WorldWideScience

Sample records for left hemisphere stimulation

  1. Continuous theta burst stimulation (cTBS on left cerebellar hemisphere affects mental rotation tasks during music listening.

    Directory of Open Access Journals (Sweden)

    Silvia Picazio

    Full Text Available Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR or abstract (AMR mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a "Mozart Effect". Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005 and less accurate (P = 0.005 in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations.

  2. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815

  3. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    OpenAIRE

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel coun...

  4. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  5. Behavioral evidence for left-hemisphere specialization of motor planning

    NARCIS (Netherlands)

    Janssen, L.; Meulenbroek, R.G.; Steenbergen, B.

    2011-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However,

  6. Homotopic Language Reorganization in the Right Hemisphere after Early Left Hemisphere Injury

    Science.gov (United States)

    Tivarus, Madalina E.; Starling, Sarah J.; Newport, Elissa L.; Langfitt, John T.

    2012-01-01

    To determine the areas involved in reorganization of language to the right hemisphere after early left hemisphere injury, we compared fMRI activation patterns during four production and comprehension tasks in post-surgical epilepsy patients with either left (LH) or right hemisphere (RH) speech dominance (determined by Wada testing) and healthy…

  7. Right hemispheric reversible cerebral vasoconstriction syndrome in a patient with left hemispheric partial seizures.

    Science.gov (United States)

    Perez, Gina S; McCaslin, Justin; Shamim, Sadat

    2017-04-01

    We report a right-handed 19-year-old girl who developed reversible cerebral vasoconstriction syndrome (RCVS) lateralized to the right hemisphere with simultaneous new-onset left hemispheric seizures. RCVS, typically more diffuse, was lateralized to one of the cerebral hemispheres.

  8. Enhanced activation of the left hemisphere promotes normative decision making.

    Science.gov (United States)

    Corser, Ryan; Jasper, John D

    2014-01-01

    Previous studies have reported that enhanced activation of the left cerebral hemisphere reduces risky-choice, attribute, and goal-framing effects relative to enhanced activation of the right cerebral hemisphere. The present study sought to extend these findings and show that enhanced activation of the left hemisphere also reduces violations of other normative principles, besides the invariance principle. Participants completed ratio bias (Experiment 1, N = 296) and base rate neglect problems (Experiment 2, N = 145) under normal (control) viewing or with the right or left hemisphere primarily activated by imposing a unidirectional gaze. In Experiment 1 we found that enhanced left hemispheric activation reduced the ratio bias relative to normal viewing and a group experiencing enhanced right hemispheric activation. In Experiment 2 enhanced left hemispheric activation resulted in using base rates more than normal viewing, but not significantly more than enhanced right hemispheric activation. Results suggest that hemispheric asymmetries can affect higher-order cognitive processes, such as decision-making biases. Possible theoretical accounts are discussed as well as implications for dual-process theories.

  9. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Jiang, Xiong; Harris-Love, Michelle L.; Zeng, Jinsheng

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor’s lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion–symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  10. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    Science.gov (United States)

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter

  11. Caffeine improves left hemisphere processing of positive words.

    Science.gov (United States)

    Kuchinke, Lars; Lux, Vanessa

    2012-01-01

    A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition.

  12. Caffeine improves left hemisphere processing of positive words.

    Directory of Open Access Journals (Sweden)

    Lars Kuchinke

    Full Text Available A positivity advantage is known in emotional word recognition in that positive words are consistently processed faster and with fewer errors compared to emotionally neutral words. A similar advantage is not evident for negative words. Results of divided visual field studies, where stimuli are presented in either the left or right visual field and are initially processed by the contra-lateral brain hemisphere, point to a specificity of the language-dominant left hemisphere. The present study examined this effect by showing that the intake of caffeine further enhanced the recognition performance of positive, but not negative or neutral stimuli compared to a placebo control group. Because this effect was only present in the right visual field/left hemisphere condition, and based on the close link between caffeine intake and dopaminergic transmission, this result points to a dopaminergic explanation of the positivity advantage in emotional word recognition.

  13. Apraxia and spatial inattention dissociate in left hemisphere stroke.

    Science.gov (United States)

    Timpert, David C; Weiss, Peter H; Vossel, Simone; Dovern, Anna; Fink, Gereon R

    2015-10-01

    Theories of lateralized cognitive functions propose a dominance of the left hemisphere for motor control and of the right hemisphere for spatial attention. Accordingly, spatial attention deficits (e.g., neglect) are more frequently observed after right-hemispheric stroke, whereas apraxia is a common consequence of left-hemispheric stroke. Clinical reports of spatial attentional deficits after left hemisphere (LH) stroke also exist, but are often neglected. By applying parallel analysis (PA) and voxel-based lesion-symptom mapping (VLSM) to data from a comprehensive neuropsychological assessment of 74 LH stroke patients, we here systematically investigate the relationship between spatial inattention and apraxia and their neural bases. PA revealed that apraxic (and language comprehension) deficits loaded on one common component, while deficits in attention tests were explained by another independent component. Statistical lesion analyses with the individual component scores showed that apraxic (and language comprehension) deficits were significantly associated with lesions of the left superior longitudinal fascicle (SLF). Data suggest that in LH stroke spatial attention deficits dissociate from apraxic (and language comprehension) deficits. These findings contribute to models of lateralised cognitive functions in the human brain. Moreover, our findings strongly suggest that LH stroke patients should be assessed systematically for spatial attention deficits so that these can be included in their rehabilitation regime. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval

    Science.gov (United States)

    Ries, Stephanie K.; Dronkers, Nina F.; Knight, Robert T.

    2015-01-01

    Language is considered to be one of the most lateralized human brain functions. Left hemisphere dominance for language has been consistently confirmed in clinical and experimental settings and constitutes one of the main axioms of neurology and neuroscience. However, functional neuroimaging studies are finding that the right hemisphere also plays a role in diverse language functions. Critically, the right hemisphere may also compensate for the loss or degradation of language functions following extensive stroke-induced damage to the left hemisphere. Here, we review studies that focus on our ability to choose words as we speak. Although fluidly performed in individuals with intact language, this process is routinely compromised in aphasic patients. We suggest that parceling word retrieval into its sub-processes—lexical activation and lexical selection—and examining which of these can be compensated for after left hemisphere stroke can advance the understanding of the lateralization of word retrieval in speech production. In particular, the domain-general nature of the brain regions associated with each process may be a helpful indicator of the right hemisphere's propensity for compensation. PMID:26766393

  15. Developmental dyslexia: dysfunction of a left hemisphere reading network

    Directory of Open Access Journals (Sweden)

    Fabio eRichlan

    2012-05-01

    Full Text Available This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal, inferior frontal, and inferior parietal regions.

  16. Right-ear precedence and vocal emotion contagion: The role of the left hemisphere.

    Science.gov (United States)

    Schepman, Astrid; Rodway, Paul; Cornmell, Louise; Smith, Bethany; de Sa, Sabrina Lauren; Borwick, Ciara; Belfon-Thompson, Elisha

    2018-05-01

    Much evidence suggests that the processing of emotions is lateralized to the right hemisphere of the brain. However, under some circumstances the left hemisphere might play a role, particularly for positive emotions and emotional experiences. We explored whether emotion contagion was right-lateralized, lateralized valence-specifically, or potentially left-lateralized. In two experiments, right-handed female listeners rated to what extent emotionally intoned pseudo-sentences evoked target emotions in them. These sound stimuli had a 7 ms ear lead in the left or right channel, leading to stronger stimulation of the contralateral hemisphere. In both experiments, the results revealed that right ear lead stimuli received subtly but significantly higher evocation scores, suggesting a left hemisphere dominance for emotion contagion. A control experiment using an emotion identification task showed no effect of ear lead. The findings are discussed in relation to prior findings that have linked the processing of emotional prosody to left-hemisphere brain regions that regulate emotions, control orofacial musculature, are involved in affective empathy processing areas, or have an affinity for processing emotions socially. Future work is needed to eliminate alternative interpretations and understand the mechanisms involved. Our novel binaural asynchrony method may be useful in future work in auditory laterality.

  17. Left Hemisphere Regions Are Critical for Language in the Face of Early Left Focal Brain Injury

    Science.gov (United States)

    Beharelle, Anjali Raja; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we…

  18. Left hemisphere regions are critical for language in the face of early left focal brain injury

    OpenAIRE

    Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R.; Levine, Susan C.; Small, Steven L.

    2010-01-01

    A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left h...

  19. Testing the Language of German Cerebral Palsy Patients with Right Hemispheric Language Organization after Early Left Hemispheric Damage

    Science.gov (United States)

    Schwilling, Eleonore; Krageloh-Mann, Ingeborg; Konietzko, Andreas; Winkler, Susanne; Lidzba, Karen

    2012-01-01

    Language functions are generally represented in the left cerebral hemisphere. After early (prenatally acquired or perinatally acquired) left hemispheric brain damage language functions may be salvaged by reorganization into the right hemisphere. This is different from brain lesions acquired in adulthood which normally lead to aphasia. Right…

  20. Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage.

    Science.gov (United States)

    Lidzba, Karen; de Haan, Bianca; Wilke, Marko; Krägeloh-Mann, Ingeborg; Staudt, Martin

    2017-10-01

    Pre- or perinatally acquired ("congenital") left-hemispheric brain lesions can be compensated for by reorganizing language into homotopic brain regions in the right hemisphere. Language comprehension may be hemispherically dissociated from language production. We investigated the lesion characteristics driving inter-hemispheric reorganization of language comprehension and language production in 19 patients (7-32years; eight females) with congenital left-hemispheric brain lesions (periventricular lesions [n=11] and middle cerebral artery infarctions [n=8]) by fMRI. 16/17 patients demonstrated reorganized language production, while 7/19 patients had reorganized language comprehension. Lesions to the insular cortex and the temporo-parietal junction (predominantly supramarginal gyrus) were significantly more common in patients in whom both, language production and comprehension were reorganized. These areas belong to the dorsal stream of the language network, participating in the auditory-motor integration of language. Our data suggest that the integrity of this stream might be crucial for a normal left-lateralized language development. Copyright © 2017. Published by Elsevier Inc.

  1. Brain Stimulation and the Role of the Right Hemisphere in Aphasia Recovery.

    Science.gov (United States)

    Turkeltaub, Peter E

    2015-11-01

    Aphasia is a common consequence of left hemisphere stroke and causes a disabling loss of language and communication ability. Current treatments for aphasia are inadequate, leaving a majority of aphasia sufferers with ongoing communication difficulties for the rest of their lives. In the past decade, two forms of noninvasive brain stimulation, repetitive transcranial magnetic stimulation and transcranial direct current stimulation, have emerged as promising new treatments for aphasia. The most common brain stimulation protocols attempt to inhibit the intact right hemisphere based on the hypothesis that maladaptive activity in the right hemisphere limits language recovery in the left. There is now sufficient evidence to demonstrate that this approach, at least for repetitive transcranial magnetic stimulation, improves specific language abilities in aphasia. However, the biological mechanisms that produce these behavioral improvements remain poorly understood. Taken in the context of the larger neurobiological literature on aphasia recovery, the role of the right hemisphere in aphasia recovery remains unclear. Additional research is needed to understand biological mechanisms of recovery, in order to optimize brain stimulation treatments for aphasia. This article summarizes the current evidence on noninvasive brain stimulation methods for aphasia and the neuroscientific considerations surrounding treatments using right hemisphere inhibition. Suggestions are provided for further investigation and for clinicians whose patients ask about brain stimulation treatments for aphasia.

  2. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane

    2017-07-17

    High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O 2 Hb int ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (L in ) and "outside" (L out ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (R in and R out ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O 2 Hb int in the L in than L out ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O 2 Hb int "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.

  3. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats.

    Science.gov (United States)

    Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne

    2014-11-01

    Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.

  4. Hemispheric lateralization in an analysis of speech sounds. Left hemisphere dominance replicated in Japanese subjects.

    Science.gov (United States)

    Koyama, S; Gunji, A; Yabe, H; Oiwa, S; Akahane-Yamada, R; Kakigi, R; Näätänen, R

    2000-09-01

    Evoked magnetic responses to speech sounds [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M. Vainio, P. Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.] were recorded from 13 Japanese subjects (right-handed). Infrequently presented vowels ([o]) among repetitive vowels ([e]) elicited the magnetic counterpart of mismatch negativity, MMNm (Bilateral, nine subjects; Left hemisphere alone, three subjects; Right hemisphere alone, one subject). The estimated source of the MMNm was stronger in the left than in the right auditory cortex. The sources were located posteriorly in the left than in the right auditory cortex. These findings are consistent with the results obtained in Finnish [R. Näätänen, A. Lehtokoski, M. Lennes, M. Cheour, M. Huotilainen, A. Iivonen, M.Vainio, P.Alku, R.J. Ilmoniemi, A. Luuk, J. Allik, J. Sinkkonen and K. Alho, Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385 (1997) 432-434.][T. Rinne, K. Alho, P. Alku, M. Holi, J. Sinkkonen, J. Virtanen, O. Bertrand and R. Näätänen, Analysis of speech sounds is left-hemisphere predominant at 100-150 ms after sound onset. Neuroreport, 10 (1999) 1113-1117.] and English [K. Alho, J.F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko and R.J. Ilmoniemi, Hemispheric lateralization in preattentive processing of speech sounds. Neurosci. Lett., 258 (1998) 9-12.] subjects. Instead of the P1m observed in Finnish [M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi and R. Näätänen, Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. Neuroimage, 9 (1999) 330-336.] and English [K. Alho, J. F. Connolly, M. Cheour, A. Lehtokoski, M. Huotilainen, J. Virtanen, R. Aulanko

  5. Cortical motor representation of the rectus femoris does not differ between the left and right hemisphere.

    Science.gov (United States)

    Ward, Sarah; Bryant, Adam L; Pietrosimone, Brian; Bennell, Kim L; Clark, Ross; Pearce, Alan J

    2016-06-01

    Transcranial magnetic stimulation (TMS) involves non-invasive magnetic stimulation of the brain, and can be used to explore the corticomotor excitability and motor representations of skeletal muscles. However there is a lack of motor mapping studies in the lower limb and few conducted in healthy cohorts. The cortical motor representations of muscles can vary between individuals in terms of center position and area despite having a general localized region within the motor cortex. It is important to characterize the normal range for these variables in healthy cohorts to be able to evaluate changes in clinical populations. TMS was used in this cross-sectional study to assess the active motor threshold (AMT) and cortical representation area for rectus femoris in 15 healthy individuals (11M/4F 27.3±5.9years). No differences were found between hemispheres (Left vs. Right P=0.130) for AMT. In terms of y-axis center position no differences were found between hemispheres (Left vs. Right P=0.539), or for the x-axis center position (Left vs. Right P=0.076). Similarly, no differences in calculated area of the motor representation were found (Left vs. Right P=0.699) indicating symmetry between hemispheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Agents with left and right dominant hemispheres and quantum statistics

    Science.gov (United States)

    Ezhov, Alexandr A.; Khrennikov, Andrei Yu.

    2005-01-01

    We present a multiagent model illustrating the emergence of two different quantum statistics, Bose-Einstein and Fermi-Dirac, in a friendly population of individuals with the right-brain dominance and in a competitive population of individuals with the left-brain hemisphere dominance, correspondingly. Doing so, we adduce the arguments that Lefebvre’s “algebra of conscience” can be used in a natural way to describe decision-making strategies of agents simulating people with different brain dominance. One can suggest that the emergence of the two principal statistical distributions is able to illustrate different types of society organization and also to be used in order to simulate market phenomena and psychic disorders, when a switching of hemisphere dominance is involved.

  7. Beyond Hemispheric Dominance: Brain Regions Underlying the Joint Lateralization of Language and Arithmetic to the Left Hemisphere

    Science.gov (United States)

    Pinel, Philippe; Dehaene, Stanislas

    2010-01-01

    Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific…

  8. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  9. Better together: Left and right hemisphere engagement to reduce age-related memory loss.

    Science.gov (United States)

    Brambilla, Michela; Manenti, Rosa; Ferrari, Clarissa; Cotelli, Maria

    2015-10-15

    Episodic memory is a cognitive function that appears more susceptible than others to the effects of aging. The main aim of this study is to investigate if the magnitude of functional hemispheric lateralization during episodic memory test was positively correlated with memory performance, proving the presence of a beneficial pattern of neural processing in high-performing older adults but not in low-performing participants. We have applied anodal transcranial Direct Current Stimulation (tDCS) or sham stimulation over left and right hemisphere in a group of young subjects and in high-performing and low-performing older participants during an experimental verbal episodic memory task. Remarkably, young individuals and high-performing older adults exhibited similar performances on episodic memory tasks and both groups showed symmetrical recruitment of left and right areas during memory retrieval. In contrast, low-performing older adults, who obtained lower scores on the memory tasks, demonstrated a greater engagement of the left hemisphere during verbal memory task. Furthermore, structural equation model was performed for analyzing the interrelations between the index of interhemispheric asymmetry and several neuropsychological domains. We found that the bilateral engagement of dorsolateral prefrontal cortex and parietal cortex regions had a direct correlation with memory and executive functions evaluated as latent constructs. These findings drew attention to brain maintenance hypothesis. The potential of neurostimulation in cognitive enhancement is particularly promising to prevent memory loss during aging. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Neural correlates supporting sensory discrimination after left hemisphere stroke

    Science.gov (United States)

    Borstad, Alexandra; Schmalbrock, Petra; Choi, Seongjin; Nichols-Larsen, Deborah S.

    2012-01-01

    Background Nearly half of stroke patients have impaired sensory discrimination, however, the neural structures that support post-stroke sensory function have not been described. Objectives 1) To evaluate the role of the primary somatosensory (S1) cortex in post-stroke sensory discrimination and 2) To determine the relationship between post-stroke sensory discrimination and structural integrity of the sensory component of the superior thalamic radiation (sSTR). Methods 10 healthy adults and 10 individuals with left hemisphere stroke participated. Stroke participants completed sensory discrimination testing. An fMRI was conducted during right, impaired hand sensory discrimination. Fractional anisotropy and volume of the sSTR were quantified using diffusion tensor tractography. Results Sensory discrimination was impaired in 60% of participants with left stroke. Peak activation in the left (S1) did not correlate with sensory discrimination ability, rather a more distributed pattern of activation was evident in post-stroke subjects with a positive correlation between peak activation in the parietal cortex and discrimination ability (r=.70, p=.023). The only brain region in which stroke participants had significantly different cortical activation than control participants was the precuneus. Region of interest analysis of the precuneus across stroke participants revealed a positive correlation between peak activation and sensory discrimination ability (r=.77, p=.008). The L/R ratio of sSTR fractional anisotropy also correlated with right hand sensory discrimination (r=.69, p=.027). Conclusions Precuneus cortex, distributed parietal lobe activity, and microstructure of the sSTR support sensory discrimination after left hemisphere stroke. PMID:22592076

  11. A dual task priming investigation of right hemisphere inhibition for people with left hemisphere lesions

    Directory of Open Access Journals (Sweden)

    Smith-Conway Erin R

    2012-03-01

    Full Text Available Abstract Background During normal semantic processing, the left hemisphere (LH is suggested to restrict right hemisphere (RH performance via interhemispheric suppression. However, a lesion in the LH or the use of concurrent tasks to overload the LH's attentional resource balance has been reported to result in RH disinhibition with subsequent improvements in RH performance. The current study examines variations in RH semantic processing in the context of unilateral LH lesions and the manipulation of the interhemispheric processing resource balance, in order to explore the relevance of RH disinhibition to hemispheric contributions to semantic processing following a unilateral LH lesion. Methods RH disinhibition was examined for nine participants with a single LH lesion and 13 matched controls using the dual task paradigm. Hemispheric performance on a divided visual field lexical decision semantic priming task was compared over three verbal memory load conditions, of zero-, two- and six-words. Related stimuli consisted of categorically related, associatively related, and categorically and associatively related prime-target pairs. Response time and accuracy data were recorded and analyzed using linear mixed model analysis, and planned contrasts were performed to compare priming effects in both visual fields, for each of the memory load conditions. Results Control participants exhibited significant bilateral visual field priming for all related conditions (p Conclusions The results from the control group are consistent with suggestions of an age related hemispheric asymmetry reduction and indicate that in healthy aging compensatory bilateral activation may reduce the impact of inhibition. In comparison, the results for the LHD group indicate that following a LH lesion RH semantic processing can be manipulated and enhanced by the introduction of a verbal memory task designed to engage LH resources and allow disinhibition of RH processing.

  12. Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex.

    Science.gov (United States)

    Jonas, Jacques; Frismand, Solène; Vignal, Jean-Pierre; Colnat-Coulbois, Sophie; Koessler, Laurent; Vespignani, Hervé; Rossion, Bruno; Maillard, Louis

    2014-07-01

    Electrical brain stimulation can provide important information about the functional organization of the human visual cortex. Here, we report the visual phenomena evoked by a large number (562) of intracerebral electrical stimulations performed at low-intensity with depth electrodes implanted in the occipito-parieto-temporal cortex of 22 epileptic patients. Focal electrical stimulation evoked primarily visual hallucinations with various complexities: simple (spot or blob), intermediary (geometric forms), or complex meaningful shapes (faces); visual illusions and impairments of visual recognition were more rarely observed. With the exception of the most posterior cortical sites, the probability of evoking a visual phenomenon was significantly higher in the right than the left hemisphere. Intermediary and complex hallucinations, illusions, and visual recognition impairments were almost exclusively evoked by stimulation in the right hemisphere. The probability of evoking a visual phenomenon decreased substantially from the occipital pole to the most anterior sites of the temporal lobe, and this decrease was more pronounced in the left hemisphere. The greater sensitivity of the right occipito-parieto-temporal regions to intracerebral electrical stimulation to evoke visual phenomena supports a predominant role of right hemispheric visual areas from perception to recognition of visual forms, regardless of visuospatial and attentional factors. Copyright © 2013 Wiley Periodicals, Inc.

  13. Hemispheric differences in electrical and hemodynamic responses during hemifield visual stimulation with graded contrasts.

    Science.gov (United States)

    Si, Juanning; Zhang, Xin; Zhang, Yujin; Jiang, Tianzi

    2017-04-01

    A multimodal neuroimaging technique based on electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) was used with horizontal hemifield visual stimuli with graded contrasts to investigate the retinotopic mapping more fully as well as to explore hemispheric differences in neuronal activity, the hemodynamic response, and the neurovascular coupling relationship in the visual cortex. The fNIRS results showed the expected activation over the contralateral hemisphere for both the left and right hemifield visual stimulations. However, the EEG results presented a paradoxical lateralization, with the maximal response located over the ipsilateral hemisphere but with the polarity inversed components located over the contralateral hemisphere. Our results suggest that the polarity inversion as well as the latency advantage over the contralateral hemisphere cause the amplitude of the VEP over the contralateral hemisphere to be smaller than that over the ipsilateral hemisphere. Both the neuronal and hemodynamic responses changed logarithmically with the level of contrast in the hemifield visual stimulations. Moreover, the amplitudes and latencies of the visual evoked potentials (VEPs) were linearly correlated with the hemodynamic responses despite differences in the slopes.

  14. Phonotactic awareness deficit following left-hemisphere stroke

    Directory of Open Access Journals (Sweden)

    Maryam Ghaleh

    2015-04-01

    Likert-type scale responses were z-transformed and coded accurate for positive z-values in condition 3 and negative z-values in condition 1 trials. Accuracy was analyzed using binomial mixed effects models and z-transformed scale responses were analyzed using linear mixed effects models. For both analyses, the fixed effects of stimulus, trial number, group (patient/control, education, age, response time, phonotactic regularity (1/3, and gender were examined along with all relevant interactions. Random effects for participant and stimuli as well as random slopes were also included. Model fitting was performed in a backward-stepwise iterative fashion, followed by forward fitting of maximal random effects structure. Models were evaluated by model fitness comparisons using Akaike Information Criterion and Bayesian Information Criterion. Accuracy analysis revealed that healthy participants were significantly more accurate than patients [β = 0.47, p<0.001] in Englishness rating. Scale response analysis revealed a significant effect of phonotactic regularity [β = 1.65, p<0.0001] indicating that participants were sensitive to phonotactic regularity differences among non-words. However, the significant interaction of group and phonotactic regularity [β = -0.5, p= 0.02] further demonstrated that, compared to healthy adults, patients were less able to recognize the phonotactic regularity differences between non-words. Results suggest that left-hemisphere lesions cause impaired phonotactic processing and that the left hemisphere might be necessary for phonotactic awareness. These preliminary findings will be followed up by further analyses investigating the interactions between phonotactic processing and participants’ scores on other linguistic/cognitive tasks as well as lesion-symptom mapping.

  15. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    OpenAIRE

    Tyler, Lorraine K.; Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Stamatakis, Emmanuel A.

    2010-01-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to b...

  16. Multimodality language mapping in patients with left-hemispheric language dominance on Wada test.

    Science.gov (United States)

    Kojima, Katsuaki; Brown, Erik C; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi

    2012-10-01

    We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p hemispheric language-dominance. Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. The effects of left and right monocular viewing on hemispheric activation.

    Science.gov (United States)

    Wang, Chao; Burtis, D Brandon; Ding, Mingzhou; Mo, Jue; Williamson, John B; Heilman, Kenneth M

    2018-03-01

    Prior research has revealed that whereas activation of the left hemisphere primarily increases the activity of the parasympathetic division of the autonomic nervous system, right-hemisphere activation increases the activity of the sympathetic division. In addition, each hemisphere primarily receives retinocollicular projections from the contralateral eye. A prior study reported that pupillary dilation was greater with left- than with right-eye monocular viewing. The goal of this study was to test the alternative hypotheses that this asymmetric pupil dilation with left-eye viewing was induced by activation of the right-hemispheric-mediated sympathetic activity, versus a reduction of left-hemisphere-mediated parasympathetic activity. Thus, this study was designed to learn whether there are changes in hemispheric activation, as measured by alteration of spontaneous alpha activity, during right versus left monocular viewing. High-density electroencephalography (EEG) was recorded from healthy participants viewing a crosshair with their right, left, or both eyes. There was a significantly less alpha power over the right hemisphere's parietal-occipital area with left and binocular viewing than with right-eye monocular viewing. The greater relative reduction of right-hemisphere alpha activity during left than during right monocular viewing provides further evidence that left-eye viewing induces greater increase in right-hemisphere activation than does right-eye viewing.

  18. Reorganization of the Cerebro-Cerebellar Network of Language Production in Patients with Congenital Left-Hemispheric Brain Lesions

    Science.gov (United States)

    Lidzba, K.; Wilke, M.; Staudt, M.; Krageloh-Mann, I.; Grodd, W.

    2008-01-01

    Patients with congenital lesions of the left cerebral hemisphere may reorganize language functions into the right hemisphere. In these patients, language production is represented homotopically to the left-hemispheric language areas. We studied cerebellar activation in five patients with congenital lesions of the left cerebral hemisphere to assess…

  19. Efficacy of strategy training in left hemisphere stroke patients with apraxia : A randomised clinical trial

    NARCIS (Netherlands)

    Donkervoort, M; Dekker, J; Stehmann-Saris, FC; Deelman, B. G.

    2001-01-01

    The objective of the present study was to determine in a controlled study the efficacy of strategy training in left hemisphere stroke patients with apraxia. A total of 113 left hemisphere stroke patients with apraxia were randomly assigned to two treatment groups; (1) strategy training integrated

  20. Efficacy of strategy training in left hemisphere stroke patients with apraxia: a randomised clinical trial.

    NARCIS (Netherlands)

    Donkervoort, M.; Dekker, J.; Stehmann-Saris, F.C.; Deelman, B.G.

    2001-01-01

    The objective of the present study was to determine in a controlled study the efficacy of strategy training in left hemisphere stroke patients with apraxia. A total of 113 left hemisphere stroke patients with apraxia were randomly assigned to two treatment groups; (1) strategy training integrated

  1. Efficacy of strategy training in left hemisphere stroke patients with apraxia: a randomized clinical trial.

    NARCIS (Netherlands)

    Dekker, J.; Donkervoort, M.; Stehman, F.C.; Deelman, B.G.

    2001-01-01

    The objective of the present study was to determine in a controlled study the efficacy of strategy training in left hemisphere stroke patients with apraxia. 113 Left hemisphere assigned to two treatment groups: i) strategy training integrated into usual occupational therapy and ii) usual

  2. Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke.

    Science.gov (United States)

    Poole, Janet L; Sadek, Joseph; Haaland, Kathleen Y

    2009-10-01

    Poole JL, Sadek J, Haaland KY. Ipsilateral deficits in 1-handed shoe tying after left or right hemisphere stroke. To examine 1-handed shoe tying performance and whether cognitive deficits more associated with left or right hemisphere damage differentially affect it after unilateral stroke. Observational cohort comparing ipsilesional shoe tying, spatial and language skills, and limb praxis. Primary care Veterans Affairs and private medical center. Not applicable. Volunteer right-handed sample of adults with left or right hemisphere damage and healthy demographically matched adults. The number of correct trials and the total time to complete 10 trials tying a shoe using the 1-handed method. Both stroke groups had fewer correct trials and were significantly slower tying the shoe than the control group. Spatial skills predicted accuracy and speed after right hemisphere damage. After left hemisphere damage, accuracy was predicted by spatial skills and limb praxis, while speed was predicted by limb praxis only. Ipsilesional shoe tying is similarly impaired after left or right hemisphere damage, but for different reasons. Spatial deficits had a greater influence after right hemisphere damage, and limb apraxia had a greater influence after left hemisphere damage. Language deficits did not affect performance, indicating that aphasia does not preclude using this therapy approach. These results suggest that rehabilitation professionals should consider assessment of limb apraxia and ipsilesional skill training in the performance of everyday tasks.

  3. Neuropragmatics: Extralinguistic Pragmatic Ability is Better Preserved in Left-Hemisphere-Damaged Patients than in Right-Hemisphere-Damaged Patients

    Science.gov (United States)

    Cutica, Ilaria; Bucciarelli, Monica; Bara, Bruno G.

    2006-01-01

    The aim of the present study is to compare the pragmatic ability of right- and left-hemisphere-damaged patients excluding the possible interference of linguistic deficits. To this aim, we study extralinguistic communication, that is communication performed only through gestures. The Cognitive Pragmatics Theory provides the theoretical framework:…

  4. Left and Right Memory Revisited: Electrophysiological Investigations of Hemispheric Asymmetries at Retrieval

    Science.gov (United States)

    Evans, Karen M.; Federmeier, Kara D.

    2009-01-01

    Hemispheric differences in the use of memory retrieval cues were examined in a continuous recognition design, using visual half-field presentation to bias the processing of test words. A speeded recognition task revealed general accuracy and response time advantages for items whose test presentation was biased to the left hemisphere. A second…

  5. Priming vs. Rhyming: Orthographic and Phonological Representations in the Left and Right Hemispheres

    Science.gov (United States)

    Lindell, Annukka K.; Lum, Jarrad A. G.

    2008-01-01

    The right cerebral hemisphere has long been argued to lack phonological processing capacity. Recently, however, a sex difference in the cortical representation of phonology has been proposed, suggesting discrete left hemisphere lateralization in males and more distributed, bilateral representation of function in females. To evaluate this…

  6. Functional asymmetry between the left and right human fusiform gyrus explored through electrical brain stimulation.

    Science.gov (United States)

    Rangarajan, Vinitha; Parvizi, Josef

    2016-03-01

    The ventral temporal cortex (VTC) contains several areas with selective responses to words, numbers, faces, and objects as demonstrated by numerous human and primate imaging and electrophysiological studies. Our recent work using electrocorticography (ECoG) confirmed the presence of face-selective neuronal populations in the human fusiform gyrus (FG) in patients implanted with intracranial electrodes in either the left or right hemisphere. Electrical brain stimulation (EBS) disrupted the conscious perception of faces only when it was delivered in the right, but not left, FG. In contrast to our previous findings, here we report both negative and positive EBS effects in right and left FG, respectively. The presence of right hemisphere language dominance in the first, and strong left-handedness and poor language processing performance in the second case, provide indirect clues about the functional architecture of the human VTC in relation to hemispheric asymmetries in language processing and handedness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Whole-head analysis of cortical spatial organization from unilateral stimulation of median nerve in both hands: No complete hemisphere homology

    NARCIS (Netherlands)

    Theuvenet, Peter J.; van Dijk, Bob W.; Peters, M.J.; van Ree, Jan M.; Lopes da Silva, Fernando L.; Chen, Andrew C.N.

    2005-01-01

    We examined the contralateral hemispheric cortical activity in MEG (151 ch) after unilateral median nerve stimulation of the right and left hand in twenty healthy right-handed subjects. The goal was to establish parameters to describe cortical activity of the hemispheric responses and to study the

  8. Transcranial Direct Current Stimulation for Treating Depression in a Patient With Right Hemispheric Dominance: A Case Study.

    Science.gov (United States)

    Shiozawa, Pedro; da Silva, Mailu Enokibara; Cordeiro, Quirino

    2015-09-01

    We report the case of a 66-year-old male patient with major depressive disorder for the last 6 months. The patient had been diagnosed with dyslexia during childhood and was left-handed. The intervention protocol consisted in 10 consecutive daily transcranial direct current stimulation sessions. However, after 5 days of stimulation, the patient presented with intensification of depressive symptoms and panic attacks. It was hypothetized that the intensification of symptoms may have been due to stimulation protocol itself. Considering the patient was left-handed and presented comorbidity with dyslexia, there was a plausible hypothesis of right hemispheric dominance. This was corroborated by the Edinburgh Handedness Scale. In fact, dyslexic patients present right hemisphere dominance more frequently. The patient also presented a single photon emission computed tomography with a hypoperfusion area over the left posterior parietal lobe. After the patients agreement, a 10-day experimental repetitive transcranial magnetic stimulation low-frequency protocol over the left dorsolateral prefrontal cortex was started to inhibit the area, which was hypothetically hyperactivated following the rationale of right dominance. The patient presented amelioration of depressive and anxious symptoms. Given the hemispheric reversal we show in the present case study, however, it seems that therapies that are beneficial to right-handers could be detrimental to left-handers.

  9. Differences in trace element concentrations between the right and left hemispheres of human brain using INAA

    International Nuclear Information System (INIS)

    Panayi, A.E.; Surrey Univ.; Spyrou, N.M.; Akanle, O.A.; Ubertalli, L.C.; Part, P.

    2000-01-01

    Very few publications have quoted differences between the same regions in both the right and left hemispheres of the human brain. It may be possible that the two hemispheres have different trace elemental concentrations, since it is known that they both have different functions. In this study, three brain regions from both the right and left hemispheres of the cortex have been sampled from five elderly individuals (three 'normal' and two Alzheimer's disease) and their elemental concentrations have been determined by instrumental neutron activation analysis (INAA). (author)

  10. Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex.

    Science.gov (United States)

    Bolognini, Nadia; Convento, Silvia; Banco, Elisabetta; Mattioli, Flavia; Tesio, Luigi; Vallar, Giuseppe

    2015-02-01

    Limb apraxia, a deficit of planning voluntary gestures, is most frequently caused by damage to the left hemisphere, where, according to an influential neurofunctional model, gestures are planned, before being executed through the motor cortex of the hemisphere contralateral to the acting hand. We used anodal transcranial direct current stimulation delivered to the left posterior parietal cortex (PPC), the right motor cortex (M1), and a sham stimulation condition, to modulate the ability of six left-brain-damaged patients with ideomotor apraxia, and six healthy control subjects, to imitate hand gestures, and to perform skilled hand movements using the left hand. Transcranial direct current stimulation delivered to the left PPC reduced the time required to perform skilled movements, and planning, but not execution, times in imitating gestures, in both patients and controls. In patients, the amount of decrease of planning times brought about by left PPC transcranial direct current stimulation was influenced by the size of the parietal lobe damage, with a larger parietal damage being associated with a smaller improvement. Of interest from a clinical perspective, left PPC stimulation also ameliorated accuracy in imitating hand gestures in patients. Instead, transcranial direct current stimulation to the right M1 diminished execution, but not planning, times in both patients and healthy controls. In conclusion, by using a transcranial stimulation approach, we temporarily improved ideomotor apraxia in the left hand of left-brain-damaged patients, showing a role of the left PPC in planning gestures. This evidence opens up novel perspectives for the use of transcranial direct current stimulation in the rehabilitation of limb apraxia. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  12. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.

    Science.gov (United States)

    Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P

    2013-06-01

    In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.

  13. Moral judgement by the disconnected left and right cerebral hemispheres: a split-brain investigation.

    Science.gov (United States)

    Steckler, Conor M; Hamlin, J Kiley; Miller, Michael B; King, Danielle; Kingstone, Alan

    2017-07-01

    Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.

  14. Acquired dysgraphia in adults following right or left-hemisphere stroke

    Directory of Open Access Journals (Sweden)

    Jaqueline de Carvalho Rodrigues

    Full Text Available OBJECTIVE: This study aimed to assess the strengths and difficulties in word and pseudoword writing in adults with left- and right-hemisphere strokes, and discuss the profiles of acquired dysgraphia in these individuals.METHODS: The profiles of six adults with acquired dysgraphia in left- or right-hemisphere strokes were investigated by comparing their performance on word and pseudoword writing tasks against that of neurologically healthy adults. A case series analysis was performed on the patients whose impairments on the task were indicative of acquired dysgraphia.RESULTS: Two patients were diagnosed with lexical dysgraphia (one with left hemisphere damage, and the other with right hemisphere damage, one with phonological dysgraphia, another patient with peripheral dysgraphia, one patient with mixed dysgraphia and the last with dysgraphia due to damage to the graphemic buffer. The latter patients all had left-hemisphere damage (LHD. The patterns of impairment observed in each patient were discussed based on the dual-route model of writing.CONCLUSION: The fact that most patients had LHD rather than right-hemisphere damage (RHD highlights the importance of the former structure for word processing. However, the fact that lexical dysgraphia was also diagnosed in a patient with RHD suggests that these individuals may develop writing impairments due to damage to the lexical route, leading to heavier reliance on phonological processing. Our results are of significant importance to the planning of writing interventions in neuropsychology.

  15. When Left Means Right: An Explanation of the Left Cradling Bias in Terms of Right Hemisphere Specializations

    Science.gov (United States)

    Bourne, Victoria J.; Todd, Brenda K.

    2004-01-01

    Previous research has indicated that 70-85% of women and girls show a bias to hold infants, or dolls, to the left side of their body. This bias is not matched in males (e.g. deChateau, Holmberg & Winberg, 1978; Todd, 1995). This study tests an explanation of cradling preferences in terms of hemispheric specialization for the perception of facial…

  16. Intracerebral stimulation of left and right ventral temporal cortex during object naming.

    Science.gov (United States)

    Bédos Ulvin, Line; Jonas, Jacques; Brissart, Hélène; Colnat-Coulbois, Sophie; Thiriaux, Anne; Vignal, Jean-Pierre; Maillard, Louis

    2017-12-01

    While object naming is traditionally considered asa left hemisphere function, neuroimaging studies have reported activations related to naming in the ventral temporal cortex (VTC) bilaterally. Our aim was to use intracerebral electrical stimulation to specifically compare left and right VTC in naming. In twenty-three epileptic patients tested for visual object naming during stimulation, the proportion of naming impairments was significantly higher in the left than in the right VTC (31.3% vs 13.6%). The highest proportions of positive naming sites were found in the left fusiform gyrus and occipito-temporal sulcus (47.5% and 31.8%). For 17 positive left naming sites, an additional semantic picture matching was carried out, always successfully performed. Our results showed the enhanced role of the left compared to the right VTC in naming and suggest that it may be involved in lexical retrieval rather than in semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes.

    OpenAIRE

    Donkervoort, M.; Dekker, J.; Ende, E. van den; Stehmann-Saris, J.C.; Deelman, B.G.

    2000-01-01

    OBJECTIVE: To investigate the prevalence of apraxia in patients with a first left hemisphere stroke. SUBJECTS: Left hemisphere stroke patients staying at an inpatient care unit of a rehabilitation centre or nursing home and receiving occupational therapy (n = 600). MEASURES: A short questionnaire on general patient characteristics and stroke-related aspects was completed by occupational therapists for every left hemisphere stroke patient they treated. A diagnosis of apraxia or nonapraxia was ...

  18. Language function distribution in left-handers: A navigated transcranial magnetic stimulation study.

    Science.gov (United States)

    Tussis, Lorena; Sollmann, Nico; Boeckh-Behrens, Tobias; Meyer, Bernhard; Krieg, Sandro M

    2016-02-01

    Recent studies suggest that in left-handers, the right hemisphere (RH) is more involved in language function when compared to right-handed subjects. Since data on lesion-based approaches is lacking, we aimed to investigate language distribution of left-handers by repetitive navigated transcranial magnetic stimulation (rTMS). Thus, rTMS was applied to the left hemisphere (LH) and RH in 15 healthy left-handers during an object-naming task, and resulting naming errors were categorized. Then, we calculated error rates (ERs=number of errors per number of stimulations) for both hemispheres separately and defined a laterality score as the quotient of the LH ER - RH ER through the LH ER + RH ER (abbreviated as (L-R)/(L+R)). In this context, (L-R)/(L+R)>0 indicates that the LH is dominant, whereas (L-R)/(L+R)left-handers and right-handers (source data of another study) for all errors (mean 0.01±0.14 vs. 0.19±0.20, p=0.0019) and all errors without hesitation (mean -0.02±0.20 vs. 0.19±0.28, p=0.0051) was revealed, whereas the comparison for no responses did not show a significant difference (mean: -0.004±0.27 vs. 0.09±0.44, p=0.64). Accordingly, left-handers present a comparatively equal language distribution across both hemispheres with language dominance being nearly equally distributed between hemispheres in contrast to right-handers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cognitive outcome after awake surgery for left and right hemisphere tumours

    Directory of Open Access Journals (Sweden)

    Elke De Witte

    2015-04-01

    Full Text Available INTRODUCTION: Awake surgery in eloquent brain regions is performed to preserve language and other cognitive functions. Although in general, no major permanent cognitive deficits are found after awake brain surgery, clinically relevant impairments are detected and cognitive recovery takes longer than generally assumed (3 months (Santini et al., 2012; Satoer et al., 2014; Talacchi et al., 2012. However, as there is a lack of extensive cognitive follow-up data it is unknown when recovery takes place. In addition, the influence of critical language sites identified by direct electrical stimulation (DES and tumour variables (e.g. left/right tumour location, tumour grade on long-term cognitive findings remains unclear. METHODS: In this longitudinal study the short-term and long-term effects of awake surgery on cognition were investigated in 40 patients (29 patients with left and 11 with right hemisphere tumours. Language, memory, attentional, executive and visuospatial functions were assessed in the preoperative phase, at short-term follow-up (6 weeks postsurgery and at long-term follow-up (6 months postsurgery with a neuropsychological protocol. In addition, the effect of intraoperative critical language sites, left/right tumour location, hemispheric language dominance, extent of resection and adjuvant treatment on cognitive change was studied. RESULTS: Both pre- and postoperatively, the mean performance of the patients was worse (impairment = z-score below -2 than the performance of the normal population in the language domain, the memory domain, the attentional and executive domain (p .05. Awake surgery negatively affected language, attentional and executive functions but not memory and visuospatial functions. At 6 weeks postsurgery, performance on all language, attentional and executive tasks deteriorated (object/action naming, semantic/phonological fluency from DuLIP, Token test; Trail Making Test A & B, Stroop I, II, & III. At 6 months

  20. Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation.

    Science.gov (United States)

    Palminteri, Stefano; Serra, Giulia; Buot, Anne; Schmidt, Liane; Welter, Marie-Laure; Pessiglione, Mathias

    2013-01-01

    Rewards have various effects on human behavior and multiple representations in the human brain. Behaviorally, rewards notably enhance response vigor in incentive motivation paradigms and bias subsequent choices in instrumental learning paradigms. Neurally, rewards affect activity in different fronto-striatal regions attached to different motor effectors, for instance in left and right hemispheres for the two hands. Here we address the question of whether manipulating reward-related brain activity has local or general effects, with respect to behavioral paradigms and motor effectors. Neuronal activity was manipulated in a single hemisphere using unilateral deep brain stimulation (DBS) in patients with Parkinson's disease. Results suggest that DBS amplifies the representation of reward magnitude within the targeted hemisphere, so as to affect the behavior of the contralateral hand specifically. These unilateral DBS effects on behavior include both boosting incentive motivation and biasing instrumental choices. Furthermore, using computational modeling we show that DBS effects on incentive motivation can predict DBS effects on instrumental learning (or vice versa). Thus, we demonstrate the feasibility of causally manipulating reward-related neuronal activity in humans, in a manner that is specific to a class of motor effectors but that generalizes to different computational processes. As these findings proved independent from therapeutic effects on parkinsonian motor symptoms, they might provide insight into DBS impact on non-motor disorders, such as apathy or hypomania. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    Science.gov (United States)

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  2. Left hemisphere EEG coherence in infancy predicts infant declarative pointing and preschool epistemic language.

    Science.gov (United States)

    Kühn-Popp, N; Kristen, S; Paulus, M; Meinhardt, J; Sodian, B

    2016-01-01

    Pointing plays a central role in preverbal communication. While imperative pointing aims at influencing another person's behavior, declarative gestures serve to convey epistemic information and to share interest in an object. Further, the latter are hypothesized to be a precursor ability of epistemic language. So far, little is known about their underlying brain maturation processes. Therefore, the present study investigated the relation between brain maturation processes and the production of imperative and declarative motives as well as epistemic language in N = 32 infants. EEG coherence scores were measured at 14 months, imperative and declarative point production at 15 months and epistemic language at 48 months. Results of correlational analyses suggest distinct behavioral and neural patterns for imperative and declarative pointing, with declarative pointing being associated with the maturation of the left hemisphere. Further, EEG coherence measures of the left hemisphere at 14 months and declarative pointing at 15 months are related to individual differences in epistemic language skills at 48 months, independently of child IQ. In regression analyses, coherence measures of the left hemisphere prove to be the most important predictor of epistemic language skills. Thus, neural processes of the left hemisphere seem particularly relevant to social communication.

  3. Hand movements with a phase structure and gestures that depict action stem from a left hemispheric system of conceptualization.

    Science.gov (United States)

    Helmich, I; Lausberg, H

    2014-10-01

    The present study addresses the previously discussed controversy on the contribution of the right and left cerebral hemispheres to the production and conceptualization of spontaneous hand movements and gestures. Although it has been shown that each hemisphere contains the ability to produce hand movements, results of left hemispherically lateralized motor functions challenge the view of a contralateral hand movement production system. To examine hemispheric specialization in hand movement and gesture production, ten right-handed participants were tachistoscopically presented pictures of everyday life actions. The participants were asked to demonstrate with their hands, but without speaking what they had seen on the drawing. Two independent blind raters evaluated the videotaped hand movements and gestures employing the Neuropsychological Gesture Coding System. The results showed that the overall frequency of right- and left-hand movements is equal independent of stimulus lateralization. When hand movements were analyzed considering their Structure, the presentation of the action stimuli to the left hemisphere resulted in more hand movements with a phase structure than the presentation to the right hemisphere. Furthermore, the presentation to the left hemisphere resulted in more right and left-hand movements with a phase structure, whereas the presentation to the right hemisphere only increased contralateral left-hand movements with a phase structure as compared to hand movements without a phase structure. Gestures that depict action were primarily displayed in response to stimuli presented in the right visual field than in the left one. The present study shows that both hemispheres possess the faculty to produce hand movements in response to action stimuli. However, the left hemisphere dominates the production of hand movements with a phase structure and gestures that depict action. We therefore conclude that hand movements with a phase structure and gestures that

  4. Schizophrenia as failure of left hemispheric dominance for the phonological component of language.

    Science.gov (United States)

    Angrilli, Alessandro; Spironelli, Chiara; Elbert, Thomas; Crow, Timothy J; Marano, Gianfranco; Stegagno, Luciano

    2009-01-01

    T. J. Crow suggested that the genetic variance associated with the evolution in Homo sapiens of hemispheric dominance for language carries with it the hazard of the symptoms of schizophrenia. Individuals lacking the typical left hemisphere advantage for language, in particular for phonological components, would be at increased risk of the typical symptoms such as auditory hallucinations and delusions. Twelve schizophrenic patients treated with low levels of neuroleptics and twelve matched healthy controls participated in an event-related potential experiment. Subjects matched word-pairs in three tasks: rhyming/phonological, semantic judgment and word recognition. Slow evoked potentials were recorded from 26 scalp electrodes, and a laterality index was computed for anterior and posterior regions during the inter stimulus interval. During phonological processing individuals with schizophrenia failed to achieve the left hemispheric dominance consistently observed in healthy controls. The effect involved anterior (fronto-temporal) brain regions and was specific for the Phonological task; group differences were small or absent when subjects processed the same stimulus material in a Semantic task or during Word Recognition, i.e. during tasks that typically activate more widespread areas in both hemispheres. We show for the first time how the deficit of lateralization in the schizophrenic brain is specific for the phonological component of language. This loss of hemispheric dominance would explain typical symptoms, e.g. when an individual's own thoughts are perceived as an external intruding voice. The change can be interpreted as a consequence of "hemispheric indecision", a failure to segregate phonological engrams in one hemisphere.

  5. Schizophrenia as failure of left hemispheric dominance for the phonological component of language.

    Directory of Open Access Journals (Sweden)

    Alessandro Angrilli

    Full Text Available BACKGROUND: T. J. Crow suggested that the genetic variance associated with the evolution in Homo sapiens of hemispheric dominance for language carries with it the hazard of the symptoms of schizophrenia. Individuals lacking the typical left hemisphere advantage for language, in particular for phonological components, would be at increased risk of the typical symptoms such as auditory hallucinations and delusions. METHODOLOGY/PRINCIPAL FINDINGS: Twelve schizophrenic patients treated with low levels of neuroleptics and twelve matched healthy controls participated in an event-related potential experiment. Subjects matched word-pairs in three tasks: rhyming/phonological, semantic judgment and word recognition. Slow evoked potentials were recorded from 26 scalp electrodes, and a laterality index was computed for anterior and posterior regions during the inter stimulus interval. During phonological processing individuals with schizophrenia failed to achieve the left hemispheric dominance consistently observed in healthy controls. The effect involved anterior (fronto-temporal brain regions and was specific for the Phonological task; group differences were small or absent when subjects processed the same stimulus material in a Semantic task or during Word Recognition, i.e. during tasks that typically activate more widespread areas in both hemispheres. CONCLUSIONS/SIGNIFICANCE: We show for the first time how the deficit of lateralization in the schizophrenic brain is specific for the phonological component of language. This loss of hemispheric dominance would explain typical symptoms, e.g. when an individual's own thoughts are perceived as an external intruding voice. The change can be interpreted as a consequence of "hemispheric indecision", a failure to segregate phonological engrams in one hemisphere.

  6. Differential effects of galvanic vestibular stimulation on arm position sense in right- vs. left-handers.

    Science.gov (United States)

    Schmidt, Lena; Artinger, Frank; Stumpf, Oliver; Kerkhoff, Georg

    2013-04-01

    The human brain is organized asymmetrically in two hemispheres with different functional specializations. Left- and right-handers differ in many functional capacities and their anatomical representations. Right-handers often show a stronger functional lateralization than left-handers, the latter showing a more bilateral, symmetrical brain organization. Recent functional imaging evidence shows a different lateralization of the cortical vestibular system towards the side of the preferred hand in left- vs. right-handers as well. Since the vestibular system is involved in somatosensory processing and the coding of body position, vestibular stimulation should affect such capacities differentially in left- vs. right-handers. In the present, sham-stimulation-controlled study we explored this hypothesis by studying the effects of galvanic vestibular stimulation (GVS) on proprioception in both forearms in left- and right-handers. Horizontal arm position sense (APS) was measured with an opto-electronic device. Second, the polarity-specific online- and after-effects of subsensory, bipolar GVS on APS were investigated in different sessions separately for both forearms. At baseline, both groups did not differ in their unsigned errors for both arms. However, right-handers showed significant directional errors in APS of both arms towards their own body. Right-cathodal/left-anodal GVS, resulting in right vestibular cortex activation, significantly deteriorated left APS in right-handers, but had no detectable effect on APS in left-handers in either arm. These findings are compatible with a right-hemisphere dominance for vestibular functions in right-handers and a differential vestibular organization in left-handers that compensates for the disturbing effects of GVS on APS. Moreover, our results show superior arm proprioception in left-handers in both forearms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes

    NARCIS (Netherlands)

    Donkervoort, M; Dekker, J; van den Ende, E; Stehmann-Saris, J. C.; Deelman, B. G.

    Objective: To investigate the prevalence of apraxia in patients with a first left hemisphere stroke. Subjects. Left hemisphere stroke patients staying at an inpatient care unit of a rehabilitation centre or nursing home and receiving occupational therapy (n = 600). Measures: A short questionnaire on

  8. The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes.

    NARCIS (Netherlands)

    Donkervoort, M.; Dekker, J.; Deelman, B.

    2006-01-01

    OBJECTIVE: To study the course of apraxia and daily life functioning (ADL) in left hemisphere stroke patients with apraxia. DESIGN: Prospective cohort study. SETTING: Rehabilitation centres and nursing homes. SUBJECTS: One hundred and eight left hemisphere stroke patients with apraxia, hospitalized

  9. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes.

    NARCIS (Netherlands)

    Donkervoort, M.; Dekker, J.; Ende, E. van den; Stehmann-Saris, J.C.; Deelman, B.G.

    2000-01-01

    OBJECTIVE: To investigate the prevalence of apraxia in patients with a first left hemisphere stroke. SUBJECTS: Left hemisphere stroke patients staying at an inpatient care unit of a rehabilitation centre or nursing home and receiving occupational therapy (n = 600). MEASURES: A short questionnaire on

  10. Prevalence of apraxia among patients with a first left hemisphere stroke in rehabilitation centres and nursing homes.

    Science.gov (United States)

    Donkervoort, M; Dekker, J; van den Ende, E; Stehmann-Saris, J C; Deelman, B G

    2000-04-01

    To investigate the prevalence of apraxia in patients with a first left hemisphere stroke. Left hemisphere stroke patients staying at an inpatient care unit of a rehabilitation centre or nursing home and receiving occupational therapy (n = 600). A short questionnaire on general patient characteristics and stroke-related aspects was completed by occupational therapists for every left hemisphere stroke patient they treated. A diagnosis of apraxia or nonapraxia was made in every patient, on the basis of a set of clinical criteria. The prevalence of apraxia among 492 first left hemisphere stroke patients in rehabilitation centres was 28% (96/338) and in nursing homes 37% (57/154). No relationship was found between the prevalence of apraxia and age, gender or type of stroke (haemorrhage or infarct). This study shows that approximately one-third of left hemisphere stroke patients has apraxia.

  11. Electrophysiological evidence for the action of a center-surround mechanism on semantic processing in the left hemisphere

    Directory of Open Access Journals (Sweden)

    Diana eDeacon

    2013-12-01

    Full Text Available Physiological evidence was sought for a center-surround attentional mechanism (CSM, which has been proposed to assist in the retrieval of weakly activated items from semantic memory. The CSM operates by facilitating strongly related items in the center of the weakly activated area of semantic memory, and inhibiting less strongly related items in its surround. In this study weak activation was created by having subjects acquire the meanings of new words to a recall criterion of only 50%. Subjects who attained this approximate criterion level of performance were subsequently included in a semantic priming task, during which ERPs were recorded. Primes were newly learned rare words, and targets were either synonyms, nonsynonymously related words, or unrelated words. All stimuli were presented to the RVF/LH (right visual field/left hemisphere or the LVF/RH (left visual field/right hemisphere. Under RVF/LH stimulation the newly learned word primes produced facilitation on N400 for synonym targets, and inhibition for related targets. No differences were observed under LVF/RH stimulation. The LH thus, supports a CSM, whereby a synonym in the center of attention focused on the newly learned word is facilitated, whereas a related word in the surround is inhibited. The data are consistent with the view of this laboratory that semantic memory is subserved by a spreading activation system in the LH. Also consistent with our view, there was no evidence of spreading activation in the RH. The findings are discussed in the context of additional recent theories of semantic memory. Finally, the adult right hemisphere may require more learning than the LH in order to demonstrate evidence of meaning acquisition.

  12. The effect of dual-hemisphere transcranial direct current stimulation over the parietal operculum on tactile orientation discrimination

    DEFF Research Database (Denmark)

    Fujimoto, Shuhei; Tanaka, Satoshi; Laakso, Ilkka

    2017-01-01

    The parietal operculum (PO) often shows ipsilateral activation during tactile object perception in neuroimaging experiments. However, the relative contribution of the PO to tactile judgment remains unclear. Here, we examined the effect of transcranial direct current stimulation (tDCS) over...... bilateral PO to test the relative contributions of the ipsilateral PO to tactile object processing. Ten healthy adults participated in this study, which had a double-blind, sham-controlled, cross-over design. Participants discriminated grating orientation during three tDCS and sham conditions. In the dual......-hemisphere tDCS conditions, anodal and cathodal electrodes were placed over the left and right PO. In the uni-hemisphere tDCS condition, anodal and cathodal electrodes were applied over the left PO and contralateral orbit, respectively. In the tDCS and sham conditions, we applied 2 mA for 15 min and for 15 s...

  13. Why the Left Hemisphere Is Dominant for Speech Production: Connecting the Dots

    Directory of Open Access Journals (Sweden)

    Harvey Martin Sussman

    2015-12-01

    Full Text Available Evidence from seemingly disparate areas of speech/language research is reviewed to form a unified theoretical account for why the left hemisphere is specialized for speech production. Research findings from studies investigating hemispheric lateralization of infant babbling, the primacy of the syllable in phonological structure, rhyming performance in split-brain patients, rhyming ability and phonetic categorization in children diagnosed with developmental apraxia of speech, rules governing exchange errors in spoonerisms, organizational principles of neocortical control of learned motor behaviors, and multi-electrode recordings of human neuronal responses to speech sounds are described and common threads highlighted. It is suggested that the emergence, in developmental neurogenesis, of a hard-wired, syllabically-organized, neural substrate representing the phonemic sound elements of one’s language, particularly the vocalic nucleus, is the crucial factor underlying the left hemisphere’s dominance for speech production.

  14. Hemispheric language dominance measured by repetitive navigated transcranial magnetic stimulation and postoperative course of language function in brain tumor patients.

    Science.gov (United States)

    Ille, Sebastian; Kulchytska, Nataliia; Sollmann, Nico; Wittig, Regina; Beurskens, Eva; Butenschoen, Vicki M; Ringel, Florian; Vajkoczy, Peter; Meyer, Bernhard; Picht, Thomas; Krieg, Sandro M

    2016-10-01

    The resection of left-sided perisylvian brain lesions harbors the risk of postoperative aphasia. Because it is known that language function can shift between hemispheres in brain tumor patients, the preoperative knowledge of the patient's language dominance could be helpful. We therefore investigated the hemispheric language dominance by repetitive navigated transcranial magnetic stimulation (rTMS) and surgery-related deficits of language function. We pooled the bicentric language mapping data of 80 patients undergoing the resection of left-sided perisylvian brain lesions in our two university neurosurgical departments. We calculated error rates (ERs; ER = errors per stimulations) for both hemispheres and defined the hemispheric dominance ratio (HDR) as the quotient of the left- and right-sided ER (HDR >1= left dominant; HDR right dominant). The course of the patient's language function was evaluated and correlated with the preoperative HDR. Only three of 80 patients (4%) presented with permanent surgery-related aphasia and 24 patients (30%) with transient surgery-related aphasia. The mean HDR (± standard deviation) of patients with new aphasia after five days was significantly higher (1.68±1.07) than the HDR of patients with no new language deficit (1.37±1.08) (p=0.0482). With a predefined cut-off value of 0.5 for HDR, we achieved a sensitivity for predicting new aphasia of 100%. A higher preoperative HDR significantly correlates with an increased risk for transient aphasia. Moreover, the intensive preoperative workup in this study led to a considerably low rate of permanent aphasia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cognitive alterations in motor imagery process after left hemispheric ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available BACKGROUND: Motor imagery training is a promising rehabilitation strategy for stroke patients. However, few studies had focused on the neural mechanisms in time course of its cognitive process. This study investigated the cognitive alterations after left hemispheric ischemic stroke during motor imagery task. METHODOLOGY/PRINCIPAL FINDINGS: Eleven patients with ischemic stroke in left hemisphere and eleven age-matched control subjects participated in mental rotation task (MRT of hand pictures. Behavior performance, event-related potential (ERP and event-related (desynchronization (ERD/ERS in beta band were analyzed to investigate the cortical activation. We found that: (1 The response time increased with orientation angles in both groups, called "angle effect", however, stoke patients' responses were impaired with significantly longer response time and lower accuracy rate; (2 In early visual perceptual cognitive process, stroke patients showed hypo-activations in frontal and central brain areas in aspects of both P200 and ERD; (3 During mental rotation process, P300 amplitude in control subjects decreased while angle increased, called "amplitude modulation effect", which was not observed in stroke patients. Spatially, patients showed significant lateralization of P300 with activation only in contralesional (right parietal cortex while control subjects showed P300 in both parietal lobes. Stroke patients also showed an overall cortical hypo-activation of ERD during this sub-stage; (4 In the response sub-stage, control subjects showed higher ERD values with more activated cortical areas particularly in the right hemisphere while angle increased, named "angle effect", which was not observed in stroke patients. In addition, stroke patients showed significant lower ERD for affected hand (right response than that for unaffected hand. CONCLUSIONS/SIGNIFICANCE: Cortical activation was altered differently in each cognitive sub-stage of motor imagery after

  16. Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning.

    Science.gov (United States)

    Kaller, Christoph P; Heinze, Katharina; Frenkel, Annekathrein; Läppchen, Claus H; Unterrainer, Josef M; Weiller, Cornelius; Lange, Rüdiger; Rahm, Benjamin

    2013-01-01

    Most neuroimaging studies on planning report bilateral activations of the dorsolateral prefrontal cortex (dlPFC). Recently, these concurrent activations of left and right dlPFC have been shown to double dissociate with different cognitive demands imposed by the planning task: Higher demands on the extraction of task-relevant information led to stronger activation in left dlPFC, whereas higher demands on the integration of interdependent information into a coherent action sequence entailed stronger activation of right dlPFC. Here, we used continuous theta-burst stimulation (cTBS) to investigate the supposed causal structure-function mapping underlying this double dissociation. Two groups of healthy subjects (left-lateralized stimulation, n = 26; right-lateralized stimulation, n = 26) were tested within-subject on a variant of the Tower of London task following either real cTBS over dlPFC or sham stimulation over posterior parietal cortex. Results revealed that, irrespective of specific task demands, cTBS over left and right dlPFC was associated with a global decrease and increase, respectively, in initial planning times compared to sham stimulation. Moreover, no interaction between task demands and stimulation type (real vs. sham) and/or stimulation side (left vs. right hemisphere) were found. Together, against expectations from previous neuroimaging data, lateralized cTBS did not lead to planning-parameter specific changes in performance, but instead revealed a global asymmetric pattern of faster versus slower task processing after left versus right cTBS. This global asymmetry in the absence of any task-parameter specific impact of cTBS suggests that different levels of information processing may span colocalized, but independent axes of functional lateralization in the dlPFC. Copyright © 2011 Wiley Periodicals, Inc.

  17. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.

    Science.gov (United States)

    Gu, Feng; Zhang, Caicai; Hu, Axu; Zhao, Guoping

    2013-12-01

    For nontonal language speakers, speech processing is lateralized to the left hemisphere and musical processing is lateralized to the right hemisphere (i.e., function-dependent brain asymmetry). On the other hand, acoustic temporal processing is lateralized to the left hemisphere and spectral/pitch processing is lateralized to the right hemisphere (i.e., acoustic-dependent brain asymmetry). In this study, we examine whether the hemispheric lateralization of lexical pitch and acoustic pitch processing in tonal language speakers is consistent with the patterns of function- and acoustic-dependent brain asymmetry in nontonal language speakers. Pitch contrast in both speech stimuli (syllable /ji/ in Experiment 1) and nonspeech stimuli (harmonic tone in Experiment 1; pure tone in Experiment 2) was presented to native Cantonese speakers in passive oddball paradigms. We found that the mismatch negativity (MMN) elicited by lexical pitch contrast was lateralized to the left hemisphere, which is consistent with the pattern of function-dependent brain asymmetry (i.e., left hemisphere lateralization for speech processing) in nontonal language speakers. However, the MMN elicited by acoustic pitch contrast was also left hemisphere lateralized (harmonic tone in Experiment 1) or showed a tendency for left hemisphere lateralization (pure tone in Experiment 2), which is inconsistent with the pattern of acoustic-dependent brain asymmetry (i.e., right hemisphere lateralization for acoustic pitch processing) in nontonal language speakers. The consistent pattern of function-dependent brain asymmetry and the inconsistent pattern of acoustic-dependent brain asymmetry between tonal and nontonal language speakers can be explained by the hypothesis that the acoustic-dependent brain asymmetry is the consequence of a carryover effect from function-dependent brain asymmetry. Potential evolutionary implication of this hypothesis is discussed. © 2013.

  18. Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus.

    Science.gov (United States)

    Restle, Julia; Murakami, Takenobu; Ziemann, Ulf

    2012-07-01

    The posterior part of the inferior frontal gyrus (pIFG) in the left hemisphere is thought to form part of the putative human mirror neuron system and is assigned a key role in mapping sensory perception onto motor action. Accordingly, the pIFG is involved in motor imitation of the observed actions of others but it is not known to what extent speech repetition of auditory-presented sentences is also a function of the pIFG. Here we applied fMRI-guided facilitating intermittent theta burst transcranial magnetic stimulation (iTBS), or depressant continuous TBS (cTBS), or intermediate TBS (imTBS) over the left pIFG of healthy subjects and compared speech repetition accuracy of foreign Japanese sentences before and after TBS. We found that repetition accuracy improved after iTBS and, to a lesser extent, after imTBS, but remained unchanged after cTBS. In a control experiment, iTBS was applied over the left middle occipital gyrus (MOG), a region not involved in sensorimotor processing of auditory-presented speech. Repetition accuracy remained unchanged after iTBS of MOG. We argue that the stimulation type and stimulation site specific facilitating effect of iTBS over left pIFG on speech repetition accuracy indicates a causal role of the human left-hemispheric pIFG in the translation of phonological perception to motor articulatory output for repetition of speech. This effect may prove useful in rehabilitation strategies that combine repetitive speech training with iTBS of the left pIFG in speech disorders, such as aphasia after cerebral stroke. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes.

    OpenAIRE

    Donkervoort, M.; Dekker, J.; Deelman, B.

    2006-01-01

    OBJECTIVE: To study the course of apraxia and daily life functioning (ADL) in left hemisphere stroke patients with apraxia. DESIGN: Prospective cohort study. SETTING: Rehabilitation centres and nursing homes. SUBJECTS: One hundred and eight left hemisphere stroke patients with apraxia, hospitalized in rehabilitation centres and nursing homes. MEASURES: ADL-observations, Barthel ADL Index, Apraxia Test, Motricity Index. RESULTS: During the study period of 20 weeks, patients showed small improv...

  20. The significance of clumsy gestures in apraxia following a left hemisphere stroke.

    Science.gov (United States)

    Kangas, Maria; Tate, Robyn L

    2006-02-01

    Individuals who sustain a cerebrovascular accident (CVA) in the dominant (typically left) hemisphere, are at increased risk of developing motor skill deficits due to motor-sensory impairments, as well as cognitive impairments (e.g., apraxia). Clumsiness is a central component affecting motor skills in individuals with a left hemisphere CVA (LCVA). The term "clumsiness" however, has not been adequately operationalised in the apraxia literature in clinical terms, thereby making diagnosis difficult and its contribution to apraxic disorders uncertain. Accordingly, in this study "clumsiness" was explicitly defined by establishing a set of four criteria. The non-dominant (left) hand movements of three groups of participants were examined: 10 individuals with limb-apraxia (APX); 8 individuals without limb apraxia who had sustained a LCVA (NAPX); and 19 healthy individuals without a history of brain impairment (NBD). Performance was examined on four sets of motor tasks, including a conventional praxis test, basic perceptual-motor co-ordination and fine movement tasks, and a naturalistic actions test. A striking finding that emerged was that clumsy errors occurred frequently in all groups, including the NBD group, particularly on the praxis and fine motor tasks. In terms of quantity of clumsy errors emitted, the APX group made significantly more clumsy gestures across all four tasks in comparison to the NBD group. No differences emerged between the two clinical groups, however, in terms of total clumsy gestures emitted on the naturalistic action tasks, or the type of clumsy errors emitted on the fine motor tasks. Thus, frequency and types of clumsy gestures were partly determined by task demands. These results highlight the need to consider the contribution of clumsy gestures in limb functioning following hemispheric brain damage. In broad terms, these findings emphasise the importance of adopting more detailed analyses of movement errors in apraxia and assessments of

  1. Left hemisphere dysfunction during verbal dichotic listening tests in patients who have social phobia with or without comorbid depressive disorder.

    Science.gov (United States)

    Bruder, Gerard E; Schneier, Franklin R; Stewart, Jonathan W; McGrath, Patrick J; Quitkin, Frederic

    2004-01-01

    Behavioral, electrophysiological, and imaging studies have found evidence that anxiety disorders are associated with left hemisphere dysfunction or higher than normal activation of right hemisphere regions. Few studies, however, have examined hemispheric asymmetries of function in social phobia, and the influence of comorbidity with depressive disorders is unknown. The present study used dichotic listening tests to assess lateralized cognitive processing in patients with social phobia, depression, or comorbid social phobia and depression. The study used a two-by-two factorial design in which one factor was social phobia (present versus absent) and the second factor was depressive disorder (present versus absent). A total of 125 unmedicated patients with social phobia, depressive disorder, or comorbid social phobia and depressive disorder and 44 healthy comparison subjects were tested on dichotic fused-words, consonant-vowel syllable, and complex tone tests. Patients with social phobia with or without a comorbid depressive disorder had a smaller left hemisphere advantage for processing words and syllables, compared with subjects without social phobia, whereas no difference between groups was found in the right hemisphere advantage for processing complex tones. Depressed women had a larger left hemisphere advantage for processing words, compared with nondepressed women, but this difference was not seen among men. The results support the hypothesis that social phobia is associated with dysfunction of left hemisphere regions mediating verbal processing. Given the importance of verbal processes in social interactions, this dysfunction may contribute to the stress and difficulty experienced by patients with social phobia in social situations.

  2. Correlating subcortical interhemispheric connectivity and cortical hemispheric dominance in brain tumor patients: A repetitive navigated transcranial magnetic stimulation study.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Tussis, Lorena; Maurer, Stefanie; Hauck, Theresa; Negwer, Chiara; Bauer, Jan S; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-02-01

    The present study aims to investigate the relationship between transcallosal interhemispheric connectivity (IC) and hemispheric language lateralization by using a novel approach including repetitive navigated transcranial magnetic stimulation (rTMS), hemispheric dominance ratio (HDR) calculation, and rTMS-based diffusion tensor imaging fiber tracking (DTI FT). 31 patients with left-sided perisylvian brain lesions underwent diffusion tensor imaging (DTI) and rTMS language mapping. Cortical language-positive rTMS spots were used to calculate HDRs (HDR: quotient of the left-sided divided by right-sided naming error rates for corresponding left- and right-sided cortical regions) and to create regions of interest (ROIs) for DTI FT. Then, fibers connecting the rTMS-based ROIs of both hemispheres were tracked, and the correlation of IC to HDRs was calculated via Spearman's rank correlation coefficient (rs). Fibers connecting rTMS-based ROIs of both hemispheres were detected in 12 patients (38.7%). Within the patients in which IC was detected, the mean number of subcortical IC fibers ± standard deviation (SD) was 138.0 ± 346.5 (median: 7.5; range: 1-1,217 fibers). Regarding rs for the correlation of HDRs and fiber numbers of patients that showed IC, only moderate correlation was revealed. Our approach might be beneficial and technically feasible for further investigation of the relationship between IC and language lateralization. However, only moderate correlation was revealed in the present study. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke

    Directory of Open Access Journals (Sweden)

    Joseph C. Griffis

    2017-01-01

    Full Text Available Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  4. Noninvasive brain stimulation for treatment of right- and left-handed poststroke aphasics.

    Science.gov (United States)

    Heiss, Wolf-Dieter; Hartmann, Alexander; Rubi-Fessen, Ilona; Anglade, Carole; Kracht, Lutz; Kessler, Josef; Weiduschat, Nora; Rommel, Thomas; Thiel, Alexander

    2013-01-01

    Accumulating evidence from single case studies, small case series and randomized controlled trials seems to suggest that inhibitory noninvasive brain stimulation (NIBS) over the contralesional inferior frontal gyrus (IFG) of right-handers in conjunction with speech and language therapy (SLT) improves recovery from poststroke aphasia. Application of inhibitory NIBS to improve recovery in left-handed patients has not yet been reported. A total of 29 right-handed subacute poststroke aphasics were randomized to receive either 10 sessions of SLT following 20 min of inhibitory repetitive transcranial magnetic stimulation (rTMS) over the contralesional IFG or 10 sessions of SLT following sham stimulation; 2 left-handers were treated according to the same protocol with real rTMS. Language activation patterns were assessed with positron emission tomography prior to and after the treatment; 95% confidence intervals for changes in language performance scores and the activated brain volumes in both hemispheres were derived from TMS- and sham-treated right-handed patients and compared to the same parameters in left-handers. Right-handed patients treated with rTMS showed better recovery of language function in global aphasia test scores (t test, p right-handers. In treated right-handers, a shift of activation to the ipsilesional hemisphere was observed, while sham-treated patients consolidated network activity in the contralesional hemisphere (repeated-measures ANOVA, p = 0.009). Both left-handed patients also improved, with 1 patient within the confidence limits of TMS-treated right-handers (23 points, 15.9-28.9) and the other patient within the limits of sham-treated subjects (8 points, 2.8-14.5). Both patients exhibited only a very small interhemispheric shift, much less than expected in TMS-treated right-handers, and more or less consolidated initially active networks in both hemispheres. Inhibitory rTMS over the nondominant IFG appears to be a safe and effective treatment

  5. Left hemisphere structural connectivity abnormality in pediatric hydrocephalus patients following surgery

    Directory of Open Access Journals (Sweden)

    Weihong Yuan

    2016-01-01

    Full Text Available Neuroimaging research in surgically treated pediatric hydrocephalus patients remains challenging due to the artifact caused by programmable shunt. Our previous study has demonstrated significant alterations in the whole brain white matter structural connectivity based on diffusion tensor imaging (DTI and graph theoretical analysis in children with hydrocephalus prior to surgery or in surgically treated children without programmable shunts. This study seeks to investigate the impact of brain injury on the topological features in the left hemisphere, contratelateral to the shunt placement, which will avoid the influence of shunt artifacts and makes further group comparisons feasible for children with programmable shunt valves. Three groups of children (34 in the control group, 12 in the 3-month post-surgery group, and 24 in the 12-month post-surgery group, age between 1 and 18 years were included in the study. The structural connectivity data processing and analysis were performed based on DTI and graph theoretical analysis. Specific procedures were revised to include only left brain imaging data in normalization, parcellation, and fiber counting from DTI tractography. Our results showed that, when compared to controls, children with hydrocephalus in both the 3-month and 12-month post-surgery groups had significantly lower normalized clustering coefficient, lower small-worldness, and higher global efficiency (all p < 0.05, corrected. At a regional level, both patient groups showed significant alteration in one or more regional connectivity measures in a series of brain regions in the left hemisphere (8 and 10 regions in the 3-month post-surgery and the 12-month post-surgery group, respectively, all p < 0.05, corrected. No significant correlation was found between any of the global or regional measures and the contemporaneous neuropsychological outcomes [the General Adaptive Composite (GAC from the Adaptive Behavior Assessment System, Second

  6. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions

    Directory of Open Access Journals (Sweden)

    Peter Goodin

    Full Text Available One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC data was extracted from four seed regions, i.e. primary (S1 and secondary (S2 somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2, and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group and contra-lesional S2 (both groups. We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other

  7. Altered functional connectivity differs in stroke survivors with impaired touch sensation following left and right hemisphere lesions.

    Science.gov (United States)

    Goodin, Peter; Lamp, Gemma; Vidyasagar, Rishma; McArdle, David; Seitz, Rüdiger J; Carey, Leeanne M

    2018-01-01

    One in two survivors experience impairment in touch sensation after stroke. The nature of this impairment is likely associated with changes associated with the functional somatosensory network of the brain; however few studies have examined this. In particular, the impact of lesioned hemisphere has not been investigated. We examined resting state functional connectivity in 28 stroke survivors, 14 with left hemisphere and 14 with right hemisphere lesion, and 14 healthy controls. Contra-lesional hands showed significantly decreased touch discrimination. Whole brain functional connectivity (FC) data was extracted from four seed regions, i.e. primary (S1) and secondary (S2) somatosensory cortices in both hemispheres. Whole brain FC maps and Laterality Indices (LI) were calculated for subgroups. Inter-hemispheric FC was greater in healthy controls compared to the combined stroke cohort from the left S1 seed and bilateral S2 seeds. The left lesion subgroup showed decreased FC, relative to controls, from left ipsi-lesional S1 to contra-lesional S1 and to distributed temporal, occipital and parietal regions. In comparison, the right lesion group showed decreased connectivity from contra-lesional left S1 and bilateral S2 to ipsi-lesional parietal operculum (S2), and to occipital and temporal regions. The right lesion group also showed increased intra-hemispheric FC from ipsi-lesional right S1 to inferior parietal regions compared to controls. In comparison to the left lesion group, those with right lesion showed greater intra-hemispheric connectivity from left S1 to left parietal and occipital regions and from right S1 to right angular and parietal regions. Laterality Indices were significantly greater for stroke subgroups relative to matched controls for contra-lesional S1 (left lesion group) and contra-lesional S2 (both groups). We provide evidence of altered functional connectivity within the somatosensory network, across both hemispheres, and to other networks in stroke

  8. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.; Blinder, B.; Derrfler, M.; Tai, W.Y.; Hazlett, E.; Sicotte, N. (Univ. of California, Irvine (USA))

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion that bulimia is a diagnostic grouping distinct from these disorders.

  9. Heterogeneity in semantic priming effect with a lexical decision task in patients after left hemisphere stroke

    Directory of Open Access Journals (Sweden)

    Candice Steffen Holderbaum

    Full Text Available ABSTRACT Investigations on the semantic priming effect (SPE in patients after left hemisphere (LH lesions have shown disparities that may be explained by the variability in performance found among patients. The aim of the present study was to verify the existence of subgroups of patients after LH stroke by searching for dissociations between performance on the lexical decision task based on the semantic priming paradigm and performance on direct memory, semantic association and language tasks. All 17 patients with LH lesions after stroke (ten non-fluent aphasics and seven non aphasics were analyzed individually. Results indicated the presence of three groups of patients according to SPE: one exhibiting SPE at both stimulus onset asynchronies (SOAs, one with SPE only at long SOA, and another, larger group with no SPE.

  10. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p right hemisphere dominance in processing negative emotions.

  11. Left-hemisphere activation is associated with enhanced vocal pitch error detection in musicians with absolute pitch

    Science.gov (United States)

    Behroozmand, Roozbeh; Ibrahim, Nadine; Korzyukov, Oleg; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    The ability to process auditory feedback for vocal pitch control is crucial during speaking and singing. Previous studies have suggested that musicians with absolute pitch (AP) develop specialized left-hemisphere mechanisms for pitch processing. The present study adopted an auditory feedback pitch perturbation paradigm combined with ERP recordings to test the hypothesis whether the neural mechanisms of the left-hemisphere enhance vocal pitch error detection and control in AP musicians compared with relative pitch (RP) musicians and non-musicians (NM). Results showed a stronger N1 response to pitch-shifted voice feedback in the right-hemisphere for both AP and RP musicians compared with the NM group. However, the left-hemisphere P2 component activation was greater in AP and RP musicians compared with NMs and also for the AP compared with RP musicians. The NM group was slower in generating compensatory vocal reactions to feedback pitch perturbation compared with musicians, and they failed to re-adjust their vocal pitch after the feedback perturbation was removed. These findings suggest that in the earlier stages of cortical neural processing, the right hemisphere is more active in musicians for detecting pitch changes in voice feedback. In the later stages, the left-hemisphere is more active during the processing of auditory feedback for vocal motor control and seems to involve specialized mechanisms that facilitate pitch processing in the AP compared with RP musicians. These findings indicate that the left hemisphere mechanisms of AP ability are associated with improved auditory feedback pitch processing during vocal pitch control in tasks such as speaking or singing. PMID:24355545

  12. Multi-tasking uncovers right spatial neglect and extinction in chronic left-hemisphere stroke patients.

    Science.gov (United States)

    Blini, Elvio; Romeo, Zaira; Spironelli, Chiara; Pitteri, Marco; Meneghello, Francesca; Bonato, Mario; Zorzi, Marco

    2016-11-01

    Unilateral Spatial Neglect, the most dramatic manifestation of contralesional space unawareness, is a highly heterogeneous syndrome. The presence of neglect is related to core spatially lateralized deficits, but its severity is also modulated by several domain-general factors (such as alertness or sustained attention) and by task demands. We previously showed that a computer-based dual-task paradigm exploiting both lateralized and non-lateralized factors (i.e., attentional load/multitasking) better captures this complex scenario and exacerbates deficits for the contralesional space after right hemisphere damage. Here we asked whether multitasking would reveal contralesional spatial disorders in chronic left-hemisphere damaged (LHD) stroke patients, a population in which impaired spatial processing is thought to be uncommon. Ten consecutive LHD patients with no signs of right-sided neglect at standard neuropsychological testing performed a computerized spatial monitoring task with and without concurrent secondary tasks (i.e., multitasking). Severe contralesional (right) space unawareness emerged in most patients under attentional load in both the visual and auditory modalities. Multitasking affected the detection of contralesional stimuli both when presented concurrently with an ipsilesional one (i.e., extinction for bilateral targets) and when presented in isolation (i.e., left neglect for right-sided targets). No spatial bias emerged in a control group of healthy elderly participants, who performed at ceiling, as well as in a second control group composed of patients with Mild Cognitive Impairment. We conclude that the pathological spatial asymmetry in LHD patients cannot be attributed to a global reduction of cognitive resources but it is the consequence of unilateral brain damage. Clinical and theoretical implications of the load-dependent lack of awareness for contralesional hemispace following LHD are discussed. Copyright © 2016. Published by Elsevier Ltd.

  13. Left hemisphere structural connectivity abnormality in pediatric hydrocephalus patients following surgery.

    Science.gov (United States)

    Yuan, Weihong; Meller, Artur; Shimony, Joshua S; Nash, Tiffany; Jones, Blaise V; Holland, Scott K; Altaye, Mekibib; Barnard, Holly; Phillips, Jannel; Powell, Stephanie; McKinstry, Robert C; Limbrick, David D; Rajagopal, Akila; Mangano, Francesco T

    2016-01-01

    Neuroimaging research in surgically treated pediatric hydrocephalus patients remains challenging due to the artifact caused by programmable shunt. Our previous study has demonstrated significant alterations in the whole brain white matter structural connectivity based on diffusion tensor imaging (DTI) and graph theoretical analysis in children with hydrocephalus prior to surgery or in surgically treated children without programmable shunts. This study seeks to investigate the impact of brain injury on the topological features in the left hemisphere, contratelateral to the shunt placement, which will avoid the influence of shunt artifacts and makes further group comparisons feasible for children with programmable shunt valves. Three groups of children (34 in the control group, 12 in the 3-month post-surgery group, and 24 in the 12-month post-surgery group, age between 1 and 18 years) were included in the study. The structural connectivity data processing and analysis were performed based on DTI and graph theoretical analysis. Specific procedures were revised to include only left brain imaging data in normalization, parcellation, and fiber counting from DTI tractography. Our results showed that, when compared to controls, children with hydrocephalus in both the 3-month and 12-month post-surgery groups had significantly lower normalized clustering coefficient, lower small-worldness, and higher global efficiency (all p  hydrocephalus surgically treated with programmable shunts.

  14. Crossed aphasia: an analysis of the symptoms, their frequency, and a comparison with left-hemisphere aphasia symptomatology.

    Science.gov (United States)

    Coppens, Patrick; Hungerford, Suzanne; Yamaguchi, Satoshi; Yamadori, Atsushi

    2002-12-01

    This study presents a thorough analysis of published crossed aphasia (CA) cases, including for the first time the cases published in Japanese. The frequency of specific symptoms was determined, and symptomatology differences based on gender, familial sinistrality, and CA subtype were investigated. Results suggested that the CA population is comparable to the left-hemisphere patient population. However, male were significantly more likely than female CA subjects to show a positive history of familial sinistrality. Typical right-hemisphere (i.e., nonlanguage-dominant) symptoms were frequent but rarely carefully reported or assessed. Results are compared with previous CA reviews and left-hemisphere aphasia. Suggestions for a more systematic assessment of the CA symptomatology are presented.

  15. Oxygenation and hemodynamics in left and right cerebral hemispheres during induction of veno-arterial extracorporeal membrane oxygenation.

    NARCIS (Netherlands)

    Heyst, A.F.J. van; Liem, D.; Hopman, J.C.W.; Staak, F.H.J.M. van der; Sengers, R.C.A.

    2004-01-01

    OBJECTIVE: Oxygenation and hemodynamics in the left and right cerebral hemispheres were measured during induction of veno-arterial extracorporeal membrane oxygenation (VA-ECMO). STUDY DESIGN: Using near infrared spectrophotometry, effects of right common carotid artery (RCCA) and right internal

  16. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement.

    Science.gov (United States)

    Koyama, Soichiro; Tanaka, Satoshi; Tanabe, Shigeo; Sadato, Norihiro

    2015-02-19

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates motor performance and learning. Previous studies have shown that tDCS over the primary motor cortex (M1) can facilitate consolidation of various motor skills. However, the effect of tDCS on consolidation of newly learned ballistic movements remains unknown. The present study tested the hypothesis that tDCS over M1 enhances consolidation of ballistic thumb movements in healthy adults. Twenty-eight healthy subjects participated in an experiment with a single-blind, sham-controlled, between-group design. Fourteen subjects practiced a ballistic movement with their left thumb during dual-hemisphere tDCS. Subjects received 1mA anodal tDCS over the contralateral M1 and 1mA cathodal tDCS over the ipsilateral M1 for 25min during the training session. The remaining 14 subjects underwent identical training sessions, except that dual-hemisphere tDCS was applied for only the first 15s (sham group). All subjects performed the task again at 1h and 24h later. Primary measurements examined improvement in peak acceleration of the ballistic thumb movement at 1h and 24h after stimulation. Improved peak acceleration was significantly greater in the tDCS group (144.2±15.1%) than in the sham group (98.7±9.1%) (Pballistic thumb movement in healthy adults. Dual-hemisphere tDCS over M1 may be useful to improve elemental motor behaviors, such as ballistic movements, in patients with subcortical strokes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. Sympathetic stimulation alters left ventricular relaxation and chamber size.

    Science.gov (United States)

    Burwash, I G; Morgan, D E; Koilpillai, C J; Blackmore, G L; Johnstone, D E; Armour, J A

    1993-01-01

    Alterations in left ventricular (LV) contractility, relaxation, and chamber dimensions induced by efferent sympathetic nerve stimulation were investigated in nine anesthetized open-chest dogs in sinus rhythm. Supramaximal stimulation of acutely decentralized left stellate ganglia augmented heart rate, LV systolic pressure, and rate of LV pressure rise (maximum +dP/dt, 1,809 +/- 191 to 6,304 +/- 725 mmHg/s) and fall (maximum -dP/dt, -2,392 +/- 230 to -4,458 +/- 482 mmHg/s). It also reduced the time constant of isovolumic relaxation, tau (36.5 +/- 4.8 to 14.9 +/- 1.1 ms). Simultaneous two-dimensional echocardiography recorded reductions in end-diastolic and end-systolic LV cross-sectional chamber areas (23 and 31%, respectively), an increase in area ejection fraction (32%), and increases in end-diastolic and end-systolic wall thicknesses (14 and 13%, respectively). End-systolic and end-diastolic wall stresses were unchanged by stellate ganglion stimulation (98 +/- 12 to 95 +/- 9 dyn x 10(3)/cm2; 6.4 +/- 2.4 to 2.4 +/- 0.3 dyn x 10(3)/cm2, respectively). Atrial pacing to similar heart rates did not alter monitored indexes of contractility. Dobutamine and isoproterenol induced changes similar to those resulting from sympathetic neuronal stimulation. These data indicate that when the efferent sympathetic nervous system increases left ventricular contractility and relaxation, concomitant reductions in systolic and diastolic dimensions of that chamber occur that are associated with increasing wall thickness such that LV wall stress changes are minimized.

  18. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere.

    Science.gov (United States)

    Yoncheva, Yuliya; Maurer, Urs; Zevin, Jason D; McCandliss, Bruce D

    2014-08-15

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective attention to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by manipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data-driven source localization analyses revealed that selective attention to phonology led to significantly greater recruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings suggest a key role for selective attention in on-line phonological computations. Furthermore, these findings motivate future research on the role that neural mechanisms of attention may

  19. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere

    Science.gov (United States)

    Yoncheva; Maurer, Urs; Zevin, Jason; McCandliss, Bruce

    2015-01-01

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological

  20. A case of expressive-vocal amusia in a right-handed patient with left hemispheric cerebral infarction.

    Science.gov (United States)

    Uetsuki, Shizuka; Kinoshita, Hiroshi; Takahashi, Ryuichi; Obata, Satoshi; Kakigi, Tatsuya; Wada, Yoshiko; Yokoyama, Kazumasa

    2016-03-01

    A 53-year-old right-handed woman had an extensive lesion in the left hemisphere due to an infarction caused by vasospasm secondary to subarachnoid bleeding. She exhibited persistent expressive-vocal amusia with no symptoms of aphasia. Evaluation of the patient's musical competence using the Montreal Battery for Evaluation of Amusia, rhythm reproduction tests, acoustic analysis of pitch upon singing familiar music, Japanese standard language tests, and other detailed clinical examinations revealed that her amusia was more dominantly related to pitch production. The intactness of her speech provided strong evidence that the right hemisphere played a major role in her linguistic processing. Data from functional magnetic resonance imaging while she was singing a familiar song, a scale, and reciting lyrics indicated that perilesional residual activation in the left hemisphere was associated with poor pitch production, while right hemispheric activation was involved in linguistic processing. The localization of infarction more anterior to the left Sylvian fissure might be related to the dominant deficits in expressive aspects of the singing of the patient. Compromised motor programming producing a single tone may have made a major contribution to her poor singing. Imperfect auditory feedback due to borderline perceptual ability or improper audio-motor associations might also have played a role. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. You may now kiss the bride: Interpretation of social situations by individuals with right or left hemisphere injury.

    Science.gov (United States)

    Baldo, Juliana V; Kacinik, Natalie A; Moncrief, Amber; Beghin, Francesca; Dronkers, Nina F

    2016-01-08

    While left hemisphere damage (LHD) has been clearly shown to cause a range of language impairments, patients with right hemisphere damage (RHD) also exhibit communication deficits, such as difficulties processing prosody, discourse, and social contexts. In the current study, individuals with RHD and LHD were directly compared on their ability to interpret what a character in a cartoon might be saying or thinking, in order to better understand the relative role of the right and left hemisphere in social communication. The cartoon stimuli were manipulated so as to elicit more or less formulaic responses (e.g., a scene of a couple being married by a priest vs. a scene of two people talking, respectively). Participants' responses were scored by blind raters on how appropriately they captured the gist of the social situation, as well as how formulaic and typical their responses were. Results showed that RHD individuals' responses were rated as significantly less appropriate than controls and were also significantly less typical than controls and individuals with LHD. Individuals with RHD produced a numerically lower proportion of formulaic expressions than controls, but this difference was only a trend. Counter to prediction, the pattern of performance across participant groups was not affected by how constrained/formulaic the social situation was. The current findings expand our understanding of the roles that the right and left hemispheres play in social processing and communication and have implications for the potential treatment of social communication deficits in individuals with RHD. Published by Elsevier Ltd.

  2. The effect of viewing speech on auditory speech processing is different in the left and right hemispheres.

    Science.gov (United States)

    Davis, Chris; Kislyuk, Daniel; Kim, Jeesun; Sams, Mikko

    2008-11-25

    We used whole-head magnetoencephalograpy (MEG) to record changes in neuromagnetic N100m responses generated in the left and right auditory cortex as a function of the match between visual and auditory speech signals. Stimuli were auditory-only (AO) and auditory-visual (AV) presentations of /pi/, /ti/ and /vi/. Three types of intensity matched auditory stimuli were used: intact speech (Normal), frequency band filtered speech (Band) and speech-shaped white noise (Noise). The behavioural task was to detect the /vi/ syllables which comprised 12% of stimuli. N100m responses were measured to averaged /pi/ and /ti/ stimuli. Behavioural data showed that identification of the stimuli was faster and more accurate for Normal than for Band stimuli, and for Band than for Noise stimuli. Reaction times were faster for AV than AO stimuli. MEG data showed that in the left hemisphere, N100m to both AO and AV stimuli was largest for the Normal, smaller for Band and smallest for Noise stimuli. In the right hemisphere, Normal and Band AO stimuli elicited N100m responses of quite similar amplitudes, but N100m amplitude to Noise was about half of that. There was a reduction in N100m for the AV compared to the AO conditions. The size of this reduction for each stimulus type was same in the left hemisphere but graded in the right (being largest to the Normal, smaller to the Band and smallest to the Noise stimuli). The N100m decrease for the Normal stimuli was significantly larger in the right than in the left hemisphere. We suggest that the effect of processing visual speech seen in the right hemisphere likely reflects suppression of the auditory response based on AV cues for place of articulation.

  3. Left prefrontal repetitive transcranial magnetic stimulation in schizophrenia.

    Science.gov (United States)

    Holi, Matti M; Eronen, Markku; Toivonen, Kari; Toivonen, Päivi; Marttunen, Mauri; Naukkarinen, Hannu

    2004-01-01

    In a double-blind, controlled study, we examined the therapeutic effects of high-frequency left prefrontal repetitive transcranial magnetic stimulation (rTMS) on schizophrenia symptoms. A total of 22 chronic hospitalized schizophrenia patients were randomly assigned to 2 weeks (10 sessions) of real or sham rTMS. rTMS was given with the following parameters: 20 trains of 5-second 10-Hz stimulation at 100 percent motor threshold, 30 seconds apart. Effects on positive and negative symptoms, self-reported symptoms, rough neuropsychological functioning, and hormones were assessed. Although there was a significant improvement in both groups in most of the symptom measures, no real differences were found between the groups. A decrease of more than 20 percent in the total PANSS score was found in 7 control subjects but only 1 subject from the real rTMS group. There was no change in hormone levels or neuropsychological functioning, measured by the MMSE, in either group. Left prefrontal rTMS (with the used parameters) seems to produce a significant nonspecific effect of the treatment procedure but no therapeutic effect in the most chronic and severely ill schizophrenia patients.

  4. Is a lone right hemisphere enough? Neurolinguistic architecture in a case with a very early left hemispherectomy.

    Science.gov (United States)

    Danelli, Laura; Cossu, Giuseppe; Berlingeri, Manuela; Bottini, Gabriella; Sberna, Maurizio; Paulesu, Eraldo

    2013-01-01

    We studied the linguistic profile and neurolinguistic organization of a 14-year-old adolescent (EB) who underwent a left hemispherectomy at the age of 2.5 years. After initial aphasia, his language skills recovered within 2 years, with the exception of some word finding problems. Over the years, the neuropsychological assessments showed that EB's language was near-to-normal, with the exception of lexical competence, which lagged slightly behind for both auditory and written language. Moreover, EB's accuracy and speed in both reading and writing words and non-words were within the normal range, whereas difficulties emerged in reading loan words and in tasks with homophones. EB's functional magnetic resonance imaging (fMRI) patterns for several linguistic and metalinguistic tasks were similar to those observed in the dominant hemisphere of controls, suggesting that his language network conforms to a left-like linguistic neural blueprint. However, a stronger frontal recruitment suggests that linguistic tasks are more demanding for him. Finally, no specific reading activation was found in EB's occipitotemporal region, a finding consistent with the surface dyslexia-like behavioral pattern of the patient. While a lone right hemisphere may not be sufficient to guarantee full blown linguistic competences after early hemispherectomy, EB's behavioral and fMRI patterns suggest that his lone right hemisphere followed a left-like blueprint of the linguistic network.

  5. Cortical activity in the left and right hemispheres during language-related brain functions

    DEFF Research Database (Denmark)

    Lassen, N A; Larsen, B

    1980-01-01

    of cortical activity seen during various language functions, emphasizing the practically symmetrical involvement in both hemispheres. A case of auditive agnosia (with complete cortical word deafness but preserved pure tone thresholds) is presented. The patient's normal speech constitutes evidence...

  6. Electroencephalographic (eeg coherence between visual and motor areas of the left and the right brain hemisphere while performing visuomotor task with the right and the left hand

    Directory of Open Access Journals (Sweden)

    Simon Brežan

    2007-09-01

    Full Text Available Background: Unilateral limb movements are based on the activation of contralateral primary motor cortex and the bilateral activation of premotor cortices. Performance of a visuomotor task requires a visuomotor integration between motor and visual cortical areas. The functional integration (»binding« of different brain areas, is probably mediated by the synchronous neuronal oscillatory activity, which can be determined by electroencephalographic (EEG coherence analysis. We introduced a new method of coherence analysis and compared coherence and power spectra in the left and right hemisphere for the right vs. left hand visuomotor task, hypothesizing that the increase in coherence and decrease in power spectra while performing the task would be greater in the contralateral hemisphere.Methods: We analyzed 6 healthy subjects and recorded their electroencephalogram during visuomotor task with the right or the left hand. For data analysis, a special Matlab computer programme was designed. The results were statistically analysed by a two-way analysis of variance, one-way analysis of variance and post-hoc t-tests with Bonferroni correction.Results: We demonstrated a significant increase in coherence (p < 0.05 for the visuomotor task compared to control tasks in alpha (8–13 Hz in beta 1 (13–20 Hz frequency bands between visual and motor electrodes. There were no significant differences in coherence nor power spectra depending on the hand used. The changes of coherence and power spectra between both hemispheres were symmetrical.Conclusions: In previous studies, a specific increase of coherence and decrease of power spectra for the visuomotor task was found, but we found no conclusive asymmetries when performing the task with right vs. left hand. This could be explained in a way that increases in coherence and decreases of power spectra reflect symmetrical activation and cooperation between more complex visual and motor brain areas.

  7. The association between hemispheric specialization for language production and for spatial attention depends on left-hand preference strength.

    Science.gov (United States)

    Zago, Laure; Petit, Laurent; Mellet, Emmanuel; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2016-12-01

    Cerebral lateralization for language production and spatial attention and their relationships with manual preference strength (MPS) were assessed in a sample of 293 healthy volunteers, including 151 left-handers, using fMRI during covert sentence production (PROD) and line bisection judgment (LBJ) tasks, as compared to high- and low-level reference tasks. At the group level, we found the expected complementary hemispheric specialization (HS) with leftward asymmetries for PROD within frontal and temporal regions and rightward asymmetries for LBJ within frontal and posterior occipito-parieto-temporal regions. Individual hemispheric (HLI) and regional (frontal and occipital) lateralization indices (LI) were then calculated on the activation maps for PROD and LBJ. We found a correlation between the degree of rightward cerebral asymmetry and the leftward behavioral attentional bias recorded during LBJ task. This correlation was found when LBJ-LI was computed over the hemispheres, in the frontal lobes, but not in the occipital lobes. We then investigated whether language production and spatial attention cerebral lateralization relate to each other, and whether manual preference was a variable that impacted the complementary HS of these functions. No correlation was found between spatial and language LIs in the majority of our sample of participants, including right-handers with a strong right-hand preference (sRH, n=97) and mixed-handers (MH, n=97), indicating that these functions lateralized independently. By contrast, in the group of left-handers with a strong left-hand preference (sLH, n= 99), a negative correlation was found between language and spatial lateralization. This negative correlation was found when LBJ-LI and PROD-LI were computed over the hemispheres, in the frontal lobes and between the occipital lobes for LBJ and the frontal lobes for PROD. These findings underline the importance to include sLH in the study sample to reveal the underlying mechanisms of

  8. Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia.

    Science.gov (United States)

    Marangolo, Paola; Fiori, Valentina; Cipollari, Susanna; Campana, Serena; Razzano, Carmelina; Di Paola, Margherita; Koch, Giacomo; Caltagirone, Carlo

    2013-11-01

    Several studies have already shown that transcranial direct current stimulation (tDCS) is a useful tool for enhancing recovery in aphasia. However, all tDCS studies have previously investigated the effects using unihemisperic stimulation. No reports to date have examined the role of bihemispheric tDCS on aphasia recovery. Here, eight aphasic persons with apraxia of speech underwent intensive language therapy in two different conditions: real bihemispheric anodic ipsilesional stimulation over the left Broca's area and cathodic contralesional stimulation over the right homologue of Broca's area, and a sham condition. In both conditions, patients underwent concurrent language therapy for their apraxia of speech. The language treatment lasted 10 days (Monday to Friday, then weekend off, then Monday to Friday). There was a 14-day intersession interval between the real and the sham conditions. In all patients, language measures were collected before (T0), at the end of (T10) and 1 week after the end of (F/U) treatment. Results showed that after simultaneous excitatory stimulation to the left frontal hemisphere and inhibitory stimulation to the right frontal hemisphere regions, patients exhibited a significant recovery not only in terms of better accuracy and speed in articulating the treated stimuli but also in other language tasks (picture description, noun and verb naming, word repetition, word reading) which persisted in the follow-up session. Taken together, these data suggest that bihemispheric anodic ipsilesional and cathodic contralesional stimulation in chronic aphasia patients may affect the treated function, resulting in a positive influence on different language tasks. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Meningiomatosis restricted to the left cerebral hemisphere with acute clinical deterioration: Case presentation and discussion of treatment options.

    Science.gov (United States)

    Ohla, Victoria; Scheiwe, Christian

    2015-01-01

    True multiple meningiomas are defined as meningiomas occurring at several intracranial locations simultaneously without the presence of neurofibromatosis. Though the prognosis does not differ from benign solitary meningiomas, the simultaneous occurrence of different grades of malignancy has been reported in one-third of patients with multiple meningiomas. Due to its rarity, unclear etiology, and questions related to proper management, we are presenting our case of meningiomatosis and discuss possible pathophysiological mechanisms. We illustrate the case of a 55-year-old female with multiple meningothelial meningeomas exclusively located in the left cerebral hemisphere. The patient presented with acute vigilance decrement, aphasia, and vomiting. Further deterioration with sopor and nondirectional movements required oral intubation. Emergent magnetic resonance imaging (MRI) with MR-angiography disclosed a massive midline shift to the right due to widespread, plaque-like lesions suspicious for meningeomatosis, purely restricted to the left cerebral hemisphere. Emergency partial tumor resection was performed. Postoperative computed tomography (CT) scan showed markedly reduction of cerebral edema and midline shift. After tapering the sedation a right-sided hemiparesis resolved within 2 weeks, leaving the patient neurologically intact. Although multiple meningeomas are reported frequently, the presence of meningeomatosis purely restricted to one cerebral hemisphere is very rare. As with other accessible and symptomatic lesions, the treatment of choice is complete resection with clean margins to avoid local recurrence. In case of widespread distribution a step-by-step resection with the option of postoperative radiation of tumor remnants may be an option.

  10. Organizational strategy influence on visual memory performance after stroke: cortical/subcortical and left/right hemisphere contrasts.

    Science.gov (United States)

    Lange, G; Waked, W; Kirshblum, S; DeLuca, J

    2000-01-01

    To examine how organizational strategy at encoding influences visual memory performance in stroke patients. Case control study. Postacute rehabilitation hospital. Stroke patients with right hemisphere damage (n = 20) versus left hemisphere damage (n = 15), and stroke patients with cortical damage (n = 11) versus subcortical damage (n = 19). Organizational strategy scores, recall performance on the Rey-Osterrieth Complex Figure (ROCF). Results demonstrated significantly greater organizational impairment and less accurate copy performance (i.e., encoding of visuospatial information on the ROCF) in the right compared to the left hemisphere group, and in the cortical relative to the subcortical group. Organizational strategy and copy accuracy scores were significantly related to each other. The absolute amount of immediate and delayed recall was significantly associated with poor organizational strategy scores. However, relative to the amount of visual information originally encoded, memory performances did not differ between groups. These findings suggest that visual memory impairments after stroke may be caused by a lack of organizational strategy affecting information encoding, rather than an impairment in memory storage or retrieval.

  11. Co-speech hand movements during narrations: What is the impact of right vs. left hemisphere brain damage?

    Science.gov (United States)

    Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda

    2016-12-01

    Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network.

    Science.gov (United States)

    Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi

    2017-01-01

    Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to

  13. Hemispheric Dominance for Stereognosis in a Patient With an Infarct of the Left Postcentral Sensory Hand Area.

    Science.gov (United States)

    Moll, Jorge; de Oliveira-Souza, Ricardo

    2017-09-01

    The concept of left hemispheric dominance for praxis, speech, and language has been one of the pillars of neurology since the mid-19th century. In 1906, Hermann Oppenheim reported a patient with bilateral stereoagnosia (astereognosis) caused by a left parietal lobe tumor and proposed that the left hemisphere was also dominant for stereognosis. Surprisingly, few cases of bilateral stereoagnosia caused by a unilateral cerebral lesion have been documented in the literature since then. Here we report a 75-year-old right-handed man who developed bilateral stereoagnosia after suffering a small infarct in the crown of the left postcentral gyrus. He could not recognize objects with either hand, but retained the ability to localize stimuli applied to the palm of his left (ipsilesional) hand. He was severely disabled in ordinary activities requiring the use of his hands. The lesion corresponded to Brodmann area 1, where probabilistic anatomic, functional, and electrophysiologic studies have located one of the multiple somatosensory representations of the hand. The lesion was in a strategic position to interrupt both the processing of afferent tactile information issuing from the primary somatosensory cortex (areas 3a and 3b) and the forward higher-order processing in area 2, the secondary sensory cortex, and the contralateral area 1. The lesion also deprived the motor hand area of its afferent regulation from the sensory hand area (grasping), while leaving intact the visuomotor projections from the occipital cortex (reaching). Our patient supports Oppenheim's proposal that the left postcentral gyrus of some individuals is dominant for stereognosis.

  14. Words, Hemispheres, and Dissociable Subsystems: The Effects of Exposure Duration, Case Alternation, Priming, and Continuity of Form on Word Recognition in the Left and Right Visual Fields

    Science.gov (United States)

    Ellis, Andrew W.; Ansorge, Lydia; Lavidor, Michal

    2007-01-01

    Three experiments explore aspects of the dissociable neural subsystems theory of hemispheric specialisation proposed by Marsolek and colleagues, and in particular a study by [Deason, R. G., & Marsolek, C. J. (2005). A critical boundary to the left-hemisphere advantage in word processing. "Brain and Language," 92, 251-261]. Experiment 1A showed…

  15. Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.

    Science.gov (United States)

    Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R

    1999-04-06

    Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.

  16. Understanding Actions of Others: The Electrodynamics of the Left and Right Hemispheres. A High-Density EEG Neuroimaging Study

    Science.gov (United States)

    Ortigue, Stephanie; Sinigaglia, Corrado; Rizzolatti, Giacomo; Grafton, Scott T.

    2010-01-01

    Background When we observe an individual performing a motor act (e.g. grasping a cup) we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping) and the intention underlying it (i.e. grasping for drinking). Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer's capacity to understand what the agent is doing and why. Methodology/Principal Findings Volunteers were presented with two-frame video-clips. The first frame (T0) showed an object with or without context; the second frame (T1) showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs) were recorded time-locked with the frame showing the hand-object interaction (T1). The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatio-temporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1) bilateral posterior cortical activations; 2) a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3) a significant increase of the activations of the right temporo-parietal region with simultaneously co-active left hemispheric sources, and 4) a significant global decrease of cortical activity accompanied by the appearance of activation of the orbito-frontal cortex. Conclusions/Significance We conclude that the early striking left hemisphere involvement is due to the activation of a lateralized action-observation/action execution network. The activation of this lateralized network mediates the

  17. Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study.

    Directory of Open Access Journals (Sweden)

    Stephanie Ortigue

    Full Text Available BACKGROUND: When we observe an individual performing a motor act (e.g. grasping a cup we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping and the intention underlying it (i.e. grasping for drinking. Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer's capacity to understand what the agent is doing and why. METHODOLOGY/PRINCIPAL FINDINGS: Volunteers were presented with two-frame video-clips. The first frame (T0 showed an object with or without context; the second frame (T1 showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs were recorded time-locked with the frame showing the hand-object interaction (T1. The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatio-temporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1 bilateral posterior cortical activations; 2 a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3 a significant increase of the activations of the right temporo-parietal region with simultaneously co-active left hemispheric sources, and 4 a significant global decrease of cortical activity accompanied by the appearance of activation of the orbito-frontal cortex. CONCLUSIONS/SIGNIFICANCE: We conclude that the early striking left hemisphere involvement is due to the activation of a lateralized action-observation/action execution network. The activation of this lateralized network

  18. When left-hemisphere reading is compromised: Comparing reading ability in participants after left cerebral hemispherectomy and participants with developmental dyslexia.

    Science.gov (United States)

    Katzir, Tami; Christodoulou, Joanna A; de Bode, Stella

    2016-10-01

    We investigated reading skills in individuals who have undergone left cerebral hemispherectomy and in readers with developmental dyslexia to understand diverse characteristics contributing to reading difficulty. Although dyslexia is a developmental disorder, left hemispherectomy requires that patients (re)establish the language process needed to perform the language-based tasks in the nondominant (right) hemisphere to become readers. Participants with developmental dyslexia (DD; n = 11) and participants who had undergone left hemispherectomy (HEMI; n = 11) were matched on age and gender, and were compared on timed and untimed measures of single word and pseudo-word reading. The hemispherectomy group was subdivided into prenatal (in utero) and postnatal (>3 years) insult groups, indicating the timing of the primary lesion that ultimately required surgical intervention. On an untimed reading measure, the readers with DD were comparable to individuals who had undergone left hemispherectomy due to prenatal insult, but both scored higher than the postnatal hemispherectomy group. Timed word reading differed across groups. The hemispherectomy prenatal subgroup had low average scores on both timed and untimed tests. The group with dyslexia had average scores on untimed measures and below average scores on timed reading. The hemispherectomy postnatal group had the lowest scores among the groups by a significant margin, and the most pronounced reading difficulty. Patients with prenatal lesions leading to an isolated right hemisphere (RH) have the potential to develop reading to a degree comparable to that in persons with dyslexia for single word reading. This potential sharply diminishes in individuals who undergo hemispherectomy due to postnatal insult. The higher scores of the prenatal hemispherectomy group on timed reading suggest that under these conditions, individuals with an isolated RH can compensate to a significant degree. Wiley Periodicals, Inc. © 2016

  19. The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes.

    Science.gov (United States)

    Donkervoort, Mireille; Dekker, Joost; Deelman, Betto

    2006-12-01

    To study the course of apraxia and daily life functioning (ADL) in left hemisphere stroke patients with apraxia. Prospective cohort study. Rehabilitation centres and nursing homes. One hundred and eight left hemisphere stroke patients with apraxia, hospitalized in rehabilitation centres and nursing homes. ADL-observations, Barthel ADL Index, Apraxia Test, Motricity Index. During the study period of 20 weeks, patients showed small improvements in apraxia (standardized mean differences of 0.19 and 0.33) and medium-sized improvements in ADL functioning (standardized mean differences from 0.37 to 0.61). About 88% of the patients were still apraxic at week 20. Less improvement in apraxia was observed in initially less severe apraxic patients. Less improvement in ADL functioning was found to be associated with more severe apraxia, a more independent initial ADL score, higher age, impaired motor functioning and longer time between stroke and first assessment. Apraxia in stroke patients is a persistent disorder, which has an adverse influence on ADL recovery.

  20. A tale of two hemispheres: Contrasting socioemotional dysfunction in right- versus left-lateralised semantic dementia

    Directory of Open Access Journals (Sweden)

    Muireann Irish

    Full Text Available ABSTRACT Objective: Semantic dementia, a subtype of frontotemporal lobar degeneration, is characterised by cross-modal loss of conceptual knowledge attributable to progressive degeneration of the left anterior temporal lobe. Much less is known regarding the clinical presentation of SD patients with predominantly right-lateralised atrophy. Recent reports emphasise marked socioemotional and behavioural disturbances in such cases. Given the importance of the right anterior temporal lobes in social cognition, we hypothesised that socioemotional functioning would be disproportionately affected in right versus left-lateralised SD cases. Methods: We assessed well-characterised cases of predominantly right (n=10 and left (n=12 SD and 20 matched healthy controls on tests of emotion processing and interpersonal functioning. Results: Right SD cases showed disproportionate difficulties in the recognition of positive and negative facial emotions, specifically happiness and anger, compared with left SD cases. Deficits in anger recognition persisted in right SD despite covarying for facial and semantic processing. On a contextually rich task of emotion recognition using multimodal videos, no subgroup differences were evident. Finally, empathic concern was rated as significantly lower by caregivers of right versus left SD cases. Overall, the extent of socioemotional disturbance was associated with the degree of behavioural changes in SD. Conclusion: Our results reveal considerable overlap in the extent to which socioemotional processes are disrupted in left and right-lateralised cases of SD. Notably, however, right SD cases show disproportionate deficits for recognition of facial emotions and the capacity for empathic concern, supporting a specialised role for the right anterior temporal lobes in mediating these cognitive functions.

  1. The Role of Left Hemispheric Structures for Emotional Processing as a Monitor of Bodily Reaction and Felt Chill - a Case-Control Functional Imaging Study.

    Science.gov (United States)

    Grunkina, Viktoria; Holtz, Katharina; Klepzig, Kai; Neubert, Jörg; Horn, Ulrike; Domin, Martin; Hamm, Alfons O; Lotze, Martin

    2016-01-01

    Background: The particular function of the left anterior human insula on emotional arousal has been illustrated with several case studies. Only after left hemispheric insula lesions, patients lose their pleasure in habits such as listening to joyful music. In functional magnetic resonance imaging studies (fMRI) activation in the left anterior insula has been associated with both processing of emotional valence and arousal. Tight interactions with different areas of the prefrontal cortex are involved in bodily response monitoring and cognitive appraisal of a given stimulus. Therefore, a large left hemispheric lesion including the left insula should impair the bodily response of chill experience (objective chill response) but leave the cognitive aspects of chill processing (subjective chill response) unaffected. Methods: We investigated a patient (MC) with a complete left hemispheric media cerebral artery stroke, testing fMRI representation of pleasant (music) and unpleasant (harsh sounds) chill response. Results: Although chill response to both pleasant and unpleasant rated sounds was confirmed verbally at passages also rated as chilling by healthy participants, skin conductance response was almost absent in MC. For a healthy control (HC) objective and subjective chill response was positively associated. Bilateral prefrontal fMRI-response to chill stimuli was sustained in MC whereas insula activation restricted to the right hemisphere. Diffusion imaging together with lesion maps revealed that left lateral tracts were completely damaged but medial prefrontal structures were intact. Conclusion: With this case study we demonstrate how bodily response and cognitive appraisal are differentially participating in the internal monitor of chill response.

  2. Improved Spatial Ability Correlated with Left Hemisphere Dysfunction in Turner's Syndrome. Implications for Mechanism.

    Science.gov (United States)

    Rovet, Joanne F.

    This study contrasts the performance of a 17-year-old female subject with Turner's syndrome before and after developing left temporal lobe seizures, as a means of identifying the mechanism responsible for the Turner's syndrome spatial impairment. The results revealed a deficit in spatial processing before onset of the seizure disorder. Results…

  3. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Directory of Open Access Journals (Sweden)

    Stefania Balzarotti

    Full Text Available The dorsolateral prefrontal cortex (DLPFC is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  4. Effects of Unilateral Transcranial Direct Current Stimulation of Left Prefrontal Cortex on Processing and Memory of Emotional Visual Stimuli.

    Science.gov (United States)

    Balzarotti, Stefania; Colombo, Barbara

    2016-01-01

    The dorsolateral prefrontal cortex (DLPFC) is generally thought to be involved in affect and emotional processing; however, the specific contribution of each hemisphere continues to be debated. In the present study, we employed unilateral tDCS to test the unique contribution of left DLPFC in the encoding and retrieval of emotional stimuli in healthy subjects. Forty-two right handed undergraduate students received either anodal, cathodal or sham stimulation of left DLPFC while viewing neutral, pleasant, and unpleasant pictures. After completing a filler task, participants were asked to remember as many pictures as possible. Results showed that participants were able to remember a larger amount of emotional (both pleasant and unpleasant) pictures than of neutral ones, regardless of the type of tDCS condition. Participants who received anodal stimulation recalled a significantly higher number of pleasant images than participants in the sham and cathodal conditions, while no differences emerged in the recall of neutral and unpleasant pictures. We conclude that our results provide some support to the role of left prefrontal cortex in the encoding and retrieval of pleasant stimuli.

  5. Modulation of left primary motor cortex excitability after bimanual training and intermittent theta burst stimulation to left dorsal premotor cortex.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2014-03-15

    Bimanual visuomotor movement training (BMT) enhances the excitability of human preparatory premotor and primary motor (M1) cortices compared to unimanual movement. This occurs when BMT involves mirror symmetrical movements of both upper-limbs (in-phase) but not with non-symmetrical movements (anti-phase). The neural mechanisms mediating the effect of BMT is unclear, but may involve interhemispheric connections between homologous M1 representations as well as the dorsal premotor cortices (PMd). The purpose of this study is to assess how intermittent theta burst stimulation (iTBS) of the left PMd affects left M1 excitability, and the possible combined effects of iTBS to left PMd applied before a single session of BMT. Left M1 excitability was quantified using transcranial magnetic stimulation (TMS) in terms of both the amplitudes and spatial extent of motor evoked potentials (MEPs) for the extensor carpi radialis (ECR) before and multiple time points following (1) BMT, (2) iTBS to left PMd or (3) iTBS to left PMd and BMT. Although there was not a greater increase in either specific measure of M1 excitability due to the combination of the interventions, iTBS applied before BMT showed that both the spatial extent and global MEP amplitude for the ECR became larger in parallel, whereas the spatial extent was enhanced with BMT alone and global MEP amplitude was enhanced with iTBS to left PMd alone. These results suggest that the modulation of rapid functional M1 excitability associated with BMT and iTBS of the left PMd could operate under related early markers of neuro-plastic mechanisms, which may be expressed in concurrent and distinct patterns of M1 excitability. Critically, this work may guide rehabilitation training and stimulation techniques that modulate cortical excitability after brain injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Changes in regional cerebral blood flow in the right cortex homologous to left language areas are directly affected by left hemispheric damage in aphasic stroke patients: evaluation by Tc-ECD SPECT and novel analytic software.

    Science.gov (United States)

    Uruma, G; Kakuda, W; Abo, M

    2010-03-01

    The objective of this study was to clarify the influence of regional cerebral blood flow (rCBF) changes in language-relevant areas of the dominant hemisphere on rCBF in each region in the non-dominant hemisphere in post-stroke aphasic patients. The study subjects were 27 aphasic patients who suffered their first symptomatic stroke in the left hemisphere. In each subject, we measured rCBF by means of 99mTc-ethylcysteinate dimmer single photon emission computed tomography (SPECT). The SPECT images were analyzed by the statistical imaging analysis programs easy Z-score Imaging System (eZIS) and voxel-based stereotactic extraction estimation (vbSEE). Segmented into Brodmann Area (BA) levels, Regions of Interest (ROIs) were set in language-relevant areas bilaterally, and changes in the relative rCBF as average negative and positive Z-values were computed fully automatically. To assess the relationship between rCBF changes of each ROIs in the left and right hemispheres, the Spearman ranked correlation analysis and stepwise multiple regression analysis were applied. Globally, a negative and asymmetric influence of rCBF changes in the language-relevant areas of the dominant hemisphere on the right hemisphere was found. The rCBF decrease in left BA22 significantly influenced the rCBF increase in right BA39, BA40, BA44 and BA45. The results suggested that the chronic increase in rCBF in the right language-relevant areas is due at least in part to reduction in the trancallosal inhibitory activity of the language-dominant left hemisphere caused by the stroke lesion itself and that these relationships are not always symmetric.

  7. The Influence of Visual and Auditory Information on the Perception of Speech and Non-Speech Oral Movements in Patients with Left Hemisphere Lesions

    Science.gov (United States)

    Schmid, Gabriele; Thielmann, Anke; Ziegler, Wolfram

    2009-01-01

    Patients with lesions of the left hemisphere often suffer from oral-facial apraxia, apraxia of speech, and aphasia. In these patients, visual features often play a critical role in speech and language therapy, when pictured lip shapes or the therapist's visible mouth movements are used to facilitate speech production and articulation. This demands…

  8. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait.

    Science.gov (United States)

    Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G

    2017-02-01

    The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

  9. Contralesional Hemisphere Regulation of Transcranial Magnetic Stimulation-Induced Kinetic Coupling in the Poststroke Lower Limb

    OpenAIRE

    Tan, Andrew Q.; Dhaher, Yasin Y.

    2017-01-01

    Background The neural constraints underlying hemiparetic gait dysfunction are associated with abnormal kinetic outflow and altered muscle synergy structure. Recent evidence from our lab implicates the lesioned hemisphere in mediating the expression of abnormally coupled hip adduction and knee extension synergy, suggesting a role of cortical networks in the regulation of lower limb motor outflow poststroke. The potential contribution of contralesional hemisphere (CON-H) in regulating pareti...

  10. THE IMPACT OF LEFT HEMISPHERE STROKE ON FORCE CONTROL WITH FAMILIAR AND NOVEL OBJECTS: NEUROANATOMIC SUBSTRATES AND RELATIONSHIP TO APRAXIA

    Science.gov (United States)

    Dawson, Amanda M.; Buxbaum, Laurel J.; Duff, Susan V.

    2010-01-01

    Fingertip force scaling for lifting objects frequently occurs in anticipation of finger contact. An ongoing question concerns the types of memories that are used to inform predictive control. Object-specific information such as weight may be stored and retrieved when previously encountered objects are lifted again. Alternatively, visual size and shape cues may provide estimates of object density each time objects are encountered. We reasoned that differences in performance with familiar versus novel objects would provide support for the former possibility. Anticipatory force production with both familiar and novel objects was assessed in 6 left hemisphere stroke patients, 2 of whom exhibited deficient actions with familiar objects (ideomotor apraxia; IMA), along with 5 control subjects. In contrast to healthy controls and stroke participants without IMA, participants with IMA displayed poor anticipatory scaling with familiar objects. However, like the other groups, IMA participants learned to differentiate fingertip forces with repeated lifts of both familiar and novel objects. Finally, there was a significant correlation between damage to the inferior parietal and superior and middle temporal lobes, and impaired anticipatory control for familiar objects. These data support the hypotheses that anticipatory control during lifts of familiar objects in IMA patients are based on object-specific memories, and that the ventro-dorsal stream is involved in the long-term storage of internal models used for anticipatory scaling during object manipulation. PMID:19945445

  11. Different visual exploration of tool-related gestures in left hemisphere brain damaged patients is associated with poor gestural imitation.

    Science.gov (United States)

    Vanbellingen, Tim; Schumacher, Rahel; Eggenberger, Noëmi; Hopfner, Simone; Cazzoli, Dario; Preisig, Basil C; Bertschi, Manuel; Nyffeler, Thomas; Gutbrod, Klemens; Bassetti, Claudio L; Bohlhalter, Stephan; Müri, René M

    2015-05-01

    According to the direct matching hypothesis, perceived movements automatically activate existing motor components through matching of the perceived gesture and its execution. The aim of the present study was to test the direct matching hypothesis by assessing whether visual exploration behavior correlate with deficits in gestural imitation in left hemisphere damaged (LHD) patients. Eighteen LHD patients and twenty healthy control subjects took part in the study. Gesture imitation performance was measured by the test for upper limb apraxia (TULIA). Visual exploration behavior was measured by an infrared eye-tracking system. Short videos including forty gestures (20 meaningless and 20 communicative gestures) were presented. Cumulative fixation duration was measured in different regions of interest (ROIs), namely the face, the gesturing hand, the body, and the surrounding environment. Compared to healthy subjects, patients fixated significantly less the ROIs comprising the face and the gesturing hand during the exploration of emblematic and tool-related gestures. Moreover, visual exploration of tool-related gestures significantly correlated with tool-related imitation as measured by TULIA in LHD patients. Patients and controls did not differ in the visual exploration of meaningless gestures, and no significant relationships were found between visual exploration behavior and the imitation of emblematic and meaningless gestures in TULIA. The present study thus suggests that altered visual exploration may lead to disturbed imitation of tool related gestures, however not of emblematic and meaningless gestures. Consequently, our findings partially support the direct matching hypothesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Electrical Stimulation of Motor Cortex in the Uninjured Hemisphere after Chronic Unilateral Injury Promotes Recovery of Skilled Locomotion through Ipsilateral Control

    OpenAIRE

    Carmel, Jason B.; Kimura, Hiroki; Martin, John H.

    2014-01-01

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To ...

  13. Selected Gray Matter Volumes and Gender but Not Basal Ganglia nor Cerebellum Gyri Discriminate Left Versus Right Cerebral Hemispheres: Multivariate Analyses in human Brains at 3T.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Suarez-May, Marcela A; Favila, Rafael; Aguilar-Castañeda, Erika; Rios, Camilo

    2015-07-01

    Interest in the lateralization of the human brain is evident through a multidisciplinary number of scientific studies. Understanding volumetric brain asymmetries allows the distinction between normal development stages and behavior, as well as brain diseases. We aimed to evaluate volumetric asymmetries in order to select the best gyri able to classify right- versus left cerebral hemispheres. A cross-sectional study performed in 47 right-handed young-adults healthy volunteers. SPM-based software performed brain segmentation, automatic labeling and volumetric analyses for 54 regions involving the cerebral lobes, basal ganglia and cerebellum from each cerebral hemisphere. Multivariate discriminant analysis (DA) allowed the assembling of a predictive model. DA revealed one discriminant function that significantly differentiated left vs. right cerebral hemispheres: Wilks' λ = 0.008, χ(2) (9) = 238.837, P brain gyri are able to accurately classify left vs. right cerebral hemispheres by using a multivariate approach; the selected regions correspond to key brain areas involved in attention, internal thought, vision and language; our findings favored the concept that lateralization has been evolutionary favored by mental processes increasing cognitive efficiency and brain capacity. © 2015 Wiley Periodicals, Inc.

  14. Right: Left:: East: West. Evidence that individuals from East Asian and South Asian cultures emphasize right hemisphere functions in comparison to Euro-American cultures.

    Science.gov (United States)

    Rozin, Paul; Moscovitch, Morris; Imada, Sumio

    2016-09-01

    We present evidence that individuals from East or South Asian cultures (Japanese college students in Japan and East or South Asian born and raised college students in the USA) tend to exhibit default thinking that corresponds to right hemisphere holistic functions, as compared to Caucasian individuals from a Western culture (born and raised in the USA). In two lateralized tasks (locating the nose in a scrambled face, and global-local letter task), both Asian groups showed a greater right hemisphere bias than the Western group. In a third lateralized task, judging similarity in terms of visual form versus functional/semantic categorizations, there was not a reliable difference between the groups. On a classic, ambiguous face composed of vegetables, both Eastern groups displayed a greater right hemisphere (holistic face processing) bias than the Western group. These results support an "East - Right Hemisphere, West - Left Hemisphere" hypothesis, as originally proposed by Ornstein (1972). This hypothesis is open as to the degree to which social-cultural forces were involved in hemispheric specialization, or the opposite, or both. Our aim is to encourage a more thorough analysis of this hypothesis, suggesting both lateralization studies corresponding to documented East-West differences, and East-West studies corresponding to lateralization differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  16. Reliability of lower limb transcranial magnetic stimulation outcomes in the ipsi- and contralesional hemispheres of adults with chronic stroke.

    Science.gov (United States)

    Beaulieu, Louis-David; Massé-Alarie, Hugo; Ribot-Ciscar, Edith; Schneider, Cyril

    2017-07-01

    To investigate the ability of transcranial magnetic stimulation (TMS) outcomes in the chronic stroke population to (i) track individual plastic changes and (ii) detect differences between individuals. To this end, intrarater "test-retest" reliability (relative and absolute) was tested for the ipsilesional and contralesional hemispheres. Thirteen participants with a unilateral stroke (≥6months ago) and sensorimotor impairments were enrolled. Single and paired-pulse TMS outcomes were obtained from the primary motor cortex (M1) representation of the tibialis anterior muscle in both hemispheres and at two sessions separated by one week. The standard error of the measurement (SEM eas ), minimal detectable change (MDC) and intraclass correlation coefficient (ICC) were studied. Active motor threshold and latency of motor evoked potentials provided the lowest SEM eas and highest ICCs for both ipsi- and contralesional hemispheres. However, MDC were generally large, thus questioning the use of TMS outcomes to track individual plastic changes of M1. Our study provided supporting evidence of good to excellent intrarater reliability for a few TMS outcomes and proposed recommendations on the interpretation and the use of that knowledge in future work. Psychometric properties of TMS measures should be further addressed in order to better understand how to refine their use in clinical settings. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Effects of mental rotation on acalculia: differences in the direction of mental rotation account for the differing characteristics of acalculia induced by right and left hemispheric brain injury.

    Science.gov (United States)

    Asada, Tomohiko; Takayama, Yoshihiro; Oita, Jiro; Fukuyama, Hidenao

    2014-04-01

    We observed a 59-year-old right-handed man with an infarction in his right-middle cerebral artery that included the parietal lobe, who abnormally manipulated mental images in the horizontal direction, resulting in calculation disturbances. Three years later, the patient suffered an infarction in the left parietal lobe and displayed abnormalities during the creation of mental images; i.e., he rotated them in the vertical direction, which again resulted in calculation disturbances. These mental imagery disturbances might indicate that a common acalculia mechanism exists between the right and left hemispheres.

  18. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    Science.gov (United States)

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  19. Direct current stimulation of the left temporoparietal junction modulates dynamic humor appreciation.

    Science.gov (United States)

    Slaby, Isabella; Holmes, Amanda; Moran, Joseph M; Eddy, Marianna D; Mahoney, Caroline R; Taylor, Holly A; Brunyé, Tad T

    2015-11-11

    The aim of this study was to evaluate the influence of transcranial direct current stimulation targeting the left temporoparietal junction (TPJ) on humor appreciation during a dynamic video rating task. In a within-participants design, we targeted the left TPJ with anodal, cathodal, or no transcranial direct current stimulation, centered at electrode site C3 using a 4×1 targeted stimulation montage. During stimulation, participants dynamically rated a series of six stand-up comedy videos for perceived humor. We measured event-related (time-locked to crowd laughter) modulation of humor ratings as a function of stimulation condition. Results showed decreases in rated humor during anodal (vs. cathodal or none) stimulation; this pattern was evident for the majority of videos and was only partially predicted by individual differences in humor style. We discuss the possibility that upregulation of neural circuits involved in the theory of mind and empathizing with others may reduce appreciation of aggressive humor. In conclusion, the present data show that neuromodulation of the TPJ can alter the mental processes underlying humor appreciation, suggesting critical involvement of this cortical region in detecting, comprehending, and appreciating humor.

  20. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.

    Science.gov (United States)

    Kemerdere, Rahsan; de Champfleur, Nicolas Menjot; Deverdun, Jérémy; Cochereau, Jérôme; Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2016-01-01

    The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.

  1. Hemispheric specialisation in selective attention and short-term memory: A fine-coarse model of left and right ear disadvantages

    Directory of Open Access Journals (Sweden)

    John E. Marsh

    2013-12-01

    Full Text Available Serial short-term memory is impaired by irrelevant sound, particularly when the sound changes acoustically. This acoustic effect is larger when the sound is presented to the left compared to the right ear (a left-ear disadvantage. Serial memory appears relatively insensitive to distraction from the semantic properties of a background sound. In contrast, short-term free recall of semantic-category exemplars is impaired by the semantic properties of background speech and relatively insensitive to the sound’s acoustic properties. This semantic effect is larger when the sound is presented to the right compared to the left ear (a right-ear disadvantage. In this paper, we outline a speculative neurocognitive fine-coarse model of these hemispheric differences in relation to short-term memory and selective attention, and explicate empirical directions in which this model can be critically evaluated.

  2. Transcranial direct current stimulation of the left dorsolateral prefrontal cortex shifts preference of moral judgments.

    Directory of Open Access Journals (Sweden)

    Maria Kuehne

    Full Text Available Attitude to morality, reflecting cultural norms and values, is considered unique to human social behavior. Resulting moral behavior in a social environment is controlled by a widespread neural network including the dorsolateral prefrontal cortex (DLPFC, which plays an important role in decision making. In the present study we investigate the influence of neurophysiological modulation of DLPFC reactivity by means of transcranial direct current stimulation (tDCS on moral reasoning. For that purpose we administered anodal, cathodal, and sham stimulation of the left DLPFC while subjects judged the appropriateness of hard moral personal dilemmas. In contrast to sham and cathodal stimulation, anodal stimulation induced a shift in judgment of personal moral dilemmas towards more non-utilitarian actions. Our results demonstrate that alterations of left DLPFC activity can change moral judgments and, in consequence, provide a causal link between left DLPFC activity and moral reasoning. Most important, the observed shift towards non-utilitarian actions suggests that moral decision making is not a permanent individual trait but can be manipulated; consequently individuals with boundless, uncontrollable, and maladaptive moral behavior, such as found in psychopathy, might benefit from neuromodulation-based approaches.

  3. Transient Beneficial Effects of Excitatory Theta Burst Stimulation in a Patient with Phonological Agraphia after Left Supramarginal Gyrus Infarction

    Science.gov (United States)

    Nardone, Raffaele; De Blasi, Pierpaolo; Zuccoli, Giulio; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2012-01-01

    We report a patient showing isolated phonological agraphia after an ischemic stroke involving the left supramarginal gyrus (SMG). In this patient, we investigated the effects of focal repetitive transcranial magnetic stimulation (rTMS) given as theta burst stimulation (TBS) over the left SMG, corresponding to the Brodmann area (BA) 40. The patient…

  4. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    Science.gov (United States)

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  5. Inference comprehension in text reading: Performance of individuals with right- versus left-hemisphere lesions and the influence of cognitive functions.

    Directory of Open Access Journals (Sweden)

    Marcela Lima Silagi

    Full Text Available Right-hemisphere lesions (RHL may impair inference comprehension. However, comparative studies between left-hemisphere lesions (LHL and RHL are rare, especially regarding reading comprehension. Moreover, further knowledge of the influence of cognition on inferential processing in this task is needed.To compare the performance of patients with RHL and LHL on an inference reading comprehension task. We also aimed to analyze the effects of lesion site and to verify correlations between cognitive functions and performance on the task.Seventy-five subjects were equally divided into the groups RHL, LHL, and control group (CG. The Implicit Management Test was used to evaluate inference comprehension. In this test, subjects read short written passages and subsequently answer five types of questions (explicit, logical, distractor, pragmatic, and other, which require different types of inferential reasoning. The cognitive functional domains of attention, memory, executive functions, language, and visuospatial abilities were assessed using the Cognitive Linguistic Quick Test (CLQT.The LHL and RHL groups presented difficulties in inferential comprehension in comparison with the CG. However, the RHL group presented lower scores than the LHL group on logical, pragmatic and other questions. A covariance analysis did not show any effect of lesion site within the hemispheres. Overall, all cognitive domains were correlated with all the types of questions from the inference test (especially logical, pragmatic, and other. Attention and visuospatial abilities affected the scores of both the RHL and LHL groups, and only memory influenced the performance of the RHL group.Lesions in either hemisphere may cause difficulties in making inferences during reading. However, processing more complex inferences was more difficult for patients with RHL than for those with LHL, which suggests that the right hemisphere plays an important role in tasks with higher comprehension

  6. Inference comprehension in text reading: Performance of individuals with right- versus left-hemisphere lesions and the influence of cognitive functions.

    Science.gov (United States)

    Silagi, Marcela Lima; Radanovic, Marcia; Conforto, Adriana Bastos; Mendonça, Lucia Iracema Zanotto; Mansur, Leticia Lessa

    2018-01-01

    Right-hemisphere lesions (RHL) may impair inference comprehension. However, comparative studies between left-hemisphere lesions (LHL) and RHL are rare, especially regarding reading comprehension. Moreover, further knowledge of the influence of cognition on inferential processing in this task is needed. To compare the performance of patients with RHL and LHL on an inference reading comprehension task. We also aimed to analyze the effects of lesion site and to verify correlations between cognitive functions and performance on the task. Seventy-five subjects were equally divided into the groups RHL, LHL, and control group (CG). The Implicit Management Test was used to evaluate inference comprehension. In this test, subjects read short written passages and subsequently answer five types of questions (explicit, logical, distractor, pragmatic, and other), which require different types of inferential reasoning. The cognitive functional domains of attention, memory, executive functions, language, and visuospatial abilities were assessed using the Cognitive Linguistic Quick Test (CLQT). The LHL and RHL groups presented difficulties in inferential comprehension in comparison with the CG. However, the RHL group presented lower scores than the LHL group on logical, pragmatic and other questions. A covariance analysis did not show any effect of lesion site within the hemispheres. Overall, all cognitive domains were correlated with all the types of questions from the inference test (especially logical, pragmatic, and other). Attention and visuospatial abilities affected the scores of both the RHL and LHL groups, and only memory influenced the performance of the RHL group. Lesions in either hemisphere may cause difficulties in making inferences during reading. However, processing more complex inferences was more difficult for patients with RHL than for those with LHL, which suggests that the right hemisphere plays an important role in tasks with higher comprehension demands

  7. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.

    Science.gov (United States)

    Chesters, Jennifer; Möttönen, Riikka; Watkins, Kate E

    2018-04-01

    See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving

  8. The Visual Word Form Area remains in the dominant hemisphere for language in late-onset left occipital lobe epilepsies: A postsurgery analysis of two cases.

    Science.gov (United States)

    Lopes, Ricardo; Nunes, Rita Gouveia; Simões, Mário Rodrigues; Secca, Mário Forjaz; Leal, Alberto

    2015-05-01

    Automatic recognition of words from letter strings is a critical processing step in reading that is lateralized to the left-hemisphere middle fusiform gyrus in the so-called Visual Word Form Area (VWFA). Surgical lesions in this location can lead to irreversible alexia. Very early left hemispheric lesions can lead to transfer of the VWFA to the nondominant hemisphere, but it is currently unknown if this capability is preserved in epilepsies developing after reading acquisition. In this study, we aimed to determine the lateralization of the VWFA in late-onset left inferior occipital lobe epilepsies and also the effect of surgical disconnection from the adjacent secondary visual areas. Two patients with focal epilepsies with onset near the VWFA underwent to surgery for epilepsy, with sparing of this area. Neuropsychology evaluations were performed before and after surgery, as well as quantitative evaluation of the speed of word reading. Comparison of the surgical localization of the lesion, with the BOLD activation associated with the contrast of words-strings, was performed, as well as a study of the associated main white fiber pathways using diffusion-weighted imaging. Neither of the patients developed alexia after surgery (similar word reading speed before and after surgery) despite the fact that the inferior occipital surgical lesions reached the neighborhood (less than 1cm) of the VWFA. Surgeries partly disconnected the VWFA from left secondary visual areas, suggesting that pathways connecting to the posterior visual ventral stream were severely affected but did not induce alexia. The anterior and superior limits of the resection suggest that the critical connection between the VWFA and the Wernicke's Angular Gyrus cortex was not affected, which is supported by the detection of this tract with probabilistic tractography. Left occipital lobe epilepsies developing after reading acquisition did not produce atypical localizations of the VWFA, even with foci in the

  9. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    Science.gov (United States)

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Categorization is modulated by transcranial direct current stimulation over left prefrontal cortex.

    Science.gov (United States)

    Lupyan, Gary; Mirman, Daniel; Hamilton, Roy; Thompson-Schill, Sharon L

    2012-07-01

    Humans have an unparalleled ability to represent objects as members of multiple categories. A given object, such as a pillow may be-depending on current task demands-represented as an instance of something that is soft, as something that contains feathers, as something that is found in bedrooms, or something that is larger than a toaster. This type of processing requires the individual to dynamically highlight task-relevant properties and abstract over or suppress object properties that, although salient, are not relevant to the task at hand. Neuroimaging and neuropsychological evidence suggests that this ability may depend on cognitive control processes associated with the left inferior prefrontal gyrus. Here, we show that stimulating the left inferior frontal cortex using transcranial direct current stimulation alters performance of healthy subjects on a simple categorization task. Our task required subjects to select pictures matching a description, e.g., "click on all the round things." Cathodal stimulation led to poorer performance on classification trials requiring attention to specific dimensions such as color or shape as opposed to trials that required selecting items belonging to a more thematic category such as objects that hold water. A polarity reversal (anodal stimulation) lowered the threshold for selecting items that were more weakly associated with the target category. These results illustrate the role of frontally-mediated control processes in categorization and suggest potential interactions between categorization, cognitive control, and language. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Categorization is modulated by transcranical direct current stimulation over left prefrontal cortex

    Science.gov (United States)

    Lupyan, Gary; Mirman, Daniel; Hamilton, Roy; Thompson-Schill, Sharon L.

    2013-01-01

    Humans have an unparalleled ability to represent objects as members of multiple categories. A given object, such as a pillow may be—depending on current task demands—represented as an instance of something that is soft, as something that contains feathers, as something that is found in bedrooms, or something that is larger than a toaster. This type of processing requires the individual to dynamically highlight task-relevant properties and abstract over or suppress object properties that, although salient, are not relevant to the task at hand. Neuroimaging and neuropsychological evidence suggests that this ability may depend on cognitive control processes associated with the left inferior prefrontal gyrus. Here, we show that stimulating the left inferior frontal cortex using transcranial direct current stimulation alters performance of healthy subjects on a simple categorization task. Our task required subjects to select pictures matching a description, e.g., “click on all the round things.“ Cathodal stimulation led to poorer performance on classification trials requiring attention to specific dimensions such as color or shape as opposed to trials that required selecting items belonging to a more thematic category such as objects that hold water. A polarity reversal (anodal stimulation) lowered the threshold for selecting items that were more weakly associated with the target category. These results illustrate the role of frontally-mediated control processes in categorization and suggest potential interactions between categorization, cognitive control, and language. PMID:22578885

  12. An Attempt to Determine the Construct Validity of Measures Hypothesized to Represent an Orientation to Right, Left, or Integrated Hemispheric Brain Function for a Sample of Primary School Children.

    Science.gov (United States)

    Dumbrower, Jule; And Others

    1981-01-01

    This study attempts to obtain evidence of the construct validity of pupil ability tests hypothesized to represent orientation to right, left, or integrated hemispheric function, and of teacher observation subscales intended to reveal behaviors in school setting that were hypothesized to portray preference for right or left brain function. (Author)

  13. Effects of excision of a mass lesion of the precentral region of the left hemisphere on disturbances of graphomotor output

    NARCIS (Netherlands)

    Tucha, Oliver; Tucha, L.I.; Smely, C.; Lange, K.W.

    2012-01-01

    In the present study, the effect of neurosurgery on graphomotor output of a right-handed female patient with a mass lesion of the precentral region of the left frontal lobe was reported. For examination of handwriting movements a digitizing tablet was used. Preoperatively, the patient showed longer

  14. Perturbation of the left inferior frontal gyrus triggers adaptive plasticity in the right homologous area during speech production

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Saur, Dorothee; Price, Cathy J

    2013-01-01

    The role of the right hemisphere in aphasia recovery after left hemisphere damage remains unclear. Increased activation of the right hemisphere has been observed after left hemisphere damage. This may simply reflect a release from transcallosal inhibition that does not contribute to language...... functions. Alternatively, the right hemisphere may actively contribute to language functions by supporting disrupted processing in the left hemisphere via interhemispheric connections. To test this hypothesis, we applied off-line continuous theta burst stimulation (cTBS) over the left inferior frontal gyrus...... (IFG) in healthy volunteers, then used functional MRI to investigate acute changes in effective connectivity between the left and right hemispheres during repetition of auditory and visual words and pseudowords. In separate sessions, we applied cTBS over the left anterior IFG (aIFG) or posterior IFG (p...

  15. Long pacing pulses reduce phrenic nerve stimulation in left ventricular pacing.

    Science.gov (United States)

    Hjortshøj, Søren; Heath, Finn; Haugland, Morten; Eschen, Ole; Thøgersen, Anna Margrethe; Riahi, Sam; Toft, Egon; Struijk, Johannes Jan

    2014-05-01

    Phrenic nerve stimulation is a major obstacle in cardiac resynchronization therapy (CRT). Activation characteristics of the heart and phrenic nerve are different with higher chronaxie for the heart. Therefore, longer pulse durations could be beneficial in preventing phrenic nerve stimulation during CRT due to a decreased threshold for the heart compared with the phrenic nerve. We investigated if long pulse durations decreased left ventricular (LV) thresholds relatively to phrenic nerve thresholds in humans. Eleven patients, with indication for CRT and phrenic nerve stimulation at the intended pacing site, underwent determination of thresholds for the heart and phrenic nerve at different pulse durations (0.3-2.9 milliseconds). The resulting strength duration curves were analyzed by determining chronaxie and rheobase. Comparisons for those parameters were made between the heart and phrenic nerve, and between the models of Weiss and Lapicque as well. In 9 of 11 cases, the thresholds decreased faster for the LV than for the phrenic nerve with increasing pulse duration. In 3 cases, the thresholds changed from unfavorable for LV stimulation to more than a factor 2 in favor of the LV. The greatest change occurred for pulse durations up to 1.5 milliseconds. The chronaxie of the heart was significantly higher than the chronaxie of the phrenic nerve (0.47 milliseconds vs. 0.22 milliseconds [P = 0.029, Lapicque] and 0.79 milliseconds vs. 0.27 milliseconds [P = 0.033, Weiss]). Long pulse durations lead to a decreased threshold of the heart relatively to the phrenic nerve and may prevent stimulation of the phrenic nerve in a clinical setting. © 2013 Wiley Periodicals, Inc.

  16. Headache and Central Positioning Vertigo in a Middle Aged Female-a Case of Solitary Cerebellar Tuberculoma Involving Left Cerebellar Hemisphere

    Directory of Open Access Journals (Sweden)

    Shakya Bhattacharjee

    2012-03-01

    Full Text Available A 48 year old female presented with headache and an illusory sensation of spinning of head in respect to environment for last 8 weeks. Her head spinning or vertigo had no particular direction or not precipitated by any specific head posture. Headache is non- specific in nature and intensified in last few days.Her neurological examination revealed a central positional vertigo with horizontal gaze evoked nystagmus and ataxia. Her MRI scan brain showed the presence of a large solitary ring enhancing lesion in the left cerebellar hemisphere. The lesion was surgically excised and was examined histopathologicaliy that revealed a chronic inflammatory granuloma with caseation necrosis and multinucleated giant cells suggestive of tuberculosis

  17. Dynamic changes in left ventricular function during cold pressor stimulation assessed with gold-195m

    International Nuclear Information System (INIS)

    Dymond, D.S.; Caplin, J.; Flatman, W.

    1985-01-01

    The temporal changes in left ventricular function induced by cold pressor stimulation were assessed in 12 normal controls and 12 patients with coronary artery disease (CAD) by rapid, sequential first-pass nuclear angiography with gold-195m. Imaging was performed at rest, after 1, 2.5, and 4 min of cold pressor and after 2 min of recovery. After 1 min, LVEF (left ventricular ejection fraction) fell significantly in normals and in patients but only in the coronary patients was a significant fall maintained at 2.5 and 4 min. The number of new abnormalities on the regional ejection fraction images for normals and those with CAD, respectively, was 12 and 19 at 1 min, 1 and 21 at 2.5 min, 2 and 13 at 4 min, and 0 and 8 during recovery. The authors conclude that (1) cold pressor-induced depression of left ventricular function is transient in normals but often prolonged in patients with CAD and (2) the temporal dissociation between rise in blood pressure and fall in LVEF suggests factors other than afterload changes may be involved in depression of cardiac function

  18. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    Science.gov (United States)

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  19. Selection and application of familiar and novel tools in patients with left and right hemispheric stroke: Psychometrics and normative data.

    Science.gov (United States)

    Buchmann, Ilka; Randerath, Jennifer

    2017-09-01

    Frequently left brain damage (LBD) leads to limb apraxia, a disorder that can affect tool-use. Despite its impact on daily life, classical tests examining the pantomime of tool-use and imitation of gestures are seldom applied in clinical practice. The study's aim was to present a diagnostic approach which appears more strongly related to actions in daily life in order to sensitize applicants and patients about the relevance of the disorder before patients are discharged. Two tests were introduced that evaluate actual tool selection and tool-object-application: the Novel Tools (NTT) and the Familiar Tools (FTT) Test (parts of the DILA-S: Diagnostic Instrument for Limb Apraxia - Short Version). Normative data in healthy subjects (N = 82) was collected. Then the tests were applied in stroke patients with unilateral left brain damage (LBD: N = 33), a control right brain damage group (RBD: N = 20) as well as healthy age and gender matched controls (CL: N = 28, and CR, N = 18). The tests showed appropriate interrater-reliability and internal consistency as well as concurrent and divergent validity. To examine criterion validity based on the well-known left lateralization of limb apraxia, group comparisons were run. As expected, the LBD group demonstrated a high prevalence of tool-use apraxia (NTT: 36.4%, FTT: 48.5%) ranging from mild to severe impairment and scored worse than their control group (CL). A few RBD patients did demonstrate impairments in tool-use (NTT: 15%, FTT: 15%). On a group level they did not differ from their healthy controls (CR). Further, it was demonstrated that the selection and application of familiar and novel tools can be impaired selectively. Our study results suggest that real tool-use tests evaluating tool selection and tool application should be considered for standard diagnosis of limb apraxia in left as well as right brain damaged patients. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Performance of language tasks in patients with ruptured aneurysm of the left hemisphere worses in the post-surgical evaluation

    Directory of Open Access Journals (Sweden)

    Ana Cláudia C. Vieira

    2016-08-01

    Full Text Available ABSTRACT Sub-arachnoid hemorrhage (SAH promotes impairment of upper cortical functions. However, few information is available emphasizing changes in language after aneurismal SAH and aneurysm location influence. Objective To assess the language and verbal fluency performance in aneurismal SAH pre- and post-surgery in patients caused by an aneurysm of the anterior communicating artery (AcomA, left middle cerebral artery (L-MCA and left posterior comunicating artery (L-PcomA. Methods Assessment in 79 patients with SAH, on two occasions: pre- and post surgical treatment. They were divided into three groups by the aneurysms’ location. Results Deterioration is detected in the performance of all patients during the post-surgical period; L-MCA aneurysm patients displayed a reduction in verbal naming and fluency; L-PcomA patients deteriorated in the written language and fluency tasks. Conclusion After the surgical procedure the patients decreased in various language tasks and these differences in performance being directly related to the location of the aneurysm.

  1. Bilingualism yields language-specific plasticity in left hemisphere's circuitry for learning to read in young children.

    Science.gov (United States)

    Jasińska, K K; Berens, M S; Kovelman, I; Petitto, L A

    2017-04-01

    How does bilingual exposure impact children's neural circuitry for learning to read? Theories of bilingualism suggests that exposure to two languages may yield a functional and neuroanatomical adaptation to support the learning of two languages (Klein et al., 2014). To test the hypothesis that this neural adaptation may vary as a function of structural and orthographic characteristics of bilinguals' two languages, we compared Spanish-English and French-English bilingual children, and English monolingual children, using functional Near Infrared Spectroscopy neuroimaging (fNIRS, ages 6-10, N =26). Spanish offers consistent sound-to-print correspondences ("phonologically transparent" or "shallow"); such correspondences are more opaque in French and even more opaque in English (which has both transparent and "phonologically opaque" or "deep" correspondences). Consistent with our hypothesis, both French- and Spanish-English bilinguals showed hyperactivation in left posterior temporal regions associated with direct sound-to-print phonological analyses and hypoactivation in left frontal regions associated with assembled phonology analyses. Spanish, but not French, bilinguals showed a similar effect when reading Irregular words. The findings inform theories of bilingual and cross-linguistic literacy acquisition by suggesting that structural characteristics of bilinguals' two languages and their orthographies have a significant impact on children's neuro-cognitive architecture for learning to read. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Optimization of multiple coils immersed in a conducting liquid for half-hemisphere or whole-brain deep transcranial magnetic stimulation: a simulation study.

    Science.gov (United States)

    Sousa, Sónia C P; Almeida, Jorge; Cavaleiro Miranda, Pedro; Salvador, Ricardo; Silvestre, João; Simões, Hugo; Crespo, Paulo

    2014-01-01

    Transcranial magnetic stimulation (TMS) was proposed in 1985. Nevertheless, its wider use in the treatment of several neurologic diseases has been hindered by its inability to stimulate deep-brain regions. This is mainly due to the physical limiting effect arising from the presence of surface discontinuities, particularly between the scalp and air. Here, we present the optimization of a system of large multiple coils for whole-brain and half-hemisphere deep TMS, termed orthogonal configuration. COMSOL(®)-based simulations show that the system is capable of reaching the very center of a spherical brain phantom with 58% induction relative to surface maximum. Such penetration capability surpasses to the best of our knowledge that of existing state of the art TMS systems. This induction capability strongly relies on the immersion of the stimulating coils and part of the head of the patient in a conducting liquid (e.g. simple saline solution). We show the impact of the presence of this surrounding conducting liquid by comparing the performance of our system with and without such liquid. In addition, we also compare the performance of the proposed coil with that of a circular coil, a figure-eight coil, and the H-coil. Finally, in addition to its whole-brain stimulation capability (e.g. potentially useful for prophylaxis of epileptic patients) the system is also able to stimulate mainly one brain hemisphere, which may be useful in stroke rehabilitation, among other applications.

  3. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions

    DEFF Research Database (Denmark)

    Ward, Nick S; Bestmann, Sven; Hartwigsen, Gesa

    2010-01-01

    Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate...... the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were...... that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance....

  4. Daily left prefrontal repetitive transcranial magnetic stimulation for medication-resistant burning mouth syndrome.

    Science.gov (United States)

    Umezaki, Y; Badran, B W; Gonzales, T S; George, M S

    2015-08-01

    Burning mouth syndrome (BMS) is a persistent and chronic burning sensation in the mouth in the absence of any abnormal organic findings. The pathophysiology of BMS is unclear and its treatment is not fully established. Although antidepressant medication is commonly used for treatment, there are some medication-resistant patients, and a new treatment for medication-resistant BMS is needed. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technology approved by the US Food and Drug Administration (FDA) for the treatment of depression. Recent studies have found beneficial effects of TMS for the treatment of pain. A case of BMS treated successfully with daily left prefrontal rTMS over a 2-week period is reported here. Based on this patient's clinical course and a recent pain study, the mechanism by which TMS may act to decrease the burning pain is discussed. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. The influence of adrenergic stimulation on sex differences in left ventricular twist mechanics.

    Science.gov (United States)

    Williams, Alexandra M; Shave, Rob E; Cheyne, William S; Eves, Neil D

    2017-06-15

    Sex differences in left ventricular (LV) mechanics occur during acute physiological challenges; however, it is unknown whether sex differences in LV mechanics are fundamentally regulated by differences in adrenergic control. Using two-dimensional echocardiography and speckle tracking analysis, this study compared LV mechanics in males and females matched for LV length during post-exercise ischaemia (PEI) and β 1 -adrenergic receptor blockade. Our data demonstrate that while basal rotation was increased in males, LV twist was not significantly different between the sexes during PEI. In contrast, during β 1 -adrenergic receptor blockade, LV apical rotation, twist and untwisting velocity were reduced in males compared to females. Significant relationships were observed between LV twist and LV internal diameter and sphericity index in females, but not males. These findings suggest that LV twist mechanics may be more sensitive to alterations in adrenergic stimulation in males, but more highly influenced by ventricular structure and geometry in females. Sex differences in left ventricular (LV) mechanics exist at rest and during acute physiological stress. Differences in cardiac autonomic and adrenergic control may contribute to sex differences in LV mechanics and LV haemodynamics. Accordingly, this study aimed to investigate sex differences in LV mechanics with altered adrenergic stimulation achieved through post-handgrip-exercise ischaemia (PEI) and β 1 -adrenergic receptor (AR) blockade. Twenty males (23 ± 5 years) and 20 females (22 ± 3 years) were specifically matched for LV length (males: 8.5 ± 0.5 cm, females: 8.2 ± 0.6 cm, P = 0.163), and two-dimensional speckle-tracking echocardiography was used to assess LV structure and function at baseline, during PEI and following administration of 5 mg bisoprolol (β 1 -AR antagonist). During PEI, LV end-diastolic volume and stroke volume were increased in both groups (P adrenergic stimulation

  6. Awake surgery for WHO Grade II gliomas within "noneloquent" areas in the left dominant hemisphere: toward a "supratotal" resection. Clinical article.

    Science.gov (United States)

    Yordanova, Yordanka N; Moritz-Gasser, Sylvie; Duffau, Hugues

    2011-08-01

    It has been demonstrated that an extensive resection (total or subtotal) may significantly increase the overall survival in patients with WHO Grade II gliomas (low-grade gliomas [LGGs]). Yet, recent data have shown that conventional MR imaging underestimates the spatial extent of LGG, since tumor cells were found up to 20 mm around MR imaging abnormalities. Thus, it was hypothesized that an extended resection with a margin beyond MR imaging-defined abnormalities-a "supratotal" resection-might improve the outcome of LGG. However, because of the frequent location of LGG within "eloquent" brain areas, it is often difficult to achieve such a supratotal resection. This could nevertheless be possible when LGGs involve "noneloquent" areas, even in the left dominant hemisphere. The authors report on their use of awake electrical mapping to tailor the resection according to functional boundaries, that is, to pursue the resection beyond MR imaging-defined abnormalities, until corticosubcortical eloquent structures are encountered. Their aim was to apply this reliable surgical technique to LGGs located not within eloquent areas but distant from eloquent areas, to take a margin around the LGG visible on MR imaging while preserving brain function. Fifteen right-handed patients with a total of 17 tumors underwent resection of WHO Grade II gliomas involving nonfunctional areas within the left dominant hemisphere. In all patients, seizures were the initial manifestation of the tumors. Awake surgery with intraoperative electrostimulation was performed in all cases. The resection was continued until the surgeon reached cortical and subcortical areas crucial for brain function, especially language, as defined by the intrasurgical electrical mapping. The extent of resection was evaluated on postoperative FLAIR-weighted MR images. Despite transient neurological worsening in 60% of cases, all patients recovered and returned to a normal life. Seizure control was obtained in all patients

  7. Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex.

    Science.gov (United States)

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Bracco, Martina; Oliveri, Massimiliano; Cipolotti, Lisa

    2017-07-28

    A growing body of evidence have suggested that non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can improve the performance of aphasic patients in language tasks. For example, application of inhibitory rTMS or tDCs over the right frontal lobe of dysphasic patients resulted in improved naming abilities. Several studies have also reported that in healthy controls (HC) tDCS application over the left prefrontal cortex (PFC) improve performance in naming and semantic fluency tasks. The aim of this study was to investigate in HC, for the first time, the effects of inhibitory repetitive TMS (rTMS) over left and right lateral frontal cortex (BA 47) on two phonemic fluency tasks (FAS or FPL). 44 right-handed HCs were administered rTMS or sham over the left or right lateral frontal cortex in two separate testing sessions, with a 24h interval, followed by the two phonemic fluency tasks. To account for possible practice effects, an additional 22 HCs were tested on only the phonemic fluency task across two sessions with no stimulation. We found that rTMS-inhibition over the left lateral frontal cortex significantly worsened phonemic fluency performance when compared to sham. In contrast, rTMS-inhibition over the right lateral frontal cortex significantly improved phonemic fluency performance when compared to sham. These results were not accounted for practice effects. We speculated that rTMS over the right lateral frontal cortex may induce plastic neural changes to the left lateral frontal cortex by suppressing interhemispheric inhibitory interactions. This resulted in an increased excitability (disinhibition) of the contralateral unstimulated left lateral frontal cortex, consequently enhancing phonemic fluency performance. Conversely, application of rTMS over the left lateral frontal cortex may induce a temporary, virtual lesion, with effects similar to those reported in left frontal

  8. Building Creativity Training: Drawing with Left Hand to Stimulate Left Brain in Children Age 5-7 Years Old

    Science.gov (United States)

    Saputra, Yanty Hardi; Sabana, Setiawan

    2016-01-01

    Researcher and professionals that started researching about brains since 1930 believe that left brain is a rational brain, which is tightly related with the IO, rational thinking, arithmetic thinking, verbal, segmental, focus, serial (linear), finding the differences, and time management, Meanwhile right brain is the part of brain that controlled…

  9. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain.

    Science.gov (United States)

    Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T

    2014-03-01

    Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Single Session Low Frequency Left Dorsolateral Prefrontal Transcranial Magnetic Stimulation Changes Neurometabolite Relationships in Healthy Humans

    Directory of Open Access Journals (Sweden)

    Nathaniel R. Bridges

    2018-03-01

    Full Text Available Background: Dorsolateral prefrontal cortex (DLPFC low frequency repetitive transcranial magnetic stimulation (LF-rTMS has shown promise as a treatment and investigative tool in the medical and research communities. Researchers have made significant progress elucidating DLPFC LF-rTMS effects—primarily in individuals with psychiatric disorders. However, more efforts investigating underlying molecular changes and establishing links to functional and behavioral outcomes in healthy humans are needed.Objective: We aimed to quantify neuromolecular changes and relate these to functional changes following a single session of DLPFC LF-rTMS in healthy participants.Methods: Eleven participants received sham-controlled neuronavigated 1 Hz rTMS to the region most activated by a 7-letter Sternberg working memory task (SWMT within the left DLPFC. We quantified SWMT performance, functional magnetic resonance activation and proton Magnetic resonance spectroscopy (MRS neurometabolite measure changes before and after stimulation.Results: A single LF-rTMS session was not sufficient to change DLPFC neurometabolite levels and these changes did not correlate with DLPFC activation changes. Real rTMS, however, significantly altered neurometabolite correlations (compared to sham rTMS, both with baseline levels and between the metabolites themselves. Additionally, real rTMS was associated with diminished reaction time (RT performance improvements and increased activation within the motor, somatosensory and lateral occipital cortices.Conclusion: These results show that a single session of LF-rTMS is sufficient to influence metabolite relationships and causes widespread activation in healthy humans. Investigating correlational relationships may provide insight into mechanisms underlying LF-rTMS.

  11. Repetitive transcranial magnetic stimulation reveals a role for the left inferior parietal lobule in matching observed kinematics during imitation.

    Science.gov (United States)

    Reader, Arran T; Royce, Ben P; Marsh, Jade E; Chivers, Katy-Jayne; Holmes, Nicholas P

    2018-04-01

    Apraxia (a disorder of complex movement) suggests that the left inferior parietal lobule (IPL) plays a role in kinematic or spatial aspects of imitation, which may be particularly important for meaningless (i.e. unfamiliar intransitive) actions. Mirror neuron theories indicate that the IPL is part of a frontoparietal system that can support imitation by linking observed and stored actions through visuomotor matching, and have less to say about different subregions of the left IPL, or how different types of action (i.e. meaningful or meaningless) are processed for imitation. We used repetitive transcranial magnetic stimulation (rTMS) to bridge this gap and better understand the roles of the left supramarginal gyrus (SMG) and left angular gyrus (AG) in imitation. We also examined whether these areas are differentially involved in meaningful and meaningless action imitation. We applied rTMS over the left SMG, over the left AG or during a no-rTMS baseline condition, and then asked participants to imitate a confederate's actions whilst the arm and hand movements of both individuals were motion-tracked. rTMS over both the left SMG and the left AG reduced the velocity of participants' finger movements relative to the actor during imitation of finger gestures, regardless of action meaning. Our results support recent claims in apraxia and confirm a role for the left IPL in kinematic processing during gesture imitation, regardless of action meaning. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Cerebral organization of oral and signed language responses: case study evidence from amytal and cortical stimulation studies.

    Science.gov (United States)

    Mateer, C A; Rapport, R L; Kettrick, C

    1984-01-01

    A normally hearing left-handed patient familiar with American Sign Language (ASL) was assessed under sodium amytal conditions and with left cortical stimulation in both oral speech and signed English. Lateralization was mixed but complementary in each language mode: the right hemisphere perfusion severely disrupted motoric aspects of both types of language expression, the left hemisphere perfusion specifically disrupted features of grammatical and semantic usage in each mode of expression. Both semantic and syntactic aspects of oral and signed responses were altered during left posterior temporal-parietal stimulation. Findings are discussed in terms of the neurological organization of ASL and linguistic organization in cases of early left hemisphere damage.

  13. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    Science.gov (United States)

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Right- and left-brain hemisphere. Rhythm in reaction time to light signals is task-load-dependent: age, gender, and handgrip strength rhythm comparisons.

    Science.gov (United States)

    Reinberg, Alain; Bicakova-Rocher, Alena; Mechkouri, Mohamed; Ashkenazi, Israel

    2002-11-01

    subjects. Hand-side differences in the grip strength rhythms in the same individuals were detected, the tau being ultradian rather than circadian in adolescent subjects while in mature subjects the tau frequently differed from that of the rhythm in CRT. These findings further support the hypothesis that functional biological clocks exist in both the left and right hemispheres of the human cortex.

  15. Transcranial brain stimulation (TMS and tDCS for post-stroke aphasia rehabilitation: Controversies

    Directory of Open Access Journals (Sweden)

    Lucia Iracema Zanotto de Mendonça

    Full Text Available Transcranial brain stimulation (TS techniques have been investigated for use in the rehabilitation of post-stroke aphasia. According to previous reports, functional recovery by the left hemisphere improves recovery from aphasia, when compared with right hemisphere participation. TS has been applied to stimulate the activity of the left hemisphere or to inhibit homotopic areas in the right hemisphere. Various factors can interfere with the brain's response to TS, including the size and location of the lesion, the time elapsed since the causal event, and individual differences in the hemispheric language dominance pattern. The following questions are discussed in the present article: [a] Is inhibition of the right hemisphere truly beneficial?; [b] Is the transference of the language network to the left hemisphere truly desirable in all patients?; [c] Is the use of TS during the post-stroke subacute phase truly appropriate? Different patterns of neuroplasticity must occur in post-stroke aphasia.

  16. Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration.

    Science.gov (United States)

    Zhao, Wanying; Riggs, Kevin; Schindler, Igor; Holle, Henning

    2018-02-21

    Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas. SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being

  17. Improvement of Upper Extremity Deficit after Constraint-Induced Movement Therapy Combined with and without Preconditioning Stimulation Using Dual-hemisphere Transcranial Direct Current Stimulation and Peripheral Neuromuscular Stimulation in Chronic Stroke Patients: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Takashi Takebayashi

    2017-10-01

    Full Text Available In this study, we investigated the effects of dual-hemisphere transcranial direct current stimulation (dual-tDCS of both the affected (anodal tDCS and non-affected (cathodal tDCS primary motor cortex, combined with peripheral neuromuscular electrical stimulation (PNMES, on the effectiveness of constraint-induced movement therapy (CIMT as a neurorehabilitation intervention in chronic stroke. We conducted a randomized controlled trial of feasibility, with a single blind assessor, with patients recruited from three outpatient clinics. Twenty chronic stroke patients were randomly allocated to the control group, receiving conventional CIMT, or the intervention group receiving dual-tDCS combined with PNMES before CIMT. Patients in the treatment group first underwent a 20-min period of dual-tDCS, followed immediately by PNMES, and subsequent CIMT for 2 h. Patients in the control group only received CIMT (with no pretreatment stimulation. All patients underwent two CIMT sessions, one in the morning and one in the afternoon, each lasting 2 h, for a total of 4 h of CIMT per day. Upper extremity function was assessed using the Fugl-Meyer Assessment (primary outcome, as well as the amount of use (AOU and quality of movement (QOM scores, obtained via the Motor Activity Log (secondary outcome. Nineteen patients completed the study, with one patient withdrawing after allocation. Compared to the control group, the treatment improvement in upper extremity function and AOU was significantly greater in the treatment than control group (change in upper extremity score, 9.20 ± 4.64 versus 4.56 ± 2.60, respectively, P < 0.01, η2 = 0.43; change in AOU score, 1.10 ± 0.65 versus 0.62 ± 0.85, respectively, P = 0.02, η2 = 0.52. There was no significant effect of the intervention on the QOM between the intervention and control groups (change in QOM score, 1.00 ± 0.62 versus 0.71 ± 0.72, respectively, P = 0.07, η2

  18. Anodal Stimulation of the Left DLPFC Increases IGT Scores and Decreases Delay Discounting Rate in Healthy Males

    Directory of Open Access Journals (Sweden)

    Qinghua He

    2016-09-01

    Full Text Available Previous correlational imaging studies have implicated the dorsolateral prefrontal cortex (DLPFC in decision making. Using High-Definition Transcranial Direct Current Stimulation (HD-tDCS, the present study directly investigated the causal role of the DLPFC in performing the Iowa Gambling Task (IGT and the Inter-Temporal Choice (ITC task. Three experiments were conducted: Exp. 1 (N = 41 to study the left DLPFC, Exp. 2 (N = 49 to study the right DLPFC, and Exp. 3 (N = 20, a subset of those in Exp. 1 to switch the experimental and control conditions. All participants were healthy male college students. For Exps. 1 and 2, participants were randomly assigned to either the HD- tDCS or the sham stimulation condition. For Exp. 3, participants were assigned to the condition they were not in during Exp. 1. Results showed that HD-tDCS over the left DLPFC increased IGT score, decreased the recency parameter in IGT, and lowered delay discounting rate (k in the ITC task. We discussed the potential roles of impulse control and time perception in mediating the effect of tDCS stimulation of left DLPFC on decision making. Our results have clinical implications for the treatment of disorders involving poor decision-making, such as addictions.

  19. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  20. The left visual-field advantage in rapid visual presentation is amplified rather than reduced by posterior-parietal rTMS

    DEFF Research Database (Denmark)

    Verleger, Rolf; Möller, Friderike; Kuniecki, Michal

    2010-01-01

    ) either as effective or as sham stimulation. In two experiments, either one of these two factors, hemisphere and effectiveness of rTMS, was varied within or between participants. Again, T2 was much better identified in the left than in the right visual field. This advantage of the left visual field......In the present task, series of visual stimuli are rapidly presented left and right, containing two target stimuli, T1 and T2. In previous studies, T2 was better identified in the left than in the right visual field. This advantage of the left visual field might reflect dominance exerted...... by the right over the left hemisphere. If so, then repetitive transcranial magnetic stimulation (rTMS) to the right parietal cortex might release the left hemisphere from right-hemispheric control, thereby improving T2 identification in the right visual field. Alternatively or additionally, the asymmetry in T2...

  1. Investigation of cerebral metabolism by positron CT in Japanese following musical stimulation

    International Nuclear Information System (INIS)

    Wakasugi, Naotoshi

    1994-01-01

    Cerebral metabolic responses to Japanese and Western instrumental music were examined using 11 C-glucose and positron CT. Eight right-handed subjects were studied in both Japanese and Western music-stimulated states. Biaural musical stimulation with a Japanese instrument, the 'shakuhachi', produced diffuse metabolic changes in the left temporal lobe in all subjects. Biaural musical stimulation with a Western instrument, the 'violin', produced metabolic changes in the right temporal lobe in 3 subjects, changes in the left in 4, and changes on both sides in one. It was considered previously that all musical stimulation led to hypermetabolism in the right hemisphere of human beings. However, the present results indicated that Japanese music produced activation of the left hemisphere in Japanese. On the other hand, Western music produced right hemispheric hypermetabolism in Japanese with no emotion. The laterality of the hemisphere stimulated by Western music was apparently incidentally changed according to the state of mind the Japanese subjects. (author)

  2. Occurrence of phrenic nerve stimulation in cardiac resynchronization therapy patients: the role of left ventricular lead type and placement site.

    Science.gov (United States)

    Biffi, Mauro; Exner, Derek V; Crossley, George H; Ramza, Brian; Coutu, Benoit; Tomassoni, Gery; Kranig, Wolfgang; Li, Shelby; Kristiansen, Nina; Voss, Frederik

    2013-01-01

    Unwanted phrenic nerve stimulation (PNS) has been reported in ∼1 in 4 patients undergoing left ventricular (LV) pacing. The occurrence of PNS over mid-term follow-up and the significance of PNS are less certain. Data from 1307 patients enrolled in pre-market studies of LV leads manufactured by Medtronic (models 4193 and 4195 unipolar, 4194, 4196, 4296, and 4396 bipolar) were pooled. Left ventricular lead location was recorded at implant using a common classification scheme. Phrenic nerve stimulation symptoms were either spontaneously reported or identified at scheduled follow-up visits. A PNS-related complication was defined as PNS resulting in invasive intervention or the termination of LV pacing. Average follow-up was 14.9 months (range 0.0-46.6). Phrenic nerve stimulation symptoms occurred in 169 patients (12.9%). Phrenic nerve stimulation-related complications occurred in 21 of 1307 patients (1.6%); 16 of 738 (2.2%) in the unipolar lead studies, and 5 of 569 (0.9%) in the bipolar lead studies (P = 0.08). Phrenic nerve stimulation was more frequent at middle-lateral/posterior, and apical LV sites (139/1010) vs. basal-posterior/lateral/anterior, and middle-anterior sites (20/297; P= 0.01). As compared with an anterior LV lead position, a lateral LV pacing site was associated with over a four-fold higher risk of PNS (P= 0.005) and an apical LV pacing site was associated with over six-fold higher risk of PNS (P= 0.001). Phrenic nerve stimulation occurred in 13% of patients undergoing LV lead placement and was more common at mid-lateral/posterior, and LV apical sites. Most cases (123/139; 88%) of PNS were mitigated via electrical reprogramming, without the need for invasive intervention.

  3. Tempering Proactive Cognitive Control by Transcranial Direct Current Stimulation of the Right (but Not the Left Lateral Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Carlos J. Gómez-Ariza

    2017-05-01

    Full Text Available Behavioral and neuroimaging data support the distinction of two different modes of cognitive control: proactive, which involves the active and sustained maintenance of task-relevant information to bias behavior in accordance with internal goals; and reactive, which entails the detection and resolution of interference at the time it occurs. Both control modes may be flexibly deployed depending on a variety of conditions (i.e., age, brain alterations, motivational factors, prior experience. Critically, and in line with specific predictions derived from the dual mechanisms of control account (Braver, 2012, findings from neuroimaging studies indicate that the same lateral prefrontal regions (i.e., left dorsolateral cortex and right inferior frontal junction may implement different control modes on the basis of temporal dynamics of activity, which would be modulated in response to external or internal conditions. In the present study, we aimed to explore whether transcraneal direct current stimulation over either the left dorsolateral prefrontal cortex or the right inferior frontal junction would differentially modulate performance on the AX-CPT, a well-validated task that provides sensitive and reliable behavioral indices of proactive/reactive control. The study comprised six conditions of real stimulation [3 (site: left dorsolateral, right dorsolateral and right inferior frontal junction × 2 (polarity: anodal and cathodal], and one sham condition. The reference electrode was always placed extracephalically. Performance on the AX-CPT was assessed through two blocks of trials. The first block took place while stimulation was being delivered, whereas the second block was administered after stimulation completion. The results indicate that both offline cathodal stimulation of the right dorsolateral prefrontal cortex and online anodal stimulation of the right inferior frontal junction led participants to be much less proactive, with such a dissociation

  4. Left phrenic nerve anatomy relative to the coronary venous system: Implications for phrenic nerve stimulation during cardiac resynchronization therapy.

    Science.gov (United States)

    Spencer, Julianne H; Goff, Ryan P; Iaizzo, Paul A

    2015-07-01

    The objective of this study was to quantitatively characterize anatomy of the human phrenic nerve in relation to the coronary venous system, to reduce undesired phrenic nerve stimulation during left-sided lead implantations. We obtained CT scans while injecting contrast into coronary veins of 15 perfusion-fixed human heart-lung blocs. A radiopaque wire was glued to the phrenic nerve under CT, then we created three-dimensional models of anatomy and measured anatomical parameters. The left phrenic nerve typically coursed over the basal region of the anterior interventricular vein, mid region of left marginal veins, and apical region of inferior and middle cardiac veins. There was large variation associated with the average angle between nerve and veins. Average angle across all coronary sinus tributaries was fairly consistent (101.3°-111.1°). The phrenic nerve coursed closest to the middle cardiac vein and left marginal veins. The phrenic nerve overlapped a left marginal vein in >50% of specimens. © 2015 Wiley Periodicals, Inc.

  5. Anodal transcranial direct current stimulation of the left dorsolateral prefrontal cortex enhances emotion recognition in depressed patients and controls.

    Science.gov (United States)

    Brennan, Sean; McLoughlin, Declan M; O'Connell, Redmond; Bogue, John; O'Connor, Stephanie; McHugh, Caroline; Glennon, Mark

    2017-05-01

    Transcranial direct current stimulation (tDCS) can enhance a range of neuropsychological functions but its efficacy in addressing clinically significant emotion recognition deficits associated with depression is largely untested. A randomized crossover placebo controlled study was used to investigate the effects of tDCS over the left dorsolateral prefrontal cortex (L-DLPFC) on a range of neuropsychological variables associated with depression as well as neural activity in the associated brain region. A series of computerized tests was administered to clinical (n = 17) and control groups (n = 20) during sham and anodal (1.5 mA) stimulation. Anodal tDCS led to a significant main effect for overall emotion recognition (p = .02), with a significant improvement in the control group (p = .04). Recognition of disgust was significantly greater in the clinical group (p = .01). Recognition of anger was significantly improved for the clinical group (p = .04) during anodal stimulation. Differences between groups for each of the six emotions at varying levels of expression found that at 40% during anodal stimulation, happy recognition significantly improved for the clinical group (p = .01). Anger recognition at 80% during anodal stimulation significantly improved for the clinical group (p = .02). These improvements were observed in the absence of any change in psychomotor speed or trail making ability during anodal stimulation. Working memory significantly improved during anodal stimulation for the clinical group but not for controls (p = .03). The tentative findings of this study indicate that tDCS can have a neuromodulatory effect on a range of neuropsychological variables. However, it is clear that there was a wide variation in responses to tDCS and that individual difference and different approaches to testing and stimulation have a significant impact on final outcomes. Nonetheless, tDCS remains a promising tool for future neuropsychological research.

  6. Hypothalamic digoxin, hemispheric chemical dominance, and the tridosha theory.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    -potassium ATPase inhibition. Left hemispheric chemical dominance/Pitta state represents the reverse pattern with hypodigoxinemia and membrane sodium-potassium ATPase stimulation. The Vata state is the intermediate bihemispheric chemical dominant state. Ninety-five percent of the patients/individuals in the tridosha, pathological, and psychological groups were right-handed/left hemispheric dominant, however, their biochemical patterns were different--either left hemispheric chemical dominant or right hemispheric chemical dominant. Hemispheric chemical dominance/tridosha states had no correlation with cerebral dominance detected by handedness/dichotic listening test.

  7. Functional Language Shift to the Right Hemisphere in Patients with Language-Eloquent Brain Tumors

    Science.gov (United States)

    Krieg, Sandro M.; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian

    2013-01-01

    Objectives Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Experimental design Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1  =  left dominant; ratio dominant). Results Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning “all errors” and “all errors without hesitations”, which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. Conclusions This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur. PMID:24069410

  8. Functional language shift to the right hemisphere in patients with language-eloquent brain tumors.

    Science.gov (United States)

    Krieg, Sandro M; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Foerschler, Annette; Meyer, Bernhard; Ringel, Florian

    2013-01-01

    Language function is mainly located within the left hemisphere of the brain, especially in right-handed subjects. However, functional MRI (fMRI) has demonstrated changes of language organization in patients with left-sided perisylvian lesions to the right hemisphere. Because intracerebral lesions can impair fMRI, this study was designed to investigate human language plasticity with a virtual lesion model using repetitive navigated transcranial magnetic stimulation (rTMS). Fifteen patients with lesions of left-sided language-eloquent brain areas and 50 healthy and purely right-handed participants underwent bilateral rTMS language mapping via an object-naming task. All patients were proven to have left-sided language function during awake surgery. The rTMS-induced language errors were categorized into 6 different error types. The error ratio (induced errors/number of stimulations) was determined for each brain region on both hemispheres. A hemispheric dominance ratio was then defined for each region as the quotient of the error ratio (left/right) of the corresponding area of both hemispheres (ratio >1 = left dominant; ratio right dominant). Patients with language-eloquent lesions showed a statistically significantly lower ratio than healthy participants concerning "all errors" and "all errors without hesitations", which indicates a higher participation of the right hemisphere in language function. Yet, there was no cortical region with pronounced difference in language dominance compared to the whole hemisphere. This is the first study that shows by means of an anatomically accurate virtual lesion model that a shift of language function to the non-dominant hemisphere can occur.

  9. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  10. Effective Connectivity Reveals Right-Hemisphere Dominance in Audiospatial Perception: Implications for Models of Spatial Neglect

    Science.gov (United States)

    Friston, Karl J.; Mattingley, Jason B.; Roepstorff, Andreas; Garrido, Marta I.

    2014-01-01

    Detecting the location of salient sounds in the environment rests on the brain's ability to use differences in sounds arriving at both ears. Functional neuroimaging studies in humans indicate that the left and right auditory hemispaces are coded asymmetrically, with a rightward attentional bias that reflects spatial attention in vision. Neuropsychological observations in patients with spatial neglect have led to the formulation of two competing models: the orientation bias and right-hemisphere dominance models. The orientation bias model posits a symmetrical mapping between one side of the sensorium and the contralateral hemisphere, with mutual inhibition of the ipsilateral hemisphere. The right-hemisphere dominance model introduces a functional asymmetry in the brain's coding of space: the left hemisphere represents the right side, whereas the right hemisphere represents both sides of the sensorium. We used Dynamic Causal Modeling of effective connectivity and Bayesian model comparison to adjudicate between these alternative network architectures, based on human electroencephalographic data acquired during an auditory location oddball paradigm. Our results support a hemispheric asymmetry in a frontoparietal network that conforms to the right-hemisphere dominance model. We show that, within this frontoparietal network, forward connectivity increases selectively in the hemisphere contralateral to the side of sensory stimulation. We interpret this finding in light of hierarchical predictive coding as a selective increase in attentional gain, which is mediated by feedforward connections that carry precision-weighted prediction errors during perceptual inference. This finding supports the disconnection hypothesis of unilateral neglect and has implications for theories of its etiology. PMID:24695717

  11. Left Phrenic Nerve Stimulation Due to Breakage of the Endocardial Right Ventricular Lead at the Costoclavicular Ligament

    Directory of Open Access Journals (Sweden)

    Mariko Fujimori, MD

    2007-01-01

    Full Text Available A 78-year-old man with a permanent pacemaker (PM implanted in his left prepectoral area reported twitches in his left lateral abdominal region. Chest X-rays revealed a broken right atrial (RA lead and a fracture of the right ventricular (RV lead at the left costoclavicular ligament. The electrocardiogram (ECG and the Holler ECG revealed atrial fibrillation (AF and an improperly functioning PM. We observed that the twitching seemed to correspond with each pacing beat and that it did not appear with his own beat. We suspected that the twitching was due to electric current leakage from the broken RV lead. We performed a PM re-implantation with a screw-in RV lead using the extrathoracic approach. After re-implantation the twitching disappeared. Costoclavicular ligament related electrode lead fractures are not uncommon and electric current leaks can be a source of problems in cardiac pacing. In this case, the electric current leak from the broken RV lead at the costoclavicular ligament stimulated the left phrenic nerve.

  12. The effect of left frontal transcranial direct-current stimulation on propranolol-induced fear memory acquisition and consolidation deficits.

    Science.gov (United States)

    Nasehi, Mohammad; Khani-Abyaneh, Mozhgan; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2017-07-28

    Accumulating evidence supports the efficacy of transcranial direct current stimulation (tDCS) in modulating numerous cognitive functions. Despite the fact that tDCS has been used for the enhancement of memory and cognition, very few animal studies have addressed its impact on the modulation of fear memory. This study was designed to determine whether pre/post-training frontal tDCS application would alter fear memory acquisition and/or consolidation deficits induced by propranolol in NMRI mice. Results indicated that administration of β1-adrenoceptor blocker propranolol (0.1mg/kg) impaired fear memory retrieval. Pre/post-training application of anodal tDCS when propranolol was administered prior to training reversed contextual memory retrieval whereas only the anodal application prior to training could induce the same result in the auditory test. Meanwhile, anodal stimulation had no effect on fear memories by itself. Moreover, regardless of when cathode was applied and propranolol administered, their combination restored contextual memory retrieval, while only cathodal stimulation prior to training facilitated the contextual memory retrieval. Also, auditory memory retrieval was restored when cathodal stimulation and propranolol occurred prior to training but it was abolished when stimulation occurred after training and propranolol was administered prior to training. Collectively, our findings show that tDCS applied on the left frontal cortex of mice affects fear memory performance. This alteration seems to be task-dependent and varies depending on the nature and timing of the stimulation. In certain conditions, tDCS reverses the effect of propranolol. These results provide initial evidence to support the timely use of tDCS for the modulation of fear-related memories. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hemispheric lateralization of motor thresholds in relation to stuttering.

    Directory of Open Access Journals (Sweden)

    Per A Alm

    Full Text Available Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS. This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15 and in controls (n = 15. In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026, with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049. The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control.

  14. Hemispheric Lateralization of Motor Thresholds in Relation to Stuttering

    Science.gov (United States)

    Alm, Per A.; Karlsson, Ragnhild; Sundberg, Madeleine; Axelson, Hans W.

    2013-01-01

    Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS). This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry) and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15) and in controls (n = 15). In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026), with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049). The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control. PMID:24146930

  15. Left caloric vestibular stimulation as a tool to reveal implicit and explicit parameters of body representation.

    Science.gov (United States)

    Sedda, A; Tonin, D; Salvato, G; Gandola, M; Bottini, G

    2016-04-01

    Homeostatic parameters, such as temperature, are related to body representation. In this study, we measured whether caloric vestibular stimulation (CVS) alters body temperature and tactile processing, and if in the direction predicted by a holistic body matrix representation. Skin temperature and tactile two-point discrimination (TPD) acuity were measured for both arms before, immediately after and with a delay from CVS. Participants were also administered a personality questionnaire and an anxiety inventory to rule out confounding factors. Two control experiments were planned to exclude casual variations. Our results show that temperature drops significantly in both arms after CVS. CVS also induces a bilateral improvement in tactile acuity (even though not immediately after but in the delayed condition). Finally, these effects are not due to learning, as demonstrated by the control experiment. In summary, our results suggest that vestibular stimulation updates body representation, supporting the evidence in favor of a body matrix. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  17. Glutamatergic stimulation of the left dentate gyrus abolishes depressive-like behaviors in a rat learned helplessness paradigm.

    Science.gov (United States)

    Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo

    2017-10-01

    Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.

    Science.gov (United States)

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2015-08-27

    Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury. Copyright © 2015. Published by Elsevier B.V.

  19. Right Hemisphere Dominance in Visual Statistical Learning

    Science.gov (United States)

    Roser, Matthew E.; Fiser, Jozsef; Aslin, Richard N.; Gazzaniga, Michael S.

    2011-01-01

    Several studies report a right hemisphere advantage for visuospatial integration and a left hemisphere advantage for inferring conceptual knowledge from patterns of covariation. The present study examined hemispheric asymmetry in the implicit learning of new visual feature combinations. A split-brain patient and normal control participants viewed…

  20. Hemispheric processing asymmetries: implications for memory.

    Science.gov (United States)

    Funnell, M G; Corballis, P M; Gazzaniga, M S

    2001-01-01

    Recent research has demonstrated that memory for words elicits left hemisphere activation, faces right hemisphere activation, and nameable objects bilateral activation. This pattern of results was attributed to dual coding of information, with the left hemisphere employing a verbal code and the right a nonverbal code. Nameable objects can be encoded either verbally or nonverbally and this accounts for their bilateral activation. We investigated this hypothesis in a callosotomy patient. Consistent with dual coding, the left hemisphere was superior to the right in memory for words, whereas the right was superior for faces. Contrary to prediction, performance on nameable pictures was not equivalent in the two hemispheres, but rather resulted in a right hemisphere superiority. In addition, memory for pictures was significantly better than for either words or faces. These findings suggest that the dual code hypothesis is an oversimplification of the processing capabilities of the two hemispheres.

  1. Homotopic organization of essential language sites in right and bilateral cerebral hemispheric dominance.

    Science.gov (United States)

    Chang, Edward F; Wang, Doris D; Perry, David W; Barbaro, Nicholas M; Berger, Mitchel S

    2011-04-01

    Language dominance in the right hemisphere is rare. Therefore, the organization of essential language sites in the dominant right hemisphere is unclear, especially compared with cases involving the more prevalent left dominant hemisphere. The authors reviewed the medical records of 15 patients who underwent awake craniotomy for tumor or epilepsy surgery and speech mapping of right hemisphere perisylvian language areas at the University of California, San Francisco. All patients were determined to have either complete right-sided or bilateral language dominance by preoperative Wada testing. All patients but one were left-handed. Of more than 331 total stimulation sites, 27 total sites were identified as essential for language function (14 sites for speech arrest/anarthria; 12 for anomia; and 1 for alexia). While significant interindividual variability was observed, the general pattern of language organization was similar to classic descriptions of frontal language production and posterior temporal language integration for the left hemisphere. Speech arrest sites were clustered in the ventral precentral gyrus and pars opercularis. Anomia sites were more widely distributed, but were focused in the posterior superior and middle temporal gyri as well as the inferior parietal gyrus. One alexia site was found over the superior temporal gyrus. Face sensory and motor cortical sites were also identified along the ventral sensorimotor strip. The prevalence and specificity of essential language sites were greater in unilateral right hemisphere-dominant patients, compared with those with bilateral dominance by Wada testing. The authors' results suggest that the organization of language in right hemisphere dominance mirrors that of left hemisphere dominance. Awake speech mapping is a safe and reliable surgical adjunct in these rare clinical cases and should be done in the setting of right hemisphere dominance to avoid preventable postoperative aphasia.

  2. Effects of repetitive transcranial magnetic stimulation combined with sensory cueing on unilateral neglect in subacute patients with right hemispheric stroke: a randomized controlled study.

    Science.gov (United States)

    Yang, Nicole Yh; Fong, Kenneth Nk; Li-Tsang, Cecilia Wp; Zhou, D

    2017-09-01

    To compare the effects of rTMS combined with sensory cueing, rTMS alone, and conventional rehabilitation on unilateral neglect, hemiplegic arm functions and performance of activities of daily living. A single-blinded randomized controlled trial. A convalescent hospital. Sixty inpatients with left unilateral neglect after stroke. Patients were randomly assigned to three groups: rTMS combined with sensory cueing, rTMS, and conventional rehabilitation alone. rTMS at 1 Hz was applied over P5 of the contralesional hemisphere while vibration cueing was emitted using a wristwatch device on the hemiplegic arm, five days per week for two weeks. The first two groups received the same dosage of conventional rehabilitation on top of their experimental interventions. Blinded assessments were administered at baseline, 2 weeks postintervention, and 6 weeks follow-up. Neglect and arm motor performance. Both rTMS combined with sensory cueing (99.6±33.0) and rTMS alone (88.2±28.7) significantly reduced unilateral neglect than conventional rehabilitation (72.7±33.1) when measured using the conventional subtests of the Behavioural Inattention Test, but the combination was better than rTMS alone. Hemiplegic arm functions and activities of daily living improved in all patients across the three groups but no significant differences were found between the groups. The combination of inhibitory P5-rTMS with sensory cueing was better than either rTMS or conventional rehabilitation alone in producing a stronger and long-lasting improvement in unilateral neglect, but the improvement was not associated with improved arm function or independence in activities of daily living.

  3. A conceptual lemon: theta burst stimulation to the left anterior temporal lobe untangles object representation and its canonical color.

    Science.gov (United States)

    Chiou, Rocco; Sowman, Paul F; Etchell, Andrew C; Rich, Anina N

    2014-05-01

    Object recognition benefits greatly from our knowledge of typical color (e.g., a lemon is usually yellow). Most research on object color knowledge focuses on whether both knowledge and perception of object color recruit the well-established neural substrates of color vision (the V4 complex). Compared with the intensive investigation of the V4 complex, we know little about where and how neural mechanisms beyond V4 contribute to color knowledge. The anterior temporal lobe (ATL) is thought to act as a "hub" that supports semantic memory by integrating different modality-specific contents into a meaningful entity at a supramodal conceptual level, making it a good candidate zone for mediating the mappings between object attributes. Here, we explore whether the ATL is critical for integrating typical color with other object attributes (object shape and name), akin to its role in combining nonperceptual semantic representations. In separate experimental sessions, we applied TMS to disrupt neural processing in the left ATL and a control site (the occipital pole). Participants performed an object naming task that probes color knowledge and elicits a reliable color congruency effect as well as a control quantity naming task that also elicits a cognitive congruency effect but involves no conceptual integration. Critically, ATL stimulation eliminated the otherwise robust color congruency effect but had no impact on the numerical congruency effect, indicating a selective disruption of object color knowledge. Neither color nor numerical congruency effects were affected by stimulation at the control occipital site, ruling out nonspecific effects of cortical stimulation. Our findings suggest that the ATL is involved in the representation of object concepts that include their canonical colors.

  4. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2014-01-01

    Full Text Available Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks.

  5. Modulating transcallosal and intra-hemispheric brain connectivity with tDCS: Implications for interventions in Aphasia.

    Science.gov (United States)

    Zheng, Xin; Dai, Weiying; Alsop, David C; Schlaug, Gottfried

    2016-07-25

    Transcranial direct current stimulation (tDCS) can enhance or diminish cortical excitability levels depending on the polarity of the stimulation. One application of non-invasive brain-stimulation has been to modulate a possible inter-hemispheric disinhibition after a stroke. This disinhibition model has been developed mainly for the upper extremity motor system, but it is not known whether the language/speech-motor system shows a similar inter-hemispheric interaction. We aimed to examine physiological evidence of inter- and intra-hemispheric connectivity changes induced by tDCS of the right inferior frontal gyrus (IFG) using arterial-spin labeling (ASL) MRI. Using an MR-compatible DC-Stimulator, we applied anodal stimulation to the right IFG region of nine healthy adults while undergoing non-invasive cerebral blood flow imaging with arterial-spin labeling (ASL) before, during, and after the stimulation. All ASL images were then normalized and timecourses were extracted in regions of interest (ROIs), which were the left and right IFG regions, and the right supramarginal gyrus (SMG) in the inferior parietal lobule. Two additional ROIs (the right occipital lobe and the left fronto-orbital region) were taken as control regions. Using regional correlation coefficients as a surrogate marker of connectivity, we could show that inter-hemispheric connectivity (right IFG with left IFG) decreased significantly (p < 0.05; r-scores from 0.67 to 0.53) between baseline and post-stimulation, while the intra-hemispheric connectivity (right IFG with right SMG) increased significantly (p < 0.05;r-scores from 0.74 to 0.81). A 2 × 2 ANOVA found a significant main effect of HEMISPHERE (F(8) = 6.83, p < 0.01) and a significant HEMISPHERE-by-TIME interaction (F(8) = 4.24, p < 0.05) in connectivity changes. The correlation scores did not change significantly in the control region pairs (right IFG with right occipital and right IFG with left fronto-orbital) over

  6. Comparison of the two cerebral hemispheres in inhibitory processes operative during movement preparation

    Science.gov (United States)

    Klein, Pierre-Alexandre; Duque, Julie; Labruna, Ludovica; Ivry, Richard B.

    2015-01-01

    Neuroimaging and neuropsychological studies suggest that in right-handed individuals, the left hemisphere plays a dominant role in praxis, relative to the right hemisphere. However hemispheric asymmetries assessed with transcranial magnetic stimulation (TMS) has not shown consistent differences in corticospinal (CS) excitability of the two hemispheres during movements. In the current study, we systematically explored hemispheric asymmetries in inhibitory processes that are manifest during movement preparation and initiation. Single-pulse TMS was applied over the left or right primary motor cortex (M1LEFT and M1RIGHT, respectively) to elicit motor-evoked potentials (MEPs) in the contralateral hand while participants performed a two-choice reaction time task requiring a cued movement of the left or right index finger. In Experiments 1 and 2, TMS probes were obtained during a delay period following the presentation of the preparatory cue that provided partial or full information about the required response. MEPs were suppressed relative to baseline regardless of whether they were elicited in a cued or uncued hand. Importantly, the magnitude of these inhibitory changes in CS excitability was similar when TMS was applied over M1LEFT or M1RIGHT, irrespective of the amount of information carried by the preparatory cue. In Experiment 3, there was no preparatory cue and TMS was applied at various time points after the imperative signal. When CS excitability was probed in the cued effector, MEPs were initially inhibited and then rose across the reaction time interval. This function was similar for M1LEFT and M1RIGHT TMS. When CS excitability was probed in the uncued effector, MEPs remained inhibited throughout the RT interval. However, MEPs in right FDI became more inhibited during selection and initiation of a left hand movement, whereas MEPs in left FDI remained relatively invariant across RT interval for the right hand. In addition to these task-specific effects, there

  7. High-definition transcranial direct-current stimulation of the right M1 further facilitates left M1 excitability during crossed facilitation.

    Science.gov (United States)

    Cabibel, Vincent; Muthalib, Makii; Teo, Wei-Peng; Perrey, Stephane

    2018-04-01

    The crossed-facilitation (CF) effect refers to when motor-evoked potentials (MEPs) evoked in the relaxed muscles of one arm are facilitated by contraction of the opposite arm. The aim of this study was to determine whether high-definition transcranial direct-current stimulation (HD-tDCS) applied to the right primary motor cortex (M1) controlling the left contracting arm [50% maximum voluntary isometric contraction (MVIC)] would further facilitate CF toward the relaxed right arm. Seventeen healthy right-handed subjects participated in an anodal and cathodal or sham HD-tDCS session of the right M1 (2 mA for 20 min) separated by at least 48 h. Single-pulse transcranial magnetic stimulation (TMS) was used to elicit MEPs and cortical silent periods (CSPs) from the left M1 at baseline and 10 min into and after right M1 HD-tDCS. At baseline, compared with resting, CF (i.e., right arm resting, left arm 50% MVIC) increased left M1 MEP amplitudes (+97%) and decreased CSPs (-11%). The main novel finding was that right M1 HD-tDCS further increased left M1 excitability (+28.3%) and inhibition (+21%) from baseline levels during CF of the left M1, with no difference between anodal and cathodal HD-tDCS sessions. No modulation of CSP or MEP was observed during sham HD-tDCS sessions. Our findings suggest that CF of the left M1 combined with right M1 anodal or cathodal HD-tDCS further facilitated interhemispheric interactions during CF from the right M1 (contracting left arm) toward the left M1 (relaxed right arm), with effects on both excitatory and inhibitory processing. NEW & NOTEWORTHY This study shows modulation of the nonstimulated left M1 by right M1 HD-tDCS combined with crossed facilitation, which was probably achieved through modulation of interhemispheric interactions.

  8. Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression.

    Science.gov (United States)

    Shajahan, Polash M; Glabus, Mike F; Steele, J Douglas; Doris, Alan B; Anderson, Kay; Jenkins, Jenny A; Gooding, Patricia A; Ebmeier, Klaus P

    2002-06-01

    Transcranial magnetic stimulation (TMS) has been used for over a decade to investigate cortical function. More recently, it has been employed to treat conditions such as major depression. This study was designed to explore the effects of differential treatment parameters, such as stimulation frequency. In addition, the data were examined to determine whether a change in connectivity occurred following TMS. Fifteen patients with major depression were entered into a combined imaging and treatment experiment with single photon emission computed tomography (SPECT) and repetitive transcranial magnetic stimulation (rTMS) over left dorso-lateral prefrontal cortex (DLPFC). Brain perfusion during a verbal fluency task was compared between pre- and poststimulation conditions. Patients were then treated with 80% of motor threshold for a total of 10 days, using 5000 stimuli at 5, 10 or 20 Hz. Tests of cortical excitability and neuropsychological tests were done throughout the trial. Patients generally improved with treatment. There was no perceptible difference between stimulation frequencies, which may have reflected low study power. An increase in rostral anterior cingulate activation after the treatment day was associated with increased functional connectivity in the dorso-lateral frontal loop on the left and the limbic loop on both sides. No noticeable deterioration in neuropsychological function was observed. TMS at the stimulation frequencies used seems to be safe over a course of 5000 stimuli. It appears to have an activating effect in anterior limbic structures and increase functional connectivity in the neuroanatomical networks under the stimulation coil within an hour of stimulation.

  9. Ipsilateral putamen and insula activation by both left and right GB34 acupuncture stimulation: An fMRI study on healthy participants

    NARCIS (Netherlands)

    Yeo, S.; Noort, M.W.M.L. van den; Bosch, M.P.C.; Lim, S.

    2016-01-01

    The modulatory effects on the brain during right versus left side acupuncture stimulation of the same acupuncture point have been a subject of controversy. For clarification of this important methodological issue, the present study was designed to compare the blood oxygen level-dependent responses

  10. Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)

    Science.gov (United States)

    Ueno, S.; Matsuda, T.

    1991-04-01

    We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.

  11. Short and long term effects of left and bilateral repetitive transcranial magnetic stimulation in schizophrenia patients with auditory verbal hallucinations: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Leonie Bais

    Full Text Available BACKGROUND: Repetitive transcranial magnetic stimulation of the left temporo-parietal junction area has been studied as a treatment option for auditory verbal hallucinations. Although the right temporo-parietal junction area has also shown involvement in the genesis of auditory verbal hallucinations, no studies have used bilateral stimulation. Moreover, little is known about durability effects. We studied the short and long term effects of 1 Hz treatment of the left temporo-parietal junction area in schizophrenia patients with persistent auditory verbal hallucinations, compared to sham stimulation, and added an extra treatment arm of bilateral TPJ area stimulation. METHODS: In this randomized controlled trial, 51 patients diagnosed with schizophrenia and persistent auditory verbal hallucinations were randomly allocated to treatment of the left or bilateral temporo-parietal junction area or sham treatment. Patients were treated for six days, twice daily for 20 minutes. Short term efficacy was measured with the Positive and Negative Syndrome Scale (PANSS, the Auditory Hallucinations Rating Scale (AHRS, and the Positive and Negative Affect Scale (PANAS. We included follow-up measures with the AHRS and PANAS at four weeks and three months. RESULTS: The interaction between time and treatment for Hallucination item P3 of the PANSS showed a trend for significance, caused by a small reduction of scores in the left group. Although self-reported hallucination scores, as measured with the AHRS and PANAS, decreased significantly during the trial period, there were no differences between the three treatment groups. CONCLUSION: We did not find convincing evidence for the efficacy of left-sided rTMS, compared to sham rTMS. Moreover, bilateral rTMS was not superior over left rTMS or sham in improving AVH. Optimizing treatment parameters may result in stronger evidence for the efficacy of rTMS treatment of AVH. Moreover, future research should consider

  12. Defective imitation of finger configurations in patients with damage in the right or left hemispheres: An integration disorder of visual and somatosensory information?

    Science.gov (United States)

    Okita, Manabu; Yukihiro, Takashi; Miyamoto, Kenzo; Morioka, Shu; Kaba, Hideto

    2017-04-01

    To explore the mechanism underlying the imitation of finger gestures, we devised a simple imitation task in which the patients were instructed to replicate finger configurations in two conditions: one in which they could see their hand (visual feedback: VF) and one in which they could not see their hand (non-visual feedback: NVF). Patients with left brain damage (LBD) or right brain damage (RBD), respectively, were categorized into two groups based on their scores on the imitation task in the NVF condition: the impaired imitation groups (I-LBD and I-RBD) who failed two or more of the five patterns and the control groups (C-LBD and C-RBD) who made one or no errors. We also measured the movement-production times for imitation. The I-RBD group performed significantly worse than the C-RBD group even in the VF condition. In contrast, the I-LBD group was selectively impaired in the NVF condition. The I-LBD group performed the imitations at a significantly slower rate than the C-LBD group in both the VF and NVF conditions. These results suggest that impaired imitation in patients with LBD is partly due to an abnormal integration of visual and somatosensory information based on the task specificity of the NVF condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. SU-F-T-654: Pacemaker Dose Estimate Using Optically Stimulated Luminescent Dosimeter for Left Breast Intraoperative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Goenka, A; Sharma, A; Wang, L; Cao, Y; Jamshidi, A [Northwell Health, Lake Success, NY (United States)

    2016-06-15

    Purpose: To assess and report the in vivo dose for a patient with a pacemaker being treated in left breast intraoperative radiation therapy (IORT). The ZEISS Intrabeam 50 kVp X-ray beam with a spherical applicator was used. Methods: The optically stimulated luminescent dosimeters (OSLDs) (Landauer nanoDots) were employed and calibrated under the conditions of the Intrabeam 50 kVp X-rays. The nanoDots were placed on the patient at approximately 15 cm away from the lumpectomy cavity both under and above a shield of lead equivalence 0.25 mm (RayShield X-Drape D-110) covering the pacemaker area during IORT with a 5 cm spherical applicator. Results: The skin surface dose near the pacemaker during the IORT with a prescription of 20 Gy was measured as 4.0±0.8 cGy. The dose behind the shield was 0.06±0.01 Gy, demonstrating more than 98% dose reduction. The in vivo skin surface doses during a typical breast IORT at a 4.5 cm spherical applicator surface were further measured at 5, 10, 15, and 20 cm away to be 159±11 cGy, 15±1 cGy, 6.6±0.5 cGy, and 1.8±0.1 cGy, respectively. A power law fit to the dose versus the distance z from the applicator surface yields the dose fall off at the skin surface following z^-2.5, which can be used to estimate skin doses in future cases. The comparison to an extrapolation of depth dose in water reveals an underestimate of far field dose using the manufactory provided data. Conclusion: The study suggests the appropriateness of OSLD as an in vivo skin dosimeter in IORT using the Intrabeam system in a wide dose range. The pacemaker dose measured during the left breast IORT was within a safe limit.

  14. Phonological decisions require both the left and right supramarginal gyri

    DEFF Research Database (Denmark)

    Hartwigsen, Gesa; Baumgaertner, Annette; Price, Cathy J

    2010-01-01

    Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right...... the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed...... hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS...

  15. Task Specific Inter-Hemispheric Coupling in Human Subthalamic Nuclei

    Directory of Open Access Journals (Sweden)

    Felix eDarvas

    2014-09-01

    Full Text Available Cortical networks and quantitative measures of connectivity are integral to the study of brain function. Despite lack of direct connections between left and right subthalamic nuclei (STN, there are apparent physiological connections. During clinical examination of patients with Parkinson’s Disease (PD, this connectivity is exploited to enhance signs of PD, yet our understanding of this connectivity is limited. We hypothesized that movement leads to synchronization of neural oscillations in bilateral STN, and we implemented phase coherence, a measure of phase-locking between cortical sites in a narrow frequency band, to demonstrate this synchronization. We analyzed task specific phase synchronization and causality between left and right STN local field potentials (LFP recorded from both hemispheres simultaneously during a cued movement task in four subjects with PD who underwent Deep Brain Stimulation (DBS surgery. We used a data driven approach to determine inter-hemispheric channel pairs and frequencies with a task specific increase in phase locking.We found significant phase locking between hemispheres in alpha frequency (8-12 Hz in all subjects concurrent with movement of either hand. In all subjects, phase synchronization increased over baseline upon or prior to hand movement onset and lasted until the motion ceased. Left and right hand movement showed similar patterns. Granger causality at the phase-locking frequencies between synchronized electrodes revealed a unidirectional causality from right to left STN regardless of which side was moved.Phase synchronization across hemispheres between basal ganglia supports existence of a bilateral network having lateralized regions of specialization for motor processing. Our results suggest this bilateral network is activated by a unilateral motor program. Understanding phase synchronization in natural brain functions is critical to development of future DBS systems that augment goal directed

  16. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    DEFF Research Database (Denmark)

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend......MRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness...... was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual...

  17. Personality, Hemispheric Dominance, and Cognitive Style.

    Science.gov (United States)

    Hylton, Jaime; Hartman, Steve E.

    1997-01-01

    Shows that 154 medical students and 526 undergraduates (samples treated separately) who were judged left- or right-hemisphere dominant (by the Hemispheric Mode Indicator) were found to have very different personalities (as measured by the Myers-Briggs Type Indicator). Considers some of the practical ramifications of the psychometric overlap of…

  18. Interaction of cerebral hemispheres and artistic thinking

    Science.gov (United States)

    Nikolaenko, Nikolay N.

    1998-07-01

    Study of drawings by patients with local lesions of the right or left hemisphere allows to understand how artistic thinking is supported by brain structures. The role of the right hemisphere is significant at the early stage of creative process. The right hemisphere is a generator of nonverbal visuo-spatial thinking. It operates with blurred nonverbal images and arrange them in a visual space. With the help of iconic signs the right hemisphere reflects the world and creates perceptive visual standards which are stored in the long-term right hemisphere memory. The image, which appeared in the `inner' space, should be transferred into a principally different language, i.e. a left hemispheric sign language. This language operates with a number of discrete units, logical succession and learned grammar rules. This process can be explained by activation (information) transfer from the right hemisphere to the left one. Thus, natural and spontaneous creative process, which is finished by a conscious effort, can be understood as an activation impulse transfer from the right hemisphere to the left one and back.

  19. Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system.

    Science.gov (United States)

    Janzen, J; Schlindwein, P; Bense, S; Bauermann, T; Vucurevic, G; Stoeter, P; Dieterich, M

    2008-10-01

    Earlier functional imaging studies on the processing of vestibular information mainly focused on cortical activations due to stimulation of the horizontal semicircular canals in right-handers. Two factors were found to determine its processing in the temporo-parietal cortex: a dominance of the non-dominant hemisphere and an ipsilaterality of the neural pathways. In an investigation of the role of these factors in the vestibular otoliths, we used vestibular evoked myogenic potentials (VEMPs) in a fMRI study of monaural saccular-otolith stimulation. Our aim was to (1) analyze the hemispheric dominance for saccular-otolith information in healthy left-handers, (2) determine if there is a predominance of the ipsilateral saccular-otolith projection, and (3) evaluate the impact of both factors on the temporo-parieto-insular activation pattern. A block design with three stimulation and rest conditions was applied: (1) 102 dB-VEMP stimulation; (2) 65 dB-control-acoustic stimulation, (3) 102 dB-white-noise-control stimulation. After subtraction of acoustic side effects, bilateral activations were found in the posterior insula, the superior/middle/transverse temporal gyri, and the inferior parietal lobule. The distribution of the saccular-otolith activations was influenced by the two factors but with topographic disparity: whereas the inferior parts of the temporo-parietal cortex were mainly influenced by the ipsilaterality of the pathways, the upper parts reflected the dominance of the non-dominant hemisphere. This is in contrast to the processing of acoustic stimulation, which showed a predominance of the contralateral pathways. Our study proves the importance of the hemispheric preponderance also in left-handers, which is of relevance in the superior parts of the insula gyrus V, the inferior parietal lobule, and the superior temporal gyri.

  20. Transcranial Direct Current Stimulation (tDCS) Targeting Left Dorsolateral Prefrontal Cortex Modulates Task-Induced Acute Pain in Healthy Volunteers.

    Science.gov (United States)

    Mariano, Timothy Y; Van't Wout, Mascha; Garnaat, Sarah L; Rasmussen, Steven A; Greenberg, Benjamin D

    2016-04-01

    Current chronic pain treatments target nociception rather than affective "suffering" and its associated functional and psychiatric comorbidities. The left dorsolateral prefrontal cortex (DLPFC) has been implicated in affective, cognitive, and attentional aspects of pain and is a primary target of neuromodulation for affective disorders. Transcranial direct current stimulation (tDCS) can non-invasively modulate cortical activity. The present study tests whether anodal tDCS targeting the left DLPFC will increase tolerability of acute painful stimuli vs cathodal tDCS. Forty tDCS-naive healthy volunteers received anodal and cathodal stimulation targeting the left DLPFC in two randomized and counterbalanced sessions. During stimulation, each participant performed cold pressor (CP) and breath holding (BH) tasks. We measured pain intensity with the Defense and Veterans Pain Rating Scale (DVPRS) before and after each task. Mixed ANOVA revealed no main effect of stimulation polarity for mean CP threshold, tolerance, or endurance, or mean BH time (allP > 0.27). However, DVPRS rise associated with CP was significantly smaller with anodal vs cathodal tDCS (P = 0.024). We further observed a significant tDCS polarity × stimulation order interaction (P = 0.042) on CP threshold, suggesting task sensitization. Although our results do not suggest that polarity of tDCS targeting the left DLPFC differentially modulates the tolerability of CP- and BH-related pain distress in healthy volunteers, there was a significant effect on DVPRS pain ratings. This contrasts with our previous findings that tDCS targeting the left dorsal anterior cingulate cortex showed a trend toward higher mean CP tolerance with cathodal vs anodal stimulation. The present results may suggest tDCS-related effects on nociception or DLPFC-mediated attention, or preferential modulation of the affective valence of pain as captured by the DVPRS. Sham-controlled clinical studies are needed. © 2015

  1. Stimulating Conversation: Enhancement of Elicited Propositional Speech in a Patient with Chronic Non-Fluent Aphasia following Transcranial Magnetic Stimulation

    Science.gov (United States)

    Hamilton, Roy H.; Sanders, Linda; Benson, Jennifer; Faseyitan, Olufunsho; Norise, Catherine; Naeser, Margaret; Martin, Paula; Coslett, H. Branch

    2010-01-01

    Although evidence suggests that patients with left hemisphere strokes and non-fluent aphasia who receive 1Hz repetitive transcranial magnetic stimulation (rTMS) over the intact right inferior frontal gyrus experience persistent benefits in naming, it remains unclear whether the effects of rTMS in these patients generalize to other language…

  2. Right lower limb apraxia in a patient with left supplementary motor area infarction: intactness of the corticospinal tract confirmed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Min Cheol Chang

    2015-01-01

    Full Text Available We reported a 50-year-old female patient with left supplementary motor area infarction who presented right lower limb apraxia and investigated the possible causes using transcranial magnetic stimulation. The patient was able to walk and climb stairs spontaneously without any assistance at 3 weeks after onset. However, she was unable to intentionally move her right lower limb although she understood what she supposed to do. The motor evoked potential evoked by transcranial magnetic stimulation from the right lower limb was within the normal range, indicating that the corticospinal tract innervating the right lower limb was uninjured. Thus, we thought that her motor dysfunction was not induced by motor weakness, and confirmed her symptoms as apraxia. In addition, these results also suggest that transcranial magnetic stimulation is helpful for diagnosing apraxia.

  3. Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: A review.

    Science.gov (United States)

    Tzourio-Mazoyer, Nathalie; Perrone-Bertolotti, Marcela; Jobard, Gael; Mazoyer, Bernard; Baciu, Monica

    2017-01-01

    This review synthesizes anatomo-functional variability of language hemispheric representation and specialization (hemispheric specialization for language, HSL) as well as its modulation by several variables (demographic, anatomical, developmental, genetic, clinical, and psycholinguistic) in physiological and pathological conditions. The left hemisphere (LH) dominance for language, observed in approximately 90% of healthy individuals and in 70% of patients, is grounded by intra-hemispheric connections mediated by associative bundles such as the arcuate fasciculus and inter-hemispheric transcallosal connections mediated by the corpus callosum that connects homotopic regions of the left and right hemispheres (RH). In typical brains, inter-hemispheric inhibition, exerted from the LH to the RH, permits the LH to maintain language dominance. In pathological conditions, inter- and intra-hemispheric inhibition is decreased, inducing modifications on the degree of HSL and of language networks. HSL evaluation is classically performed in clinical practice with the Wada test and electro-cortical stimulation, gold standard methods. The advent of functional neuroimaging has allowed a more detailed assessment of the language networks and their lateralization, consistent with the results provided by the gold standard methods. In the first part, we describe anatomo-functional support for HSL in healthy conditions, its developmental course, its relationship with cognitive skills, and the various modulatory factors acting on HSL. The second section is devoted to the assessment of HSL in patients with focal and drug-resistant epilepsy (FDRE). FDRE is considered a neurological model associated with patterns of language plasticity, both before and after surgery: FDRE patients show significant modification of language networks induced by changes mediated by transcallosal connections (explaining inter-hemispheric patterns of language reorganization) or collateral connections (explaining

  4. Stroke rehabilitation using noninvasive cortical stimulation: aphasia.

    Science.gov (United States)

    Mylius, Veit; Zouari, Hela G; Ayache, Samar S; Farhat, Wassim H; Lefaucheur, Jean-Pascal

    2012-08-01

    Poststroke aphasia results from the lesion of cortical areas involved in the motor production of speech (Broca's aphasia) or in the semantic aspects of language comprehension (Wernicke's aphasia). Such lesions produce an important reorganization of speech/language-specific brain networks due to an imbalance between cortical facilitation and inhibition. In fact, functional recovery is associated with changes in the excitability of the damaged neural structures and their connections. Two main mechanisms are involved in poststroke aphasia recovery: the recruitment of perilesional regions of the left hemisphere in case of small lesion and the acquisition of language processing ability in homotopic areas of the nondominant right hemisphere when left hemispheric language abilities are permanently lost. There is some evidence that noninvasive cortical stimulation, especially when combined with language therapy or other therapeutic approaches, can promote aphasia recovery. Cortical stimulation was mainly used to either increase perilesional excitability or reduce contralesional activity based on the concept of reciprocal inhibition and maladaptive plasticity. However, recent studies also showed some positive effects of the reinforcement of neural activities in the contralateral right hemisphere, based on the potential compensatory role of the nondominant hemisphere in stroke recovery.

  5. Hemispheric Asymmetries in the Activation and Monitoring of Memory Errors

    Science.gov (United States)

    Giammattei, Jeannette; Arndt, Jason

    2012-01-01

    Previous research on the lateralization of memory errors suggests that the right hemisphere's tendency to produce more memory errors than the left hemisphere reflects hemispheric differences in semantic activation. However, all prior research that has examined the lateralization of memory errors has used self-paced recognition judgments. Because…

  6. The Influence of Context on Hemispheric Recruitment during Metaphor Processing

    Science.gov (United States)

    Diaz, Michele T.; Hogstrom, Larson J.

    2011-01-01

    Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify…

  7. Hypothalamic digoxin, hemispheric chemical dominance, and eating behavior.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in eating disorders. The patterns were compared in those with right hemispheric and left hemispheric dominance. The serum HMG CoA reductase activity, RBC membrane Na+-K+ ATPase activity, serum digoxin, magnesium, tryptophan catabolites (serotonin, quinolinic acid, strychnine, and nicotine), and tyrosine catabolites (morphine, dopamine, and noradrenaline) were measured in anorexia nervosa, bulimia nervosa, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. Digoxin synthesis was increased with upregulated tryptophan catabolism and downregulated tyrosine catabolism in those with anorexia nervosa and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism and upregulated tyrosine catabolism in those with bulimia nervosa and left hemispheric chemical dominance. The membrane Na+-K+ ATPase activity and serum magnesium were decreased in anorexia nervosa and right hemispheric chemical dominance while they were increased in bulimia nervosa and left hemispheric chemical dominance. Hypothalamic digoxin and hemispheric chemical dominance play a central role in the regulation of eating behavior. Anorexia nervosa represents the right hemispheric chemically dominant/hyperdigoxinemic state and bulimia nervosa the left hemispheric chemically dominant/hypodigoxinemic state.

  8. Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures.

    Science.gov (United States)

    Arshad, Q; Siddiqui, S; Ramachandran, S; Goga, U; Bonsu, A; Patel, M; Roberts, R E; Nigmatullina, Y; Malhotra, P; Bronstein, A M

    2015-12-17

    Right hemisphere dominance for visuo-spatial attention is characteristically observed in most right-handed individuals. This dominance has been attributed to both an anatomically larger right fronto-parietal network and the existence of asymmetric parietal interhemispheric connections. Previously it has been demonstrated that interhemispheric conflict, which induces left hemisphere inhibition, results in the modulation of both (i) the excitability of the early visual cortex (V1) and (ii) the brainstem-mediated vestibular-ocular reflex (VOR) via top-down control mechanisms. However to date, it remains unknown whether the degree of an individual's right hemisphere dominance for visuospatial function can influence, (i) the baseline excitability of the visual cortex and (ii) the extent to which the right hemisphere can exert top-down modulation. We directly tested this by correlating line bisection error (or pseudoneglect), taken as a measure of right hemisphere dominance, with both (i) visual cortical excitability measured using phosphene perception elicited via single-pulse occipital trans-cranial magnetic stimulation (TMS) and (ii) the degree of trans-cranial direct current stimulation (tDCS)-mediated VOR suppression, following left hemisphere inhibition. We found that those individuals with greater right hemisphere dominance had a less excitable early visual cortex at baseline and demonstrated a greater degree of vestibular nystagmus suppression following left hemisphere cathodal tDCS. To conclude, our results provide the first demonstration that individual differences in right hemisphere dominance can directly predict both the baseline excitability of low-level brain structures and the degree of top-down modulation exerted over them. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The processing of semantic relatedness in the brain: Evidence from associative and categorical false recognition effects following transcranial direct current stimulation of the left anterior temporal lobe.

    Science.gov (United States)

    Díez, Emiliano; Gómez-Ariza, Carlos J; Díez-Álamo, Antonio M; Alonso, María A; Fernandez, Angel

    2017-08-01

    A dominant view of the role of the anterior temporal lobe (ATL) in semantic memory is that it serves as an integration hub, specialized in the processing of semantic relatedness by way of mechanisms that bind together information from different brain areas to form coherent amodal representations of concepts. Two recent experiments, using brain stimulation techniques along with the Deese-Roediger-McDermott (DRM) paradigm, have found a consistent false memory reduction effect following stimulation of the ATL, pointing to the importance of the ATL in semantic/conceptual processing. To more precisely identify the specific process being involved, we conducted a DRM experiment in which transcranial direct current stimulation (anode/cathode/sham) was applied over the participants' left ATL during the study of lists of words that were associatively related to their non-presented critical words (e.g., rotten, worm, red, tree, liqueur, unripe, cake, food, eden, peel, for the critical item apple) or categorically related (e.g., pear, banana, peach, orange, cantaloupe, watermelon, strawberry, cherry, kiwi, plum, for the same critical item apple). The results showed that correct recognition was not affected by stimulation. However, an interaction between stimulation condition and type of relation for false memories was found, explained by a significant false recognition reduction effect in the anodal condition for associative lists that was not observed for categorical lists. Results are congruent with previous findings and, more importantly, they help to clarify the nature and locus of false memory reduction effects, suggesting a differential role of the left ATL, and providing critical evidence for understanding the creation of semantic relatedness-based memory illusions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  11. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.

    Science.gov (United States)

    Duecker, Felix; Formisano, Elia; Sack, Alexander T

    2013-08-01

    Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.

  12. The Joint Development of Hemispheric Lateralization for Words and Faces

    Science.gov (United States)

    Dundas, Eva M.; Plaut, David C.; Behrmann, Marlene

    2013-01-01

    Consistent with long-standing findings from behavioral studies, neuroimaging investigations have identified a region of the inferior temporal cortex that, in adults, shows greater face selectivity in the right than left hemisphere and, conversely, a region that shows greater word selectivity in the left than right hemisphere. What has not been…

  13. Repetitive transcranial magnetic stimulation of the left premotor/dorsolateral prefrontal cortex does not have analgesic effect on central poststroke pain.

    Science.gov (United States)

    de Oliveira, Rogério Adas Ayres; de Andrade, Daniel Ciampi; Mendonça, Melina; Barros, Rafael; Luvisoto, Tatiana; Myczkowski, Martin Luiz; Marcolin, Marco Antonio; Teixeira, Manoel Jacobsen

    2014-12-01

    Central poststroke pain (CPSP) is caused by an encephalic vascular lesion of the somatosensory pathways and is commonly refractory to current pharmacologic treatments. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex/dorsolateral prefrontal cortex (PMC/DLPFC) can change thermal pain threshold toward analgesia in healthy subjects and has analgesic effects in acute postoperative pain as well as in fibromyalgia patients. However, its effect on neuropathic pain and in CPSP, in particular, has not been assessed. The aim of this prospective, double-blind, placebo-controlled study was to evaluate the analgesic effect of PMC/DLPFC rTMS in CPSP patients. Patients were randomized into 2 groups, active (a-) rTMS and sham (s-) rTMS, and were treated with 10 daily sessions of rTMS over the left PMC/DLPFC (10 Hz, 1,250 pulses/d). Outcomes were assessed at baseline, during the stimulation phase, and at 1, 2, and 4 weeks after the last stimulation. The main outcome was pain intensity changes measured by the visual analog scale on the last stimulation day compared to baseline. Interim analysis was scheduled when the first half of the patients completed the study. The study was terminated because of a significant lack of efficacy of the active arm after 21 patients completed the whole treatment and follow-up phases. rTMS of the left PMC/DLPFC did not improve pain in CPSP. The aim of this double-blind, placebo-controlled study was to evaluate the analgesic effects of rTMS to the PMC/DLPFC in CPSP patients. An interim analysis showed a consistent lack of analgesic effect, and the study was terminated. rTMS of the PMC/DLPFC is not effective in relieving CPSP. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Low-frequency brain stimulation to the left dorsolateral prefrontal cortex increases the negative impact of social exclusion among those high in personal distress.

    Science.gov (United States)

    Fitzgibbon, Bernadette Mary; Kirkovski, Melissa; Bailey, Neil Wayne; Thomson, Richard Hilton; Eisenberger, Naomi; Enticott, Peter Gregory; Fitzgerald, Paul Bernard

    2017-06-01

    The dorsolateral prefrontal cortex (DLPFC) is thought to play a key role in the cognitive control of emotion and has therefore, unsurprisingly, been implicated in the regulation of physical pain perception. This brain region may also influence the experience of social pain, which has been shown to activate similar neural networks as seen in response to physical pain. Here, we applied sham or active low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC, previously shown to exert bilateral effects in pain perception, in healthy participants. Following stimulation, participants played the "Cyberball Task"; an online ball-tossing game in which the subject participant is included or excluded. Compared to sham, rTMS did not modulate behavioural response to social exclusion. However, within the active rTMS group only, greater trait personal distress was related to enhanced negative outcomes to social exclusion. These results add further support to the notion that the effect of brain stimulation is not homogenous across individuals, and indicates the need to consider baseline individual differences when assessing response to brain stimulation. This seems particularly relevant in social neuroscience investigations, where trait factors may have a meaningful effect.

  15. Cerebral asymmetry in the control of cardiovascular functioning: evidence from lateral vibrotactile stimulation.

    Science.gov (United States)

    Foster, Paul S; Hubbard, Tyler; Yung, Raegan C; Ferguson, Brad J; Drago, Valeria; Harrison, David W

    2013-01-01

    Research has supported hemispheric specialisation in the regulation of cardiovascular functioning, with the left hemisphere being associated with parasympathetic functioning and the right hemisphere with sympathetic functioning. We sought to investigate this relationship further using vibrotactile stimulation applied to the palms. Our prediction was that vibrotactile stimulation applied to the left hand would result in increased heart rate and blood pressure, and that stimulation applied to the right hand would result in decreased heart rate and blood pressure. The results indicated significant differences in heart rate change scores in the predicted direction. No differences were noted for systolic or diastolic blood pressure. Hence the findings provide partial support for the lateralisation of autonomic functions.

  16. The influence of low-frequency left prefrontal repetitive transcranial magnetic stimulation on memory for words but not for faces

    Czech Academy of Sciences Publication Activity Database

    Škrdlantová, L.; Horáček, J.; Dockery, C.; Lukavský, Jiří; Kopeček, M.; Preiss, M.; Novák, T.; Höschl, C.

    2005-01-01

    Roč. 54, č. 1 (2005), s. 123-128 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z70250504 Keywords : face memory * verbal memory * repetitive transcranial magnetic stimulation Subject RIV: AN - Psychology Impact factor: 1.806, year: 2005 http://www.biomed.cas.cz/physiolres/pdf/54/54_123.pdf

  17. Hypothalamic digoxin, hemispheric chemical dominance and sarcoidosis.

    Science.gov (United States)

    Ravi Kumar, A; Kurup, Parameswara Achutha

    2004-06-01

    The isoprenoid pathway produces three key metabolites: endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins) and ubiquinone (free radical scavenger). The role of the isoprenoid pathway in the pathogenesis of sarcoidosis in relation to hemispheric dominance was studied. The isoprenoid pathway-related cascade was assessed in patients with systemic sarcoidosis with pulmonary involvement. The pathway was also assessed in patients with right hemispheric, left hemispheric and bihemispheric dominance for comparison to find out the role of hemispheric dominance in the pathogenesis of sarcoidosis. In patients with sarcoidosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in the cholesterol:phospholipid ratio and a reduction in the glycoconjugate level of red blood cell (RBC) membrane in this group of patients. The same biochemical patterns were obtained in individuals with right hemispheric dominance. In individuals with left hemispheric dominance the patterns were reversed. Endogenous digoxin, by activating the calcineurin signal transduction pathway of T cells, can contribute to immune activation in sarcoidosis. An altered glycoconjugate metabolism can lead to the generation of endogenous self-glycoprotein antigens in the lung as well as other tissues. Increased free radical generation can also lead to immune activation. The role of a dysfunctional isoprenoid pathway and endogenous digoxin in the pathogenesis of sarcoidosis in relation to right hemispheric chemical dominance is discussed. All the patients with sarcoidosis were right-handed/left hemispheric dominant according to the dichotic listening test, but their biochemical patterns

  18. Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS.

    Science.gov (United States)

    Mayseless, N; Shamay-Tsoory, S G

    2015-04-16

    Creativity is the production of novel ideas that have value. Previous research indicated that while regions in the right hemisphere are implicated in the production of new ideas, damage to the left inferior frontal gyrus (IFG) is associated with increased creativity, indicating that the left IFG damage may have a "releasing" effect on creativity. To examine this, in the present study we used transcranial direct current stimulation (tDCS) to modulate activity of the right and the left IFG. In the first experiment we show that whereas anodal tDCS over the right IFG coupled with cathodal tDCS over the left IFG increases creativity as measured by a verbal divergent thinking task, the reverse stimulation does not affect creative production. To further confirm that only altering the balance between the two hemispheres is crucial in modulating creativity, in the second experiment we show that stimulation targeting separately the left IFG (cathodal stimulation) or the right IFG (anodal stimulation) did not result in changes in creativity as measured by verbal divergent thinking. These findings support the balance hypothesis, according to which verbal creativity requires a balance of activation between the right and the left frontal lobes, and more specifically, between the right and the left IFG. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Contralateral white noise selectively changes left human auditory cortex activity in a lexical decision task.

    Science.gov (United States)

    Behne, Nicole; Wendt, Beate; Scheich, Henning; Brechmann, André

    2006-04-01

    In a previous study, we hypothesized that the approach of presenting information-bearing stimuli to one ear and noise to the other ear may be a general strategy to determine hemispheric specialization in auditory cortex (AC). In that study, we confirmed the dominant role of the right AC in directional categorization of frequency modulations by showing that fMRI activation of right but not left AC was sharply emphasized when masking noise was presented to the contralateral ear. Here, we tested this hypothesis using a lexical decision task supposed to be mainly processed in the left hemisphere. Subjects had to distinguish between pseudowords and natural words presented monaurally to the left or right ear either with or without white noise to the other ear. According to our hypothesis, we expected a strong effect of contralateral noise on fMRI activity in left AC. For the control conditions without noise, we found that activation in both auditory cortices was stronger on contralateral than on ipsilateral word stimulation consistent with a more influential contralateral than ipsilateral auditory pathway. Additional presentation of contralateral noise did not significantly change activation in right AC, whereas it led to a significant increase of activation in left AC compared with the condition without noise. This is consistent with a left hemispheric specialization for lexical decisions. Thus our results support the hypothesis that activation by ipsilateral information-bearing stimuli is upregulated mainly in the hemisphere specialized for a given task when noise is presented to the more influential contralateral ear.

  20. No Effects of Stimulating the Left Ventrolateral Prefrontal Cortex with tDCS on Verbal Working Memory Updating

    Directory of Open Access Journals (Sweden)

    Karolina M. Lukasik

    2018-01-01

    Full Text Available The effects of transcranial direct current stimulation (tDCS on dorsolateral prefrontal cortex functions, such as working memory (WM, have been examined in a number of studies. However, much less is known about the behavioral effects of tDCS over other important WM-related brain regions, such as the ventrolateral prefrontal cortex (VLPFC. In a counterbalanced within-subjects design with 33 young healthy participants, we examined whether online and offline single-session tDCS over VLPFC affects WM updating performance as measured by a digit 3-back task. We compared three conditions: anodal, cathodal and sham. We observed no significant tDCS effects on participants' accuracy or reaction times during or after the stimulation. Neither did we find any differences between anodal and cathodal stimulation. Largely similar results were obtained when comparing subgroups of high- and low-performing participants. Possible reasons for the lack of effects, including individual differences in responsiveness to tDCS, features of montage, task and sample characteristics, and the role of VLPFC in WM, are discussed.

  1. Hemispheric resource limitations in comprehending ambiguous pictures.

    Science.gov (United States)

    White, H; Minor, S W

    1990-03-01

    Ambiguous pictures (Roschach inkblots) were lateralized for 100 msec vs. 200 msec to the right and left hemispheres (RH and LH) of 32 normal right-handed males who determined which of two previously presented words (an accurate or inaccurate one) better described the inkblot. Over the first 32 trials, subjects receiving each stimulus exposure duration were less accurate when the hemisphere receiving the stimulus also controlled the hand used to register a keypress response (RH-left hand and LH-right hand trials) than when hemispheric resources were shared, i.e., when one hemisphere controlled stimulus processing and the other controlled response programming. These differences were eliminated when the 32 trials were repeated.

  2. Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) stabilizes a newly learned motor sequence.

    Science.gov (United States)

    Focke, Jan; Kemmet, Sylvia; Krause, Vanessa; Keitel, Ariane; Pollok, Bettina

    2017-01-01

    While the primary motor cortex (M1) is involved in the acquisition the premotor cortex (PMC) has been related to over-night consolidation of a newly learned motor skill. The present study aims at investigating the possible contribution of the left PMC for the stabilization of a motor sequence immediately after acquisition as determined by susceptibility to interference. Thirty six healthy volunteers received anodal, cathodal and sham transcranial direct current stimulation (tDCS) to the left PMC either immediately prior to or during training on a serial reaction time task (SRTT) with the right hand. TDCS was applied for 10min, respectively. Reaction times were measured prior to training (t1), at the end of training (t2), and after presentation of an interfering random pattern (t3). Beyond interference from learning, the random pattern served as control condition in order to estimate general effects of tDCS on reaction times. TDCS applied during SRTT training did not result in any significant effects neither on acquisition nor on susceptibility to interference. In contrast to this, tDCS prior to SRTT training yielded an unspecific facilitation of reaction times at t2 independent of tDCS polarity. At t3, reduced susceptibility to interference was found following cathodal stimulation. The results suggest the involvement of the PMC in early consolidation and reveal a piece of evidence for the hypothesis that behavioral tDCS effects vary with the activation state of the stimulated area. Copyright © 2016. Published by Elsevier B.V.

  3. High-definition transcranial direct current stimulation (HD-tDCS) of left dorsolateral prefrontal cortex affects performance in Balloon Analogue Risk Task (BART).

    Science.gov (United States)

    Guo, Heng; Zhang, Zhuoran; Da, Shu; Sheng, Xiaotian; Zhang, Xichao

    2018-02-01

    Studies on risk preferences have long been of great concern and have examined the neural basis underlying risk-based decision making. However, studies using conventional transcranial direct current stimulation (tDCS) revealed that bilateral stimulation could change risk propensity with limited evidence of precisely focalized unilateral high-definition transcranial direct current stimulation (HD-tDCS). The aim of this experiment was to investigate the effect of HD-tDCS focalizing the left dorsal lateral prefrontal cortex (DLPFC) on risk-taking behavior during the Balloon Analogue Risk Task (BART). This study was designed as a between-subject, single-blind, sham-controlled experiment. University students were randomly assigned to three groups: the anodal group (F3 anode, AF3, F1, F5, FC3 returned), the cathodal group (F3 cathodal, AF3, F1, F5, FC3 returned) and the sham group. Subsequently, 1.5-mA 20-min HD-tDCS was applied during the BART, and the Positive Affect and Negative Affect Scale (PANAS), the Sensation Seeking Scale-5 (SSS-5), and the Behavioral Inhibition System and Behavioral Approach System scale (BIS/BAS) were measured as control variables. The cathodal group earned less total money than the sham group, and no significant difference was observed between the anodal group and the sham group. These results showed that, to some extent, focalized unilateral cathodal HD-tDCS on left DLPFC could change performance during risky tasks and diminish risky decision making. Further studies are needed to investigate the dose effect and electrode distribution of HD-tDCS during risky tasks and examine synchronous brain activity to show the neural basis.

  4. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness

    Science.gov (United States)

    Nakamura, Koyo; Kawabata, Hideaki

    2015-01-01

    Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions. PMID:26696865

  5. Hemispheric specialization in dogs for processing different acoustic stimuli.

    Directory of Open Access Journals (Sweden)

    Marcello Siniscalchi

    Full Text Available Considerable experimental evidence shows that functional cerebral asymmetries are widespread in animals. Activity of the right cerebral hemisphere has been associated with responses to novel stimuli and the expression of intense emotions, such as aggression, escape behaviour and fear. The left hemisphere uses learned patterns and responds to familiar stimuli. Although such lateralization has been studied mainly for visual responses, there is evidence in primates that auditory perception is lateralized and that vocal communication depends on differential processing by the hemispheres. The aim of the present work was to investigate whether dogs use different hemispheres to process different acoustic stimuli by presenting them with playbacks of a thunderstorm and their species-typical vocalizations. The results revealed that dogs usually process their species-typical vocalizations using the left hemisphere and the thunderstorm sounds using the right hemisphere. Nevertheless, conspecific vocalizations are not always processed by the left hemisphere, since the right hemisphere is used for processing vocalizations when they elicit intense emotion, including fear. These findings suggest that the specialisation of the left hemisphere for intraspecific communication is more ancient that previously thought, and so is specialisation of the right hemisphere for intense emotions.

  6. Impact of Anodal and Cathodal Transcranial Direct Current Stimulation over the Left Dorsolateral Prefrontal Cortex during Attention Bias Modification: An Eye-Tracking Study.

    Directory of Open Access Journals (Sweden)

    Alexandre Heeren

    Full Text Available People with anxiety disorders show an attentional bias for threat (AB, and Attention Bias Modification (ABM procedures have been found to reduce this bias. However, the underlying processes accounting for this effect remain poorly understood. One explanation suggests that ABM requires the modification of attention control, driven by the recruitment of the dorsolateral prefrontal cortex (DLPFC. In the present double-blind study, we examined whether modifying left DLPFC activation influences the effect of ABM on AB. We used transcranial direct current stimulation (tDCS to directly modulate cortical excitability of the left DLPFC during an ABM procedure designed to reduce AB to threat. Anodal tDCS increases excitability, whereas cathodal tDCS decreases it. We randomly assigned highly trait-anxious individuals to one of three conditions: 1 ABM combined with cathodal tDCS, 2 ABM combined with anodal tDCS, or 3 ABM combined with sham tDCS. We assessed the effects of these manipulations on both reaction times and eye-movements on a task indexing AB. Results indicate that combining ABM and anodal tDCS over the left DLPFC reduces the total duration that participants' gaze remains fixated on threat, as assessed using eye-tracking measurement. However, in contrast to previous studies, there were no changes in AB from baseline to post-training for participants that received ABM without tDCS. As the tendency to maintain attention to threat is known to play an important role in the maintenance of anxiety, the present findings suggest that anodal tDCS over the left DLPFC may be considered as a promising tool to reduce the maintenance of gaze to threat. Implications for future translational research combining ABM and tDCS are discussed.

  7. Brain State-dependent Functional Hemispheric Specialization in Men but not in Women

    OpenAIRE

    Mohr, Christine; Michel, Christoph M.; Lantz, Goran; Ortigue, Stephanie; Viaud-Delmon, Isabelle; Landis, Theodor

    2017-01-01

    Hemispheric specialization is reliably demonstrated in patients with unilateral lesions or disconnected hemispheres, but is inconsistent in healthy populations. The reason for this paradox is unclear. We propose that functional hemispheric specialization in healthy participants depends upon functional brain states at stimulus arrival (FBS). Brain activity was recorded from 123 surface electrodes while 22 participants (11 women) performed lateralized lexical decisions (left hemisphere processi...

  8. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials.

    Science.gov (United States)

    Pinto, Nuno; Duarte, Marta; Gonçalves, Helena; Silva, Ricardo; Gama, Jorge; Pato, Maria Vaz

    2018-01-01

    Theta-burst stimulation (TBS) can be a non-invasive technique to modulate cognitive functions, with promising therapeutic potential, but with some contradictory results. Event related potentials are used as a marker of brain deterioration and can be used to evaluate TBS-related cognitive performance, but its use remains scant. This study aimed to study bilateral inhibitory and excitatory TBS effects upon neurocognitive performance of young healthy volunteers, using the auditory P300' results. Using a double-blind sham-controlled study, 51 healthy volunteers were randomly assigned to five different groups, two submitted to either excitatory (iTBS) or inhibitory (cTBS) stimulation over the left dorsolateral pre-frontal cortex (DLPFC), two other actively stimulated the right DLPFC and finally a sham stimulation group. An oddball based auditory P300 was performed just before a single session of iTBS, cTBS or sham stimulation and repeated immediately after. P300 mean latency comparison between the pre- and post-TBS stimulation stages revealed significantly faster post stimulation latencies only when iTBS was performed on the left hemisphere (p = 0.003). Right and left hemisphere cTBS significantly delayed P300 latency (right p = 0.026; left p = 0.000). Multiple comparisons for N200 showed slower latencies after iTBS over the right hemisphere. No significant difference was found in amplitude variation. TBS appears to effectively influence neural networking involved in P300 formation, but effects seem distinct for iTBS vs cTBS and for the right or the left hemisphere. P300 evoked potentials can be an effective and practical tool to evaluate transcranial magnetic stimulation related outcomes.

  9. Investigation of cerebral metabolism by positron CT in Japanese following musical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wakasugi, Naotoshi (Nihon Univ., Tokyo (Japan). School of Medicine)

    1994-02-01

    Cerebral metabolic responses to Japanese and Western instrumental music were examined using [sup 11]C-glucose and positron CT. Eight right-handed subjects were studied in both Japanese and Western music-stimulated states. Biaural musical stimulation with a Japanese instrument, the 'shakuhachi', produced diffuse metabolic changes in the left temporal lobe in all subjects. Biaural musical stimulation with a Western instrument, the 'violin', produced metabolic changes in the right temporal lobe in 3 subjects, changes in the left in 4, and changes on both sides in one. It was considered previously that all musical stimulation led to hypermetabolism in the right hemisphere of human beings. However, the present results indicated that Japanese music produced activation of the left hemisphere in Japanese. On the other hand, Western music produced right hemispheric hypermetabolism in Japanese with no emotion. The laterality of the hemisphere stimulated by Western music was apparently incidentally changed according to the state of mind the Japanese subjects. (author).

  10. Delusional misidentifications and duplications: right brain lesions, left brain delusions.

    Science.gov (United States)

    Devinsky, Orrin

    2009-01-06

    When the delusional misidentification syndromes reduplicative paramnesia and Capgras syndromes result from neurologic disease, lesions are usually bifrontal and/or right hemispheric. The related disorders of confabulation and anosognosis share overlapping mechanisms and anatomic pathology. A dual mechanism is postulated for the delusional misidentification syndromes: negative effects from right hemisphere and frontal lobe dysfunction as well as positive effects from release (i.e., overactivity) of preserved left hemisphere areas. Negative effects of right hemisphere injury impair self-monitoring, ego boundaries, and attaching emotional valence and familiarity to stimuli. The unchecked left hemisphere unleashes a creative narrator from the monitoring of self, memory, and reality by the frontal and right hemisphere areas, leading to excessive and false explanations. Further, the left hemisphere's cognitive style of categorization, often into dual categories, leads it to invent a duplicate or impostor to resolve conflicting information. Delusions result from right hemisphere lesions. But it is the left hemisphere that is deluded.

  11. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    Science.gov (United States)

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral

  12. Phonological decisions require both the left and right supramarginal gyri.

    Science.gov (United States)

    Hartwigsen, Gesa; Baumgaertner, Annette; Price, Cathy J; Koehnke, Maria; Ulmer, Stephan; Siebner, Hartwig R

    2010-09-21

    Recent functional imaging studies demonstrated that both the left and right supramarginal gyri (SMG) are activated when healthy right-handed subjects make phonological word decisions. However, lesion studies typically report difficulties with phonological processing after left rather than right hemisphere damage. Here, we used a unique dual-site transcranial magnetic stimulation (TMS) approach to test whether the SMG in the right hemisphere contributes to modality-independent (i.e., auditory and visual) phonological decisions. To test task-specificity, we compared the effect of real or sham TMS during phonological, semantic, and perceptual decisions. To test laterality and anatomical specificity, we compared the effect of TMS over the left, right, or bilateral SMG and angular gyri. The accuracy and reaction times of phonological decisions were selectively disrupted relative to semantic and perceptual decisions when real TMS was applied over the left, right, or bilateral SMG. These effects were not observed for TMS over the angular gyri. A follow-up experiment indicated that the threshold-intensity for inducing a disruptive effect on phonological decisions was identical for unilateral TMS over the right or left SMG. Taken together, these findings provide converging evidence that the right SMG contributes to accurate and efficient phonological decisions in the healthy brain, with no evidence that the left and right SMG can compensate for one another during TMS. Our findings motivate detailed studies of phonological processing in patients with acute or long-term damage of the right SMG.

  13. Theories of inter-hemispheric interactions in aphasia: the role of tDCS in rehabilitation of post-stroke aphasia

    Directory of Open Access Journals (Sweden)

    Roy H Hamilton

    2014-04-01

    Full Text Available Mounting data from behavioral and neuroimaging studies have shown that the process of recovery from aphasia is largely driven by the reorganization of brain networks related to language. Evidence implicates a variety of potential mechanisms in this reorganization, some of which involve substantive changes in brain functional activity within and between cerebral hemispheres. These changes include intrahemispheric recruitment of perilesional left-hemisphere regions and transcallosal interhemispheric interactions between lesioned left-hemisphere language areas and homologous regions in the right hemisphere. With respect to the role of the right hemisphere, it is debated whether interhemispheric interactions are beneficial or deleterious to recovering language networks. Recent years have also seen the emergence of noninvasive brain stimulation techniques such as transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS as potential novel treatments for post-stroke aphasia. Because these techniques are predicated on either focal excitation or inhibition of brain areas, characterization of the functional roles of the left and right hemispheres and transcallosal interactions in aphasia recovery is of central importance to the development and refinement of stimulation-based therapies. However, most treatment studies involving noninvasive brain stimulation in aphasia have tacitly accepted the interhemispheric inhibition model, in which right hemisphere activity interferes with language recovery that is mediated by left hemisphere perisylvian regions. Based on this account, many studies in aphasia involving TMS and tDCS have adopted one of two approaches consistent with the model: left hemisphere excitation or right hemisphere inhibition. In this presentation, we will review both clinical and cognitive neuroscience evidence that elucidates different hemispheric mechanisms that influence recovery from aphasia after stroke

  14. Gender-related asymmetric brain vasomotor response to color stimulation: a functional transcranial Doppler spectroscopy study.

    Science.gov (United States)

    Njemanze, Philip C

    2010-11-30

    The present study was designed to examine the effects of color stimulation on cerebral blood mean flow velocity (MFV) in men and women. The study included 16 (8 men and 8 women) right-handed healthy subjects. The MFV was recorded simultaneously in both right and left middle cerebral arteries in Dark and white Light conditions, and during color (Blue, Yellow and Red) stimulations, and was analyzed using functional transcranial Doppler spectroscopy (fTCDS) technique. Color processing occurred within cortico-subcortical circuits. In men, wavelength-differencing of Yellow/Blue pairs occurred within the right hemisphere by processes of cortical long-term depression (CLTD) and subcortical long-term potentiation (SLTP). Conversely, in women, frequency-differencing of Blue/Yellow pairs occurred within the left hemisphere by processes of cortical long-term potentiation (CLTP) and subcortical long-term depression (SLTD). In both genders, there was luminance effect in the left hemisphere, while in men it was along an axis opposite (orthogonal) to that of chromatic effect, in women, it was parallel. Gender-related differences in color processing demonstrated a right hemisphere cognitive style for wavelength-differencing in men, and a left hemisphere cognitive style for frequency-differencing in women. There are potential applications of fTCDS technique, for stroke rehabilitation and monitoring of drug effects.

  15. Right-Brained Kids in Left-Brained Schools

    Science.gov (United States)

    Hunter, Madeline

    1976-01-01

    Students who learn well through left hemisphere brain input (oral and written) have minimal practice in using the right hemisphere, while those who are more proficient in right hemisphere (visual) input processing are handicapped by having to use primarily their left brains. (MB)

  16. Atypical hemispheric dominance for attention: functional MRI topography.

    Science.gov (United States)

    Flöel, Agnes; Jansen, Andreas; Deppe, Michael; Kanowski, Martin; Konrad, Carsten; Sommer, Jens; Knecht, Stefan

    2005-09-01

    The right hemisphere is predominantly involved in tasks associated with spatial attention. However, left hemispheric dominance for spatial attention can be found in healthy individuals, and both spatial attention and language can be lateralized to the same hemisphere. Little is known about the underlying regional distribution of neural activation in these 'atypical' individuals. Previously a large number of healthy subjects were screened for hemispheric dominance of visuospatial attention and language, using functional Doppler ultrasonography. From this group, subjects were chosen who were 'atypical' for hemispheric dominance of visuospatial attention and language, and their pattern of brain activation was studied with functional magnetic resonance imaging during a task probing spatial attention. Right-handed subjects with the 'typical' pattern of brain organization served as control subjects. It was found that subjects with an inverted lateralization of language and spatial attention (language right, attention left) recruited left-hemispheric areas in the attention task, homotopic to those recruited by control subjects in the right hemisphere. Subjects with lateralization of both language and attention to the right hemisphere activated an attentional network in the right hemisphere that was comparable to control subjects. The present findings suggest that not the hemispheric side, but the intrahemispheric pattern of activation is the distinct feature for the neural processes underlying language and attention.

  17. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation.

    Directory of Open Access Journals (Sweden)

    Anders Hougaard

    Full Text Available Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks.

  18. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Tong-Chun Wen

    2018-04-01

    Full Text Available After injury to the corticospinal tract (CST in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  19. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.

    Science.gov (United States)

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N Jeremy; Carmel, Jason B

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  20. Game Utilization as a Media to Train the Balance of Left and Right Brain

    Directory of Open Access Journals (Sweden)

    Evan Wijaya

    2017-10-01

    Full Text Available Human have two brain hemispheres, left hemisphere and right hemisphere. Left hemisphere is used for processing language, words, numbers, equations, etc. Right hemisphere is used for processing creativity, imagination, music, color, etc. Every human should have balance between left and right hemisphere. One method that could be used for balancing brain hemispheres is to use left and right hands for using tools, writing, or typing. “Typing Rhythm” is a game for PC platform, the purpose of this game is for brain balancing exercise by typing lyric of a song while the song is played.

  1. Atypical cortical language organization in epilepsy patients: evidence for divergent hemispheric dominance for receptive and expressive language function.

    Science.gov (United States)

    Eliashiv, Dawn S; Kurelowech, Lacey; Quint, Patti; Chung, Jeffrey M; Otis, Shirley M; Gage, Nicole M

    2014-06-01

    The central goal of presurgical language mapping is to identify brain regions that subserve cortical language function to minimize postsurgical language deficits. Presurgical language mapping in patients with epilepsy presents a key challenge because of the atypical pattern of hemispheric language dominance found in this population, with higher incidences of bilateral and right-biased language dominance than typical. In this prospective study, we combine magnetoencephalography with a panel of tasks designed to separately assess receptive and expressive function to provide a sensitive measure of language function in 15 candidates for resective surgery. We report the following: 4 of 15 patients (27%) showed left hemisphere dominance across all tasks, 4 of 15 patients (27%) showed right hemisphere dominance across all tasks, and 7 of 15 (46%) showed discordant language dominance, with right-dominant receptive and left-dominant expressive language. All patients with discordant language dominance showed this right-receptive and left-expressive pattern. Results provide further evidence supporting the importance of using a panel of tasks to assess separable aspects of language function. The clinical relevance of the findings is discussed, especially about current clinical operative measures for assessing language dominance, which use single hemisphere procedure (intracarotid amobarbital procedure and awake intraoperative stimulation) for determining language laterality.

  2. Hypothalamic digoxin, hemispheric chemical dominance, and sleep.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The isoprenoid path way produces endogenous digoxin, a substance that can regulate neurotransmitter and amino acid transport. Digoxin synthesis and neurotransmitter patterns were assessed in individuals with chronic insomnia. The patterns were compared in those with right hemispheric and left hemispheric dominance. The activity of HMG GoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in individuals with chronic insomnia and in individuals with differing hemispheric dominance. Digoxin synthesis was increased with upregulated tryptophan catabolism (increased levels of serotonin, strychnine, and nicotine), and downregulated tyrosine catabolism (decreased levels of dopamine, noradrenaline, and morphine) in those with chronic insomnia and right hemispheric chemical dominance. Digoxin synthesis was reduced with downregulated tryptophan catabolism (decreased levels of serotonin, strychnine, and nicotine) and upregulated tyrosine catabolism (increased levels of dopamine, noradrenaline, and morphine) in those with normal sleep patterns and left hemispheric chemical dominance. Hypothalamic digoxin plays a central role in the regulation of sleep behavior. Hemispheric chemical dominance in relation to digoxin status is also crucial.

  3. Factors Influencing Right Hemisphere Engagement During Metaphor Comprehension

    Science.gov (United States)

    Diaz, Michele T.; Eppes, Anna

    2018-01-01

    Although the left hemisphere is critical for language, clinical, behavioral, and neuroimaging research suggest that the right hemisphere also contributes to language comprehension. In particular, research has suggested that figurative language may be one type of language that preferentially engages right hemisphere regions. However, there is disagreement about whether these regions within the right hemisphere are sensitive to figurative language per se or to other factors that co-vary with figurativeness. In this article, we will review the neuroimaging literature on figurative language processing, focusing on metaphors, within the context of several theoretical perspectives that have been proposed about hemispheric function in language. Then we will examine three factors that may influence right hemisphere engagement: novelty, task difficulty, and context. We propose that factors that increase integration demands drive right hemisphere involvement in language processing, and that such recruitment is not limited to figurative language. PMID:29643825

  4. Cardiac asystole associated with seizures of right hemispheric onset

    Directory of Open Access Journals (Sweden)

    Jennifer Chu

    2014-01-01

    Full Text Available Ictal asystole is frequently underrecognized despite being a potentially lethal condition. We report two cases of ictal asystole with right hemispheric onset. These cases are unique since previous literature reports that seizures associated with bradyarrhythmias typically arise from left hemispheric foci. These cases further underscore the importance of clinical vigilance and the need of an enhanced diagnostic biomarker.

  5. Learning-related brain hemispheric dominance in sleeping songbirds

    NARCIS (Netherlands)

    Moorman, Sanne; Gobes, Sharon M H; van de Kamp, Ferdinand C; Zandbergen, Matthijs A; Bolhuis, Johan J

    2015-01-01

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops

  6. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics.

    Science.gov (United States)

    Marangolo, P; Marinelli, C V; Bonifazi, S; Fiori, V; Ceravolo, M G; Provinciali, L; Tomaiuolo, F

    2011-12-01

    A number of studies have shown that modulating cortical activity by means of transcranial direct current stimulation (tDCS) affects the performance of both healthy and brain-damaged subjects. In this study, we investigated the potential of tDCS for the recovery of apraxia of speech in 3 patients with stroke-induced aphasia. Over 2 weeks, three aphasic subjects participated in a randomized double-blinded experiment involving intensive language training for their articulatory difficulties in two tDCS conditions. Each subject participated in five consecutive daily sessions of anodic tDCS (20 min, 1 mA) and sham stimulation over the left inferior frontal gyrus (referred to as Broca's area) while they performed a repetition task. By the end of each week, a significant improvement was found in both conditions. However, all three subjects showed greater response accuracy in the anodic than in the sham condition. Moreover, results for transfer of treatment effects, although different across subjects, indicate a generalization of the recovery at the language test. Subjects 2 and 3 showed a significant improvement in oral production tasks, such as word repetition and reading, while Subjects 1 and 2 had an unexpected significant recovery in written naming and word writing under dictation tasks. At three follow-ups (1 week, 1 and 2 months after the end of treatment), response accuracy was still significantly better in the anodic than in sham condition, suggesting a long-term effect on the recovery of their articulatory gestures. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure.

    Science.gov (United States)

    Liao, Song-Yan; Liu, Yuan; Zuo, Mingliang; Zhang, Yuelin; Yue, Wensheng; Au, Ka-Wing; Lai, Wing-Hon; Wu, Yangsong; Shuto, Chika; Chen, Peter; Siu, Chung-Wah; Schwartz, Peter J; Tse, Hung-Fat

    2015-12-01

    Thoracic spinal cord stimulation (SCS) has been shown to improve left ventricular ejection fraction (LVEF) in heart failure (HF). Nevertheless, the optimal duration (intermittent vs. continuous) of stimulation and the mechanisms of action remain unclear. We performed chronic thoracic SCS at the level of T1-T3 (50 Hz, pulse width 0.2 ms) in 30 adult pigs with HF induced by myocardial infarction and rapid ventricular pacing for 4 weeks. All the animals were treated with daily oral metoprolol succinate (25 mg) plus ramipril (2.5 mg), and randomized to a control group (n = 10), intermittent SCS (4 h ×3, n = 10) or continuous SCS (24 h, n = 10) for 10 weeks. Serial measurements of LVEF and +dP/dt and serum levels of norepinephrine and B-type natriuretic peptide (BNP) were measured. After sacrifice, immunohistological studies of myocardial sympathetic and parasympathetic nerve sprouting and innervation were performed. Echocardiogram revealed a significant increase in LVEF and +dP/dt at 10 weeks in both the intermittent and continuous SCS group compared with controls (P < 0.05). In both SCS groups, there was diffuse sympathetic nerve sprouting over the infarct, peri-infarct, and normal regions compared with only the peri-infarct and infarct regions in the control group. In addition, sympathetic innervation at the peri-infarct and infarct regions was increased following SCS, but decreased in the control group. Myocardium norepinephrine spillover and serum BNP at 10 weeks was significantly decreased only in the continuous SCS group (P < 0.05). In a porcine model of HF, SCS induces significant remodelling of cardiac sympathetic innervation over the peri-infarct and infarct regions and is associated with improved LV function and reduced myocardial norepinephrine spillover. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  8. Surgery of language-eloquent tumors in patients not eligible for awake surgery: the impact of a protocol based on navigated transcranial magnetic stimulation on presurgical planning and language outcome, with evidence of tumor-induced intra-hemispheric plasticity.

    Science.gov (United States)

    Raffa, Giovanni; Quattropani, Maria C; Scibilia, Antonino; Conti, Alfredo; Angileri, Filippo Flavio; Esposito, Felice; Sindorio, Carmela; Cardali, Salvatore Massimiliano; Germanò, Antonino; Tomasello, Francesco

    2018-05-01

    Awake surgery and intraoperative monitoring represent the gold standard for surgery of brain tumors located in the perisylvian region of the dominant hemisphere due to their ability to map and preserve the language network during surgery. Nevertheless, in some cases awake surgery is not feasible. This could increase the risk of postoperative language deficit. Navigated transcranial magnetic stimulation (nTMS) and nTMS-based DTI fiber tracking (DTI-FT) provide a preoperative mapping and reconstruction of the cortico-subcortical language network. This can be used to plan and guide the surgical strategy to preserve the language function. The objective if this study is to describe the impact of a non-invasive preoperative protocol for mapping the language network through the nTMS and nTMS-based DTI-FT in patients not eligible for awake surgery and thereby operated under general anesthesia for suspected language-eloquent brain tumors. We reviewed clinical data of patients not eligible for awake surgery and operated under general anaesthesia between 2015 and 2016. All patients underwent nTMS language cortical mapping and nTMS-based DTI-FT of subcortical language fascicles. The nTMS findings were used to plan and guide the maximal safe resection of the tumor. The impact on postoperative language outcome and the accuracy of the nTMS-based mapping in predicting language deficits were evaluated. Twenty patients were enrolled in the study. The nTMS-based reconstruction of the language network was successful in all patients. Interestingly, we observed a significant association between tumor localization and the cortical distribution of the nTMS errors (p = 0.004), thereby suggesting an intra-hemispheric plasticity of language cortical areas, probably induced by the tumor itself. The nTMS mapping disclosed the true-eloquence of lesions in 12 (60%) of all suspected cases. In the remaining 8 cases (40%) the suspected eloquence of the lesion was disproved. The n

  9. Tell it to a child! A brain stimulation study of the role of left inferior frontal gyrus in emotion regulation during storytelling.

    Science.gov (United States)

    Urgesi, Cosimo; Mattiassi, Alan D A; Buiatti, Tania; Marini, Andrea

    2016-08-01

    In everyday life we need to continuously regulate our emotional responses according to their social context. Strategies of emotion regulation allow individuals to control time, intensity, nature and expression of emotional responses to environmental stimuli. The left inferior frontal gyrus (LIFG) is involved in the cognitive control of the selection of semantic content. We hypothesized that it might also be involved in the regulation of emotional feelings and expressions. We applied continuous theta burst stimulation (cTBS) over LIFG or a control site before a newly-developed ecological regulation task that required participants to produce storytelling of pictures with negative or neutral valence to either a peer (unregulated condition) or a child (regulated condition). Linguistic, expressive, and physiological responses were analyzed in order to assess the effects of LIFG-cTBS on emotion regulation. Results showed that the emotion regulation context modulated the emotional content of narrative productions, but not the physiologic orienting response or the early expressive behavior to negative stimuli. Furthermore, LIFG-cTBS disrupted the text-level structuring of negative picture storytelling and the early cardiac and muscular response to negative pictures; however, it did not affect the contextual emotional regulation of storytelling. These results may suggest that LIFG is involved in the initial detection of the affective arousal of emotional stimuli. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Awake right hemisphere brain surgery.

    Science.gov (United States)

    Hulou, M Maher; Cote, David J; Olubiyi, Olutayo I; Smith, Timothy R; Chiocca, E Antonio; Johnson, Mark D

    2015-12-01

    We report the indications and outcomes of awake right hemispheric brain surgery, as well as a rare patient with crossed aphasia. Awake craniotomies are often performed to protect eloquent cortex. We reviewed the medical records for 35 of 96 patients, in detail, who had awake right hemisphere brain operations. Intraoperative cortical mapping of motor and/or language function was performed in 29 of the 35 patients. A preoperative speech impairment and left hand dominance were the main indicators for awake right-sided craniotomies in patients with right hemisphere lesions. Four patients with lesion proximity to eloquent areas underwent awake craniotomies without cortical mapping. In addition, one patient had a broncho-pulmonary fistula, and another had a recent major cardiac procedure that precluded awake surgery. An eloquent cortex representation was identified in 14 patients (48.3%). Postoperatively, seven of 17 patients (41.1%) who presented with weakness, experienced improvements in their motor functions, 11 of 16 (68.7%) with seizures became seizure-free, and seven of nine (77.7%) with moderate to severe headaches and one of two with a visual field deficit improved significantly. There were also improvements in speech and language functions in all patients who presented with speech difficulties. A right sided awake craniotomy is an excellent option for left handed patients, or those with right sided cortical lesions that result in preoperative speech impairments. When combined with intraoperative cortical mapping, both speech and motor function can be well preserved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Predicting hemispheric dominance for language production in healthy individuals using support vector machine.

    Science.gov (United States)

    Zago, Laure; Hervé, Pierre-Yves; Genuer, Robin; Laurent, Alexandre; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie; Joliot, Marc

    2017-12-01

    We used a Support Vector Machine (SVM) classifier to assess hemispheric pattern of language dominance of 47 individuals categorized as non-typical for language from their hemispheric functional laterality index (HFLI) measured on a sentence minus word-list production fMRI-BOLD contrast map. The SVM classifier was trained at discriminating between Dominant and Non-Dominant hemispheric language production activation pattern on a group of 250 participants previously identified as Typicals (HFLI strongly leftward). Then, SVM was applied to each hemispheric language activation pattern of 47 non-typical individuals. The results showed that at least one hemisphere (left or right) was found to be Dominant in every, except 3 individuals, indicating that the "dominant" type of functional organization is the most frequent in non-typicals. Specifically, left hemisphere dominance was predicted in all non-typical right-handers (RH) and in 57.4% of non-typical left-handers (LH). When both hemisphere classifications were jointly considered, four types of brain patterns were observed. The most often predicted pattern (51%) was left-dominant (Dominant left-hemisphere and Non-Dominant right-hemisphere), followed by right-dominant (23%, Dominant right-hemisphere and Non-Dominant left-hemisphere) and co-dominant (19%, 2 Dominant hemispheres) patterns. Co-non-dominant was rare (6%, 2 Non-Dominant hemispheres), but was normal variants of hemispheric specialization. In RH, only left-dominant (72%) and co-dominant patterns were detected, while for LH, all types were found, although with different occurrences. Among the 10 LH with a strong rightward HFLI, 8 had a right-dominant brain pattern. Whole-brain analysis of the right-dominant pattern group confirmed that it exhibited a functional organization strictly mirroring that of left-dominant pattern group. Hum Brain Mapp 38:5871-5889, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias.

    Science.gov (United States)

    Ott, Derek V M; Ullsperger, Markus; Jocham, Gerhard; Neumann, Jane; Klein, Tilmann A

    2011-07-15

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of the dorsolateral prefrontal cortex (DLPFC) in reinforcement learning, we applied continuous theta-burst stimulation (cTBS) either to the left or right DLPFC, or to the vertex as a control region, respectively, prior to the performance of a probabilistic learning task in an fMRI environment. While there was no influence of cTBS on learning performance per se, we observed a stimulation-dependent modulation of reward vs. punishment sensitivity: Left-hemispherical DLPFC stimulation led to a more reward-guided performance, while right-hemispherical cTBS induced a more avoidance-guided behavior. FMRI results showed enhanced prediction error coding in the ventral striatum in subjects stimulated over the left as compared to the right DLPFC. Both behavioral and imaging results are in line with recent findings that left, but not right-hemispherical stimulation can trigger a release of dopamine in the ventral striatum, which has been suggested to increase the relative impact of rewards rather than punishment on behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The non-linear development of the right hemispheric specialization for human face perception.

    Science.gov (United States)

    Lochy, Aliette; de Heering, Adélaïde; Rossion, Bruno

    2017-06-24

    The developmental origins of human adults' right hemispheric specialization for face perception remain unclear. On the one hand, infant studies have shown a right hemispheric advantage for face perception. On the other hand, it has been proposed that the adult right hemispheric lateralization for face perception slowly emerges during childhood due to reading acquisition, which increases left lateralized posterior responses to competing written material (e.g., visual letters and words). Since methodological approaches used in infant and children typically differ when their face capabilities are explored, resolving this issue has been difficult. Here we tested 5-year-old preschoolers varying in their level of visual letter knowledge with the same fast periodic visual stimulation (FPVS) paradigm leading to strongly right lateralized electrophysiological occipito-temporal face-selective responses in 4- to 6-month-old infants (de Heering and Rossion, 2015). Children's face-selective response was quantitatively larger and differed in scalp topography from infants', but did not differ across hemispheres. There was a small positive correlation between preschoolers' letter knowledge and a non-normalized index of right hemispheric specialization for faces. These observations show that previous discrepant results in the literature reflect a genuine nonlinear development of the neural processes underlying face perception and are not merely due to methodological differences across age groups. We discuss several factors that could contribute to the adult right hemispheric lateralization for faces, such as myelination of the corpus callosum and reading acquisition. Our findings point to the value of FPVS coupled with electroencephalography to assess specialized face perception processes throughout development with the same methodology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A vision of graded hemispheric specialization.

    Science.gov (United States)

    Behrmann, Marlene; Plaut, David C

    2015-11-01

    Understanding the process by which the cerebral hemispheres reach their mature functional organization remains challenging. We propose a theoretical account in which, in the domain of vision, faces and words come to be represented adjacent to retinotopic cortex by virtue of the need to discriminate among homogeneous exemplars. Orthographic representations are further constrained to be proximal to typically left-lateralized language-related information to minimize connectivity length between visual and language areas. As reading is acquired, orthography comes to rely more heavily (albeit not exclusively) on the left fusiform region to bridge vision and language. Consequently, due to competition from emerging word representations, face representations that were initially bilateral become lateralized to the right fusiform region (albeit, again, not exclusively). We review recent research that describes constraints that give rise to this graded hemispheric arrangement. We then summarize empirical evidence from a variety of studies (behavioral, evoked response potential, functional imaging) across different populations (children, adolescents, and adults; left handers and individuals with developmental dyslexia) that supports the claims that hemispheric lateralization is graded rather than binary and that this graded organization emerges dynamically over the course of development. Perturbations of this system either during development or in adulthood provide further insights into the principles governing hemispheric organization. © 2015 New York Academy of Sciences.

  15. Hypothalamic digoxin, hemispheric chemical dominance, and spirituality.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-03-01

    The isoprenoid pathway was assessed in atheistic and spiritually inclined individuals. The pathway was also assessed in individuals with differing hemispheric dominance to assess whether hemispheric dominance has a correlation with spiritual and atheistic tendency. HMG CoA reductase activity, serum digoxin, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, and tyrosine/tryptophan catabolic patterns were assessed in spiritual/atheistic individuals and in those differing hemispheric dominance. In spiritually-inclined individuals, there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in spiritually-inclined individuals correlated with right hemispheric chemical dominance. In atheistic individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolities (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in atheistic individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to spirituality or atheism.

  16. Sensory handedness is not reflected in cortical responses after basic nerve stimulation: a MEG study.

    Science.gov (United States)

    Chen, Andrew C N; Theuvenet, Peter J; de Munck, Jan C; Peters, Maria J; van Ree, Jan M; Lopes da Silva, Fernando L

    2012-04-01

    Motor dominance is well established, but sensory dominance is much less clear. We therefore studied the cortical evoked magnetic fields using magnetoencephalography (MEG) in a group of 20 healthy right handed subjects in order to examine whether standard electrical stimulation of the median and ulnar nerve demonstrated sensory lateralization. The global field power (GFP) curves, as an indication of cortical activation, did not depict sensory lateralization to the dominant left hemisphere. Comparison of the M20, M30, and M70 peak latencies and GFP values exhibited no statistical differences between the hemispheres, indicating no sensory hemispherical dominance at these latencies for each nerve. Field maps at these latencies presented a first and second polarity reversal for both median and ulnar stimulation. Spatial dipole position parameters did not reveal statistical left-right differences at the M20, M30 and M70 peaks for both nerves. Neither did the dipolar strengths at M20, M30 and M70 show a statistical left-right difference for both nerves. Finally, the Laterality Indices of the M20, M30 and M70 strengths did not indicate complete lateralization to one of the hemispheres. After electrical median and ulnar nerve stimulation no evidence was found for sensory hand dominance in brain responses of either hand, as measured by MEG. The results can provide a new assessment of patients with sensory dysfunctions or perceptual distortion when sensory dominance occurs way beyond the estimated norm.

  17. Hypothalamic digoxin, hemispheric chemical dominance, and mesenteric artery occlusion.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Paramesware Achutha

    2003-12-01

    The role of the isoprenoid pathway in vascular thrombosis, especially mesenteric artery occlusion and its relation to hemispheric dominance, was assessed in this study. The following parameters were measured in patients with mesenteric artery occlusion and individuals with right hemispheric, left hemispheric, and bihemispheric dominance: (1) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (2) tryptophan/tyrosine catabolic patterns; (3) free radical metabolism; (4) glycoconjugate metabolism; and (5) membrane composition. In patients with mesenteric artery occlusion there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, low ubiquinone, and elevated free radical levels. The RBC membrane Na(+)-K+ ATPase activity and serum magnesium were decreased. There was also an increase in tryptophan catabolites and reduction in tyrosine catabolites in the serum. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these patients. The biochemical patterns obtained in mesenteric artery occlusion is similar to those obtained in left-handed/right hemispheric dominant individuals by the dichotic listening test. But all the patients with mesenteric artery occlusion were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Mesenteric artery occlusion occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function. Hemispheric chemical dominance may thus control the risk for developing vascular thrombosis in individuals.

  18. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  19. Right-hemispheric processing of non-linguistic word features

    DEFF Research Database (Denmark)

    Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig

    2013-01-01

    -hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made...... perceptual, semantic, or phonological decisions on the same set of auditorily and visually presented word stimuli. Perceptual decisions required judgements about stimulus-inherent changes in font size (visual modality) or fundamental frequency contour (auditory modality). The semantic judgement required......, the right inferior frontal gyrus (IFG), an area previously suggested to support language recovery after left-hemispheric stroke, displayed modality-independent activation during perceptual processing of word stimuli. Our findings indicate that activation of the right hemisphere during language tasks may...

  20. Turning off artistic ability: the influence of left DBS in art production.

    Science.gov (United States)

    Drago, V; Foster, P S; Okun, M S; Cosentino, F I I; Conigliaro, R; Haq, I; Sudhyadhom, A; Skidmore, F M; Heilman, K M

    2009-06-15

    The influence of Parkinson's disease (PD) as well as deep brain stimulation (DBS) on visual-artistic production of people who have been artists is unclear. We systematically assessed the artistic-creative productions of a patient with PD who was referred to us for management of a left subthalamic region (STN) DBS. The patient was an artist before her disease started, permitting us to analyze changes in her artistic-creative production over the course of the illness and during her treatment with DBS. We collected her paintings from four time periods: Time 1 (Early Pre-Presymptomatic), Time 2 (Later Presymptomatic), Time 3 (Symptomatic), and Time 4 (DBS Symptomatic). A total of 59 paintings were submitted to a panel of judges, who rated the paintings on 6 different artistic qualities including: aesthetics, closure, evocative impact, novelty, representation, technique. Aesthetics and evocative impact significantly declined from Time 2 to Time 4. Representation and technique indicated a curvilinear relationship, with initial improvement from Time 1 to Time 2 followed by a decline from Time 2 to Time 4. These results suggest that left STN/SNR-DBS impacted artistic performances in our patient. The reason for these alterations is not known, but it might be that alterations of left hemisphere functions induce a hemispheric bias reducing the influence the right hemisphere which is important for artistic creativity. The left hemisphere itself plays a critical role in artistic creativity and DBS might have altered left hemisphere functions or altered the mesolimbic system which might have also influenced creativity. Future studies will be required to learn how PD and DBS influence creativity.

  1. Hemispheric Division of Function Is the Result of Independent Probabilistic Biases

    Science.gov (United States)

    Whitehouse, Andrew J. O.; Bishop, Dorothy V. M.

    2009-01-01

    Verbal and visuospatial abilities are typically subserved by different cerebral hemispheres: the left hemisphere for the former and the right hemisphere for the latter. However little is known of the origin of this division of function. Causal theories propose that functional asymmetry is an obligatory pattern of organisation, while statistical…

  2. Hemispheric Asymmetries in Meaning Selection: Evidence from the Disambiguation of Homophonic vs. Heterophonic Homographs

    Science.gov (United States)

    Peleg, Orna; Markus, Andrey; Eviatar, Zohar

    2012-01-01

    Research investigating hemispheric asymmetries in meaning selection using homophonic homographs (e.g., "bank"), suggests that the left hemisphere (LH) quickly selects contextually relevant meanings, whereas the right hemisphere (RH) maintains a broader spectrum of meanings including those that are contextually irrelevant (e.g., Faust & Chiarello,…

  3. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.

    Science.gov (United States)

    Sale, Martin V; Reid, Lee B; Cocchi, Luca; Pagnozzi, Alex M; Rose, Stephen E; Mattingley, Jason B

    2017-09-01

    Although different aspects of neuroplasticity can be quantified with behavioral probes, brain stimulation, and brain imaging assessments, no study to date has combined all these approaches into one comprehensive assessment of brain plasticity. Here, 24 healthy right-handed participants practiced a sequence of finger-thumb opposition movements for 10 min each day with their left hand. After 4 weeks, performance for the practiced sequence improved significantly (P left (mean increase: 53.0% practiced, 6.5% control) and right (21.0%; 15.8%) hands. Training also induced significant (cluster p-FWE right hemisphere, 301 voxel cluster; left hemisphere 700 voxel cluster), and sensorimotor cortices and superior parietal lobules (right hemisphere 864 voxel cluster; left hemisphere, 1947 voxel cluster). Transcranial magnetic stimulation over the right ("trained") primary motor cortex yielded a 58.6% mean increase in a measure of motor evoked potential amplitude, as recorded at the left abductor pollicis brevis muscle. Cortical thickness analyses based on structural MRI suggested changes in the right precentral gyrus, right post central gyrus, right dorsolateral prefrontal cortex, and potentially the right supplementary motor area. Such findings are consistent with LTP-like neuroplastic changes in areas that were already responsible for finger sequence execution, rather than improved recruitment of previously nonutilized tissue. Hum Brain Mapp 38:4773-4787, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Apraxia in left-handers.

    Science.gov (United States)

    Goldenberg, Georg

    2013-08-01

    In typical right-handed patients both apraxia and aphasia are caused by damage to the left hemisphere, which also controls the dominant right hand. In left-handed subjects the lateralities of language and of control of the dominant hand can dissociate. This permits disentangling the association of apraxia with aphasia from that with handedness. Pantomime of tool use, actual tool use and imitation of meaningless hand and finger postures were examined in 50 consecutive left-handed subjects with unilateral hemisphere lesions. There were three aphasic patients with pervasive apraxia caused by left-sided lesions. As the dominant hand is controlled by the right hemisphere, they constitute dissociations of apraxia from handedness. Conversely there were also three patients with pervasive apraxia caused by right brain lesions without aphasia. They constitute dissociations of apraxia from aphasia. Across the whole group of patients dissociations from handedness and from aphasia were observed for all manifestations of apraxia, but their frequency depended on the type of apraxia. Defective pantomime and defective tool use occurred rarely without aphasia, whereas defective imitation of hand, but not finger, postures was more frequent after right than left brain damage. The higher incidence of defective imitation of hand postures in right brain damage was mainly due to patients who had also hemi-neglect. This interaction alerts to the possibility that the association of right hemisphere damage with apraxia has to do with spatial aptitudes of the right hemisphere rather than with its control of the dominant left hand. Comparison with data from right-handed patients showed no differences between the severity of apraxia for imitation of hand or finger postures, but impairment on pantomime of tool use was milder in apraxic left-handers than in apraxic right-handers. This alleviation of the severity of apraxia corresponded with a similar alleviation of the severity of aphasia as

  5. Transcranial Magnetic Stimulation and Aphasia Rehabilitation

    Science.gov (United States)

    Naeser, Margaret A.; Martin, Paula I; Ho, Michael; Treglia, Ethan; Kaplan, Elina; Bhashir, Shahid; Pascual-Leone, Alvaro

    2013-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been reported to improve naming in chronic stroke patients with nonfluent aphasia since 2005. In Part 1, we review the rationale for applying slow, 1 Hz, rTMS to the undamaged right hemisphere in chronic nonfluent aphasia patients following a left hemisphere stroke; and present a TMS protocol used with these patients that is associated with long-term, improved naming post- TMS. In Part, 2 we present results from a case study with chronic nonfluent aphasia where TMS treatments were followed immediately by speech therapy (constraint-induced language therapy). In Part 3, some possible mechanisms associated with improvement following a series of TMS treatments in stroke patients with aphasia are discussed. PMID:22202188

  6. Hemispheric dominance and cell phone use.

    Science.gov (United States)

    Seidman, Michael D; Siegel, Bianca; Shah, Priyanka; Bowyer, Susan M

    2013-05-01

    A thorough understanding of why we hold a cell phone to a particular ear may be of importance when studying the impact of cell phone safety. To determine if there is an obvious association between sidedness of cell phone use and auditory hemispheric dominance (AHD) or language hemispheric dominance (LHD). It is known that 70% to 95% of the population are right-handed, and of these, 96% have left-brain LHD. We have observed that most people use their cell phones in their right ear. An Internet survey was e-mailed to individuals through surveymonkey.com. The survey used a modified Edinburgh Handedness Inventory protocol. Sample questions surveyed which hand was used to write with, whether the right or left ear was used for phone conversations, as well as whether a brain tumor was present. General community. An Internet survey was randomly e-mailed to 5000 individuals selected from an otology online group, patients undergoing Wada testing and functional magnetic resonance imaging, as well as persons on the university listserv, of which 717 surveys were completed. Determination of hemispheric dominance based on preferred ear for cell phone use. A total of 717 surveys were returned. Ninety percent of the respondents were right handed, and 9% were left handed. Sixty-eight percent of the right-handed people used the cell phone in their right ear, 25% in the left ear, and 7% had no preference. Seventy-two of the left-handed respondents used their left ear, 23% used their right ear, and 5% had no preference. Cell phone use averaged 540 minutes per month over the past 9 years. An association exists between hand dominance laterality of cell phone use (73%) and our ability to predict hemispheric dominance. Most right-handed people have left-brain LHD and use their cell phone in their right ear. Similarly, most left-handed people use their cell phone in their left ear. Our study suggests that AHD may differ from LHD owing to the difference in handedness and cell phone ear use

  7. Investigating the functional neuroanatomy of concrete and abstract word processing through direct electric stimulation (DES) during awake surgery.

    Science.gov (United States)

    Orena, E F; Caldiroli, D; Acerbi, F; Barazzetta, I; Papagno, C

    2018-06-05

    Neuropsychological, neuroimaging and electrophysiological studies demonstrate that abstract and concrete word processing relies not only on the activity of a common bilateral network but also on dedicated networks. The neuropsychological literature has shown that a selective sparing of abstract relative to concrete words can be documented in lesions of the left anterior temporal regions. We investigated concrete and abstract word processing in 10 patients undergoing direct electrical stimulation (DES) for brain mapping during awake surgery in the left hemisphere. A lexical decision and a concreteness judgment task were added to the neuropsychological assessment during intra-operative monitoring. On the concreteness judgment, DES delivered over the inferior frontal gyrus significantly decreased abstract word accuracy while accuracy for concrete words decreased when the anterior temporal cortex was stimulated. These results are consistent with a lexical-semantic model that distinguishes between concrete and abstract words related to different neural substrates in the left hemisphere.

  8. Hypothalamic digoxin, hemispheric chemical dominance, and creativity.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-04-01

    The human hypothalamus produces an endogenous membrane Na(+)-K+ ATPase inhibitor, digoxin, which regulates neuronal transmission. The digoxin status and neurotransmitter patterns were studied in creative and non-creative individuals, as well as in individuals with differing hemispheric dominance, in order to find out the role of cerebral dominance in this respect. The activity of HMG CoA reductase and serum levels of digoxin, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in creative/non-creative individuals, and in individuals with differing hemispheric dominance. In creative individuals there was increased digoxin synthesis, decreased membrane Na(+)-K+ ATPase activity, increased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and decreased tyrosine catabolites (dopamine, noradrenaline, and morphine). The pattern in creative individuals correlated with right hemispheric dominance. In non-creative individuals there was decreased digoxin synthesis, increased membrane Na(+)-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern in non-creative individuals correlated with that obtained in left hemispheric chemical dominance. Hemispheric chemical dominance and hypothalamic digoxin could regulate the predisposition to creative tendency.

  9. Impairments of motor-cortex responses to unilateral and bilateral direct current stimulation in schizophrenia

    Directory of Open Access Journals (Sweden)

    Alkomiet eHasan

    2013-10-01

    Full Text Available Transcranial direct current stimulation (tDCS is a non-invasive stimulation technique that can be applied to modulate cortical activity through induction of cortical plasticity. Since various neuropsychiatric disorders are characterised by fluctuations in cortical activity levels (e.g. schizophrenia, tDCS is increasingly investigated as a treatment tool. Several studies have shown that the induction of cortical plasticity following classical, unilateral tDCS is reduced or impaired in the stimulated and non-stimulated primary motor cortices (M1 of schizophrenia patients. Moreover, an alternative, bilateral tDCS setup has recently been shown to modulate cortical plasticity in both hemispheres in healthy subjects, highlighting another potential treatment approach. Here we present the first study comparing the efficacy of unilateral tDCS (cathode left M1, anode right supraorbital with simultaneous bilateral tDCS (cathode left M1, anode right M1 in schizophrenia patients. tDCS-induced cortical plasticity was monitored by investigating motor-evoked potentials induced by single-pulse transcranial magnetic stimulation applied to both hemispheres. Healthy subjects showed a reduction of left M1 excitability following unilateral tDCS on the stimulated left hemisphere and an increase in right M1 excitability following bilateral tDCS. In schizophrenia, no plasticity was induced following both stimulation paradigms. The pattern of these results indicates a complex interplay between plasticity and connectivity that is impaired in schizophrenia patients. Further studies are needed to clarify the biological underpinnings and clinical impact of these findings.

  10. Hypothalamic-mediated model for systemic lupus erythematosis: relation to hemispheric chemical dominance.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-11-01

    The isoprenoid pathway including endogenous digoxin was assessed in systemic lupus erythematosis (SLE). All the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. This was also studied for comparison in patients with right hemispheric and left hemispheric dominance. The isoprenoid pathway was upregulated with increased digoxin synthesis in patients with SLE and in those with right hemispheric dominance. In this group of patients (i) the tryptophan catabolites were increased and the tyrosine catabolites reduced, (ii) the dolichol and glycoconjugate levels were elevated, (iii) lysosomal stability was reduced, (iv) ubiquinone levels were low and free radical levels increased, and (v) the membrane cholesterol:phospholipid ratios were increased and membrane glycoconjugates reduced. On the other hand, in patients with left hemispheric dominance the reverse patterns were obtained. The biochemical patterns obtained in SLE is similar to those obtained in left-handed/right hemispheric chemically dominant individuals. But all the patients with SLE were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. SLE occurs in right hemispheric chemically dominant individuals, and is a reflection of altered brain function. The role of the isoprenoid pathway in the pathogenesis of SLE and its relation to hemispheric dominance is discussed.

  11. Transcranial magnetic stimulation: language function.

    Science.gov (United States)

    Epstein, C M

    1998-07-01

    Studies of language using transcranial magnetic stimulation (TMS) have focused both on identification of language areas and on elucidation of function. TMS may result in either inhibition or facilitation of language processes and may operate directly at a presumptive site of language cortex or indirectly through intracortical networks. TMS has been used to create reversible "temporary lesions," similar to those produced by Wada tests and direct cortical electrical stimulation, in cerebral cortical areas subserving language function. Rapid-rate TMS over the left inferior frontal region blocks speech output in most subjects. However, the results are not those predicted from classic models of language organization. Speech arrest is obtained most easily over facial motor cortex, and true aphasia is rare, whereas right hemisphere or bilateral lateralization is unexpectedly prominent. A clinical role for these techniques is not yet fully established. Interfering with language comprehension and verbal memory is currently more difficult than blocking speech output, but numerous TMS studies have demonstrated facilitation of language-related tasks, including oral word association, story recall, digit span, and picture naming. Conversely, speech output also facilitates motor responses to TMS in the dominant hemisphere. Such new and often-unexpected findings may provide important insights into the organization of language.

  12. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?

    Science.gov (United States)

    Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza

    2016-04-01

    Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Unilateral Hemispheric Encephalitis

    Directory of Open Access Journals (Sweden)

    Mohan Leslie Noone

    2014-10-01

    Full Text Available A 10 year old boy presented with history of mild fever and upper respiratory symptoms followed by recurrent seizures and loss of consciousness on the next day. Normal blood counts and abnormal hepatic transaminases were noted. MRI of the brain, done on the fourth day of illness, showed extensive involvement of the cortex in the right hemisphere. Lumbar CSF was normal. The EEG showed bilateral slowing with frontal sharp wave discharges and marked attenuation over the entire right hemisphere. The patient succumbed to the illness on the ninth day. A similar pattern of acute unilateral hemispheric cortical involvement is described in the hemiconvulsion-hemiplegia-epilepsy (HHE syndrome, which is typically described to occur in children below 4 years of age. This case of fulminant acute unilateral encaphilitic illness could represent the acute phase of HHE syndrome.

  14. Reading the Wrong Way with the Right Hemisphere

    Directory of Open Access Journals (Sweden)

    Ian J. Kirk

    2013-07-01

    Full Text Available Reading is a complex process, drawing on a variety of brain functions in order to link symbols to words and concepts. The three major brain areas linked to reading and phonological analysis include the left temporoparietal region, the left occipitotemporal region and the inferior frontal gyrus. Decreased activation of the left posterior language system in dyslexia is well documented but there is relatively limited attention given to the role of the right hemisphere. The current study investigated differences in right and left hemisphere activation between individuals with dyslexia and non-impaired readers in lexical decision tasks (regular words, irregular words, pseudowords during functional Magnetic Resonance Imaging (fMRI. Results revealed the expected hypo-activation in the left posterior areas in those with dyslexia but also areas of overactivation in the right hemisphere. During pseudoword decisions, for example, adults with dyslexia showed more right inferior occipital gyrus activation than controls. In general the increased activation of left-hemisphere language areas found in response to both regular and pseudowords was absent in dyslexics. Laterality indices showed that while controls showed left lateralised activation of the temporal lobe during lexical decision making, dyslexic readers showed right activation. Findings will inform theories of reading and will have implications for the design of reading interventions.

  15. Reading the wrong way with the right hemisphere.

    Science.gov (United States)

    Waldie, Karen E; Haigh, Charlotte E; Badzakova-Trajkov, Gjurgjica; Buckley, Jude; Kirk, Ian J

    2013-07-17

    Reading is a complex process, drawing on a variety of brain functions in order to link symbols to words and concepts. The three major brain areas linked to reading and phonological analysis include the left temporoparietal region, the left occipitotemporal region and the inferior frontal gyrus. Decreased activation of the left posterior language system in dyslexia is well documented but there is relatively limited attention given to the role of the right hemisphere. The current study investigated differences in right and left hemisphere activation between individuals with dyslexia and non-impaired readers in lexical decision tasks (regular words, irregular words, pseudowords) during functional Magnetic Resonance Imaging (fMRI). Results revealed the expected hypo-activation in the left posterior areas in those with dyslexia but also areas of overactivation in the right hemisphere. During pseudoword decisions, for example, adults with dyslexia showed more right inferior occipital gyrus activation than controls. In general the increased activation of left-hemisphere language areas found in response to both regular and pseudowords was absent in dyslexics. Laterality indices showed that while controls showed left lateralised activation of the temporal lobe during lexical decision making, dyslexic readers showed right activation. Findings will inform theories of reading and will have implications for the design of reading interventions.

  16. Hemispheric asymmetry and theory of mind: is there an association?

    Science.gov (United States)

    Herzig, Daniela A; Sullivan, Sarah; Evans, Jonathan; Corcoran, Rhiannon; Mohr, Christine

    2012-01-01

    In autism and schizophrenia attenuated/atypical functional hemispheric asymmetry and theory of mind impairments have been reported, suggesting common underlying neuroscientific correlates. We here investigated whether impaired theory of mind performance is associated with attenuated/atypical hemispheric asymmetry. An association may explain the co-occurrence of both dysfunctions in psychiatric populations. Healthy participants (n=129) performed a left hemisphere (lateralised lexical decision task) and right hemisphere (lateralised face decision task) dominant task as well as a visual cartoon task to assess theory of mind performance. Linear regression analyses revealed inconsistent associations between theory of mind performance and functional hemisphere asymmetry: enhanced theory of mind performance was only associated with (1) faster right hemisphere language processing, and (2) reduced right hemisphere dominance for face processing (men only). The majority of non-significant findings suggest that theory of mind and functional hemispheric asymmetry are unrelated. Instead of "overinterpreting" the two significant results, discrepancies in the previous literature relating to the problem of the theory of mind concept, the variety of tasks, and the lack of normative data are discussed. We also suggest how future studies could explore a possible link between hemispheric asymmetry and theory of mind.

  17. Motivation, affect, and hemispheric asymmetry: power versus affiliation.

    Science.gov (United States)

    Kuhl, Julius; Kazén, Miguel

    2008-08-01

    In 4 experiments, the authors examined to what extent information related to different social needs (i.e., power vs. affiliation) is associated with hemispheric laterality. Response latencies to a lateralized dot-probe task following lateralized pictures or verbal labels that were associated with positive or negative episodes related to power, affiliation, or achievement revealed clear-cut laterality effects. These effects were a function of need content rather than of valence: Power-related stimuli were associated with right visual field (left hemisphere) superiority, whereas affiliation-related stimuli were associated with left visual field (right hemisphere) superiority. Additional results demonstrated that in contrast to power, affiliation primes were associated with better discrimination between coherent word triads (e.g., goat, pass, and green, all related to mountain) and noncoherent triads, a remote associate task known to activate areas of the right hemisphere. (c) 2008 APA, all rights reserved

  18. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    Science.gov (United States)

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  19. Alteration of left ventricular endocardial function by intracavitary high-power ultrasound interacts with volume, inotropic state, and alpha 1-adrenergic stimulation

    NARCIS (Netherlands)

    de Hert, S. G.; Gillebert, T. C.; Brutsaert, D. L.

    1993-01-01

    BACKGROUND: High-power intracavitary ultrasound abbreviates left ventricular (LV) ejection duration, thereby decreasing mechanical LV performance, presumably by selective impairment of endocardial endothelial function. METHODS AND RESULTS: Effects of ultrasound were evaluated in the ejecting LV of

  20. Hemispheric asymmetry in the influence of language on visual perception.

    Science.gov (United States)

    Sun, Yanliang; Cai, Yongchun; Lu, Shena

    2015-07-01

    Many studies have shown that language can affect visual perception; however, our understanding of the neural basis of linguistic influence is inadequate. This can be investigated by examining the hemispheric asymmetry of linguistic influence. The left and right hemispheres are dominant in close and distant semantic processing, respectively. In this study, we investigated whether the hemispheric asymmetry of semantic processing led to hemispheric asymmetry for concept priming on the detection of objects degraded by continuous flash suppression. We combined a priming paradigm with the divided visual field paradigm and used continuous flash suppression, which renders objects invisible. The results indicated that the hemispheric asymmetry of semantic processing led to a right lateralization in the influence of more abstract concepts on visual perception. The lateralization of brain connectomes may be the underlying neural basis of this effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hypothalamic digoxin, hemispheric chemical dominance, and peptic ulcer disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin-like factor (EDLF) (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), ubiquinone (free radical scavenger), and dolichol (regulator of glycoconjugate metabolism). The pathway was assessed in peptic ulcer and acid peptic disease and its relation to hemispheric dominance studied. The activity of HMG CoA reductase, serum levels of EDLF, magnesium, tryptophan catabolites, and tyrosine catabolites were measured in acid peptic disease, right hemispheric dominant, left hemispheric dominant, and bihemispheric dominant individuals. All the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listening test. The pathway was upregulated with increased EDLF synthesis in peptic ulcer disease (PUD). There was increase in tryptophan catabolites and reduction in tyrosine catabolites in these patients. The ubiquinone levels were low and free radical production increased. Dolichol and glycoconjugate levels were increased and lysosomal stability reduced in patients with acid peptic disease (APD). There was increase in cholesterol:phospholipid ratio with decreased glyco conjugate levels in membranes of patients with PUD. Acid peptic disease represents an elevated EDLF state which can modulate gastric acid secretion and the structure of the gastric mucous barrier. It can also lead to persistence of Helicobacter pylori infection. The biochemical pattern obtained in peptic ulcer disease is similar to those obtained in left-handed/right hemispheric chemically dominant individuals. But all the patients with peptic ulcer disease were right-handed/left hemispheric dominant by the dichotic listen ing test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Peptic ulcer disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  2. Split-brain reveals separate but equal self-recognition in the two cerebral hemispheres.

    Science.gov (United States)

    Uddin, Lucina Q; Rayman, Jan; Zaidel, Eran

    2005-09-01

    To assess the ability of the disconnected cerebral hemispheres to recognize images of the self, a split-brain patient (an individual who underwent complete cerebral commissurotomy to relieve intractable epilepsy) was tested using morphed self-face images presented to one visual hemifield (projecting to one hemisphere) at a time while making "self/other" judgments. The performance of the right and left hemispheres of this patient as assessed by a signal detection method was not significantly different, though a measure of bias did reveal hemispheric differences. The right and left hemispheres of this patient independently and equally possessed the ability to self-recognize, but only the right hemisphere could successfully recognize familiar others. This supports a modular concept of self-recognition and other-recognition, separately present in each cerebral hemisphere.

  3. A Preliminary fMRI Study of a Novel Self-Paced Written Fluency Task: Observation of Left-Hemispheric Activation, and Increased Frontal Activation in Late vs. Early Task Phases

    Directory of Open Access Journals (Sweden)

    Laleh eGolestanirad

    2015-03-01

    Full Text Available Neuropsychological tests of verbal fluency are very widely used to characterize impaired cognitive function. For clinical neuroscience studies and potential medical applications, measuring the brain activity that underlies such tests with functional magnetic resonance imaging (fMRI is of significant interest - but a challenging proposition because overt speech can cause signal artifacts, which tend to worsen as the duration of speech tasks becomes longer. In a novel approach, we present the group brain activity of 12 subjects who performed a self-paced written version of phonemic fluency using fMRI-compatible tablet technology that recorded responses and provided task-related feedback on a projection screen display, over long-duration task blocks (60 s. As predicted, we observed robust activation in the left anterior inferior and medial frontal gyri, consisting with previously reported results of verbal fluency tasks which established the role of these areas in strategic word retrieval. In addition, the number of words produced in the late phase (last 30 s of written phonemic fluency was significantly less (p < 0.05 than the number produced in the early phase (first 30 s. Activation during the late phase vs. the early phase was also assessed from the first 20 s and last 20 s of task performance, which eliminated the possibility that the sluggish hemodynamic response from the early phase would affect the activation estimates of the late phase. The last 20 s produced greater activation maps covering extended areas in bilateral precuneus, cuneus, middle temporal gyrus, insula, middle frontal gyrus and cingulate gyrus. Among them, greater activation was observed in the bilateral middle frontal gyrus (Brodmann area BA 9 and cingulate gyrus (BA 24, 32 likely as part of the initiation, maintenance, and shifting of attentional resources.

  4. Unilateral hearing during development: hemispheric specificity in plastic reorganizations

    Directory of Open Access Journals (Sweden)

    Andrej eKral

    2013-11-01

    Full Text Available The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness. The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. The data revealed that effects of hearing experience were more pronounced when stimulating the hearing ear. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive

  5. Effects of transcranial direct current stimulation over left dorsolateral pFC on the attentional blink depend on individual baseline performance

    NARCIS (Netherlands)

    London, R.E.; Slagter, H.A.

    2015-01-01

    Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by anodal transcranial direct current stimulation

  6. Timing of granulocyte-colony stimulating factor treatment after acute myocardial infarction and recovery of left ventricular function: results from the STEMMI trial

    DEFF Research Database (Denmark)

    Overgaard, Mikkel; Ripa, Rasmus Sejersten; Wang, Yongzhong

    2010-01-01

    Granulocyte-colony stimulating factor (G-CSF) therapy after ST-elevation myocardial infarction (STEMI) have not demonstrated impact on systolic recovery compared to placebo. However, recent studies suggest that timing of G-CSF therapy is crucial.......Granulocyte-colony stimulating factor (G-CSF) therapy after ST-elevation myocardial infarction (STEMI) have not demonstrated impact on systolic recovery compared to placebo. However, recent studies suggest that timing of G-CSF therapy is crucial....

  7. Motivation and motor control: hemispheric specialization for approach motivation reverses with handedness.

    Science.gov (United States)

    Brookshire, Geoffrey; Casasanto, Daniel

    2012-01-01

    According to decades of research on affective motivation in the human brain, approach motivational states are supported primarily by the left hemisphere and avoidance states by the right hemisphere. The underlying cause of this specialization, however, has remained unknown. Here we conducted a first test of the Sword and Shield Hypothesis (SSH), according to which the hemispheric laterality of affective motivation depends on the laterality of motor control for the dominant hand (i.e., the "sword hand," used preferentially to perform approach actions) and the nondominant hand (i.e., the "shield hand," used preferentially to perform avoidance actions). To determine whether the laterality of approach motivation varies with handedness, we measured alpha-band power (an inverse index of neural activity) in right- and left-handers during resting-state electroencephalography and analyzed hemispheric alpha-power asymmetries as a function of the participants' trait approach motivational tendencies. Stronger approach motivation was associated with more left-hemisphere activity in right-handers, but with more right-hemisphere activity in left-handers. The hemispheric correlates of approach motivation reversed between right- and left-handers, consistent with the way they typically use their dominant and nondominant hands to perform approach and avoidance actions. In both right- and left-handers, approach motivation was lateralized to the same hemisphere that controls the dominant hand. This covariation between neural systems for action and emotion provides initial support for the SSH.

  8. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Premji, Azra; Ziluk, Angela; Nelson, Aimee J

    2010-08-05

    Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  9. Callosal tracts and patterns of hemispheric dominance: a combined fMRI and DTI study.

    Science.gov (United States)

    Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Corballis, Michael C

    2011-01-15

    Left-hemispheric dominance for language and right-hemispheric dominance for spatial processing are distinctive characteristics of the human brain. However, variations of these hemispheric asymmetries have been observed, with a minority showing crowding of both functions to the same hemisphere or even a mirror reversal of the typical lateralization pattern. Here, we used diffusion tensor imaging and functional magnetic imaging to investigate the role of the corpus callosum in participants with atypical hemispheric dominance. The corpus callosum was segmented according to the projection site of the underlying fibre tracts. Analyses of the microstructure of the identified callosal segments revealed that atypical hemispheric dominance for language was associated with high anisotropic diffusion through the corpus callosum as a whole. This effect was most evident in participants with crowding of both functions to the right. The enhanced anisotropic diffusion in atypical hemispheric dominance implies that in these individuals the two hemispheres are more heavily interconnected. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Opposed hemispheric specializations for human hypersexuality and orgasm?

    Science.gov (United States)

    Suffren, Sabrina; Braun, Claude M J; Guimond, Anik; Devinsky, Orrin

    2011-05-01

    With a multiple case report analysis we demonstrate that hypersexuality more often results from right hemisphere (RH) (n=26) than left hemisphere (LH) (n=7) lesions, possibly because of LH release after the RH lesion, and that ictal orgasm more often occurs in patients with right-sided (n=23) than left-sided (n=8) seizure foci, with the symptom probably resulting from RH activation. The LH may be specialized for increasing sexual tension, whereas the RH may be specialized for release of this tension (orgasm), the former being catabolic and the latter anabolic. Several other interpretations of the findings are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Pure Left Neglect for Arabic Numerals

    Science.gov (United States)

    Priftis, Konstantinos; Albanese, Silvia; Meneghello, Francesca; Pitteri, Marco

    2013-01-01

    Arabic numerals are diffused and language-free representations of number magnitude. To be effectively processed, the digits composing Arabic numerals must be spatially arranged along a left-to-right axis. We studied one patient (AK) to show that left neglect, after right hemisphere damage, can selectively impair the computation of the spatial…

  12. Unilateral hearing during development: hemispheric specificity in plastic reorganizations.

    Science.gov (United States)

    Kral, Andrej; Heid, Silvia; Hubka, Peter; Tillein, Jochen

    2013-01-01

    The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness). The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs) were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory) mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive periods involved.

  13. Neural Dissociation in the Production of Lexical versus Classifier Signs in ASL: Distinct Patterns of Hemispheric Asymmetry

    Science.gov (United States)

    Hickok, Gregory; Pickell, Herbert; Klima, Edward; Bellugi, Ursula

    2009-01-01

    We examine the hemispheric organization for the production of two classes of ASL signs, lexical signs and classifier signs. Previous work has found strong left hemisphere dominance for the production of lexical signs, but several authors have speculated that classifier signs may involve the right hemisphere to a greater degree because they can…

  14. The Nature of Hemispheric Specialization for Linguistic and Emotional Prosodic Perception: A Meta-Analysis of the Lesion Literature

    Science.gov (United States)

    Witteman, Jurriaan; van IJzendoorn, Marinus H.; van de Velde, Daan; van Heuven, Vincent J. J. P.; Schiller, Niels O.

    2011-01-01

    It is unclear whether there is hemispheric specialization for prosodic perception and, if so, what the nature of this hemispheric asymmetry is. Using the lesion-approach, many studies have attempted to test whether there is hemispheric specialization for emotional and linguistic prosodic perception by examining the impact of left vs. right…

  15. [Amusia and aphasia of Bolero's creator--influence of the right hemisphere on music].

    Science.gov (United States)

    Tudor, Lorraine; Sikirić, Predrag; Tudor, Katarina Ivana; Cambi-Sapunar, Liana; Radonić, Vedran; Tudor, Mario; Buca, Ante; Carija, Robert

    2008-07-01

    The experience with cortical localization (BA 44, 45, 22) of language (Broca, Wernicke and others) in the left hemisphere has been repeatedly tested over the last 150 years and is now generally accepted. A single case report with autopsy findings (Leborgne, Tan tan), has enabled to localize the seat of spoken language in the left third frontal convolution. As music and language have a lot in common and even share the same hearing system, it is logical to try to localize the cognitive centers for music too. The disabling neurological disease illness of Maurice Ravel (1875-1937), a French impressionist composer, is not the right example to localize music center as that of Broca's language center, but it demonstrates the role of the right hemisphere in music production. In the last five years of his life, Ravel suffered from an unknown disease that affected the left hemisphere causing aphasia, apraxia, alexia, agraphia and amusia. It was the reason why Ravel could not compose during the last years of his life. In contrast to Ravel, Shebalin and Britten continued writing music works of their own although aphasic after having sustained two strokes to the left hemisphere. While lacking clinical cases with selective ablative brain lesions, research into the music localization can be done using modern imaging technologies such as fMRI and PET. Exercising music (professionally) develops analytical process in the left hemisphere whereas other individuals process music in their right hemisphere. There is right ear (left hemisphere) predominance in musicians and vice versa in musical amateurs. Music lateralization towards the right hemisphere is seen in women and in inattentive listeners. It can be subject to cultural influence, so the Japanese process their traditional popular music in the left hemisphere, whereas Westerners process the same music in the right hemisphere. Music and language are processed separately; they are localized in homologous regions of the opposite

  16. Hypothalamic digoxin, hemispheric chemical dominance, and chronic bronchitis emphysema.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-09-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin (membrane sodium-potassium ATPase inhibitor, immunomodulator, and regulator of neurotransmitter/amino acid transport), dolichol (regulates N-glycosylation of proteins), and ubiquinone (free radical scavenger). This was assessed in patients with chronic bronchitis emphysema. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find the role of hemispheric dominance in the pathogenesis of chronic bronchitis emphysema. All the 15 patients with chronic bronchitis emphysema were right-handed/left hemispheric dominant by the dichotic listening test. In patients with chronic bronchitis emphysema there was elevated digoxin synthesis, increased dolichol, and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate levels of RBC membrane in patients with chronic bronchitis emphysema. The same biochemical patterns were obtained in individuals with right hemispheric dominance. Endogenous digoxin by activating the calcineurin signal transduction pathway of T-cell can contribute to immune activation in chronic bronchitis emphysema. Increased free radical generation can also lead to immune activation. Endogenous synthesis of nicotine can contribute to the pathogenesis of the disease. Altered glycoconjugate metabolism and membranogenesis can lead to defective lysosomal stability contributing to the disease process by increased release of lysosomal proteases. The role of an endogenous digoxin and hemispheric dominance in the pathogenesis of chronic bronchitis emphysema and in the regulation of lung structure/function is discussed. The biochemical patterns obtained in chronic bronchitis emphysema is similar to those obtained in left

  17. Hypothalamic digoxin, hemispheric chemical dominance, and interstitial lung disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-10-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. This was assessed in patients with idiopathic pulmonary fibrosis and in individuals of differing hemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of idiopathic pulmonary fibrosis. All 15 cases of interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. The isoprenoidal metabolites--digoxin, dolichol, and ubiquinone, RBC membrane Na(+)-K+ ATPase activity, serum magnesium, tyrosine/tryptophan catabolic patterns, free radical metabolism, glycoconjugate metabolism, and RBC membrane composition--were assessed in idiopathic pulmonary fibrosis as well as in individuals with differing hemispheric dominance. In patients with idiopathic pulmonary fibrosis there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in patients with idiopathic pulmonary fibrosis. Isoprenoid pathway dysfunction con tributes to the pathogenesis of idiopathic pulmonary fibrosis. The biochemical patterns obtained in interstitial lung disease are similar to those obtained in left-handed/right hemispheric chemically dominant individuals by the dichotic listening test. However, all the patients with interstitial lung disease were right-handed/left hemispheric dominant by the dichotic listening test. Hemispheric chemical dominance has no correlation with handedness or the dichotic listening test. Interstitial lung disease occurs in right hemispheric chemically dominant individuals and is a reflection of altered brain function.

  18. Hypothalamic digoxin, hemispheric chemical dominance, and inflammatory bowel disease.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-09-01

    The isoprenoid pathway produces three key metabolites--endogenous digoxin, dolichol, and ubiquinone. It was considered pertinent to assess the pathway in inflammatory bowel disease (ulcerative colitis and regional ileitis). Since endogenous digoxin can regulate neurotransmitter transport, the pathway and the related cascade were also assessed in individuals with differing hemispheric dominance to find out the role of hemispheric dominance in its pathogenesis. All the patients with inflammatory bowel disease were right-handed/left hemispheric dominant by the dichotic listening test. The following parameters were measured in patients with inflammatory bowel disease and in individuals with differing hemispheric dominance: (1) plasma HMG CoA reductase, digoxin, dolichol, ubiquinone, and magnesium levels; (2) tryptophan/tyrosine catabolic patterns; (3) free-radical metabolism; (4) glycoconjugate metabolism; and (5) membrane composition and RBC membrane Na+-K+ ATPase activity. Statistical analysis was done by ANOVA. In patients with inflammatory bowel disease there was elevated digoxin synthesis, increased dolichol and glycoconjugate levels, and low ubiquinone and elevated free radical levels. There was also an increase in tryptophan catabolites and a reduction in tyrosine catabolites. There was an increase in cholesterol:phospholipid ratio and a reduction in glycoconjugate level of RBC membrane in these groups of patients. Inflammatory bowel disease is associated with an upregulated isoprenoid pathway and elevated digoxin secretion from the hypothalamus. This can contribute to immune activation, defective glycoprotein bowel antigen presentation, and autoimmunity and a schizophreniform psychosis important in its pathogenesis. The biochemical patterns obtained in inflammatory bowel disease is similar to those obtained in left-handed/right hemispheric dominant individuals by the dichotic listening test. But all the patients with peptic ulcer disease were right-handed/left

  19. Tomada de decisão no IGT: estudo de caso pós-AVC de hemisfério direito versus esquerdo Toma de decisión en el IGT: estudio de caso post-AVC de hemisferio derecho versus isquierdo Decision making in IGT: a case study of post-CVA of left versus right hemisphere

    Directory of Open Access Journals (Sweden)

    Caroline de Oliveira Cardoso

    2012-04-01

    decision-making process of two post-unilateral CVA adults as well as verifying the role of hemispheric laterality in the performance of Iowa Gambling Task (IGT. One adult with right hemisphere damage (RHD and another with left hemisphere damage (LHD, both following a subcortical ischemic post-CVA. The IGT was used to evaluate the decision making. Patients had appropriate performance on the IGT suggesting a general good ability to make decisions. However, only the patient with LHD presented signs of ascendant learning curve. Conclusion: These data indicate that a subcortical lesion independent of the hemisphere may not influence on the IGT performance. It is suggested that comparative studies of groups should be conducted in order to compare patients with frontal and non-frontal lesions, helping to characterize the decision-making process in population with unilateral vascular damage.

  20. Vocal reaction times to unilaterally presented concrete and abstract words: towards a theory of differential right hemispheric semantic processing.

    Science.gov (United States)

    Rastatter, M; Dell, C W; McGuire, R A; Loren, C

    1987-03-01

    Previous studies investigating hemispheric organization for processing concrete and abstract nouns have provided conflicting results. Using manual reaction time tasks some studies have shown that the right hemisphere is capable of analyzing concrete words but not abstract. Others, however, have inferred that the left hemisphere is the sole analyzer of both types of lexicon. The present study tested these issues further by measuring vocal reaction times of normal subjects to unilaterally presented concrete and abstract items. Results were consistent with a model of functional localization which suggests that the minor hemisphere is capable of differentially processing both types of lexicon in the presence of a dominant left hemisphere.

  1. When One Hemisphere Takes Control: Metacontrol in Pigeons (Columba livia)

    Science.gov (United States)

    Adam, Ruth; Güntürkün, Onur

    2009-01-01

    Background Vertebrate brains are composed of two hemispheres that receive input, compute, and interact to form a unified response. How the partially different processes of both hemispheres are integrated to create a single output is largely unknown. In some cases one hemisphere takes charge of the response selection – a process known as metacontrol. Thus far, this phenomenon has only been shown in a handful of studies with primates, mostly conducted in humans. Metacontrol, however, is even more relevant for animals like birds with laterally placed eyes and complete chiasmatic decussation since visual input to the hemispheres is largely different. Methodology/Principal Findings Homing pigeons (Columba livia) were trained with a color discrimination task. Each hemisphere was trained with a different color pair and therefore had a different experience. Subsequently, the pigeons were binocularly examined with two additional stimuli that combined the positive color of one hemisphere with a negative color that had been shown to the other, omitting the availability of a coherent solution and confronting the pigeons with a conflicting situation. Some of the pigeons responded to both stimuli, indicating that none of the hemispheres dominated the overall preference. Some birds, however, responded primarily to one of the conflicting stimuli, showing that they based their choice on the left- or right-monocularly learned color pair, indicating hemispheric metacontrol. Conclusions/Significance We could demonstrate for the first time that metacontrol is a widespread phenomenon that also exists in birds, and thus in principle requires no corpus callosum. Our results are closely similar to those in humans: monocular performance was higher than binocular one and animals displayed different modes of hemispheric dominance. Thus, metacontrol is a dynamic and widely distributed process that possibly constitutes a requirement for all animals with a bipartite brain to confront the

  2. When one hemisphere takes control: metacontrol in pigeons (Columba livia.

    Directory of Open Access Journals (Sweden)

    Ruth Adam

    Full Text Available Vertebrate brains are composed of two hemispheres that receive input, compute, and interact to form a unified response. How the partially different processes of both hemispheres are integrated to create a single output is largely unknown. In some cases one hemisphere takes charge of the response selection--a process known as metacontrol. Thus far, this phenomenon has only been shown in a handful of studies with primates, mostly conducted in humans. Metacontrol, however, is even more relevant for animals like birds with laterally placed eyes and complete chiasmatic decussation since visual input to the hemispheres is largely different.Homing pigeons (Columba livia were trained with a color discrimination task. Each hemisphere was trained with a different color pair and therefore had a different experience. Subsequently, the pigeons were binocularly examined with two additional stimuli that combined the positive color of one hemisphere with a negative color that had been shown to the other, omitting the availability of a coherent solution and confronting the pigeons with a conflicting situation. Some of the pigeons responded to both stimuli, indicating that none of the hemispheres dominated the overall preference. Some birds, however, responded primarily to one of the conflicting stimuli, showing that they based their choice on the left- or right-monocularly learned color pair, indicating hemispheric metacontrol.We could demonstrate for the first time that metacontrol is a widespread phenomenon that also exists in birds, and thus in principle requires no corpus callosum. Our results are closely similar to those in humans: monocular performance was higher than binocular one and animals displayed different modes of hemispheric dominance. Thus, metacontrol is a dynamic and widely distributed process that possibly constitutes a requirement for all animals with a bipartite brain to confront the problem of choosing between two hemisphere

  3. Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading: A meta-analysis of single session tDCS applied to healthy participants.

    Science.gov (United States)

    Westwood, Samuel J; Romani, Cristina

    2017-09-01

    Recent reviews quantifying the effects of single sessions of transcranial direct current stimulation (or tDCS) in healthy volunteers find only minor effects on cognition despite the popularity of this technique. Here, we wanted to quantify the effects of tDCS on language production tasks that measure word reading and picture naming. We reviewed 14 papers measuring tDCS effects across a total of 96 conditions to a) quantify effects of conventional stimulation on language regions (i.e., left hemisphere anodal tDCS administered to temporal/frontal areas) under normal conditions or under conditions of cognitive (semantic) interference; b) identify parameters which may moderate the size of the tDCS effect within conventional stimulation protocols (e.g., online vs offline, high vs. low current densities, and short vs. long durations), as well as within types of stimulation not typically explored by previous reviews (i.e., right hemisphere anodal tDCS or left/right hemisphere cathodal tDCS). In all analyses there was no significant effect of tDCS, but we did find a small but significant effect of time and duration of stimulation with stronger effects for offline stimulation and for shorter durations (tDCS and its poor efficacy in healthy participants. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Taxonomic and ad hoc categorization within the two cerebral hemispheres.

    Science.gov (United States)

    Shen, Yeshayahu; Aharoni, Bat-El; Mashal, Nira

    2015-01-01

    A typicality effect refers to categorization which is performed more quickly or more accurately for typical than for atypical members of a given category. Previous studies reported a typicality effect for category members presented in the left visual field/right hemisphere (RH), suggesting that the RH applies a similarity-based categorization strategy. However, findings regarding the typicality effect within the left hemisphere (LH) are less conclusive. The current study tested the pattern of typicality effects within each hemisphere for both taxonomic and ad hoc categories, using words presented to the left or right visual fields. Experiment 1 tested typical and atypical members of taxonomic categories as well as non-members, and Experiment 2 tested typical and atypical members of ad hoc categories as well as non-members. The results revealed a typicality effect in both hemispheres and in both types of categories. Furthermore, the RH categorized atypical stimuli more accurately than did the LH. Our findings suggest that both hemispheres rely on a similarity-based categorization strategy, but the coarse semantic coding of the RH seems to facilitate the categorization of atypical members.

  5. Processing of unconventional stimuli requires the recruitment of the non-specialized hemisphere

    Directory of Open Access Journals (Sweden)

    Yoed Nissan Kenett

    2015-02-01

    Full Text Available In the present study we investigate hemispheric processing of conventional and unconventional visual stimuli in the context of visual and verbal creative ability. In Experiment 1, we studied two unconventional visual recognition tasks – Mooney face and objects' silhouette recognition – and found a significant relationship between measures of verbal creativity and unconventional face recognition. In Experiment 2 we used the split visual field paradigm to investigate hemispheric processing of conventional and unconventional faces and its relation to verbal and visual characteristics of creativity. Results showed that while conventional faces were better processed by the specialized right hemisphere, unconventional faces were better processed by the non-specialized left hemisphere. In addition, only unconventional face processing by the non-specialized left hemisphere was related to verbal and visual measures of creative ability. Our findings demonstrate the role of the non-specialized hemisphere in processing unconventional stimuli and how it relates to creativity.

  6. Split Fovea Theory and the Role of the Two Cerebral Hemispheres in Reading: A Review of the Evidence

    Science.gov (United States)

    Ellis, Andrew W.; Brysbaert, Marc

    2010-01-01

    Split fovea theory proposes that when the eyes are fixated within a written word, visual information about the letters falling to the left of fixation is projected initially to the right cerebral hemisphere while visual information about the letters falling to the right of fixation is projected to the left cerebral hemisphere. The two parts of the…

  7. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization.

    Directory of Open Access Journals (Sweden)

    Femke E van den Berg

    Full Text Available Unilateral movements are mainly controlled by the contralateral hemisphere, even though the primary motor cortex ipsilateral (M1(ipsi to the moving body side can undergo task-related changes of activity as well. Here we used transcranial magnetic stimulation (TMS to investigate whether representations of the wrist flexor (FCR and extensor (ECR in M1(ipsi would be modulated when unilateral rhythmical wrist movements were executed in isolation or in the context of a simple or difficult hand-foot coordination pattern, and whether this modulation would differ for the left versus right hemisphere. We found that M1(ipsi facilitation of the resting ECR and FCR mirrored the activation of the moving wrist such that facilitation was higher when the homologous muscle was activated during the cyclical movement. We showed that this ipsilateral facilitation increased significantly when the wrist movements were performed in the context of demanding hand-foot coordination tasks whereas foot movements alone influenced the hand representation of M1(ipsi only slightly. Our data revealed a clear hemispheric asymmetry such that MEP responses were significantly larger when elicited in the left M1(ipsi than in the right. In experiment 2, we tested whether the modulations of M1(ipsi facilitation, caused by performing different coordination tasks with the left versus right body sides, could be explained by changes in short intracortical inhibition (SICI. We found that SICI was increasingly reduced for a complex coordination pattern as compared to rest, but only in the right M1(ipsi. We argue that our results might reflect the stronger involvement of the left versus right hemisphere in performing demanding motor tasks.

  8. Imitation of Para-Phonological Detail Following Left Hemisphere Lesions

    Science.gov (United States)

    Kappes, Juliane; Baumgaertner, Annette; Peschke, Claudia; Goldenberg, Georg; Ziegler, Wolfram

    2010-01-01

    Imitation in speech refers to the unintentional transfer of phonologically irrelevant acoustic-phonetic information of auditory input into speech motor output. Evidence for such imitation effects has been explained within the framework of episodic theories. However, it is largely unclear, which neural structures mediate speech imitation and how…

  9. Reversible hemispheric hypoperfusion in two cases of SMART syndrome.

    Science.gov (United States)

    Wai, Karmen; Balabanski, Anna; Chia, Nicholas; Kleinig, Timothy

    2017-09-01

    Stroke-like migraine attacks after radiation therapy (SMART) syndrome manifests as prolonged episodes of cortical dysfunction, years after cranial irradiation. We present two cases demonstrating reversible hemispheric hypoperfusion. Case 1 presented with left hemispheric symptoms following previous similar episodes. CT perfusion (CTP) demonstrated reversible hemispheric hypoperfusion; subsequent investigations were consistent with SMART syndrome. Case 2 presented following the third episode of a hemispheric syndrome with near-identical CTP abnormalities. L-arginine was administered with rapid reversal of clinical and CTP abnormalities. We conclude that SMART syndrome may demonstrate significant hypoperfusion on hyperacute CTP without subsequent infarction. Impaired cerebrovascular autoregulation probably contributes to cortical dysfunction in SMART syndrome. L-arginine warrants investigation as a potential treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    Science.gov (United States)

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  11. Facilitate insight by non-invasive brain stimulation.

    Directory of Open Access Journals (Sweden)

    Richard P Chi

    Full Text Available Our experiences can blind us. Once we have learned to solve problems by one method, we often have difficulties in generating solutions involving a different kind of insight. Yet there is evidence that people with brain lesions are sometimes more resistant to this so-called mental set effect. This inspired us to investigate whether the mental set effect can be reduced by non-invasive brain stimulation. 60 healthy right-handed participants were asked to take an insight problem solving task while receiving transcranial direct current stimulation (tDCS to the anterior temporal lobes (ATL. Only 20% of participants solved an insight problem with sham stimulation (control, whereas 3 times as many participants did so (p = 0.011 with cathodal stimulation (decreased excitability of the left ATL together with anodal stimulation (increased excitability of the right ATL. We found hemispheric differences in that a stimulation montage involving the opposite polarities did not facilitate performance. Our findings are consistent with the theory that inhibition to the left ATL can lead to a cognitive style that is less influenced by mental templates and that the right ATL may be associated with insight or novel meaning. Further studies including neurophysiological imaging are needed to elucidate the specific mechanisms leading to the enhancement.

  12. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI

    Directory of Open Access Journals (Sweden)

    Ela B Plow

    2014-04-01

    Full Text Available A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS over the intraparietal sulcus (IPS generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional Magnetic Resonance Imaging (fMRI to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL, lateral IPS (LIPS, and middle occipital gyrus (MoG, showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL, Superior occipital gyrus (SoG, and lingual gyrus, as well as middle temporal areas (MT+, showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, but that of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction.

  13. Unilateral prefrontal direct current stimulation effects are modulated by working memory load and gender.

    Science.gov (United States)

    Meiron, Oded; Lavidor, Michal

    2013-05-01

    Recent studies revealed that anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) may improve verbal working memory (WM) performance in humans. In the present study, we evaluated executive attention, which is the core of WM capacity, considered to be significantly involved in tasks that require active maintenance of memory representations in interference-rich conditions, and is highly dependent on DLPFC function. We investigated verbal WM accuracy using a WM task that is highly sensitive to executive attention function. We were interested in how verbal WM accuracy may be affected by WM load, unilateral DLPFC stimulation, and gender, as previous studies showed gender-dependent brain activation during verbal WM tasks. We utilized a modified verbal n-Back task hypothesized to increase demands on executive attention. We examined "online" WM performance while participants received transcranial direct current stimulation (tDCS), and implicit learning performance in a post-stimulation WM task. Significant lateralized "online" stimulation effects were found only in the highest WM load condition revealing that males benefit from left DLPFC stimulation, while females benefit from right DLPFC stimulation. High WM load performance in the left DLPFC stimulation was significantly related to post-stimulation recall performance. Our findings support the idea that lateralized stimulation effects in high verbal WM load may be gender-dependent. Further, our post-stimulation results support the idea that increased left hemisphere activity may be important for encoding verbal information into episodic memory as well as for facilitating retrieval of context-specific targets from semantic memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Right Hemispheric Dominance in Processing of Unconscious Negative Emotion

    Science.gov (United States)

    Sato, Wataru; Aoki, Satoshi

    2006-01-01

    Right hemispheric dominance in unconscious emotional processing has been suggested, but remains controversial. This issue was investigated using the subliminal affective priming paradigm combined with unilateral visual presentation in 40 normal subjects. In either left or right visual fields, angry facial expressions, happy facial expressions, or…

  15. Right Hemisphere Dominance for Emotion Processing in Baboons

    Science.gov (United States)

    Wallez, Catherine; Vauclair, Jacques

    2011-01-01

    Asymmetries of emotional facial expressions in humans offer reliable indexes to infer brain lateralization and mostly revealed right hemisphere dominance. Studies concerned with oro-facial asymmetries in nonhuman primates largely showed a left-sided asymmetry in chimpanzees, marmosets and macaques. The presence of asymmetrical oro-facial…

  16. Age-related shifts in hemispheric dominance for syntactic processing.

    Science.gov (United States)

    Leckey, Michelle; Federmeier, Kara D

    2017-12-01

    Recent ERP data from young adults have revealed that simple syntactic anomalies elicit different patterns of lateralization in right-handed participants depending upon their familial sinistrality profile (whether or not they have left-handed biological relatives). Right-handed participants who do not have left-handed relatives showed a strongly lateralized response pattern, with P600 responses following left-hemisphere-biased presentations and N400 responses following right-hemisphere-biased presentations. Given that the literature on aging has documented a tendency to change across adulthood from asymmetry of function to a more bilateral pattern, we tested the stability of this asymmetric response to syntactic violations by recording ERPs as 24 older adults (age 60+) with no history of familial sinistrality made grammaticality judgments on simple two-word phrases. Results showed that the asymmetric pattern observed in right-handed adults without familial sinistrality indeed changes with age, such that P600 responses come to be elicited not only with left-hemisphere-biased but also with right-hemisphere-biased presentations in older adults. These findings suggest that, as with many other cognitive functions, syntactic processing becomes more bilateral with age. © 2017 Society for Psychophysiological Research.

  17. Hemispheric Lateralization of Verbal and Spatial Working Memory during Adolescence

    Science.gov (United States)

    Nagel, Bonnie J.; Herting, Megan M.; Maxwell, Emily C.; Bruno, Richard; Fair, Damien

    2013-01-01

    Adult functional magnetic resonance imaging (fMRI) literature suggests that a left-right hemispheric dissociation may exist between verbal and spatial working memory (WM), respectively. However, investigation of this type has been obscured by incomparable verbal and spatial WM tasks and/or visual inspection at arbitrary thresholds as means to…

  18. What Does the Right Hemisphere Know about Phoneme Categories?

    Science.gov (United States)

    Wolmetz, Michael; Poeppel, David; Rapp, Brenda

    2011-01-01

    Innate auditory sensitivities and familiarity with the sounds of language give rise to clear influences of phonemic categories on adult perception of speech. With few exceptions, current models endorse highly left-hemisphere-lateralized mechanisms responsible for the influence of phonemic category on speech perception, based primarily on results…

  19. Hemispheric Specialization and the Growth of Human Understanding.

    Science.gov (United States)

    Kinsbourne, Marcel

    1982-01-01

    Connectionistic notions of hemispheric specialization and use are incompatible with the network organization of the human brain. Although brain organization has correspondence with phenomena at more complex levels of analysis, the correspondence is not categorical in nature, as has been claimed by the left-brain/right-brain theorists. (Author/GC)

  20. Hemispheric Asymmetries in Semantic Processing: Evidence from False Memories for Ambiguous Words

    Science.gov (United States)

    Faust, Miriam; Ben-Artzi, Elisheva; Harel, Itay

    2008-01-01

    Previous research suggests that the left hemisphere (LH) focuses on strongly related word meanings; the right hemisphere (RH) may contribute uniquely to the processing of lexical ambiguity by activating and maintaining a wide range of meanings, including subordinate meanings. The present study used the word-lists false memory paradigm [Roediger,…

  1. Hemispheric Specialization and Creative Thinking: A Meta-Analytic Review of Lateralization of Creativity

    Science.gov (United States)

    Mihov, Konstantin M.; Denzler, Markus; Forster, Jens

    2010-01-01

    In the last two decades research on the neurophysiological processes of creativity has found contradicting results. Whereas most research suggests right hemisphere dominance in creative thinking, left-hemisphere dominance has also been reported. The present research is a meta-analytic review of the literature to establish how creative thinking…

  2. Aphasic Patients Exhibit a Reversal of Hemispheric Asymmetries in Categorical Color Discrimination

    Science.gov (United States)

    Paluy, Yulia; Gilbert, Aubrey L.; Baldo, Juliana V.; Dronkers, Nina F.; Ivry, Richard B.

    2011-01-01

    Patients with left hemisphere (LH) or right hemisphere (RH) brain injury due to stroke were tested on a speeded, color discrimination task in which two factors were manipulated: (1) the categorical relationship between the target and the distracters and (2) the visual field in which the target was presented. Similar to controls, the RH patients…

  3. Questions of Brain Hemispheric Specialization and Gender Difference in Spatial Tests.

    Science.gov (United States)

    McWhinnie, Harold J.

    This paper presents a review of selected literature relevant to a general question of hemispheric specialization (right or left brain) and questions of gender differences in spatial abilities among a group of art students. Three basic questions for discussion are proposed: (1) is there a relationship between hemispheric dominance and spatial…

  4. Right Hemisphere Sensitivity to Novel Metaphoric Relations: Application of the Signal Detection Theory

    Science.gov (United States)

    Mashal, N.; Faust, M.

    2008-01-01

    The present study used the signal detection theory to test the hypothesis that the right hemisphere (RH) is more sensitive than the left hemisphere (LH) to the distant semantic relations in novel metaphoric expressions. In two divided visual field experiments, sensitivity (d') and criterion ([beta]) were calculated for responses to different types…

  5. Hemispheric specialization and creative thinking: a meta-analytic review of lateralization of creativity

    NARCIS (Netherlands)

    Mihov, K.M.; Denzler, M.; Förster, J.

    2010-01-01

    In the last two decades research on the neurophysiological processes of creativity has found contradicting results. Whereas most research suggests right hemisphere dominance in creative thinking, left-hemisphere dominance has also been reported. The present research is a meta-analytic review of the

  6. Effect of Temporal Constraints on Hemispheric Asymmetries during Spatial Frequency Processing

    Science.gov (United States)

    Peyrin, Carole; Mermillod, Martial; Chokron, Sylvie; Marendaz, Christian

    2006-01-01

    Studies on functional hemispheric asymmetries have suggested that the right vs. left hemisphere should be predominantly involved in low vs. high spatial frequency (SF) analysis, respectively. By manipulating exposure duration of filtered natural scene images, we examined whether the temporal characteristics of SF analysis (i.e., the temporal…

  7. Non-invasive brain stimulation enhances the effects of Melodic Intonation Therapy

    Directory of Open Access Journals (Sweden)

    Bradley W. Vines

    2011-09-01

    Full Text Available Research has suggested that a fronto-temporal network in the right hemisphere may be responsible for mediating Melodic Intonation Therapy’s positive effects on speech recovery. We investigated the potential for a non-invasive brain stimulation technique, transcranial direct current stimulation (tDCS, to augment the benefits of MIT in patients with non-fluent aphasia by modulating neural activity in the brain during treatment with MIT. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. We applied anodal tDCS to the posterior inferior frontal gyrus (IFG of the right hemisphere, an area that has been shown to both contribute to singing through the mapping of sounds to ariculatory actions and serve as a key region in the process of recovery from aphasia, particularly in patients with large left hemispheric lesions. The stimulation was applied while patients were treated with MIT by a trained therapist. Six patients with moderate to severe non-fluent aphasia underwent three consecutive days of anodal-tDCS+MIT, and an equivalent series of sham-tDCS+MIT. The two treatment series were separated by one week, and the order in which the treatments were administered was randomized. Compared to the effects of sham-tDCS+MIT, anodal-tDCS+MIT led to significant improvements in fluency of speech. These results support the hypothesis that, as the brain seeks to reorganize and compensate for damage to left-hemisphere language centers, combining anodal-tDCS with MIT may further recovery from post-stroke aphasia by enhancing activity in a right-hemisphere sensorimotor network for articulation.

  8. Hemispheric biases and the control of visuospatial attention: an ERP study

    Directory of Open Access Journals (Sweden)

    Banich Marie T

    2005-08-01

    Full Text Available Abstract Background We examined whether individual differences in hemispheric utilization can interact with the intrinsic attentional biases of the cerebral hemispheres. Evidence suggests that the hemispheres have competing biases to direct attention contralaterally, with the left hemisphere (LH having a stronger bias than the right hemisphere. There is also evidence that individuals have characteristic biases to utilize one hemisphere more than the other for processing information, which can induce a bias to direct attention to contralateral space. We predicted that LH-biased individuals would display a strong rightward attentional bias, which would create difficulty in selectively attending to target stimuli in the left visual field (LVF as compared to right in the performance of a bilateral flanker task. Results Consistent with our hypothesis, flanker interference effects were found on the N2c event-related brain potential and error rate for LH-biased individuals in the Attend-LVF condition. The error rate effect was correlated with the degree of hemispheric utilization bias for the LH-Bias group. Conclusion We conclude that hemispheric utilization bias can enhance a hemisphere's contralateral attentional bias, at least for individuals with a LH utilization bias. Hemispheric utilization bias may play an important and largely unrecognized role in visuospatial attention.

  9. Interindividual variability in the hemispheric organization for speech.

    Science.gov (United States)

    Tzourio-Mazoyer, N; Josse, G; Crivello, F; Mazoyer, B

    2004-01-01

    A PET activation study was designed to investigate hemispheric specialization during speech comprehension and production in right- and left-handed subjects. Normalized regional cerebral blood flow (NrCBF) was repeatedly monitored while subjects either listened to factual stories (Story) or covertly generated verbs semantically related to heard nouns (Gener), using silent resting (Rest) as a common control condition. NrCBF variations in each task, as compared to Rest, as well as functional asymmetry indices (FAI = right minus left NrCBF variations), were computed in anatomical regions of interest (AROIs) defined on the single-subject MNI template. FAIs were predominantly leftward in all regions during both tasks, although larger FAIs were observed during Gener. Subjects were declared "typical" for language hemispheric specialization based on the presence of significant leftward asymmetries (FAI Gener, and in the middle and inferior temporal AROIs during Story. Six subjects (including five LH) showed an atypical language representation. Among them, one presented a right hemisphere specialization during both tasks, another a shift in hemispheric specialization from production to comprehension (left during Gener, right during Story). The group of 14 typical subjects showed significant positive correlation between homologous left and right AROIs NrCBF variations in temporal areas during Story, and in temporal and inferior frontal areas during Gener, almost all regions presenting a leftward FAI. Such correlations were also present in deactivated areas with strong leftward asymmetry (supramarginalis gyrus, inferior parietal region). These results suggest that entry into a language task translates into a hemispheric reconfiguration of lateral cortical areas with global NrCBF increase in the dominant hemisphere and decrease in the minor hemisphere. This can be considered as the setting up of a "language mode", under the control of a mechanism that operates at a perisylvian

  10. A Right Brain/Left Brain Model of Acting.

    Science.gov (United States)

    Bowlen, Clark

    Using current right brain/left brain research, this paper develops a model that explains acting's underlying quality--the actor is both himself and the character. Part 1 presents (1) the background of the right brain/left brain theory, (2) studies showing that propositional communication is a left hemisphere function while affective communication…

  11. Hemispheric dominance underlying the neural substrate for learned vocalizations develops with experience

    OpenAIRE

    Chirathivat, Napim; Raja, Sahitya C.; Gobes, Sharon M. H.

    2015-01-01

    Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers? song, just like Wernicke?s area in the left hemisphere of the hum...

  12. Left-handedness and language lateralization in children.

    Science.gov (United States)

    Szaflarski, Jerzy P; Rajagopal, Akila; Altaye, Mekibib; Byars, Anna W; Jacola, Lisa; Schmithorst, Vincent J; Schapiro, Mark B; Plante, Elena; Holland, Scott K

    2012-01-18

    This fMRI study investigated the development of language lateralization in left- and righthanded children between 5 and 18 years of age. Twenty-seven left-handed children (17 boys, 10 girls) and 54 age- and gender-matched right-handed children were included. We used functional MRI at 3T and a verb generation task to measure hemispheric language dominance based on either frontal or temporo-parietal regions of interest (ROIs) defined for the entire group and applied on an individual basis. Based on the frontal ROI, in the left-handed group, 23 participants (85%) demonstrated left-hemispheric language lateralization, 3 (11%) demonstrated symmetric activation, and 1 (4%) demonstrated right-hemispheric lateralization. In contrast, 50 (93%) of the right-handed children showed left-hemispheric lateralization and 3 (6%) demonstrated a symmetric activation pattern, while one (2%) demonstrated a right-hemispheric lateralization. The corresponding values for the temporo-parietal ROI for the left-handed children were 18 (67%) left-dominant, 6 (22%) symmetric, 3 (11%) right-dominant and for the right-handed children 49 (91%), 4 (7%), 1 (2%), respectively. Left-hemispheric language lateralization increased with age in both groups but somewhat different lateralization trajectories were observed in girls when compared to boys. The incidence of atypical language lateralization in left-handed children in this study was similar to that reported in adults. We also found similar rates of increase in left-hemispheric language lateralization with age between groups (i.e., independent of handedness) indicating the presence of similar mechanisms for language lateralization in left- and right-handed children. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Hemispheric lateralization of linguistic prosody recognition in comparison to speech and speaker recognition.

    Science.gov (United States)

    Kreitewolf, Jens; Friederici, Angela D; von Kriegstein, Katharina

    2014-11-15

    Hemispheric specialization for linguistic prosody is a controversial issue. While it is commonly assumed that linguistic prosody and emotional prosody are preferentially processed in the right hemisphere, neuropsychological work directly comparing processes of linguistic prosody and emotional prosody suggests a predominant role of the left hemisphere for linguistic prosody processing. Here, we used two functional magnetic resonance imaging (fMRI) experiments to clarify the role of left and right hemispheres in the neural processing of linguistic prosody. In the first experiment, we sought to confirm previous findings showing that linguistic prosody processing compared to other speech-related processes predominantly involves the right hemisphere. Unlike previous studies, we controlled for stimulus influences by employing a prosody and speech task using the same speech material. The second experiment was designed to investigate whether a left-hemispheric involvement in linguistic prosody processing is specific to contrasts between linguistic prosody and emotional prosody or whether it also occurs when linguistic prosody is contrasted against other non-linguistic processes (i.e., speaker recognition). Prosody and speaker tasks were performed on the same stimulus material. In both experiments, linguistic prosody processing was associated with activity in temporal, frontal, parietal and cerebellar regions. Activation in temporo-frontal regions showed differential lateralization depending on whether the control task required recognition of speech or speaker: recognition of linguistic prosody predominantly involved right temporo-frontal areas when it was contrasted against speech recognition; when contrasted against speaker recognition, recognition of linguistic prosody predominantly involved left temporo-frontal areas. The results show that linguistic prosody processing involves functions of both hemispheres and suggest that recognition of linguistic prosody is based on

  14. The nature of hemispheric specialization for linguistic and emotional prosodic perception: a meta-analysis of the lesion literature.

    Science.gov (United States)

    Witteman, Jurriaan; van Ijzendoorn, Marinus H; van de Velde, Daan; van Heuven, Vincent J J P; Schiller, Niels O

    2011-11-01

    It is unclear whether there is hemispheric specialization for prosodic perception and, if so, what the nature of this hemispheric asymmetry is. Using the lesion-approach, many studies have attempted to test whether there is hemispheric specialization for emotional and linguistic prosodic perception by examining the impact of left vs. right hemispheric damage on prosodic perception task performance. However, so far no consensus has been reached. In an attempt to find a consistent pattern of lateralization for prosodic perception, a meta-analysis was performed on 38 lesion studies (including 450 left hemisphere damaged patients, 534 right hemisphere damaged patients and 491 controls) of prosodic perception. It was found that both left and right hemispheric damage compromise emotional and linguistic prosodic perception task performance. Furthermore, right hemispheric damage degraded emotional prosodic perception more than left hemispheric damage (trimmed g=-0.37, 95% CI [-0.66; -0.09], N=620 patients). It is concluded that prosodic perception is under bihemispheric control with relative specialization of the right hemisphere for emotional prosodic perception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Hemispheric processing of vocal emblem sounds.

    Science.gov (United States)

    Neumann-Werth, Yael; Levy, Erika S; Obler, Loraine K

    2013-01-01

    Vocal emblems, such as shh and brr, are speech sounds that have linguistic and nonlinguistic features; thus, it is unclear how they are processed in the brain. Five adult dextral individuals with left-brain damage and moderate-severe Wernicke's aphasia, five adult dextral individuals with right-brain damage, and five Controls participated in two tasks: (1) matching vocal emblems to photographs ('picture task') and (2) matching vocal emblems to verbal translations ('phrase task'). Cross-group statistical analyses on items on which the Controls performed at ceiling revealed lower accuracy by the group with left-brain damage (than by Controls) on both tasks, and lower accuracy by the group with right-brain damage (than by Controls) on the picture task. Additionally, the group with left-brain damage performed significantly less accurately than the group with right-brain damage on the phrase task only. Findings suggest that comprehension of vocal emblems recruits more left- than right-hemisphere processing.

  16. Framing susceptibility in a risky choice game is altered by galvanic vestibular stimulation.

    Science.gov (United States)

    Preuss, Nora; Kalla, Roger; Müri, Rene; Mast, Fred W

    2017-06-07

    Recent research provides evidence that galvanic vestibular stimulation (GVS) has a modulating effect on somatosensory perception and spatial cognition. However, other vestibular stimulation techniques have induced changes in affective control and decision making. The aim of this study was to investigate the effect of GVS on framing susceptibility in a risky-choice game. The participants were to decide between a safe and a risky option. The safe option was framed either positively or negatively. During the task, the participants were exposed to either left anodal/right cathodal GVS, right anodal/left cathodal GVS, or sham stimulation (control condition). While left anodal/right cathodal GVS activated more right-hemispheric vestibular brain areas, right anodal/left cathodal GVS resulted in more bilateral activation. We observed increased framing susceptibility during left anodal/right cathodal GVS, but no change in framing susceptibility during right anodal/left cathodal GVS. We propose that GVS results in increased reliance on the affect heuristic by means of activation of cortical and subcortical vestibular-emotional brain structures and that this effect is modulated by the lateralization of the vestibular cortex.

  17. Optokinetic stimulation modulates neglect for the number space: Evidence from mental number interval bisection

    Directory of Open Access Journals (Sweden)

    Konstantinos ePriftis

    2012-02-01

    Full Text Available Behavioral, neuropsychological, and neuroimaging data support the idea that numbers are represented along a mental number line (MNL, an analogical, visuo-spatial representation of number magnitude. The MNL is left-to-right oriented, with small numbers on the left and larger numbers on the right. Left neglect patients are impaired in processing the left side of the MNL and show a rightward deviation in the mental bisection of numerical intervals. In the present study we investigated the effects of optokinetic stimulation (OKS -a technique inducing spatial attention shifts by means of activation of the optokinetic nystagmus- on mental number interval bisection. One patient with left neglect following right hemisphere stroke (BG and four control patients with right hemisphere damage, but without neglect, performed the mental number interval bisection task in three experimental conditions of OKS: static, leftward, and rightward. In the static condition, BG misbisected to the right of the true midpoint. BG misbisected to the left following leftward OKS, but again to the right of the midpoint following rightward OKS. In contrast, the performance of controls was not significantly affected by the direction of OKS. We argue that shifts of visuospatial attention, induced by OKS, may affect the mental number interval bisection, suggesting the presence of an interaction between the processing of number magnitude and the processing of the perceptual space, in patients with neglect for the mental number space.

  18. Detonation in TATB Hemispheres

    Energy Technology Data Exchange (ETDEWEB)

    Druce, B; Souers, P C; Chow, C; Roeske, F; Vitello, P; Hrousis, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. The problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.

  19. Detonation in TATB hemispheres

    Energy Technology Data Exchange (ETDEWEB)

    Druce, Robert L.; Souers, P. Clark; Chow, Charles; Roeske, Franklin; Vitello, Peter; Hrousis, Constantine [Lawrence Livermore National Laboratory, Livermore, CA, 94550 (United States)

    2005-04-01

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB (triamino-trinitrobenzene) hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54 at ambient temperatures and 42 at -54 C, where the axis of rotation is 0 . The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. The problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably present, but it cannot be quantified. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  20. Bilateral versus ipsilesional cortico-subcortical activity patterns in stroke show hemispheric dependence.

    Science.gov (United States)

    Vidal, Ana C; Banca, Paula; Pascoal, Augusto G; Cordeiro, Gustavo; Sargento-Freitas, João; Gouveia, Ana; Castelo-Branco, Miguel

    2018-01-01

    Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used a functional magnetic resonance imaging block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction (n = 20, with balanced left/right lesion sites). Results Analysis of 10 right hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right hemispheric stroke. Left hemispheric stroke was, in general, characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts is novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.

  1. Emotion-related hemisphere asymmetry: subjective emotional responses to laterally presented films.

    Science.gov (United States)

    Wittling, W; Roschmann, R

    1993-09-01

    To investigate whether the cerebral hemispheres differ in their subjective emotional responses 54 adult subjects were presented two films of different emotion-related qualities (positive and negative film) either to their left or right hemisphere. The films were exposed by means of a technique for the lateralization of visual input that allows prolonged viewing while permitting free ocular scanning. Subjective emotional responses were assessed by means of a continuous rating of emotional arousal experienced during the movie as well as by retrospective ratings of ten different emotional qualities. Presenting both films to the right hemisphere resulted in stronger subjective responses in the continuous emotion rating as well as in some retrospectively assessed ratings compared to left-hemispheric presentation. The effects were more pronounced for the negative film. Taken together, the findings suggest a higher responsiveness of the right hemisphere in subjective emotional experience.

  2. Handedness results from Complementary Hemispheric Dominance, not Global Hemispheric Dominance: Evidence from Mechanically Coupled Bilateral Movements.

    Science.gov (United States)

    Woytowicz, Elizabeth J; Westlake, Kelly P; Whitall, Jill; Sainburg, Robert L

    2018-05-09

    Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g. bread) with one hand while applying forces to the object (e.g. slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand, while moving the other hand to a target. Thus, the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right hand reach and left hand stabilize; left hand reach and right hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction, such that the right hand showed straighter reaching performance while the left showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks.

  3. Mapping number to space in the two hemispheres of the avian brain.

    Science.gov (United States)

    Rugani, Rosa; Vallortigara, Giorgio; Regolin, Lucia

    2016-09-01

    Pre-verbal infants and non-human animals associate small numbers with the left space and large numbers with the right space. Birds and primates, trained to identify a given position in a sagittal series of identical positions, whenever required to respond on a left/right oriented series, referred the given position starting from the left end. Here, we extended this evidence by selectively investigating the role of either cerebral hemisphere, using the temporary monocular occlusion technique. In birds, lacking the corpus callosum, visual input is fed mainly to the contralateral hemisphere. We trained 4-day-old chicks to identify the 4th element in a sagittal series of 10 identical elements. At test, the series was identical but left/right oriented. Test was conducted in right monocular, left monocular or binocular condition of vision. Right monocular chicks pecked at the 4th right element; left monocular and binocular chicks pecked at the 4th left element. Data on monocular chicks demonstrate that both hemispheres deal with an ordinal (sequential) task. Data on binocular chicks indicate that the left bias is linked to a right hemisphere dominance, that allocates the attention toward the left hemispace. This constitutes a first step towards understanding the neural basis of number space mapping. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Functional MRI assessment of hemispheric language dominance with using a lexical decision task

    International Nuclear Information System (INIS)

    Ryoo, Jae Wook; Choi, Dae Seob; Cho, Jae Min; Park, Eui Dong; You, Jin Jong; Na, Dong Gyu; Kim, Sam Soo; Cha, Sang Hoon

    2005-01-01

    We wanted to compare the fMRIs (functional magnetic resonance images) obtained during a lexical decision task and also during a word generation task, and we wanted to evaluate the usefulness of using a lexical decision task for the visualization of the brain language area and for the determination of language dominance. Sixteen patients (9 women and 7 men) who had had undergone the Wada test were included in our study. All the patients were left dominant for language, as tested for on the Wada test. The functional maps of the brain language area were obtained in all the subjects during the performance of a lexical decision task and also during the performance of a word generation task. The MR examinations were performed with a 1.5 T scanner and with using the EPI BOLD technique. We used the SPM program for the postprocessing of the images. The threshold for significance was set at ρ <0.001 or ρ <0.01. A lateralization index was calculated from the number of activated pixels in each hemispheric region (the whole hemisphere, the frontal lobe and the temporoparietal lobe), and the hemispheric language dominance was assessed by the lateralization index; the results were then compared with those results of the Wada test. The differences for the lateralization of the language area were analyzed with regard to the stimulation tasks and the regions used for the calculation of the lateralization indices. The number of activated pixels during the lexical decision task was significantly smaller than that of the word generation task. The language dominance based on the activated signals in each hemisphere, was consistent with the results of the Wada test for the word generation tasks in all the subjects. On the lexical decision task, the language dominance, as determined by the activated signals in each hemisphere and the temporoparietal lobe, correlated for 94% of the patients. The mean values of the lateralization index for the lexical decision task were higher than those

  5. Functional MRI assessment of hemispheric language dominance with using a lexical decision task

    Energy Technology Data Exchange (ETDEWEB)

    Ryoo, Jae Wook; Choi, Dae Seob; Cho, Jae Min; Park, Eui Dong; You, Jin Jong [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of); Na, Dong Gyu [Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Sam Soo [Kangwon National University College of Medicine, Chuncheon (Korea, Republic of); Cha, Sang Hoon [Chungbuk National University College of Medicine, Cheonju (Korea, Republic of)

    2005-07-15

    We wanted to compare the fMRIs (functional magnetic resonance images) obtained during a lexical decision task and also during a word generation task, and we wanted to evaluate the usefulness of using a lexical decision task for the visualization of the brain language area and for the determination of language dominance. Sixteen patients (9 women and 7 men) who had had undergone the Wada test were included in our study. All the patients were left dominant for language, as tested for on the Wada test. The functional maps of the brain language area were obtained in all the subjects during the performance of a lexical decision task and also during the performance of a word generation task. The MR examinations were performed with a 1.5 T scanner and with using the EPI BOLD technique. We used the SPM program for the postprocessing of the images. The threshold for significance was set at {rho} <0.001 or {rho} <0.01. A lateralization index was calculated from the number of activated pixels in each hemispheric region (the whole hemisphere, the frontal lobe and the temporoparietal lobe), and the hemispheric language dominance was assessed by the lateralization index; the results were then compared with those results of the Wada test. The differences for the lateralization of the language area were analyzed with regard to the stimulation tasks and the regions used for the calculation of the lateralization indices. The number of activated pixels during the lexical decision task was significantly smaller than that of the word generation task. The language dominance based on the activated signals in each hemisphere, was consistent with the results of the Wada test for the word generation tasks in all the subjects. On the lexical decision task, the language dominance, as determined by the activated signals in each hemisphere and the temporoparietal lobe, correlated for 94% of the patients. The mean values of the lateralization index for the lexical decision task were higher than

  6. Determination of hemispheric emotional valence in individual subjects: A new approach with research and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Polcari Ann

    2007-03-01

    Full Text Available Abstract Background Much has been theorized about the emotional properties of the hemispheres. Our review of the dominant hypotheses put forth by Schore, Joseph, Davidson, and Harmon-Jones on hemispheric emotional valences (HEV shows that none are supported by robust data. Instead, we propose that individual's hemispheres are organized to have differing HEVs that can be lateralized in either direction. Methods Probe auditory evoked potentials (AEP recorded during a neutral and an upsetting memory were used to assess HEV in 28 (20 F right-handed subjects who were either victims of childhood maltreatment (N = 12 or healthy controls. In a sub-population, we determined HEV by emotional response to lateral visual field stimulation (LVFS, in which vision is limited to one, then the other hemifield. We compare a number of morphometric and functional brain measures between individuals who have right-negative versus left-negative HEV. Results Using AEPs to determine HEV, we found 62% of controls and 67% of maltreated subjects had right negative HEV. There was a strong interaction between HEV-laterality and gender, which together accounted for 60% of individual variability in total grey matter volume (GMV. HEV-laterality was associated with differences in hippocampal volume, amygdala/hippocampal ratios, and measures of verbal, visual and global memory. HEV-laterality was associated also with different constellations of symptoms comparing maltreated subjects to controls. Emotional response to LVFS provided a convenient and complementary measure of HEV-laterality that correlated significantly with the HEVs determined by AEPs. Conclusion Our findings suggest that HEV-laterality, like handedness or gender, is an important individual difference with significant implications for brain and behavioral research, and for guiding lateralized treatments such as rTMS.

  7. Determination of hemispheric emotional valence in individual subjects: a new approach with research and therapeutic implications.

    Science.gov (United States)

    Schiffer, Fredric; Teicher, Martin H; Anderson, Carl; Tomoda, Akemi; Polcari, Ann; Navalta, Carryl P; Andersen, Susan L

    2007-03-06

    Much has been theorized about the emotional properties of the hemispheres. Our review of the dominant hypotheses put forth by Schore, Joseph, Davidson, and Harmon-Jones on hemispheric emotional valences (HEV) shows that none are supported by robust data. Instead, we propose that individual's hemispheres are organized to have differing HEVs that can be lateralized in either direction. Probe auditory evoked potentials (AEP) recorded during a neutral and an upsetting memory were used to assess HEV in 28 (20 F) right-handed subjects who were either victims of childhood maltreatment (N = 12) or healthy controls. In a sub-population, we determined HEV by emotional response to lateral visual field stimulation (LVFS), in which vision is limited to one, then the other hemifield. We compare a number of morphometric and functional brain measures between individuals who have right-negative versus left-negative HEV. Using AEPs to determine HEV, we found 62% of controls and 67% of maltreated subjects had right negative HEV. There was a strong interaction between HEV-laterality and gender, which together accounted for 60% of individual variability in total grey matter volume (GMV). HEV-laterality was associated with differences in hippocampal volume, amygdala/hippocampal ratios, and measures of verbal, visual and global memory. HEV-laterality was associated also with different constellations of symptoms comparing maltreated subjects to controls. Emotional response to LVFS provided a convenient and complementary measure of HEV-laterality that correlated significantly with the HEVs determined by AEPs. Our findings suggest that HEV-laterality, like handedness or gender, is an important individual difference with significant implications for brain and behavioral research, and for guiding lateralized treatments such as rTMS.

  8. Caloric vestibular stimulation in aphasic syndrome

    Directory of Open Access Journals (Sweden)

    David eWilkinson

    2013-12-01

    Full Text Available Caloric vestibular stimulation (CVS is commonly used to diagnose brainstem disorder but its therapeutic application is much less established. Based on the finding that CVS increases blood flow to brain structures associated with language and communication, we assessed whether the procedure has potential to relieve symptoms of post-stroke aphasia. Three participants, each presenting with chronic, unilateral lesions to the left hemisphere, were administered daily CVS for 4 consecutive weeks. Relative to their pre-treatment baseline scores, two of the three participants showed significant improvement on both picture and responsive naming at immediate and one-week follow-up. One of these participants also showed improved sentence repetition, and another showed improved auditory word discrimination. No adverse reactions were reported. These data provide the first, albeit tentative, evidence that CVS may relieve expressive and receptive symptoms of aphasia. A larger, sham-controlled study is now needed to further assess efficacy.

  9. Language localization in cases of left temporal lobe arachnoid cyst : Evidence against interhemispheric reorganization

    NARCIS (Netherlands)

    Stowe, LA; Go, KG; Pruim, J; den Dunnen, W; Meiners, LC; Paans, AMJ

    2000-01-01

    We investigated whether left-hemisphere arachnoid cysts lead to reorganization of the language function using PET. A group analysis demonstrated that patients showed no more right-hemisphere activation than a matched control group. Several patients had clear language localizations in the left

  10. Non-invasive mapping of bilateral motor speech areas using navigated transcranial magnetic stimulation and functional magnetic resonance imaging.

    Science.gov (United States)

    Könönen, Mervi; Tamsi, Niko; Säisänen, Laura; Kemppainen, Samuli; Määttä, Sara; Julkunen, Petro; Jutila, Leena; Äikiä, Marja; Kälviäinen, Reetta; Niskanen, Eini; Vanninen, Ritva; Karjalainen, Pasi; Mervaala, Esa

    2015-06-15

    Navigated transcranial magnetic stimulation (nTMS) is a modern precise method to activate and study cortical functions noninvasively. We hypothesized that a combination of nTMS and functional magnetic resonance imaging (fMRI) could clarify the localization of functional areas involved with motor control and production of speech. Navigated repetitive TMS (rTMS) with short bursts was used to map speech areas on both hemispheres by inducing speech disruption during number recitation tasks in healthy volunteers. Two experienced video reviewers, blinded to the stimulated area, graded each trial offline according to possible speech disruption. The locations of speech disrupting nTMS trials were overlaid with fMRI activations of word generation task. Speech disruptions were produced on both hemispheres by nTMS, though there were more disruptive stimulation sites on the left hemisphere. Grade of the disruptions varied from subjective sensation to mild objectively recognizable disruption up to total speech arrest. The distribution of locations in which speech disruptions could be elicited varied among individuals. On the left hemisphere the locations of disturbing rTMS bursts with reviewers' verification followed the areas of fMRI activation. Similar pattern was not observed on the right hemisphere. The reviewer-verified speech disruptions induced by nTMS provided clinically relevant information, and fMRI might explain further the function of the cortical area. nTMS and fMRI complement each other, and their combination should be advocated when assessing individual localization of speech network. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Excitability of the motor system: A transcranial magnetic stimulation study on singing and speaking.

    Science.gov (United States)

    Royal, Isabelle; Lidji, Pascale; Théoret, Hugo; Russo, Frank A; Peretz, Isabelle

    2015-08-01

    The perception of movements is associated with increased activity in the human motor cortex, which in turn may underlie our ability to understand actions, as it may be implicated in the recognition, understanding and imitation of actions. Here, we investigated the involvement and lateralization of the primary motor cortex (M1) in the perception of singing and speech. Transcranial magnetic stimulation (TMS) was applied independently for both hemispheres over the mouth representation of the motor cortex in healthy participants while they watched 4-s audiovisual excerpts of singers producing a 2-note ascending interval (singing condition) or 4-s audiovisual excerpts of a person explaining a proverb (speech condition). Subjects were instructed to determine whether a sung interval/written proverb, matched a written interval/proverb. During both tasks, motor evoked potentials (MEPs) were recorded from the contralateral mouth muscle (orbicularis oris) of the stimulated motor cortex compared to a control task. Moreover, to investigate the time course of motor activation, TMS pulses were randomly delivered at 7 different time points (ranging from 500 to 3500 ms after stimulus onset). Results show that stimulation of the right hemisphere had a similar effect on the MEPs for both the singing and speech perception tasks, whereas stimulation of the left hemisphere significantly differed in the speech perception task compared to the singing perception task. Furthermore, analysis of the MEPs in the singing task revealed that they decreased for small musical intervals, but increased for large musical intervals, regardless of which hemisphere was stimulated. Overall, these results suggest a dissociation between the lateralization of M1 activity for speech perception and for singing perception, and that in the latter case its activity can be modulated by musical parameters such as the size of a musical interval. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Hemispheric asymmetry of liking for representational and abstract paintings.

    Science.gov (United States)

    Nadal, Marcos; Schiavi, Susanna; Cattaneo, Zaira

    2017-10-13

    Although the neural correlates of the appreciation of aesthetic qualities have been the target of much research in the past decade, few experiments have explored the hemispheric asymmetries in underlying processes. In this study, we used a divided visual field paradigm to test for hemispheric asymmetries in men and women's preference for abstract and representational artworks. Both male and female participants liked representational paintings more when presented in the right visual field, whereas preference for abstract paintings was unaffected by presentation hemifield. We hypothesize that this result reflects a facilitation of the sort of visual processes relevant to laypeople's liking for art-specifically, local processing of highly informative object features-when artworks are presented in the right visual field, given the left hemisphere's advantage in processing such features.

  13. Hypothalamic digoxin, hemispheric dominance, and neurobiology of love and affection.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-05-01

    The human hypothalamus produces an endogenous membrane Na+-K+ ATPase inhibitor, digoxin, which can regulate neuronal transmission. The digoxin status and neurotransmitter patterns were studied in individuals with a predilection to fall in love. It was also studied in individuals with differing hemispheric dominance to find out the role of cerebral dominance in this respect. In individuals with a predilection to fall in love there was decreased digoxin synthesis, increased membrane Na+-K+ ATPase activity, decreased tryptophan catabolites (serotonin, quinolinic acid, and nicotine), and increased tyrosine catabolites (dopamine, noradrenaline, and morphine). This pattern correlated with that obtained in left hemispheric chemical dominance. Hemispheric dominance and hypothalamic digoxin could regulate the predisposition to fall in love.

  14. Affective imposition influences risky choice: handedness points to the hemispheres.

    Science.gov (United States)

    McElroy, Todd; Corbin, Jonathan

    2010-07-01

    The study of risk preference has become a widely investigated area of research. The current study is designed to investigate the relationship between handedness, hemispheric predominance and valence imposition in a risky-choice decision task. Research into the valence hypothesis (e.g., Ahern & Schwartz, 1985; Davidson, 1984) has shown that the left hemisphere is more active in processing positively valenced stimuli, whereas the right hemisphere is more active in processing negatively valenced stimuli. A total of 520 individuals (343 female, 117 male) participated in a self-imposed framing task and took a degree of handedness questionnaire. The results of the framing task and handedness questionnaire showed that participants' degree of handedness significantly influenced the positive/negative valence they imposed onto the framing task as well as their level of risk preference.

  15. Hemispheric and facial asymmetry: faces of academe.

    Science.gov (United States)

    Smith, W M

    1998-11-01

    Facial asymmetry (facedness) of selected academic faculty members was studied in relation to brain asymmetry and cognitive specialization. Comparisons of facedness were made among humanities faculty (H), faculty members of mathematics and physics (M-P), psychologists (P), and a group of randomly selected individuals (R). Facedness was defined in terms of the relative sizes (in square centimeters) of the two hemifaces. It was predicted that the four groups would show differences in facedness, namely, H, right face bias; M-P, left face bias; P, no bias; and R, no bias. The predictions were confirmed, and the results interpreted in terms of known differences in hemispheric specialization of cognitive functions as they relate to the dominant cognitive activity of each of the different groups. In view of the contralateral control of the two hemifaces (below the eyes) by the two hemispheres of the brain, the two sides of the face undergo differential muscular development, thus creating facial asymmetry. Other factors, such as gender, also may affect facial asymmetry. Suggestions for further research on facedness are discussed.

  16. Optokinetic Stimulation Modulates Neglect for the Number Space: Evidence from Mental Number Interval Bisection

    Science.gov (United States)

    Priftis, Konstantinos; Pitteri, Marco; Meneghello, Francesca; Umiltà, Carlo; Zorzi, Marco

    2012-01-01

    Behavioral, neuropsychological, and neuroimaging data support the idea that numbers are represented along a mental number line (MNL), an analogical, visuospatial representation of number magnitude. The MNL is left-to-right oriented in Western cultures, with small numbers on the left and larger numbers on the right. Left neglect patients are impaired in the mental bisection of numerical intervals, with a bias toward larger numbers that are relatively to the right on the MNL. In the present study we investigated the effects of optokinetic stimulation (OKS) – a technique inducing visuospatial attention shifts by means of activation of the optokinetic nystagmus – on number interval bisection. One patient with left neglect following right-hemisphere stroke (BG) and four control patients with right-hemisphere damage, but without neglect, performed the number interval bisection task in three conditions of OKS: static, leftward, and rightward. In the static condition, BG misbisected to the right of the true midpoint. BG misbisected to the left following leftward OKS, and again to the right of the midpoint following rightward OKS. Moreover, the variability of BG’s performance was smaller following both leftward and rightward OKS, suggesting that the attentional bias induced by OKS reduced the “indifference zone” that is thought to underlie the length effect reported in bisection tasks. We argue that shifts of visuospatial attention, induced by OKS, may affect number interval bisection, thereby revealing an interaction between the processing of the perceptual space and the processing of the number space. PMID:22363280

  17. Metabolic changes of cerebrum by repetitive transcranial magnetic stimulation over lateral cerebellum: a study with FDG PET.

    Science.gov (United States)

    Cho, Sang Soo; Yoon, Eun Jin; Bang, Sung Ae; Park, Hyun Soo; Kim, Yu Kyeong; Strafella, Antonio P; Kim, Sang Eun

    2012-09-01

    To better understand the functional role of cerebellum within the large-scale cerebellocerebral neural network, we investigated the changes of neuronal activity elicited by cerebellar repetitive transcranial magnetic stimulation (rTMS) using (18)F-fluorodeoxyglucose (FDG) and positron emission tomography (PET). Twelve right-handed healthy volunteers were studied with brain FDG PET under two conditions: active rTMS of 1 Hz frequency over the left lateral cerebellum and sham stimulation. Compared to the sham condition, active rTMS induced decreased glucose metabolism in the stimulated left lateral cerebellum, the areas known to be involved in voluntary motor movement (supplementary motor area and posterior parietal cortex) in the right cerebral hemisphere, and the areas known to be involved in cognition and emotion (orbitofrontal, medial frontal, and anterior cingulate gyri) in the left cerebral hemisphere. Increased metabolism was found in cognition- and language-related brain regions such as the left inferior frontal gyrus including Broca's area, bilateral superior temporal gyri including Wernicke's area, and bilateral middle temporal gyri. Left cerebellar rTMS also led to increased metabolism in the left cerebellar dentate nucleus and pons. These results demonstrate that rTMS over the left lateral cerebellum modulates not only the target region excitability but also excitability of remote, but interconnected, motor-, language-, cognition-, and emotion-related cerebral regions. They provide further evidence that the cerebellum is involved not only in motor-related functions but also in higher cognitive abilities and emotion through the large-scale cerebellocereberal neural network.

  18. Western Hemisphere Knowledge Partnerships

    Science.gov (United States)

    Malone, T. F.

    2001-05-01

    , and application of knowledge concerning the nature of -- and interaction among -- matter, living organisms, energy, information, and human behavior. This strategy calls for innovative partnerships among the physical, biological, health, and social sciences, engineering, and the humanities. New kinds of partnership must also be forged among academia, business and industry, governments, and nongovernmental organizations. Geophysicists can play an important role in these partnerships. A focus for these partnerships is to manage the individual economic productivity that drives both human development and global change. As world population approaches stability during the twenty-first century, individual economic productivity will be the critical link between the human and the natural systems on planet Earth. AGU is among a core group of individuals and institutions proposing Western Hemisphere Knowledge Partnerships (WHKP) to test the hypothesis that knowledge, broadly construed, is an important organizing principle in choosing a path into the future. The WHKP agenda includes: (1) life-long learning, (2) the health and resilience of natural ecosystems, (3) eco-efficiency in economic production and consumption, (4) extension of national income accounts, (5) environmentally benign sources of energy, (6) delivery of health care, (7) intellectual property rights, and (8) networks for action by local communities.Collaboratories and distance education technologies will be major tools. A panel of experts will explore this proposal.

  19. Intra-hemispheric intrinsic connectivity asymmetry and its relationships with handedness and language Lateralization.

    Science.gov (United States)

    Joliot, M; Tzourio-Mazoyer, N; Mazoyer, B

    2016-12-01

    Asymmetry in intra-hemispheric intrinsic connectivity, and its association with handedness and hemispheric dominance for language, were investigated in a sample of 290 healthy volunteers enriched in left-handers (52.7%). From the resting-state FMRI data of each participant, we derived an intra-hemispheric intrinsic connectivity asymmetry (HICA) matrix as the difference between the left and right intra-hemispheric matrices of intrinsic correlation computed for each pair of the AICHA atlas ROIs. We defined a similarity measure between the HICA matrices of two individuals as the correlation coefficient of their corresponding elements, and computed for each individual an index of intra-hemispheric intrinsic connectivity asymmetry as the average similarity measure of his HICA matrix to those of the other subjects of the sample (HICAs). Gaussian-mixture modeling of the age-corrected HICAs sample distribution revealed that two types of HICA patterns were present, one (Typical_HICA) including 92.4% of the participants while the other (Atypical_HICA) included only 7.6% of them, mostly left-handers. In addition, we investigated the relationship between asymmetry in intra-hemispheric intrinsic connectivity and language hemispheric dominance, including a potential effect of handedness on this relationship, thanks to an FMRI acquisition during language production from which an hemispheric functional lateralization index for language (HFLI) and a type of hemispheric dominance for language, namely leftward, ambilateral, or rightward, were derived for each individual. There was a significant association between the types of language hemispheric dominance and of intra-hemispheric intrinsic connectivity asymmetry, occurrence of Atypical_HICAs individuals being very high in the group of individuals rightward-lateralized for language (80%), reduced in the ambilateral group (19%) and rare in individuals leftward-lateralized for language (less than 3%). Quantitatively, we found a

  20. Hypothalamic digoxin and hemispheric chemical dominance in relation to the pathogenesis of bronchial asthma.

    Science.gov (United States)

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2003-08-01

    The isoprenoid pathway produces three key metabolites--digoxin (membrane sodium-potassium ATPase inhibitor and regulator of neurotransmitter transport), dolichol (regulator of N-glycosylation of proteins), and ubiquinone (free radical scavenger). The isoprenoid pathway was assessed in patients with bronchial asthma. The pathway was also assessed in patients with right hemispheric, left hemispheric, and bihemispheric dominance to find out the role of hemispheric dominance in the pathogenesis of bronchial asthma. The pathway was upregulated with increase in digoxin synthesis in bronchial asthma. There was an increase in tryptophan catabolites and a reduction in tyrosine catabolites in patients with bronchial asthma. The ubiquinone levels were low and lipid peroxidation increased in these patients. There was increase in dolichol and glycoconjugate levels and reduction in lysosomal stability in these patients. The cholesterol:phospholipid ratio was increased and glycoconjugate levels were reduced in the membranes of these patients. The patterns noticed in bronchial asthma were similar to those in patients with right hemispheric chemical dominance. Bronchial asthma occurs in right hemispheric chemically dominant individuals. Ninety percent of the patients with bronchial asthma were right-handed and left hemispheric dominant by the dichotic listening test. But their biochemical patterns were similar to those obtained in right hemispheric chemical dominance. Hemispheric chemical dominance is a different entity and has no correlation with handedness or the dichotic listening test.

  1. [Sex differences in relationship between creativity and hemispheric information processing in global and local levels].

    Science.gov (United States)

    Razumnikova, O M; Vol'f, N V

    2012-01-01

    Sex differences in creativity related global-local hemispheric selective processing were examined by hierarchical letter presenting in conditions of their perception and comparison. Fifty-six right-handed males and 68 females (aged 17-22 years) participated in the experiments. Originality-imagery was assessed by a computer-based Torrance 'Incomplete Figures' test software. Verbal creativity was valued by original sentence using of three nouns from remote semantic categories. The results show that irrespectively of the sex factor and the type of creative thinking, its originality is provided by high speed of right-hemispheric processes of information selection on the global level and delay in the interhemispheric communication. Relationships between originality of ideas and hemispheric attentional characteristics are presented mostly in men while verbal creative problem solving, and in women while figurative original thinking. Originality of verbal activity in men is more associated with success of selective processes in the left hemisphere, but in women--with selective functions of both hemispheres. Figurative thinking in men is less related to hemispheric characteristics of attention compared with women. Increase of figurative originality in women is accompanied acceleration of processes of selection of the information in the right hemisphere, and also higher efficiency of local attention as well as speeds ofglobal processing in the left hemisphere.

  2. The right planum temporale is involved in stimulus-driven, auditory attention--evidence from transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Marco Hirnstein

    Full Text Available It is well known that the planum temporale (PT area in the posterior temporal lobe carries out spectro-temporal analysis of auditory stimuli, which is crucial for speech, for example. There are suggestions that the PT is also involved in auditory attention, specifically in the discrimination and selection of stimuli from the left and right ear. However, direct evidence is missing so far. To examine the role of the PT in auditory attention we asked fourteen participants to complete the Bergen Dichotic Listening Test. In this test two different consonant-vowel syllables (e.g., "ba" and "da" are presented simultaneously, one to each ear, and participants are asked to verbally report the syllable they heard best or most clearly. Thus attentional selection of a syllable is stimulus-driven. Each participant completed the test three times: after their left and right PT (located with anatomical brain scans had been stimulated with repetitive transcranial magnetic stimulation (rTMS, which transiently interferes with normal brain functioning in the stimulated sites, and after sham stimulation, where participants were led to believe they had been stimulated but no rTMS was applied (control. After sham stimulation the typical right ear advantage emerged, that is, participants reported relatively more right than left ear syllables, reflecting a left-hemispheric dominance for language. rTMS over the right but not left PT significantly reduced the right ear advantage. This was the result of participants reporting more left and fewer right ear syllables after right PT stimulation, suggesting there was a leftward shift in stimulus selection. Taken together, our findings point to a new function of the PT in addition to auditory perception: particularly the right PT is involved in stimulus selection and (stimulus-driven, auditory attention.

  3. Functional magnetic resonance imaging to determine hemispheric language dominance prior to carotid endarterectomy.

    Science.gov (United States)

    Smits, M; Wieberdink, R G; Bakker, S L M; Dippel, D W J

    2011-04-01

    We describe a left-handed patient with transient aphasia and bilateral carotid stenosis. Computed tomography (CT) arteriography showed a 90% stenosis of the right and 30% stenosis of the left internal carotid artery. Head CT and magnetic resonance imaging (MRI) of the brain showed no recent ischemic changes. As only the symptomatic side would require surgical intervention, and because hemispheric dominance for language in left-handed patients may be either left or right sided, a preoperative assessment of hemispheric dominance was required. We used functional MRI to determine hemispheric dominance for language and hence to establish the indication for carotid endarterectomy surgery. Functional MRI demonstrated right hemispheric dominance for language and right-sided carotid endarterectomy was performed. We propose that the clinical use of functional MRI as a noninvasive imaging technique for the assessment of hemispheric language dominance may be extended to the assessment of hemispheric language dominance prior to carotid endarterectomy. Copyright © 2010 by the American Society of Neuroimaging.

  4. Temporal processing asymmetries between the cerebral hemispheres: evidence and implications.

    Science.gov (United States)

    Nicholls, M E

    1996-07-01

    This paper reviews a large body of research which has investigated the capacities of the cerebral hemispheres to process temporal information. This research includes clinical, non-clinical, and electrophysiological experimentation. On the whole, the research supports the notion of a left hemisphere advantage for temporal resolution. The existence of such an asymmetry demonstrates that cerebral lateralisation is not limited to the higher-order functions such as language. The capacity for the resolution of fine temporal events appears to play an important role in other left hemisphere functions which require a rapid sequential processor. The functions that are facilitated by such a processor include verbal, textual, and fine movement skills. The co-development of these functions with an efficient temporal processor can be accounted for with reference to a number of evolutionary scenarios. Physiological evidence favours a temporal processing mechanism located within the left temporal cortex. The function of this mechanism may be described in terms of intermittency or travelling moment models of temporal processing. The travelling moment model provides the most plausible account of the asymmetry.

  5. Transcranial Electrical Stimulation over Dorsolateral Prefrontal Cortex Modulates Processing of Social Cognitive and Affective Information.

    Directory of Open Access Journals (Sweden)

    Massimiliano Conson

    Full Text Available Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS over dorsolateral prefrontal cortex (DLPFC. To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task, and on one cognitive task assessing the ability to adopt another person's visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants' tendency to adopt another's point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males' responses to threatening faces whereas it interferes with the ability to adopt another's viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing.

  6. Hemispheric Asymmetries Depend on the Phonetic Feature: A Dichotic Study of Place of Articulation and Voicing in French Stops

    Science.gov (United States)

    Bedoin, Nathalie; Ferragne, Emmanuel; Marsico, Egidio

    2010-01-01

    Dichotic listening experiments show a right-ear advantage (REA), reflecting a left-hemisphere (LH) dominance. However, we found a decrease in REA when the initial stop consonants of two simultaneous French CVC words differed in voicing rather than place of articulation (Experiment 1). This result suggests that the right hemisphere (RH) is more…

  7. Bimanual tapping of a syncopated rhythm reveals hemispheric preferences for relative movement frequencies.

    Science.gov (United States)

    Pflug, Anja; Gompf, Florian; Kell, Christian Alexander

    2017-08-01

    In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Hemispheric metacontrol and cerebral dominance in healthy individuals investigated by means of chimeric faces.

    Science.gov (United States)

    Urgesi, Cosimo; Bricolo, Emanuela; Aglioti, Salvatore M

    2005-08-01

    Cerebral dominance and hemispheric metacontrol were investigated by testing the ability of healthy participants to match chimeric, entire, or half faces presented tachistoscopically. The two hemi-faces compounding chimeric or entire stimuli were presented simultaneously or asynchronously at different exposure times. Participants did not consciously detect chimeric faces for simultaneous presentations lasting up to 40 ms. Interestingly, a 20 ms separation between each half-chimera was sufficient to induce detection of conflicts at a conscious level. Although the presence of chimeric faces was not consciously perceived, performance on chimeric faces was poorer than on entire- and half-faces stimuli, thus indicating an implicit processing of perceptual conflicts. Moreover, the precedence of hemispheric stimulation over-ruled the right hemisphere dominance for face processing, insofar as the hemisphere stimulated last appeared to influence the response. This dynamic reversal of cerebral dominance, however, was not caused by a shift in hemispheric specialization, since the level of performance always reflected the right hemisphere specialization for face recognition. Thus, the dissociation between hemispheric dominance and specialization found in the present study hints at the existence of hemispheric metacontrol in healthy individuals.

  9. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Sophia Karok

    Full Text Available OBJECTIVE: Transcranial direct current stimulation (tDCS of the primary motor cortex (M1 has beneficial effects on motor performance and motor learning in healthy subjects and is emerging as a promising tool for motor neurorehabilitation. Applying tDCS concurrently with a motor task has recently been found to be more effective than applying stimulation before the motor task. This study extends this finding to examine whether such task-concurrent stimulation further enhances motor learning on a dual M1 montage. METHOD: Twenty healthy, right-handed subjects received anodal tDCS to the right M1, dual tDCS (anodal current over right M1 and cathodal over left M1 and sham tDCS in a repeated-measures design. Stimulation was applied for 10 mins at 1.5 mA during an explicit motor learning task. Response times (RT and accuracy were measured at baseline, during, directly after and 15 mins after stimulation. Motor cortical excitability was recorded from both hemispheres before and after stimulation using single-pulse transcranial magnetic stimulation. RESULTS: Task-concurrent stimulation with a dual M1 montage significantly reduced RTs by 23% as early as with the onset of stimulation (p<0.01 with this effect increasing to 30% at the final measurement. Polarity-specific changes in cortical excitability were observed with MEPs significantly reduced by 12% in the left M1 and increased by 69% in the right M1. CONCLUSION: Performance improvement occurred earliest in the dual M1 condition with a stable and lasting effect. Unilateral anodal stimulation resulted only in trendwise improvement when compared to sham. Therefore, task-concurrent dual M1 stimulation is most suited for obtaining the desired neuromodulatory effects of tDCS in explicit motor learning.

  10. Improvement of language functions in a chronic non-fluent post-stroke aphasic patient following bilateral sequential theta burst magnetic stimulation.

    Science.gov (United States)

    Vuksanović, Jasmina; Jelić, Milan B; Milanović, Sladjan D; Kačar, Katarina; Konstantinović, Ljubica; Filipović, Saša R

    2015-01-01

    In chronic non-fluent aphasia patients, inhibition of the intact right hemisphere (RH), by transcranial magnetic stimulation (TMS) or similar methods, can induce improvement in language functions. The supposed mechanism behind this improvement is a release of preserved left hemisphere (LH) language networks from RH transcallosal inhibition. Direct stimulation of the damaged LH can sometimes bring similar results too. Therefore, we developed a novel treatment approach that combined direct LH (Broca's area (BA)) stimulation, by intermittent theta burst stimulation (TBS), with homologue RH area's inhibition, by continuous TBS. We present the results of application of 15 daily sessions of the described treatment approach in a right-handed patient with chronic post-stroke non-fluent aphasia. The intervention appeared to improve several language functions, but most notably propositional speech, semantic fluency, short-term verbal memory, and verbal learning. Bilateral TBS modulation of activation of the language-related areas of both hemispheres seems to be a feasible and promising way to induce recovery in chronic aphasic patients. Due to potentially cumulative physiological effects of bilateral stimulation, the improvements may be even greater than following unilateral interventions.

  11. A Study on Analysis of EEG Caused by Grating Stimulation Imaging

    Science.gov (United States)

    Urakawa, Hiroshi; Nishimura, Toshihiro; Tsubai, Masayoshi; Itoh, Kenji

    Recently, many researchers have studied a visual perception. Focus is attended to studies of the visual perception phenomenon by using the grating stimulation images. The previous researches have suggested that a subset of retinal ganglion cells responds to motion in the receptive field center, but only if the wider surround moves with a different trajectory. We discuss the function of human retina, and measure and analysis EEG(electroencephalography) of a normal subject who looks on grating stimulation images. We confirmed the visual perception of human by EEG signal analysis. We also have obtained that a sinusoidal grating stimulation was given, asymmetry was observed the α wave element in EEG of the symmetric part in a left hemisphere and a right hemisphere of the brain. Therefore, it is presumed that projected image is even when the still picture is seen and the image projected onto retinas of right and left eyes is not even for the dynamic scene. It evaluated it by taking the envelope curve for the detected α wave, and using the average and standard deviation.

  12. Sustained Spatial Attention to Vibrotactile Stimulation in the Flutter Range: Relevant Brain Regions and Their Interaction

    Science.gov (United States)

    Goltz, Dominique; Pleger, Burkhard; Thiel, Sabrina; Villringer, Arno; Müller, Matthias M.

    2013-01-01

    The present functional magnetic resonance imaging (fMRI) study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter) concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD) attentional modulation in primary somatosensory cortex (SI), mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII), contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant) hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition). In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range of flutter

  13. Crossed Aphasia in a Patient with Anaplastic Astrocytoma of the Non-Dominant Hemisphere.

    Science.gov (United States)

    Prater, Stephanie; Anand, Neil; Wei, Lawrence; Horner, Neil

    2017-09-01

    Aphasia describes a spectrum of speech impairments due to damage in the language centers of the brain. Insult to the inferior frontal gyrus of the dominant cerebral hemisphere results in Broca's aphasia - the inability to produce fluent speech. The left cerebral hemisphere has historically been considered the dominant side, a characteristic long presumed to be related to a person's "handedness". However, recent studies utilizing fMRI have shown that right hemispheric dominance occurs more frequently than previously proposed and despite a person's handedness. Here we present a case of a right-handed patient with Broca's aphasia caused by a right-sided brain tumor. This is significant not only because the occurrence of aphasia in right-handed-individuals with right hemispheric brain damage (so-called "crossed aphasia") is unusual but also because such findings support dissociation between hemispheric linguistic dominance and handedness.

  14. Hemispherical dominance of glucose metabolic rate in the brain of the 'normal' ageing population

    International Nuclear Information System (INIS)

    Cutts, D.A.; Spyrou, N.M.

    2004-01-01

    In the 'normal' ageing brain a decrease in the cerebral metabolic rate has been determined across many brain regions. It is determined whether age differences would affect metabolic rates in regions and different hemispheres of the brain. The regional metabolic rate of glucose (rCMRGlu) was examined in a group of 72 subjects, ages 22 to 82 years, with 36 regions of interest chosen from both hemispheres of the cortex, midbrain and cerebellum. To determine metabolic rates the in-vivo technique of positron emission tomography (PET) was employed. Three age groups were chosen to compare hemispherical differences. In both young and intermediate age groups the left hemisphere had higher rCMRGlu values than those of the right for the majority of regions with, although less pronounced in the intermediate group. Importantly, the older age group displayed little difference between hemispheres. (author)

  15. EEG-fMRI Study of Alpha-Stimulation Neurobiofeedback Training Course.

    Science.gov (United States)

    Kozlova, L I; Shtark, M B; Mel'nikov, M E; Verevkin, E G; Savelov, A A; Petrovskii, E D

    2016-09-01

    fMRI-EEG dynamics of brain activity in volunteers was studied during the course of EEG alpha-stimulation training (20 sessions). Twenty-three healthy men (20-35 years) were subjected to 3-fold mapping in a feedback loop (EEG alpha-rhythm biofeedback with acoustic reinforcement). This procedure was performed at the beginning, middle, and end of the course. During the first neurofeedback training session, deactivation (pBrodmann area 39, and cerebellum. Activation (pareas of both hemispheres, and Brodmann area 32. During final (third) neurofeedback training session, we observed strong deactivation (pBrodmann areas 6, 9, 7, 31, 8, 13, and 22). Changes in the alpha wave power were most pronounced in the primary and secondary somatosensory cortex of the left hemisphere (Brodmann areas 2L and 5L).

  16. Common hemisphericity of language and music in a musician. A case report.

    Science.gov (United States)

    Hofman, S; Klein, C; Arlazoroff, A

    1993-06-01

    Aphasia coupled with amusia is reported in a 73-year-old male musician who was a lawyer by profession. This condition followed an ischemic stroke in the lateral aspect of the parieto-occipital region of the left hemisphere. The patient's music production exhibits jargon amusia, similar to that in his verbal production. This case supports the thesis that language and music may share a common hemisphere.

  17. Hemisphere partition function and monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Erkinger, David; Knapp, Johanna [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)

    2017-05-29

    We discuss D-brane monodromies from the point of view of the gauged linear sigma model. We give a prescription on how to extract monodromy matrices directly from the hemisphere partition function. We illustrate this procedure by recomputing the monodromy matrices associated to one-parameter Calabi-Yau hypersurfaces in weighted projected space.

  18. Fine-coarse semantic processing in schizophrenia: a reversed pattern of hemispheric dominance.

    Science.gov (United States)

    Zeev-Wolf, Maor; Goldstein, Abraham; Levkovitz, Yechiel; Faust, Miriam

    2014-04-01

    Left lateralization for language processing is a feature of neurotypical brains. In individuals with schizophrenia, lack of left lateralization is associated with the language impairments manifested in this population. Beeman׳s fine-coarse semantic coding model asserts left hemisphere specialization in fine (i.e., conventionalized) semantic coding and right hemisphere specialization in coarse (i.e., non-conventionalized) semantic coding. Applying this model to schizophrenia would suggest that language impairments in this population are a result of greater reliance on coarse semantic coding. We investigated this hypothesis and examined whether a reversed pattern of hemispheric involvement in fine-coarse semantic coding along the time course of activation could be detected in individuals with schizophrenia. Seventeen individuals with schizophrenia and 30 neurotypical participants were presented with two word expressions of four types: literal, conventional metaphoric, unrelated (exemplars of fine semantic coding) and novel metaphoric (an exemplar of coarse semantic coding). Expressions were separated by either a short (250 ms) or long (750 ms) delay. Findings indicate that whereas during novel metaphor processing, controls displayed a left hemisphere advantage at 250 ms delay and right hemisphere advantage at 750 ms, individuals with schizophrenia displayed the opposite. For conventional metaphoric and unrelated expressions, controls showed left hemisphere advantage across times, while individuals with schizophrenia showed a right hemisphere advantage. Furthermore, whereas individuals with schizophrenia were less accurate than control at judging literal, conventional metaphoric and unrelated expressions they were more accurate when judging novel metaphors. Results suggest that individuals with schizophrenia display a reversed pattern of lateralization for semantic coding which causes them to rely more heavily on coarse semantic coding. Thus, for individuals with

  19. No effects of transcranial DLPFC stimulation on implicit task sequence learning and consolidation.

    Science.gov (United States)

    Savic, Branislav; Cazzoli, Dario; Müri, René; Meier, Beat

    2017-08-29

    Neurostimulation of the dorsolateral prefrontal cortex (DLPFC) can modulate performance in cognitive tasks. In a recent study, however, transcranial direct current stimulation (tDCS) of the DLPFC did not affect implicit task sequence learning and consolidation in a paradigm that involved bimanual responses. Because bimanual performance increases the coupling between homologous cortical areas of the hemispheres and left and right DLPFC were stimulated separately the null findings may have been due to the bimanual setup. The aim of the present study was to test the effect of neuro-stimulation on sequence learning in a uni-manual setup. For this purpose two experiments were conducted. In Experiment 1, the DLPFC was stimulated with tDCS. In Experiment 2 the DLPFC was stimulated with transcranial magnetic stimulation (TMS). In both experiments, consolidation was measured 24 hours later. The results showed that sequence learning was present in all conditions and sessions, but it was not influenced by stimulation. Likewise, consolidation of sequence learning was robust across sessions, but it was not influenced by stimulation. These results replicate and extend previous findings. They indicate that established tDCS and TMS protocols on the DLPFC do not influence implicit task sequence learning and consolidation.

  20. Anosognosia for hemiparesis after left-sided stroke.

    Science.gov (United States)

    Baier, Bernhard; Vucurevic, Goran; Müller-Forell, Wibke; Glassl, Oliver; Geber, Christian; Dieterich, Marianne; Karnath, Hans-Otto

    2014-12-01

    In patients with left-sided lesions, anosognosia for hemiparesis (AHP) seems to be a rare phenomenon. It has been discussed whether this rareness might be due to an inevitable bias due to language dysfunction and whether the left hemisphere's role for our self-awareness of motor actions thus is underestimated. By applying functional magnetic resonance imaging (fMRI) we examined whether patients with AHP following a left hemisphere stroke show a regular, left-sided or a reversed, right-sided lateralization of language functions. Only the former observation would argue for an original role of the left hemisphere in self-awareness about limb function. In a consecutive series of 44 acute left-sided stroke patients, only one patient (=2%) was identified showing AHP. In this case, we could verify by using fMRI that lateralization of AHP and spatial neglect on the one hand and of language functions on the other hand were reversed. The present single case observation thus argues against an original role of the left hemisphere in self-awareness about limb function. We discuss the data in the context of previous observations in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    Science.gov (United States)

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  2. Gender and rapid alterations of hemispheric dominance during planning.

    Science.gov (United States)

    Schuepbach, Daniel; Skotchko, Tatjana; Duschek, Stefan; Theodoridou, Anastasia; Grimm, Simone; Boeker, Heinz; Seifritz, Erich

    2012-01-01

    Mental planning and carrying out a plan provoke specific cerebral hemodynamic responses. Gender aspects of hemispheric laterality using rapid cerebral hemodynamics have not been reported. Here, we applied functional transcranial Doppler sonography to examine lateralization of cerebral hemodynamics of the middle cerebral arteries of 28 subjects (14 women and 14 men) performing a standard planning task. There were easy and difficult problems, and mental planning without motor activity was separated from movement execution. Difficult mental planning elicited lateralization to the right hemisphere after 2 or more seconds, a feature that was not observed during movement execution. In females, there was a dominance to the left hemisphere during movement execution. Optimized problem solving yielded an increased laterality change to the right during mental planning. Gender-related hemispheric dominance appears to be condition-dependent, and change of laterality to the right may play a role in optimized performance. Results are of relevance when considering laterality from a perspective of performance enhancement of higher cognitive functions, and also of psychiatric disorders with cognitive dysfunctions and abnormal lateralization patterns such as schizophrenia. Copyright © 2012 S. Karger AG, Basel.

  3. Learning-related brain hemispheric dominance in sleeping songbirds.

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M H; van de Kamp, Ferdinand C; Zandbergen, Matthijs A; Bolhuis, Johan J

    2015-03-12

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops as language proficiency increases. Sleep is important for the formation of long-term memory, in humans as well as in other animals, including songbirds. Here, we measured neuronal activation (as the expression pattern of the immediate early gene ZENK) during sleep in juvenile zebra finch males that were still learning their songs from a tutor. We found that during sleep, there was learning-dependent lateralisation of spontaneous neuronal activation in the caudomedial nidopallium (NCM), a secondary auditory brain region that is involved in tutor song memory, while there was right hemisphere dominance of neuronal activation in HVC (used as a proper name), a premotor nucleus that is involved in song production and sensorimotor learning. Specifically, in the NCM, birds that imitated their tutors well were left dominant, while poor imitators were right dominant, similar to language-proficiency related lateralisation in humans. Given the avian-human parallels, lateralised neural activation during sleep may also be important for speech and language acquisition in human infants.

  4. Learning-related brain hemispheric dominance in sleeping songbirds

    Science.gov (United States)

    Moorman, Sanne; Gobes, Sharon M. H.; van de Kamp, Ferdinand C.; Zandbergen, Matthijs A.; Bolhuis, Johan J.

    2015-01-01

    There are striking behavioural and neural parallels between the acquisition of speech in humans and song learning in songbirds. In humans, language-related brain activation is mostly lateralised to the left hemisphere. During language acquisition in humans, brain hemispheric lateralisation develops as language proficiency increases. Sleep is important for the formation of long-term memory, in humans as well as in other animals, including songbirds. Here, we measured neuronal activation (as the expression pattern of the immediate early gene ZENK) during sleep in juvenile zebra finch males that were still learning their songs from a tutor. We found that during sleep, there was learning-dependent lateralisation of spontaneous neuronal activation in the caudomedial nidopallium (NCM), a secondary auditory brain region that is involved in tutor song memory, while there was right hemisphere dominance of neuronal activation in HVC (used as a proper name), a premotor nucleus that is involved in song production and sensorimotor learning. Specifically, in the NCM, birds that imitated their tutors well were left dominant, while poor imitators were right dominant, similar to language-proficiency related lateralisation in humans. Given the avian-human parallels, lateralised neural activation during sleep may also be important for speech and language acquisition in human infants. PMID:25761654

  5. Differential effects of motor cortical excitability and plasticity in young and old individuals: a Transcranial Magnetic Stimulation (TMS study

    Directory of Open Access Journals (Sweden)

    Shahid eBashir

    2014-06-01

    Full Text Available Aging is associated with changes in the motor system that, over time, can lead to functional impairments and contribute negatively to the ability to recover after brain damage. Unfortunately, there are still many questions surrounding the physiological mechanisms underlying these impairments. We examined cortico-spinal excitability and plasticity in a young cohort (age range: 19-31 and an elderly cohort (age range: 47-73 of healthy right-handed individuals using navigated transcranial magnetic stimulation (nTMS. Subjects were evaluated with a combination of physiological (motor evoked potentials (MEPs, motor threshold (MT, intracortical inhibition (ICI, intracortical facilitation (ICF, and silent period (SP and behavioral (reaction time (RT, pinch force, 9 hole peg task (HPT measures at baseline and following one session of low-frequency (1 Hz navigated repetitive TMS (rTMS to the right (non-dominant hemisphere.In the young cohort, the inhibitory effect of 1 Hz rTMS was significantly in the right hemisphere and a significant facilitatory effect was noted in the unstimulated hemisphere. Conversely, in the elderly cohort, we report only a trend toward a facilitatory effect in the unstimulated hemisphere, suggesting reduced cortical plasticity and interhemispheric commuinication. To this effect, we show that significant differences in hemispheric cortico-spinal excitability were present in the elderly cohort at baseline, with significantly reduced cortico-spinal excitability in the right hemisphere as compared to the left hemisphere. A correlation analysis revealed no significant relationship between cortical thickness of the selected region of interest and MEPs in either young or old subjects prior to and following rTMS. When combined with our preliminary results, further research into this topic could lead to the development of neurophysiological markers pertinent to the diagnosis, prognosis, and treatment of neurological

  6. Hemispheric Laterality in Music and Math

    Science.gov (United States)

    Szirony, Gary Michael; Burgin, John S.; Pearson, L. Carolyn

    2008-01-01

    Hemispheric laterality may be a useful concept in teaching, learning, training, and in understanding more about human development. To address this issue, a measure of hemispheric laterality was compared to musical and mathematical ability. The Human Information Processing Survey (HIPS) instrument, designed to measure hemispheric laterality, was…

  7. Hemispheric association and dissociation of voice and speech information processing in stroke.

    Science.gov (United States)

    Jones, Anna B; Farrall, Andrew J; Belin, Pascal; Pernet, Cyril R

    2015-10-01

    As we listen to someone speaking, we extract both linguistic and non-linguistic information. Knowing how these two sets of information are processed in the brain is fundamental for the general understanding of social communication, speech recognition and therapy of language impairments. We investigated the pattern of performances in phoneme versus gender categorization in left and right hemisphere stroke patients, and found an anatomo-functional dissociation in the right frontal cortex, establishing a new syndrome in voice discrimination abilities. In addition, phoneme and gender performances were most often associated than dissociated in the left hemisphere patients, suggesting a common neural underpinnings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Right-hemispheric processing of non-linguistic word features: implications for mapping language recovery after stroke.

    Science.gov (United States)

    Baumgaertner, Annette; Hartwigsen, Gesa; Roman Siebner, Hartwig

    2013-06-01

    Verbal stimuli often induce right-hemispheric activation in patients with aphasia after left-hemispheric stroke. This right-hemispheric activation is commonly attributed to functional reorganization within the language system. Yet previous evidence suggests that functional activation in right-hemispheric homologues of classic left-hemispheric language areas may partly be due to processing nonlinguistic perceptual features of verbal stimuli. We used functional MRI (fMRI) to clarify the role of the right hemisphere in the perception of nonlinguistic word features in healthy individuals. Participants made perceptual, semantic, or phonological decisions on the same set of auditorily and visually presented word stimuli. Perceptual decisions required judgements about stimulus-inherent changes in font size (visual modality) or fundamental frequency contour (auditory modality). The semantic judgement required subjects to decide whether a stimulus is natural or man-made; the phonologic decision required a decision on whether a stimulus contains two or three syllables. Compared to phonologic or semantic decision, nonlinguistic perceptual decisions resulted in a stronger right-hemispheric activation. Specifically, the right inferior frontal gyrus (IFG), an area previously suggested to support language recovery after left-hemispheric stroke, displayed modality-independent activation during perceptual processing of word stimuli. Our findings indicate that activation of the right hemisphere during language tasks may, in some instances, be driven by a "nonlinguistic perceptual processing" mode that focuses on nonlinguistic word features. This raises the possibility that stronger activation of right inferior frontal areas during language tasks in aphasic patients with left-hemispheric stroke may at least partially reflect increased attentional focus on nonlinguistic perceptual aspects of language. Copyright © 2012 Wiley Periodicals, Inc.

  9. Cross-hemispheric dopamine projections have functional significance

    Science.gov (United States)

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  10. Mapping hemispheric symmetries, relative asymmetries, and absolute asymmetries underlying the auditory laterality effect.

    Science.gov (United States)

    Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth

    2014-01-01

    Functional hemispheric differences for speech and language processing have been traditionally studied by using verbal dichotic-listening paradigms. The commonly observed right-ear preference for the report of dichotically presented syllables is taken to reflect the left hemispheric dominance for speech processing. However, the results of recent functional imaging studies also show that both hemispheres - not only the left - are engaged by dichotic listening, suggesting a more complex relationship between behavioral laterality and functional hemispheric activation asymmetries. In order to more closely examine the hemispheric differences underlying dichotic-listening performance, we report an analysis of functional magnetic resonance imaging (fMRI) data of 104 right-handed subjects, for the first time combining an interhemispheric difference and conjunction analysis. This approach allowed for a distinction of homotopic brain regions which showed symmetrical (i.e., brain region significantly activated in both hemispheres and no activation difference between the hemispheres), relative asymmetrical (i.e., activated in both hemispheres but significantly stronger in one than the other hemisphere), and absolute asymmetrical activation patterns (i.e., activated only in one hemisphere and this activation is significantly stronger than in the other hemisphere). Symmetrical activation was found in large clusters encompassing temporal, parietal, inferior frontal, and medial superior frontal regions. Relative and absolute left-ward asymmetries were found in the posterior superior temporal gyrus, located adjacent to symmetrically activated areas, and creating a lateral-medial gradient from symmetrical towards absolute asymmetrical activation within the peri-Sylvian region. Absolute leftward asymmetry was also found in the post-central and medial superior frontal gyri, while rightward asymmetries were found in middle temporal and middle frontal gyri. We conclude that dichotic

  11. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    Science.gov (United States)

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  12. Role of brain hemispheric dominance in anticipatory postural control strategies.

    Science.gov (United States)

    Cioncoloni, David; Rosignoli, Deborah; Feurra, Matteo; Rossi, Simone; Bonifazi, Marco; Rossi, Alessandro; Mazzocchio, Riccardo

    2016-07-01

    Most of the cerebral functions are asymmetrically represented in the two hemispheres. Moreover, dexterity and coordination of the distal segment of the dominant limbs depend on cortico-motor lateralization. In this study, we investigated whether postural control may be also considered a lateralized hemispheric brain function. To this aim, 15 young subjects were tested in standing position by measuring center of pressure (COP) shifts along the anteroposterior axis (COP-Y) during dynamic posturography before and after continuous Theta Burst Stimulation (cTBS) intervention applied to the dominant or non-dominant M1 hand area as well as to the vertex. We show that when subjects were expecting a forward platform translation, the COP-Y was positioned significantly backward or forward after dominant or non-dominant M1 stimulation, respectively. We postulate that cTBS applied on M1 may have disrupted the functional connectivity between intra- and interhemispheric areas implicated in the anticipatory control of postural stability. This study suggests a functional asymmetry between the two homologous primary motor areas, with the dominant hemisphere playing a critical role in the selection of the appropriate postural control strategy.

  13. Hemisphericity and information processing in North American Native (Ojibwa) and non-native adolescents.

    Science.gov (United States)

    Morton, L L; Allen, J D; Williams, N H

    1994-04-01

    Thirty-two male and female adolescents of native ancestry (Ojibwa) and 32 controls were tested using (1) four WISC-R subtests and (2) two dichotic listening tasks which employed a focused-attention paradigm for processing consonant-vowel combinations (CVs) and musical melodies. On the WISC-R, natives scored higher than controls on Block Design and Picture Completion subtests but lower on Vocabulary and Similarities subtests. On laterality measures more native males showed a left ear advantage on the CV task and the melody task. For CVs the left ear advantage was due to native males' lower right ear (i.e., left hemisphere) involvement. For melodies, the laterality index pointed to less left hemisphere involvement for native males, however, the raw scores showed that natives were performing lower overall. The findings are consistent with culturally-based strategy differences, possibly linked to "hemisphericity," but additional clarifying research regarding the cause and extent of such differences is warranted. Thus, implications for education are premature but a focus on teaching "left hemisphere type" strategies to all individuals not utilizing such skills, including many native males, may prove beneficial.

  14. Hemispheric asymmetry of the brain as a psycho-physiological basis of individual and typological features of the formation of a sense of humour

    Directory of Open Access Journals (Sweden)

    Shportun O.N.

    2016-05-01

    Full Text Available The article describes the psycho-physiological peculiarities of hemispheric asymmetry of the brain as the basis of individual and typological features of the formation of a sense of humour. The analysis of the impact of the functional brain hemispheric asymmetry on emotional, intellectual and physiological features of development of sense of humour in ontogeny is conducted. Analysis of studies of inter-hemispheric asymmetry of the brain makes it possible to ascertain the impact of the functioning of each hemisphere on the formation of the perception of humour. Studies show that in the process of developing of sense of humour, two functional hemispheres of the brain are involved. As the emotion of humour – is an intellectual emotion, and in the development of intelligence a lot of mental processes are involved, in the formation of humour two hemispheres of the brain are functioned. The right hemisphere is responsible for the emotional nature of humour (intonation, sound level of language, speed of response to a joke ..., the left hemisphere – for processing verbal information (content of the joke, category, purpose, content analysis .... After analysing the research of hemispheric functional asymmetry of the human brain, its psycho-physiological and neurochemical characteristics, it can be assumed that people with more developed left hemisphere in perceiving humour are more prone to displays of gelotophilia and “right hemisphere” people – show signs of gelotophobia and katagelasticism. Examining gender differences of hemisphere asymmetry of the brain, it can be argued that diagnosing sense of humour is important to take into account gender-specific functioning of hemispheres, because men have more clearly functioning the left hemisphere, and women – the right one. This fact of sexual peculiarities of functioning of inter-hemispheric asymmetry of the brain allows diagnosing objectively sense of humour, as well as different variations

  15. Hemispheric asymmetries in speech perception: sense, nonsense and modulations.

    Directory of Open Access Journals (Sweden)

    Stuart Rosen

    Full Text Available The well-established left hemisphere specialisation for language processing has long been claimed to be based on a low-level auditory specialization for specific acoustic features in speech, particularly regarding 'rapid temporal processing'.A novel analysis/synthesis technique was used to construct a variety of sounds based on simple sentences which could be manipulated in spectro-temporal complexity, and whether they were intelligible or not. All sounds consisted of two noise-excited spectral prominences (based on the lower two formants in the original speech which could be static or varying in frequency and/or amplitude independently. Dynamically varying both acoustic features based on the same sentence led to intelligible speech but when either or both acoustic features were static, the stimuli were not intelligible. Using the frequency dynamics from one sentence with the amplitude dynamics of another led to unintelligible sounds of comparable spectro-temporal complexity to the intelligible ones. Positron emission tomography (PET was used to compare which brain regions were active when participants listened to the different sounds.Neural activity to spectral and amplitude modulations sufficient to support speech intelligibility (without actually being intelligible was seen bilaterally, with a right temporal lobe dominance. A left dominant response was seen only to intelligible sounds. It thus appears that the left hemisphere specialisation for speech is based on the linguistic properties of utterances, not on particular acoustic features.

  16. Hemispheric asymmetries and gender influence Rembrandt's portrait orientations.

    Science.gov (United States)

    Schirillo, J A

    2000-01-01

    For centuries painters have predominantly painted portraits with the model's left-cheek facing the viewer. This has been even more prevalent with females ( approximately 68%) than males ( approximately 56%). Numerous portraits painted by Rembrandt typify this unexplained phenomenon. In a preliminary experiment, subjects judged 24 emotional and social character traits in 20 portraits by Rembrandt. A factor analysis revealed that females with their left cheek exposed were judged to be much less socially appealing than less commonly painted right-cheeked females. Conversely, the more commonly painted right-cheeked males were judged to be more socially appealing than either left-cheeked males or females facing either direction. It is hypothesized that hemispheric asymmetries regulating emotional facial displays of approach and avoidance influenced the side of the face Rembrandt's models exposed due to prevailing social norms. A second experiment had different subjects judge a different collection of 20 portraits by Rembrandt and their mirror images. Mirror-reversed images produced the same pattern of results as their original orientation counterparts. Consequently, hemispheric asymmetries that specify the emotional expression on each side of the face are posited to account for the obtained results.

  17. Right hemispheric contributions to fine auditory temporal discriminations: high-density electrical mapping of the duration mismatch negativity (MMN

    Directory of Open Access Journals (Sweden)

    Pierfilippo De Sanctis

    2009-04-01

    Full Text Available That language processing is primarily a function of the left hemisphere has led to the supposition that auditory temporal discrimination is particularly well-tuned in the left hemisphere, since speech discrimination is thought to rely heavily on the registration of temporal transitions. However, physiological data have not consistently supported this view. Rather, functional imaging studies often show equally strong, if not stronger, contributions from the right hemisphere during temporal processing tasks, suggesting a more complex underlying neural substrate. The mismatch negativity (MMN component of the human auditory evoked-potential (AEP provides a sensitive metric of duration processing in human auditory cortex and lateralization of MMN can be readily assayed when sufficiently dense electrode arrays are employed. Here, the sensitivity of the left and right auditory cortex for temporal processing was measured by recording the MMN to small duration deviants presented to either the left or right ear. We found that duration deviants differing by just 15% (i.e. rare 115 ms tones presented in a stream of 100 ms tones elicited a significant MMN for tones presented to the left ear (biasing the right hemisphere. However, deviants presented to the right ear elicited no detectable MMN for this separation. Further, participants detected significantly more duration deviants and committed fewer false alarms for tones presented to the left ear during a subsequent psychophysical testing session. In contrast to the prevalent model, these results point to equivalent if not greater right hemisphere contributions to temporal processing of small duration changes.

  18. Determination of hemispheric language dominance using functional MRI : comparison of visual and auditory stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ic Ryung; Ahn, Kook Jin; Lee, Jae Mun [The Catholic Univ. of Korea, Seoul (Korea, Republic of); Kim, Tae [The Catholic Magnetic Resonance Research Center, Seoul (Korea, Republic of)

    1999-12-01

    To assess the difference between auditory and visual stimuli when determining hemispheric language dominance by using functional MRI. In ten healthy adult volunteers (8 right-handed, 1 left-handed, 1 ambidextrous), motor language activation in axial slices of frontal lobe was mapped on a Simens 1.5T Vision Plus system using single-shot EPI. Series of 120 consecutive images per section were acquired during three cycles of task activation and rest. During each activation, a series of four syllables was delivered by means of both a visual and auditory method, and the volunteers were asked to mentally generate words starting with each syllable. In both in ferior frontal gyri and whole frontal lobes, lateralization indices were calculated from the activated pixels. We determined the language dominant hemisphere, and compared the results of the visual method and the auditory method. Seven right-handed persons were left-hemisphere dominant, and one left-handed and one ambidex-trous person were right-hemisphere dominant. Five of nine persons demonstrated larger lateralization indices with the auditory method than the visual method, while the remaining four showed larger lateralization indices with the visual method. No statistically significant difference was noted when comparing the results of the two methods(p>0.05). When determining hemispheric language dominance using functional MRI, the two methods are equally appropriate.

  19. Hemispheric dominance underlying the neural substrate for learned vocalizations develops with experience.

    Science.gov (United States)

    Chirathivat, Napim; Raja, Sahitya C; Gobes, Sharon M H

    2015-06-22

    Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers' song, just like Wernicke's area in the left hemisphere of the human brain is dominant for speech perception. However, it is unclear if hemispheric specialization is due to pre-existing functional asymmetry or the result of learning itself. Here we show that in juvenile male and female zebra finches that had never heard an adult song before, neuronal activation after initial exposure to a conspecific song is bilateral. Thus, like in humans, hemispheric dominance develops with vocal proficiency. A left-lateralized functional system that develops through auditory-vocal learning may be an evolutionary adaptation that could increase the efficiency of transferring information within one hemisphere, benefiting the production and perception of learned communication signals.

  20. Determination of hemispheric language dominance using functional MRI : comparison of visual and auditory stimuli

    International Nuclear Information System (INIS)

    Yoo, Ic Ryung; Ahn, Kook Jin; Lee, Jae Mun; Kim, Tae

    1999-01-01

    To assess the difference between auditory and visual stimuli when determining hemispheric language dominance by using functional MRI. In ten healthy adult volunteers (8 right-handed, 1 left-handed, 1 ambidextrous), motor language activation in axial slices of frontal lobe was mapped on a Simens 1.5T Vision Plus system using single-shot EPI. Series of 120 consecutive images per section were acquired during three cycles of task activation and rest. During each activation, a series of four syllables was delivered by means of both a visual and auditory method, and the volunteers were asked to mentally generate words starting with each syllable. In both in ferior frontal gyri and whole frontal lobes, lateralization indices were calculated from the activated pixels. We determined the language dominant hemisphere, and compared the results of the visual method and the auditory method. Seven right-handed persons were left-hemisphere dominant, and one left-handed and one ambidex-trous person were right-hemisphere dominant. Five of nine persons demonstrated larger lateralization indices with the auditory method than the visual method, while the remaining four showed larger lateralization indices with the visual method. No statistically significant difference was noted when comparing the results of the two methods(p>0.05). When determining hemispheric language dominance using functional MRI, the two methods are equally appropriate

  1. Neuropsychological syndromes in patients with Parkinson’s disease after deep electric stimulation of pallidar complex structures

    Directory of Open Access Journals (Sweden)

    Yu V Mikadze

    2013-01-01

    Full Text Available The paper provides the results of neuropsychological examinations in 10 patients with Parkinson’s disease who underwent deep electrical stimulation of pallidar complex structures. The general neuropsychological test battery that had been developed by A.R. Luria and allowed the qualitative classification of the cognitive impairment symptoms detectable on examination to be made was used to study cognitive functions. The patients were examined before and just after surgery and in the late period (following 1—2 years. The examinations have shown that the syndromes indicative of dysfunctions in the deep, parietal, and occipital and prefrontal regions of the left hemisphere and in the parietooccipital regions of the right hemisphere are stable components that determine the pattern of cognitive disorders and are preserved throughout all examinations.

  2. Double dissociation between syntactic gender and picture naming processing: a brain stimulation mapping study.

    Science.gov (United States)

    Vidorreta, Jose Garbizu; Garcia, Roser; Moritz-Gasser, Sylvie; Duffau, Hugues

    2011-03-01

    Neural foundations of syntactic gender processing remain poorly understood. We used electrostimulation mapping in nine right-handed awake patients during surgery for a glioma within the left hemisphere, to study whether the cortico-subcortical structures involved in naming versus syntactic gender processing are common or distinct. In French, the article determines the grammatical gender. Thus, the patient was asked to perform a picture naming task and to give the appropriate article for each picture, with and without stimulation. Cortical stimulation elicited reproducible syntactic gender disturbances in six patients, in the inferior frontal gyrus (three cases), and in the posterior middle temporal gyrus (three cases). Interestingly, no naming disorders were generated during stimulation of the syntactic sites, while cortical areas inducing naming disturbances never elicited grammatical gender errors when stimulated. Moreover, at the subcortical level, stimulation of the white matter lateral to the caudate nucleus induced gender errors in three patients, with no naming disorders. Using cortico-subcortical electrical mapping in awake patients, we demonstrate for the first time (1) a double dissociation between syntactic gender and naming processing, supporting independent network model rather than serial theory, (2) the involvement of the left inferior frontal gyrus, especially the pars triangularis, and the posterior left middle temporal gyrus in grammatical gender processing, (3) the existence of white matter pathways, likely a sub-part of the left superior longitudinal fasciculus, underlying a large-scale distributed cortico-subcortical circuit which might selectively sub-serve syntactic gender processing, even if interconnected with parallel sub-networks involved in naming (semantic and phonological) processing. Copyright © 2010 Wiley-Liss, Inc.

  3. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness.

    Science.gov (United States)

    Mazoyer, Bernard; Zago, Laure; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Perchey, Guy; Mellet, Emmanuel; Petit, Laurent; Tzourio-Mazoyer, Nathalie

    2014-01-01

    Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.

  4. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness.

    Directory of Open Access Journals (Sweden)

    Bernard Mazoyer

    Full Text Available Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH. A hemispheric functional lateralization index (HFLI for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH, "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH. Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.

  5. Bilateral cerebral hemispheric infarction associated with sildenafil citrate (Viagra) use.

    Science.gov (United States)

    Kim, K-K; Kim, D G; Ku, Y H; Lee, Y J; Kim, W-C; Kim, O J; Kim, H S

    2008-03-01

    Sildenafil citrate (Viagra) is one of the frequently prescribed drugs for men with erectile dysfunction. We describe a 52-year-old man with bilateral middle cerebral artery (MCA) territory infarction after sildenafil use. He ingested 100 mg of sildenafil and about 1 h later, he complained of chest discomfort, palpitation and dizziness followed by mental obtundation, global aphasia and left hemiparesis. Brain magnetic resonance imaging documented acute bilateral hemispheric infarction, and cerebral angiography showed occluded bilateral MCA. Despite significant bilateral MCA stenosis and cerebral infarction, systemic hypotension persisted for a day. We presume that cerebral infarction was caused by cardioembolism with sildenafil use.

  6. The effect of cognitive load on hemispheric asymmetries in true and false memory.

    Science.gov (United States)

    Tat, Michael J; Azuma, Tamiko

    2016-01-01

    Studies examining hemispheric asymmetries in false memory have shown that the right hemisphere (RH) is more susceptible to false memories compared to the left hemisphere (LH). Theories suggest that hemispheric asymmetries in true and false memory may be due to differences in representational coding and the use of top-down mechanisms in each hemisphere. In the current study, the Deese-Roediger-McDermott false memory paradigm was used in conjunction with divided visual field presentation to examine the role of top-down mechanisms in hemispheric asymmetries of true and false memory. In Experiment 1, participants studied lists of related words while completing secondary cognitive load tasks. In Experiment 2, the secondary tasks were administered during memory retrieval instead of memory encoding. Results revealed that cognitive loads imposed during the study phase influenced veridical memory in the LH more than the RH, but cognitive loads imposed during retrieval did not influence veridical memory in either hemisphere. Surprisingly, false memory rates were not influenced by cognitive loads and were higher in the LH. These data provide evidence that, at least for veridical memory, top-down control mechanisms are used more readily for the encoding of information into memory in the LH compared to the RH.

  7. Global perception depends on coherent work of bilateral visual cortices: transcranial magnetic stimulation (TMS) studies.

    Science.gov (United States)

    Zhang, Xin; Han, ShiHui

    2007-08-01

    Previous research suggests that the right and left hemispheres dominate global and local perception of hierarchical patterns, respectively. The current work examined whether global perception of hierarchical stimuli requires coherent work of bilateral visual cortices using transcranial magnetic stimulation (TMS). Subjects discriminated global or local properties of compound letters in Experiment 1. Reaction times were recorded when single-pulse real TMS or sham TMS was delivered over the left or right visual cortex. While a global precedence effect (i.e., faster responses to global than local targets and stronger global-to-local interference than the reverse) was observed, TMS decreased global-to-local interference whereas increased local-to-global interference. Experiment 2 ruled out the possibility that the effects observed in Experiment 1 resulted from perceptual learning. Experiment 3 used compound shapes and observed TMS effect similar to that in Experiment 1. Moreover, TMS also slowed global RTs whereas speeded up local RTs in Experiment 3. Finally, the TMS effects observed in Experiments 1 and 3 did not differ between the conditions when TMS was applied over the left and right hemispheres. The results support a coherence hypothesis that global perception of compound stimuli depends upon the coherent work of bilateral visual cortices.

  8. Effects of hemisphere speech dominance and seizure focus on patterns of behavioral response errors for three types of stimuli.

    Science.gov (United States)

    Rausch, R; MacDonald, K

    1997-03-01

    We used a protocol consisting of a continuous presentation of stimuli with associated response requests during an intracarotid sodium amobarbital procedure (IAP) to study the effects of hemisphere injected (speech dominant vs. nondominant) and seizure focus (left temporal lobe vs. right temporal lobe) on the pattern of behavioral response errors for three types of visual stimuli (pictures of common objects, words, and abstract forms). Injection of the left speech dominant hemisphere compared to the right nondominant hemisphere increased overall errors and affected the pattern of behavioral errors. The presence of a seizure focus in the contralateral hemisphere increased overall errors, particularly for the right temporal lobe seizure patients, but did not affect the pattern of behavioral errors. Left hemisphere injections disrupted both naming and reading responses at a rate similar to that of matching-to-sample performance. Also, a short-term memory deficit was observed with all three stimuli. Long-term memory testing following the left hemisphere injection indicated that only for pictures of common objects were there fewer errors during the early postinjection period than for the later long-term memory testing. Therefore, despite the inability to respond to picture stimuli, picture items, but not words or forms, could be sufficiently encoded for later recall. In contrast, right hemisphere injections resulted in few errors, with a pattern suggesting a mild general cognitive decrease. A selective weakness in learning unfamiliar forms was found. Our findings indicate that different patterns of behavioral deficits occur following the left vs. right hemisphere injections, with selective patterns specific to stimulus type.

  9. Hemispheric asymmetry in the processing of negative and positive words: a divided field study.

    Science.gov (United States)

    Holtgraves, Thomas; Felton, Adam

    2011-06-01

    Research on the lateralisation of brain functions for emotion has yielded different results as a function of whether it is the experience, expression, or perceptual processing of emotion that is examined. Further, for the perception of emotion there appear to be differences between the processing of verbal and nonverbal stimuli. The present research examined the hemispheric asymmetry in the processing of verbal stimuli varying in emotional valence. Participants performed a lexical decision task for words varying in affective valence (but equated in terms of arousal) that were presented briefly to the right or left visual field. Participants were significantly faster at recognising positive words presented to the right visual field/left hemisphere. This pattern did not occur for negative words (and was reversed for high arousal negative words). These results suggest that the processing of verbal stimuli varying in emotional valence tends to parallel hemispheric asymmetry in the experience of emotion.

  10. Hemispheric lateralization in top-down attention during spatial relation processing: a Granger causal model approach.

    Science.gov (United States)

    Falasca, N W; D'Ascenzo, S; Di Domenico, A; Onofrj, M; Tommasi, L; Laeng, B; Franciotti, R

    2015-04-01

    Magnetoencephalography was recorded during a matching-to-sample plus cueing paradigm, in which participants judged the occurrence of changes in either categorical (CAT) or coordinate (COO) spatial relations. Previously, parietal and frontal lobes were identified as key areas in processing spatial relations and it was shown that each hemisphere was differently involved and modulated by the scope of the attention window (e.g. a large and small cue). In this study, Granger analysis highlighted the patterns of causality among involved brain areas--the direction of information transfer ran from the frontal to the visual cortex in the right hemisphere, whereas it ran in the opposite direction in the left side. Thus, the right frontal area seems to exert top-down influence, supporting the idea that, in this task, top-down signals are selectively related to the right side. Additionally, for CAT change preceded by a small cue, the right frontal gyrus was not involved in the information transfer, indicating a selective specialization of the left hemisphere for this condition. The present findings strengthen the conclusion of the presence of a remarkable hemispheric specialization for spatial relation processing and illustrate the complex interactions between the lateralized parts of the neural network. Moreover, they illustrate how focusing attention over large or small regions of the visual field engages these lateralized networks differently, particularly in the frontal regions of each hemisphere, consistent with the theory that spatial relation judgements require a fronto-parietal network in the left hemisphere for categorical relations and on the right hemisphere for coordinate spatial processing. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Feelings of past lives as expected perturbations within the neurocognitive processes that generate the sense of self: contributions from limbic lability and vectorial hemisphericity.

    Science.gov (United States)

    Persinger, M A

    1996-12-01

    Normal, young men and women who believed they may have lived a previous life (n = 21) or who did not endorse (n = 52) this belief of "reincarnation" were exposed to partial sensory deprivation and received transcerebral stimulation by burst-firing magnetic fields over either the left or right hemisphere. Individuals who reported belief in reincarnation could be discriminated from nonbelievers by their more frequent report of experiences of tingling sensations, spinning, detachment of consciousness from the body, and intrusions of thoughts that were not attributed to the sense of self. The results support the hypothesis that there may be neurocognitive processes which identify experiences as originating from the sense of self (episodic or autobiographical memory) or "not self." When anomalous experiences are beyond the boundary of the experiences contained with the generalization gradient of concurrent autobiographical memory, they are more likely to be attributed to culturally available default explanations such as living a previous life.

  12. An ERP assessment of hemispheric projections in foveal and extrafoveal word recognition.

    Directory of Open Access Journals (Sweden)

    Timothy R Jordan

    Full Text Available BACKGROUND: The existence and function of unilateral hemispheric projections within foveal vision may substantially affect foveal word recognition. The purpose of this research was to reveal these projections and determine their functionality. METHODOLOGY: Single words (and pseudowords were presented to the left or right of fixation, entirely within either foveal or extrafoveal vision. To maximize the likelihood of unilateral projections for foveal displays, stimuli in foveal vision were presented away from the midline. The processing of stimuli in each location was assessed by combining behavioural measures (reaction times, accuracy with on-line monitoring of hemispheric activity using event-related potentials recorded over each hemisphere, and carefully-controlled presentation procedures using an eye-tracker linked to a fixation-contingent display. PRINCIPAL FINDINGS: Event-related potentials 100-150 ms and 150-200 ms after stimulus onset indicated that stimuli in extrafoveal and foveal locations were projected unilaterally to the hemisphere contralateral to the presentation hemifield with no concurrent projection to the ipsilateral hemisphere. These effects were similar for words and pseudowords, suggesting this early division occurred before word recognition. Indeed, event-related potentials revealed differences between words and pseudowords 300-350 ms after stimulus onset, for foveal and extrafoveal locations, indicating that word recognition had now occurred. However, these later event-related potentials also revealed that the hemispheric division observed previously was no longer present for foveal locations but remained for extrafoveal locations. These findings closely matched the behavioural finding that foveal locations produced similar performance each side of fixation but extrafoveal locations produced left-right asymmetries. CONCLUSIONS: These findings indicate that an initial division in unilateral hemispheric projections occurs in

  13. Abnormal inter- and intra-hemispheric integration in male paranoid schizophrenia: a graph-theoretical analysis.

    Science.gov (United States)

    Chen, Jianhuai; Yao, Zhijian; Qin, Jiaolong; Yan, Rui; Hua, Lingling; Lu, Qing

    2015-06-25

    The human brain is a complex network of regions that are structurally interconnected by white matter (WM) tracts. Schizophrenia (SZ) can be conceptualized as a disconnection syndrome characterized by widespread disconnections in WM pathways. To assess whether or not anatomical disconnections are associated with disruption of the topological properties of inter- and intra-hemispheric networks in SZ. We acquired the diffusion tensor imaging data from 24 male patients with paranoid SZ during an acute phase of their illness and from 24 healthy age-matched male controls. The brain FA-weighted (fractional anisotropy-weighted) structural networks were constructed and the inter- and intra-hemispheric integration was assessed by estimating the average characteristic path lengths (CPLs) between and within the left and right hemisphere networks. The mean CPLs for all 18 inter-and intra-hemispheric CPLs assessed were longer in the SZ patient group than in the control group, but only some of these differences were significantly different: the CPLs for the overall inter-hemispheric and the left and right intra-hemispheric networks; the CPLs for the interhemisphere subnetworks of the frontal lobes, temporal lobes, and subcortical structures; and the CPL for the intra- frontal subnetwork in the right hemisphere. Among the 24 patients, the CPL of the inter-frontal subnetwork was positively associated with negative symptom severity, but this was the only significant result among 72 assessed correlations, so it may be a statistical artifact. Our findings suggest that the integrity of intra- and inter-hemispheric WM tracts is disrupted in males with paranoid SZ, supporting the brain network disconnection model (i.e., the (')connectivity hypothesis(')) of schizophrenia. Larger studies with less narrowly defined samples of individuals with schizophrenia are needed to confirm these results.

  14. An ERP Assessment of Hemispheric Projections in Foveal and Extrafoveal Word Recognition

    Science.gov (United States)

    Jordan, Timothy R.; Fuggetta, Giorgio; Paterson, Kevin B.; Kurtev, Stoyan; Xu, Mengyun

    2011-01-01

    Background The existence and function of unilateral hemispheric projections within foveal vision may substantially affect foveal word recognition. The purpose of this research was to reveal these projections and determine their functionality. Methodology Single words (and pseudowords) were presented to the left or right of fixation, entirely within either foveal or extrafoveal vision. To maximize the likelihood of unilateral projections for foveal displays, stimuli in foveal vision were presented away from the midline. The processing of stimuli in each location was assessed by combining behavioural measures (reaction times, accuracy) with on-line monitoring of hemispheric activity using event-related potentials recorded over each hemisphere, and carefully-controlled presentation procedures using an eye-tracker linked to a fixation-contingent display. Principal Findings Event-related potentials 100–150 ms and 150–200 ms after stimulus onset indicated that stimuli in extrafoveal and foveal locations were projected unilaterally to the hemisphere contralateral to the presentation hemifield with no concurrent projection to the ipsilateral hemisphere. These effects were similar for words and pseudowords, suggesting this early division occurred before word recognition. Indeed, event-related potentials revealed differences between words and pseudowords 300–350 ms after stimulus onset, for foveal and extrafoveal locations, indicating that word recognition had now occurred. However, these later event-related potentials also revealed that the hemispheric division observed previously was no longer present for foveal locations but remained for extrafoveal locations. These findings closely matched the behavioural finding that foveal locations produced similar performance each side of fixation but extrafoveal locations produced left-right asymmetries. Conclusions These findings indicate that an initial division in unilateral hemispheric projections occurs in foveal vision

  15. Association between scalp hair-whorl direction and hemispheric language dominance.

    NARCIS (Netherlands)

    Weber, B.; Hoppe, C.; Faber, J.; Axmacher, N.; Fliessbach, K.; Mormann, F.; Weis, S.; Ruhlmann, J.; Elger, C.E.; Fernandez, G.S.E.

    2006-01-01

    Asymmetry is a common phenomenon in higher organisms. In humans, the cortical representation of language exhibits a high degree of asymmetry with a prevalence of about 90% of left hemispheric dominance, the underlying mechanisms of which are largely unknown. Another sign that exhibits a form of

  16. Hemispheric Asymmetries in Processing L1 and L2 Idioms: Effects of Salience and Context

    Science.gov (United States)

    Cieslicka, Anna B.; Heredia, Roberto R.

    2011-01-01

    This study investigates the contribution of the left and right hemispheres to the comprehension of bilingual figurative language and the joint effects of salience and context on the differential cerebral involvement in idiom processing. The divided visual field and the lexical decision priming paradigms were employed to examine the activation of…

  17. On the Other Hand Am I Rational? Hemispheric Activation and the Framing Effect

    Science.gov (United States)

    McElroy, Todd; Seta, John J.

    2004-01-01

    In recent decades the investigation of framing effects has become the foremost studied phenomenon of rational/irrational decision making. Two experiments were conducted to determine whether the functional specializations of the left and the right hemispheres would produce different responses to a traditional framing task. In Experiment 1, a…

  18. Hostility, driving anger, and dangerous driving: the emerging role of hemispheric preference.

    Science.gov (United States)

    Gidron, Yori; Gaygısız, Esma; Lajunen, Timo

    2014-12-01

    Various studies have implicated psychosocial variables (e.g., hostility) in risk of dangerous driving and traffic accidents. However, whether these variables are related to more basic neurobiological factors, and whether such associations have implications for the modification of psychosocial risk factors in the context of driving, have not been examined in depth. This study examined the relationship between hemispheric preference (HP), hostility and self-reported dangerous driving, and the ability to affect driving anger via hemisphere activating cognitive exercises (HACE). In Study 1, 254 Turkish students completed questionnaires of hostility, HP and driving behavior. In Study 2, we conducted a "proof of concept" experimental study, and tested effects of left, right and neutral HACE on driving anger, by exposing N=650 Turkish students to written scenarios including either logical (left hemisphere), visuo-spatial (right hemisphere) or "mild doses" of both types of contents (control). In Study 1, left-HP was associated with higher hostility and with more dangerous driving, and hostility mediated the relationship between L-HP and reported driving behavior. In Study 2, only right-HACE led to immediate significant reductions in self-reported driving anger. Left-HP is related to hostility and to dangerous driving, and it may be possible to partly reduce driving anger by right-HACE. Future studies must replicate these findings with objective measures, more enduring interventions and longer follow-ups. Copyright © 2014. Published by Elsevier Ltd.

  19. Vestibulo-cortical Hemispheric Dominance: the link between Anxiety and the Vestibular System?

    Science.gov (United States)

    Bednarczuk, Nadja F; Casanovas Ortega, Marta; Fluri, Anne-Sophie; Arshad, Qadeer

    2018-05-16

    Vestibular processing and anxiety networks are functionally intertwined, as demonstrated by reports of reciprocal influences upon each other. Yet whether there is an underlying link between these two systems remains unknown Previous findings have highlighted the involvement of hemispheric lateralisation in processing of both anxiety and vestibular signals. Accordingly, we explored the interaction between vestibular cortical processing and anxiety by assessing the relationship between anxiety levels and the degree of hemispheric lateralisation of vestibulo-cortical processing in 64 right-handed, healthy individuals. Vestibulo-cortical hemispheric lateralisation was determined by gaging the degree of caloric-induced nystagmus suppression following modulation of cortical excitability using trans-cranial direct current stimulation targeted over the posterior parietal cortex, an area implicated in the processing of vestibular signals. The degree of nystagmus suppression yields an objective biomarker, allowing the quantification of the degree of right vestibulo-cortical hemisphere dominance. Anxiety levels were quantified using the Trait component of the Spielberger State-Trait Anxiety Questionnaire. Our findings demonstrate that the degree of an individual's vestibulo-cortical hemispheric dominance correlates with their anxiety levels. That is, those individuals with greater right hemispheric vestibulo-cortical dominance exhibited lower levels of anxiety. By extension, our results support the notion that hemispheric lateralisation determines an individual's emotional processing, thereby linking cortical circuits involved in processing anxiety and vestibular signals respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Contrast of Hemispheric Lateralization for Oro-Facial Movements between Learned Attention-Getting Sounds and Species-Typical Vocalizations in Chimpanzees: Extension in a Second Colony

    Science.gov (United States)

    Wallez, Catherine; Schaeffer, Jennifer; Meguerditchian, Adrien; Vauclair, Jacques; Schapiro, Steven J.; Hopkins, William D.

    2012-01-01

    Studies involving oro-facial asymmetries in nonhuman primates have largely demonstrated a right hemispheric dominance for communicative signals and conveyance of emotional information. A recent study on chimpanzee reported the first evidence of significant left-hemispheric dominance when using attention-getting sounds and rightward bias for…

  1. Hemispheric specialization in the assessment of female physical attractiveness.

    Science.gov (United States)

    Dural, Seda; Cetinkaya, Hakan; Gülbetekin, Evrim

    2015-01-01

    Female physical attractiveness has been widely related to waist-to-hip ratio (WHR) and body weight (BW). The present study was conducted to examine the role of hemispheric specialization in the perception of physical attractiveness. Drawings of female figures that differed in BW (underweight, normal and overweight) and WHR (0.7 and 1.0) were presented to both male and female subjects using the visual half-field technique. The stimuli were presented for an unusually short duration (180 msec). Under these conditions, male but not female subjects rated the various female figures as differing in attractiveness. Thus, male judgements of female attractiveness depended on weight and WHR. Reaction time and accuracy scores obtained from male subjects suggested that the left hemisphere (LH) was slower but more accurate than the right hemisphere in detecting differences in the attractiveness of the figures. Additionally, the most attractive figure was detected significantly more accurately than the least attractive figure when the figures were presented to the LH. The findings were discussed in terms of evolutionary views of sex differences in mate selection.

  2. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.

    Science.gov (United States)

    Block, Hannah; Celnik, Pablo

    2013-12-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation on the trained (experiment 1) or untrained (experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity and that the number of movements performed at plateau is an important predictor of transfer.

  3. Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Ziluk Angela

    2010-08-01

    Full Text Available Abstract Background Intermittent theta-burst stimulation (iTBS is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI. The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS. Results Compared to pre-iTBS, the amplitude of cortical potential N20/P25 was significantly increased for 5 minutes from non-stimulated SI and for 15 to 25 minutes from stimulated SI. Subcortical potentials recorded bilaterally remained unaltered following iTBS. Conclusion We conclude that iTBS increases the cortical excitability of SI bilaterally and does not alter thalamocortical afferent input to SI. ITBS may provide one avenue to induce cortical plasticity in the somatosensory cortex.

  4. The hemispherical deflector analyser revisited

    Energy Technology Data Exchange (ETDEWEB)

    Benis, E.P. [Institute of Electronic Structure and Laser, P.O. Box 1385, 71110 Heraklion, Crete (Greece)], E-mail: benis@iesl.forth.gr; Zouros, T.J.M. [Institute of Electronic Structure and Laser, P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion, Crete (Greece)

    2008-04-15

    Using the basic spectrometer trajectory equation for motion in an ideal 1/r potential derived in Eq. (101) of part I [T.J.M. Zouros, E.P. Benis, J. Electron Spectrosc. Relat. Phenom. 125 (2002) 221], the operational characteristics of a hemispherical deflector analyser (HDA) such as dispersion, energy resolution, energy calibration, input lens magnification and energy acceptance window are investigated from first principles. These characteristics are studied as a function of the entry point R{sub 0} and the nominal value of the potential V(R{sub 0}) at entry. Electron-optics simulations and actual laboratory measurements are compared to our theoretical results for an ideal biased paracentric HDA using a four-element zoom lens and a two-dimensional position sensitive detector (2D-PSD). These results should be of particular interest to users of modern HDAs utilizing a PSD.

  5. The hemispherical deflector analyser revisited

    International Nuclear Information System (INIS)

    Benis, E.P.; Zouros, T.J.M.

    2008-01-01

    Using the basic spectrometer trajectory equation for motion in an ideal 1/r potential derived in Eq. (101) of part I [T.J.M. Zouros, E.P. Benis, J. Electron Spectrosc. Relat. Phenom. 125 (2002) 221], the operational characteristics of a hemispherical deflector analyser (HDA) such as dispersion, energy resolution, energy calibration, input lens magnification and energy acceptance window are investigated from first principles. These characteristics are studied as a function of the entry point R 0 and the nominal value of the potential V(R 0 ) at entry. Electron-optics simulations and actual laboratory measurements are compared to our theoretical results for an ideal biased paracentric HDA using a four-element zoom lens and a two-dimensional position sensitive detector (2D-PSD). These results should be of particular interest to users of modern HDAs utilizing a PSD

  6. Increasing Northern Hemisphere water deficit

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.

    2015-01-01

    A monthly water-balance model is used with CRUTS3.1 gridded monthly precipitation and potential evapotranspiration (PET) data to examine changes in global water deficit (PET minus actual evapotranspiration) for the Northern Hemisphere (NH) for the years 1905 through 2009. Results show that NH deficit increased dramatically near the year 2000 during both the cool (October through March) and warm (April through September) seasons. The increase in water deficit near 2000 coincides with a substantial increase in NH temperature and PET. The most pronounced increases in deficit occurred for the latitudinal band from 0 to 40°N. These results indicate that global warming has increased the water deficit in the NH and that the increase since 2000 is unprecedented for the 1905 through 2009 period. Additionally, coincident with the increase in deficit near 2000, mean NH runoff also increased due to increases in P. We explain the apparent contradiction of concurrent increases in deficit and increases in runoff.

  7. Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask.

    Directory of Open Access Journals (Sweden)

    Melissa eScheldrup

    2014-09-01

    Full Text Available There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine. Non-invasive brain stimulation – specifically transcranial Direct Current Stimulation (tDCS – has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks were seen with a right parietal (C4 to left shoulder montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008. No effects were seen with anodes over sites that stimulated only dorsal (C3 or only ventral (F10 attention networks. The speed subtask (update memory for symbols benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical.

  8. Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask.

    Science.gov (United States)

    Scheldrup, Melissa; Greenwood, Pamela M; McKendrick, Ryan; Strohl, Jon; Bikson, Marom; Alam, Mahtab; McKinley, R Andy; Parasuraman, Raja

    2014-01-01

    There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation-specifically transcranial Direct Current Stimulation (tDCS)-has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4, reference to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical.

  9. A new method for selectively enhancing hemisphere processing: voice frequency amplification influences the strength of attribute framing.

    Science.gov (United States)

    McCormick, Michael; Seta, John J

    2012-01-01

    An attribute framing effect occurs when positive or negative associations produced by positive or negative frames are mapped onto evaluations resulting in a more favourable evaluation for the positively framed attribute. We used a new voice frequency manipulation to differentially enhance right versus left hemisphere processing. In doing so we found a strong attribute framing effect when a speaker with a low-frequency voice enhanced the contextual processing style of the right hemisphere. However, a framing effect was not obtained when a speaker with a high-frequency voice enhanced the inferential/analytical processing style of the left hemisphere. At the theoretical level our results provide evidence that the contextual processing style of the right hemisphere is especially susceptible to associative implications, such as those found in attribute framing manipulations. At the applied level we provide a simple method for altering the effectiveness of persuasion messages.

  10. Is the planum temporale surface area a marker of hemispheric or regional language lateralization?

    Science.gov (United States)

    Tzourio-Mazoyer, Nathalie; Crivello, Fabrice; Mazoyer, Bernard

    2018-04-01

    We investigated the association between the left planum temporale (PT) surface area or asymmetry and the hemispheric or regional functional asymmetries during language production and perception tasks in 287 healthy adults (BIL&GIN) who were matched for sex and handedness. The measurements of the PT surface area were performed after manually delineating the region using brain magnetic resonance images (MRI) and considering the Heschl's gyrus (HG) duplication pattern; the measurements either included (PT tot ) or did not include (PT post ) the second gyrus. A region encompassing both the PT and HG (HGPT) was also studied. Regardless of the ROI measured, 80% of the sample had a positive left minus right PT asymmetry. We first tested whether the PT tot , PT post and HGPT surface areas in the left or right hemispheres or PT asymmetries differed in groups of individuals varying in language lateralization by assessing their hemispheric index during a sentence production minus word list production task. We then investigated the association between these different measures of the PT anatomy and the regional asymmetries measured during the task. Regardless of the anatomical definition used, we observed no correlations between the left surface areas or asymmetries and the hemispheric or regional functional asymmetries during the language production task. We then performed a similar analysis using the same sample measuring language functional lateralization during speech listening tasks (i.e., listening to sentences and lists of words). Although the hemispheric lateralization during speech listening was not correlated with the left PT tot , PT post or HGPT surface areas or the PT asymmetries, significant positive correlations were observed between the asymmetries in these regions and the regional functional asymmetries measured in areas adjacent to the end of the Sylvian fissure while participants listened to the word lists or sentences. The PT asymmetry thus appears to be

  11. Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening

    Directory of Open Access Journals (Sweden)

    Silvia ePicazio

    2015-03-01

    Full Text Available Non-invasive brain stimulation modulates cortical excitability depending on the initial activation state of the structure being stimulated. Combination of cognitive with neurophysiological stimulations has been successfully employed to modulate responses of specific brain regions. The present research combined a neurophysiological pre-conditioning with a cognitive conditioning stimulation to modulate behavior. We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported. Cathodal, anodal or sham transcranial cerebellar Direct Current Stimulation (tcDCS pre-conditioning was applied on the left cerebellar hemisphere followed by conditioning stimulation through music or white noise listening in a sample of healthy subjects performing a Line Bisection Task (LBT. The combination of the cathodal stimulation with music listening resulted in a marked attentional shift toward the right hemispace, compensating thus the natural leftward bias of the baseline condition (pseudoneglect. Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention. The efficacy of the combined stimulation (cathodal pre-conditioning and music conditioning and the absence of any effect of the single stimulations provide a strong support to the state-dependency theory. They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

  12. Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation

    Directory of Open Access Journals (Sweden)

    Olivia Morgan Lapenta

    2013-06-01

    Full Text Available Motor system neural networks are activated during movement imagery, observation and execution, with a neural signature characterized by suppression of the Mu rhythm. In order to investigate the origin of this neurophysiological marker, we tested whether transcranial direct current stimulation (tDCS modifies Mu rhythm oscillations during tasks involving observation and imagery of biological and non-biological movements. We applied tDCS (anodal, cathodal and sham in 21 male participants (mean age 23.8+3.06, over the left M1 with a current of 2mA for 20 minutes. Following this, we recorded the EEG at C3, C4 and Cz and surrounding C3 and C4 electrodes. Analyses of C3 and C4 showed significant effects for biological vs. non-biological movement (p=0.005, and differential hemisphere effects according to the type of stimulation (p=0.04 and type of movement (p=0.02. Analyses of surrounding electrodes revealed significant interaction effects considering type of stimulation and imagery or observation of biological or non-biological movement (p=0.03. The main findings of this study were (i Mu desynchronization during biological movement of the hand region in the contralateral hemisphere after sham tDCS; (ii polarity-dependent modulation effects of tDCS on the Mu rhythm, i.e. anodal tDCS led to Mu synchronization while cathodal tDCS led to Mu desynchronization during movement observation and imagery (iii specific focal and opposite inter-hemispheric effects, i.e. contrary effects for the surrounding electrodes during imagery condition and also for inter-hemispheric electrodes (C3 vs. C4. These findings provide insights into the cortical oscillations during movement observation and imagery. Furthermore it shows that tDCS can be highly focal when guided by a behavioral task.

  13. Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation.

    Science.gov (United States)

    Lapenta, Olivia M; Minati, Ludovico; Fregni, Felipe; Boggio, Paulo S

    2013-01-01

    Motor system neural networks are activated during movement imagery, observation and execution, with a neural signature characterized by suppression of the Mu rhythm. In order to investigate the origin of this neurophysiological marker, we tested whether transcranial direct current stimulation (tDCS) modifies Mu rhythm oscillations during tasks involving observation and imagery of biological and non-biological movements. We applied tDCS (anodal, cathodal, and sham) in 21 male participants (mean age 23.8 ± 3.06), over the left M1 with a current of 2 mA for 20 min. Following this, we recorded the EEG at C3, C4, and Cz and surrounding C3 and C4 electrodes. Analyses of C3 and C4 showed significant effects for biological vs. non-biological movement (p = 0.005), and differential hemisphere effects according to the type of stimulation (p = 0.04) and type of movement (p = 0.02). Analyses of surrounding electrodes revealed significant interaction effects considering type of stimulation and imagery or observation of biological or non-biological movement (p = 0.03). The main findings of this study were (1) Mu desynchronization during biological movement of the hand region in the contralateral hemisphere after sham tDCS; (2) polarity-dependent modulation effects of tDCS on the Mu rhythm, i.e., anodal tDCS led to Mu synchronization while cathodal tDCS led to Mu desynchronization during movement observation and imagery (3) specific focal and opposite inter-hemispheric effects, i.e., contrary effects for the surrounding electrodes during imagery condition and also for inter-hemispheric electrodes (C3 vs. C4). These findings provide insights into the cortical oscillations during movement observation and imagery. Furthermore, it shows that tDCS can be highly focal when guided by a behavioral task.

  14. Communication Impairments in Patients with Right Hemisphere Damage

    Directory of Open Access Journals (Sweden)

    Abusamra, Valeria

    2009-06-01

    Full Text Available Right brain damages can manifest deficits of communicative skills, which sometimes cause an important inability.The communication impairments following a right hemisphere damage are distinct from those in aphasia and may affect discursive, lexico-semantic, pragmatic, and prosodic components of communication. It is calculated that this troubles affect almost a 50% of this patients.However, these impairments have essentially been studied separately and their possible coexistence in a same individual is still unknown. Moreover, the clinical profiles of communication impairments following a right hemisphere damage, including their correlation with underlying cognitive deficits, are still unreported. The goal of this article is to offer an overview of the verbal communication deficits that can be found in right-hemisphere-damaged individuals. These deficits can interfere, at different levels, with prosody, the semantic processing of words and discourse and pragmatic abilities. In spite of the incapability that they produce, communicational impairments in right brain damaged are usually neglected. Probably, the sub-diagnostic is due to the lack of an appropriate classification or to the absent of adequate assessment tools. In fact, patients with right brain damages might present harsh communicational deficits but perform correctly on aphasia tests because the last ones are not designed to detect this kind of deficit but left brain damaged impairments. Increasing our knowledge about the role of the right-hemisphere in verbal communication will have major theoretical and clinical impacts; it could facilitate the diagnosis of right brain patients in the clinical circle and it will help to lay the foundations to elaborate methods and strategies of intervention.

  15. The impact of left and right intracranial tumors on picture and word recognition memory.

    Science.gov (United States)

    Goldstein, Bram; Armstrong, Carol L; Modestino, Edward; Ledakis, George; John, Cameron; Hunter, Jill V

    2004-02-01

    This study investigated the effects of left and right intracranial tumors on picture and word recognition memory. We hypothesized that left hemispheric (LH) patients would exhibit greater word recognition memory impairment than right hemispheric (RH) patients, with no significant hemispheric group picture recognition memory differences. The LH patient group obtained a significantly slower mean picture recognition reaction time than the RH group. The LH group had a higher proportion of tumors extending into the temporal lobes, possibly accounting for their greater pictorial processing impairments. Dual coding and enhanced visual imagery may have contributed to the patient groups' similar performance on the remainder of the measures.

  16. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    DEFF Research Database (Denmark)

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  17. Gender differences in functional hemispheric asymmetry during processing of vowels as reflected by the human brain magnetic response

    OpenAIRE

    Obleser, Jonas; Eulitz, Carsten; Lahiri, Aditi; Elbert, Thomas

    2001-01-01

    A number of findings indicate gender differences in language-related functional hemispheric brain asymmetry. To test if such gender-specific laterality is already present at the level of vowel-processing, the auditory evoked magnetic field was recorded in healthy right-handed male and female participants in response to the German synthetic vowels [a], [e] and [i]. Female participants exhibited stronger N100m responses than male participants over the left hemisphere. This observation was highl...

  18. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    Science.gov (United States)

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere an