of such an asymmetry demonstrates that cerebral lateralisation is not limited to the higher-order functions such as language. The capacity for the resolution of fine temporal events appears to play an important role in other left hemisphere functions which require a rapid sequential processor. The functions that are facilitated by such a processor include verbal, textual, and fine movement skills. The co-development of these functions with an efficient temporal processor can be accounted for with reference to a number of evolutionary scenarios. Physiological evidence favours a temporal processing mechanism located within the left temporal cortex. The function of this mechanism may be described in terms of intermittency or travelling moment models of temporal processing. The travelling moment model provides the most plausible account of the asymmetry.

  5. Intra-hemispheric intrinsic connectivity asymmetry and its relationships with handedness and language Lateralization.

    Science.gov (United States)

    Joliot, M; Tzourio-Mazoyer, N; Mazoyer, B

    2016-12-01

    Asymmetry in intra-hemispheric intrinsic connectivity, and its association with handedness and hemispheric dominance for language, were investigated in a sample of 290 healthy volunteers enriched in left-handers (52.7%). From the resting-state FMRI data of each participant, we derived an intra-hemispheric intrinsic connectivity asymmetry (HICA) matrix as the difference between the left and right intra-hemispheric matrices of intrinsic correlation computed for each pair of the AICHA atlas ROIs. We defined a similarity measure between the HICA matrices of two individuals as the correlation coefficient of their corresponding elements, and computed for each individual an index of intra-hemispheric intrinsic connectivity asymmetry as the average similarity measure of his HICA matrix to those of the other subjects of the sample (HICAs). Gaussian-mixture modeling of the age-corrected HICAs sample distribution revealed that two types of HICA patterns were present, one (Typical_HICA) including 92.4% of the participants while the other (Atypical_HICA) included only 7.6% of them, mostly left-handers. In addition, we investigated the relationship between asymmetry in intra-hemispheric intrinsic connectivity and language hemispheric dominance, including a potential effect of handedness on this relationship, thanks to an FMRI acquisition during language production from which an hemispheric functional lateralization index for language (HFLI) and a type of hemispheric dominance for language, namely leftward, ambilateral, or rightward, were derived for each individual. There was a significant association between the types of language hemispheric dominance and of intra-hemispheric intrinsic connectivity asymmetry, occurrence of Atypical_HICAs individuals being very high in the group of individuals rightward-lateralized for language (80%), reduced in the ambilateral group (19%) and rare in individuals leftward-lateralized for language (less than 3%). Quantitatively, we found a

  6. Prevalence and predictors of post-stroke mood disorders: A meta-analysis and meta-regression of depression, anxiety and adjustment disorder.

    Science.gov (United States)

    Mitchell, Alex J; Sheth, Bhavisha; Gill, John; Yadegarfar, Motahare; Stubbs, Brendon; Yadegarfar, Mohammad; Meader, Nick

    2017-07-01

    To ascertain the prevalence and predictors of mood disorders, determined by structured clinical interviews (ICD or DSM criteria) in people after stroke. Major electronic databases were searched from inception to June 2016 for studies involving major depression (MDD), minor depression (MnD), dysthymia, adjustment disorder, any depressive disorder (any depressive disorder) and anxiety disorders. Studies were combined using both random and fixed effects meta-analysis and results were stratified as appropriate. Depression was examined on 147 occasions from 2days to 7years after stroke (mean 6.87months, N=33 in acute, N=43 in rehabilitation and N=69 in the community/outpatients). Across 128 analyses involving 15,573 patients assessed for major depressive disorder (MDD), the point prevalence of depression was 17.7% (95% CI=15.6% to 20.0%) 0.65 analyses involving 9720 patients determined MnD was present in 13.1% in all settings (95% CI=10.9% to 15.8%). Dysthymia was present in 3.1% (95% CI=2.1% to 5.3%), adjustment disorder in 6.9% (95% CI=4.6 to 9.7%) and anxiety in 9.8% (95% CI=5.9% to 14.8%). Any depressive disorder was present in 33.5% (95% CI=30.3% to 36.8%). The relative risk of any depressive disorder was higher following left (dominant) hemisphere stroke, aphasia, and among people with a family history and past history of mood disorders. Depression, adjustment disorder and anxiety are common after stroke. Risk factors are aphasia, dominant hemispheric lesions and past personal/family history of depression but not time since stroke. Copyright © 2017. Published by Elsevier Inc.

  7. Mapping hemispheric symmetries, relative asymmetries, and absolute asymmetries underlying the auditory laterality effect.

    Science.gov (United States)

    Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth

    2014-01-01

    Functional hemispheric differences for speech and language processing have been traditionally studied by using verbal dichotic-listening paradigms. The commonly observed right-ear preference for the report of dichotically presented syllables is taken to reflect the left hemispheric dominance for speech processing. However, the results of recent functional imaging studies also show that both hemispheres - not only the left - are engaged by dichotic listening, suggesting a more complex relationship between behavioral laterality and functional hemispheric activation asymmetries. In order to more closely examine the hemispheric differences underlying dichotic-listening performance, we report an analysis of functional magnetic resonance imaging (fMRI) data of 104 right-handed subjects, for the first time combining an interhemispheric difference and conjunction analysis. This approach allowed for a distinction of homotopic brain regions which showed symmetrical (i.e., brain region significantly activated in both hemispheres and no activation difference between the hemispheres), relative asymmetrical (i.e., activated in both hemispheres but significantly stronger in one than the other hemisphere), and absolute asymmetrical activation patterns (i.e., activated only in one hemisphere and this activation is significantly stronger than in the other hemisphere). Symmetrical activation was found in large clusters encompassing temporal, parietal, inferior frontal, and medial superior frontal regions. Relative and absolute left-ward asymmetries were found in the posterior superior temporal gyrus, located adjacent to symmetrically activated areas, and creating a lateral-medial gradient from symmetrical towards absolute asymmetrical activation within the peri-Sylvian region. Absolute leftward asymmetry was also found in the post-central and medial superior frontal gyri, while rightward asymmetries were found in middle temporal and middle frontal gyri. We conclude that dichotic

  8. Central auditory processing outcome after stroke in children

    Directory of Open Access Journals (Sweden)

    Karla M. I. Freiria Elias

    2014-09-01

    Full Text Available Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure; dichotic digit test and staggered spondaic word test (selective attention; pitch pattern and duration pattern sequence tests (temporal processing and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.

  9. Cardiac asystole associated with seizures of right hemispheric onset

    Directory of Open Access Journals (Sweden)

    Jennifer Chu

    2014-01-01

    Full Text Available Ictal asystole is frequently underrecognized despite being a potentially lethal condition. We report two cases of ictal asystole with right hemispheric onset. These cases are unique since previous literature reports that seizures associated with bradyarrhythmias typically arise from left hemispheric foci. These cases further underscore the importance of clinical vigilance and the need of an enhanced diagnostic biomarker.

  10. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    Science.gov (United States)

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cardiac right-to-left shunt subtypes in Chinese patients with cryptogenic strokes: a multicenter case-control study.

    Science.gov (United States)

    Xu, W H; Xing, Y Q; Yan, Z R; Jiang, J D; Gao, S

    2014-03-01

    Data on the possible association between cardiac right-to-left shunt (RLS) and cryptogenic stroke are lacking in Asians. RLS and its subtypes in Chinese cryptogenic stroke patients were investigated. Patients (n = 153, mean age 42 ± 10 years, 81 male) with cryptogenic stroke from four medical centers in China and 135 healthy volunteers (mean age 34 ± 8 years, 54 male) were recruited. Contrast transcranial Doppler was used to assess the prevalence of RLS. A three-level RLS categorization was applied as follows: none, 0 microbubbles (MBs); small, 1-25 MBs; and large, >25 MBs. RLS was considered latent if it occurred only after the Valsalva maneuver or permanent when it occurred also during normal respiration. Overall, RLS (P = 0.02), large RLS (P stroke than in healthy volunteers. The prevalences of small RLS and latent RLS in the two groups were similar (22% vs. 21% and 11% vs. 10%, respectively). The proportion of large RLSs amongst the subjects with RLS was much higher in the patient group than in healthy volunteers (45% vs. 18%, P vs. 64%, P = 0.11). Most large RLSs in the patient group (22/27, 81%) were permanent RLSs. Cardiac RLS is associated with cryptogenic stroke in Chinese. However, the higher prevalence of overall RLS in the patient group was mainly due to the increased proportion of large RLSs. The results only support large RLSs as a pathological condition. © 2014 The Author(s) European Journal of Neurology © 2014 EFNS.

  12. Hemispheric Asymmetries in Meaning Selection: Evidence from the Disambiguation of Homophonic vs. Heterophonic Homographs

    Science.gov (United States)

    Peleg, Orna; Markus, Andrey; Eviatar, Zohar

    2012-01-01

    Research investigating hemispheric asymmetries in meaning selection using homophonic homographs (e.g., "bank"), suggests that the left hemisphere (LH) quickly selects contextually relevant meanings, whereas the right hemisphere (RH) maintains a broader spectrum of meanings including those that are contextually irrelevant (e.g., Faust & Chiarello,…

  13. Association of ideomotor apraxia with lesion site, etiology, neglect, and functional independence in patients with first ever stroke.

    Science.gov (United States)

    Civelek, Gul Mete; Atalay, Ayce; Turhan, Nur

    2015-04-01

    Ideomotor apraxia (IMA) is characterized by the inability to correctly imitate hand gestures and voluntarily pantomime tool use. The relationship between IMA and characteristics of stroke has not been totally elucidated. This study aimed to find out associations between presence of IMA and stroke etiology, site of the lesions, neglect, and temporal and functional parameters of stroke in patients with first ever stroke. Thirty-nine patients with first ever stroke were included. Patients with severe cognitive deficits were excluded. Assessment tools included Ideomotor Apraxia Test, Functional Independence Measure (FIM), Brunnstrom recovery stages, Mini Mental Test (MMT), and star cancellation test. Etiology (hemorrhagic or ischemic) and site of stroke was assessed through brain imaging methods. Location and size of ischemic lesion was determined by using the Oxfordshire Community Stroke Project system. IMA was identified in 35.9% of the patients. Patients with IMA had significantly lower FIM scores both on admission and discharge (P = 0.001, P = 0.001). Presence of IMA was significantly associated with the presence of neglect (P = 0.004), total anterior circulation ischemia (TACI) (P stroke etiology had no impact on the presence of IMA. IMA was in concordance with poor cognitive and functional state and was not limited to left hemisphere lesions. The study revealed strong associations between IMA, neglect, and TACI. Every patient with stroke should be evaluated for the presence of IMA on admission to rehabilitation unit.

  14. Mechanical dyssynchrony of the left atrium during sinus rhythm is associated with history of stroke in patients with atrial fibrillation.

    Science.gov (United States)

    Ciuffo, Luisa; Inoue, Yuko Y; Tao, Susumu; Gucuk Ipek, Esra; Balouch, Muhammad; Lima, Joao A C; Nazarian, Saman; Spragg, David D; Marine, Joseph E; Berger, Ronald D; Calkins, Hugh; Ashikaga, Hiroshi

    2018-04-01

    We sought to evaluate the relationship between left atrial (LA) mechanical dyssynchrony and history of stroke or transient ischaemic attack (TIA) in patients with atrial fibrillation (AF). We hypothesized that mechanical dyssynchrony of the LA is associated with history of stroke/TIA independent of LA function and Cardiac failure, Hypertension, Age, Diabetes, Stroke/transient ischaemic attack (TIA), VAscular disease, and Sex category (CHA2DS2-VASc) score in patients with AF. We conducted a cross-sectional study of 246 patients with a history of AF (59 ± 10 years, 29% female, 26% non-paroxysmal AF) referred for catheter ablation to treat drug-refractory AF who underwent preablation cardiac magnetic resonance (CMR) in sinus rhythm. Using tissue-tracking CMR, we measured the LA longitudinal strain and strain rate in each of 12 equal-length segments in two- and four-chamber views. We defined indices of LA mechanical dyssynchrony, including the standard deviation of the time to the peak longitudinal strain (SD-TPS). Patients with a prior history of stroke or TIA (n = 23) had significantly higher SD-TPS than those without (n = 223) (39.9 vs. 23.4 ms, P stroke/TIA after adjusting for the CHA2DS2-VASc score, LA minimum index volume, and the peak LA longitudinal strain (P stroke/TIA more accurately than CHA2DS2-VASc score alone (c-statistics: 0.82 vs. 0.75, P stroke/TIA in patients with AF.

  15. Relationship between cognitive function and regional cerebral blood flow in stroke patients using 99mTc-ECD SPECT 3DSRT

    International Nuclear Information System (INIS)

    Sasaki, Nobuyuki; Abo, Masahiro

    2006-01-01

    The purpose of this study was to investigate the associations between regional cerebral blood flow (rCBF) and cognitive function in patients having a local stroke within the thalamus or putamen. The Mini-Mental State Examination (MMSE) and the Kohs Block Design Test (KBDT) were used to evaluate cognitive function. Brain single-photon emission computed tomography (SPECT) was performed with 99m Tc-ethyl cysteinate dimer and analyzed with a 3-dimensional stereotactic region-of-interest template. Subjects were divided into subgroups according to the total MMSE score (D [Dementia: 23 points or less] and N [Normal: 24 points or more]) and according to KBDT scores (B [Bad: less than IQ 70] and G [Good: IQ 70 or more]). The rCBF was decreased in the MMSE D subgroup, especially in patients with a left putamen lesion, and in the KBDT B subgroup, especially in patients with a left thalamus lesion. When the lesion was in the right hemisphere, no significant difference in rCBF was found between the MMSE D and N subgroups or between the KBDT B and G subgroups. SPECT is useful for clinical evaluation of cerebral vascular disease, especially in patients with left hemispheric lesions. Additional data and further detailed evaluations are needed. (author)

  16. [Acute surgical treatment of malignant stroke].

    Science.gov (United States)

    Lilja-Cyron, Alexander; Eskesen, Vagn; Hansen, Klaus; Kondziella, Daniel; Kelsen, Jesper

    2016-10-24

    Malignant stroke is an intracranial herniation syndrome caused by cerebral oedema after a large hemispheric or cerebellar stroke. Malignant middle cerebral artery infarction is a devastating disease with a mortality around 80% despite intensive medical treatment. Decompressive craniectomy reduces mortality and improves functional outcome - especially in younger patients (age ≤ 60 years). Decompression of the posterior fossa is a life-saving procedure in patients with malignant cerebellar infarctions and often leads to good neurological outcome.

  17. Cortical reorganization associated lower extremity motor recovery as evidenced by functional MRI and diffusion tensor tractography in a stroke patient.

    Science.gov (United States)

    Jang, Sung Ho; You, Sung H; Kwon, Yong-Hyun; Hallett, Mark; Lee, Mi Young; Ahn, Sang Ho

    2005-01-01

    Recovery mechanisms supporting upper extremity motor recovery following stroke are well established, but cortical mechanism associated with lower extremity motor recovery is unknown. The aim of this study was to assess cortical reorganization associated with lower extremity motor recovery in a hemiparetic patient. Six control subjects and a 17 year-old woman with left intracerebral hemorrhage due to an arterio-venous malformation rupture were evaluated. The motor function of the paretic (left) hip and knee had recovered slowly to the extent of her being able to overcome gravity for 10 months after the onset of stroke. However, her paretic upper extremity showed no significant motor recovery. Blood oxygenation level dependent (BOLD) functional MRI at 1.5 Tesla was used to determine the acutual location of cortical activation in the predefined regions of interest. Concurrently, Diffusion Tensor Imaging (DTI) in combination with a novel 3D-fiber reconstruction algorithm was utilized to investigate the pattern of the corticospinal pathway connectivity between the areas of the motor stream. All subjects' body parts were secured in the scanner and performed a sequential knee flexion-extension with a predetermined angle of 0-60 degrees at 0.5 Hz. Controls showed anticipated activation in the contralateral sensorimotor cortex (SM1) and the descending corticospinal fibers stemming from motor cortex. In contrast to control normal subjects, the stroke patient showed fMRI activation only in the unaffected (right) primary SM1 during either paretic or nonparetic knee movements. DTT fiber tracing data showed that the corticospinal tract fibers were found only in the unaffected hemisphere but not in the affected hemisphere. Our results indicate that an ipsilateral motor pathway from the unaffected (right) motor cortex to the paretic (right) leg was present in this patient. This study raises the potential that the contralesional (ipsilateral) SM1 is involved in cortical

  18. Pre-stroke apathy symptoms are associated with an increased risk of delirium in stroke patients.

    Science.gov (United States)

    Klimiec, Elzbieta; Kowalska, Katarzyna; Pasinska, Paulina; Klimkowicz-Mrowiec, Aleksandra; Szyper, Aleksandra; Pera, Joanna; Slowik, Agnieszka; Dziedzic, Tomasz

    2017-08-09

    Neuropsychiatric symptoms can be interrelated to delirium. We aimed to investigate an association between pre-stroke neuropsychiatric symptoms and the risk of delirium in stroke patients. We included 606 patients (median age: 73, 53% female) with stroke or transient ischemic attack admitted within 48 hours from symptoms onset. We assessed delirium on a daily basis during the first 7 days of hospitalization. To make diagnosis of delirium we used DSM-5 criteria. We used Neuropsychiatric Inventory to assess neuropsychiatric symptoms occurring within 4 weeks prior to stroke. We diagnosed delirium in 28.2% of patients. On univariate analysis, higher score of pre-stroke depression (OR: 1.58, 95% CI: 1.04-2.40, P = 0.03), apathy (OR: 2.23, 95% CI: 1.44-3.45, P delirium. On multivariate analysis adjusted for age, atrial fibrillation, diabetes mellitus, stroke severity, right hemisphere lesion, pre-stroke cognitive decline, pre-stroke disability and infections, higher apathy score (OR: 2.03, 95% CI: 1.17-3.50, P = 0.01), but no other neuropsychiatric symptoms, remained independent predictor of delirium. We conclude that pre-stroke apathy symptoms are associated with increased risk of delirium in stroke patients.

  19. Role of Acute Lesion Topography in Initial Ischemic Stroke Severity and Long-Term Functional Outcomes.

    Science.gov (United States)

    Wu, Ona; Cloonan, Lisa; Mocking, Steven J T; Bouts, Mark J R J; Copen, William A; Cougo-Pinto, Pedro T; Fitzpatrick, Kaitlin; Kanakis, Allison; Schaefer, Pamela W; Rosand, Jonathan; Furie, Karen L; Rost, Natalia S

    2015-09-01

    Acute infarct volume, often proposed as a biomarker for evaluating novel interventions for acute ischemic stroke, correlates only moderately with traditional clinical end points, such as the modified Rankin Scale. We hypothesized that the topography of acute stroke lesions on diffusion-weighted magnetic resonance imaging may provide further information with regard to presenting stroke severity and long-term functional outcomes. Data from a prospective stroke repository were limited to acute ischemic stroke subjects with magnetic resonance imaging completed within 48 hours from last known well, admission NIH Stroke Scale (NIHSS), and 3-to-6 months modified Rankin Scale scores. Using voxel-based lesion symptom mapping techniques, including age, sex, and diffusion-weighted magnetic resonance imaging lesion volume as covariates, statistical maps were calculated to determine the significance of lesion location for clinical outcome and admission stroke severity. Four hundred ninety subjects were analyzed. Acute stroke lesions in the left hemisphere were associated with more severe NIHSS at admission and poor modified Rankin Scale at 3 to 6 months. Specifically, injury to white matter (corona radiata, internal and external capsules, superior longitudinal fasciculus, and uncinate fasciculus), postcentral gyrus, putamen, and operculum were implicated in poor modified Rankin Scale. More severe NIHSS involved these regions, as well as the amygdala, caudate, pallidum, inferior frontal gyrus, insula, and precentral gyrus. Acute lesion topography provides important insights into anatomic correlates of admission stroke severity and poststroke outcomes. Future models that account for infarct location in addition to diffusion-weighted magnetic resonance imaging volume may improve stroke outcome prediction and identify patients likely to benefit from aggressive acute intervention and personalized rehabilitation strategies. © 2015 American Heart Association, Inc.

  20. Effect of Temporal Constraints on Hemispheric Asymmetries during Spatial Frequency Processing

    Science.gov (United States)

    Peyrin, Carole; Mermillod, Martial; Chokron, Sylvie; Marendaz, Christian

    2006-01-01

    Studies on functional hemispheric asymmetries have suggested that the right vs. left hemisphere should be predominantly involved in low vs. high spatial frequency (SF) analysis, respectively. By manipulating exposure duration of filtered natural scene images, we examined whether the temporal characteristics of SF analysis (i.e., the temporal…

  1. Effects of hemisphere speech dominance and seizure focus on patterns of behavioral response errors for three types of stimuli.

    Science.gov (United States)

    Rausch, R; MacDonald, K

    1997-03-01

    We used a protocol consisting of a continuous presentation of stimuli with associated response requests during an intracarotid sodium amobarbital procedure (IAP) to study the effects of hemisphere injected (speech dominant vs. nondominant) and seizure focus (left temporal lobe vs. right temporal lobe) on the pattern of behavioral response errors for three types of visual stimuli (pictures of common objects, words, and abstract forms). Injection of the left speech dominant hemisphere compared to the right nondominant hemisphere increased overall errors and affected the pattern of behavioral errors. The presence of a seizure focus in the contralateral hemisphere increased overall errors, particularly for the right temporal lobe seizure patients, but did not affect the pattern of behavioral errors. Left hemisphere injections disrupted both naming and reading responses at a rate similar to that of matching-to-sample performance. Also, a short-term memory deficit was observed with all three stimuli. Long-term memory testing following the left hemisphere injection indicated that only for pictures of common objects were there fewer errors during the early postinjection period than for the later long-term memory testing. Therefore, despite the inability to respond to picture stimuli, picture items, but not words or forms, could be sufficiently encoded for later recall. In contrast, right hemisphere injections resulted in few errors, with a pattern suggesting a mild general cognitive decrease. A selective weakness in learning unfamiliar forms was found. Our findings indicate that different patterns of behavioral deficits occur following the left vs. right hemisphere injections, with selective patterns specific to stimulus type.

  2. Stroke as the Sole Manifestation of Takayasu Arteritis in a 15-Year-Old Boy with Latent Tuberculosis

    Directory of Open Access Journals (Sweden)

    Espen Benjaminsen

    2016-01-01

    Full Text Available Introduction. Takayasu arteritis is a rare disease affecting the aorta and its main branches, causing arterial claudication and end-organ ischemia, including stroke. The etiology is unknown but is believed to be autoimmune. An association between Takayasu arteritis and tuberculosis has been suggested, but the possible relation is unclear. Case Presentation. A 15-year-old Somali boy was diagnosed with latent tuberculosis. He had a lesion in the right lung, and both the tuberculin skin test by the Mantoux method and Quantiferon GOLD test turned out positive. After he suffered a cerebral infarct in the right hemisphere, childhood Takayasu arteritis was diagnosed. The diagnosis was based on diagnostic imaging showing a high-grade stenosis of the origin of the right common carotid artery, an occluded common carotid artery on the left side, a circumferential thickening of the vessel walls in the right and left common carotid artery, and laboratory findings with elevated C-reactive protein. Conclusion. Takayasu arteritis is an uncommon cause of stroke. It should however be kept in mind as a cause of cerebrovascular disease, especially in the young.

  3. Task Specific Inter-Hemispheric Coupling in Human Subthalamic Nuclei

    Directory of Open Access Journals (Sweden)

    Felix eDarvas

    2014-09-01

    Full Text Available Cortical networks and quantitative measures of connectivity are integral to the study of brain function. Despite lack of direct connections between left and right subthalamic nuclei (STN, there are apparent physiological connections. During clinical examination of patients with Parkinson’s Disease (PD, this connectivity is exploited to enhance signs of PD, yet our understanding of this connectivity is limited. We hypothesized that movement leads to synchronization of neural oscillations in bilateral STN, and we implemented phase coherence, a measure of phase-locking between cortical sites in a narrow frequency band, to demonstrate this synchronization. We analyzed task specific phase synchronization and causality between left and right STN local field potentials (LFP recorded from both hemispheres simultaneously during a cued movement task in four subjects with PD who underwent Deep Brain Stimulation (DBS surgery. We used a data driven approach to determine inter-hemispheric channel pairs and frequencies with a task specific increase in phase locking.We found significant phase locking between hemispheres in alpha frequency (8-12 Hz in all subjects concurrent with movement of either hand. In all subjects, phase synchronization increased over baseline upon or prior to hand movement onset and lasted until the motion ceased. Left and right hand movement showed similar patterns. Granger causality at the phase-locking frequencies between synchronized electrodes revealed a unidirectional causality from right to left STN regardless of which side was moved.Phase synchronization across hemispheres between basal ganglia supports existence of a bilateral network having lateralized regions of specialization for motor processing. Our results suggest this bilateral network is activated by a unilateral motor program. Understanding phase synchronization in natural brain functions is critical to development of future DBS systems that augment goal directed

  4. A Left Atrial Myxoma Case with a History of Stroke on whom a Coronary Bypass Surgery was Performed

    Directory of Open Access Journals (Sweden)

    Cihangir Kaymaz

    2009-12-01

    Full Text Available Cardiac myxomas are the most frequently encountered benign cardiac tumors in adult groups. Patients with myxoma may suffer from variety of clinical features. A patient who had suffered from stroke a yearago came to our hospital with a chest pain complaint. In the echocardiography of the patient suffering from acute coronary syndrome, left ventricular disfunction and left atrial mass was determined. In the coronary angiography, LAD and Cx critical stenosis, and an abnormal feeding artery which roots from Cxperformed was observed. LIMA-AD, Ao-RCA bypass and mass exision withleft atriotomy was made. Cardiac tumor embolism which makes up a rare cause of cerebral embolies should be considered especiallyin patients with sinus rhythm. In the coronary angiography the feeding artery of the myxoma was shown. A patient who has underwent coronary bypass operation and left atrial myxoma exision has beenpresented as a case.

  5. Questions of Brain Hemispheric Specialization and Gender Difference in Spatial Tests.

    Science.gov (United States)

    McWhinnie, Harold J.

    This paper presents a review of selected literature relevant to a general question of hemispheric specialization (right or left brain) and questions of gender differences in spatial abilities among a group of art students. Three basic questions for discussion are proposed: (1) is there a relationship between hemispheric dominance and spatial…

  6. The connection of hemispheric activity in the field of audioverbal perception and the progressive lateralization of speech and motor processes.

    Directory of Open Access Journals (Sweden)

    Kovyazina, M.S.

    2015-07-01

    Full Text Available This article discusses the connection of hemispheric control over audioverbal perception processes and such individual features as “leading hand” (right-handedness and lefthandedness. We present a literature review and description of our research to provide evidence of the complexity and ambiguity of this connection. The method of dichotic listening was used for diagnosing audioverbal perception lateralization. This method allows estimation of the right-ear coefficient (REC, the efficiency coefficient (EC, and the effectiveness ratio (ER of different aspects of audioverbal perception. Our research involved 47 persons with a leading right hand (mean age, 29.04±9.97 years and 32 persons with a leading left hand (mean age, 29.41±10.34 years. Different hypotheses about the mechanisms of hemispheric control over audioverbal and motor processes were assessed. The research showed that both the leftand right-handers’ audioverbal perception characteristics depended mainly on right-hemisphere activity. The most dynamic and sensitive index of the functioning of the two hemispheres during dichotic listening was the efficiency coefficient of stimuli reproduction through the left ear (EC of the left ear. It turns out that this index depends on the coincidence/noncoincidence of the leading hemispheres in speech and motor processes. The highest efficiency of audioverbal perception revealed itself in the left-handers with a leading left ear (the hemispheric-control coincidence, and the lowest efficiency was in the left-handers with a leading right ear (the hemispheric-control divergence. The right-handers were characterized by less variation in values, although the influence of the coincidence/noncoincidence of the leading hemispheres in speech and motor processes also revealed itself as a tendency. This consistent pattern points out the necessity for further research on asymmetries of the different modalities that takes into account their probable

  7. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation.

    Science.gov (United States)

    Di Pino, Giovanni; Pellegrino, Giovanni; Assenza, Giovanni; Capone, Fioravante; Ferreri, Florinda; Formica, Domenico; Ranieri, Federico; Tombini, Mario; Ziemann, Ulf; Rothwell, John C; Di Lazzaro, Vincenzo

    2014-10-01

    Noninvasive brain stimulation (NIBS) techniques can be used to monitor and modulate the excitability of intracortical neuronal circuits. Long periods of cortical stimulation can produce lasting effects on brain function, paving the way for therapeutic applications of NIBS in chronic neurological disease. The potential of NIBS in stroke rehabilitation has been of particular interest, because stroke is the main cause of permanent disability in industrial nations, and treatment outcomes often fail to meet the expectations of patients. Despite promising reports from many clinical trials on NIBS for stroke recovery, the number of studies reporting a null effect remains a concern. One possible explanation is that the interhemispheric competition model--which posits that suppressing the excitability of the hemisphere not affected by stroke will enhance recovery by reducing interhemispheric inhibition of the stroke hemisphere, and forms the rationale for many studies--is oversimplified or even incorrect. Here, we critically review the proposed mechanisms of synaptic and functional reorganization after stroke, and suggest a bimodal balance-recovery model that links interhemispheric balancing and functional recovery to the structural reserve spared by the lesion. The proposed model could enable NIBS to be tailored to the needs of individual patients.

  8. Ipsilateral hemiparesis and contralateral lower limb paresis caused by anterior cerebral artery territory infarct.

    Science.gov (United States)

    Xu, Yongfeng; Liu, Lan

    2016-07-01

    Ipsilateral hemiparesis is rare after a supratentorial stroke, and the role of reorganization in the motor areas of unaffected hemisphere is important for the rehabilitation of the stroke patients. In this study, we present a patient who had a subclinical remote infarct in the right pons developed ipsilateral hemiparesis and contralateral lower limb paresis caused by a new infarct in the left anterior cerebral artery territory. Our case suggests that the motor areas of the unaffected hemisphere might be reorganized after stroke, which is important for the rehabilitation of stroke patients.

  9. Reevaluating split-fovea processing in word recognition: hemispheric dominance, retinal location, and the word-nonword effect.

    Science.gov (United States)

    Jordan, Timothy R; Paterson, Kevin B; Kurtev, Stoyan

    2009-03-01

    Many studies have claimed that hemispheric projections are split precisely at the foveal midline and so hemispheric asymmetry affects word recognition right up to the point of fixation. To investigate this claim, four-letter words and nonwords were presented to the left or right of fixation, either close to fixation in foveal vision or farther from fixation in extrafoveal vision. Presentation accuracy was controlled using an eyetracker linked to a fixation-contingent display. Words presented foveally produced identical performance on each side of fixation, but words presented extrafoveally showed a clear left-hemisphere (LH) advantage. Nonwords produced no evidence of hemispheric asymmetry in any location. Foveal stimuli also produced an identical word-nonword effect on each side of fixation, whereas extrafoveal stimuli produced a word-nonword effect only for LH (not right-hemisphere) displays. These findings indicate that functional unilateral projections to contralateral hemispheres exist in extrafoveal locations but provide no evidence of a functional division in hemispheric processing at fixation.

  10. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    Science.gov (United States)

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  11. Effects of mental rotation on acalculia: differences in the direction of mental rotation account for the differing characteristics of acalculia induced by right and left hemispheric brain injury.

    Science.gov (United States)

    Asada, Tomohiko; Takayama, Yoshihiro; Oita, Jiro; Fukuyama, Hidenao

    2014-04-01

    We observed a 59-year-old right-handed man with an infarction in his right-middle cerebral artery that included the parietal lobe, who abnormally manipulated mental images in the horizontal direction, resulting in calculation disturbances. Three years later, the patient suffered an infarction in the left parietal lobe and displayed abnormalities during the creation of mental images; i.e., he rotated them in the vertical direction, which again resulted in calculation disturbances. These mental imagery disturbances might indicate that a common acalculia mechanism exists between the right and left hemispheres.

  12. Hypothalamic digoxin, hemispheric chemical dominance, and creativity.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The human hypothalamus produces an endogenous membrane Na(+)-K+ ATPase inhibitor, digoxin, which regulates neuronal transmission. The digoxin status and neurotransmitter patterns were studied in creative and non-creative individuals, as well as in individuals with differing hemispheric dominance, in order to find out the role of cerebral dominance in this respect. The activity of HMG CoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in creative/non-creative individuals, and in individuals with differing hemispheric dominance. In creative individuals there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in creative individuals correlated with right hemispheric dominance. In non-creative individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in non-creative individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to creative tendency.

  13. Hemispheric preference and progressive-part or whole practice in beginning typewriting.

    Science.gov (United States)

    Johns, L B

    1989-04-01

    This investigation explored the interaction of progressive-part versus whole methods of practice with hemispheric preference for processing information and the impact of each upon high school students' speed and accuracy in beginning typewriting. Zenhausern's Differential Hemispheric Activation Test was scored in such a way that it was possible to plot the scores along a continuum. Analysis of variance gave significant F ratios on 3 of the 4 testing days. The continuous scores were divided into five categories: middle, left moderates, right moderates, extreme rights, and extreme lefts. The moderate-left group speed was consistently the fastest group, and the extreme rights were consistently the slowest group. This difference was significant for all four testing days with the moderate-left mean speed varying between 4 to 6 words per minute faster each testing day. The extreme rights were consistently the most accurate, even though not statistically significantly so. There was no significant difference between method of practice and typewriting speed or between method of practice and typewriting accuracy; however, on all four testing days the mean gross speed of the whole practice learning group was 0.73 to 0.99 words per minute faster than the progressive-part group. A two-way analysis of variance indicated no interaction between method or practice and hemispheric preference.

  14. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    Science.gov (United States)

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  15. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy resulting in stroke in an 11-year-old male

    DEFF Research Database (Denmark)

    Granild-Jensen, Jakob Bie; Jensen, Uffe Birk; Schwartz, Marianne

    2009-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the Notch3 gene on chromosome 19. The condition manifests itself clinically typically in the third to fifth decade with migraine and recurrent episodes of stroke or trans......Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by mutations in the Notch3 gene on chromosome 19. The condition manifests itself clinically typically in the third to fifth decade with migraine and recurrent episodes of stroke...... or transient ischaemic attacks. We report the case of an 11-year-old male with CADASIL resulting in stroke with right hemiparesis and dysphasia. Acute magnetic resonance imaging suggested infarction in the left hemisphere; magnetic resonance angiography revealed calibre variation of the intracerebral arteries...... of CADASIL, with an autosomal dominant pattern. The diagnosis of CADASIL was confirmed by the finding of the known mutation of the Notch3 gene running in the family. With treatment in a neurorehabilitation centre the patient recovered most of his functions with only discrete fine-motor and cognitive sequelae...

  16. Right hemisphere specialization for the identification of emotional words and sentences: evidence from stroke patients.

    Science.gov (United States)

    Borod, J C; Andelman, F; Obler, L K; Tweedy, J R; Welkowitz, J

    1992-09-01

    This study examines the contribution of the lexical/verbal channel to emotional processing in 16 right brain-damaged (RBD), 16 left brain-damaged (LBD) and 16 normal control (NC) right-handed adults. Emotional lexical perception tasks were developed; analogous nonemotional tasks were created to control for cognitive and linguistic factors. The three subject groups were matched for gender, age and education. The brain-damaged groups were similar with respect to cerebrovascular etiology, months post-onset, sensory-motor status and lesion location. Parallel emotional and nonemotional tasks included word identification, sentence identification and word discrimination. For both word tasks, RBDs were significantly more impaired than LBDs and NCs in the emotional condition. For all three tasks, RBDs showed a significantly greater performance discrepancy between emotional and nonemotional conditions than did LBDs or NCs. Results were not affected by the valence (i.e. positive/negative) of the stimuli. These findings suggest a dominant role for the right hemisphere in the perception of lexically-based emotional stimuli.

  17. Hostility, driving anger, and dangerous driving: the emerging role of hemispheric preference.

    Science.gov (United States)

    Gidron, Yori; Gaygısız, Esma; Lajunen, Timo

    2014-12-01

    Various studies have implicated psychosocial variables (e.g., hostility) in risk of dangerous driving and traffic accidents. However, whether these variables are related to more basic neurobiological factors, and whether such associations have implications for the modification of psychosocial risk factors in the context of driving, have not been examined in depth. This study examined the relationship between hemispheric preference (HP), hostility and self-reported dangerous driving, and the ability to affect driving anger via hemisphere activating cognitive exercises (HACE). In Study 1, 254 Turkish students completed questionnaires of hostility, HP and driving behavior. In Study 2, we conducted a "proof of concept" experimental study, and tested effects of left, right and neutral HACE on driving anger, by exposing N=650 Turkish students to written scenarios including either logical (left hemisphere), visuo-spatial (right hemisphere) or "mild doses" of both types of contents (control). In Study 1, left-HP was associated with higher hostility and with more dangerous driving, and hostility mediated the relationship between L-HP and reported driving behavior. In Study 2, only right-HACE led to immediate significant reductions in self-reported driving anger. Left-HP is related to hostility and to dangerous driving, and it may be possible to partly reduce driving anger by right-HACE. Future studies must replicate these findings with objective measures, more enduring interventions and longer follow-ups. Copyright © 2014. Published by Elsevier Ltd.

  18. On the Viability of Diffusion MRI-Based Microstructural Biomarkers in Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Ilaria Boscolo Galazzo

    2018-02-01

    Full Text Available Recent tract-based analyses provided evidence for the exploitability of 3D-SHORE microstructural descriptors derived from diffusion MRI (dMRI in revealing white matter (WM plasticity. In this work, we focused on the main open issues left: (1 the comparative analysis with respect to classical tensor-derived indices, i.e., Fractional Anisotropy (FA and Mean Diffusivity (MD; and (2 the ability to detect plasticity processes in gray matter (GM. Although signal modeling in GM is still largely unexplored, we investigated their sensibility to stroke-induced microstructural modifications occurring in the contralateral hemisphere. A more complete picture could provide hints for investigating the interplay of GM and WM modulations. Ten stroke patients and ten age/gender-matched healthy controls were enrolled in the study and underwent diffusion spectrum imaging (DSI. Acquisitions at three and two time points (tp were performed on patients and controls, respectively. For all subjects and acquisitions, FA and MD were computed along with 3D-SHORE-based indices [Generalized Fractional Anisotropy (GFA, Propagator Anisotropy (PA, Return To the Axis Probability (RTAP, Return To the Plane Probability (RTPP, and Mean Square Displacement (MSD]. Tract-based analysis involving the cortical, subcortical and transcallosal motor networks and region-based analysis in GM were successively performed, focusing on the contralateral hemisphere to the stroke. Reproducibility of all the indices on both WM and GM was quantitatively proved on controls. For tract-based, longitudinal group analyses revealed the highest significant differences across the subcortical and transcallosal networks for all the indices. The optimal regression model for predicting the clinical motor outcome at tp3 included GFA, PA, RTPP, and MSD in the subcortical network in combination with the main clinical information at baseline. Region-based analysis in the contralateral GM highlighted the ability of

  19. Contralateral flow reduction in unilateral stroke: evidence for transhemispheric diaschisis

    International Nuclear Information System (INIS)

    Lagreze, H.L.; Levine, R.L.; Pedula, K.L.; Nickles, R.J.; Sunderland, J.S.; Rowe, B.R.

    1987-01-01

    Using clinical presentation, angiography, computed tomography, and nuclear magnetic resonance imaging, 7 patients were identified who had strictly unilateral hemispheric infarction and unilateral cerebrovascular disease. In 6, cerebral blood flow measured by fluorine-18-fluoromethane inhalation and positron emission tomography was reduced in the contralateral hemisphere (p less than 0.05). Multiple regression analysis demonstrated a high correlation between contralateral flow reduction and the degree of flow impairment in the infarcted area (r = 0.941, p = 0.0014) but not with age, risk factor profile, blood pressure, PCO 2 , hematocrit, or duration of stroke. We conclude that transhemispheric diaschisis best explains the contralateral flow reduction seen in supratentorial ischemic stroke

  20. Global Aphasia As A Predictor Of Mortality In The Acute Phase Of A First Stroke [afasia Global Prediz Mortalidade Na Fase Aguda De Um Primeiro Acidente Vascular Cerebral Isquêmico

    OpenAIRE

    de Oliveira F.F.; Damasceno B.P.

    2011-01-01

    OBJECTIVE: To establish whether vascular aphasic syndromes can predict stroke outcomes. METHOD: Thirty-seven adults were evaluated for speech and language within 72 hours after a single first-ever ischemic brain lesion, in blind association to CT and/or MR. RESULTS: Speech or language disabilities were found in seven (87.5%) of the eight deceased patients and twenty-six (89.7%) of the twenty-nine survivors. Global aphasia was identified in eleven patients, all with left hemisphere lesions (ni...

  1. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness.

    Science.gov (United States)

    Mazoyer, Bernard; Zago, Laure; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Perchey, Guy; Mellet, Emmanuel; Petit, Laurent; Tzourio-Mazoyer, Nathalie

    2014-01-01

    Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.

  2. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness.

    Directory of Open Access Journals (Sweden)

    Bernard Mazoyer

    Full Text Available Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH. A hemispheric functional lateralization index (HFLI for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH, "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH. Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.

  3. The effects of sad prosody on hemispheric specialization for words processing.

    Science.gov (United States)

    Leshem, Rotem; Arzouan, Yossi; Armony-Sivan, Rinat

    2015-06-01

    This study examined the effect of sad prosody on hemispheric specialization for word processing using behavioral and electrophysiological measures. A dichotic listening task combining focused attention and signal-detection methods was conducted to evaluate the detection of a word spoken in neutral or sad prosody. An overall right ear advantage together with leftward lateralization in early (150-170 ms) and late (240-260 ms) processing stages was found for word detection, regardless of prosody. Furthermore, the early stage was most pronounced for words spoken in neutral prosody, showing greater negative activation over the left than the right hemisphere. In contrast, the later stage was most pronounced for words spoken with sad prosody, showing greater positive activation over the left than the right hemisphere. The findings suggest that sad prosody alone was not sufficient to modulate hemispheric asymmetry in word-level processing. We posit that lateralized effects of sad prosody on word processing are largely dependent on the psychoacoustic features of the stimuli as well as on task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Measurement of left-to-right shunts by gated radionuclide angiography: concise communication

    International Nuclear Information System (INIS)

    Rigo, P.; Chevigne, M.

    1982-01-01

    Gated cardiac blood-pool scans allow comparison of left- and right-ventricular stroke volume. We have applied these measurements to the quantification of left-to-right shunts (QP/QS) in nine patients with atrial septal defects, one patients with partial anomalous pulmonary venous return, four patients with ventricular septal defects, and two patients with patent ductus arteriosus. None of these patients had combined lesions. QP/QS was measured as the right-ventricular (RV) stroke counts divided by the left-ventricular (LV) stroke counts and as the LV stroke counts divided by the RV stroke counts in patients with RV and LV diastolic volume overload respectively. All patients had also QP/QS measurements by oximetry and first-pass radionuclide angiography. The stroke-count measurements indicated the overloaded ventricle in all patients. QP/QS determined by equilibrium gated studies correlated well with those obtained by oximetry (r . 0.79). Reproducibility of the equilibrium measurements was good. We conclude that gated cardiac blood-pool scans can measure left-to-right shunts and can distinguish between shunts with RV and LV volume overload

  5. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    DEFF Research Database (Denmark)

    Sönmezoğlu, K; Sperling, B; Henriksen, T

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99mTc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF reduct...

  6. Hemispheric specialization and creative thinking: a meta-analytic review of lateralization of creativity

    NARCIS (Netherlands)

    Mihov, K.M.; Denzler, M.; Förster, J.

    2010-01-01

    In the last two decades research on the neurophysiological processes of creativity has found contradicting results. Whereas most research suggests right hemisphere dominance in creative thinking, left-hemisphere dominance has also been reported. The present research is a meta-analytic review of the

  7. Vocal reaction times to unilaterally presented concrete and abstract words: towards a theory of differential right hemispheric semantic processing.

    Science.gov (United States)

    Rastatter, M; Dell, C W; McGuire, R A; Loren, C

    1987-03-01

    Previous studies investigating hemispheric organization for processing concrete and abstract nouns have provided conflicting results. Using manual reaction time tasks some studies have shown that the right hemisphere is capable of analyzing concrete words but not abstract. Others, however, have inferred that the left hemisphere is the sole analyzer of both types of lexicon. The present study tested these issues further by measuring vocal reaction times of normal subjects to unilaterally presented concrete and abstract items. Results were consistent with a model of functional localization which suggests that the minor hemisphere is capable of differentially processing both types of lexicon in the presence of a dominant left hemisphere.

  8. Patterns of Reading Performance in Acute Stroke: A Descriptive Analysis

    Directory of Open Access Journals (Sweden)

    Lauren L. Cloutman

    2010-01-01

    Full Text Available One of the main sources of information regarding the underlying processes involved in both normal and impaired reading has been the study of reading deficits that occur as a result of brain damage. However, patterns of reading deficits found acutely after brain injury have been little explored. The observed patterns of performance in chronic stroke patients might reflect reorganization of the cognitive processes underlying reading or development of compensatory strategies that are not normally used to read. Method: 112 acute left hemisphere stroke patients were administered a task of oral reading of words and pseudowords within 1–2 days of hospital admission; performance was examined for error rate and type, and compared to that on tasks involving visual lexical decision, visual/auditory comprehension, and naming. Results: Several distinct patterns of performance were identified. Although similarities were found between the patterns of reading performance observed acutely and the classical acquired dyslexias generally identified more chronically, some notable differences were observed. Of interest was the finding that no patient produced any pure semantic errors in reading, despite finding such errors in comprehension and naming.

  9. Language localization in cases of left temporal lobe arachnoid cyst : Evidence against interhemispheric reorganization

    NARCIS (Netherlands)

    Stowe, LA; Go, KG; Pruim, J; den Dunnen, W; Meiners, LC; Paans, AMJ

    2000-01-01

    We investigated whether left-hemisphere arachnoid cysts lead to reorganization of the language function using PET. A group analysis demonstrated that patients showed no more right-hemisphere activation than a matched control group. Several patients had clear language localizations in the left

  10. Language function distribution in left-handers: A navigated transcranial magnetic stimulation study.

    Science.gov (United States)

    Tussis, Lorena; Sollmann, Nico; Boeckh-Behrens, Tobias; Meyer, Bernhard; Krieg, Sandro M

    2016-02-01

    Recent studies suggest that in left-handers, the right hemisphere (RH) is more involved in language function when compared to right-handed subjects. Since data on lesion-based approaches is lacking, we aimed to investigate language distribution of left-handers by repetitive navigated transcranial magnetic stimulation (rTMS). Thus, rTMS was applied to the left hemisphere (LH) and RH in 15 healthy left-handers during an object-naming task, and resulting naming errors were categorized. Then, we calculated error rates (ERs=number of errors per number of stimulations) for both hemispheres separately and defined a laterality score as the quotient of the LH ER - RH ER through the LH ER + RH ER (abbreviated as (L-R)/(L+R)). In this context, (L-R)/(L+R)>0 indicates that the LH is dominant, whereas (L-R)/(L+R)left-handers and right-handers (source data of another study) for all errors (mean 0.01±0.14 vs. 0.19±0.20, p=0.0019) and all errors without hesitation (mean -0.02±0.20 vs. 0.19±0.28, p=0.0051) was revealed, whereas the comparison for no responses did not show a significant difference (mean: -0.004±0.27 vs. 0.09±0.44, p=0.64). Accordingly, left-handers present a comparatively equal language distribution across both hemispheres with language dominance being nearly equally distributed between hemispheres in contrast to right-handers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cigarette smoking is an independent risk factor for post-stroke delirium.

    Science.gov (United States)

    Lim, Tae Sung; Lee, Jin Soo; Yoon, Jung Han; Moon, So Young; Joo, In Soo; Huh, Kyoon; Hong, Ji Man

    2017-03-23

    Post-stroke delirium is a common problem in the care of stroke patients, and is associated with longer hospitalization, high short-term mortality, and an increased need for long-term care. Although post-stroke delirium occurs in approximately 10 ~ 30% of patients, little is known about the risk factors for post-stroke delirium in patients who experience acute stroke. A total of 576 consecutive patients who experienced ischemic stroke (mean age, 65.2 years; range, 23-93 years) were screened for delirium over a 2-year period in an acute stroke care unit of a tertiary referral hospital. We screened for delirium using the Confusion Assessment Method. Once delirium was suspected, we evaluated the symptoms using the Korean Version of the Delirium Rating Scale-Revised-98. Neurological deficits were assessed using the National Institutes of Health Stroke Scale at admission and discharge, and functional ability was assessed using the Barthel Index and modified Rankin Scale at discharge and 3 months after discharge. Thirty-eight (6.7%) patients with stroke developed delirium during admission to the acute stroke care unit. Patients with delirium were significantly older (70.6 vs. 64.9 years of age, P = .001) and smoked cigarettes more frequently (40% vs. 24%, P = .033) than patients without delirium. In terms of clinical features, the delirium group experienced a significantly higher rate of major hemispheric stroke (55% vs. 26%, P delirium were older age, history of cigarette smoking, and major hemispheric stroke. Abrupt cessation of cigarette smoking may be a risk factor for post-stroke delirium in ischemic stroke patients. The development of delirium after stroke is associated with worse outcome and longer hospitalization.

  12. Hemispheric Asymmetries in Semantic Processing: Evidence from False Memories for Ambiguous Words

    Science.gov (United States)

    Faust, Miriam; Ben-Artzi, Elisheva; Harel, Itay

    2008-01-01

    Previous research suggests that the left hemisphere (LH) focuses on strongly related word meanings; the right hemisphere (RH) may contribute uniquely to the processing of lexical ambiguity by activating and maintaining a wide range of meanings, including subordinate meanings. The present study used the word-lists false memory paradigm [Roediger,…

  13. Processing concrete words: fMRI evidence against a specific right-hemisphere involvement.

    Science.gov (United States)

    Fiebach, Christian J; Friederici, Angela D

    2004-01-01

    Behavioral, patient, and electrophysiological studies have been taken as support for the assumption that processing of abstract words is confined to the left hemisphere, whereas concrete words are processed also by right-hemispheric brain areas. These are thought to provide additional information from an imaginal representational system, as postulated in the dual-coding theory of memory and cognition. Here we report new event-related fMRI data on the processing of concrete and abstract words in a lexical decision task. While abstract words activated a subregion of the left inferior frontal gyrus (BA 45) more strongly than concrete words, specific activity for concrete words was observed in the left basal temporal cortex. These data as well as data from other neuroimaging studies reviewed here are not compatible with the assumption of a specific right-hemispheric involvement for concrete words. The combined findings rather suggest a revised view of the neuroanatomical bases of the imaginal representational system assumed in the dual-coding theory, at least with respect to word recognition.

  14. Headache and Central Positioning Vertigo in a Middle Aged Female-a Case of Solitary Cerebellar Tuberculoma Involving Left Cerebellar Hemisphere

    Directory of Open Access Journals (Sweden)

    Shakya Bhattacharjee

    2012-03-01

    Full Text Available A 48 year old female presented with headache and an illusory sensation of spinning of head in respect to environment for last 8 weeks. Her head spinning or vertigo had no particular direction or not precipitated by any specific head posture. Headache is non- specific in nature and intensified in last few days.Her neurological examination revealed a central positional vertigo with horizontal gaze evoked nystagmus and ataxia. Her MRI scan brain showed the presence of a large solitary ring enhancing lesion in the left cerebellar hemisphere. The lesion was surgically excised and was examined histopathologicaliy that revealed a chronic inflammatory granuloma with caseation necrosis and multinucleated giant cells suggestive of tuberculosis

  15. Pure Left Neglect for Arabic Numerals

    Science.gov (United States)

    Priftis, Konstantinos; Albanese, Silvia; Meneghello, Francesca; Pitteri, Marco

    2013-01-01

    Arabic numerals are diffused and language-free representations of number magnitude. To be effectively processed, the digits composing Arabic numerals must be spatially arranged along a left-to-right axis. We studied one patient (AK) to show that left neglect, after right hemisphere damage, can selectively impair the computation of the spatial…

  16. Effects of repetitive transcranial magnetic stimulation combined with sensory cueing on unilateral neglect in subacute patients with right hemispheric stroke: a randomized controlled study.

    Science.gov (United States)

    Yang, Nicole Yh; Fong, Kenneth Nk; Li-Tsang, Cecilia Wp; Zhou, D

    2017-09-01

    To compare the effects of rTMS combined with sensory cueing, rTMS alone, and conventional rehabilitation on unilateral neglect, hemiplegic arm functions and performance of activities of daily living. A single-blinded randomized controlled trial. A convalescent hospital. Sixty inpatients with left unilateral neglect after stroke. Patients were randomly assigned to three groups: rTMS combined with sensory cueing, rTMS, and conventional rehabilitation alone. rTMS at 1 Hz was applied over P5 of the contralesional hemisphere while vibration cueing was emitted using a wristwatch device on the hemiplegic arm, five days per week for two weeks. The first two groups received the same dosage of conventional rehabilitation on top of their experimental interventions. Blinded assessments were administered at baseline, 2 weeks postintervention, and 6 weeks follow-up. Neglect and arm motor performance. Both rTMS combined with sensory cueing (99.6±33.0) and rTMS alone (88.2±28.7) significantly reduced unilateral neglect than conventional rehabilitation (72.7±33.1) when measured using the conventional subtests of the Behavioural Inattention Test, but the combination was better than rTMS alone. Hemiplegic arm functions and activities of daily living improved in all patients across the three groups but no significant differences were found between the groups. The combination of inhibitory P5-rTMS with sensory cueing was better than either rTMS or conventional rehabilitation alone in producing a stronger and long-lasting improvement in unilateral neglect, but the improvement was not associated with improved arm function or independence in activities of daily living.

  17. Awake right hemisphere brain surgery.

    Science.gov (United States)

    Hulou, M Maher; Cote, David J; Olubiyi, Olutayo I; Smith, Timothy R; Chiocca, E Antonio; Johnson, Mark D

    2015-12-01

    We report the indications and outcomes of awake right hemispheric brain surgery, as well as a rare patient with crossed aphasia. Awake craniotomies are often performed to protect eloquent cortex. We reviewed the medical records for 35 of 96 patients, in detail, who had awake right hemisphere brain operations. Intraoperative cortical mapping of motor and/or language function was performed in 29 of the 35 patients. A preoperative speech impairment and left hand dominance were the main indicators for awake right-sided craniotomies in patients with right hemisphere lesions. Four patients with lesion proximity to eloquent areas underwent awake craniotomies without cortical mapping. In addition, one patient had a broncho-pulmonary fistula, and another had a recent major cardiac procedure that precluded awake surgery. An eloquent cortex representation was identified in 14 patients (48.3%). Postoperatively, seven of 17 patients (41.1%) who presented with weakness, experienced improvements in their motor functions, 11 of 16 (68.7%) with seizures became seizure-free, and seven of nine (77.7%) with moderate to severe headaches and one of two with a visual field deficit improved significantly. There were also improvements in speech and language functions in all patients who presented with speech difficulties. A right sided awake craniotomy is an excellent option for left handed patients, or those with right sided cortical lesions that result in preoperative speech impairments. When combined with intraoperative cortical mapping, both speech and motor function can be well preserved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  19. Hemispheric asymmetry and theory of mind: is there an association?

    Science.gov (United States)

    Herzig, Daniela A; Sullivan, Sarah; Evans, Jonathan; Corcoran, Rhiannon; Mohr, Christine

    2012-01-01

    In autism and schizophrenia attenuated/atypical functional hemispheric asymmetry and theory of mind impairments have been reported, suggesting common underlying neuroscientific correlates. We here investigated whether impaired theory of mind performance is associated with attenuated/atypical hemispheric asymmetry. An association may explain the co-occurrence of both dysfunctions in psychiatric populations. Healthy participants (n=129) performed a left hemisphere (lateralised lexical decision task) and right hemisphere (lateralised face decision task) dominant task as well as a visual cartoon task to assess theory of mind performance. Linear regression analyses revealed inconsistent associations between theory of mind performance and functional hemisphere asymmetry: enhanced theory of mind performance was only associated with (1) faster right hemisphere language processing, and (2) reduced right hemisphere dominance for face processing (men only). The majority of non-significant findings suggest that theory of mind and functional hemispheric asymmetry are unrelated. Instead of "overinterpreting" the two significant results, discrepancies in the previous literature relating to the problem of the theory of mind concept, the variety of tasks, and the lack of normative data are discussed. We also suggest how future studies could explore a possible link between hemispheric asymmetry and theory of mind.

  20. Motor recovery by improvement of limb-kinetic apraxia in a chronic stroke patient.

    Science.gov (United States)

    Jang, Sung Ho

    2013-01-01

    We report on a chronic stroke patient who showed motor recovery by improvement of limb-kinetic apraxia (LKA) after undergoing intensive rehabilitation for a period of one month, which was demonstrated by diffusion tensor tractography (DTT) and transcranial magnetic stimulation (TMS). A 50-year-old male patient presented with severe paralysis of the left extremities at the onset of thalamic hemorrhage. At thirty months after onset, the patient exhibited moderate weakness of his left upper and lower extremities. In addition, he exhibited a slow, clumsy, and mutilated movement pattern during grasp-release movements of his left hand. During a one-month period of intensive rehabilitation, which was started at thrity months after onset, the patient showed 22% motor recovery of the left extremities. The slow, clumsy, and mutilated movement pattern of the left hand almost disappeared. DTTs of the corticospinal tract (CST) in both hemispheres originated from the cerebral cortex, including the primary motor cortex, and passed along the known CST pathway. The DTT of the right CST was located anterior to the old hemorrhagic lesion. TMS study performed at thirty and thirty-one months after onset showed normal and similar findings for motor evoked potential in terms of latency and amplitude of the left hand muscle. We think that the motor weakness of the left extremities in this patient was mainly ascribed to LKA and that most of the motor recovery during a one-month period of rehabilitation was attributed to improvement of LKA.

  1. The right supramarginal gyrus is important for proprioception in healthy and stroke affected participants: a functional MRI study

    Directory of Open Access Journals (Sweden)

    Ettie eBen-Shabat

    2015-12-01

    Full Text Available Human proprioception is essential for motor control, yet its central processing is still debated. Previous studies of passive movements and illusory vibration have reported inconsistent activation patterns related to proprioception, particularly in high order sensorimotor cortices. We investigated brain activation specific to proprioception, its laterality and changes following stroke. Twelve healthy and three stroke affected individuals with proprioceptive deficits participated. Proprioception was assessed clinically with the Wrist Position Sense Test, and participants underwent functional MRI (fMRI scanning. An event-related study design was used, where each proprioceptive stimulus of passive wrist movement was followed by a motor response of mirror copying with the other wrist. Left (LWP and right (RWP wrist proprioception were tested separately. Laterality indices (LI were calculated for the main cortical regions activated during proprioception. We found proprioception-related brain activation in high order sensorimotor cortices in healthy participants especially in the supramarginal gyrus (SMG LWP z=4.51, RWP z=4.24 and the dorsal premotor cortex (PMd LWP z=4.10, RWP z=3.93. Right hemispheric dominance was observed in the SMG (LI LWP mean 0.41, SD 0.22; RWP 0.29, SD 0.20, and to a lesser degree in the PMd (LI LWP 0.34, SD 0.17; RWP 0.13, SD 0.25. In stroke affected participants the main difference in proprioception-related brain activation was reduced laterality in the right SMG. Our findings indicate that the SMG and PMd play a key role in proprioception probably due to their role in spatial processing and motor control respectively. The findings from stroke affected individuals suggest that decreased right SMG function may be associated with decreased proprioception. We recommend that clinicians pay particular attention to the assessment and rehabilitation of proprioception following right hemispheric lesions

  2. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

    DEFF Research Database (Denmark)

    Verleger, Rolf; Möller, Friderike; Kuniecki, Michal

    2010-01-01

    ) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field......In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted...... by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2...

  3. [Sex differences in relationship between creativity and hemispheric information processing in global and local levels].

    Science.gov (United States)

    Razumnikova, O M; Vol'f, N V

    2012-01-01

    Sex differences in creativity related global-local hemispheric selective processing were examined by hierarchical letter presenting in conditions of their perception and comparison. Fifty-six right-handed males and 68 females (aged 17-22 years) participated in the experiments. Originality-imagery was assessed by a computer-based Torrance 'Incomplete Figures' test software. Verbal creativity was valued by original sentence using of three nouns from remote semantic categories. The results show that irrespectively of the sex factor and the type of creative thinking, its originality is provided by high speed of right-hemispheric processes of information selection on the global level and delay in the interhemispheric communication. Relationships between originality of ideas and hemispheric attentional characteristics are presented mostly in men while verbal creative problem solving, and in women while figurative original thinking. Originality of verbal activity in men is more associated with success of selective processes in the left hemisphere, but in women--with selective functions of both hemispheres. Figurative thinking in men is less related to hemispheric characteristics of attention compared with women. Increase of figurative originality in women is accompanied acceleration of processes of selection of the information in the right hemisphere, and also higher efficiency of local attention as well as speeds ofglobal processing in the left hemisphere.

  4. Determination of hemispheric language dominance using functional MRI : comparison of visual and auditory stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ic Ryung; Ahn, Kook Jin; Lee, Jae Mun [The Catholic Univ. of Korea, Seoul (Korea, Republic of); Kim, Tae [The Catholic Magnetic Resonance Research Center, Seoul (Korea, Republic of)

    1999-12-01

    To assess the difference between auditory and visual stimuli when determining hemispheric language dominance by using functional MRI. In ten healthy adult volunteers (8 right-handed, 1 left-handed, 1 ambidextrous), motor language activation in axial slices of frontal lobe was mapped on a Simens 1.5T Vision Plus system using single-shot EPI. Series of 120 consecutive images per section were acquired during three cycles of task activation and rest. During each activation, a series of four syllables was delivered by means of both a visual and auditory method, and the volunteers were asked to mentally generate words starting with each syllable. In both in ferior frontal gyri and whole frontal lobes, lateralization indices were calculated from the activated pixels. We determined the language dominant hemisphere, and compared the results of the visual method and the auditory method. Seven right-handed persons were left-hemisphere dominant, and one left-handed and one ambidex-trous person were right-hemisphere dominant. Five of nine persons demonstrated larger lateralization indices with the auditory method than the visual method, while the remaining four showed larger lateralization indices with the visual method. No statistically significant difference was noted when comparing the results of the two methods(p>0.05). When determining hemispheric language dominance using functional MRI, the two methods are equally appropriate.

  5. Determination of hemispheric language dominance using functional MRI : comparison of visual and auditory stimuli

    International Nuclear Information System (INIS)

    Yoo, Ic Ryung; Ahn, Kook Jin; Lee, Jae Mun; Kim, Tae

    1999-01-01

    To assess the difference between auditory and visual stimuli when determining hemispheric language dominance by using functional MRI. In ten healthy adult volunteers (8 right-handed, 1 left-handed, 1 ambidextrous), motor language activation in axial slices of frontal lobe was mapped on a Simens 1.5T Vision Plus system using single-shot EPI. Series of 120 consecutive images per section were acquired during three cycles of task activation and rest. During each activation, a series of four syllables was delivered by means of both a visual and auditory method, and the volunteers were asked to mentally generate words starting with each syllable. In both in ferior frontal gyri and whole frontal lobes, lateralization indices were calculated from the activated pixels. We determined the language dominant hemisphere, and compared the results of the visual method and the auditory method. Seven right-handed persons were left-hemisphere dominant, and one left-handed and one ambidex-trous person were right-hemisphere dominant. Five of nine persons demonstrated larger lateralization indices with the auditory method than the visual method, while the remaining four showed larger lateralization indices with the visual method. No statistically significant difference was noted when comparing the results of the two methods(p>0.05). When determining hemispheric language dominance using functional MRI, the two methods are equally appropriate

  6. Hypothalamic digoxin and hemispheric chemical dominance in relation to the pathogenesis of bronchial asthma.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces three key metabolites--digoxin (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), dolichol (regulator of N-glycosylation of proteins), and ubiquinone (free radical scavenger). The isoprenoid pathway was assessed in patients with bronchial asthma. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of bronchial asthma. The pathway was upregulated with increase in digoxin synthesis in bronchial asthma. There was an increase in tryptophan catabolites and a reduction in tyrosine catabolites in patients with bronchial asthma. The ubiquinone levels were low and lipid peroxidation increased in these patients. There was increase in dolichol and glycoconjugate levels and reduction in lysosomal stability in these patients. The cholesterol:phospholipid ratio was increased and glycoconjugate levels were reduced in the membranes of these patients. The patterns noticed in bronchial asthma were similar to those in patients with right hemispheric chemical dominance. Bronchial asthma occurs in right hemispheric chemically dominant individuals. Ninety percent of the patients with bronchial asthma were right-handed and left hemispheric dominant by the dichotic listening test. But their biochemical patterns were similar to those obtained in right hemispheric chemical dominance. Hemispheric chemical dominance is a different entity and has no correlation with handedness or the dichotic listening test.

  7. Right hemispheric contributions to fine auditory temporal discriminations: high-density electrical mapping of the duration mismatch negativity (MMN

    Directory of Open Access Journals (Sweden)

    Pierfilippo De Sanctis

    2009-04-01

    Full Text Available That language processing is primarily a function of the left hemisphere has led to the supposition that auditory temporal discrimination is particularly well-tuned in the left hemisphere, since speech discrimination is thought to rely heavily on the registration of temporal transitions. However, physiological data have not consistently supported this view. Rather, functional imaging studies often show equally strong, if not stronger, contributions from the right hemisphere during temporal processing tasks, suggesting a more complex underlying neural substrate. The mismatch negativity (MMN component of the human auditory evoked-potential (AEP provides a sensitive metric of duration processing in human auditory cortex and lateralization of MMN can be readily assayed when sufficiently dense electrode arrays are employed. Here, the sensitivity of the left and right auditory cortex for temporal processing was measured by recording the MMN to small duration deviants presented to either the left or right ear. We found that duration deviants differing by just 15% (i.e. rare 115 ms tones presented in a stream of 100 ms tones elicited a significant MMN for tones presented to the left ear (biasing the right hemisphere. However, deviants presented to the right ear elicited no detectable MMN for this separation. Further, participants detected significantly more duration deviants and committed fewer false alarms for tones presented to the left ear during a subsequent psychophysical testing session. In contrast to the prevalent model, these results point to equivalent if not greater right hemisphere contributions to temporal processing of small duration changes.

  8. Hemispheric Specialization and Creative Thinking: A Meta-Analytic Review of Lateralization of Creativity

    Science.gov (United States)

    Mihov, Konstantin M.; Denzler, Markus; Forster, Jens

    2010-01-01

    In the last two decades research on the neurophysiological processes of creativity has found contradicting results. Whereas most research suggests right hemisphere dominance in creative thinking, left-hemisphere dominance has also been reported. The present research is a meta-analytic review of the literature to establish how creative thinking…

  9. Aging changes 3D perception: Evidence for hemispheric rebalancing of lateralized processes.

    Science.gov (United States)

    Andrews, Bridget; d'Avossa, Giovanni; Sapir, Ayelet

    2017-05-01

    When judging the 3D shape of a shaded image, young observers assume that the light source is placed above and to the left. This leftward bias has been attributed to hemispheric lateralization or experiential factors. Since aging is associated with loss of hemispheric lateralization, in the current study we measured the effect of aging on the assumed light source direction. Older participants exhibited, on average, a decreased left bias compared to young participants, as well as greater within-group variability in the distribution of assumed light source directions. In a separate sample of young and old participants, we replicated the age related effect in the assumed light source direction. Furthermore, in both young and old participants the assumed light source direction and the lateralized bias in a line bisection task were correlated. These findings suggest that diminished hemispheric lateralization, which accompanies aging, may affect the perception of the 3D structure of shaded surfaces. Shape from shading may thus provide a simple behavioral tool to track age related changes in hemispheric organization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cardiac myxoma: An uncommon cause of recurrent stroke in uncommon age

    Directory of Open Access Journals (Sweden)

    Harish Kumar

    2015-01-01

    Full Text Available Atrial fibrillation is the most common cause of cardiogenic emboli in stroke, responsible for over 50% cases of total stroke patients. Myxoma is responsible only in few cases. A stroke caused by left atrial myxoma commonly occur in young females. This patient presented with the repeated attack of stroke in the age of 80 years. However, it is the most common benign cardiac tumor found more frequently. In young adults with stroke or transient ischemic attack than in older patients. Age of the patient and unusual cause of recurrent stroke make this case report interesting. An 80-year-old male with no other conventional vascular risk factors such as hypertension, diabetes, or hyperlipidemia presented with left hemiparesis. Infarction over the right middle cerebral artery was disclosed on a magnetic resonance imaging study. The patient was a known case of right hemiparesis 3 years back, which was improved. The cause of repeated attack of stroke was left atrial myxoma, diagnosed by two-dimensional echocardiography.

  11. Prolonged corrected QT interval is predictive of future stroke events even in subjects without ECG-diagnosed left ventricular hypertrophy.

    Science.gov (United States)

    Ishikawa, Joji; Ishikawa, Shizukiyo; Kario, Kazuomi

    2015-03-01

    We attempted to evaluate whether subjects who exhibit prolonged corrected QT (QTc) interval (≥440 ms in men and ≥460 ms in women) on ECG, with and without ECG-diagnosed left ventricular hypertrophy (ECG-LVH; Cornell product, ≥244 mV×ms), are at increased risk of stroke. Among the 10 643 subjects, there were a total of 375 stroke events during the follow-up period (128.7±28.1 months; 114 142 person-years). The subjects with prolonged QTc interval (hazard ratio, 2.13; 95% confidence interval, 1.22-3.73) had an increased risk of stroke even after adjustment for ECG-LVH (hazard ratio, 1.71; 95% confidence interval, 1.22-2.40). When we stratified the subjects into those with neither a prolonged QTc interval nor ECG-LVH, those with a prolonged QTc interval but without ECG-LVH, and those with ECG-LVH, multivariate-adjusted Cox proportional hazards analysis demonstrated that the subjects with prolonged QTc intervals but not ECG-LVH (1.2% of all subjects; incidence, 10.7%; hazard ratio, 2.70, 95% confidence interval, 1.48-4.94) and those with ECG-LVH (incidence, 7.9%; hazard ratio, 1.83; 95% confidence interval, 1.31-2.57) had an increased risk of stroke events, compared with those with neither a prolonged QTc interval nor ECG-LVH. In conclusion, prolonged QTc interval was associated with stroke risk even among patients without ECG-LVH in the general population. © 2014 American Heart Association, Inc.

  12. Split Fovea Theory and the Role of the Two Cerebral Hemispheres in Reading: A Review of the Evidence

    Science.gov (United States)

    Ellis, Andrew W.; Brysbaert, Marc

    2010-01-01

    Split fovea theory proposes that when the eyes are fixated within a written word, visual information about the letters falling to the left of fixation is projected initially to the right cerebral hemisphere while visual information about the letters falling to the right of fixation is projected to the left cerebral hemisphere. The two parts of the…

  13. A study on regional cerebral circulation in stroke patients with aphasia

    International Nuclear Information System (INIS)

    Kudo, Ryozo

    1985-01-01

    To study the pathophysiology of aphasia due to cerebral stroke, regional cerebral blood flow (rCBF) was measured by the 133 Xe clearance method and the volume of low density area (LDA) was estimated on the basis of computerized tomography in 43 thrombotic (24 aphasia and 19 non-aphasia), 30 hemorrhagic (16 aphasia and 14 non-aphasia) and 6 non-stroke cases. 1) In the healthy hemisphere, rCBF showed no significant difference between aphasia and non-aphasia in both thrombotic and hemorrhagic cases. In the affected hemisphere, thrombotic cases showed significantly decreased rCBF in aphasic cases as compared to non-aphasic, however, hemorrhagic cases revealed no difference. 2) LDA volume showed no significant difference between aphasia and non-aphasia in cerebral thrombosis, however, LDA volume in non-aphasia was smaller than that in aphasia in cerebral hemorrage. 3) Significant differences in the pathophysiology of aphasia due to cerebral stroke were recognized between cerebral thrombosis and cerebral hemorrhage. Such differences should be taken into consideration in the management and treatment of aphasia caused by cerebral stroke. (author)

  14. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    Science.gov (United States)

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Severity of post-stroke aphasia according to aphasia type and lesion location in Koreans.

    Science.gov (United States)

    Kang, Eun Kyoung; Sohn, Hae Min; Han, Moon-Ku; Kim, Won; Han, Tai Ryoon; Paik, Nam-Jong

    2010-01-01

    To determine the relations between post-stroke aphasia severity and aphasia type and lesion location, a retrospective review was undertaken using the medical records of 97 Korean patients, treated within 90 days of onset, for aphasia caused by unilateral left hemispheric stroke. Types of aphasia were classified according to the validated Korean version of the Western Aphasia Battery (K-WAB), and severities of aphasia were quantified using WAB Aphasia Quotients (AQ). Lesion locations were classified as cortical or subcortical, and were determined by magnetic resonance imaging. Two-step cluster analysis was performed using AQ values to classify aphasia severity by aphasia type and lesion location. Cluster analysis resulted in four severity clusters: 1) mild; anomic type, 2) moderate; Wernicke's, transcortical motor, transcortical sensory, conduction, and mixed transcortical types, 3) moderately severe; Broca's aphasia, and 4) severe; global aphasia, and also in three lesion location clusters: 1) mild; subcortical 2) moderate; cortical lesions involving Broca's and/or Wernicke's areas, and 3) severe; insular and cortical lesions not in Broca's or Wernicke's areas. These results revealed that within 3 months of stroke, global aphasia was the more severely affected type and cortical lesions were more likely to affect language function than subcortical lesions.

  16. Right hemispheric dominance and interhemispheric cooperation in gaze-triggered reflexive shift of attention.

    Science.gov (United States)

    Okada, Takashi; Sato, Wataru; Kubota, Yasutaka; Toichi, Motomi; Murai, Toshiya

    2012-03-01

    The neural substrate for the processing of gaze remains unknown. The aim of the present study was to clarify which hemisphere dominantly processes and whether bilateral hemispheres cooperate with each other in gaze-triggered reflexive shift of attention. Twenty-eight normal subjects were tested. The non-predictive gaze cues were presented either in unilateral or bilateral visual fields. The subjects localized the target as soon as possible. Reaction times (RT) were shorter when gaze-cues were congruent toward than away from targets, whichever visual field they were presented in. RT were shorter in left than right visual field presentations. RT in mono-directional bilateral presentations were shorter than both of those in left and right presentations. When bi-directional bilateral cues were presented, RT were faster when valid cues were presented in the left than right visual fields. The right hemisphere appears to be dominant, and there is interhemispheric cooperation in gaze-triggered reflexive shift of attention. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.

  17. Hemispheric involvement in the processing of Chinese idioms: An fMRI study.

    Science.gov (United States)

    Yang, Jie; Li, Ping; Fang, Xiaoping; Shu, Hua; Liu, Youyi; Chen, Lang

    2016-07-01

    Although the left hemisphere is believed to handle major language functions, the role of the right hemisphere in language comprehension remains controversial. Recently researchers have investigated hemispheric language processing with figurative language materials (e.g., metaphors, jokes, and idioms). The current study capitalizes on the pervasiveness and distinct features of Chinese idioms to examine the brain mechanism of figurative language processing. Native Chinese speakers performed a non-semantic task while reading opaque idioms, transparent idioms, and non-idiomatic literal phrases. Whole-brain analyses indicated strong activations for all three conditions in an overlapping brain network that includes the bilateral inferior/middle frontal gyrus and the temporo-parietal and occipital-temporal regions. The two idiom conditions elicited additional activations in the right superior parietal lobule and right precuneus. Item-based modulation analyses further demonstrated that activation amplitudes in the right angular gyrus, right superior parietal lobule and right precuneus, as well as left inferior temporo-occipital cortex, are negatively correlated with the semantic transparency of the idioms. These results suggest that both hemispheres are involved in idiom processing but they play different roles. Implications of the findings are discussed in light of theories of figurative language processing and hemispheric functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A modified Glenn shunt reduces right ventricular stroke work during left ventricular assist device therapy.

    Science.gov (United States)

    Schiller, Petter; Vikholm, Per; Hellgren, Laila

    2016-03-01

    Right ventricular (RV) failure is a major cause of morbidity and mortality after left ventricular assist device (LVAD) placement and remains hard to predict. We hypothesized that partial surgical exclusion of the RV with a modified Glenn shunt during LVAD treatment would reduce RV stroke work. An LVAD was implanted in eight pigs and a modified Glenn shunt was constructed. A conductance pressure-volume catheter was placed in the right ventricle through the apex. Haemodynamic data and pressure-volume loops were obtained at the following time periods: (i) baseline, (ii) open shunt, (iii) LVAD with closed shunt and (iii) LVAD and open shunt. During LVAD therapy, the right atrial (RA) pressure increased from 9 mmHg (9-9) to 15 mmHg (12-15), P = 0.01. RV stroke volume increased from 30 ml (29-40) to 51 ml (42-53), P work increased to 708 mmHg ml (654-1193) from 535 mmHg ml (424-717), P = 0.04, compared with baseline. During LVAD therapy in combination with a Glenn shunt, the RA pressure decreased from 15 mmHg (12-15) to 10 mmHg (7-11) when compared with LVAD therapy only, P = 0.01. A decrease in RV stroke work from 708 mmHg ml (654-1193) to 465 mmHg ml (366-711), P = 0.04, was seen when the LVAD was combined with a shunt, not significantly different from the baseline value (535 mmHg ml). The developed pressure in the right ventricle decreased from 29 mmHg (26-32) to 21 mmHg (20-24), P work during the use of the shunt with LVAD treatment. A modified Glenn shunt reduced RV volumes, RV stroke work and RA pressure during LVAD therapy in an experimental model of heart failure in pigs. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  19. Validation of the language component of the Addenbrooke's Cognitive Examination--Revised (ACE-R) as a screening tool for aphasia in stroke patients.

    Science.gov (United States)

    Gaber, Tarek A-Z K; Parsons, Faye; Gautam, Vidushi

    2011-09-01

    Several tests are available for aphasia screening following stroke. However, some of them have shortcomings such as need of specialist knowledge, low sensitivity and/or specificity and lengthy administration time. Our study aims to evaluate the language component of the Addenbrooke's Cognitive Examination--Revised (ACE-R) as a screening tool for aphasia in stroke patients. The language component of ACE-R was administered to consecutive patients admitted to a post-acute stroke unit. Patients who were medically unstable or had a significant history of sensory impairment or mental health issues were excluded. The test was administered by two junior doctors with basic training in ACE-R administration. Patients recruited were also assessed by an experienced speech and language therapist (SLT). The results of the two assessments were documented by a different member of the team and the SLT results were used as the benchmark to calculate the ACE-R language component sensitivity and specificity.   Fifty-nine participants were recruited and 27 of them were women. The mean age was 72 (SD 11.9). Thirty-four participants had left and 11 right hemisphere stroke. Fourteen had bilateral affection. Six participants were left handed. A cut-off value of 22/26 of ACE-R language component showed 100% specificity and 83.1% sensitivity, while a cut-off value of 16/26 had 88.2% specificity and 100% sensitivity. Our results suggest that the language component of ACE-R has a satisfactory sensitivity and specificity compared with other screening tests used in strokes. It is easy to administer and free to use. © 2010 The Authors. Australasian Journal on Ageing © 2010 ACOTA.

  20. Motor Extinction in Distinct Reference Frames: A Double Dissociation

    Directory of Open Access Journals (Sweden)

    Jennifer Heidler-Gary

    2013-01-01

    Full Text Available Objective: Test the hypothesis that right hemisphere stroke can cause extinction of left hand movements or movements of either hand held in left space, when both are used simultaneously, possibly depending on lesion site.

  1. Hemispheric asymmetries and gender influence Rembrandt's portrait orientations.

    Science.gov (United States)

    Schirillo, J A

    2000-01-01

    For centuries painters have predominantly painted portraits with the model's left-cheek facing the viewer. This has been even more prevalent with females ( approximately 68%) than males ( approximately 56%). Numerous portraits painted by Rembrandt typify this unexplained phenomenon. In a preliminary experiment, subjects judged 24 emotional and social character traits in 20 portraits by Rembrandt. A factor analysis revealed that females with their left cheek exposed were judged to be much less socially appealing than less commonly painted right-cheeked females. Conversely, the more commonly painted right-cheeked males were judged to be more socially appealing than either left-cheeked males or females facing either direction. It is hypothesized that hemispheric asymmetries regulating emotional facial displays of approach and avoidance influenced the side of the face Rembrandt's models exposed due to prevailing social norms. A second experiment had different subjects judge a different collection of 20 portraits by Rembrandt and their mirror images. Mirror-reversed images produced the same pattern of results as their original orientation counterparts. Consequently, hemispheric asymmetries that specify the emotional expression on each side of the face are posited to account for the obtained results.

  2. Hemispheric asymmetry in the influence of language on visual perception.

    Science.gov (United States)

    Sun, Yanliang; Cai, Yongchun; Lu, Shena

    2015-07-01

    Many studies have shown that language can affect visual perception; however, our understanding of the neural basis of linguistic influence is inadequate. This can be investigated by examining the hemispheric asymmetry of linguistic influence. The left and right hemispheres are dominant in close and distant semantic processing, respectively. In this study, we investigated whether the hemispheric asymmetry of semantic processing led to hemispheric asymmetry for concept priming on the detection of objects degraded by continuous flash suppression. We combined a priming paradigm with the divided visual field paradigm and used continuous flash suppression, which renders objects invisible. The results indicated that the hemispheric asymmetry of semantic processing led to a right lateralization in the influence of more abstract concepts on visual perception. The lateralization of brain connectomes may be the underlying neural basis of this effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Learning-related brain hemispheric dominance in sleeping songbirds.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; van de Kamp, Ferdinand C; Zandbergen, Matthijs A; Bolhuis, Johan J

    2015-03-12

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops as language proficiency increases. Sleep is important for the formation of long-term memory, in humans as well as in other animals, including songbirds. Here, we measured neuronal activation (as the expression pattern of the immediate early gene ZENK) during sleep in juvenile zebra finch males that were still learning their songs from a tutor. We found that during sleep, there was learning-dependent lateralisation of spontaneous neuronal activation in the caudomedial nidopallium (NCM), a secondary auditory brain region that is involved in tutor song memory, while there was right hemisphere dominance of neuronal activation in HVC (used as a proper name), a premotor nucleus that is involved in song production and sensorimotor learning. Specifically, in the NCM, birds that imitated their tutors well were left dominant, while poor imitators were right dominant, similar to language-proficiency related lateralisation in humans. Given the avian-human parallels, lateralised neural activation during sleep may also be important for speech and language acquisition in human infants.

  4. Learning-related brain hemispheric dominance in sleeping songbirds

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M. H.; van de Kamp, Ferdinand C.; Zandbergen, Matthijs A.; Bolhuis, Johan J.

    2015-01-01

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops as language proficiency increases. Sleep is important for the formation of long-term memory, in humans as well as in other animals, including songbirds. Here, we measured neuronal activation (as the expression pattern of the immediate early gene ZENK) during sleep in juvenile zebra finch males that were still learning their songs from a tutor. We found that during sleep, there was learning-dependent lateralisation of spontaneous neuronal activation in the caudomedial nidopallium (NCM), a secondary auditory brain region that is involved in tutor song memory, while there was right hemisphere dominance of neuronal activation in HVC (used as a proper name), a premotor nucleus that is involved in song production and sensorimotor learning. Specifically, in the NCM, birds that imitated their tutors well were left dominant, while poor imitators were right dominant, similar to language-proficiency related lateralisation in humans. Given the avian-human parallels, lateralised neural activation during sleep may also be important for speech and language acquisition in human infants. PMID:25761654

  5. Transient Ischemic Attack and Ischemic Stroke in Danon Disease with Formation of Left Ventricular Apical Thrombus despite Normal Systolic Function

    Directory of Open Access Journals (Sweden)

    Takeshi Tsuda

    2017-01-01

    Full Text Available Danon disease is a rare X-linked dominant skeletal and cardiac muscle disorder presenting with hypertrophic cardiomyopathy, Wolf-Parkinson-White syndrome, skeletal myopathy, and mild intellectual disability. Early morbidity and mortality due to heart failure or sudden death are known in Danon disease, more in males than in females. Here, we present a 17-year-old female adolescent with Danon disease and severe concentric hypertrophy with normal left ventricular (LV systolic function, who has been complaining of intermittent headache and weakness for about 3 years, initially diagnosed with hemiplegic migraine. Subsequently, her neurological manifestation progressed to transient ischemic attack (TIA and eventually to ischemic stroke confirmed by CT scan with 1-day history of expressive aphasia followed by persistent left side weakness and numbness. Detailed echocardiogram for the first time revealed a small LV apical thrombus with unchanged severe biventricular hypertrophy and normal systolic function. This unexpected LV apical thrombus may be associated with a wide spectrum of neurological deficits ranging from TIA to ischemic stroke in Danon disease. Possibility of cerebral ischemic events should be suspected in Danon disease when presenting with neurological deficits even with normal systolic function. Careful assessment for LV apical thrombus is warranted in such cases.

  6. Right Hemisphere Sensitivity to Novel Metaphoric Relations: Application of the Signal Detection Theory

    Science.gov (United States)

    Mashal, N.; Faust, M.

    2008-01-01

    The present study used the signal detection theory to test the hypothesis that the right hemisphere (RH) is more sensitive than the left hemisphere (LH) to the distant semantic relations in novel metaphoric expressions. In two divided visual field experiments, sensitivity (d') and criterion ([beta]) were calculated for responses to different types…

  7. Hemispheric lateralization in top-down attention during spatial relation processing: a Granger causal model approach.

    Science.gov (United States)

    Falasca, N W; D'Ascenzo, S; Di Domenico, A; Onofrj, M; Tommasi, L; Laeng, B; Franciotti, R

    2015-04-01

    Magnetoencephalography was recorded during a matching-to-sample plus cueing paradigm, in which participants judged the occurrence of changes in either categorical (CAT) or coordinate (COO) spatial relations. Previously, parietal and frontal lobes were identified as key areas in processing spatial relations and it was shown that each hemisphere was differently involved and modulated by the scope of the attention window (e.g. a large and small cue). In this study, Granger analysis highlighted the patterns of causality among involved brain areas--the direction of information transfer ran from the frontal to the visual cortex in the right hemisphere, whereas it ran in the opposite direction in the left side. Thus, the right frontal area seems to exert top-down influence, supporting the idea that, in this task, top-down signals are selectively related to the right side. Additionally, for CAT change preceded by a small cue, the right frontal gyrus was not involved in the information transfer, indicating a selective specialization of the left hemisphere for this condition. The present findings strengthen the conclusion of the presence of a remarkable hemispheric specialization for spatial relation processing and illustrate the complex interactions between the lateralized parts of the neural network. Moreover, they illustrate how focusing attention over large or small regions of the visual field engages these lateralized networks differently, particularly in the frontal regions of each hemisphere, consistent with the theory that spatial relation judgements require a fronto-parietal network in the left hemisphere for categorical relations and on the right hemisphere for coordinate spatial processing. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Reduced contralateral hemispheric flow measured by SPECT in cerebellar lesions

    International Nuclear Information System (INIS)

    Soenmezoglu, K.; Sperling, B.; Lassen, N.A.; Henriksen, T.; Tfelt-Hansen, P.

    1993-01-01

    Four patients with clinical signs of cerebellar stroke were studied twice by SPECT using 99m Tc-HMPAO as a tracer for cerebral blood flow (CBF). When first scanned 6 to 22 days after onset, all had a region of very low CBF in the symptomatic cerebellar hemisphere, and a mild to moderate CBF reduction (average 10%) in contralateral hemispheric cortex. In all four cases clinical signs of unilateral cerebellar dysfunction were still present when rescanned 1 to 4 months later and the relative CBF decrease in the contralateral cortex of the forebrain also remained. The basal ganglia contralateral to the cerebellar lesion CBF showed variable alterations. A relative CBF decrease was seen in upper part of basal ganglia in all four cases, but it was not a constant phenomenon. A relative CBF increase in both early and late SPECT scans was seen at low levels of neostriatum in two cases. The remote CBF changes in cerebellar stroke seen in the forebrain are probably caused by reduced or abolished cerebellar output. The term ''Crossed Cerebral Diaschisis'' may be used to describe these CBF changes that would appear to reflect both decreased and increased neuronal activity. (au)

  9. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    DEFF Research Database (Denmark)

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  10. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.

    Science.gov (United States)

    Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius

    2011-07-01

    Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Neural Dissociation in the Production of Lexical versus Classifier Signs in ASL: Distinct Patterns of Hemispheric Asymmetry

    Science.gov (United States)

    Hickok, Gregory; Pickell, Herbert; Klima, Edward; Bellugi, Ursula

    2009-01-01

    We examine the hemispheric organization for the production of two classes of ASL signs, lexical signs and classifier signs. Previous work has found strong left hemisphere dominance for the production of lexical signs, but several authors have speculated that classifier signs may involve the right hemisphere to a greater degree because they can…

  12. Right Hemisphere Dominance for Emotion Processing in Baboons

    Science.gov (United States)

    Wallez, Catherine; Vauclair, Jacques

    2011-01-01

    Asymmetries of emotional facial expressions in humans offer reliable indexes to infer brain lateralization and mostly revealed right hemisphere dominance. Studies concerned with oro-facial asymmetries in nonhuman primates largely showed a left-sided asymmetry in chimpanzees, marmosets and macaques. The presence of asymmetrical oro-facial…

  13. Is the planum temporale surface area a marker of hemispheric or regional language lateralization?

    Science.gov (United States)

    Tzourio-Mazoyer, Nathalie; Crivello, Fabrice; Mazoyer, Bernard

    2018-04-01

    We investigated the association between the left planum temporale (PT) surface area or asymmetry and the hemispheric or regional functional asymmetries during language production and perception tasks in 287 healthy adults (BIL&GIN) who were matched for sex and handedness. The measurements of the PT surface area were performed after manually delineating the region using brain magnetic resonance images (MRI) and considering the Heschl's gyrus (HG) duplication pattern; the measurements either included (PT tot ) or did not include (PT post ) the second gyrus. A region encompassing both the PT and HG (HGPT) was also studied. Regardless of the ROI measured, 80% of the sample had a positive left minus right PT asymmetry. We first tested whether the PT tot , PT post and HGPT surface areas in the left or right hemispheres or PT asymmetries differed in groups of individuals varying in language lateralization by assessing their hemispheric index during a sentence production minus word list production task. We then investigated the association between these different measures of the PT anatomy and the regional asymmetries measured during the task. Regardless of the anatomical definition used, we observed no correlations between the left surface areas or asymmetries and the hemispheric or regional functional asymmetries during the language production task. We then performed a similar analysis using the same sample measuring language functional lateralization during speech listening tasks (i.e., listening to sentences and lists of words). Although the hemispheric lateralization during speech listening was not correlated with the left PT tot , PT post or HGPT surface areas or the PT asymmetries, significant positive correlations were observed between the asymmetries in these regions and the regional functional asymmetries measured in areas adjacent to the end of the Sylvian fissure while participants listened to the word lists or sentences. The PT asymmetry thus appears to be

  14. Improvement of language functions in a chronic non-fluent post-stroke aphasic patient following bilateral sequential theta burst magnetic stimulation.

    Science.gov (United States)

    Vuksanović, Jasmina; Jelić, Milan B; Milanović, Sladjan D; Kačar, Katarina; Konstantinović, Ljubica; Filipović, Saša R

    2015-01-01

    In chronic non-fluent aphasia patients, inhibition of the intact right hemisphere (RH), by transcranial magnetic stimulation (TMS) or similar methods, can induce improvement in language functions. The supposed mechanism behind this improvement is a release of preserved left hemisphere (LH) language networks from RH transcallosal inhibition. Direct stimulation of the damaged LH can sometimes bring similar results too. Therefore, we developed a novel treatment approach that combined direct LH (Broca's area (BA)) stimulation, by intermittent theta burst stimulation (TBS), with homologue RH area's inhibition, by continuous TBS. We present the results of application of 15 daily sessions of the described treatment approach in a right-handed patient with chronic post-stroke non-fluent aphasia. The intervention appeared to improve several language functions, but most notably propositional speech, semantic fluency, short-term verbal memory, and verbal learning. Bilateral TBS modulation of activation of the language-related areas of both hemispheres seems to be a feasible and promising way to induce recovery in chronic aphasic patients. Due to potentially cumulative physiological effects of bilateral stimulation, the improvements may be even greater than following unilateral interventions.

  15. Phonological decisions require both the left and right supramarginal gyri

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Baumgaertner, Annette; Price, Cathy J

    2010-01-01

    Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right...... the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed...... hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS...

  16. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement.

    Science.gov (United States)

    Koyama, Soichiro; Tanaka, Satoshi; Tanabe, Shigeo; Sadato, Norihiro

    2015-02-19

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates motor performance and learning. Previous studies have shown that tDCS over the primary motor cortex (M1) can facilitate consolidation of various motor skills. However, the effect of tDCS on consolidation of newly learned ballistic movements remains unknown. The present study tested the hypothesis that tDCS over M1 enhances consolidation of ballistic thumb movements in healthy adults. Twenty-eight healthy subjects participated in an experiment with a single-blind, sham-controlled, between-group design. Fourteen subjects practiced a ballistic movement with their left thumb during dual-hemisphere tDCS. Subjects received 1mA anodal tDCS over the contralateral M1 and 1mA cathodal tDCS over the ipsilateral M1 for 25min during the training session. The remaining 14 subjects underwent identical training sessions, except that dual-hemisphere tDCS was applied for only the first 15s (sham group). All subjects performed the task again at 1h and 24h later. Primary measurements examined improvement in peak acceleration of the ballistic thumb movement at 1h and 24h after stimulation. Improved peak acceleration was significantly greater in the tDCS group (144.2±15.1%) than in the sham group (98.7±9.1%) (Pballistic thumb movement in healthy adults. Dual-hemisphere tDCS over M1 may be useful to improve elemental motor behaviors, such as ballistic movements, in patients with subcortical strokes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Topography of acute stroke in a sample of 439 right brain damaged patients.

    Science.gov (United States)

    Sperber, Christoph; Karnath, Hans-Otto

    2016-01-01

    Knowledge of the typical lesion topography and volumetry is important for clinical stroke diagnosis as well as for anatomo-behavioral lesion mapping analyses. Here we used modern lesion analysis techniques to examine the naturally occurring lesion patterns caused by ischemic and by hemorrhagic infarcts in a large, representative acute stroke patient sample. Acute MR and CT imaging of 439 consecutively admitted right-hemispheric stroke patients from a well-defined catchment area suffering from ischemia (n = 367) or hemorrhage (n = 72) were normalized and mapped in reference to stereotaxic anatomical atlases. For ischemic infarcts, highest frequencies of stroke were observed in the insula, putamen, operculum and superior temporal cortex, as well as the inferior and superior occipito-frontal fascicles, superior longitudinal fascicle, uncinate fascicle, and the acoustic radiation. The maximum overlay of hemorrhages was located more posteriorly and more medially, involving posterior areas of the insula, Heschl's gyrus, and putamen. Lesion size was largest in frontal and anterior areas and lowest in subcortical and posterior areas. The large and unbiased sample of stroke patients used in the present study accumulated the different sub-patterns to identify the global topographic and volumetric pattern of right hemisphere stroke in humans.

  18. Formulaic Language in Parkinson's Disease and Alzheimer's Disease: Complementary Effects of Subcortical and Cortical Dysfunction

    Science.gov (United States)

    Van Lancker Sidtis, Diana; Choi, JiHee; Alken, Amy; Sidtis, John J.

    2015-01-01

    Purpose: The production of formulaic expressions (conversational speech formulas, pause fillers, idioms, and other fixed expressions) is excessive in the left hemisphere and deficient in the right hemisphere and in subcortical stroke. Speakers with Alzheimer's disease (AD), having functional basal ganglia, reveal abnormally high proportions of…

  19. Effects of Neurological Damage on Production of Formulaic Language

    Science.gov (United States)

    Sidtis, Diana; Canterucci, Gina; Katsnelson, Dora

    2009-01-01

    Early studies reported preserved formulaic language in left hemisphere damaged subjects and reduced incidence of formulaic expressions in the conversational speech of stroke patients with right hemispheric damage. Clinical observations suggest a possible role also of subcortical nuclei. This study examined formulaic language in the spontaneous…

  20. Turning off artistic ability: the influence of left DBS in art production.

    Science.gov (United States)

    Drago, V; Foster, P S; Okun, M S; Cosentino, F I I; Conigliaro, R; Haq, I; Sudhyadhom, A; Skidmore, F M; Heilman, K M

    2009-06-15

    The influence of Parkinson's disease (PD) as well as deep brain stimulation (DBS) on visual-artistic production of people who have been artists is unclear. We systematically assessed the artistic-creative productions of a patient with PD who was referred to us for management of a left subthalamic region (STN) DBS. The patient was an artist before her disease started, permitting us to analyze changes in her artistic-creative production over the course of the illness and during her treatment with DBS. We collected her paintings from four time periods: Time 1 (Early Pre-Presymptomatic), Time 2 (Later Presymptomatic), Time 3 (Symptomatic), and Time 4 (DBS Symptomatic). A total of 59 paintings were submitted to a panel of judges, who rated the paintings on 6 different artistic qualities including: aesthetics, closure, evocative impact, novelty, representation, technique. Aesthetics and evocative impact significantly declined from Time 2 to Time 4. Representation and technique indicated a curvilinear relationship, with initial improvement from Time 1 to Time 2 followed by a decline from Time 2 to Time 4. These results suggest that left STN/SNR-DBS impacted artistic performances in our patient. The reason for these alterations is not known, but it might be that alterations of left hemisphere functions induce a hemispheric bias reducing the influence the right hemisphere which is important for artistic creativity. The left hemisphere itself plays a critical role in artistic creativity and DBS might have altered left hemisphere functions or altered the mesolimbic system which might have also influenced creativity. Future studies will be required to learn how PD and DBS influence creativity.

  1. Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis.

    Science.gov (United States)

    Belardinelli, Paolo; Laer, Leonard; Ortiz, Erick; Braun, Christoph; Gharabaghi, Alireza

    2017-01-01

    Motor recovery in severely impaired stroke patients is often very limited. To refine therapeutic interventions for regaining motor control in this patient group, the functionally relevant mechanisms of neuronal plasticity need to be detected. Cortico-muscular coherence (CMC) may provide physiological and topographic insights to achieve this goal. Synchronizing limb movements to motor-related brain activation is hypothesized to reestablish cortico-motor control indexed by CMC. In the present study, right-handed, chronic stroke patients with right-hemispheric lesions and left hand paralysis participated in a four-week training for their left upper extremity. A brain-robot interface turned event-related beta-band desynchronization of the lesioned sensorimotor cortex during kinesthetic motor-imagery into the opening of the paralyzed hand by a robotic orthosis. Simultaneous MEG/EMG recordings and individual models from MRIs were used for CMC detection and source reconstruction of cortico-muscular connectivity to the affected finger extensors before and after the training program. The upper extremity-FMA of the patients improved significantly from 16.23 ± 6.79 to 19.52 ± 7.91 (p = 0.0015). All patients showed significantly increased CMC in the beta frequency-band, with a distributed, bi-hemispheric pattern and considerable inter-individual variability. The location of CMC changes was not correlated to the severity of the motor impairment, the motor improvement or the lesion volume. Group analysis of the cortical overlap revealed a common feature in all patients following the intervention: a significantly increased level of ipsilesional premotor CMC that extended from the superior to the middle and inferior frontal gyrus, along with a confined area of increased CMC in the contralesional premotor cortex. In conclusion, functionally relevant modulations of CMC can be detected in patients with long-term, severe motor deficits after a brain-robot assisted

  2. Dyscalculia, Dysgraphia, and Left-Right Confusion from a Left Posterior Peri-Insular Infarct

    Directory of Open Access Journals (Sweden)

    S. Bhattacharyya

    2014-01-01

    Full Text Available The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation.

  3. Dyscalculia, dysgraphia, and left-right confusion from a left posterior peri-insular infarct.

    Science.gov (United States)

    Bhattacharyya, S; Cai, X; Klein, J P

    2014-01-01

    The Gerstmann syndrome of dyscalculia, dysgraphia, left-right confusion, and finger agnosia is generally attributed to lesions near the angular gyrus of the dominant hemisphere. A 68-year-old right-handed woman presented with sudden difficulty completing a Sudoku grid and was found to have dyscalculia, dysgraphia, and left-right confusion. Magnetic resonance imaging (MRI) showed a focus of abnormal reduced diffusivity in the left posterior insula and temporoparietal operculum consistent with acute infarct. Gerstmann syndrome from an insular or peri-insular lesion has not been described in the literature previously. Pathological and functional imaging studies show connections between left posterior insular region and inferior parietal lobe. We postulate that the insula and operculum lesion disrupted key functional networks resulting in a pseudoparietal presentation.

  4. The Nature of Hemispheric Specialization for Linguistic and Emotional Prosodic Perception: A Meta-Analysis of the Lesion Literature

    Science.gov (United States)

    Witteman, Jurriaan; van IJzendoorn, Marinus H.; van de Velde, Daan; van Heuven, Vincent J. J. P.; Schiller, Niels O.

    2011-01-01

    It is unclear whether there is hemispheric specialization for prosodic perception and, if so, what the nature of this hemispheric asymmetry is. Using the lesion-approach, many studies have attempted to test whether there is hemispheric specialization for emotional and linguistic prosodic perception by examining the impact of left vs. right…

  5. Association between baseline peri-infarct magnetic resonance spectroscopy and regional white matter atrophy after stroke

    International Nuclear Information System (INIS)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew; Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M.; Churilov, Leonid; Donnan, Geoffrey A.; Parsons, Mark W.

    2016-01-01

    Cerebral atrophy after stroke is associated with poor functional outcome. The prediction and prevention of post-stroke brain atrophy could therefore represent a target for neurorestorative therapies. We investigated the associations between peri-infarct metabolite concentrations measured by quantitative MRS and brain volume change in the infarct hemisphere after stroke. Twenty patients with ischemic stroke were enrolled. Patients underwent 3T-MRI within 1 week of onset, and at 1 and 3 months. At the baseline scan, an MRS voxel was placed manually in the peri-infarct area and another in the corresponding contralateral region. Volumetric analysis of T1 images was performed using two automated processing packages. Changes in gray and white matter volume were assessed as percentage change between 1 and 3 months. Mean concentrations (institutional units) of N-acetylaspartic acid (NAA) (6.1 vs 7.0, p = 0.039), total creatine (Cr+PCr) (5.4 vs 5.8, p = 0.043), and inositol (4.5 vs 5.0, p = 0.014), were significantly lower in the peri-infarct region compared with the contralateral hemisphere. There was a significant correlation between baseline peri-infarct NAA and white matter volume change in the infarct hemisphere between 1 and 3 months, with lower NAA being associated with subsequent white matter atrophy (Spearman's rho = 0.66, p = 0.010). The baseline concentration of Cr+PCr was also significantly correlated with white matter atrophy in the infarct hemisphere (Spearman's rho = 0.59, p = 0.027). Both of these associations were significant after adjustment for the false discovery rate and were validated using the secondary volumetric method. MRS may be useful in the prediction of white matter atrophy post-stroke and in the testing of novel neurorestorative therapies. (orig.)

  6. Association between baseline peri-infarct magnetic resonance spectroscopy and regional white matter atrophy after stroke

    Energy Technology Data Exchange (ETDEWEB)

    Yassi, Nawaf; Campbell, Bruce C.V.; Davis, Stephen M.; Bivard, Andrew [Melbourne Brain Centre rate at The Royal Melbourne Hospital, Departments of Medicine and Neurology, Parkville, Victoria (Australia); Moffat, Bradford A.; Steward, Christopher; Desmond, Patricia M. [The University of Melbourne, Department of Radiology, The Royal Melbourne Hospital, Parkville (Australia); Churilov, Leonid; Donnan, Geoffrey A. [The University of Melbourne, Florey Institute of Neuroscience and Mental Health, Parkville (Australia); Parsons, Mark W. [University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Translational Neuroscience and Mental Health, Newcastle (Australia)

    2016-01-15

    Cerebral atrophy after stroke is associated with poor functional outcome. The prediction and prevention of post-stroke brain atrophy could therefore represent a target for neurorestorative therapies. We investigated the associations between peri-infarct metabolite concentrations measured by quantitative MRS and brain volume change in the infarct hemisphere after stroke. Twenty patients with ischemic stroke were enrolled. Patients underwent 3T-MRI within 1 week of onset, and at 1 and 3 months. At the baseline scan, an MRS voxel was placed manually in the peri-infarct area and another in the corresponding contralateral region. Volumetric analysis of T1 images was performed using two automated processing packages. Changes in gray and white matter volume were assessed as percentage change between 1 and 3 months. Mean concentrations (institutional units) of N-acetylaspartic acid (NAA) (6.1 vs 7.0, p = 0.039), total creatine (Cr+PCr) (5.4 vs 5.8, p = 0.043), and inositol (4.5 vs 5.0, p = 0.014), were significantly lower in the peri-infarct region compared with the contralateral hemisphere. There was a significant correlation between baseline peri-infarct NAA and white matter volume change in the infarct hemisphere between 1 and 3 months, with lower NAA being associated with subsequent white matter atrophy (Spearman's rho = 0.66, p = 0.010). The baseline concentration of Cr+PCr was also significantly correlated with white matter atrophy in the infarct hemisphere (Spearman's rho = 0.59, p = 0.027). Both of these associations were significant after adjustment for the false discovery rate and were validated using the secondary volumetric method. MRS may be useful in the prediction of white matter atrophy post-stroke and in the testing of novel neurorestorative therapies. (orig.)

  7. The role of the right inferior frontal gyrus in the pathogenesis of post-stroke psychosis.

    Science.gov (United States)

    Devine, Michael J; Bentley, Paul; Jones, Brynmor; Hotton, Gary; Greenwood, Richard J; Jenkins, I Harri; Joyce, Eileen M; Malhotra, Paresh A

    2014-03-01

    Psychotic symptoms have previously been reported following right hemisphere brain injury. We sought to identify the specific neuroanatomical basis of delusions following stroke by studying a series of patients with post-stroke psychosis. Lesion overlap analysis was conducted on three individuals with delusions following right hemisphere stroke. These cases were compared with a control group of patients with similar anatomical damage. The main outcome measures were presence of delusions and presence of behavioural susceptibility. The right inferior frontal gyrus and underlying white matter, including the superior longitudinal fasciculus and anterior corona radiata, were involved in all three cases. All three had a preexisting untreated psychiatric disorder. In contrast, only one of nine control cases with equivalent lesions had evidence of previous psychiatric disorder (p = 0.0182, Fisher's exact test), and this was being treated at the time of stroke. We provide clinical evidence from patients with structural brain lesions implicating damage to the right inferior frontal lobe in the generation of persistent psychosis following stroke. We suggest that preexisting psychiatric disease provided a behavioural susceptibility to develop delusions in these individuals.

  8. Hemispheric processing of vocal emblem sounds.

    Science.gov (United States)

    Neumann-Werth, Yael; Levy, Erika S; Obler, Loraine K

    2013-01-01

    Vocal emblems, such as shh and brr, are speech sounds that have linguistic and nonlinguistic features; thus, it is unclear how they are processed in the brain. Five adult dextral individuals with left-brain damage and moderate-severe Wernicke's aphasia, five adult dextral individuals with right-brain damage, and five Controls participated in two tasks: (1) matching vocal emblems to photographs ('picture task') and (2) matching vocal emblems to verbal translations ('phrase task'). Cross-group statistical analyses on items on which the Controls performed at ceiling revealed lower accuracy by the group with left-brain damage (than by Controls) on both tasks, and lower accuracy by the group with right-brain damage (than by Controls) on the picture task. Additionally, the group with left-brain damage performed significantly less accurately than the group with right-brain damage on the phrase task only. Findings suggest that comprehension of vocal emblems recruits more left- than right-hemisphere processing.

  9. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.

    Science.gov (United States)

    Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef

    2013-08-01

    Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Hypothalamic digoxin, hemispheric dominance, and neurobiology of love and affection.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    The human hypothalamus produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neuronal transmission. The digoxin status and neurotransmitter patterns were studied in individuals with a predilection to fall in love. It was also studied in individuals with differing hemispheric dominance to find out the role of cerebral dominance in this respect. In individuals with a predilection to fall in love there was decreased digoxin synthesis, increased membrane Na+-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern correlated with that obtained in left hemispheric chemical dominance. Hemispheric dominance and hypothalamic digoxin could regulate the predisposition to fall in love.

  11. Face gender categorization and hemispheric asymmetries: Contrasting evidence from connected and disconnected brains.

    Science.gov (United States)

    Prete, Giulia; Fabri, Mara; Foschi, Nicoletta; Tommasi, Luca

    2016-12-17

    We investigated hemispheric asymmetries in categorization of face gender by means of a divided visual field paradigm, in which female and male faces were presented unilaterally for 150ms each. A group of 60 healthy participants (30 males) and a male split-brain patient (D.D.C.) were asked to categorize the gender of the stimuli. Healthy participants categorized male faces presented in the right visual field (RVF) better and faster than when presented in the left visual field (LVF), and female faces presented in the LVF than in the RVF, independently of the participants' sex. Surprisingly, the recognition rates of D.D.C. were at chance levels - and significantly lower than those of the healthy participants - for both female and male faces presented in the RVF, as well as for female faces presented in the LVF. His performance was higher than expected by chance - and did not differ from controls - only for male faces presented in the LVF. The residual right-hemispheric ability of the split-brain patient in categorizing male faces reveals an own-gender bias lateralized in the right hemisphere, in line with the rightward own-identity and own-age bias previously shown in split-brain patients. The gender-contingent hemispheric dominance found in healthy participants confirms the previously shown right-hemispheric superiority in recognizing female faces, and also reveals a left-hemispheric superiority in recognizing male faces, adding an important evidence of hemispheric imbalance in the field of face and gender perception. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Imaging‐based patient selection for intra‐arterial stroke therapy

    NARCIS (Netherlands)

    Yoo, A.J.

    2016-01-01

    Acute ischemic strokes arising from blockages of the major brain-supplying arteries put patients at risk for extensive brain injury. Left untreated, these major strokes produce significant disability and death. Fortunately, recent advances in stroke devices have improved clinical outcomes in such

  13. Effective Connectivity Reveals Right-Hemisphere Dominance in Audiospatial Perception: Implications for Models of Spatial Neglect

    Science.gov (United States)

    Friston, Karl J.; Mattingley, Jason B.; Roepstorff, Andreas; Garrido, Marta I.

    2014-01-01

    Detecting the location of salient sounds in the environment rests on the brain's ability to use differences in sounds arriving at both ears. Functional neuroimaging studies in humans indicate that the left and right auditory hemispaces are coded asymmetrically, with a rightward attentional bias that reflects spatial attention in vision. Neuropsychological observations in patients with spatial neglect have led to the formulation of two competing models: the orientation bias and right-hemisphere dominance models. The orientation bias model posits a symmetrical mapping between one side of the sensorium and the contralateral hemisphere, with mutual inhibition of the ipsilateral hemisphere. The right-hemisphere dominance model introduces a functional asymmetry in the brain's coding of space: the left hemisphere represents the right side, whereas the right hemisphere represents both sides of the sensorium. We used Dynamic Causal Modeling of effective connectivity and Bayesian model comparison to adjudicate between these alternative network architectures, based on human electroencephalographic data acquired during an auditory location oddball paradigm. Our results support a hemispheric asymmetry in a frontoparietal network that conforms to the right-hemisphere dominance model. We show that, within this frontoparietal network, forward connectivity increases selectively in the hemisphere contralateral to the side of sensory stimulation. We interpret this finding in light of hierarchical predictive coding as a selective increase in attentional gain, which is mediated by feedforward connections that carry precision-weighted prediction errors during perceptual inference. This finding supports the disconnection hypothesis of unilateral neglect and has implications for theories of its etiology. PMID:24695717

  14. Hemispheric Specialization and the Growth of Human Understanding.

    Science.gov (United States)

    Kinsbourne, Marcel

    1982-01-01

    Connectionistic notions of hemispheric specialization and use are incompatible with the network organization of the human brain. Although brain organization has correspondence with phenomena at more complex levels of analysis, the correspondence is not categorical in nature, as has been claimed by the left-brain/right-brain theorists. (Author/GC)

  15. Hemicraniectomy after middle cerebral artery infarction with life-threatening Edema trial (HAMLET). Protocol for a randomised controlled trial of decompressive surgery in space-occupying hemispheric infarction.

    Science.gov (United States)

    Hofmeijer, Jeannette; Amelink, G Johan; Algra, Ale; van Gijn, Jan; Macleod, Malcolm R; Kappelle, L Jaap; van der Worp, H Bart

    2006-09-11

    Patients with a hemispheric infarct and massive space-occupying brain oedema have a poor prognosis. Despite maximal conservative treatment, the case fatality rate may be as high as 80%, and most survivors are left severely disabled. Non-randomised studies suggest that decompressive surgery reduces mortality substantially and improves functional outcome of survivors. This study is designed to compare the efficacy of decompressive surgery to improve functional outcome with that of conservative treatment in patients with space-occupying supratentorial infarction The study design is that of a multi-centre, randomised clinical trial, which will include 112 patients aged between 18 and 60 years with a large hemispheric infarct with space-occupying oedema that leads to a decrease in consciousness. Patients will be randomised to receive either decompressive surgery in combination with medical treatment or best medical treatment alone. Randomisation will be stratified for the intended mode of conservative treatment (intensive care or stroke unit care). The primary outcome measure will be functional outcome, as determined by the score on the modified Rankin Scale, at one year.

  16. Continuous theta burst stimulation (cTBS on left cerebellar hemisphere affects mental rotation tasks during music listening.

    Directory of Open Access Journals (Sweden)

    Silvia Picazio

    Full Text Available Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR or abstract (AMR mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a "Mozart Effect". Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005 and less accurate (P = 0.005 in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations.

  17. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  18. Resting-state functional connectivity predicts the strength of hemispheric lateralization for language processing in temporal lobe epilepsy and normals.

    Science.gov (United States)

    Doucet, Gaëlle E; Pustina, Dorian; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael R; Tracy, Joseph I

    2015-01-01

    In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post-surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting-state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis, and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting-state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left-hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. © 2014 Wiley Periodicals, Inc.

  19. Development of stroke-induced quadriplegia after endovascular repair of blunt aortic injury pseudoaneurysm.

    Science.gov (United States)

    Amoudi, Abdullah S; Merdad, Anas A; Makhdoom, Ahmed Q; Jamjoom, Reda A

    2015-01-01

    Endovascular repair of blunt aortic injury is now a first-line approach in management. This can warrant coverage of the left subclavian artery (LSA), which could lead to posterior strokes. In this case report, we present a severe complication of endovascular repair of a traumatic aortic aneurysm. A 53-year-old man presented with blunt aortic injury, endovascular repair was carried out where the left subclavian artery was covered. The intervention had a 100% technical success. Twelve hours later, he was discovered to have quadriplegia, a CT scan showed a large left cerebellar infarction extending to the medulla oblongata and proximal spinal cord. Strokes complicate 3% of thoracic endovascular aortic repairs, 80% of those strokes occur in patients who had their LSA`s covered. Most patients however, tolerate the coverage. Although our patient had a dominant right vertebral artery, and lacked risks for these strokes, he developed an extensive stroke that left him quadriplegic.

  20. Stroke rehabilitation: recent advances and future therapies.

    LENUS (Irish Health Repository)

    Brewer, L

    2012-09-27

    Despite advances in the acute management of stroke, a large proportion of stroke patients are left with significant impairments. Over the coming decades the prevalence of stroke-related disability is expected to increase worldwide and this will impact greatly on families, healthcare systems and economies. Effective neuro-rehabilitation is a key factor in reducing disability after stroke. In this review, we discuss the effects of stroke, principles of stroke rehabilitative care and predictors of recovery. We also discuss novel therapies in stroke rehabilitation, including non-invasive brain stimulation, robotics and pharmacological augmentation. Many trials are currently underway, which, in time, may impact on future rehabilitative practice.

  1. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  2. Ambulatory blood pressure monitoring in essential hypertensive patients with acute ischaemic stroke

    Directory of Open Access Journals (Sweden)

    S. P. Zhemanyuk

    2016-12-01

    Full Text Available Blood pressure (BP has been identified as a risk factor for various health disorders, including stroke onsets. Hypertension is one of the crucial health problem among adult Ukrainian. Due to the importance of elevated BP in stroke causality, BP measurement remains critical. However, it is limited information about value in clinical practice of ambulatory blood pressure monitoring (ABPM data in hypertensive patients with inadequately controlled BP with acute stroke compared with those individuals who has no vascular onset. The aim of the study was to determine ABPM parameters in essential hypertensive patients with ischaemic hemisphere stroke. Materials and methods. A total of 114 study participants were analyzed (mean age 62 (56;72 years, 40 % women. We divided them into two groups according to the level of 24-h systolic BP (SBP and diastolic BP (DBP, and the results of clinical examination. The first group (n=83 were inadequately controlled essential hypertensive individuals with high systolic or/and diastolic BP level according to the ABMP results, and the second one (n=31 were EH patients with an acute hemispheric ischaemic stroke (IS. Diagnosis of stroke was confirmed with clinical examination and computed tomography scan or magnetic resonance imaging results, and ABPM was conducted in 4.2±2.3 days after the stroke onset. Results. We had statistician difference (p<0.001 between groups of such parameters, as average SBP (diurnal, daytime, nighttime; diurnal pulse BP; SBP load (p<0.05; the diurnal AASI (p<0.05; circadian rhythm of DBP (p<0.05. No differences were found between the groups in morning surge calculated as speed and amplitude of the BP climbed in morning hours both for SBP (P=0.422 and P=0.395, respectively and DBP (P=0.860 and P=0.337, respectively. Conclusion. In the present study, we evaluated the ABPM parameters in inadequately controlled essential hypertensive individuals with and without acute ischaemic hemispheric stroke

  3. Magnetic resonance imaging to visualize stroke and characterize stroke recovery: a review

    Directory of Open Access Journals (Sweden)

    Bradley J MacIntosh

    2013-05-01

    Full Text Available The global burden of stroke continues to grow. Although stroke prevention strategies (eg. medications, diet and exercise can contribute to risk reduction, options for acute interventions (eg. thrombolytic therapy for ischemic stroke are limited to the minority of patients. The remaining patients are often left with profound neurological disabilities that substantially impact quality of life, economic productivity, and increase caregiver burden. In the last decade, however, the future outlook for such patients has been tempered by movement away from the view that the brain is incapable of reorganizing after injury. Many now view brain recovery after stroke as an area of scientific research with large potential for therapeutic advances, far into the future [1]. As a probe of brain anatomy, function and physiology, magnetic resonance imaging is a noninvasive and highly versatile modality that promises to play a particularly important role in such research, towards improving stroke rehabilitation methods and stroke recovery.

  4. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke.

    Science.gov (United States)

    Särkämö, Teppo; Tervaniemi, Mari; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Mikkonen, Mikko; Autti, Taina; Silvennoinen, Heli M; Erkkilä, Jaakko; Laine, Matti; Peretz, Isabelle; Hietanen, Marja

    2008-03-01

    We know from animal studies that a stimulating and enriched environment can enhance recovery after stroke, but little is known about the effects of an enriched sound environment on recovery from neural damage in humans. In humans, music listening activates a wide-spread bilateral network of brain regions related to attention, semantic processing, memory, motor functions, and emotional processing. Music exposure also enhances emotional and cognitive functioning in healthy subjects and in various clinical patient groups. The potential role of music in neurological rehabilitation, however, has not been systematically investigated. This single-blind, randomized, and controlled trial was designed to determine whether everyday music listening can facilitate the recovery of cognitive functions and mood after stroke. In the acute recovery phase, 60 patients with a left or right hemisphere middle cerebral artery (MCA) stroke were randomly assigned to a music group, a language group, or a control group. During the following two months, the music and language groups listened daily to self-selected music or audio books, respectively, while the control group received no listening material. In addition, all patients received standard medical care and rehabilitation. All patients underwent an extensive neuropsychological assessment, which included a wide range of cognitive tests as well as mood and quality of life questionnaires, one week (baseline), 3 months, and 6 months after the stroke. Fifty-four patients completed the study. Results showed that recovery in the domains of verbal memory and focused attention improved significantly more in the music group than in the language and control groups. The music group also experienced less depressed and confused mood than the control group. These findings demonstrate for the first time that music listening during the early post-stroke stage can enhance cognitive recovery and prevent negative mood. The neural mechanisms potentially

  5. Hemispheric asymmetry of liking for representational and abstract paintings.

    Science.gov (United States)

    Nadal, Marcos; Schiavi, Susanna; Cattaneo, Zaira

    2017-10-13

    Although the neural correlates of the appreciation of aesthetic qualities have been the target of much research in the past decade, few experiments have explored the hemispheric asymmetries in underlying processes. In this study, we used a divided visual field paradigm to test for hemispheric asymmetries in men and women's preference for abstract and representational artworks. Both male and female participants liked representational paintings more when presented in the right visual field, whereas preference for abstract paintings was unaffected by presentation hemifield. We hypothesize that this result reflects a facilitation of the sort of visual processes relevant to laypeople's liking for art-specifically, local processing of highly informative object features-when artworks are presented in the right visual field, given the left hemisphere's advantage in processing such features.

  6. Studying hemispheric lateralization during a Stroop task through near-infrared spectroscopy-based connectivity

    Science.gov (United States)

    Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui

    2014-05-01

    Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.

  7. Right Hemispheric Dominance in Processing of Unconscious Negative Emotion

    Science.gov (United States)

    Sato, Wataru; Aoki, Satoshi

    2006-01-01

    Right hemispheric dominance in unconscious emotional processing has been suggested, but remains controversial. This issue was investigated using the subliminal affective priming paradigm combined with unilateral visual presentation in 40 normal subjects. In either left or right visual fields, angry facial expressions, happy facial expressions, or…

  8. 99mTc-HMPAO perfusion indices and brain-mapping in stroke patients

    International Nuclear Information System (INIS)

    Minchev, D.; Klisarova, A.

    1997-01-01

    It is the purpose of the study to establish correlations between 99mTc-HMPAO (hexamethylpropylenaminoxym) perfusion indices and changes in brain-mapping among patients with acute stroke. Forty-six patients with definitely proved stroke syndrome are investigated in the first 72 hours and 15 days after the onset of cerebrovascular accident using clinical, neuro-physiological and 99mTc-HMPAO SPECT methods. Regional and hemispheric perfusion asymmetry correlate with the brain-mapping cerebral disturbance (p < 0.001). In patients presenting focal hypoperfusion there is a significant correlation between perfusion indices and local EEG disturbance (r = 0.87). The dynamic study demonstrates a significant correlation between perfusion indices and electrical cerebral disturbance in the first 72 hours after the onset of the cerebrovascular accident. Fifteen days later no such correlation is documented. The obtained results demonstrate the essential practical bearing of 99mTc-HMPAO SPECT indices on the objective assessment of perfusion hemispheric and regional asymmetry in stroke patients, and the possibility of being used for indirect estimation of the regional cerebral blood flow in acute stroke patients against the background of visual and quantitative EEG changes (author)

  9. Emotional reactions in patients after frontal lobe stroke

    Directory of Open Access Journals (Sweden)

    Stojanović Zlatan

    2015-01-01

    Full Text Available Background/Aim. Emotional reactions have been documented after tumor lesions and the other damages of the brain. The aim of this paper was to examine the correlation between frontal lobe lesions and emotional reactions in patients with stroke. Methods. The research included 118 patients after stroke. Lesion localization was defined on computed axial tomography records, whereas the area and perimeter of lesion were measured by AutoCAD 2004 software. Examinations by means of the Hamilton Rating Scale for Anxiety and Depression (HRSA and HRSD were carried out 11-40 days after stroke. Statistic data were processed by simple linear/nonlinear regression, Cox's and the generalized linear model. Results. A higher frequency of emotional reactions, i.e. anxiety, was determined in women after stroke (p = 0.024. A negative correlation between the lesion size and the intensity of anxiety manifestations was determined (Spearman’s r = -0.297; p = 0.001. Anxiety was more frequent in patients with frontal lobe lesions in the dominant hemisphere (interaction: frontal lesion * hand dominant hemisphere, p = 0.017. Also, HRSD score values showed the tendency for lesser decline in case of greater frontal lobe lesions in relation to lesions of other regions of prosencephalon (interaction: frontal lesion * lesion area, p = 0.001. Conclusion. The results of this study indicate the correlation between evolutionary younger structures of the central nervous system and emotional reactions of man. Therefore, it is necessary to undertake proper early psychopharmacotherapy in the vulnerable group of patients.

  10. Emotional reactions in patients after frontal lobe stroke.

    Science.gov (United States)

    Stojanović, Zlatan; Stojanović, Sanja Vukadinović

    2015-09-01

    Emotional reactions have been documented after tumor lesions and the other damages of the brain. The aim of this paper was to examine the correlation between frontal lobe lesions and emotional reactions in patients with stroke. The research included 118 patients after stroke. Lesion localization was defined on computed axial tomography records, whereas the area and perimeter of lesion were measured by AutoCAD 2004 software. Examinations by means of the Hamilton Rating Scale for Anxiety and Depression (HRSA and HRSD) were carried out 11-40 days after stroke. Statistic data were processed by simple linear/nonlinear regression, Cox's and the generalized linear model. A higher frequency of emotional reactions, i.e. anxiety, was determined in women after stroke (p = 0.024). A negative correlation between the lesion size and the intensity of anxiety manifestations was determined (Spearman's r = -0.297; p = 0.001). Anxiety was more frequent in patients with frontal lobe lesions in the dominant hemisphere (interaction: frontal lesion * hand dominant hemisphere, p = 0.017). Also, HRSD score values showed the tendency for lesser decline in case of greater frontal lobe lesions in relation to lesions of other regions of prosencephalon (interaction: frontal lesion * lesion area, p = 0.001). The results of this study indicate the correlation between evolutionary younger structures of the central nervous system and emotional reactions of man. Therefore, it is necessary to undertake proper early psychopharmacotherapy in the vulnerable group of patients.

  11. MEG-based detection and localization of perilesional dysfunction in chronic stroke

    Directory of Open Access Journals (Sweden)

    Ron K.O. Chu

    2015-01-01

    Full Text Available Post-stroke impairment is associated not only with structural lesions, but also with dysfunction in surviving perilesional tissue. Previous studies using equivalent current dipole source localization of MEG/EEG signals have demonstrated a preponderance of slow-wave activity localized to perilesional areas. Recent studies have also demonstrated the utility of nonlinear analyses such as multiscale entropy (MSE for quantifying neuronal dysfunction in a wide range of pathologies. The current study utilized beamformer-based reconstruction of signals in source space to compare spectral and nonlinear measures of electrical activity in perilesional and healthy cortices. Data were collected from chronic stroke patients and healthy controls, both young and elderly. We assessed relative power in the delta (1–4 Hz, theta (4–7 Hz, alpha (8–12 Hz and beta (15–30 Hz frequency bands, and also measured the nonlinear complexity of electrical activity using MSE. Perilesional tissue exhibited a general slowing of the power spectrum (increased delta/theta, decreased beta as well as a reduction in MSE. All measures tested were similarly sensitive to changes in the posterior perilesional regions, but anterior perilesional dysfunction was detected better by MSE and beta power. The findings also suggest that MSE is specifically sensitive to electrophysiological dysfunction in perilesional tissue, while spectral measures were additionally affected by an increase in rolandic beta power with advanced age. Furthermore, perilesional electrophysiological abnormalities in the left hemisphere were correlated with the degree of language task-induced activation in the right hemisphere. Finally, we demonstrate that single subject spectral and nonlinear analyses can identify dysfunctional perilesional regions within individual patients that may be ideal targets for interventions with noninvasive brain stimulation.

  12. Callosal tracts and patterns of hemispheric dominance: a combined fMRI and DTI study.

    Science.gov (United States)

    Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Corballis, Michael C

    2011-01-15

    Left-hemispheric dominance for language and right-hemispheric dominance for spatial processing are distinctive characteristics of the human brain. However, variations of these hemispheric asymmetries have been observed, with a minority showing crowding of both functions to the same hemisphere or even a mirror reversal of the typical lateralization pattern. Here, we used diffusion tensor imaging and functional magnetic imaging to investigate the role of the corpus callosum in participants with atypical hemispheric dominance. The corpus callosum was segmented according to the projection site of the underlying fibre tracts. Analyses of the microstructure of the identified callosal segments revealed that atypical hemispheric dominance for language was associated with high anisotropic diffusion through the corpus callosum as a whole. This effect was most evident in participants with crowding of both functions to the right. The enhanced anisotropic diffusion in atypical hemispheric dominance implies that in these individuals the two hemispheres are more heavily interconnected. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Dual origin of the left vertebral artery: extracranial MRA and CTA findings.

    LENUS (Irish Health Repository)

    Tobin, W Oliver

    2012-02-01

    A 48-year-old man presented with a posterior circulation stroke secondary to left lateral medullary infarction. Contrast-enhanced magnetic resonance angiography (CEMRA) revealed 40-45% intracranial left vertebral artery stenosis, likely atherosclerotic in nature. CEMRA and subsequent computed tomography angiography also identified a duplicate origin of the left vertebral artery. The importance of recognition of this rare anatomical variant, its potential contribution to stroke aetiology, and the advantage of non-invasive vascular imaging prior to catheter angiography is emphasised.

  14. Auditory extinction and dichotic listening cv task in cerebral infarction preliminary report

    Directory of Open Access Journals (Sweden)

    Mauro Muszkat

    1990-06-01

    Full Text Available Six stroke patients were studied using a dichotic listening¹ CV task, 4 with left hemisphere infarction, 2 with right hemisphere infarction. It was observed a «lesion--effect», a shift of hemisphere prevalence to the side opposite a brain lesion. The authors suggest that the lesion-effect can be explained by the auditory extinction phenomenon at the linguistic level.

  15. Khat and stroke

    Directory of Open Access Journals (Sweden)

    Sanjay V Kulkarni

    2012-01-01

    Full Text Available Khat chewing, though a tradition followed majorly in African countries, has of late spread widely across the globe due to faster transport systems and advanced preservation techniques. Many complications such as psychosis, arterial hypertension, angina pectoris, and myocardial infarction have been reported in connection to khat abuse. We present a case of a young man who presented with acute onset left-sided weakness. He was a known khat addict for over three decades. A diagnosis of left hemiplegia due to right middle cerebral artery infarction was established. Detailed evaluation revealed no significant underlying cause for stroke. Since the main central nervous system effects of khat are comparable with those of amphetamines and there are established reports of stroke in amphetamine abuse, the former was assumed to be the etiological factor. The patient was discontinued from taking khat and was managed conservatively. The subject showed significant recovery with no further complications or similar episodes during follow-up. To the best of our knowledge, this is the second case of stroke associated with khat. Since the management is essentially conservative, a vigilant history eliciting of khat abuse in prevalent countries would cut down unnecessary healthcare costs.

  16. A new method for selectively enhancing hemisphere processing: voice frequency amplification influences the strength of attribute framing.

    Science.gov (United States)

    McCormick, Michael; Seta, John J

    2012-01-01

    An attribute framing effect occurs when positive or negative associations produced by positive or negative frames are mapped onto evaluations resulting in a more favourable evaluation for the positively framed attribute. We used a new voice frequency manipulation to differentially enhance right versus left hemisphere processing. In doing so we found a strong attribute framing effect when a speaker with a low-frequency voice enhanced the contextual processing style of the right hemisphere. However, a framing effect was not obtained when a speaker with a high-frequency voice enhanced the inferential/analytical processing style of the left hemisphere. At the theoretical level our results provide evidence that the contextual processing style of the right hemisphere is especially susceptible to associative implications, such as those found in attribute framing manipulations. At the applied level we provide a simple method for altering the effectiveness of persuasion messages.

  17. Novel Methods to Study Aphasia Recovery after Stroke

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Siebner, Hartwig R

    2013-01-01

    summarize how noninvasive brain stimulation can be used to elucidate mechanisms of plasticity in language networks and enhance language recovery after stroke. We first outline some basic principles of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). We then present...... evidence from studies in healthy volunteers for a causal role of the right hemisphere in different language functions. Finally, we review recent studies that used TMS or tDCS to promote language recovery after stroke. Most of these studies applied noninvasive brain stimulation over contralateral right...

  18. Hypothalamic digoxin, hemispheric chemical dominance, and oncogenesis: evidence from multiple myeloma.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Paramesware Achutha

    2003-12-01

    This study assessed the changes in the isoprenoid pathway and its metabolites digoxin, dolichol, and ubiquinone in multiple myeloma. The isoprenoid pathway and digoxin status were also studied for comparison in individuals of differing hemispheric dominance to find out the rote of cerebral dominance in the genesis of multiple myeloma and neoplasms. The following parameters were assessed: isoprenoid pathway metabolites, tyrosine and tryptophan catabolites, glycoconjugate metabolism, RBC membrane composition, and free radical metabolism--in multiple myeloma, as well as in individuals of differing hemispheric dominance. There was elevation in plasma HMG CoA reductase activity, serum digoxin, and dolichol, and a reduction in RBC membrane Na(+)-K+ ATPase activity, serum ubiquinone, and magnesium levels. Serum tryptophan, serotonin, nicotine, strychnine, and quinolinic acid were elevated, while tyrosine, dopamine, noradrenaline, and morphine were decreased. The total serum glycosaminoglycans and glycosaminoglycan fractions, the activity of GAG degrading enzymes and glycohydrolases, carbohydrate residues of glycoproteins, and serum glycolipids were elevated. The RBC membrane glycosaminoglycans, hexose, and fucose residues of glycoproteins, cholesterol, and phospholipids were reduced. The activity of all free-radical scavenging enzymes, concentration of glutathione, iron binding capacity, and ceruloplasmin decreased significantly, while the concentration of lipid peroxidation products and nitric oxide increased. Hyperdigoxinemia-related altered intracellular Ca++/Mg++ ratios mediated oncogene activation, dolichol-induced altered glycoconjugate metabolism, and ubiquinone deficiency-related mitochondrial dysfunction can contribute to the pathogenesis of multiple myeloma. The biochemical patterns obtained in multiple myeloma are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. But all the patients with

  19. Task demands modulate decision and eye movement responses in the chimeric face test: examining the right hemisphere processing account

    Directory of Open Access Journals (Sweden)

    Jason eCoronel

    2014-03-01

    Full Text Available A large and growing body of work, conducted in both brain-intact and brain-damaged populations, has used the free viewing chimeric face test as a measure of hemispheric dominance for the extraction of emotional information from faces. These studies generally show that normal right-handed individuals tend to perceive chimeric faces as more emotional if the emotional expression is presented on the half of the face to the viewer’s left (left hemiface. However, the mechanisms underlying this lateralized bias remain unclear. Here, we examine the extent to which this bias is driven by right hemisphere processing advantages versus default scanning biases in a unique way -- by changing task demands. In particular, we compare the original task with one in which right-hemisphere-biased processing cannot provide a decision advantage. Our behavioral and eye-movement data are inconsistent with the predictions of a default scanning bias account and support the idea that the left hemiface bias found in the chimeric face test is largely due to strategic use of right hemisphere processing mechanisms.

  20. Hemispheric asymmetry in the processing of negative and positive words: a divided field study.

    Science.gov (United States)

    Holtgraves, Thomas; Felton, Adam

    2011-06-01

    Research on the lateralisation of brain functions for emotion has yielded different results as a function of whether it is the experience, expression, or perceptual processing of emotion that is examined. Further, for the perception of emotion there appear to be differences between the processing of verbal and nonverbal stimuli. The present research examined the hemispheric asymmetry in the processing of verbal stimuli varying in emotional valence. Participants performed a lexical decision task for words varying in affective valence (but equated in terms of arousal) that were presented briefly to the right or left visual field. Participants were significantly faster at recognising positive words presented to the right visual field/left hemisphere. This pattern did not occur for negative words (and was reversed for high arousal negative words). These results suggest that the processing of verbal stimuli varying in emotional valence tends to parallel hemispheric asymmetry in the experience of emotion.

  1. Transcranial Direct Current Stimulation for Treating Depression in a Patient With Right Hemispheric Dominance: A Case Study.

    Science.gov (United States)

    Shiozawa, Pedro; da Silva, Mailu Enokibara; Cordeiro, Quirino

    2015-09-01

    We report the case of a 66-year-old male patient with major depressive disorder for the last 6 months. The patient had been diagnosed with dyslexia during childhood and was left-handed. The intervention protocol consisted in 10 consecutive daily transcranial direct current stimulation sessions. However, after 5 days of stimulation, the patient presented with intensification of depressive symptoms and panic attacks. It was hypothetized that the intensification of symptoms may have been due to stimulation protocol itself. Considering the patient was left-handed and presented comorbidity with dyslexia, there was a plausible hypothesis of right hemispheric dominance. This was corroborated by the Edinburgh Handedness Scale. In fact, dyslexic patients present right hemisphere dominance more frequently. The patient also presented a single photon emission computed tomography with a hypoperfusion area over the left posterior parietal lobe. After the patients agreement, a 10-day experimental repetitive transcranial magnetic stimulation low-frequency protocol over the left dorsolateral prefrontal cortex was started to inhibit the area, which was hypothetically hyperactivated following the rationale of right dominance. The patient presented amelioration of depressive and anxious symptoms. Given the hemispheric reversal we show in the present case study, however, it seems that therapies that are beneficial to right-handers could be detrimental to left-handers.

  2. Hemispheric asymmetry of the brain as a psycho-physiological basis of individual and typological features of the formation of a sense of humour

    Directory of Open Access Journals (Sweden)

    Shportun O.N.

    2016-05-01

    Full Text Available The article describes the psycho-physiological peculiarities of hemispheric asymmetry of the brain as the basis of individual and typological features of the formation of a sense of humour. The analysis of the impact of the functional brain hemispheric asymmetry on emotional, intellectual and physiological features of development of sense of humour in ontogeny is conducted. Analysis of studies of inter-hemispheric asymmetry of the brain makes it possible to ascertain the impact of the functioning of each hemisphere on the formation of the perception of humour. Studies show that in the process of developing of sense of humour, two functional hemispheres of the brain are involved. As the emotion of humour – is an intellectual emotion, and in the development of intelligence a lot of mental processes are involved, in the formation of humour two hemispheres of the brain are functioned. The right hemisphere is responsible for the emotional nature of humour (intonation, sound level of language, speed of response to a joke ..., the left hemisphere – for processing verbal information (content of the joke, category, purpose, content analysis .... After analysing the research of hemispheric functional asymmetry of the human brain, its psycho-physiological and neurochemical characteristics, it can be assumed that people with more developed left hemisphere in perceiving humour are more prone to displays of gelotophilia and “right hemisphere” people – show signs of gelotophobia and katagelasticism. Examining gender differences of hemisphere asymmetry of the brain, it can be argued that diagnosing sense of humour is important to take into account gender-specific functioning of hemispheres, because men have more clearly functioning the left hemisphere, and women – the right one. This fact of sexual peculiarities of functioning of inter-hemispheric asymmetry of the brain allows diagnosing objectively sense of humour, as well as different variations

  3. Cortical activity in the left and right hemispheres during language-related brain functions

    DEFF Research Database (Denmark)

    Lassen, N A; Larsen, B

    1980-01-01

    of cortical activity seen during various language functions, emphasizing the practically symmetrical involvement in both hemispheres. A case of auditive agnosia (with complete cortical word deafness but preserved pure tone thresholds) is presented. The patient's normal speech constitutes evidence...

  4. What Does the Right Hemisphere Know about Phoneme Categories?

    Science.gov (United States)

    Wolmetz, Michael; Poeppel, David; Rapp, Brenda

    2011-01-01

    Innate auditory sensitivities and familiarity with the sounds of language give rise to clear influences of phonemic categories on adult perception of speech. With few exceptions, current models endorse highly left-hemisphere-lateralized mechanisms responsible for the influence of phonemic category on speech perception, based primarily on results…

  5. The effects of citicoline on acute ischemic stroke

    DEFF Research Database (Denmark)

    Overgaard, Karsten

    2014-01-01

    Early reopening of the occluded artery is, thus, important in ischemic stroke, and it has been calculated that 2 million neurons die every minute in an ischemic stroke if no effective therapy is given; therefore, "Time is Brain." In massive hemispheric infarction and edema, surgical decompression...... lowers the risk of death or severe disability defined as a modified Rankin Scale score greater than 4 in selected patients. The majority, around 80%-85% of all ischemic stroke victims, does not fulfill the criteria for revascularization therapy, and also for these patients, there is no effective acute...... therapy. Also there is no established effective acute treatment of spontaneous intracerebral bleeding. Therefore, an effective therapy applicable to all stroke victims is needed. The neuroprotective drug citicoline has been extensively studied in clinical trials with volunteers and more than 11...

  6. Noninvasive evaluation of ischemic stroke with SPECT

    International Nuclear Information System (INIS)

    Gomez, C.R.; Malik, M.M.; Gomez, S.M.; Wingkun, E.C.

    1988-01-01

    Technetium Tc 99m DTPA single photon emission computerized tomography (SPECT) brain scans of 20 patients with acute ischemic stroke were reviewed retrospectively and compared with clinical and radiologic (CT) data. Fourteen of the patients had abnormal SPECT studies. The abnormal findings were demonstrated by static views in eight patients, by the flow study in one patient, and by both sets of images in the other five patients. All abnormalities correlated with the clinical syndrome of presentation, and only two of the patients had no corresponding lesions on CT. Of the six patients with normal SPECT scans, two had abnormal CT studies, and in the other four, no lesions were shown at all. The ability of /sup 99m/Tc DTPA SPECT to display cerebral infarctions appears to be, at best, comparable to that of CT. SPECT also provides qualitative information regarding flow dynamics in the affected hemisphere of some patients (6/20 in our review). This, we believe, represents the objective demonstration of the preexisting insufficient collateral flow in the hemisphere at risk for ischemic stroke

  7. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.

    Science.gov (United States)

    Duecker, Felix; Formisano, Elia; Sack, Alexander T

    2013-08-01

    Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.

  8. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.

    Science.gov (United States)

    Hertrich, Ingo; Mathiak, Klaus; Lutzenberger, Werner; Ackermann, Hermann

    2004-01-01

    To delineate the time course and processing stages of pitch encoding at the level of the supratemporal plane, the present study recorded evoked magnetic fields in response to rippled noise (RN) stimuli. RN largely masks simple tonotopic representations and addresses pitch processing within the temporal domain (periodicity encoding). Four dichotic stimulus types (111 or 133 Hz RN at one ear, white noise to the other one) were applied in randomized order during either visual distraction or selective auditory attention. Strictly periodic signals, noise-like events, and mixtures of both signals served as control conditions. (1) Attention-dependent ear x hemisphere interactions were observed within the time domain of the M50 field, indicating early streaming of auditory information. (2) M100 responses to strictly periodic stimuli were found lateralized to the right hemisphere. Furthermore, the higher-pitched stimuli yielded enhanced activation as compared to the lower-pitch signals (pitch scaling), conceivably reflecting sensory memory operations. (3) Besides right-hemisphere pitch scaling, the relatively late M100 component in association with the RN condition (latency = 136 ms) showed significantly stronger field strengths over the left hemisphere. Control experiments revealed this lateralization effect to be related to noise rather than pitch processing. Furthermore, subtle noise variations interacted with signal periodicity. Obviously, thus, complex task demands such as RN encoding give rise to functional segregation of auditory processing across the two hemispheres (left hemisphere: noise, right hemisphere: periodicity representation). The observed noise/periodicity interactions, furthermore, might reflect pitch-synchronous spectral evaluation at the level of the left supratemporal plane, triggered by right-hemisphere representation of signal periodicity. Copyright 2004 Elsevier Ltd.

  9. Reading laterally: the cerebral hemispheric use of spatial frequencies in visual word recognition.

    Science.gov (United States)

    Tadros, Karine; Dupuis-Roy, Nicolas; Fiset, Daniel; Arguin, Martin; Gosselin, Frédéric

    2013-01-04

    It is generally accepted that the left hemisphere (LH) is more capable for reading than the right hemisphere (RH). Left hemifield presentations (initially processed by the RH) lead to a globally higher error rate, slower word identification, and a significantly stronger word length effect (i.e., slower reaction times for longer words). Because the visuo-perceptual mechanisms of the brain for word recognition are primarily localized in the LH (Cohen et al., 2003), it is possible that this part of the brain possesses better spatial frequency (SF) tuning for processing the visual properties of words than the RH. The main objective of this study is to determine the SF tuning functions of the LH and RH for word recognition. Each word image was randomly sampled in the SF domain using the SF bubbles method (Willenbockel et al., 2010) and was presented laterally to the left or right visual hemifield. As expected, the LH requires less visual information than the RH to reach the same level of performance, illustrating the well-known LH advantage for word recognition. Globally, the SF tuning of both hemispheres is similar. However, these seemingly identical tuning functions hide important differences. Most importantly, we argue that the RH requires higher SFs to identify longer words because of crowding.

  10. An ERP assessment of hemispheric projections in foveal and extrafoveal word recognition.

    Directory of Open Access Journals (Sweden)

    Timothy R Jordan

    Full Text Available BACKGROUND: The existence and function of unilateral hemispheric projections within foveal vision may substantially affect foveal word recognition. The purpose of this research was to reveal these projections and determine their functionality. METHODOLOGY: Single words (and pseudowords were presented to the left or right of fixation, entirely within either foveal or extrafoveal vision. To maximize the likelihood of unilateral projections for foveal displays, stimuli in foveal vision were presented away from the midline. The processing of stimuli in each location was assessed by combining behavioural measures (reaction times, accuracy with on-line monitoring of hemispheric activity using event-related potentials recorded over each hemisphere, and carefully-controlled presentation procedures using an eye-tracker linked to a fixation-contingent display. PRINCIPAL FINDINGS: Event-related potentials 100-150 ms and 150-200 ms after stimulus onset indicated that stimuli in extrafoveal and foveal locations were projected unilaterally to the hemisphere contralateral to the presentation hemifield with no concurrent projection to the ipsilateral hemisphere. These effects were similar for words and pseudowords, suggesting this early division occurred before word recognition. Indeed, event-related potentials revealed differences between words and pseudowords 300-350 ms after stimulus onset, for foveal and extrafoveal locations, indicating that word recognition had now occurred. However, these later event-related potentials also revealed that the hemispheric division observed previously was no longer present for foveal locations but remained for extrafoveal locations. These findings closely matched the behavioural finding that foveal locations produced similar performance each side of fixation but extrafoveal locations produced left-right asymmetries. CONCLUSIONS: These findings indicate that an initial division in unilateral hemispheric projections occurs in

  11. An ERP Assessment of Hemispheric Projections in Foveal and Extrafoveal Word Recognition

    Science.gov (United States)

    Jordan, Timothy R.; Fuggetta, Giorgio; Paterson, Kevin B.; Kurtev, Stoyan; Xu, Mengyun

    2011-01-01

    Background The existence and function of unilateral hemispheric projections within foveal vision may substantially affect foveal word recognition. The purpose of this research was to reveal these projections and determine their functionality. Methodology Single words (and pseudowords) were presented to the left or right of fixation, entirely within either foveal or extrafoveal vision. To maximize the likelihood of unilateral projections for foveal displays, stimuli in foveal vision were presented away from the midline. The processing of stimuli in each location was assessed by combining behavioural measures (reaction times, accuracy) with on-line monitoring of hemispheric activity using event-related potentials recorded over each hemisphere, and carefully-controlled presentation procedures using an eye-tracker linked to a fixation-contingent display. Principal Findings Event-related potentials 100–150 ms and 150–200 ms after stimulus onset indicated that stimuli in extrafoveal and foveal locations were projected unilaterally to the hemisphere contralateral to the presentation hemifield with no concurrent projection to the ipsilateral hemisphere. These effects were similar for words and pseudowords, suggesting this early division occurred before word recognition. Indeed, event-related potentials revealed differences between words and pseudowords 300–350 ms after stimulus onset, for foveal and extrafoveal locations, indicating that word recognition had now occurred. However, these later event-related potentials also revealed that the hemispheric division observed previously was no longer present for foveal locations but remained for extrafoveal locations. These findings closely matched the behavioural finding that foveal locations produced similar performance each side of fixation but extrafoveal locations produced left-right asymmetries. Conclusions These findings indicate that an initial division in unilateral hemispheric projections occurs in foveal vision

  12. A semi-Markov model for stroke with piecewise-constant hazards in the presence of left, right and interval censoring.

    Science.gov (United States)

    Kapetanakis, Venediktos; Matthews, Fiona E; van den Hout, Ardo

    2013-02-20

    This paper presents a parametric method of fitting semi-Markov models with piecewise-constant hazards in the presence of left, right and interval censoring. We investigate transition intensities in a three-state illness-death model with no recovery. We relax the Markov assumption by adjusting the intensity for the transition from state 2 (illness) to state 3 (death) for the time spent in state 2 through a time-varying covariate. This involves the exact time of the transition from state 1 (healthy) to state 2. When the data are subject to left or interval censoring, this time is unknown. In the estimation of the likelihood, we take into account interval censoring by integrating out all possible times for the transition from state 1 to state 2. For left censoring, we use an Expectation-Maximisation inspired algorithm. A simulation study reflects the performance of the method. The proposed combination of statistical procedures provides great flexibility. We illustrate the method in an application by using data on stroke onset for the older population from the UK Medical Research Council Cognitive Function and Ageing Study. Copyright © 2012 John Wiley & Sons, Ltd.

  13. The neuroanatomy of pure apraxia of speech in stroke.

    Science.gov (United States)

    Graff-Radford, Jonathan; Jones, David T; Strand, Edythe A; Rabinstein, Alejandro A; Duffy, Joseph R; Josephs, Keith A

    2014-02-01

    The left insula or Broca's area have been proposed as the neuroanatomical correlate for apraxia of speech (AOS) based on studies of patients with both AOS and aphasia due to stroke. Studies of neurodegenerative AOS suggest the premotor area and the supplementary motor areas as the anatomical correlates. The study objective was to determine the common infarction area in patients with pure AOS due to stroke. Patients with AOS and no or equivocal aphasia due to ischemic stroke were identified through a pre-existing database. Seven subjects were identified. Five had pure AOS, and two had equivocal aphasia. MRI lesion analysis revealed maximal overlap spanning the left premotor and motor cortices. While both neurodegenerative AOS and stroke induced pure AOS involve the premotor cortex, further studies are needed to establish whether stroke-induced AOS and neurodegenerative AOS share a common anatomic substrate. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Lara McManus

    2017-11-01

    Full Text Available Enhanced muscle weakness is commonly experienced following stroke and may be accompanied by increased susceptibility to fatigue. To examine the contributions of central and peripheral factors to isometric muscle fatigue in stroke survivors, this study investigates changes in motor unit (MU mean firing rate, and action potential duration during, and directly following, a sustained submaximal fatiguing contraction at 30% maximum voluntary contraction (MVC. A series of short contractions of the first dorsal interosseous muscle were performed pre- and post-fatigue at 20% MVC, and again following a 10-min recovery period, by 12 chronic stroke survivors. Individual MU firing times were extracted using surface EMG decomposition and used to obtain the spike-triggered average MU action potential waveforms. During the sustained fatiguing contraction, the mean rate of change in firing rate across all detected MUs was greater on the affected side (-0.02 ± 0.03 Hz/s than on the less-affected side (-0.004 ± 0.003 Hz/s, p = 0.045. The change in firing rate immediately post-fatigue was also greater on the affected side than less-affected side (-13.5 ± 20 and 0.1 ± 19%, p = 0.04. Mean MU firing rates increased following the recovery period on the less-affected side when compared to the affected side (19.3 ± 17 and 0.5 ± 20%, respectively, p = 0.03. MU action potential duration increased post-fatigue on both sides (10.3 ± 1.2 to 11.2 ± 1.3 ms on the affected side and 9.9 ± 1.7 to 11.2 ± 1.9 ms on the less-affected side, p = 0.001 and p = 0.02, respectively, and changes in action potential duration tended to be smaller in subjects with greater impairment (p = 0.04. This study presents evidence of both central and peripheral fatigue at the MU level during isometric fatiguing contraction for the first time in stroke survivors. Together, these preliminary observations indicate that the response to an isometric fatiguing contraction differs between the

  15. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study.

    Science.gov (United States)

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

  16. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Teppo eSärkämö

    2014-04-01

    Full Text Available Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery (MCA stroke. Extending this study, a voxel-based morphometry (VBM analysis utilizing cost-function masking was performed on the acute and 6-month post-stroke stage structural MRI data of the patients (n = 49 who either listened to their favourite music (music group, n = 16 or verbal material (audio book group, n = 18 or did not receive any listening material (control group, n = 15 during the 6-month recovery period. Although all groups showed significant grey matter volume (GMV increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG, right medial SFG] and limbic areas [left ventral / subgenual anterior cingulate cortex (SACC and right ventral striatum (VS] in patients with left hemisphere damage in which the GMV increases were larger in the music group than in the audio book and control groups. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioural recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

  17. Structural Changes Induced by Daily Music Listening in the Recovering Brain after Middle Cerebral Artery Stroke: A Voxel-Based Morphometry Study

    Science.gov (United States)

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M.; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain. PMID:24860466

  18. Ability to solve riddles in patients with speech and language impairments after stroke.

    Science.gov (United States)

    Savić, Goran

    2016-01-01

    Successful riddle solving requires recognition of the meaning of words, attention, concentration, memory, connectivity and analysis of riddle content, and sufficiently developed associative thinking. The aim of the study was to determine the ability to solve riddles in stroke patients who do or do not have speech and language disorders (SLDs), to determine the presence of SLDs in relation to the lesion localization, as well as to define the relationship between riddle-solving and functional impairment of a body side. The sample consisted of 88 patients. The data used included age, sex, educational level, time of stroke onset, presence of an SLD, lesion localization, and functional damage of the body side. The patients were presented with a task of solving 10 riddles. A significant SLD was present in 38.60% of the patients. Brain lesions were found distributed at 46 different brain sites. Patients with different lesion localization had different success in solving riddles. Patients with perisylvian cortex brain lesions, or patients with Wernicke and global aphasia, had the poorest results. The group with SLDs had an average success of solved riddles of 26.76% (p = 0.000). The group with right-sided functional impairments had average success of 37.14%, and the group with functional impairments of the left side of the body 56.88% (p = 0.002). Most patients with SLDs had a low ability of solving riddles. Most of the patients with left brain lesions and perisylvian cortex damage demonstrated lower ability in solving riddles in relation to patients with right hemisphere lesions.

  19. Perinatal stroke in Saudi children: clinical features and risk factors

    International Nuclear Information System (INIS)

    Salih, Mustafa A.; Al-Jarallah, Ahmed A.; Kentab, Anal Y.; Al-Nasser, Mohammad N.; Abdel-Gader, Abdel-Galil M.; Alorainy, Ibrahim A.; Hassan, Hamdy H.

    2006-01-01

    To describe the clinical features and presentations of perinatal stroke in a prospective and retrospective cohort of Saudi children and ascertain the risk factors. Patients with perinatal stroke were identified from within a cohort of 104 Saudi children who were evaluated at the Division of Pediatric Neurology at King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia from July 1992 to February 2001 (retrospective study) and February 2001 to March 2003 (prospective study). Neuroimaging for suspected cases of stroke consisted of cranial CT, MRI, or both. During the study period, 23 (22%) of 104 children (aged one months to 12 years) were diagnosed to have had perinatal stroke. The male: female ratio was 1.6:1. Ten (67%) of the 15 children who had unilateral ischemic involvement had their lesion in the left hemisphere. The presentation of the ischemic result was within 24-72 hours of life in 13 (57%) patients, and in 6 children (26%), motor impairment was recognized at or after the age of 4 months. Nine children (39%) had seizures at presentation. Pregnancy, labor, and delivery risk factors were ascertained in 18 (78%) cases. The most common of these included emergency cesarean section in 5 cases, and instrumental delivery in other 5. Screening for prothrombotic risk factors detected abnormalities in 6 (26%) patients on at least one test carried out between 2 months and 9 years of age. Four children (17%) had low protein C, which was associated low protein S and raised anticardiolipin antibodies (ACA) in one patient, and low antithrombin III in another. Low proteins S was detected in a 42-month-old boy. The abnormality in the sixth child was confined to raised ACA. The present study highlights the non-specific features by which stroke presents during the neonatal period. The data are in keeping with the potential role for inherited and acquired thrombophilia as being the underlying cause. However, the high prevalence of

  20. Assessment of apraxia: inter-rater reliability of a new apraxia test, association between apraxia and other cognitive deficits and prevalence of apraxia in a rehabilitation setting.

    Science.gov (United States)

    Zwinkels, Angeliek; Geusgens, Chantal; van de Sande, Peter; Van Heugten, Caroline

    2004-11-01

    To investigate the inter-rater reliability of a new apraxia test. Furthermore to examine the association of apraxia with other neuropsychological impairments and the prevalence of apraxia in a rehabilitation setting on the basis of the new test. Cross-sectional cohort study, involving 100 patients with a first stroke admitted to a rehabilitation centre in the Netherlands. General patient characteristics and stroke-related aspects. Cognitive screening involving apraxia, visuospatial scanning, abstract thinking and reasoning, memory, attention, planning and aphasia. The indices for inter-rater agreement range from excellent to poor. Significant correlations are found between apraxia and visuospatial scanning, memory, attention, planning and aphasia. The patients with apraxia perform significantly worse than the patients without apraxia on memory, the time needed to complete the tests for scanning and attention, and aphasia. The prevalence of apraxia is 25.3% in the total group, 51.3% in the left hemisphere stroke patients and 6.0% in the right hemisphere stroke patients. Patients with and without apraxia do not differ significantly concerning age, gender and type of stroke. The apraxia test has been shown to be a reliable instrument. Apraxia is often associated with aphasia, memory problems and mental slowness. This study shows that on the basis of the apraxia test, the prevalence of apraxia among patients in the rehabilitation centre is high, especially among patients with left hemisphere lesions.

  1. Crossed Aphasia in a Patient with Anaplastic Astrocytoma of the Non-Dominant Hemisphere.

    Science.gov (United States)

    Prater, Stephanie; Anand, Neil; Wei, Lawrence; Horner, Neil

    2017-09-01

    Aphasia describes a spectrum of speech impairments due to damage in the language centers of the brain. Insult to the inferior frontal gyrus of the dominant cerebral hemisphere results in Broca's aphasia - the inability to produce fluent speech. The left cerebral hemisphere has historically been considered the dominant side, a characteristic long presumed to be related to a person's "handedness". However, recent studies utilizing fMRI have shown that right hemispheric dominance occurs more frequently than previously proposed and despite a person's handedness. Here we present a case of a right-handed patient with Broca's aphasia caused by a right-sided brain tumor. This is significant not only because the occurrence of aphasia in right-handed-individuals with right hemispheric brain damage (so-called "crossed aphasia") is unusual but also because such findings support dissociation between hemispheric linguistic dominance and handedness.

  2. Recovery in stroke rehabilitation through the rotation of preferred directions induced by bimanual movements: a computational study.

    Directory of Open Access Journals (Sweden)

    Ken Takiyama

    Full Text Available Stroke patients recover more effectively when they are rehabilitated with bimanual movement rather than with unimanual movement; however, it remains unclear why bimanual movement is more effective for stroke recovery. Using a computational model of stroke recovery, this study suggests that bimanual movement facilitates the reorganization of a damaged motor cortex because this movement induces rotations in the preferred directions (PDs of motor cortex neurons. Although the tuning curves of these neurons differ during unimanual and bimanual movement, changes in PD, but not changes in modulation depth, facilitate such reorganization. In addition, this reorganization was facilitated only when encoding PDs are rotated, but decoding PDs are not rotated. Bimanual movement facilitates reorganization because this movement changes neural activities through inter-hemispheric inhibition without changing cortical-spinal-muscle connections. Furthermore, stronger inter-hemispheric inhibition between motor cortices results in more effective reorganization. Thus, this study suggests that bimanual movement is effective for stroke rehabilitation because this movement rotates the encoding PDs of motor cortex neurons.

  3. A Review of Stroke Cases in a Military Hospital in Nigeria

    African Journals Online (AJOL)

    Stroke is defined as a syndrome of rapidly developing ... speech as common symptoms, unless the brain stern is involved. ... Sex differences in the stroke patients have not been consistent, but most .... Left stroke + Right hemiparesis. 7. 36.8. 7.

  4. The impact of left and right intracranial tumors on picture and word recognition memory.

    Science.gov (United States)

    Goldstein, Bram; Armstrong, Carol L; Modestino, Edward; Ledakis, George; John, Cameron; Hunter, Jill V

    2004-02-01

    This study investigated the effects of left and right intracranial tumors on picture and word recognition memory. We hypothesized that left hemispheric (LH) patients would exhibit greater word recognition memory impairment than right hemispheric (RH) patients, with no significant hemispheric group picture recognition memory differences. The LH patient group obtained a significantly slower mean picture recognition reaction time than the RH group. The LH group had a higher proportion of tumors extending into the temporal lobes, possibly accounting for their greater pictorial processing impairments. Dual coding and enhanced visual imagery may have contributed to the patient groups' similar performance on the remainder of the measures.

  5. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bilateral Internal Carotid Artery Occlusion Associated with the Antiphospholipid Antibody Syndrome

    Directory of Open Access Journals (Sweden)

    Pria Anand

    2014-03-01

    Full Text Available A 39-year-old woman presented with a right-hemispheric stroke 1 year after she had suffered a left-hemispheric stroke. Her diagnostic workup was notable for bilateral occlusions of the internal carotid arteries at their origins and a positive lupus anticoagulant antibody test. There was no evidence of carotid dissection or another identifiable cause for her carotid occlusions. These findings suggest that the antiphospholipid antibody syndrome may be implicated in the pathological changes that resulted in occlusions of the extracranial internal carotid arteries. Young stroke patients who present with unexplained internal carotid artery occlusions may benefit from testing for the presence of antiphospholipid antibodies.

  7. The right hemisphere in esthetic perception.

    Science.gov (United States)

    Bromberger, Bianca; Sternschein, Rebecca; Widick, Page; Smith, William; Chatterjee, Anjan

    2011-01-01

    Little about the neuropsychology of art perception and evaluation is known. Most neuropsychological approaches to art have focused on art production and have been anecdotal and qualitative. The field is in desperate need of quantitative methods if it is to advance. Here, we combine a quantitative approach to the assessment of art with modern voxel-lesion-symptom-mapping methods to determine brain-behavior relationships in art perception. We hypothesized that perception of different attributes of art are likely to be disrupted by damage to different regions of the brain. Twenty participants with right hemisphere damage were given the Assessment of Art Attributes, which is designed to quantify judgments of descriptive attributes of visual art. Each participant rated 24 paintings on 6 conceptual attributes (depictive accuracy, abstractness, emotion, symbolism, realism, and animacy) and 6 perceptual attributes (depth, color temperature, color saturation, balance, stroke, and simplicity) and their interest in and preference for these paintings. Deviation scores were obtained for each brain-damaged participant for each attribute based on correlations with group average ratings from 30 age-matched healthy participants. Right hemisphere damage affected participants' judgments of abstractness, accuracy, and stroke quality. Damage to areas within different parts of the frontal parietal and lateral temporal cortices produced deviation in judgments in four of six conceptual attributes (abstractness, symbolism, realism, and animacy). Of the formal attributes, only depth was affected by inferior prefrontal damage. No areas of brain damage were associated with deviations in interestingness or preference judgments. The perception of conceptual and formal attributes in artwork may in part dissociate from each other and from evaluative judgments. More generally, this approach demonstrates the feasibility of quantitative approaches to the neuropsychology of art.

  8. The Right Hemisphere in Aesthetic Perception

    Directory of Open Access Journals (Sweden)

    Bianca eBromberger

    2011-10-01

    Full Text Available Little about the neuropsychology of art perception and evaluation is known. Most neuropsychological approaches to art have focused on art production and have been anecdotal and qualitative. The field is in desperate need of quantitative methods if it is to advance. Here, we combine a quantitative approach to the assessment of art with modern voxel-lesion-symptom-mapping (VLSM methods to determine brain-behavior relationships in art perception. We hypothesized that perception of different attributes of art are likely to be disrupted by damage to different regions of the brain. Twenty participants with right hemisphere damage were given the Assessment of Art Attributes (AAA, which is designed to quantify judgments of descriptive attributes of visual art. Each participant rated 24 paintings on 6 conceptual attributes (depictive accuracy, abstractness, emotion, symbolism, realism, and animacy and 6 perceptual attributes (depth, color temperature, color saturation, balance, stroke, and simplicity and their interest in and preference for these paintings. Deviation scores were obtained for each brain-damaged participant for each attribute based on correlations with group average ratings from 30 age-matched healthy participants. Right hemisphere damage affected participants' judgments of abstractness, accuracy, and stroke quality. Damage to areas within different parts of the frontal parietal and lateral temporal cortices produced deviation in judgments in four of six conceptual attributes (abstractness, symbolism, realism and animacy. Of the formal attributes, only depth was affected by inferior prefrontal damage. No areas of brain damage were associated with deviations in interestingness or preference judgments. The perception of conceptual and formal attributes in artwork may in part dissociate from each other and from evaluative judgments. More generally, this approach demonstrates the feasibility of quantitative approaches to the neuropsychology of

  9. The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke

    OpenAIRE

    Gorgoraptis, Nikos; Mah, Yee-Haur; Machner, Bjoern; Singh-Curry, Victoria; Malhotra, Paresh; Hadji-Michael, Maria; Cohen, David; Simister, Robert; Nair, Ajoy; Kulinskaya, Elena; Ward, Nick; Greenwood, Richard; Husain, Masud

    2012-01-01

    Hemispatial neglect following right-hemisphere stroke is a common and disabling disorder, for which there is currently no effective pharmacological treatment. Dopamine agonists have been shown to play a role in selective attention and working memory, two core cognitive components of neglect. Here, we investigated whether the dopamine agonist rotigotine would have a beneficial effect on hemispatial neglect in stroke patients. A double-blind, randomized, placebo-controlled ABA design was used, ...

  10. Abnormal inter- and intra-hemispheric integration in male paranoid schizophrenia: a graph-theoretical analysis.

    Science.gov (United States)

    Chen, Jianhuai; Yao, Zhijian; Qin, Jiaolong; Yan, Rui; Hua, Lingling; Lu, Qing

    2015-06-25

    The human brain is a complex network of regions that are structurally interconnected by white matter (WM) tracts. Schizophrenia (SZ) can be conceptualized as a disconnection syndrome characterized by widespread disconnections in WM pathways. To assess whether or not anatomical disconnections are associated with disruption of the topological properties of inter- and intra-hemispheric networks in SZ. We acquired the diffusion tensor imaging data from 24 male patients with paranoid SZ during an acute phase of their illness and from 24 healthy age-matched male controls. The brain FA-weighted (fractional anisotropy-weighted) structural networks were constructed and the inter- and intra-hemispheric integration was assessed by estimating the average characteristic path lengths (CPLs) between and within the left and right hemisphere networks. The mean CPLs for all 18 inter-and intra-hemispheric CPLs assessed were longer in the SZ patient group than in the control group, but only some of these differences were significantly different: the CPLs for the overall inter-hemispheric and the left and right intra-hemispheric networks; the CPLs for the interhemisphere subnetworks of the frontal lobes, temporal lobes, and subcortical structures; and the CPL for the intra- frontal subnetwork in the right hemisphere. Among the 24 patients, the CPL of the inter-frontal subnetwork was positively associated with negative symptom severity, but this was the only significant result among 72 assessed correlations, so it may be a statistical artifact. Our findings suggest that the integrity of intra- and inter-hemispheric WM tracts is disrupted in males with paranoid SZ, supporting the brain network disconnection model (i.e., the (')connectivity hypothesis(')) of schizophrenia. Larger studies with less narrowly defined samples of individuals with schizophrenia are needed to confirm these results.

  11. Characteristics of Hemorrhagic Stroke following Spine and Joint Surgeries.

    Science.gov (United States)

    Yang, Fei; Zhao, Jianning; Xu, Haidong

    2017-01-01

    Hemorrhagic stroke can occur after spine and joint surgeries such as laminectomy, lumbar spinal fusion, tumor resection, and total joint arthroplasty. Although this kind of stroke rarely happens, it may cause severe consequences and high mortality rates. Typical clinical symptoms of hemorrhagic stroke after spine and joint surgeries include headache, vomiting, consciousness disturbance, and mental disorders. It can happen several hours after surgeries. Most bleeding sites are located in cerebellar hemisphere and temporal lobe. A cerebrospinal fluid (CSF) leakage caused by surgeries may be the key to intracranial hemorrhages happening. Early diagnosis and treatments are very important for patients to prevent the further progression of intracranial hemorrhages. Several patients need a hematoma evacuation and their prognosis is not optimistic.

  12. Report of a Pediatric Case of Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    N Tabkhi

    2009-01-01

    Full Text Available Stroke, though rare in children is among the top 10 causes of death in childhood. Incidence of ischemic and hemorrhagic stroke is the same in children .We report a case of hemorrhagic stroke in a two year old girl who presented with a limp, inability to stand on the left leg and left hemiparesia. Her complaint began 10 days ago after a bout of left clonic seizure. She had been admitted to the hospital for a week due to delayed hemorrhage of the umbilical stump at the age of 18 days. Brain CT scan showed a round, hyper dense area with mass effect in the right supraparietal region. Craniotomy revealed a hemorrhage and report of pathology was hematoma. Considering the delayed umbilical cord bleeding and normality of usual tests for hemostasis and partial deficiency of factor XIII in both parents, the problem was diagnosed as homozygote severe deficiency of factor XIII.

  13. Affective imposition influences risky choice: handedness points to the hemispheres.

    Science.gov (United States)

    McElroy, Todd; Corbin, Jonathan

    2010-07-01

    The study of risk preference has become a widely investigated area of research. The current study is designed to investigate the relationship between handedness, hemispheric predominance and valence imposition in a risky-choice decision task. Research into the valence hypothesis (e.g., Ahern & Schwartz, 1985; Davidson, 1984) has shown that the left hemisphere is more active in processing positively valenced stimuli, whereas the right hemisphere is more active in processing negatively valenced stimuli. A total of 520 individuals (343 female, 117 male) participated in a self-imposed framing task and took a degree of handedness questionnaire. The results of the framing task and handedness questionnaire showed that participants' degree of handedness significantly influenced the positive/negative valence they imposed onto the framing task as well as their level of risk preference.

  14. Dizziness in stroke

    Directory of Open Access Journals (Sweden)

    M. V. Zamergrad

    2015-01-01

    Full Text Available Differential diagnosis of new-onset acute vestibular vertigo is chiefly made between vestibular neuronitis and stroke. Dizziness in stroke is usually accompanied by other focal neurological symptoms of brainstem and cerebellar involvement. However, stroke may appear as isolated vestibular vertigo in some cases. An analysis of history data and the results of neurovestibular examination and brain magnetic resonance imaging allows stroke to be diagnosed in patients with acute isolated dizziness. The treatment of patients with stroke-induced dizziness involves a wide range of medications for the reduction of the degree of dizziness and unsteadiness and for the secondary prevention of stroke. Vestibular rehabilitation is an important component of treatment. The paper describes an observation of a patient with poorly controlled hypertension, who developed new-onset acute systemic dizziness. Vestibular neuronitis might be presumed to be a peripheral cause of vestibular disorders, by taking into account the absence of additional obvious neurological symptoms (such as pareses, defective sensation, diplopia, etc. and the nature of nystagmus. However, intention tremor in fingernose and heel-knee tests on the left side, a negative Halmagyi test, and results of Romberg’s test could suggest that stroke was a cause ofdizziness.

  15. Functional specialization of the left ventral parietal cortex in working memory

    Directory of Open Access Journals (Sweden)

    Jennifer Lou Langel

    2014-06-01

    Full Text Available The function of the ventral parietal cortex (VPC is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.

  16. The influence of visual and phonological features on the hemispheric processing of hierarchical Navon letters.

    Science.gov (United States)

    Aiello, Marilena; Merola, Sheila; Lasaponara, Stefano; Pinto, Mario; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2018-01-31

    The possibility of allocating attentional resources to the "global" shape or to the "local" details of pictorial stimuli helps visual processing. Investigations with hierarchical Navon letters, that are large "global" letters made up of small "local" ones, consistently demonstrate a right hemisphere advantage for global processing and a left hemisphere advantage for local processing. Here we investigated how the visual and phonological features of the global and local components of Navon letters influence these hemispheric advantages. In a first study in healthy participants, we contrasted the hemispheric processing of hierarchical letters with global and local items competing for response selection, to the processing of hierarchical letters in which a letter, a false-letter conveying no phonological information or a geometrical shape presented at the unattended level did not compete for response selection. In a second study, we investigated the hemispheric processing of hierarchical stimuli in which global and local letters were both visually and phonologically congruent (e.g. large uppercase G made of smaller uppercase G), visually incongruent and phonologically congruent (e.g. large uppercase G made of small lowercase g) or visually incongruent and phonologically incongruent (e.g. large uppercase G made of small lowercase or uppercase M). In a third study, we administered the same tasks to a right brain damaged patient with a lesion involving pre-striate areas engaged by global processing. The results of the first two experiments showed that the global abilities of the left hemisphere are limited because of its strong susceptibility to interference from local letters even when these are irrelevant to the task. Phonological features played a crucial role in this interference because the interference was entirely maintained also when letters at the global and local level were presented in different uppercase vs. lowercase formats. In contrast, when local features

  17. [Effects of acupuncture at left and right Hegu (LI 4) for cerebral function laterality].

    Science.gov (United States)

    Wang, Linying; Xu, Chunsheng; Zhu, Yifang; Li, Chuanfu; Yang, Jun

    2015-08-01

    To explore the cerebral function laterality of acupuncture at left and right Hegu (LI 4) by using functional magnetic resonance imaging (fMRI) and provide objective evidences for side selection of Hegu (LI 4) in the clinical application. Eighty healthy volunteers were randomly divided into a left-acupoint group and a right-acupoint group, and they were treated with acupuncture at left Hegu (LI 4) and right Hegu (LI 4) respectively. After the arrival of qi, the task-state fMRI data in both groups was collected, and analysis of functional neuroimages (AFNI) software was used to perform intra-group and between-group comparisons. After acupuncture, acupuncture feelings were recorded and MGH acupuncture sensation scale (MASS) was recorded. The difference of MASS between the two groups was not significant (P>0. 05). The result of left-acupoint group showed an increased signal on right cerebral hemisphere, while the right-acupoint group showed extensive signal changes in both cerebral hemispheres. The analysis between left-acupoint group and retroflex right-acupoint group showed differences in brain areas. The central effect of acupuncture at left and right Hegu (LI 4) is dissymmetry, indicating right hemisphere laterality. The right lobus insularis and cingulate gyrus may be the key regions in the acupuncture at Hegu (LI 4).

  18. Left ventricular pressure and volume data acquisition and analysis using LabVIEW.

    Science.gov (United States)

    Cassidy, S C; Teitel, D F

    1997-03-01

    To automate analysis of left ventricular pressure-volume data, we used LabVIEW to create applications that digitize and display data recorded from conductance and manometric catheters. Applications separate data into cardiac cycles, calculate parallel conductance, and calculate indices of left ventricular function, including end-systolic elastance, preload-recruitable stroke work, stroke volume, ejection fraction, stroke work, maximum and minimum derivative of ventricular pressure, heart rate, indices of relaxation, peak filling rate, and ventricular chamber stiffness. Pressure-volume loops can be graphically displayed. These analyses are exported to a text-file. These applications have simplified and automated the process of evaluating ventricular function.

  19. Reshaping the brain after stroke: The effect of prismatic adaptation in patients with right brain damage.

    Science.gov (United States)

    Crottaz-Herbette, Sonia; Fornari, Eleonora; Notter, Michael P; Bindschaedler, Claire; Manzoni, Laura; Clarke, Stephanie

    2017-09-01

    Prismatic adaptation has been repeatedly reported to alleviate neglect symptoms; in normal subjects, it was shown to enhance the representation of the left visual space within the left inferior parietal cortex. Our study aimed to determine in humans whether similar compensatory mechanisms underlie the beneficial effect of prismatic adaptation in neglect. Fifteen patients with right hemispheric lesions and 11 age-matched controls underwent a prismatic adaptation session which was preceded and followed by fMRI using a visual detection task. In patients, the prismatic adaptation session improved the accuracy of target detection in the left and central space and enhanced the representation of this visual space within the left hemisphere in parts of the temporal convexity, inferior parietal lobule and prefrontal cortex. Across patients, the increase in neuronal activation within the temporal regions correlated with performance improvements in this visual space. In control subjects, prismatic adaptation enhanced the representation of the left visual space within the left inferior parietal lobule and decreased it within the left temporal cortex. Thus, a brief exposure to prismatic adaptation enhances, both in patients and in control subjects, the competence of the left hemisphere for the left space, but the regions extended beyond the inferior parietal lobule to the temporal convexity in patients. These results suggest that the left hemisphere provides compensatory mechanisms in neglect by assuming the representation of the whole space within the ventral attentional system. The rapidity of the change suggests that the underlying mechanism relies on uncovering pre-existing synaptic connections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Association between scalp hair-whorl direction and hemispheric language dominance.

    NARCIS (Netherlands)

    Weber, B.; Hoppe, C.; Faber, J.; Axmacher, N.; Fliessbach, K.; Mormann, F.; Weis, S.; Ruhlmann, J.; Elger, C.E.; Fernandez, G.S.E.

    2006-01-01

    Asymmetry is a common phenomenon in higher organisms. In humans, the cortical representation of language exhibits a high degree of asymmetry with a prevalence of about 90% of left hemispheric dominance, the underlying mechanisms of which are largely unknown. Another sign that exhibits a form of